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Abstract 

Laboratory tests were firstly conducted in a reduced scale channel to investigate the conditions for 

flame ejections when the carriage was at the centre of the channel. The ejected flames were recorded 

by two cameras and the temperature inside the enclosure and on the ceiling were measured. The lower 

critical heat release rate (HRR) which would result in intermittent flame ejection and upper critical 

HRR which would lead to continuous external flame were analysed with regards to their variations 

with the ventilation factor. Correlations for the longitudinal and transverse flame extension lengths and 

flame extension area beneath the ceiling were proposed. Subsequently further experimental 

investigations were conducted to study the effect of sidewall constraint on flame extension by changing 

the position of the carriage along the transverse direction to vary the distance between the sidewall and 

the carriage opening, which was also systematically varied. With the decrease of the sidewall-to-

opening distance, the longitudinal flame extension length was found to increase whereas the transverse 

flame extension length decreased. The changes are most significant when sidewall-to-opening distance 

was relatively small. These trends are different from those observed in previous wall-attached fires or 

corner fires in channels, where the flame extension length beneath the ceiling firstly increased with the 

decrease of sidewall-source distance, and then decreased slightly when the fire source was attached to 

the wall. New correlations were proposed to account for the effect of sidewall-to-opening distance for 

longitudinal and transverse flame extension lengths under the ceiling. They captured well the 

measurements for all the present cases and some published cases not used in their derivation, 

demonstrating the potential for fire safety engineering applications.   

 

Keywords: Flame extension; Channel fire; Sidewall; Carriage fire; Ejected flame; Ceiling jet. 
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Nomenclature   

A  opening area (m2) entrainmentm  air entrainment mass rate (kg/s) 

TA  
total exposed surface area of the 

enclosure excluding the opening 

(m2) 
Q  total heat release rate (kW) 

pc  
specific heat of air at constant 

pressure (kJ/kg·K) insideQ  

maximum theoretical heat 

release rate consumed inside the 

compartment (kW) 

1C  
a parameter related to air 

entrainment. exQ  excess heat release rate (kW) 

2C  
a parameter related to air 

entrainment. 
*

exQ
  

 
dimensionless excess heat 

release rate  

D 
Sidewall-to-opening distance 

(m) 
S flame extension area (m2) 

g gravitational acceleration (m/s2)  entrainmentS  air entrainment area (m2) 

H opening height of carriage (m) frontS  
air entrainment area from the 

front of the opening sizes (m2) 

cH  
combustion heat of the fuel 

(kJ/kg) 
sideS  

air entrainment area from the 

side of the opening sizes (m2) 

carriageH  height of the carriage (m) fT  ejected flame temperature (K)  

fH  

ejected flame height for free 

condition without tunnel ceiling 

(m) 

T  ambient air temperature (K) 

neutralH  height of the neutral (m) av  air entrainment velocity (m/s) 

OH   

heat release per mass of air 

consumed at normal conditions 

(3000 kJ/kg) 

fV  
total volume of the ejected flame 

without a ceiling (m3)  

tunnelH  tunnel height (m) fuV  
volume of the flame intercepted 

by the ceiling (m3) 

k 

ratio of the distance between the 

neutral plane and the ceiling to 

the distance between the carriage 

top and the ceiling  

W opening width of carriage (m) 

K air entrainment correction factor Z  
height from the neutral plane to 

the ceiling of the tunnel (m) 

LK  
longitudinal air entrainment 

correction factor 

Greek 

symbols 
 

TK  
transverse air entrainment 

correction factor 
  

ratio can be obtained by 

integrating, Eq. (8) 
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flame extension length under the 

ceiling (m) 
f  density of ejected flame (kg/m3) 

1
 characteristic length (m)   ambient air density (kg/m3) 

2
 characteristic length (m)   

coefficient of air entrainment due 

to the influence of side wall 

distance D 

L
 

longitudinal flame extension 

length under ceiling (cm) 
L  

coefficient of longitudinal air 

entrainment 

T
 

transverse flame extension 

length under ceiling (cm) 
T  

coefficient of transverse air 

entrainment 

m  coefficient for constants     

 

1. Introduction 

The construction of underground channel (e.g., underground road) has grown rapidly in recent 

years. This is accompanied by increasing occurrence of channel or tunnel fire accidents. For example, 

the Daxing underground channel fire accident in China killed 18 people in 2017. There have been 

growing concerns over the fire safety of long and narrow channel structure, such as tunnel, due to the 

increase in construction of channel or tunnel systems worldwide and recent major fire incidents. 

Previous studies have shown that the ceiling jet, which is created by flame impingement on the ceiling, 

is of critical importance to fire safety in channel and tunnels. However, previous studies were largely 

focused on the ceiling jet flame spread characteristics induced by free fire plumes in the tunnel [1]. A 

significant amount of work has also been conducted towards quantifying the ceiling flame spread 

characteristics [2-7] in building fires. You and Faeth [4] studied the impinging flame lengths along the 

horizontal ceiling and ceiling heat fluxes for both unconfined and confined ceilings, proposed an 

empirical flame extension length model. Ding and Quintiere [6] experimentally investigated impinging 

ceiling flames and proposed an integral model for flame extension lengths under the ceiling, using an 

empirical relationship for the mixing ratio of air entrained to the stoichiometric air needed for the 
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ceiling jet flame.  

For the effect of sidewall on free fire plume and impinging flame under the ceiling in a channel 

or tunnel like construction, many previous studies considered in default that the fire is at the centre of 

the channel or tunnel. However, in an actual channel or tunnel-like construction fire accident, the 

distance between the fire source and the side wall of the channel or tunnel can vary. Such variation can 

significantly affect flame spread characteristics of the ceiling jet due to the resulted change in air 

entrainment of the confined flame. In open fires, flames entrain air in all directions [8, 9]. In the 

presence of sidewall restrictions, air entrainment is affected. This will result in changes in the flame 

height and flame extension length under the ceiling in case of flame impingement. Research along this 

direction has been pursued by various investigators [10-26]. Zukoski [10] studied the wall-attached 

fire plume assuming that there was an imaginary fire source on the other side of the wall, which had 

the same intensity as the original fire source. Hasemi and Tokunaga [11] studied turbulent diffusion 

flames and buoyant plumes from fire sources against a wall and in a corner of walls; and found that 

the sidewall had considerable effect on the flame height and temperature. Poreh and Garrad [12] carried 

out experiments with the fire source close to a wall or having a certain distance from the wall. Their 

study reveals that air entrainment into the fuel laden fire flames is reduced and the burning of the fuel 

is completed at higher heights. Takahashi and Tanaka [13] also conducted experiments to investigate 

the relationship between air entrainment and flame/plume behaviour when a fire source was placed in 

and near a corner of vertical walls. Recently, Tang et al. [16] conducted experiments to study the effect 

of cross wind on near-wall buoyant turbulent diffusion flame length and tilt angle, it was found that 

the mean flame length of near-wall burning was significantly higher than that of middle flame (free 

burning) for a given source heat release rate and cross-wind speed, which indicated appreciable air 
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entrainment differences between near-wall flame and free burning. Ji et al. [17] investigated the 

sidewall effect on flame characteristics and burning rate of n-heptane pool fires. It was found that, due 

to air entrainment restricted by the sidewall, the vertical flame volume decreased and ceiling flame 

length increased. Zeinali et al. [21-22] experimentally tested fires in the corners of the walls and found 

flame height being affected by the restricted air entrainment. Zhang et al. [25] examined flame 

extension length in different directions under the inclined ceiling, and found that as the inclination 

angle increased, the longitudinal flame extension length decreased, and the transverse flame extension 

length increased. For flat ceiling, the length of the longitudinal flame was greater than that in the 

transverse direction. Therefore, when moving the fire source close to the side wall, the longitudinal 

and transverse flame extension length under the ceiling will change due to the restricted air entrainment. 

This effect has implications on fire safety and hence warrant quantification. There is also the need for 

simple correlations to cater for such scenarios for fire safety engineering applications.   

Another very important phenomenon in channel or tunnel-like construction fires is the ejected 

flame from under-ventilated carriage fires, which could cause damage to the channel or tunnel structure. 

Whilst much research has been conducted on the ejected flame from an enclosure in building fires [27-

30], relatively little research has been undertaken for channel or tunnel-like construction fires. In a 

collision accident, large goods or container vehicles could catch fire, resulting in ceiling flame spread 

if the heat release rate is sufficiently high because of large number of flammable objects. such as, Lee 

et al. [27] correlated the ejected flame height with the excess heat release rate outside the enclosure 

(
exQ    by assuming that the ejected thermal plume from the enclosure opening can be physically 

approximated as a rectangular fire source against the facade wall with two characteristic lengths of 

1/2 2/5

1 ( )AH  (parallel to the facade wall) and 2 1/4

2 ( )AH  (normal to the facade wall), where A 
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is the opening area and H is the height of opening. Note that the heat release rate inside the enclosure 

for under-ventilated fire conditions can be estimated as 1500inQ A H [27, 31, 32]. 

In summary, insight into the characteristics of ceiling jets caused by ejected flames from carriages 

in channel or tunnel-like structured is still lacking. Particularly, no research has been conducted to 

address the effects of sidewall to carriage distance (the distance between tunnel sidewall and carriage 

opening) on the ceiling flame spread characteristics in channel or tunnel-like structure fires, and the 

related safety implications. In such scenarios, due to air entrainment restrictions, the heat release rate 

(HRR) inside the enclosure may change with sidewall to carriage distance, and consequently the flame 

extension of the ceiling jet changes accordingly and the resulting fire hazard. The present study aims 

to filling these knowledge gaps through experimental investigations and provide some simplified 

formulas which can be used in fire safety design.  

 

2. The experimental setup 

A series of laboratory tests were conducted in a reduced-scale model channel or tunnel-like 

structure (1:8) of 22 m (L) × 1.2m (W) × 0.8 m (H) as shown in Fig. 1. Based on the Froude similarity 

criterion, 5/2(1/8)M FQ Q , (M is the model experiment, F is the full scale tunnel main channel), The 

corresponding full-size channel or tunnel-like structure section is 9.6 m (W) × 6.4 m (H) [33]. The 

floor of the model channel or tunnel-like structure is made of steel plates, which are covered by 

temperature resistant material. One sidewall is made of reinforced transparent glass while the other 

sidewall and the ceiling are made of glass magnesium board. The ambient temperature was about 16±4℃ 

in all tests. 
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Figure 1 Schematic diagram of the experimental device. 

 

Table 1. Experimental conditions for external flames 

Openings size Side wall-Opening  

distance D (cm) 

HRR（kW） 

H (cm) W (cm) 

10 15 60, 50, 40, 30, 25, 20 50.4, 67.2, 84 

15 10 60, 50, 40, 30, 25, 20 50.4, 67.2, 84 

15 15 60, 50, 40, 30, 25, 20 50.4, 67.2, 84 

20 10 60, 50, 40, 30, 25, 20 50.4, 67.2, 84 

 

The model scale carriage is 0.5 m (L) × 0.30 m (W) × 0.40 m (H). It is made of 3 mm thick steel 

plates and 10 mm thick fireproofing boards. A porous propane gas burner was placed at the centre 

flush with the carriage floor. The fuel flow rate is controlled by a mass flow meter (Alicat). Four 
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different opening dimensions were used to represent different aspect ratios and ventilation factors. The 

distance between the sidewall of the channel or tunnel-like structure, the opening of the carriage and 

the heat release rate (HRR) were systematically varied. In order to select the appropriate HRRs to 

facilitate examinations of flame extensions under the ceiling, the critical HRR which can result in 

external burning was firstly studied with the carriage under open conditions by varying the HRR from 

4.4 kW to 40 kW. These results are analysed in Section 3.1. Subsequently, the investigations were 

focused on studying the flame extension characteristics beneath a ceiling induced by a carriage fire in 

a channel or tunnel-like structure. The three HRRs used were 50.4, 67.2 and 84 kW, which were chosen 

to ensure that the flame impinges on the ceiling for all the opening sizes and sidewall–carriage 

distances. Tests were also conducted with the carriage in open conditions at the same HRRs to obtain 

the ejected flame height for free condition, the results of which are shown in Section 3.3. The detailed 

experimental conditions for the tests can be found in Table 1. According to the Froude similarity 

criterion of Quintiere [33], the HRRs used in the experiment are equivalent to actual fire HRRs from 

9.1 MW to 15.2 MW, which is in line with the HRR of a truck or passenger car fire. 

The flame evolutions were captured from the front view and side view by two charge-coupled 

device (CCD) cameras with a frequency of 50 frames per second. One camera was located at the right 

end of the channel to record the transverse flame development and the other perpendicular to the fire-

resistant glass side wall to record the longitudinal flame evolution. The transverse and longitudinal 

flame extensions beneath the channel ceiling were determined through image processing. As shown in 

Fig. 2, the original flame image was firstly converted to grey-scale image, and next to binary image 

using the Otsu method [32, 34] through MATLAB program. Flame intermittency distribution was then 

obtained by averaging the values of these consecutive binary images in each pixel position. Finally, 
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the flame intermittency distribution contour was used to represent one experimental case to obtain the 

mean flame dimension values at intermittency p= 0.5.  

（a）Original image

（a）

P=0.5 P

（b）Grey-scale image （c）Binary image

（d）Flame  probability 

distribution image

（e） Flame appearance 

intermittency  

Figure 2. Definition of the flame extension length based on image processing. 

For temperature measurements, several K-type thermocouple arrays were placed under the ceiling, 

covering an area of 1.2 m in length with 0.1 m interval and 0.8 m in width with 0.2 m interval. 

Additional thermocouples were arranged along the transverse centreline with 0.05 m spacing between 

them as shown in Fig. 1c. In the vertical direction, three thermocouple trees of 4 thermocouples each, 

were arranged, in the centre and 10 cm from the left and right side walls with the first thermocouple 

10 cm under the ceiling and 5 cm spacing between the adjacent ones as shown in Fig. 1d. Another 

thermocouple was placed at the centre of the opening to measure the ejected flame temperature. 

 Most of the thermocouples have a diameter of 1 mm. Two additional thermocouples with 

diameters of 0.5 mm and 1.5 mm were also used to estimate radiation errors following Blevin and Pitts 

[35]. It was found that the resulting correction increased with the increase of the measured temperature. 

The uncertainty range of the thermocouple measurements was estimated to be less than 5% in the hot 

gas layer. 
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Table 2 Estimation of uncertainties: example of measured longitudinal flame extension length (
L

) and 

transverse flame extension length (
T

). (D=60 cm) 

Quantities Opening 

size H*W 

(cm*cm) 

Heat 

release 

rate (kW) 

Repeat 

test 1 

( 1X ) 

(cm) 

Repeat 

test 2 

( 2X ) 

(cm) 

Repeat 

test 3 

( 3X ) 

(cm) 

Averag

e value  

X  

(cm) 

2σ 

(cm) 

𝟐𝛔

𝐀𝐯𝐞𝐫𝐚𝐠𝐞

(%) 

Longitudin

al flame 

extension 

length (
L
) 

10*15 50.4 25.49 25.11 25.24 25.28 0.32 1.26 

67.2 36.76 37.11 36.29 36.72 0.67 1.83 

84 46.39 45.51 46.79 46.23 1.07 2.31 

15*10 50.4 24.26 24.61 24.54 24.47 0.30 1.22 

67.2 39.49 40.31 40.38 40.06 0.80 2.00 

84 50.36 49.97 48.89 49.74 1.24 2.48 

15*15 50.4 19.72 19.82 19.59 19.71 0.19 0.98 

67.2 35.66 36.26 35.51 35.81 0.64 1.79 

84 48.04 46.71 47.66 47.47 1.12 2.37 

20*10 50.4 19.31 19.16 19.37 19.28 0.18 0.96 

67.2 30.42 30.98 30.76 30.72 0.47 1.53 

84 40.55 40.47 39.67 40.23 0.80 2.01 

Transverse 

flame 

extension 

length (
T

) 

10*15 50.4 35.33 35.98 36.03 35.78 0.64 1.78 

67.2 47.83 47.03 46.47 47.11 1.11 2.35 

84 55.56 56.34 57.63 56.51 1.71 2.92 

15*10 50.4 39.01 38.14 38.8 38.65 0.74 1.93 

67.2 46.39 47.55 46.37 46.77 1.09 2.33 

84 51.64 51.62 50.25 51.17 1.30 2.55 

15*15 50.4 31.84 32.44 32.29 32.19 0.51 1.60 

67.2 43.05 42.42 43.56 43.01 0.92 2.15 

84 53.08 54.16 52.45 53.23 1.41 2.66 

20*10 50.4 34.87 34.16 34.59 34.54 0.59 1.72 

67.2 41.95 43.02 42.26 42.41 0.89 2.12 

84 56.98 55.24 57.13 56.45 1.71 2.92 

 

Each test condition was repeated three times to check repeatability, and the average from the three 

tests were taken as the measurements. Table 2 illustrates the uncertainty analysis.  Assuming iX  is 

the measured values of N  set of repeated experiments (N = 3 here),   is the standard unbiased 

deviation of repeated data, then 

2

1
( )

1

N

ii
X X

N
 







. The mean value lies within the range of ± 2
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  , with confidence 95%. Table 2 gives an example of the uncertainty analysis for the different 

conditions for D = 60 cm. With 95% confidence, the relative uncertainty 
2

Average


 is less than 3%. 

The error bars in the experimental data shown in Figs. 7 indicate that the mean values represent the 

overall data within an uncertainty of 3%.  

 

3. Results and discussion 

3.1 Flame extension length and area on the ceiling induced by ejected carriage fires at the centre of 

the channel 

The HRR is a critical parameter for fire characterization. For under-ventilated fully involved fires 

in an enclosure, the mixture is fuel rich. Some unburnt fuel exit through the opening and mix with 

ambient air, resulting in external/ejected flame. Lee et. al. [27] conducted small-scale experiments to 

investigate the conditions leading to ejected fire plume from a carriage by analyzing the critical heat 

release rate within the enclosure and arrived at the following formula:  

0.133 1500 ( )
O

inside

H
Q c T A gH A H kW

c T







 




                (1) 

where 
insideQ  is the lower critical HRR. 

 

 

Figure 3. Different phases of flame ejecting behaviour. 
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However, the actual combustion conditions in different situations may differ from that tested by 

Lee et al. [27], which were used to derive the above formula. It is, hence, necessary to assess the actual 

heat release rate to judge the propensity for flame ejection. 

The flame images shown in Fig. 3 were derived from the frame captured by the CCD cameras. 

For each test, more than 30 s of original videos were recorded in the flame stable moment. The videos 

of 30 s were converted into the gray scale images, resulting in 1500 consecutive frames for each test 

which constitute a large data set to derive statistics with accuracy.  The flame ejection probability 

was defined as the number of ejected flames divided by the total number of the blanket flame images. 

0.004 0.005 0.006 0.007 0.008 0.009 0.010

6

8

10

12

14

16

18

20

22
 

 

 Calculated value,1500AH^0.5 (kW)

 The lower critical  HRR (kW)

 The upper critical  HRR (kW)

H
ea

t 
re

le
a
se

 r
a
te

 (
k

W
)

Opening ventilation factor (m5/2)

20 cm (H)*10 cm (W)

15 cm (H)*15 cm (W)

15 cm (H)*10 cm (W)

10 cm (H)*15 cm (W)

 

Figure 4. Comparison of the lower and upper critical HRRs with the predicted critical HRR (D=60 cm). 

 To facilitate the discussion, the flame images in Fig. 3 are divided into three burning stages 

following the analysis of Hu et al. [36], namely no flame ejection (where all the fuel is consumed 

inside the enclosure and the HRR is less than1500A H ), intermittent flame ejection (flames being 

ejected out intermittently with a certain probability) and continuous external flames. For the first phase 

shown in Fig. 3(a), in which combustion was only inside the enclosure, only hot combustion products 
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were ejected from the opening. Following Hu et al. [36] who investigated ejected flames from an 

enclosure in open space, a lower critical HRR is proposed to characterize the beginning of intermittent 

ejection. A higher critical HRR is additionally proposed to indicate the end of the intermittent transition 

regime with the flame continuously burn outside the opening. Both the lower and higher critical HRRs 

were found to be dependent on the ventilation factor [36]. It was also found that the lower HRR 

changes linearly with the parameter TA H A  (where
TA  is the total exposed surface area of the 

enclosure excluding the opening), which represents the influence of heat loss to enclosure walls on fire 

plume temperature. The variations of HRR with the ventilation factor are plotted in Figure 4, where 

the green symbols are the predicted critical HRRs [27] at the selected ventilation factors, and the red 

and black symbols represent the measured lower and upper critical HRRs which can result in ejected 

flamed. Figure 4 shows that the critical HRRs of flame ejection increased with the increase of the 

ventilation factor. The lower critical HRR gradually approaches the predicted critical HRR with the 

increase of the ventilation factor and became almost the same when the ventilation factor reached a 

certain value.  

Figure 5 shows the temperature evolutions inside the enclosure with the opening size of 15 cm × 

15 cm but varying heat release rates when the burner was placed at the centre of the channel. The 

figure legends R-#, C-# and L-# represents temperature measurements by the thermocouple tress  

shown in Fig. 1d on the right, centre and left, respectively. Hu et al. [36] have shown that the 

temperature inside the compartment have an important effect on the intermittent flame ejection, 

affecting both the ignition of the flammable mixtures and the degree of fluctuations of the ejected 

buoyant flames. Following Hu et al. [36], three stages can be identified in all the tested cases as shown 

in Fig. 5. The intermittent behaviour of flames outside the enclosure is characterized by the flame 
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intermittent probability, which can be obtained by processing the captured flame images for tests with 

different HRRs as well as lower and higher critical HRRs. The results show that (1) for the internal 

burning stage during fuel-control stage with no ejected flame, the temperature (left corner, right corner 

and the centre) inside the enclosure increases gradually with the increase of HRR; (2) for the 

intermittent flame ejection stage, the temperature inside the enclosure increases slowly with the 

increase of HRR due to incomplete combustion as a result of an increase in the fuel supply; (3) for the 

continuous external flames stage, the temperature remains nearly constant with any further increase of 

HRR as the fire has become ventilation-controlled. 
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Figure 5. Temperature evolution inside the enclosure under different heat release rates when the fire at the 

centre of the channel (opening size is 15 cm*15 cm). 

(a) side view

carriage carriage

(b) front view
Ceiling Ceiling

 

Figure 6. Flame images for the case with D = 60 cm (Opening size is H=15 cm, W=15 cm and HRR=67.2 kW), 

(a) Side view (transverse direction) (b) Front view (longitudinal direction). 
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Figure 6 displays the flame images of transverse and longitudinal flame extension with Side 

wall-Opening distance D = 60 cm (Opening size is H=15 cm, W=15 cm and HRR=67.2 kW). Due to 

the restriction of the sidewall, the flame upon exiting the carriage opening quickly turned upwards and 

propagated to reach the ceiling. The extent of its spread in the transverse direction of the channel was 

much larger than that in the longitudinal direction.  
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Figure 7. Flame extension lengths under the ceiling with different opening size at the centre of the 

channel. 

 Figure 7 shows the flame extension lengths under the ceiling induced by carriage fires with 

different opening sizes at the centre of the channel (the opening of the carriage is located at the 

centreline of the tunnel), where 
L   

is the longitudinal flame extension length (cm) and 
T   

is 

transverse flame extension length (cm). The flame extension length in the longitudinal direction is 

always lower than that in the transverse direction when the carriage fire is at the centre of the tunnel. 

This difference is thought to be due to fire-induced flow features as the ejected flame carries moment 
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in the transverse direction [8, 9, 27, and 37]. Following Lee et al. [27], the characteristic exit velocity 

from the opening in the transverse direction is
gT

u gH
T


, where 

gT the temperature rise inside 

the carriage and H is is the height of carriage opening. The resulting external flame hence carried moment in 

the transverse direction, driving the ceiling flame to extend more across the channel upon impingement and 

resulting in relative longer ceiling flame length. 

There are some differences in the results between Figs. 7(b) and 7(d) as well as between Figs. 

7(b) and 7(c). In Figs. 7(b) and (d), the opening sizes are 15 cm (height) × 10 cm (height), 20 cm 

(height) × 10 cm (height), respectively. The characteristic exit velocity from the opening in Fig. 7(d) 

is larger than that of Fig. 7(b), resulting in larger flame extension length in the transverse direction in 

Fig. 7(d) while the flame extension lengths in the longitudinal direction are similar. The opening area 

in Figs. 7 (b) and 7 (c) are the same, but the height of opening is different. As shown in Fig.4, the 

critical HRRs of the ejected flame increase with the increase of the ventilation factor. The critical 

HRRs for the opening of 10 cm (height) × 15 cm (height) is lower than the opening of 15 cm (height) 

× 10 cm (height), resulting in some differences between them. 

The flame extension length induced by the ejected flame from a carriage in a channel should be 

a function of the excess HRR, i.e.,  exZ fcn Q     This expression can be normalized by the 

characteristic length,
1
, to obtain the following dimensionless form: 

     *

1 1 =ex exZ fcn Q fcn Q                           (2) 

where   * 5/2

1ex ex pQ Q T C g  , 
ex insideQ Q Q  ,  is flame extension length under the ceiling 

(m), Z is the height from the neutral plane to the ceiling of the tunnel (m), 1/2 2/5

1 ( )AH    
exQ is 

excess heat release rate (kW), 
insideQ is maximum theoretical heat release rate consumed inside the 

compartment, which can be obtained from the lower critical HRR as shown in Fig. 8, T is the ambient 



18 
 

temperature (K),  is the air density (kg/m3), 
C is the specific heat of air at constant pressure 

(kJ/kg.K), and g  is the gravitational acceleration (m/s2).  
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Figure 8. The dimensionless flame extension length vs dimensionless excess heat release rate at the channel 

centreline (D = 60 cm). 

  Figure 8 plots the dimensionless flame extension length against the dimensionless excess heat 

release rate in both longitudinal and transverse directions. The least square fit of the data shows that 

the flame extensions in both directions are proportional to the 2/5 power of the dimensionless excess 

heat release rate and the following two expressions exist:   

  Longitudinal flame extension length: *2/5

1( ) / 3.40L exZ Q                       (3a) 

Transverse flame extension length: *2/5

1( ) / 3.75T exZ Q                         (3b) 

As shown in [7], the underlying physics for the extension of a ceiling jet from an ejected flame is 

related to the spreading of the unburnt fuel after impingement and its continuous combustion while 

spreading at the ceiling. The flame extension area can be expressed as: 

ex~
fu

f

V
S fcn Q

V

 
  
 

                             (4) 

where 
exQ is the total heat release rate for an open fire source or the excess heat release rate from an 
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enclosure fire, 
fV  is the total volume of the ejected flame without a ceiling and 

fuV  is the volume 

of the flame intercepted by the ceiling and the term on the Right-Hand-Side (RHS) of Eq. (4) represents 

the HRR of the un-burnt fuel after impingement (assuming that the combustion in the flame region is 

uniform). 

When the carriage is located at the transverse centreline, the flame length area under the ceiling 

can be expressed as 
f fuSV V , where  f fV T T gZ  [8, 38] and 

fT  is the temperature of the 

ejected flame. 

 

Figure 9. The flame images at different time for the case with D = 60 cm (Opening size is H=20 cm, W=10 cm 

and HRR=84 kW). 

 

Figure 9 presents some instantaneous the flame images at different time. The shape of the upward 

spreading flame like a cone. Since the flames body have different extension lengths in the horizontal 

and vertical directions, the expansion area under the ceiling is like an ellipse [38]. 

Assuming that the cross section of the flame is an ellipse following Quintiere and Grove [38], the 

longitudinal and transverse flame extension length can be calculated by the following equation: 

                     
1 1/ 2 / 2L C Z     

2 2/ 2 / 2T C Z 

                      

 (5) 

where the 
1C , 

2C  are coefficients. Due to the presence of the carriage wall and the existence of the 
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narrow space above the carriage top, air entrainment at the rear part of the ejected fire plume is 

relatively weak, and the flame extension at the ceiling tilts towards the rear direction. The coefficient 

C2 can be assumed to be proportional to 
1C , i.e., 

2 1=C kC   where k is the ratio of the distance between 

the neutral plane and the ceiling to the distance between the carriage top and the ceiling, which 

represents the air entrainment difference in the two directions. 

Equation (4) can be rewritten as: 

 = ex
f T L f

f c

Q
Sv T T gZ

H
 


 


                         

 (6) 

where,

 0

f

f

H

T L
Z

H

T L

dz

dz









, 

cH  is combustion heat of the fuel (kJ/kg), 
f  is the density of ejected 

flame (kg/m3), fH is the ejected flame height for free condition without tunnel ceiling (m). 

Hence, the dimensionless form is 

 1 2
1 2

exL T

f c f

Q

H T T gZ


 


                              

 (7) 

where   can be integrated based on the assumption that the cross-section of flame is elliptical. It 

gives:   

2 2 3 3

1 2 1 1 2 2 1 2

2 3

1 2 1 1 2 2 1 20

( )( ) ( ) ( ) ( ) ( ) ( )
4 4 3=

( )( ) ( )( ) ( )
4 4 3

f

f

H

f f fT L
Z

H

T L f f f

H Z C C H Z C C H Zdz

dz H C C H C C H

  



  

           


  




     (8) 
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Figure 10. A relationship between the measured flame extension areas under the channel ceiling induced by 

the ejected flame from the carriage and the revised fire heat release rates. 

 

Figure 10 plots the dimensionless flame extension area against the dimensionless HRR for all 

the cases when the carriage is located at the transverse centreline. Combining Eqs. (6), (7), (8) and 

Fig. 10, it can be found that the dimensionless flame extension area is proportional to the 

dimensionless excess HRR, and equation (9) is obtained. Since  
ex insideQ Q Q   , 

insideQ  is a fixed 

value after the fire completely spilled out, the excess HRR is hence proportional to the total HRR. 

The results confirm that the dimensionless flame extension area is proportional to the dimensionless 

HRR and a correlation can be determined based on the best fit of the data as shown in Eq. (9) and 

Figure 10. For comparison purpose, comparison has also been made between the predictions and the 

measurements from previous work studying buoyant opening spill flames beneath a horizontal 

projection, which were not used in the derivation of the correlation [39]. The relatively good 

agreement further illustrates validity of the derived correlation although further validations against 

more experimental data or numerical simulations in the future would provide more insight into the 

 1 2
1 2

=250 exL T

f c f

Q

H T T gZ
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flame extension under the ceiling. 

   1 2 1 2
1 2 1 2

= =3.14*80 =250ex exL T

f c f f c f

Q QS

H T T gZ H T T gZ


 

          

(9) 

 

     

Figure 11. Two-dimensional ceiling temperature for opening size of H=15, W=15. D=60 cm.  

 

The flame extension area on the ceiling, which can be correlated by Eq. (9), has direct relevance 

to the potential fire damages to the channel structure. Due to the limited space in the channel, the 

length of the ceiling flame is usually longer than that of an open flame or indoor fire. This horizontal 

of the ceiling flame increases the risk of fire spread inside the channel and affect other adjacent objects, 

e.g. the channel structure and adjacent carriages. Such impact can result in cascading effects. Based 

on the Froude similarity criterion [33], the tested fire is equivalent to a car or carriage fire in practical 

channel/tunnel, the above correlations for the longitudinal and transverse flame extensions on the 
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ceiling and the flame extension area can hence be used to estimate the potential ceiling flame extension 

areas in practical situations, and assist the design optimization of window openings to reduce potential 

impact of the fire by limiting its spread on the ceiling.  

Figure 11 presents the two-dimensional ceiling temperature for opening size of H=15 and W=15, 

where the thermocouple trees were set between 20 to 60 cm in the transverse direction and from 0 to 

60 cm in the longitudinal direction (the position of the carriage can be seen from the top view). The 

maximum temperature occurs at the rear of carriage and close to the opening, which is consistent with 

flame extension characteristics shown in Figure 7. The flame extension lengths can be estimated based 

on the temperature rise (800 K) at the intersection of the intermittent flame and plume regions of 

buoyant gas diffusion flames [40]. For example, for the case in Figure 11c (HRR=84 kW), the 

transverse flame extension length determined from the temperature measurements is approximately 50 

cm and longitudinal flame extension length 44 cm, which are in good agreement with the predicted 

values using Eqs. (3a) and (3b) which gave =52.5cmT  =47.5cmL   respectively. By applying the 

similarity scaling of Quintiere [33], the present data was also used to determine the flame lengths in 

the full-scale model. For the case in Figure 9a, the equivalent ceiling flame extension lengths for an 

ejected flame with a heat release rate of 2.95 MW in a full-scale tunnel was estimated as 3.55 m and 

4.41 m in the transverse and longitudinal directions, respectively.  
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Figure 12. Temperature evolution inside the enclosure under different heat release rates and different 

sidewall to opening distance (opening size is 15 cm × 15 cm).  
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3.2 Critical heat release rate and ceiling extension of the ejected flame induced by carriage fires 

under sidewall effect in channel 

Analysis is firstly conducted to establish the effect of the sidewall on the HRR inside the enclosure. 

Figure 12 shows the temperature evolution inside the enclosure with different HRRs and sidewall to 

opening distances (opening size is 15 cm ×15 cm). The results indicate that the sidewall had almost no 

effect on the temperature inside the enclosure and the critical HRR. This is because the critical heat 

release rate before external burning and the associated gas temperature inside the enclosure depend 

primarily on the opening factor. Figure 13 further indicates that the mean critical 
insideQ  was also not 

affected by the increase of sidewall-to-opening distance D. 

. 
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Figure 13. The variation of the mean critical HRR with different sidewall-to-opening distance. 

 

Figure 14 depicts the side view of the mean flame contour images of the ejected flame with an 

opening of H=15 cm, W=10 cm for different D values (HRR=67.2 kW). These were obtained by the 

image processing procedure described in Section 2. The transverse and longitudinal flame extension 

lengths under channel ceiling can be obtained from the measurements of these images. 



26 
 

 

 

 

Figure 14. Contour images of the ejected flames with opening of H=15 cm, W=10 cm for different sidewall-

to-opening distances: (a) transverse flame extension length; (b) longitudinal flame extension length. 
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These results show that with the decrease of the sidewall-to-opening distance, the transverse 

flame extension length under channel ceiling decreases whereas the longitudinal flame extension 

length increases. The changes were most significant when D is less than 30 cm. These trends are 

different from those observed in previous wall fires or corner fires, in which the flame extension length 

beneath the ceiling firstly increases with the decrease of source-sidewall-to-opening distance, and then 

decrease slightly when the fire source is against the wall in the channel fires (its channel height is 0.88 

m and width is 2 m) [41]. The safety implication is that small opening to sidewall-to-opening distances 

would result in faster ceiling jet flame spread in the longitudinal direction with the potential for faster 

fire spread from the original fire carriage to the others.  
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Figure 15. Flame extension lengths under the ceiling with different sidewall-to-opening distance. 
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Figure 15 shows the variation of flame extension length under the channel ceiling with different 

sidewall-to-opening distances. It was found that, when D=20 cm, the longitudinal flame extension 

length is more than twice that in the transverse direction. When the opening of the carriage is located 

at the centreline of the channel, the sidewalls have almost no restriction on air entrainment. Since the 

flame is ejected from the transverse direction of the channel, the initial velocity of the ejected flame in 

the transverse direction is greater than that in the longitudinal direction and hence the lateral flame 

extension length is greater than that in the longitudinal direction. When the flame gradually approaches 

the sidewall, due to the restriction of air entrainment by the sidewall, the flame is limited by the 

sidewall and forced to extend in the longitudinal direction, resulting in gradual increase of the 

longitudinal flame extension length and eventually became greater than the lateral direction. Therefore, 

as the distance changes, the flame extension length in different directions will change. For a ceiling jet 

induced by ejected flames, when this sidewall-to-opening distance D decrease gradually, the air 

entrainment from the front is partially restricted, resulting in the change of flame extension length 

under the channel ceiling in both longitudinal and transverse directions, as shown in Fig. 16. This 

effect will be analysed in a physical model to characterize the effect of sidewall constraint on air 

entrainment. 

In the presence of a sidewall, the sidewall-to-opening distance D plays a key role in flame 

extension length, the flame extension length induced by the ejected flame from a carriage in a channel 

should be a function of both the excess HRR and sidewall-to-opening distance (D).  
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 Figure 16. Physical features to characterize the effect of sidewall constraint on air entrainment for 

ejected flames.  

 

In diffusion flames like fires, combustion is sustained through entrainment of fresh air by the fire 

plume. The air entrainment mass rate mentrainment can be expressed by Eq. (10) following [8, 42]: 

=entrainment a a entrainmentm v S                              (10) 

where the a  is the air density (kg/m3), av is the air entrainment velocity ( av gH , H is the 

channel height (m), entrainmentS  is the air entrainment area(m2). 

As shown in Fig. 16 and Fig. 1b, the air entrainment area of the ejected fire plume can be 

approximated by as: 

entrainment front sideS S S                             (11a) 

  = +
carriage tunnel

front front front

carriageneutral

H H
S S S

HH
                      (11b) 

= +
carriage tunnel

front front front

carriageneutral

H H
S S S

HH
                      (11c) 
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where the frontS is the air entrainment area from the front of the opening sizes, sideS  is the air 

entrainment area from the side direction of the opening sizes, neutralH  is the height of the neutral plane 

(m), carriageH  is the height of the carriage (m), H is the channel height (m). Between the neutralH  and 

the carriageH , the frontS  was from one side. However, the frontS  was from two side between the 

carriageH  and the H . And the sideS  was always from two side. 

When the ejected flame was not restricted by the channel sidewall, the air entrainment area of the 

ejected flame can be calculated as: 

, 2 1 2 1 2 1

1
(2 +(2 2 (10 8 )

6

c t

entrainment

n c

H H
S H

H H
     ） ）           (12) 

where the 1l  is characteristic width of rectangular fire source (parallel to carriage front wall), 

m; 2l  is characteristic length of rectangular fire source (perpendicular to carriage front wall). 

When the ejected fire from carriage opening was restricted by the channel sidewall, the air 

entrainment area can be expressed as: 

, 2 1 2 1 2 1

1
=(2 +(2 1+ (10 (3+5 ) )

6

c t

entrainment D

n c

H H
S H

H H
     l l l l l l） （ ）      (13) 

where the   is a coefficient of air entrainment due to the influence of different sidewall-to-

opening distances D. 

It is proposed to introduce an air entrainment correction factor K of the ejected flame from the 

carriage opening, which can be expressed as: 

, , ,

, , ,

13 5
= =

18 18

entrainment D a a entrainment D entrainment D

entrainment a a entrainment entrainment

m v S S
K

m v S S

 

  

                (14) 

Equation (14) shows that the air entrainment correction factor can be correlated by a coefficient 

 . Figures 13 and 14 indicates that when the sidewall-to-opening distance D is between the 40 cm and 

60 cm, its effect on air entrainment is negligible, the flame extension length can be calculated by Eq. 
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(3). However, the air entrainment from the front is partially restricted when this sidewall-to-opening 

distance D decrease gradually. Moreover, the flame extension length expands with the decrease of the 

sidewall-to-opening distance. Hence, when the air entrainment restricted by the sidewall, the flame 

extension length can be expressed using either Eq. (15a) or (15b). The critical point was effect by the 

sidewall distance D and the characteristic length of rectangular fire source 1 . 

*2/5 *2/5
1( ) / 3.40 = LK

L ex exZ Q aQ e                      (15a) 

*2/5 *2/5
1( ) / 3.75 = TK

T ex exZ Q bQ e                      (15b) 

where LK is the longitudinal air entrainment correction factor (
513

18 18

L
LK


  )，and TK is the 

transverse air entrainment correction factor 
513

18 18

T
TK


  . 

When the air entrainment hardly be restricted by the channel side wall D. The air entrainment 

correction factor is 1L TK K  . According to the 1L TK K  , equations (15a) and (15b) can be 

rewritten as Eqs. (16a) and (16b): 

*2/5 *2/5
1

3.40
( ) / 1.25L Lk K

L ex exZ Q e Q e
e

                 (16a) 

*2/5 *2/5
1

3.75
( ) / = =1.38T Tk K

T ex exZ Q e Q e
e

                (16b) 

In order to account for the effect of air entrainment  , as the result shown in Figure 13, with 

the decrease of channel sidewall-to-opening distance, the air entrainment   remained approximately 

constant at first, then decreased with the decrease of sidewall-to-opening distance. The sidewall-to-

opening distance D and the characteristic length 1 should hence be incorporated in the calculation of

 . Moreover,   should 1 when D is more than a threshold value related to the characteristic length 

1 . If the threshold value is 1m . A piecewise function is introduced in Eq. (17) about transverse air 

entrainment coefficient L  and longitudinal air entrainment coefficient T while the value of m can 
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be obtained from analysis of the measurements.  
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（ ） ，
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When 1D m , the  1=
n

L D m  in the transverse flame extension length and  
-

1=
n

L D m  

in the longitudinal flame extension length. When 1D m , = 1L T    . In this paper, the critical 

point approximately is 40 cm, the characteristic length 1  vary from 11.8 to 15.2, so m is 

40
3

(11.8+15.2) / 2
   

A piecewise function was proposed to describe the variation of flame extension length under the 

channel ceiling with different sidewall-to-opening distances. When the sidewall-to-opening distance 

is more than 13 , the effect of the sidewall-to-opening distance is negligible, and the corresponding 

correlations of flame extension lengths are shown in Eq. (3). The dimensionless flame extension 

lengths induced by carriage fires under sidewall effect in channel (0<D 
13 ) are plotted in Fig. 17, 

along with the experimental data on horizontal flame extension distance (without sidewall effect) 

under ceiling induced by ejected fire plume with various heat release rates [39]. Both sets of data have 

similar trends, and the correlations of dimensionless flame extension length induced by carriage fires 

under sidewall effect in channel for both directions were finally obtained, n=2/3, as shown in Eq. (18), 

which predicts well both the present experimental data and data in [39] which were not used in the 

above derivation, with R2 values of 0.96 and 0.97 for longitudinal and transverse flame extension 

lengths, respectively.  
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Figure 17. Correlation of dimensionless flame extension length induced by carriage fires under 

sidewall effect in channel.  
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where the air entrainment  can be rewritten as Eq. (19) .  
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4. Conclusions 

Experimental studies were firstly conducted to gain insight of flame ejection from enclosure fires. 

The variations of the critical HRR which distinguish the three burning stages of fuel-controlled 

enclosure fires with the ventilation factor were examined when the carriage was at the centre of the 

channel. It was found that the critical lower and upper HRRs of intermittent flame ejection increased 

with the increase of the ventilation factor. The lower critical HRR gradually approaches the value 

predicted by the formula of Lee et al. [27] when the ventilation factor is sufficiently large. The 

transverse flame extension length is larger than the longitudinal flame extension length due to the 

restriction of air entrainment by the channel sidewall. Correlations for the longitudinal and transverse 

flame extension lengths and flame extension area beneath the ceiling were proposed.   

Subsequently, the effects of sidewall on the flame extension characteristics of ejected flames from 

a carriage in the channel were experimentally investigated. The sidewall-to-opening distance was 

found to have considerable influence on the ceiling flame extension lengths. Small sidewall-to-opening 

distance resulted in faster ceiling flame spread in the longitudinal direction with the potential for faster 

fire spread from the original fire carriage to the others. New correlations have been proposed for the 

longitudinal and transverse flame extension lengths.    

To demonstrate their potential for fire safety engineering applications, all the correlations 

developed have been compared with the present measurements as well as some published data not 

used in their derivations. These dimensionless correlations can be used to estimate ceiling flame 

extension lengths and areas under different sidewall-to-opening distances in practical situations; and 

assist the design optimization of window openings and their distance to the sidewall to reduce potential 

impact of the fire by limiting its spread on the ceiling.   
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