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Highlights: 

 Chitosan and chitosan/alginate plasticised by glycerol or ionic liquid (IL) 

 GO/rGO improved plasticiser distribution depending on matrix and plasticiser type 

 IL weakened chitosan–alginate interactions while GO counteracted this effect 

 For IL-added blend, surface hydrophobicity increased with GO but reduced with rGO 

 New routes in which GO or rGO interfere with biopolymer structure revealed 
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Abstract: 

This study reports that the effect of graphene oxide (GO) or reduced GO (rGO) on the structure and 

properties of polyelectrolyte-complexed chitosan/alginate bionanocomposites is highly dependent on 

plasticiser type (glycerol or 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc])) due to the 

competing interactions between the components. For the glycerol-plasticised chitosan/alginate 

matrix, inclusion of GO/rGO enhanced the chitosan crystallinity and increased matrix ductility. 

While the chitosan/alginate matrix plasticised by [C2mim][OAc] showed dramatically weakened 

interactions between the two biopolymers, GO was highly effective at counteracting the effect of 

[C2mim][OAc] by interacting with the biopolymers and the ionic liquid ions, resulting in enhanced 

mechanical properties and decreased surface hydrophilicity. Compared with GO, rGO was much less 

effective at promoting chitosan–alginate interactions and even resulted in higher surface 

hydrophilicity. However, irrespective of the plasticiser type, inclusion of rGO resulted in reduced 

crystallinity by restricting the interactions between [C2mim][OAc] and the biopolymers, and higher 

ionic conductivity.  

 

 

Abbreviations: GO, graphene oxide; rGO, reduced graphene oxide; IL, ionic liquid; [C2mim][OAc], 1-ethyl-3-

methylimidazolium acetate; PEC, polyelectrolyte complexation; Td, thermal decomposition temperature at 

maximum weight-loss rate; tan δ, loss tangent; Tβ, peak temperature of β-transition; Tα, peak temperature of α-

transition; θc0s, contact angle at 0 s; θc30s, contact angle at 60 s; θc60s, contact angle at 60 s 
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Keywords: Polysaccharide thermomechanical processing; Chitosan nanocomposites; Polyelectrolyte 

complexation; Graphene oxide; 1-Ethyl-3-methylimidazolium acetate; Glycerol 
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1 Introduction 

Chitosan and alginate, two renewable biopolymers being biodegradable, biocompatible having 

inherent functionality, have great potential for use in many applications. Chitosan, a linear 

polysaccharide made up of β-(1,4)-linked N-acetyl-D-glucosamine units, is the deacetylated form of 

chitin, which is, in most cases, extracted from marine shell waste streams (Muxika, Etxabide, 

Uranga, Guerrero, & de la Caba, 2017). Chitosan has been studied widely for potential application in 

a wide range of sectors such as food, agriculture, pharmaceutics, biomedical treatment, cosmetics, 

water treatment, and textiles (Elsabee & Abdou, 2013; Muxika et al., 2017; Ravi Kumar, 2000; 

Rinaudo, 2006). Alginate, typically obtained from brown seaweed, is a linear, anionic polysaccharide 

consisting of two kinds of 1,4-linked hexuronic acid residues, namely β-D-mannuronopyranosyl (M) 

and α-L-guluronopyranosyl (G) residues (Yang, Xie, & He, 2011). Alginate has been extensively 

studied for environmental, pharmaceutical and biomedical applications (Lee & Mooney, 2012; Wang 

et al., 2019).  

The processing of biopolymers usually requires the use of low-molecular-mass liquids as 

plasticisers, which can assist the disruption of the intrinsic hydrogen-bonding network in 

biopolymers and adjust the properties of the resulting materials by providing a plasticisation effect 

(Boesel, 2015; Cazón, Velazquez, Ramírez, & Vázquez, 2017; Mekonnen, Mussone, Khalil, & 

Bressler, 2013; Vieira, da Silva, dos Santos, & Beppu, 2011). Glycerol is the most commonly used 

plasticiser for biopolymers, which has been applied in the preparation of plasticised chitosan (Epure, 

Griffon, Pollet, & Avérous, 2011; Xie et al., 2013), alginate (Gao, Pollet, & Avérous, 2017) and 

starch (López et al., 2015; Shi et al., 2007) by thermomechanical processing. In recent years, ionic 
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liquids (ILs) have drawn huge interest for processing and plasticisation of biopolymers especially 

plasticised starch (Colomines, Decaen, Lourdin, & Leroy, 2016; Decaen et al., 2017; Leroy, Jacquet, 

Coativy, Reguerre, & Lourdin, 2012; Ren et al., 2020; Sankri et al., 2010; Xie et al., 2014; Xie et al., 

2015; Zhang et al., 2016; Zhang et al., 2017). ILs that contain a strongly basic, hydrogen-bond-

accepting anion (e.g. carboxylates or halides) are capable of disrupting the intermolecular hydrogen 

bonding wholly or partially in biopolymer networks (Ren et al., 2020). Meanwhile, ILs provide 

biopolymers with electrical conductivity (Xie et al., 2015) and open their applications in e.g. energy 

storage, biosensing and biocatalysis (Kavosi, Salimi, Hallaj, & Amani, 2014; Lu, Hu, Yao, Wang, & 

Li, 2006; Yamagata, Soeda, Ikebe, Yamazaki, & Ishikawa, 2013). However, there have been very 

few reports on IL-plasticised polysaccharides such as chitosan and alginate that are 

thermomechanically processed.  

On the other hand, for combined or enhanced properties, hybridisation of different biopolymers 

or biopolymers with synthetic polymers has been commonly employed (Šimkovic, 2013; van den 

Broek, Knoop, Kappen, & Boeriu, 2015; Yu, Dean, & Li, 2006). For example, in food packaging, the 

antimicrobial efficacy of chitosan can be combined with the barrier properties of other synthetic 

polymers, increasing shelf life and product quality (van den Broek et al., 2015). Moreover, chitosan, 

as a polycation, can be complexed with negatively charged biopolymers such as alginate, 

carboxymethyl starch, pectin, and proteins (Mateescu, Ispas-Szabo, & Assaad, 2015), resulting in 

polyelectrolyte complexation (PEC). The advantages of PEC have recently been demonstrated by 

creating hybridised biopolymer materials with superior properties to those of either single 

biopolymer, such as mechanical properties (Li, Ramay, Hauch, Xiao, & Zhang, 2005; Meng, Xie, 
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Zhang, Wang, & Yu, 2019; Wei et al., 2019), barrier properties (Basu, Plucinski, & Catchmark, 

2017), hydrolytic stability (Chen, Xie, Tang, & McNally, 2020c), and cell adhesiveness (Iwasaki et 

al., 2004). Deposition of chitosan together with silk fibroin or collagen on nanofibres could result in 

materials with excellent antimicrobial activity and cytocompatibility, promising for biomedical 

applications (Wu et al., 2020; Xia et al., 2019). However, there have been limited studies that have 

focused on the effects of plasticisers on PEC and biopolymer structure and properties. Previously, we 

reported that PEC between chitosan and alginate could be strongly influenced by an IL plasticiser, 

resulting in inferior properties (e.g. largely increased surface hydrophilicity) (Chen, Xie, Tang, & 

McNally, 2020b). How to improve the plasticisation of such hybridised biopolymer materials while 

maintaining their complexation and properties is a question of both scientific and practical interest. 

The aim of this study is to understand the effects of graphene oxide (GO) and reduced graphene 

oxide (rGO) as nanofillers on the structure and properties of chitosan and chitosan/alginate blends 

plasticised by glycerol or 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]). The advantages of 

inclusion of GO into chitosan have been demonstrated. For example, chitosan materials with GO 

added generally showed improved mechanical properties due to efficient load transfer between the 

nanofiller (GO) and chitosan matrix (Han, Yan, Chen, & Li, 2011; Yang, Tu, Li, Shang, & Tao, 

2010). Furthermore, the excellent performance of chitosan/GO composites as adsorbents for metal 

ions (Fan, Luo, Sun, Li, & Qiu, 2013; Liu et al., 2012) and methylene blue (Fan et al., 2012) was 

indicated. Moreover, it was reported that biodegradable chitosan–graphene oxide (GO) composites 

possessed improved mechanical properties and drug delivery performance over chitosan alone 

(Justin & Chen, 2014). However, how the interplay between GO/rGO and plasticiser affect the 
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structure and properties of biopolymer PEC systems such as chitosan/alginate has not been widely 

explored. 

In this study, the bionanocomposites were prepared by thermomechanical processing, which 

imparts high shear stresses enabling excellent dispersion of the nanofillers in the biopolymer 

matrices. Our hypothesis is that GO and rGO, containing different concentrations of oxygen-

containing groups and negative charges, can be used to tailor the plasticisation of hydrophilic 

biopolymers in different ways. In contrast, most previous studies (Han et al., 2011; Pan, Wu, Bao, & 

Li, 2011; Yang et al., 2010) have focused on the surface chemistry of the nanomaterials and their 

direct interactions with biopolymers. Our results highlight largely unexplored routes in which GO or 

rGO, even in  rather small loadings, interfere with blend structure and determine properties (e.g. 

mechanical properties and hydrophilicity/hydrophobicity) of such multiphasic biopolymer 

composites, broadening our knowledge of the potential of such biopolymer composites.  

2 Materials and methods 

2.1 Materials 

Chitosan (poly(β-(1,4)-D-glucosamine), with a viscosity of about 200 mPa·s (i.e. 1% solution in 

1% acetic acid at 20 °C) and a degree of deacetylation of ≥85%, was supplied by Jinan Haidebei 

Marine Bioengineering Co., Ltd (China). The molecular mass of this chitosan is about 250 kDa. 

Alginate sodium (viscosity: 200±20 mPa·s; M/G ratio: 1:1) was purchased from Shanghai Macklin 

Biochemical Co., Ltd (China). Graphene oxide (aqueous acid paste with 25% GO, 74% water, and 

1–1.5% HCl) was acquired from Abalonyx AS (Norway). Glycerol (≥99% Analytical Grade) was 

supplied by Fisher Scientific UK Ltd; [C2mim][OAc] (≥95.0%) and triacetin (99%) by Sigma-
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Aldrich Company Ltd (UK); formic acid (98% w/w AR) and NaBr (pure) by Scientific Laboratory 

Supplies Ltd, (UK); hydrazine hydrate solution (78–82% iodometric, Honeywell Fluka) and 

ammonia solution (35%, AR, d = 0.88) from Fisher Scientific UK Ltd. Deionised water was used 

throughout the study. Reduced graphene oxide (rGO) was synthesised from GO following the 

method described previously (Chen, Xie, Tang, & McNally, 2020a). The characteristics of GO and 

rGO can be found in our previous publication (Chen et al., 2020a).  

2.2 Sample preparation 

Table 1 shows the formulations and codes of different samples prepared. The matrix was either 

chitosan alone (represented by “X”) or chitosan/alginate (indicated by “Y”). The codes also signify 

the plasticiser used, with “G” for glycerol or “E” for [C2mim][OAc]. The suffix “F” indicates the 

processed samples were films. The samples were prepared by pre-blending, thermomechanical 

kneading at 80 °C for 15 min, and hot-pressing at 110 °C and 160 bar for 10 min, followed by 

conditioning at 57% relative humidity for 3 weeks as described previously (Chen et al., 2020c). 

Additionally, one of the plasticisers (20 wt% based on biopolymer weight) and either GO or rGO 

(0.75 wt% based on biopolymer weight) were added during the pre-blending step. The samples 

without GO or rGO, namely XG-F, XE-F, YG-F, and YE-F, have been reported previously (Chen et 

al., 2020b) and are termed as controls throughout the discussion.  

 

Table 1. Sample codes and compositions (represented as portions by weight). 

Sample Chitosan Alginate Plasticiser Nanofiller 2M Formic acid 

solution 

XG/GO-F 100 – 20, Glycerol 0.75 GO 261 
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XG/rGO-F 100 – 20, Glycerol 0.75, rGO 261 

XE/GO-F 100 – 20, [C2mim][OAc] 0.75, GO 261 

XE/rGO-F 100  20, [C2mim][OAc] 0.75, rGO 261 

YG/GO-F 50 50 20, Glycerol 0.75, GO 261 

YG/rGO-F 50 50 20, Glycerol 0.75, rGO 261 

YE/GO-F 50 50 20, [C2mim][OAc] 0.75, GO 261 

YE/rGO-F 50 50 20, [C2mim][OAc] 0.75, rGO 261 

 

2.3 Characterisation methods 

Scanning electron microscopy (SEM) imaging was performed using a Zeiss Sigma field-

emission scanning electron microscope with an acceleration voltage of 6 kV. The biopolymer films 

were cryo-fractured using liquid nitrogen and the samples sputter-coated with gold/palladium before 

imaging.  

Scanning transmission electron microscopy (STEM) was conducted using a Talos F200X 

transmission electron microscope at 200 kV to obtain both bright-field (BF) and high-angle annular 

dark-field (HAADF) images. Ribbons of about 60 nm thick were sectioned from epoxy-embedded 

sample blocks and subsequently transferred onto holey carbon films on 200-mesh copper grids. No 

liquids were used during sample preparation, to avoid damage to the samples. 

Fourier-transform infrared (FTIR) spectra were collected using a Bruker Tensor 27 FTIR 

spectrometer with an attenuated total reflection (ATR) accessory acquiring 32 scans for each sample 

over the range 4000–500 cm−1 at RT.  

X-ray diffraction (XRD) patterns were acquired using a Panalytical Empyrean X-ray 

diffractometer at 40 kV and 40 mA with a Co target (Kα = 1.790307 Å) and a beam slit of 10 mm. 
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The samples were scanned over an angular range (2θ) of 6–40° with a step size of 0.0263° and a step 

rate of 2.16 s/step. Crystal lattice spacing (d-spacing) is calculated according to Bragg’s Law: 

    𝑑 =
𝑛𝜆

2𝑠𝑖𝑛𝜃
    (1) 

where θ is the angle of incidence, λ is the wavelength of the incident light, n is an integer. 

Thermo-gravimetric analysis (TGA) was undertaken using a Mettler Toledo TGA apparatus over 

a temperature range of 30–700 °C at 10 K/min under nitrogen.  

Dynamic mechanical thermal analysis (DMTA) was performed using a Tritec 2000 DMA 

(Triton Technology Ltd, UK) in dual cantilever mode with a sample length of 5 mm at a 

displacement of 0.01 mm. Temperature scans were performed from −100 °C to 180 °C at 2 °K/min 

and 1 Hz.  

Tensile testing was performed using an Instron 3367 universal testing machine with a 1kN load 

cell at a crosshead speed of 3 mm/min. As the specimens were in the form of thin sheets, specimen 

extension was measured by grip separation as suggested by ASTM Standard D882. At least seven 

replicates were used for each sample. 

Contact angle (θc) data was obtained from sessile tests at RT based on Young–Laplace using an 

Attension Theta Lite instrument (Biolin Scientific, UK). As θc kept changing after a drop of water 

was placed onto the sample surface, θc values at 0 s, 30 s, and 60 s (denoted as θc0s, θc30s, and θc60s 

respectively) were recorded. 

Electrical impedance spectroscopy (EIS) was performed using a Princeton Applied Research 

PARSTAT MC (PMC) multi-channel potentiostat (Ametek Scientific Instruments, USA) with a 

PMC-2000 card and a two-point probe. The two surfaces of samples were painted with carbon 

Jo
ur

na
l P

re
-p

ro
of



11 

conductive grease (No.8481, MG Chemicals, Canada) in designated areas (24 × 24 mm). Each 

sample was measured in triplicate. The real (Z′) and imaginary (Z″) parts of impedance were 

acquired within a frequency (f) range of 1–106 Hz. The AC conductivity (admittance) (σ), the real 

part of relative permittivity (ε′r), and the imaginary part of electric modulus (M″) were calculated 

using the following equations (Bhatt, Bhat, Santosh, & Tai, 2011; Bowen Chris, Buschhorn, & 

Adamaki, 2014; Osman, Ibrahim, & Arof, 2001):  

    𝜎 =
𝑍′

𝑍′2+𝑍″2
∙
𝑡

𝐴
     (2) 

    𝜀′𝑟 =
−𝑍″

𝑍′2+𝑍″2
∙

𝑡

𝜔𝐴𝜀0
    (3) 

    𝑀″ =
𝜀″

𝜀′2+𝜀″2
     (4) 

where, ω is the angular frequency (= 2πf), ε0 is the permittivity of free space (≈ 8.854 ×10−12 F⋅m−1), 

A is the tested area of the sample (m2), and t is the sample thickness (m).  

The bulk resistance (Rb) was determined from the Nyquist plots of impedance (Z″ vs. Z′) from 

the points where the semicircle and the straight line meet. Then, the conductivity (σdc) can be 

calculated using equation (5) (Fadzallah, Majid, Careem, & Arof, 2014; Osman et al., 2001): 

    𝜎𝑑𝑐 =
𝑡

𝑅𝑏∙𝐴
     (5) 

3 Results and Discussion 

3.1 Morphology 

Figure S1 shows SEM images of cryo-fractured surfaces of the different bionanocomposite 

films. For the X-series of composites, the morphology was not altered on inclusion of either GO or 

rGO. In contrast, for the Y-matrix plasticised by either glycerol or [C2mim][OAc], inclusion of either 

GO or rGO clearly promoted phase distribution and yielded more cohesive surfaces. In particular, 
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our previous study (Chen et al., 2020b) indicated that [C2mim][OAc] could significantly interfere 

with PEC between chitosan and alginate, since there could be interactions of the [OAc]− anion with 

the hydroxyl and amine groups of chitosan and of the [C2mim]+ cation with the carboxylate groups 

of alginate. However, here, addition of GO at only 0.75 wt% loading apparently disrupted the effect 

of [C2mim][OAc] on phase structure. 

The morphology of the different bionanocomposites was further studied using STEM, as shown 

in Figure 1. For the X-series of composites, minor traces of GO/rGO agglomerations can be seen. 

Given this observation, it is considered that the GO/rGO nanosheets were largely exfoliated and 

dispersed in the matrices either as few-layer nanoplatelets, which lost contrast under STEM and 

difficult to image. GO nanosheets are generally negatively charged resulting from the ionisation of 

the oxygen-containing groups (e.g. ─COOH and ─OH). Therefore, dispersion could also be 

promoted by hydrogen-bonding and electrostatic interactions between the chitosan polycation and 

the negatively charged GO nanosheets (Yang et al., 2010). Excellent dispersion of GO in chitosan 

materials has also been noted in previous studies (Han et al., 2011; Pan et al., 2011; Yang et al., 

2010). In the Y-series of composites, large GO/rGO agglomerations are more frequently observed 

although they are small in number. It is likely that PEC between chitosan and alginate competed with 

the interactions between GO/rGO and chitosan to some extent.  
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Figure 1. Scanning transmission electron microscopy high-angle annular dark-field (STEM-

HAADF) images of the different bionanocomposite films. The yellow arrows indicate GO/rGO 

agglomerations (not fully exfoliated). 
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For the Y-series of samples, a “new structure” was also observed normally at the edges of the 

areas imaged (where the material has no or much less interaction with the electron beam) (Figure 

S2), which is highly interesting. Given this, the energy from the electron beam could possibly 

facilitate coordination between alginate and [C2mim]+ and the packing of polysaccharide chains to 

form crystals, in an analogy to the formation of junction zones by alginate with Ca2+ (Li, Fang, 

Vreeker, Appelqvist, & Mendes, 2007; Morris, Rees, Thom, & Boyd, 1978; Sikorski, Mo, Skjåk-

Bræk, & Stokke, 2007). This phenomenon was further investigated. 

3.2 Fourier-transform infrared (FTIR) spectroscopy 

Figure 2 shows the FTIR spectra for the different bionanocomposites. The X-series of 

composites displayed FTIR patterns very similar to those for XG-F and XE-F (Chen et al., 2020b), 

indicating inclusion of GO or rGO did not significantly alter the molecular interactions in the 

plasticised chitosan matrices. Compared with the X-series, the Y-series had blue shifts of the peaks 

originally at 1570 cm−1 and 1024 cm−1. The peak at 1570 cm−1 is assigned to the N─H bending 

vibration from amine and amide II (Lawrie et al., 2007) and the one at 1024 cm−1 is attributed to the 

skeletal vibration of C─O stretching (Lawrie et al., 2007; Papageorgiou et al., 2010). Thus, PEC 

should have involved amine and amide groups and affected the saccharide ring structure.  
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Figure 2. Fourier-transform infrared (FTIR) spectra for the different bionanocomposite films. The 

reference lines indicate the characteristic peak for X-F / XG-F, except for 1408 cm−1 and 1082 cm−1, 

which are for original alginate (Chen et al., 2020b). The arrows indicate shifts in peak position or 

changes in peak intensity. 

 

The FTIR patterns for YG/GO-F and YG/rGO-F are nearly identical to that for YG-F (Chen et 

al., 2020b), indicating inclusion of GO or rGO had a negligible effect on the molecular interactions 

of the chitosan/alginate matrix plasticised by glycerol. For YE-F (Chen et al., 2020b), there was a 

greater deviation in the position of the peak originally at 1570 cm−1 (N─H bending of chitosan), the 

peak at 1408 cm−1 (symmetric COO− stretching of alginate (Lawrie et al., 2007; Papageorgiou et al., 

2010)) became more intense, and the peak at 1065 cm−1 (asymmetric C─O─C stretching in the 

glycosidic linkage of chitosan (Chen, Mo, He, & Wang, 2008; Lawrie et al., 2007; Pawlak & Mucha, 
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2003) and alginate (Lawrie et al., 2007; Papageorgiou et al., 2010)) became less intense, which is 

caused by the weakened PEC and hydrogen bonding between chitosan and alginate with the presence 

of [C2mim][OAc]. With inclusion of GO, these changes induced by the IL were apparently 

suppressed since YE/GO-F showed an FTIR pattern similar to that for YG-F, YG/GO-F and 

YG/rGO-F. This is caused by the interactions of GO (negatively charged) with the IL (especially the 

[C2mim]+ cation) and with the chitosan cation. rGO was also seen to counteract the effect of the IL 

on biopolymer molecular interactions, but to a much lesser extent than GO.  

3.3 X-ray diffraction (XRD) analysis 

Figure 3 shows the XRD curves for the different bionanocomposite films. All the X-series of 

composites displayed similar diffractograms to those for XG-F and XE-F (Chen et al., 2020b). For 

all these samples, there were three major peaks at 2θ of about 13.5° ((020) reflection, d-spacing = 

0.76 nm), 21.7° ((100) reflection, 0.48 nm), and 27.2° ((110) reflection, 0.38 nm), attributable to the 

crystal lattice of chitosan (Kittur, Vishu Kumar, & Tharanathan, 2003). As the XRD pattern of the 

processed chitosan was completely different from that of original chitosan, the crystalline structure in 

the composites should be predominantly due to re-crystallisation (Chen et al., 2020b). Inclusion of 

GO/rGO did not change the recrystallised structure of plasticised chitosan.  
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Figure 3. X-ray diffractograms for the different bionanocomposite films. The reference lines indicate 

the characteristic peaks for X-F / XG-F (Chen et al., 2020b). 

 

All the Y-series of composites displayed a low degree of crystallinity as YG-F and YE-F did 

(Chen et al., 2020b). A predominantly amorphous structure should result from PEC between chitosan 
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especially at 13.5° and 21.7°, suggesting that inclusion of GO or rGO increased the crystallinity of 

chitosan plasticised by glycerol. However, YE/rGO-F showed even weaker peak intensities than YE-

F. In this case, while [C2mim][OAc] had an apparent effect and enhanced polysaccharide re-
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polysaccharides. A similar result was also observed for a chitosan/carboxymethyl cellulose/rGO 

composite plasticised by [C2mim][OAc] (Chen, Xie, Tang, & McNally, 2020d).  

3.4 Thermogravimetric analysis (TGA) 

Figure 4 shows the curves of derivative weight as a function of temperature for the different 

bionanocomposites. For the chitosan matrix plasticised by either glycerol or [C2mim][OAc], the peak 

temperature of the major weight loss (Td, at the maximum weight-loss rate) was not affected by 

addition of GO. Specifically, XG-F (Chen et al., 2020b) and XG/GO-F had the same Td value of 

283 °C; and both XE-F (Chen et al., 2020b) and XE/GO-F had Td = 264 °C. Nonetheless, inclusion 

of rGO slightly reduced Td (277 °C and 261 °C for XG/rGO-F and XE/rGO-F, respectively). In this 

regard, rGO may have disrupted the hydrogen-bonded network to some extent in the plasticised 

chitosan systems.  
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Figure 4. Derivative weight vs. temperature curves measured by thermogravimetric analysis (TGA) 

for the different bionanocomposite films. The reference lines indicate the major peak temperatures of 

XG-F (283 °C), XE-F (264 °C), and YG-F / YE-F (243 °C), respectively (Chen et al., 2020b).  

 

The Y-series of composites had Td unchanged relative to those for YG-F and YE-F (243 °C) 

(Chen et al., 2020b). For YG-F, YG/GO-F, and YG/rGO-F, the derivative-weight peak of alginate 

(peak temperature at 206 °C) should be overlapped with that of chitosan and was just about visible. 

Considering the Td values for unprocessed chitosan and alginate are 289 °C and 232 °C respectively 

(Chen et al., 2020b), complexation between chitosan and alginate dramatically resulted in decreased 

thermal stability of both polysaccharides. In contrast for the Y-series plasticised by glycerol, for YE-
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appeared at a higher temperature (216 °C), associated with the weakened interactions between the 

two biopolymers caused by [C2mim][OAc], as discussed above. 

3.5 Dynamic mechanical thermal analysis (DMTA) 

Figure 5 shows the loss tangent (tan δ) plots as a function of temperature, which show two 

transitions for all the bionanocomposites. The weak, sub-zero transition is associated with the 

chitosan side-chain motion or lateral groups interacting with small molecules such as water and 

plasticisers (i.e. a β-relaxation); and the more prominent transition at higher temperature is attributed 

to the α-transition (glass transition) of chitosan (Quijada-Garrido, Laterza, Mazón-Arechederra, & 

Barrales-Rienda, 2006; Quijada-Garrido, Iglesias-González, Mazón-Arechederra, & Barrales-

Rienda, 2007).  
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Figure 5. Loss tangent (tan δ) as a function of temperature measured by dynamic mechanical 

thermal analysis (DMTA) for the different bionanocomposite films: a) chitosan matrix; b) 

chitosan/alginate matrix. 
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disrupting the weakened interactions between chitosan and alginate caused by the IL. In this sense, 

the DMTA results here are in agreement with the FTIR analysis.  

3.6 Mechanical properties 

Representative stress–strain profiles from tensile testing (Figure S3) of the different 

bionanocomposite films indicates they were hard and tough. From these curves, the Young’s 

modulus (E), tensile strength (σt), and elongation at break (εb) were calculated and plotted in Figure 

6 (a), (b), and (c), respectively. Inclusion of GO or rGO has a negligible effect on the mechanical 

properties of the X-matrix plasticised by glycerol as the E, σt, and εb values for XG/GO-F and 

XG/rGO-F were similar to those for XG-F (Chen et al., 2020b). However, for the X-matrix 

plasticised by [C2mim][OAc], inclusion of both GO and rGO significantly reduced E and increased 

εb, with rGO being more effective. Specifically, compared with XE-F (E = 530±43 MPa and εb = 

186.8±17.0%) (Chen et al., 2020b), XE/GO-F had E = 251±49 MPa and εb = 228.8±25.4% and 

XE/rGO-F had E = 142±46 MPa and εb = 287.9±21.7%, suggesting higher ductility. In this regard, 

the inclusion of GO or rGO appears to have increased the plasticisation effect of [C2mim][OAc]. 

Regarding this phenomenon, we speculate that the excellent dispersion of GO or rGO nanoplatelets 

decreased the localisation of the IL (as the plasticiser distribution in the polysaccharide may not be 

fully uniform originally) and improved its distribution in the chitosan, thus weakening chitosan chain 

interactions in amorphous regions. 
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Figure 6. Tensile mechanical properties a) Young’s modulus, b) tensile strength and c) elongation at 

break of the different bionanocomposite films. Error bars represent standard deviations. 
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increased ductility. On the other hand, compared with YE-F (E = 456±57 MPa, σt = 23.3±4.4 MPa, 

and εb = 64.5±12.0%), YE/rGO-F had similar mechanical properties, whereas YE/GO-F had lower E 

(323±75 MPa) but higher σt (29.1±4.9) and εb (89.3±8.6%). As discussed above, [C2mim][OAc] 

disturbs PEC between chitosan and alginate whereas GO counteracts the effect of the IL, reflected in 

the enhancement in strength and ductility of YE/GO-F. 

Despite these effects of GO or rGO on the tensile properties, Figure S4 shows that the Shore D 

hardness was not apparently influenced by their inclusion regardless of the matrix. The Shore D 

hardness was mainly influenced by the plasticiser especially, for the X-matrix. 

3.7 Contact angle 

Figure 7 shows the θc0s, θc30s, and θc60s values for the different bionanocomposite films, as 

contact angle kept changing during the sessile measurement. Our previous study (Chen et al., 2020b) 

indicated that XG-F had θc0s = 102±6°, θc30s = 81±4°, and θc60s = 73±3° and XE-F had θc0s = 95±3°, 

θc30s = 74±4°, and θc60s = 70±4°. For the X-matrix regardless of plasticiser type, inclusion of GO or 

rGO did not cause notable changes in contact angle, i.e. all have similar surface hydrophilicity. In 

this regard, the surface hydrophilicity was predominantly determined by the polarities of chitosan 

and plasticiser groups on the film surface, which were not varied by GO or rGO. 
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Figure 7. Contact angle values at 0 s, 30 s, and 60 s for the different bionanocomposite films. Error 

bars represent standard deviations. XG-F, XE-F, YG-F, and YE-F were measured in our previous 

study (Chen et al., 2020d).  
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YE/GO-F whereas decreased to 31±5°, 20±4°, and 18±7° respectively for YE/rGO-F. The reduced 

surface hydrophilicity for YE/GO-F can again be, ascribed to the less-interfered PEC between the 

two polysaccharides by [C2mim][OAc] with the presence of GO, as discussed above. In addition, the 

interaction of GO with the IL could also limit the binding of the IL with water, also contributing to 

decreasing surface wettability. In comparison, rGO was much less effective than GO to counteract 

the effect of the IL and, thus, the interactions between chitosan and alginate were still weak. 

Meanwhile, rGO could dissociate some IL ions and/or the polysaccharide hydrophilic groups from 

interactions, which could then readily bind with water. In this regard, YE/rGO-F even had a greater 

surface wettability than YE-F. 

3.8 Electrochemical impedance spectroscopy (EIS) 

Figure 8 (a) shows the Nyquist plots of impedance (Z″ vs. Z′) for the different bionanocomposite 

films. Based on these plots, the Rb and σdc values calculated (Bonanos, Steele, & Butler, 2005) are 

listed in Table S1. Compared with XG-F (σdc = (3.93±0.70)×10−5 S·cm−1) (Chen et al., 2020b), only 

XG/rGO-F showed an apparent increase in σdc, which should be associated with the intrinsic 

conductivity of rGO. XE/GO-F and XE/rGO-F had similar σdc values to that for XE-F 

((6.85±0.78)×10−5 S·cm−1). Given this result, the conductivity of the X-samples plasticised by 

[C2mim][OAc] could be mainly determined by the IL as a salt (Wang, Chi, & Mu, 2014). YG/GO-F 

and YG/rGO-F had σdc about twice that of YG-F ((2.80±0.31)×104 S·cm−1) (Chen et al., 2020b), 

suggesting inclusion of the 2D nanofillers contributed to the electrical charges (ions and dipoles) in 

the polysaccharide composite system. Compared with YE-F (σdc = (2.74±0.20)×10−5 S·cm−1) (Chen 

et al., 2020b), YE/GO-F displayed similar σdc whereas YE/rGO-F had a higher value 
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((6.54±0.82)×10−5 S·cm−1). Although GO could disrupt the interactions between the IL ions and the 

respective biopolymers, its interactions with the IL ions and the polysaccharides could limit the 

mobility of the electrical charges. The increased σdc value of YE/rGO-F could be derived from the 

conductivity of rGO, as well as the greater availability of IL ions and/or the polysaccharide 

hydrophilic groups, as discussed above. 

 

 

 

Figure 8. Electrical impedance spectroscopy (EIS) results for the different bionanocomposite films: 

a) Nyquist plot of impedance; b) AC conductivity (σ); c) real relative permittivity (ε′r); and d) 

imaginary electric modulus (M″). 
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Figure 8 (b) shows that for all the bionanocomposite films, σ increased with f, typical of an 

insulating material (dielectric). The four samples containing rGO displayed higher σ especially at 

low f (< 250 Hz) and less dependency of σ on f than other samples and the controls (XG-F, XE-F, 

YG-F and YE-F) (Chen et al., 2020b). In this regard, rGO contributed to the overall conductivity of 

the materials. 

Figure 8 (c) shows that decreasing f led to an abrupt increase in ε′r, which could be ascribed to 

electrode polarisation and space charge effects (dipole moment) (Khiar, Puteh, & Arof, 2006; 

Navaratnam et al., 2015). Compared with the controls (Chen et al., 2020b), the bionanocomposites 

with GO had higher ε′r at low f (<50 Hz). And, inclusion of rGO had an even greater effect on ε′r at 

low f. In this regard, rGO could be more effective than GO at facilitating the accumulation of mobile 

ions. Moreover, the bionanocomposites displayed impressively high ε′r at 1 kHz (over 150) except 

for YE/GO-F (Table S1). For YE/GO-F, the strong interaction of GO with the IL ions and the 

polysaccharide polar groups could restrict the dipole moment.  

Figure 8 (d) shows that for all the bionanocomposites, there was a well-defined peak in M″ at 

high f, indicating relaxation processes with distributed relaxation times (i.e. viscoelastic relaxation, 

or dipolar relaxation) (Fadzallah et al., 2014). Compared to XG-F whose M″ peak position was at 

about 1.4×105 Hz (Chen et al., 2020b), both XG/GO-F and XG/rGO-F had the peak moved to 

1.7×105 Hz, indicating reduced relaxation time. In this regard, inclusion of GO or rGO increased the 

mobility of ions and associated dipoles. XE-F, XE/GO-F and XE/rGO-F had similar peak positions 

at about 1.7–1.8×105 Hz, suggesting no apparent effect of the nanofillers on the relaxation time for 
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the X-matrix plasticised by [C2mim][OAc]. In other words, in these three samples, the mobility of 

ions and dipoles could be mainly determined by the IL. On the other hand, while the peak position 

for YG-F was about 1.7×105 Hz, YG/GO-F and YG/rGO-F displayed a peak position at about 2.9–

3.2×105 Hz. Compared with YE-F peak position at about 1.5×105 Hz, YE/GO-F and YE/rGO 

showed peak positions at about 1.7×105 Hz and 2.9×105 Hz, respectively. These results indicate 

increased mobility of ions and dipoles by inclusion of GO or rGO to the Y-matrix. In particular, the 

short relaxation time for YE/rGO-F corresponds to the disrupted interactions between the IL ions and 

polysaccharides, as discussed above. 

4 Conclusions 

This study shows that for the chitosan/alginate matrix, inclusion of GO or rGO affected 

composite structure and properties via different mechanisms. For the glycerol-plasticised Y-matrix, 

inclusion of GO or rGO increased the crystallinity and ductility of the chitosan, probably by assisting 

the distribution of glycerol in the Y-matrix (especially in the alginate phase). While [C2mim][OAc] 

could dramatically weaken PEC and hydrogen bonding between chitosan and alginate, FTIR and 

DMTA results suggest that GO was capable of counteracting the effect of the IL by interacting with 

the IL and the polysaccharides, leading to remarkably increased matrix strength and decreased 

surface hydrophilicity. In comparison, rGO was far less effective at promoting chitosan–alginate 

interactions. However, rGO could still release some IL ions and/or the polysaccharide hydrophilic 

groups from participating in interactions, reflected by lower crystallinity and even higher surface 

hydrophilicity for YE/rGO-F.  
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For the X-matrix plasticised by glycerol and [C2mim][OAc], the effect of GO or rGO on the 

structure and properties was minor, most likely due to the dominant interactions between plasticiser 

and chitosan. However, for the [C2mim][OAc]-plasticised X-matrix, inclusion of GO or rGO 

increased ductility, with rGO being more effective, behaviour attributed to the GOs being capable of 

improving the distribution of this plasticiser in the chitosan matrix.  

Thus, this work has shown the different ways in which these 2D carbon materials influence the 

structure and properties of polysaccharides and, in particular, the efficacy of GO to overcome the 

negative effects of the IL cation on PEC in polysaccharide materials. This information could be 

insightful for the design of various biopolymer composite systems where multiple interactions 

among components can be manipulated so as to tailor properties. 

 

Conflicts of Interests 

Declarations of interest: none 

 

5 CRediT author statement: 

Pei Chen: Methodology, Validation, Formal Analysis, Investigation. Fengwei Xie: 

Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Data 

Curation, Writing - Original Draft, Writing - Review & Editing, Visualization, Supervision, Project 

administration, Funding acquisition. Fengzai Tang: Investigation, Writing - Original Draft. Tony 

Jo
ur

na
l P

re
-p

ro
of



31 

McNally: Conceptualization, Resources, Writing - Review & Editing, Supervision, Funding 

acquisition.  

 

 

 

Acknowledgements 

The authors acknowledge funding from the European Union’s Horizon 2020 research and 

innovation programme under the Marie Skłodowska-Curie grant agreement No. 798225. P. Chen 

acknowledges the financial support from the China Scholarship Council (CSC) for her visiting 

position and thanks IINM, WMG, University of Warwick, UK for hosting her research visit. F. Xie 

also acknowledges support from the Guangxi Key Laboratory for Polysaccharide Materials and 

Modification, Guangxi University for Nationalities, China (grant No. GXPSMM18ZD-02). 

 

References 

Basu, S., Plucinski, A., & Catchmark, J. M. (2017). Sustainable barrier materials based on 

polysaccharide polyelectrolyte complexes. Green Chemistry, 19(17), 4080-4092. 

Bhatt, A. S., Bhat, D. K., Santosh, M. S., & Tai, C.-w. (2011). Chitosan/NiO nanocomposites: a 

potential new dielectric material. Journal of Materials Chemistry, 21(35), 13490-13497. 

Boesel, L. F. (2015). Effect of plasticizers on the barrier and mechanical properties of biomimetic 

composites of chitosan and clay. Carbohydrate Polymers, 115(0), 356-363. 

Jo
ur

na
l P

re
-p

ro
of



32 

Bonanos, N., Steele, B. C. H., & Butler, E. P. (2005). Applications of Impedance Spectroscopy. In E. 

Barsoukov, & J. R. Macdonald (Eds.), Impedance Spectroscopy (pp. 205-537). Hoboken, NJ, 

USA: John Wiley & Sons, Inc. 

Bowen Chris, R., Buschhorn, S., & Adamaki, V. (2014). Manufacture and characterization of 

conductor-insulator composites based on carbon nanotubes and thermally reduced graphene 

oxide. Pure and Applied Chemistry, 86(5), 765-774. 

Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and 

coatings for food packaging: A review. Food Hydrocolloids, 68, 136-148. 

Chen, P., Xie, F., Tang, F., & McNally, T. (2020a). Structure and properties of thermomechanically 

processed chitosan/carboxymethyl cellulose/graphene oxide polyelectrolyte complexed 

bionanocomposites. International Journal of Biological Macromolecules, 158, 420-429. 

Chen, P., Xie, F., Tang, F., & McNally, T. (2020b). Unexpected Plasticization Effects on the 

Structure and Properties of Polyelectrolyte Complexed Chitosan/Alginate Materials. ACS 

Applied Polymer Materials, 2(7), 2957-2966. 

Chen, P., Xie, F., Tang, F., & McNally, T. (2020c). Thermomechanical-induced polyelectrolyte 

complexation between chitosan and carboxymethyl cellulose enabling unexpected hydrolytic 

stability. Composites Science and Technology, 189, 108031. 

Chen, P., Xie, F., Tang, F., & McNally, T. (2020d). Ionic Liquid (1-Ethyl-3-methylimidazolium 

Acetate) Plasticization of Chitosan-Based Bionanocomposites. ACS Omega, 5(30), 19070-

19081. 

Jo
ur

na
l P

re
-p

ro
of



33 

Chen, Z., Mo, X., He, C., & Wang, H. (2008). Intermolecular interactions in electrospun collagen–

chitosan complex nanofibers. Carbohydrate Polymers, 72(3), 410-418. 

Colomines, G., Decaen, P., Lourdin, D., & Leroy, E. (2016). Biofriendly ionic liquids for starch 

plasticization: a screening approach. RSC Advances, 6(93), 90331-90337. 

Decaen, P., Rolland-Sabaté, A., Guilois, S., Jury, V., Allanic, N., Colomines, G., et al. (2017). 

Choline chloride vs choline ionic liquids for starch thermoplasticization. Carbohydrate 

Polymers, 177(Supplement C), 424-432. 

Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. 

Materials Science and Engineering: C, 33(4), 1819-1841. 

Epure, V., Griffon, M., Pollet, E., & Avérous, L. (2011). Structure and properties of glycerol-

plasticized chitosan obtained by mechanical kneading. Carbohydrate Polymers, 83(2), 947-

952. 

Fadzallah, I. A., Majid, S. R., Careem, M. A., & Arof, A. K. (2014). Relaxation process in chitosan–

oxalic acid solid polymer electrolytes. Ionics, 20(7), 969-975. 

Fan, L., Luo, C., Sun, M., Li, X., Lu, F., & Qiu, H. (2012). Preparation of novel magnetic 

chitosan/graphene oxide composite as effective adsorbents toward methylene blue. 

Bioresource Technology, 114, 703-706. 

Fan, L., Luo, C., Sun, M., Li, X., & Qiu, H. (2013). Highly selective adsorption of lead ions by 

water-dispersible magnetic chitosan/graphene oxide composites. Colloids and Surfaces B: 

Biointerfaces, 103, 523-529. 

Jo
ur

na
l P

re
-p

ro
of



34 

Gao, C., Pollet, E., & Avérous, L. (2017). Properties of glycerol-plasticized alginate films obtained 

by thermo-mechanical mixing. Food Hydrocolloids, 63, 414-420. 

Han, D., Yan, L., Chen, W., & Li, W. (2011). Preparation of chitosan/graphene oxide composite film 

with enhanced mechanical strength in the wet state. Carbohydrate Polymers, 83(2), 653-658. 

Iwasaki, N., Yamane, S.-T., Majima, T., Kasahara, Y., Minami, A., Harada, K., et al. (2004). 

Feasibility of Polysaccharide Hybrid Materials for Scaffolds in Cartilage Tissue Engineering:  

Evaluation of Chondrocyte Adhesion to Polyion Complex Fibers Prepared from Alginate and 

Chitosan. Biomacromolecules, 5(3), 828-833. 

Justin, R., & Chen, B. (2014). Characterisation and drug release performance of biodegradable 

chitosan–graphene oxide nanocomposites. Carbohydrate Polymers, 103, 70-80. 

Kavosi, B., Salimi, A., Hallaj, R., & Amani, K. (2014). A highly sensitive prostate-specific antigen 

immunosensor based on gold nanoparticles/PAMAM dendrimer loaded on 

MWCNTS/chitosan/ionic liquid nanocomposite. Biosensors and Bioelectronics, 52, 20-28. 

Khiar, A. S. A., Puteh, R., & Arof, A. K. (2006). Conductivity studies of a chitosan-based polymer 

electrolyte. Physica B: Condensed Matter, 373(1), 23-27. 

Kittur, F. S., Vishu Kumar, A. B., & Tharanathan, R. N. (2003). Low molecular weight chitosans—

preparation by depolymerization with Aspergillus niger pectinase, and characterization. 

Carbohydrate Research, 338(12), 1283-1290. 

Lawrie, G., Keen, I., Drew, B., Chandler-Temple, A., Rintoul, L., Fredericks, P., et al. (2007). 

Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and 

XPS. Biomacromolecules, 8(8), 2533-2541. 

Jo
ur

na
l P

re
-p

ro
of



35 

Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in 

Polymer Science, 37(1), 106-126. 

Leroy, E., Jacquet, P., Coativy, G., Reguerre, A. l., & Lourdin, D. (2012). Compatibilization of 

starch–zein melt processed blends by an ionic liquid used as plasticizer. Carbohydrate 

Polymers, 89(3), 955-963. 

Li, L., Fang, Y., Vreeker, R., Appelqvist, I., & Mendes, E. (2007). Reexamining the Egg-Box Model 

in Calcium−Alginate Gels with X-ray Diffraction. Biomacromolecules, 8(2), 464-468. 

Li, Z., Ramay, H. R., Hauch, K. D., Xiao, D., & Zhang, M. (2005). Chitosan–alginate hybrid 

scaffolds for bone tissue engineering. Biomaterials, 26(18), 3919-3928. 

Liu, L., Li, C., Bao, C., Jia, Q., Xiao, P., Liu, X., et al. (2012). Preparation and characterization of 

chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta, 93, 

350-357. 

López, O. V., Ninago, M. D., Lencina, M. M. S., García, M. A., Andreucetti, N. A., Ciolino, A. E., et 

al. (2015). Thermoplastic starch plasticized with alginate–glycerol mixtures: Melt-processing 

evaluation and film properties. Carbohydrate Polymers, 126(0), 83-90. 

Lu, X., Hu, J., Yao, X., Wang, Z., & Li, J. (2006). Composite System Based on Chitosan and Room-

Temperature Ionic Liquid:  Direct Electrochemistry and Electrocatalysis of Hemoglobin. 

Biomacromolecules, 7(3), 975-980. 

Mateescu, M. A., Ispas-Szabo, P., & Assaad, E. (2015). 4 - Chitosan-based polyelectrolyte 

complexes as pharmaceutical excipients. In M. A. Mateescu, P. Ispas-Szabo, & E. Assaad 

(Eds.), Controlled Drug Delivery (pp. 127-161). Woodhead Publishing. 

Jo
ur

na
l P

re
-p

ro
of



36 

Mekonnen, T., Mussone, P., Khalil, H., & Bressler, D. (2013). Progress in bio-based plastics and 

plasticizing modifications. Journal of Materials Chemistry A, 1(43), 13379-13398. 

Meng, L., Xie, F., Zhang, B., Wang, D. K., & Yu, L. (2019). Natural Biopolymer Alloys with 

Superior Mechanical Properties. ACS Sustainable Chemistry & Engineering, 7(2), 2792-

2802. 

Morris, E. R., Rees, D. A., Thom, D., & Boyd, J. (1978). Chiroptical and stoichiometric evidence of 

a specific, primary dimerisation process in alginate gelation. Carbohydrate Research, 66(1), 

145-154. 

Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., & de la Caba, K. (2017). Chitosan as a bioactive 

polymer: Processing, properties and applications. International Journal of Biological 

Macromolecules, 105, 1358-1368. 

Navaratnam, S., Ramesh, K., Ramesh, S., Sanusi, A., Basirun, W. J., & Arof, A. K. (2015). 

Transport mechanism studies of chitosan electrolyte systems. Electrochimica Acta, 175, 68-

73. 

Osman, Z., Ibrahim, Z. A., & Arof, A. K. (2001). Conductivity enhancement due to ion dissociation 

in plasticized chitosan based polymer electrolytes. Carbohydrate Polymers, 44(2), 167-173. 

Pan, Y., Wu, T., Bao, H., & Li, L. (2011). Green fabrication of chitosan films reinforced with 

parallel aligned graphene oxide. Carbohydrate Polymers, 83(4), 1908-1915. 

Papageorgiou, S. K., Kouvelos, E. P., Favvas, E. P., Sapalidis, A. A., Romanos, G. E., & Katsaros, F. 

K. (2010). Metal–carboxylate interactions in metal–alginate complexes studied with FTIR 

spectroscopy. Carbohydrate Research, 345(4), 469-473. 

Jo
ur

na
l P

re
-p

ro
of



37 

Pawlak, A., & Mucha, M. (2003). Thermogravimetric and FTIR studies of chitosan blends. 

Thermochimica Acta, 396(1), 153-166. 

Quijada-Garrido, I., Laterza, B., Mazón-Arechederra, J. M., & Barrales-Rienda, J. M. (2006). 

Characteristic Features of Chitosan/Glycerol Blends Dynamics. Macromolecular Chemistry 

and Physics, 207(19), 1742-1751. 

Quijada-Garrido, I., Iglesias-González, V., Mazón-Arechederra, J. M., & Barrales-Rienda, J. M. 

(2007). The role played by the interactions of small molecules with chitosan and their 

transition temperatures. Glass-forming liquids: 1,2,3-Propantriol (glycerol). Carbohydrate 

Polymers, 68(1), 173-186. 

Ravi Kumar, M. N. V. (2000). A review of chitin and chitosan applications. Reactive and Functional 

Polymers, 46(1), 1-27. 

Ren, F., Wang, J., Xie, F., Zan, K., Wang, S., & Wang, S. (2020). Applications of ionic liquids in 

starch chemistry: a review. Green Chemistry, 22(7), 2162-2183. 

Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 

31(7), 603-632. 

Sankri, A., Arhaliass, A., Dez, I., Gaumont, A. C., Grohens, Y., Lourdin, D., et al. (2010). 

Thermoplastic starch plasticized by an ionic liquid. Carbohydrate Polymers, 82(2), 256-263. 

Shi, R., Zhang, Z., Liu, Q., Han, Y., Zhang, L., Chen, D., et al. (2007). Characterization of citric 

acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohydrate 

Polymers, 69(4), 748-755. 

Jo
ur

na
l P

re
-p

ro
of



38 

Sikorski, P., Mo, F., Skjåk-Bræk, G., & Stokke, B. T. (2007). Evidence for Egg-Box-Compatible 

Interactions in Calcium−Alginate Gels from Fiber X-ray Diffraction. Biomacromolecules, 

8(7), 2098-2103. 

Šimkovic, I. (2013). Unexplored possibilities of all-polysaccharide composites. Carbohydrate 

Polymers, 95(2), 697-715. 

van den Broek, L. A. M., Knoop, R. J. I., Kappen, F. H. J., & Boeriu, C. G. (2015). Chitosan films 

and blends for packaging material. Carbohydrate Polymers, 116, 237-242. 

Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based 

plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254-263. 

Wang, B., Wan, Y., Zheng, Y., Lee, X., Liu, T., Yu, Z., et al. (2019). Alginate-based composites for 

environmental applications: a critical review. Critical Reviews in Environmental Science and 

Technology, 49(4), 318-356. 

Wang, X., Chi, Y., & Mu, T. (2014). A review on the transport properties of ionic liquids. Journal of 

Molecular Liquids, 193, 262-266. 

Wei, C., Zhu, X., Peng, H., Chen, J., Zhang, F., & Zhao, Q. (2019). Facile Preparation of Lignin-

Based Underwater Adhesives with Improved Performances. ACS Sustainable Chemistry & 

Engineering, 7(4), 4508-4514. 

Wu, G., Ma, X., Fan, L., Gao, Y., Deng, H., & Wang, Y. (2020). Accelerating dermal wound healing 

and mitigating excessive scar formation using LBL modified nanofibrous mats. Materials & 

Design, 185, 108265. 

Jo
ur

na
l P

re
-p

ro
of



39 

Xia, L., Long, Y., Li, D., Huang, L., Wang, Y., Dai, F., et al. (2019). LBL deposition of chitosan and 

silk fibroin on nanofibers for improving physical and biological performance of patches. 

International Journal of Biological Macromolecules, 130, 348-356. 

Xie, D. F., Martino, V. P., Sangwan, P., Way, C., Cash, G. A., Pollet, E., et al. (2013). Elaboration 

and properties of plasticised chitosan-based exfoliated nano-biocomposites. Polymer, 54(14), 

3654-3662. 

Xie, F., Flanagan, B. M., Li, M., Sangwan, P., Truss, R. W., Halley, P. J., et al. (2014). 

Characteristics of starch-based films plasticised by glycerol and by the ionic liquid 1-ethyl-3-

methylimidazolium acetate: A comparative study. Carbohydrate Polymers, 111, 841-848. 

Xie, F., Flanagan, B. M., Li, M., Truss, R. W., Halley, P. J., Gidley, M. J., et al. (2015). 

Characteristics of starch-based films with different amylose contents plasticised by 1-ethyl-3-

methylimidazolium acetate. Carbohydrate Polymers, 122, 160-168. 

Yamagata, M., Soeda, K., Ikebe, S., Yamazaki, S., & Ishikawa, M. (2013). Chitosan-based gel 

electrolyte containing an ionic liquid for high-performance nonaqueous supercapacitors. 

Electrochimica Acta, 100, 275-280. 

Yang, J.-S., Xie, Y.-J., & He, W. (2011). Research progress on chemical modification of alginate: A 

review. Carbohydrate Polymers, 84(1), 33-39. 

Yang, X., Tu, Y., Li, L., Shang, S., & Tao, X.-m. (2010). Well-Dispersed Chitosan/Graphene Oxide 

Nanocomposites. ACS Applied Materials & Interfaces, 2(6), 1707-1713. 

Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. 

Progress in Polymer Science, 31(6), 576-602. 

Jo
ur

na
l P

re
-p

ro
of



40 

Zhang, B., Xie, F., Zhang, T., Chen, L., Li, X., Truss, R. W., et al. (2016). Different characteristic 

effects of ageing on starch-based films plasticised by 1-ethyl-3-methylimidazolium acetate 

and by glycerol. Carbohydrate Polymers, 146, 67-79. 

Zhang, B., Xie, F., Shamshina, J. L., Rogers, R. D., McNally, T., Wang, D. K., et al. (2017). Facile 

Preparation of Starch-Based Electroconductive Films with Ionic Liquid. ACS Sustainable 

Chemistry & Engineering, 5(6), 5457-5467. 

 

Jo
ur

na
l P

re
-p

ro
of


