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a b s t r a c t 

Multiple electron microscopy techniques have been used to study a brown type IIa natural diamond. 

Electron backscatter diffraction shows evidence of plastic deformation in the form of slip bands, while 

cathodoluminescence reveals a network of low-angle grain boundaries, also observed in transmission 

electron microscopy together with long straight dislocations and dislocation dipoles. Aberration-corrected 

scanning transmission electron microscopy shows interstitial absorption on the 90 ° partial of both dis- 

sociated dislocations and Z-type faulted vacancy dipoles, forming structures similar to that observed in 

other fcc materials. The observations indicate an interstitial concentration of 10 17 to 10 19 cm 

−3 and cal- 

culations of point defect concentrations produced by plastic deformation show that this can be produced 

by strains of the order of 1%. Brown coloration in diamond has been previously attributed to vacancies 

and vacancy clusters with concentrations around 10 18 cm 

−3 , which suggests that roughly equal numbers 

of interstitials and vacancies are generated in diamond via plastic deformation. Atomic resolution images 

of Z-type faulted dipoles allowed a stacking fault energy of 472 ± 38 mJ m 

−2 to be determined. 

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Diamond has the interesting property that plastic deformation 

an produce brown coloration, an effect which is seen in natural 

tones of all types [ 1 , 2 ] as well as man-made crystals [3] . It can

e seen as ‘graining’, i.e. brownish lines consistent with { 111 } slip 

ands [4] . Current consensus is that this coloration is caused by 

gglomerations of vacancies that are the result of plastic deforma- 

ion. Supporting evidence for this theory includes positron annihi- 

ation spectroscopy (PAS), which indicates the presence of mono- 

acancies and vacancy clusters in brown diamond (with concen- 

rations ~10 18 cm 

−3 or more [ 5 , 6 ]), absent in colourless stones.

odelling indicates that clusters of 30–60 vacancies have absorp- 

ion spectra that would produce brown coloration [ 7 , 8 ]. Further- 

ore, high-pressure high-temperature (HPHT) treatment removes 

he brown colour [ 1 , 4 , 9 , 10 ] consistent with the dissolution of va-

ancy clusters. The possibility that dislocations are directly respon- 

ible for brown coloration can be discounted because, although 

here are many dislocations in natural brown diamond, HPHT 

reatment has no appreciable effect on their density [11] . Further 

vidence against dislocations being the direct cause of coloration is 
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he observation that, while all brown diamonds have suffered plas- 

ic deformation, not all diamonds that are plastically deformed be- 

ome brown [ 4 , 12 ]. (In fact this observation supports the hypoth-

sis that point defects are responsible, as shown in Section 1.1 be- 

ow.) Together, these observations imply that vacancy clusters form 

hroughout the crystal by condensation from a supersaturation of 

oint defects, while their removal by HPHT treatment presumably 

akes place by evaporation of vacancies from the cluster and their 

ubsequent absorption by point defect sinks – or growth of clusters 

o become substantial voids with different absorption characteris- 

ics. It should be expected that both vacancies and self-interstitials 

re generated during plastic deformation, however little is dis- 

ussed about the self-interstitials in the literature with relation to 

lastic deformation and the brown coloration in diamond. 

In this article, the relationship between plastic deformation and 

oint defects in a type IIa natural diamond with brown coloration 

s considered. Type IIa stones are studied due to their elemental 

urity, with a low nitrogen content ( < 1 ppm), removing any con- 

ounding factors that could result from point defects generated by 

r reacting with nitrogen [13] . In particular, it removes the pos- 

ibility that interstitials have been incorporated into platelets, an 

mportant by-product of the aggregation of nitrogen in type I dia- 

onds. Our experimental observations primarily use electron mi- 

roscopy, including atomic resolution scanning transmission elec- 
rticle under the CC BY-NC-ND license 
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Fig. 1. Emission of point defects due to intersecting dislocations during plastic deformation. a) Dislocation D1 (green) lies in screw orientation with Burgers vector b 1 and 

glides to the right on the plane shown, approaching dislocation D2 (orange), which cuts through the glide plane and has a screw component perpendicular to it b 2 . b) Once 

D1 passes through D2, both dislocations have a sessile jog, each with a size corresponding to the screw component of the Burgers vector of the other dislocation. As D1 

moves to the right a dipole forms, anchored by the jog. c) the dipole in D1 can shrink by movement of the jog, in this case by emission of vacancies. After Amelinckx [17] . 

d) and e) dark field weak beam g3g = 220 TEM images of a dislocation dipole ending at a jog in a natural type IIa diamond with slight brown coloration. The bright line 

is displaced from the actual position of the dislocation, depending upon the local bending of the diffracting planes close to the dislocation core. The change in apparent 

separation of the pair of dislocations as g is reversed, indicated by the yellow arrowheads, indicate that they form a dipole [21] . Scale bar 100 nm. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ron microscopy (STEM), to study the dislocation microstructure. 

revious attempts to directly observe vacancy clusters in brown 

iamond using high resolution STEM [ 14 , 15 ] have had limited suc-

ess, since this technique is not particularly sensitive to the ab- 

ence of a few atoms which might form a vacancy cluster. We also 

o not observe vacancy clusters. However, we are able to exam- 

ne the core structure of dislocations. In the bulk of a pure crys- 

al these are sinks for point defects, and therefore can give in- 

ight into the processes that have occurred. We find clear evidence 

hat high concentrations of self-interstitials have condensed onto 

islocations. These interstitial accretions are invisible in conven- 

ional weak-beam TEM and provide unequivocal evidence that self- 

nterstitials are indeed generated by plastic deformation in fcc ma- 

erials. We discuss our results with reference to previous obser- 

ations in fcc materials (including both metals, and semiconduc- 

ors with the diamond or zinc-blende structure). As a secondary 

spect of our observations we use the atomic resolution images of 

aulted dipoles to calculate the stacking fault energy of diamond 

sing the method of Steeds [16] . Before discussing the results, an 

ntroduction into the generation of point defects by plastic de- 

ormation and the intrinsic point defect behaviour of diamond is 

arranted. 

.1. Point defect generation by plastic deformation 

The mechanism of point defect emission during plastic defor- 

ation in any material is shown in Fig. 1 , following Amelinckx 

17] . Two screw dislocations D1 and D2 are shown, with Burg- 

rs vector b 1 and b 2 respectively. D1 moves to the right on its 

lide plane, approaching D2 ( Fig. 1 a) and then passing through it 

 Fig. 1 b). In doing so a jog is introduced in both dislocations; a jog

f size b is produced in D2, and one of size b is produced in 
1 2 

495 
1. These jogs can be sessile, in which case they can only move 

y emission or absorption of point defects. In Fig. 1 b the jog in

1 acts as an anchor, and as D1 moves onwards it must leave 

ehind a dipole, since the upper and lower arms attached to the 

og now lie on parallel glide planes separated by b 2 and cannot 

eet by glide. The attractive force between these two arms is of 

ourse huge, since they have opposite signs and are separated by 

 single lattice translation. It is energetically favourable for them 

o recombine and in doing so, emit point defects. Fig. 1 c shows 

he final situation where the dipole has ‘evaporated’ by emission 

f point defects, in this case vacancies; the dipole in Fig. 1 b is a

acancy dipole. Dissociation of dislocations into partials [18] does 

ot change the total Burgers vector – or the size of the jog pro- 

uced – when one dislocation passes through another. Interstitials 

re emitted by similar configurations with reversed Burgers vector 

r line direction of one of the dislocations, which produce intersti- 

ial dipoles. Since we may expect a variety of Burgers vectors in a 

eformed crystal, it therefore seems inevitable that both vacancies 

nd interstitials are produced in plastic deformation, i.e. the type 

f point defect is determined primarily by geometry [ 19 , 20 ]. 

In fcc diamond, Burgers vectors of crystal dislocations are 

< 110 > type. The Burgers vector b 1 must lie in a { 111 } glide plane,

nd b 2 must have a component perpendicular to this { 111 } plane 

n order to produce a jog. Since half of all Burgers vectors lie in any

iven { 111 } glide plane this means that half of all possible interac- 

ions produce jogs in the fcc structure. Any two such dislocations 

lways have a shared { 111 } glide plane that is different to the orig- 

nal one (with normal parallel to b 2 × b 1 ). The jog can move con- 

ervatively, without emitting point defects, along the 〈 110 〉 direc- 

ion that is the intersection of these two { 111 } planes. Conversely, 

erpendicular to this 〈 110 〉 direction, point defects must be pro- 

uced to move D1 by a lattice translation vector. (In a simple fcc 
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Fig. 2. Point defect concentrations generated during plastic deformation of dia- 

mond from Eq. (4) . Each line corresponds to a different forest dislocation density, 

from 10 2 cm 

−2 to 10 9 cm 

−2 . 
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Fig. 3. Equilibrium concentration of interstitials and vacancies in diamond, from 

Eq. (1) . 
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rystal this would be a single point defect; in diamond it is two.) 

he number of point defects emitted N is [ 17 , 22 ] 

 = 

ˆ v · ( u 2 × u 1 ) ∣
∣ˆ v · ( u 2 × u 1 ) 

∣
∣
[

ˆ v · ( b 2 × b 1 ) 
] L 

8 a 
(1) 

Where ˆ v is a unit vector along the direction of motion for D1, L 

s the distance D1 has travelled from the intersection, a is the lat- 

ice parameter, and u 1 , u 2 are the dislocation line directions (fol- 

owing the finish-start/right-hand (FS/RH) convention). 

Importantly, the density of point defects produced by deforma- 

ion is not only related to the plastic strain that the crystal ex- 

eriences. The key point is that the active slip system must pass 

hrough a ‘forest’ of pre-existing dislocations that cut through the 

lide plane [ 23 , 24 ]. The dislocation D2 in Fig. 2 is such a forest

islocation, obstructing the slip of D1. The dislocations running 

ertically in Figs. 2 d and 2 e could also be forest dislocations. The

umber of point defects generated depends upon both the density 

f forest dislocations and the strain produced by the dislocations 

assing through them. This may explain why some diamonds that 

ave been plastically deformed have no brown coloration; only 

rystals that experience deformation by more than one slip system 

ill produce jogs by the mechanism shown in Fig. 1 and contain 

igh point defect densities. Indeed, brown coloration is stronger in 

ynthetic diamond deformed such that multiple slip systems oper- 

te simultaneously [3] . 

The total length of dragged jogs per unit volume λ, when a glis- 

ile array of dislocations producing plastic strain ε passes through 

n array of forest dislocations with density ρ is 

= 

ρε 

4 b 
, (2) 

aking into account that half of the interactions produce no jogs. 

he concentration of point defects per unit volume produced by 

lastic strain is therefore 

 = 

ˆ v · ( u 2 × u 1 ) ∣
∣ˆ v · ( u 2 × u 1 ) 

∣
∣
[

ˆ v · ( b 2 × b 1 ) 
] ρε 

32 ab 
, (3) 

hich is shown in Fig. 2 for different forest dislocation densities. 

 forest dislocation density of 10 9 cm 

−2 and a plastic strain of 1% 

an generate ~10 20 point defects cm 

−3 . 

Although this calculation predicts point defect concentrations 

ignificantly larger than the vacancy concentrations of 10 18 cm 

−3 

easured by PAS in brown diamonds, [5] the value given by 

q. (3) is almost certainly an overestimate. This is because a dislo- 

ation gliding through the crystal during plastic deformation may 
496 
eet bundles of forest dislocations as well as single defects. If D2 

s replaced in Fig. 2 by several forest dislocations that are too close 

ogether to allow the dislocation to pass between them, [24] the 

og produced in D1 will be larger. The height of the dipole in 

ig. 2 b will be correspondingly larger and the driving force for 

ecombination is reduced. Beyond a certain height the attractive 

orce will not be sufficiently high to cause annihilation of the 

ipole, point defects will not be generated, and the dipole will re- 

ain stable. A good fraction – perhaps the majority – of jogs cre- 

ted by forest interactions may therefore not produce point defects 

ince the dipoles they produce are too widely spaced. Indeed, dis- 

ocation dipoles are commonly observed in deformed fcc materials, 

 23 , 25-27 ] and chains of dislocation loops condensed from point 

efects produced by dipole collapse have also been observed [28] . 

e have not observed the latter, but an example of a dipole ter- 

inated by a jog in our brown type IIa diamond is shown in the 

ark field weak-beam (DFWB) TEM images Figs. 1 d and 1 e. Dislo- 

ation dipoles are apparent from the change in the apparent spac- 

ng of their constituent dislocations when the diffraction vector is 

eversed, [21] as shown by the yellow arrowheads. The jog is dis- 

ociated, with a faint loop visible to the left of the arrow. 

.2. Point defects in diamond 

At finite temperatures, point defects p have an equilibrium con- 

entration c p that can be estimated by an Arrhenius law of the 

orm [29] 

 p = n p exp (E f p / k B T ) , (4) 

here n p is the density of possible point defect p sites per unit 

ell, E 
f 
p is the formation energy of p , k B is Boltzmann’s constant 

nd T is absolute temperature. In general, the formation energy of 

nterstitials ( E f 
i 
) is larger that of vacancies ( E f v ) . In diamond E 

f 
i 

≈
2 eV, while for vacancies E 

f 
v ≈ 6 to 7 eV [30-34] . These large for-

ation energies mean that the equilibrium point defect density in 

iamond below ~10 0 0 °C is effectively zero ( Fig. 3 ). However, the

ormation energy is miniscule in comparison with that released by 

 moving dislocation in a stressed crystal and it can be appreciated 

y comparing Figs. 2 and 3 that large point defect supersaturations 

ay easily be produced by plastic deformation. 

Once point defects are formed, they may diffuse through the 

rystal lattice, which is also a thermally controlled process that 

ollows an Arrhenius law. The behaviour of a point defect pop- 

lation far from equilibrium is determined primarily by the mi- 

ration enthalpy E m and at low temperatures, point defect diffu- 

ion may be ‘frozen out’. In diamond, interstitial atoms have mi- 
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ration enthalpies of E m 

i 
≈ 1.6 eV and are only mobile at tempera- 

ures > 330 °C, while vacancies begin to migrate significantly above 

570 °C with E m 

v ≈ 2.3 eV [30-34] . Lithospheric diamonds may re- 

ide in the mantle for up to 10 9 years while experiencing tempera- 

ures in the range 90 0–140 0 °C, [ 2 , 35 ] meaning that both vacancies

nd interstitials should be mobile when produced by plastic defor- 

ation and rapidly convert into stable clusters or be absorbed at 

ther point defect sinks. In this work, the dislocation microstruc- 

ure of a brown diamond is examined for evidence of these pro- 

esses. 

. Experimental 

The sample used in this study originated from a single natural 

ype IIa diamond with a faint brown colour, which was cut and 

olished into a cube with { 100 } faces approximately 0.5 mm in 

ize. The exact origin of the diamond is not known as it was se- 

ected from material aggregated from a number of productions, but 

s likely to be of southern African origin. It was left in an untreated 

tate. 

Electron backscatter diffraction (EBSD) mapping was performed 

n a FEI Versa at 20 kV with an Oxford Instruments Symmetry 

BSD system. EBSD was carried out with the sample tilted at 70 °, 
 working distance of 14.1 mm, step size of 3.1 μm and a probe

urrent of 14μA. Cathodoluminescence (CL) imaging was carried 

ut in a Zeiss Supra VP55 FEGSEM fitted with a Gatan MonoCL3 

pectrometer at an accelerating voltage of 5 kV. Photoluminescence 

PL) was carried out using a Horiba YobinYvon LabRam spectrom- 

ter equipped with a 660 nm excitation laser and Renishaw in- 

ia confocal microscope equipped with a 325 nm HeCd laser. A 

EOL 4500 focused ion beam (FIB) was used to cut lamellae paral- 

el to { 110 } planes from selected sites using standard FIB prepa- 

ation methods. Annular Dark Field Scanning Transmission Elec- 

ron Microscopy (ADF-STEM) imaging was carried out using a JEOL 

RM200F with double aberration correction at 200 kV. The beam 

onvergence semi-angle was 22 mrad, giving a probe size ~0.75 nm 

t a beam current of 100 pA and the ADF detector covered an an-

le from 45 to 180 mrad. Multiple frames were taken with a fast 

can (5 μs/pixel) to limit beam damage and distortions due to drift. 

. Results 

.1. Spectroscopy and low-resolution microscopy 

No single or aggregated forms of substitutional nitrogen were 

ound in FTIR spectroscopy, confirming the type IIa nature of 

he diamond ([N] < 1 ppm). Photoluminescence (PL) spectroscopy 

 Fig. 4 a) showed broad “band-A” luminescence centred at ~430 nm, 

nown to be associated with dislocations and grain boundaries; 

36-38] while the higher sensitivity of PL, compared to FTIR spec- 

roscopy, also detected very small amounts of nitrogen-vacancy 

omplexes H3 (N-V-N) and N3 (3N-V). A similarly small peak cor- 

esponding to the neutral vacancy centre, commonly referred to as 

he GR1 centre, was also detected. 

Examination of the stone using optical microscopy, EBSD, and 

L gave clear evidence of significant plastic deformation. Fig. 4 b 

hows an optical image and Fig. 4 c an EBSD map of crystal ori-

ntation on one of the { 001 } faces. Undulating strands of material 

ith a similar orientation (misorientation < 2 °), each several hun- 

red microns wide, run across the whole of the face at an angle of 

5 °±10 °, which is consistent with the intersection of a { 111 } glide 

ystem with the polished crystal surface. These features are simi- 

ar to slip bands seen in heavily deformed fcc metals [27] . Strong 

and-A luminescence was observed by CL, and panchromatic im- 

ges of the surface reveal a microstructure of sub-grain bound- 

ries forming a cellular granular network over tens of microme- 
497 
res ( Fig. 4 d), with a much lower density of dislocations (~ 1 × 10 8 

m 

−2 ) between them ( Fig. 4 e). Sub-grain boundaries are often lo- 

ated at the edges of misorientation bands (see supplementary in- 

ormation Fig. S1). Band-A luminescence is strongest adjacent to 

ub-grain boundaries and decays over several microns, while ma- 

erial between has a specked appearance. The sub-grain boundaries 

hemselves and individual dislocations appear dark, as expected for 

on-radiative recombination centres. 

Cross section TEM lamellae taken parallel to { 110 } show the 

ub-grain boundaries to be inclined to the crystal surface, roughly 

n { 111 } planes ( Fig. 4 f, g). These sub-grain boundaries take the 

ole of forest dislocations, through which cut long, straight indi- 

idual dislocations and dipoles with < 110 > line directions that are 

he result of subsequent plastic deformation. Since the specimen 

s viewed in transmission, the atomic structure of line defects can 

nly be discerned if they lie along the electron beam direction. 

ost of the individual defects in Fig. 4 e lie along 〈 110 〉 directions

t 60 ° to the plane of the lamella and are thus inaccessible, but 

 small number had line directions perpendicular to the section. 

hese were examined using atomic resolution ADF-STEM, with the 

nexpected finding that all dislocations had absorbed interstitials, 

esulting in climb of a few atomic layers invisible to conventional 

iffraction contrast TEM. 

.2. Atomic resolution stem 

Fig. 5 a shows an ADF-STEM image of a typical 60 ° dislocation, 

iewed along a 〈 110 〉 direction. The Burgers vector component par- 

llel to the beam direction cannot be determined, but for definite- 

ess we assume that it has a component pointing into the image, 

.e. the Burgers vector is b = ½[ 01 ̄1 ] , with the line direction also

ointing into the image according to the FS/RH convention [29] . 

he dislocation is dissociated and the schematic ( Fig. 5 d) shows 

he intrinsic stacking fault in green, bounded at its lower end by a 

0 ° partial dislocation in red with b = ⅙ [ ̄1 2 ̄1 ] . The stacking fault

s 2.40 nm wide. At the upper end of the stacking fault one would 

xpect a 90 ° Shockley partial dislocation, with b = ⅙ [ 11 ̄2 ] . How-

ver, climb has occurred by the condensation of interstitial car- 

on atoms, moving the partial dislocation out of the glide plane 

owards the top right of the image by approx. six lattice trans- 

ations, highlighted in dark blue in Fig. 5 d. (Note that climb by 

bsorption of vacancies would produce movement in the opposite 

irection, towards the bottom left. This was never observed.) This 

istinctive structure, i.e. a dissociated core and climb of only the 

0 ° partial, was observed for all dislocations imaged. On close in- 

pection of the climbed region in Fig. 5 a it is apparent that the 

tom pairs (‘dumbbells’) cannot be distinguished in the climbed 

egion, with rather blurred and indistinct atom columns, indicat- 

ng that the structure varies along the electron beam path through 

he thin lamella. A measurement of the lattice displacement across 

he stacking fault is difficult because it is only a few atoms wide, 

nd the material is distorted by the strain field of the dislocations. 

n estimate may be obtained using Fourier filtering to extract the 

 11 ̄1 ) fringes ( Fig. 5 b), from which an intensity profile is taken 

long the line A-B ( Fig. 5 c). The lattice displacement can be ob- 

ained by comparing the actual profile (dark blue) with fringes ex- 

rapolated across the fault (light blue). The displacement in Fig. 5 is 

nly 0.33 of a complete ( 11 ̄1 ) plane spacing, consistent with the 

ppearance of only single atoms rather than dumbbells in the 

limbed region. The component of the fault vector in the plane of 

he image is therefore 1 / 9 [ 11 ̄1 ] . A second example is given in sup-

lementary Fig. S2, with a displacement of 0.38 of a plane spacing. 

Dislocation dipoles were also observed. These were all faulted 

acancy Z-type dipoles and all showed climb of their 90 ° par- 

ials. Fig. 6 shows three examples. Each dipole consists of two 90 °
hockley partial dislocations (partials 1 and 4, Fig. 6 d), two ⅙ 〈 110 〉
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Fig. 4. Spectroscopy and microstructure of the untreated stone used in this study. a) PL spectra at 83 K showing band-A luminescence as well as H3, N3 and GR1 centres. b) 

Reflection optical image of the (001) surface showing the brown coloration in bands (edges of the image are parallel to { 100 } ). c) EBSD orientation map of the same surface 

showing a banded structure. d) Room temperature panchromatic CL at 5 kV incident electron beam energy showing bright luminescence around sub-grain boundaries and 

patchy luminescence between; e) Panchromatic CL image ( −168 °C) between the sub-grain boundaries showing dark spots corresponding to individual dislocations; f) Cross 

section TEM image of a sub-grain boundary and straight dislocations. Surface of the sample is towards the top of the image. g) The same boundary seen at an angle showing 

the high density of dislocations. 

s

s  

5  

p

s

o

p

a

i

b

a

m

l

u

t

t

C

d

t

l

p

a

s

o

1

3

l

w

D

t

i

b

w

t

t

r

tair-rod dislocations (partials 2 and 3, Fig. 6 d) and three intrinsic 

tacking faults [ 16 , 21 , 28 , 39-43 ]. The 90 ° climbed lengths vary from

 to 9 lattice spacings. For the dipoles in Figs. 6 a and 6 b the dis-

lacement across the faults is about 0.4 of a { 111 } plane spacing, 

imilar to that of individual dislocations. Interestingly, the amount 

f climb on both partials in a given dipole is the same, which im- 

lies that it is determined by the local interstitial concentration on 

 length scale much larger than the dipole height. For the dipole 

n Fig. 6 c, with a greater amount of climb, complete dumbbells can 

e seen in the climbed section and the displacement is measured 

t 1.1 times a ( 11 ̄1 ) plane spacing. (The displacement of slightly 

ore than a complete plane spacing is due to the effect of the dis- 

ocation strain fields.) There also appears to be some climb of the 

pper stair-rod dislocation, with a slightly increased thickness of 

he intrinsic stacking fault. 

An estimate of the concentration of interstitials absorbed onto 

he partials can be given by 

 int = Rρn (5) 

Where R is the number of atoms required per unit length of 

islocation line for the climb of one glide plane, ρ is the disloca- 
498 
ion line density and n is the number of glide planes climbed. Dis- 

ocation climb in which just one interstitial atom is accommodated 

er periodic unit along the dislocation core requires R ~ 4 × 10 7 

toms cm 

−1 of dislocation length. In this stone the dislocation den- 

ity is ~10 9 cm 

−2 and climb of between five and twenty atoms has 

ccurred, giving an absorbed interstitial concentration of 10 17 to 

0 19 cm 

−3 . 

.3. Determination of the stacking fault energy 

Atomic resolution ac-STEM images of the faulted dipoles al- 

owed measurements of dissociation widths and dipole heights 

ith much higher precision than is possible using conventional 

FWB TEM images. The measured height and widths can be used 

o calculate stacking fault energy (SFE) by the equations described 

n SI3, assuming that an equilibrium configuration was attained 

efore climb occurred. The equilibrium configuration is obtained 

hen the mutually repulsive forces between the partial disloca- 

ions is balanced against the extension of the stacking fault, within 

he framework of anisotropic elasticity [16] (see SI3). The equilib- 

ium configurations of the Z-type faulted dipole for different SFEs 
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Fig. 5. a) ADF-STEM image of a dissociated ½[ 01 ̄1 ] : ( 111 ) dislocation in an untreated brown diamond, in the vicinity of the low angle grain boundary shown in Fig. 3 d, with 

a 90 ° partial that has climbed by addition of interstitial atoms over several lattice planes (scale bar 1 nm); b) Fourier filtered image showing the ( 11 ̄1 ) planes (inset shows 

FFT and circular masks used); c) intensity plot along A-B (dark blue) and extrapolated period (light blue) showing that there is a shift of one third of the lattice period 

across the climbed fault; d) schematic of the defect highlighting the 30 ° partial dislocation with Burgers vector ⅙ [ ̄1 2 ̄1 ] (red) bounding an intrinsic stacking fault (green) and 

climbed 90 ° Shockley partial (dark blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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as been plotted in Fig. 7 , showing the separation between the 

0 ° Shockley partial and the stair-rod dislocation as a function of 

ipole height, along with the measured values for the dipoles seen 

n Fig. 6 . We obtain a SFE of 472 ± 38 mJ m 

− 2 . 

. Discussion 

The dislocation microstructure gives clear evidence that a high 

oncentration of interstitials was produced at some point in the 

ife of the Type IIa diamond studied here. Before discussing the 

esults in detail, it is worth establishing that plastic deformation 

s the only mechanism that could be responsible. There are three 

lternative mechanisms. First, quenching to produce high point de- 

ect concentrations has been used in the past to produce sim- 

lar climbed microstructures in Si, Ga and GaAs [ 45 , 46 ]. How-

ver, to achieve interstitial and vacancy concentrations > 10 17 cm 

−3 

equires quenching from extremely high temperatures, Fig. 1 , > 

0 0 0 °C for vacancies and > 60 0 0 °C for interstitials. There is no

redible terrestrial mechanism that would provide a rapid quench 

rom these temperatures. 

A second method to create large point defect densities, often 

sed in experimental studies, is through irradiation to produce 

renkel pairs [ 12 , 47 ]. In diamond this results in the presence of

he GR1 (neutral vacancy centre) spectral feature and green col- 
499 
ration, [48] which can be turned into brown colouration by an- 

ealing. Natural irradiation of diamond in the mantle by alpha- 

ecay radiogenic elements ( 232 Th, 235 U, 238 U) produces green col- 

ration at the surface due to the small penetration depth of alpha 

articles [ 4 8 , 4 9 ]. In our study the stones were cut and polished

nto { 100 } facetted cubes removing any surface material that could 

ave been irradiated. The main beta-decay element in the Earth’s 

rust is 40 K, which can produce Frenkel pairs in a diamond’s inte- 

ior, but is very scarce in the Earth’s mantle. The small GR1 peak 

hown in Fig. 4 a is thus probably a result of examination by SEM 

nd FIB prior to PL. While the accelerating voltage used for TEM 

nd STEM (200 kV) is close to the damage threshold for [110] dia- 

ond (~220 kV), [50] no sample annealing was carried out at any 

oint that would allow point defect migration [51] to the disloca- 

ions. Thus, neither natural radiation, nor the experimental meth- 

ds used, could produce these structures. 

Thirdly, aggregation of nitrogen in diamond can produce high 

upersaturations of interstitials during the formation of the B- 

entre, which consists of four nitrogen atoms surrounding a va- 

ancy. The vacancy is produced by expulsion of a carbon atom 

nce the four N atoms aggregate (typically at temperatures above 

00 °C). Nitrogen concentrations of a few thousand ppm can be 

ound in type I diamonds, [52] producing over 10 20 cm 

−3 inter- 
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Fig. 6. (a), (b), (c) ADF-STEM images of faulted dislocation dipoles in an untreated brown diamond that have undergone climb through addition of interstitial atoms. (scale 

bars 1 nm) (d) Schematic of faulted dipole, 1) b = ⅙ [ ̄1 ̄1 2 ] , 2) b = ⅙ [ ̄1 ̄1 0 ] , 3) b = ⅙ [ 110 ] , 4) b = ⅙ [ 11 ̄2 ] . Dislocations 1 and 4 are 90 ° partials. Dislocations 2 and 3 are 

stair rod partial dislocations. (e) 3D schematic showing interstitials condensed on the 90 ° partial dislocations of the faulted dipole. Stair-rod and 90 ° partial dislocations are 

highlighted in blue.(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Equilibrium Shockley partial separation vs dipole height for different values 

of stacking fault energy. Points mark the Shockley partial separation and heights 

of the dipoles in Fig. 6 . Error bars represent a change in separation of 1 lattice 

spacing. Uncertainties in elastic constants are negligible (from [44] , ~0.02% in c 11 , 

c 12 and c 44 ). 
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titials, with the interstitials then condensing into the well-known 

latelets on { 100 } planes [53] (and from the evidence presented 

ere, we might also expect them to produce dislocation climb). 

latelets are almost exclusively seen in diamond containing aggre- 

ated forms of nitrogen [52] . The type IIa diamond examined here 

ontains no B -centres and very low concentrations ( < 1 ppm) of 

3 and N3 nitrogen-vacancy complexes. Nitrogen aggregation can- 

ot be the source of the interstitial concentration we observe. 
500 
We therefore estimate that 10 17 to 10 19 cm 

−3 interstitial atoms 

ere generated by plastic deformation in the stone examined here. 

revious PAS studies of similar brown type IIa diamonds gave va- 

ancy concentrations of approx. 10 18 cm 

−3 [ 1 , 5 , 8 , 12 , 54 ]. This close

atch strongly suggests that equal numbers of vacancies and inter- 

titials are generated by plastic deformation, although their fates, 

nce produced, are rather different. 

Dislocation climb due to absorption of interstitial atoms has 

een observed previously in materials with diamond and zinc- 

lende structure, but not in diamond itself. The climbed 90 ° Shock- 

ey partial in Fig. 5 a appears identical to those observed in silicon 

y Thibault-Desseaux et al. (TD) [45] , who used high-resolution 

EM to examine climb of many such dislocations in silicon de- 

ormed at high temperatures and cooled under load. Point defects 

n silicon, under the conditions used by TD, have an equilibrium 

oncentration close to zero due to relatively high formation en- 

rgies, [55] and are highly mobile (migration enthalpies of E m 

v < 

.5 eV [56] and E m 

i 
≈ 1.8 eV [57] ). This is essentially the same 

eformation regime as diamond experiences in the mantle and it 

s pleasing to see similar microstructures in both materials. They 

nterpreted their observations as the nucleation of a prismatic ½
011] loop on the 90 ° ⅙ [ 11 ̄2 ] partial on an inclined { 111 } plane,

s shown schematically in Fig. 8 a, where Burgers vectors are given 

n Thomson tetrahedron notation [ 45 , 58 , 59 ]. Due to lack of reso-

ution at the time they were unable to confirm the details of this 

odel. In our higher resolution ADF-STEM images, a prismatic loop 

ike that shown in Fig. 8 a should appear as a full bilayer of addi-

ional atoms (a complete extra ( 11 ̄1 ) plane) in the climbed fault. 

owever, for most defects we do not observe a complete bilayer 

only single atoms can be seen in the additional layer and the 

isplacement across the fault is about 40% of a complete plane. 

nly in one case ( Fig. 5 c) do we observe a complete bilayer and

 displacement of a complete plane. One interpretation of these 
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Fig. 8. (a) Dislocation climb by growth of a prismatic dislocation loop on the 90 °partial dislocation, after [45] . Burgers vectors, given in Thomson tetrahedron notation, all 

lie in the grey (111) plane and are A δ = ⅙ [ 11 ̄2 ] , δB = ⅙ [ ̄1 2 ̄1 ] , C δ = ⅙ [ ̄2 11 ] and AC = ½[ 10 ̄1 ] , i.e. consistent with the indexing of Fig. 5 . (b) Schematic showing a varying 

width of the climbed region along the defect, with undulations on the scale of a few nm in a TEM specimen tens of nm in thickness. Large black arrows show the direction 

of the electron beam, coresponding to Figs. 5 and 6 . 
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esults is that the additional layer in most cases is only one atom 

hick (bearing some resemblance to the formation of interstitial 

100) platelets in diamond, which also have only a single addi- 

ional plane [60] ). Certainly atom columns in the climbed fault 

re not clearly resolved and the ADF-STEM intensity at the fault 

s lower than adjacent atom columns, which may indicate only 

artial occupancy. However, this raises the question of what the 

tomic structure of a monolayer interstitial fault might be, with- 

ut an obvious answer. A second interpretation is that the extent 

f climb varies along the dislocation as shown schematically in 

ig. 8 b. In this case, atom columns would appear blurred and the 

bserved displacement would be some average through the projec- 

ion of the structure along the electron beam. This is also consis- 

ent with the varying displacements that we observe. The varying 

xtent of climb on the defects examined here probably indicates 

patial variations in the number of jogs emitting point defects, e.g. 

ue to the difference in density of forest dislocations. 

As well as the study of silicon by TD, [45] similar defect mi- 

rostructures have also been reported in GaAs in the presence of 

oint defect supersaturations [ 28 , 61 , 62 ]. In all cases climb occurs

y absorption of interstitials on 90 ° partials both in dissociated dis- 

ocations and Z-dipoles. Vacancies seem to play little or no part 

n dislocation climb in these materials, even when plastic defor- 

ation produces roughly similar concentrations of vacancies and 

nterstitials. Preferential absorption of interstitials at dislocations 

as been known for some time (the “dislocation bias” [63] ), ini- 

ially invoked to explain the swelling of irradiated material; vacan- 

ies cluster to produce voids, while interstitials are reincorporated 

n the material at dislocations. Swelling of ion implanted mate- 

ial [64] shows that this mechanism also occurs in diamond. These 

bservations support the idea that, in all materials, vacancies do 

ot become attached to dislocations and instead form clusters. Di- 

mond is perhaps unique only in that the brown coloration that 

esults is visible to the naked eye. 

Before discussing our measurement of stacking fault energy, we 

ote that point defect supersaturations induced by plastic defor- 

ation have been studied most in ductile fcc metals such as cop- 

er and aluminium, [ 19 , 65-73 ] and some quite recent studies have

roposed that there is a large imbalance in point defect concen- 

rations, with essentially no interstitials produced by plastic de- 

ormation [ 27 , 69 ]. This assertion is based on the lack of a signa-

ure for interstitials in materials deformed at very low tempera- 
501 
ures, in which point defect migration should be frozen out (e.g. 

n Cu, E m 

i 
≈ 0.1 eV [66] while E m 

v ≈ 0.7 eV [70] and vacancy mi- 

ration occurs at approximately −30 °C). The increase in defect 

ensity due to deformation can be detected as an increased elec- 

rical resistivity. On heating to room temperature, two signatures 

f point defect condensation should thus be observed in measure- 

ents of resistivity as first interstitials, and then vacancies, become 

obile. However, only the higher temperature signal from vacan- 

ies is seen [74] . Conversely, irradiation at low temperature pro- 

uces both signatures upon heating [ 71 , 72 ]. This puzzling result 

as been confirmed by a battery of other techniques including PAS 

73] and Mossbauer spectroscopy [19] (see e.g. reviews [ 23 , 27 ]). 

urthermore, TEM studies consistently show a dominance of va- 

ancy dislocation dipoles in deformed material [26] . While we also 

nd a predominance of vacancy dipoles, the evidence here for pro- 

uction of interstitials in deformed diamond is undisputable and it 

eems most probable that interstitials remain undetected in low- 

emperature deformed metals due to very low activation energies 

nd pipe diffusion that enables them to be captured on disloca- 

ions. Certainly, molecular dynamics simulations of plastic defor- 

ation in alloys [75] and metals [76] suggests that chains of inter- 

titials are indeed produced by forest interactions and, at temper- 

tures where interstitials are mobile, these chains break up form- 

ng interstitial clusters or small, highly mobile, prismatic disloca- 

ion loops [76] . 

Faulted dipoles are often observed in plastically deformed fcc 

aterials and have been reported in metals (Cu, Ag, Ni, Au) 

 21 , 39 , 40 , 42 , 43 , 77 ] and semiconductors both with diamond (Si, Ge)

78-82] and zinc-blende structure (GaAs) [ 28 , 61 , 62 ] so it is not sur-

rising to see them in diamond. In principle, faulted dipoles can 

ccur in two distinct configurations, Z- shape or S- shape, and be 

ither vacancy or interstitial type. In practice however, all obser- 

ations of faulted dipoles in fcc materials are vacancy type with 

-shape [ 27 , 79 ] and in copper conversion of unfaulted dipoles to 

aulted ones has been observed in-situ [21] . The absence of inter- 

titial dipoles, which are needed to produce interstitial atoms by 

he mechanism described in Section 1.1 , has been considered by 

rown and Nabarro [ 83 , 84 ]. They showed that interstitial disloca- 

ion dipoles have a higher energy than vacancy dipoles [85] and 

roposed mechanisms for one to convert to the other. The ratio of 

acancy to interstitial dipoles observed may not, therefore, corre- 

pond to the ratio of point defect concentrations. 
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Since the equilibrium inter-dislocation spacing varies with the 

ipole height H ( Fig. 6 d), they have often been used to calculate

tacking fault energy [16] . Here, all points in Fig. 7 lie on a sin-

le SFE curve, suggesting an equilibrium configuration and that the 

aulted dipole formed before climb occurred. Our measured SFE 

f 472 ± 38 mJ m 

−2 is significantly larger than the 279 ± 41 mJ 

 

−2 determined by Pirouz et al. [18] . from dissociated 60 ° dislo- 

ations, but similar to their upper limit of 465 mJ m 

−2 determined 

rom faulted dipoles. Since we can simply count the atom spacings, 

e believe our value to be more reliable. Above a certain height, 

nfaulted dipoles have a lower energy and the smallest unfaulted 

ipole separation documented in diamond is 7.4 nm ± 0.8 nm [86] . 

he largest H we observe for a faulted dipole is 4.73 nm (23 lattice 

lanes), suggesting the transition between unfaulted and faulted 

onfigurations occurs between these two values. Dipoles smaller 

han a critical height H c are unstable and should collapse to re- 

ease point defects; Fig. 6 a shows that H c < 2.47 nm (12 glide

lanes). 

Overall, our observations of dislocations in brown diamond 

re consistent with the general understanding of point defect be- 

aviour in other materials with diamond or related structure, 

nd fcc materials in general. Interstitials condense on dislocations, 

hile vacancies form clusters. Some outstanding questions remain, 

or example why only 90 ° partials experience climb, and not 30 °
artials. It would seem that the incorporation of interstitials at the 

ore of a 90 ° partial dislocation is particularly easy in the diamond 

tructure and since point defects are produced from jogs it may 

e that pipe diffusion of interstitials along the dislocation line also 

lays a role. Also, it is not known if these same climbed struc- 

ures occur more generally in fcc materials; they are perhaps more 

table, and therefore have been more readily observed, in materi- 

ls with diamond structure due to the low mobility of dislocations 

t room temperature. Finally, the effect of condensed interstitials 

ust play a significant role in work hardening. It has long been 

ppreciated that dislocation dipoles play a central role in this re- 

pect, [23] but the detailed mechanism whereby point defects pin 

islocations remains to be elucidated. 

. Conclusions 

The microstructure of a natural type IIa brown diamond has 

een examined using different forms of electron microscopy. EBSD, 

L, and conventional TEM show clear evidence of plastic deforma- 

ion, while aberration-corrected ADF-STEM reveals that dissociated 

islocations and faulted vacancy dipoles have accreted a signifi- 

ant number of interstitial atoms, resulting in climb of 90 ° partial 

islocations. An interstitial concentration of 10 17 to 10 19 cm 

−3 is 

equired to produce the observed microstructure, and calculations 

how that this could easily be produced by a plastic deformation 

f ~1% in a diamond that contains pre-existing ‘forest’ dislocations 

ith a density of 10 7 to 10 9 cm 

−2 . Vacancy clusters are not ob-

erved in this study, but vacancy concentrations measured in simi- 

ar type IIa brown diamonds by PAS (10 18 cm 

−3 ) demonstrates that 

oughly equal concentrations of vacancies and interstitials are pro- 

uced by plastic deformation. 

The observations share common features with previous studies 

f fcc materials. Interstitials condense on dislocations, while vacan- 

ies form clusters. All faulted dipoles were Z-shaped and vacancy 

ype, and the climbed structures appear similar to those seen pre- 

iously in silicon and GaAs. Climbed regions in many cases ap- 

eared to be less than a complete monolayer in thickness, which 

ay indicate partial occupancy or a variable extent of the climbed 

egion along the defect at the nm scale. The faulted dipoles provide 

 means to measure stacking fault energy, found to be 472 ± 38 mJ 

 

−2 . 
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