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A Curvature-Enhanced Random Walker 
Segmentation Method for Detailed Capture

of 3D Cell Surface Membranes
Judith E. Lutton   , Sharon Collier, and Till Bretschneider

Abstract— High-resolution 3D microscopy is a fast
advancingfield and requires new techniques in image analy-
sis to handle these new datasets. In this work, we focus
on detailed 3D segmentation of Dictyostelium cells under-
going macropinocytosis captured on an iSPIM microscope.
We propose a novel random walker-based method with a
curvature-based enhancement term, with the aim of cap-
turing fine protrusions, such as filopodia and deep invagi-
nations, such as macropinocytotic cups, on the cell sur-
face. We tested our method on both real and synthetic
3D image volumes, demonstrating that the inclusion of the
curvature enhancement term can improve the segmentation
of the aforementioned features. We show that our method
performs better than other state of the art segmentation
methods in 3D images of Dictyostelium cells, and performs
competitively against CNN-based methods in two Cell Track-
ing Challenge datasets, demonstrating the ability to obtain
accurate segmentations without the requirement of large
training datasets. We also present an automated seeding
method for microscopy data, which, combined with the
curvature-enhanced random walker method, enables the
segmentation of large time series with minimal input from
the experimenter.

Index Terms— Automated 3D cell segmentation, light
sheet microscopy, macropinocytosis, random walker seg-
mentation.

I. INTRODUCTION

RECENT advances in 3D microscopy have enabled the
detailed capture of large time series of cells, posing

challenges of accurately segmenting them in high resolution.
In this work we focus on the segmentation of Dictyostelium
cells showing complex cell deformations during vesicular
uptake of nutrients from extracellular fluid, a process called
macropinocytosis. Macropinocytosis is an important compo-
nent of cancer cell feeding [1] and antigen processing of
macrophages [2]. It involves the formation of highly concave
invaginations of the cell membrane, macropinocytotic cups,
that are subsequently shaped into vesicles. Filopodia, fine
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protrusions of the cell membrane with highly convex tips, have
recently been assigned a role in macrophage macropinocytosis,
too [3]. In order to better understand the role of both of these
structures in macropinocytosis, accurate segmentations are
required [4], [5], which is difficult due to their high curvature.
The cells examined expressed LifeAct-GFP, a commonly used
fluorescent F-actin marker present in both structures.

Fast 3D light sheet imaging has recently become the method
of choice to capture the fast dynamics of macropinocytotic
cups and filopodia [3], [6]. Deconvolution of the 3D light sheet
data is employed to sharpen images, but theoretically optimum
deblurring is hardly ever achieved in practice. Remaining blur
specifically compromises highly curved structures, causing
protrusions to be truncated or lost during segmentation, while
invaginations tend to lose depth. We extend the random walker
segmentation, a standard method for segmenting objects in
2- and 3-dimensional images [7], [8], by incorporating a
curvature enhancement term to recover these structures. Addi-
tionally, we present a method for automated seed selection
for the random walker, which utilizes the fluorescence pattern
of the F-Actin marker. These methods were tested on both
real and synthetic image volumes, showing that the addition
of curvature enhancement to the random walker method can
provide a marked improvement in the segmentation of detailed
structures such as those mentioned above. We compared our
method with five state of the art segmentation methods: the
random walker [7], a pretrained convolutional neural net-
work [9], the random forest pixel classifier [10], the power
watershed [11], and band pass segmentation [12], and show
that our method outperforms all five in real cell images.
Additionally, our methods were externally evaluated by the
Cell Tracking Challenge (www.celltrackingchallenge.net) [12],
[13], demonstrating that our method performs competitively
against deep learning-based techniques.

II. RELATED WORK

One of the simplest approaches to image segmentation
is to apply a threshold to the image, either by using a
globally [14], or locally [15] defined threshold. Unfortunately,
fluorescent markers in cells do not tend to produce uniformly
high fluorescence throughout the cell, and many only provide
partial coverage for the cell membrane, including F-actin
markers, which are studied here. This means that simple
thresholding is generally insufficient. An option for improving
the result of thresholding is to use pre- and post-processing
steps. One promising method of this kind applies intensity
clipping and a band pass filter prior to thresholding, and
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then applies a morphological fill operator to the thresholded
image [12].

Segmentation methods using machine learning and in
particular convolutional neural networks have recently gained
popularity [16]–[18]. One issue with implementing these meth-
ods is that they rely on a large set of manually annotated
training data, which is generally impractical to obtain for 3D
images. One method employed to overcome this limitation is
to use established segmentation methods to generate the train-
ing annotations [19]. This still requires manual verification
by the user, however, and is still dependent on the original
segmentation method. Another method is to utilize synthetic
data to increase the amount of training data [9]. While some
data can be generated synthetically through model-based [20],
[21] or deep learning-based [22], [23] methods, there is
insufficient data of this type available for the cells analyzed
here. Machine learning methods that employ pixel classifiers,
such as the random forest pixel classifier [10] are more suitable
for our data, since they can be trained on a single partially
annotated image stack.

A popular method for segmenting whole cells that is related
to the random walker is the use of active meshes [24]–[26],
which may also be computed implicitly as level sets [27].
This method aims to find the surface that optimizes an energy
function dependent on image intensity inside and outside of
the surface, and on the geometry of the surface, and is related
to the random walker as this energy minimization can be
formulated in terms of the graph cuts method mentioned
below [28].

The random walker is a commonly-used method of super-
vised image segmentation [7], [8]. This method is part of
a broader family [11], [29] of graph-based segmentation
methods, which includes graph cuts [30] and watersheds [31].
These methods model the image as a graph G = (V , E) where
the vertices V = {vi } corresponding to image voxels (or pixels
for 2D images) and edges E = {ei j } corresponding to the
adjacency relationship of the voxels, with ei j representing the
edge between vi and v j . The main idea is to take an input set
of voxels marked as foreground and background, referred to
as seeds, and expand these sets based on the weighted graph
to classify all voxels as either foreground or background. For
a given edge weighting W = {wi j }, the aim of a graph-based
segmentation is to find a function x on G that minimizes an
energy term of the form [11]∑

ei j ∈E

w
p
i j |xi − x j |q , (1)

where xi = x(vi ), xi = 1 at foreground seeds, and xi = 0 at
background seeds. The segmented foreground is given by
points with x > 0.5. The choice of q and p determine which
segmentation method is being used: q = p = 1 corresponds
to graph cuts [29]; q = p = 2 corresponds to the random
walker [29]; q = p → ∞ corresponds to shortest paths [29];
q = 1, p → ∞ corresponds to the watershed [11], [32];
and q > 1, p → ∞ corresponds to the recently-developed
power watershed [11]. Extensions to these methods include
adding prior information to the energy function [8], [33], the
addition of auxiliary nodes [34], [35], and modification of the

edge weighting wi j [36], [37], which is typically based on
image gradients.

Curvature was used previously by M’hiri et al. [36] in
the weighting of the random walker in order to enhance
segmentation of blood vessels in 3D images. This method was
facilitated by using a measure of “vesselness” [38] in the input
image volume to inform the weighting of the system. This
method is not readily applicable to segmenting individual cells,
since the structures of interest do not necessarily conform to
an easily-defined shape. Another use of curvature in vessel
segmentation is in a regularization term for the fast march-
ing segmentation algorithm [39], with the aim of avoiding
high-curvature surfaces.

Our methods utilize a model of the random walker based
on the discretisation of a non-linear diffusion system [7], [40].
This model allows the addition of a mean curvature term to the
model equation. Applications of mean curvature flow in image
analysis include image enhancement [41], [42] and active
contour-based segmentation methods [43]–[45]. An example
that is closely related to the present work is a method of
image enhancement proposed by Malladi and Sethian [42],
which uses a function of curvature that takes on positive or
negative values of curvature depending on the local image
properties. This function is similar in construction to the
curvature term in Eq. 7 below. Related to mean curvature flow
is Willmore flow [46], which has also been used in level set
segmentation methods [47]. In 2D systems the Willmore flow
is equivalent to minimization of Euler’s elastica energy [48],
which has previously been employed in the weighting of graph
cut segmentation [49], [50]. These curvature-based segmen-
tation methods use curvature to stabilize the boundaries of
segmentation, which is the reverse of the effect produced by
the methods presented here; we employ a term that effectively
reverses the flow of curvature to improve the segmentation of
protrusions and invaginations.

The random walker is highly dependent on the initial
seeding [49]. Previous implementations of the random walker
algorithm have used manual [7], semi-automated [8], and
fully-automated seed selection [51]. Here we present an
automated method of seed selection based on Phansalkar
thresholding [15].

III. MATERIALS AND METHODS

A. The Curvature-Enhanced Random Walker Method

Random walker segmentation can be modeled as the steady
state of a discretisation of the non-linear diffusion system [7],
[40]:

∂v

∂ t
= ∇(W∇v), (2)

with ∂v/∂n = 0 at the volume boundary with normal n, and
subject to the constraints

v(x, t) = 1 if x ∈ FG, (3)

v(x, t) = 0 if x ∈ BG, (4)

where FG and BG are the sets of foreground and background
seed voxels, respectively, and W is the diffusion weighting
function, defined discretely between two voxels x and y, as

W (x, y) = exp(−β‖I (x)− I (y)‖2−α(‖x −y‖2−1)), (5)
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Fig. 1. Flow chart outlining the major steps in the segmentation algorithm. Dictyostelium cells expressing LifeAct-GFP were imaged on an iSPIM
microscope, as described in Section III-D.3. 3D image pseudocoloured by intensity (blue represents low intensity, green represents high). Automatic
seed selection for foreground (red) and background (blue) is based on Phansalkar thresholding [15], as described in Section III-B. The random walker
method is implemented by simulating diffusion until equilibrium was reached, using the automatically selected seeds and image gradient-based
weighting, as described in section III-A. Diffusion with an additional curvature term is subsequently simulated, with the same inputs as before,
using the equilibrium values of the previous simulation as initial conditions, as described in Section III-A. Contour lines show the location of the 0.5
isosurface, which corresponds to the segmentation boundary. The curvature term is dependent on the diffusion system, and is periodically updated
and fed back into the diffusion system. The curvature term is constructed to be strongest close to the segmentation boundary, and restricted to
negative values outside this boundary and positive values inside. Scale bars represent 5 μm.

where ‖.‖ is the Euclidean norm, I (x) and I (y) are the input
image intensities at x and y respectively, and β and α are
parameters to be fixed. We set α = β/2552 in accordance with
previous work by Du et al. [8], with the scale factor of 1/2552

accounting for scaling from 8-bit image stacks used by
Du et al. [8] to the range [0, 1], which is used here. Preliminary
testing showed that a wide range of values for α could be used
with similar results. Weights are computed for 18-connected
neighborhoods. The discretised form of Eq. 2 for the point x is
(v(x, t + �t) − v(x, t))/�t

=
∑

y∈N(x)

W (x, y)(v(y, t) − v(x, t)), (6)

where N(x) is the 18-connected neighborhood of x , and time
step �t < max(W )/18 to satisfy the Courant-Friedrichs-
Lewy (CFL) condition for numerical stability [52]. The
equilibrium values of v are computed using the forward Euler
method, with the segmented foreground (in the absence of
curvature enhancement) given by voxels with v > 0.5 [40].

The curvature-enhanced random walker is defined by the
system

∂v

∂ t
= ∇(W∇v) + κ H̃(v)v(1 − v), (7)

subject to constraints 3 and 4, where κ is a fixed parameter, W
is as defined in Eq. 5, and

H̃(v) =
{

H (v) if H (v)(v − 0.5) > 0

0 otherwise
(8)

where

H (v) = −∇ · ∇v

‖∇v‖ (9)

is the mean curvature. The time step is taken to be the same as
in the random walker, since, for the values of κ studied here,

the numerical error introduced by the curvature term is an
order of magnitude smaller than that produced by the diffusive
term, and therefore stability holds given a time step sufficiently
below the maximum required to satisfy the CFL condition
for diffusion. This assumption was tested by comparing the
results with those generated using smaller time steps, which
yielded the same result, as expected. As with the standard
random walker, equilibrium values of v are calculated and the
segmented foreground is given by voxels with v > 0.5.

The gradients in Eq. 9 are approximated in each direction
using an extension of the 3D Sobel filter, which is given
in the x-direction as a smoothing in y and z by applying
the 1D filter (1, 4, 6, 4, 1)/16 in both y- and z-directions,
Followed by a differencing filter in x with radius 3, given by
(−1, 0, 0, 0, 0, 0, 1)/6. The formulation for y- and z-directions
are defined similarly. The expanded smoothing radius is
required because the divergence of the normal directions is
highly sensitive to noise. The differences are taken at a
distance of 3 voxels to reduce sensitivity to small fluctuations
in the shape of the isosurface. Note that this definition assumes
isotropic resolution in all directions, which may not be the case
for microscopy image stacks. See Section III-D for details on
the handling of anisotropy in each of the datasets studied. The
number of operations involved in this computation are much
higher than for the finite differences in the random walker, and
therefore increase computation time. In our implementation
we were able to improve the speed by only computing the
curvature every 10 time steps, which had a negligible impact
on the resulting segmentation.

The curvature-enhanced random walker segmentation is
implemented on a GPU as follows. Initially, the equi-
librium values v1 of the standard random walker system
are computed, with initial conditions v(x, 0) = 0.5 for
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Fig. 2. Automated seed selection. A: A slice through a volume to
be segmented. White box indicates the position of D–F. B: The result
of applying the Phansalkar threshold (red channel). C: Automatically
selected background (blue) and foreground (red) seeds. White box
indicates the position of F. Foreground seeds are obtained from the
thresholded points according to D–F. D: Gradients, subsampled for ease
of visualization. Gradient magnitude is used to identify local maxima.
E: Normalized maximal gradient directions, used to compare gradient
magnitudes. F: Foreground seeds resulting from comparing gradient
magnitudes (D) along the locally maximal gradient direction (E). Scale
bars represent 2 μm.

all x not in either of the seed sets. The equilibrium val-
ues v2 of the curvature-enhanced diffusion system are sub-
sequently computed with initial conditions v(x, 0) = v1.
The segmented object is given by the set of voxels with
v2 > 0.5. Note that, for large values of κ , this system
becomes unstable and equilibrium is not reached. In these
cases, simulations are terminated after a fixed number of
time steps. Source code for this method can be found at
https://pilip.lnx.warwick.ac.uk/TMI_2020/.

B. Seed Selection
Automated seed selection is performed on microscopy data

based on the Phansalkar threshold [15]. We outline the thresh-
olding method here, and a full description can be found in the
supplementary material. Note that, in the following, images
are assumed to have isotropic resolution. See Section III-D
for details on how anisotropic resolution is handled in each
dataset. The Phansalkar threshold assigns a threshold value to
each voxel based on the mean and standard deviation of the
intensities in a local neighborhood. We adapt the Phansalkar
threshold parameter values to each image stack by estimating
the local mean and standard deviation for foreground and
background voxels. The aim of this adaptive method is to
minimize the threshold for foreground voxels, making them
more likely to be selected as foreground, and, conversely,
maximize the threshold for background voxels.

Background seeds are obtained by applying a spherical
dilation operator of radius rd

BG voxels to the binary volume
obtained by the Phansalkar thresholding, filling holes, applying
a spherical erosion operator of radius re

BG , and inverting the
resulting binary image volume. An example of the result of
this process is shown in Fig. 2C.

Two methods are used for selecting foreground seeds for
the data presented in Section III-D. The first is the same
method as for the background seed selection, without the final

inversion, with dilation and erosion radii being rd
FG and re

FG
respectively. In the second method, foreground seeds are
selected to represent maximal surfaces in the image volume.
Gradients are computed using a Sobel operator (Fig. 2D). Each
voxel is assigned the direction of the largest magnitude gra-
dient within a 26-connected neighborhood for the purposes of
comparison (Fig 2E). Magnitudes along the assigned direction
are linearly interpolated from the neighboring voxels, and a
voxel is labeled as a turning point if its gradient magnitude
is lower than these interpolated magnitudes. Turning points
with a negative Laplacian are labeled maximal. This set of
maximal points is restricted to points marked as foreground
by the Phansalkar thresholding algorithm. To further improve
the robustness of this algorithm, the maximal points are
grouped into (6-)connected components. The largest connected
component is labeled as foreground. Any other connected
components larger than one voxel with mean intensity greater
than the mean intensity of the largest connected component
are also labeled as foreground. An example of the result of
this process is shown in Fig. 2C. Parameter values for seed
selection in all datasets are available in the supplementary
material.

As a result of this seeding method, the edges of the image
volume tend to be populated with background seeds, meaning
that the volume to be segmented is generally smaller than
the input image volume. Accordingly, we automatically crop
all images to the smallest bounding cube with background
seeds populating the edge planes, in order to reduce processing
times.

C. Comparison With Other Segmentation Methods

We compared the performance of our method with that
of the random walker [7], a pretrained convolutional neural
network [9], the random forest pixel classifier [10], the power
watershed [11], and band pass segmentation [12].

The random walker (RW) can be thought of as a special case
of our method when κ = 0, and is automatically generated as
the first step of our segmentation algorithm (see Section III-A
and Fig. 1).

We compared our method to the pretrained neural network
published by Castilla et al. [9] (CNN). This network was
trained on real and synthetic images of cells with multiple
filopodia and therefore should be a close match for our data.
In particular, this network was trained, in part, using synthetic
datasets produced in the same manner as those from the Cell
Tracking Challenge [12], [13] described below.

The random forest pixel classifier (RF) was implemented
using the fast random forest method in the Trainable Weka
Segmentation 3D plugin [53] for Fiji [54]. Because this
classifier determines foreground and background voxels based
on local voxel data, the automated seeding developed for our
segmentation method was inappropriate to use for training due
to it selecting only local maxima as foreground. For this rea-
son, we used random sampling of the ground truth foreground
and background to train the classifier. We chose sampling
rates N of 50 and 500 training samples per slide for our
comparison; a rate of N = 50 samples per slide is comparable
to the number of automatically selected foreground seeds in
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Section III-B, while the higher rate of N = 500 was chosen to
represent a highly fitted classifier. Once trained, the classifier
was applied to the whole image stack to select foreground
and background voxels. Based on preliminary testing, voxels
were classified using the Gaussian, Hessian, and Laplacian
features [53].

The power watershed (PW) is given by the energy optimiza-
tion of Eq. 1 with finite q and p → ∞ [11]. In the following,
we use a value of q = 2 as used by Couprie et al. [11].
This method is also related to the random walker, in that it
represents the limiting case of β → ∞.

The band pass segmentation method (BP) uses two
pre-processing steps. The image stack I is initially clipped
by a maximal intensity Imax to yield Î = min(I, Imax). This
image is subsequently smoothed using 3D Gaussian filters of
standard deviation σB and σS , to give two smoothed images IB

and IS . For image volumes with anisotropic resolution, σB

and σS are scaled down in z by the ratio of the slice spacing to
planar resolution. These images are combined to give the band
pass image IB P = IS − α IB for some scaling parameter α.
Finally, a threshold τ is applied to IB P , followed by a mor-
phological fill operator to obtain the final segmentation. The
parameters Imax, σB , σS , α, and τ were optimized using the
coordinate ascent method for each dataset as described in
the original formulation [12]. Parameter values for the band
pass segmentation of the synthetic shape and real microscopy
data are given in the supplementary materials.

D. Data Acquisition and Pre-Processing

1) Synthetic Test Image: We constructed a synthetic test
image to evaluate segmentation of protrusions and invagi-
nations. Full details of how the image was generated can
be found in the supplementary material. Briefly, a shape
was generated with multiple protrusions and invaginations
of varying widths (Fig. 4, Supplementary Fig. 2A). The
corresponding binary image volume was blurred and Poisson
noise was added to create a boundary texture similar to that
of real cells (Supplementary Fig. 2C). The plane z = 0 was
taken as the foreground seed set (the bottom of the shape in
Supplementary Fig. 2A), while background seeds were taken
to be the plane z = 80 (above the shape in Supplementary
Fig. 2A).

2) Cell Tracking Challenge Images: We tested our method on
Cell Tracking Challenge datasets Fluo-C3DH-A549 and Fluo-
C3DH-A549-SIM (www.celltrackingchallenge.net) [12], [13].
These datasets contain real and simulated 3D confocal images
of lung cancer cells, respectively. The simulated images were
generated with the FiloGen model-based cell generator [20],
[21]. Both datasets have planar pixel width of 0.27 μm
and slice separation 2.3 μm. Test and training datasets are
publicly available from the challenge website, but ground truth
segmentations are only available for the training datasets. Our
results for the test datasets were externally validated by the
Cell Tracking Challenge, which allows a comparison of our
results with other state of the art methods in Section IV-B.2.
The measure used by the Cell Tracking Challenge is based on
the Jaccard score, but includes a factor to measure cell detec-
tion [12]. The methods compared below all detected the cells

perfectly, and therefore this measure is equivalent to the Jac-
card score. Additionally, we use our own comparison measures
on the training dataset of Fluo-C3DH-A549-SIM to compare
our results with the methods presented in Section III-C.

Pre- and post-processing steps were required for the PW,
RW, and CERW, and are detailed in the supplementary mater-
ial. For all three methods, the pre-processing steps were rescal-
ing in z to obtain isotropic resolution, applying a band pass
filter, and applying 2D contrast-limited adaptive histogram
equalization [55] to movie 02 in Fluo-C3DH-A549-SIM. In
order to better capture the long and branching filopodia in
movie 02 of both datasets, a high value of κ was used. Because
the curvature term is independent of the original image, this
led to the filopodia being detected with a wider cross section
than desired. Additionally, a higher curvature weighting led
to background leaking into the cell through areas of low
membrane intensity in some images. Accordingly, the follow-
ing postprocessing steps were used (see the supplementary
material for more information). The first step was to apply
morphological dilation, fill, and erosion to fill any holes inside
the cell. The second step was to erode or dilate the segmented
cell locally based on the gradient magnitude of the original
image, using a surface mesh of the segmented cell. This was
performed by considering the line along the direction normal
to the surface at each vertex v within a distance r from the
surface. The value of r was calculated locally to be the largest
value below a fixed limit rmax where the closest surface vertex
to any point on the line is v. If the position of the maximum
gradient magnitude along this line was inside the segmented
shape, then all voxels along the line between this point and
the surface were assigned background values. Otherwise these
voxels were assigned foreground values.

Background seeds were generated as described in
Section III-B. Foreground seeds for the first movies of both
datasets were selected using the dilation-fill-erosion method
described in Section III-B, while for the second movies of
both datasets the union of the seed set from the dilation-fill-
erosion method and the maximal surfaces method was taken
as the foreground seed set. Parameter values for seed selection
can be found in the supplementary material.

3) Microscopy Data: We tested our method on
11 microscopy image stacks from two separate time series
that had been manually segmented by a single annotator
for comparison. Dictyostelium cells expressing LifeAct-GFP
were imaged on an inverted selective plane illumination
microscope (iSPIM) [56]. The resulting image stacks had pixel
width 0.165 μm and slice thickness 0.2 μm. These images
were deconvolved using the Richardson-Lucy algorithm
using 50 iterations [57]. Deconvolution allows for more
precise segmentation by reducing image blur. Preliminary
testing suggested that rescaling these image volumes
to produce isotropic resolution yielded little change in the
segmentation, and therefore the image volumes were treated as
having isotropic resolution to decrease processing times. The
lack of improvement from rescaling may be due to a higher
level of blurring present in the z-direction after deconvolution.
The image volumes selected for segmentation each contained
a single cell undergoing macropinocytosis. For computing
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the RW and CERW, all microscopy image volumes were
normalized to [0, 1], and gamma correction (0.5) was
applied.

Manual segmentations were drawn onto the 2D planes
of the image volumes, cycling through (x, y)- (x, z)-, and
(y, z)- planes iteratively until a satisfactory segmentation was
achieved. A full description of how this was performed in 3D
Slicer (www.slicer.org) [58] is provided in the supplementary
information. Due to the subjective nature of manual segmen-
tation, 3 of these image volumes were manually segmented by
an additional 2 annotators, and a majority voting method was
used to generate a fourth set of annotations, as is common
practice [9], [12]. Inter-annotator variability and comparisons
of the segmentation results with each of these three alternative
annotations are included in the supplementary information.

The segmentation results below all use manual
segmentations from annotator 1 as ground truth. These
scores are compared to the scores between annotator 1 and
the other annotators (Supplementary Table V) to determine
if a segmentation method is indistinguishable from a human
annotator with respect to any of the evaluation methods given
in Section III-E. Accordingly, for each evaluation measure,
we define the minimum annotator agreement to be the worst
score (lowest Jaccard or local Jaccard score, highest Hausdorff
distance or boundary displacement error) between annota-
tor 1 and the other annotators. All segmentations with a score
better than this minimum annotator agreement (higher Jaccard
or local Jaccard score, lower Hausdorff distance or boundary
displacement error) are deemed to be of equal merit with
respect to the given measure. In these cases, comparisons with
the alternative annotations will be used to confirm that the seg-
mentation scores show similar results when given alternative
interpretations. All real cell images and manual segmentations
can be found at https://pilip.lnx.warwick.ac.uk/TMI_2020/.

E. Evaluation Methods
The measures used to evaluate the segmentation results

were the Jaccard score, a localized form of the Jaccard score,
the Hausdorff distance, and the mean boundary displacement
error [59]. The first two measures describe how a segmentation
performs on a voxel-wise basis, while the second two measures
describe how the surface of the segmented shape differs from
that of the ground truth.

For a ground truth image stack with foreground voxel
set SGT and segmented image stack with foreground voxel
set SS EG , the Jaccard score for the segmentation is given as
Jac = |SGT ∩ SS EG |/|SGT ∪ SS EG |. Here, we find it more
informative to compare segmentations to ground truth in a
localized fashion. For a point p with neighborhood N(p),
the local Jaccard score Jacloc is given as

Jacloc(p) = |SGT ∩ SS EG ∩ N(p)|
|(SGT ∪ SS EG) ∩ N(p)| . (10)

Because this measure is defined as a proportion of foreground
voxels in a local neighborhood, points with a neighborhood
populated with mostly foreground voxels will show less vari-
ation than a neighborhood populated with mostly background
voxels. To address this difference, we also take the local

Jaccard score of the negative spaces:
Jac′

loc(p) = |(N(p) \ SGT ) ∩ (N(p) \ SS EG)|
|(N(p) \ SGT ) ∪ (N(p) \ SS EG)| . (11)

The overall local Jaccard score is thus defined as the lowest
of these two scores:

ˆJacloc(p) = min(Jacloc(p), Jac′
loc(p)). (12)

In the Cell Tracking Challenge and microscopy datasets, it
is of particular interest to evaluate the segmentation at points
on the cell surface of highly positive and negative curvature,
because these correspond to biologically significant features.
We therefore separate points on the surface of the ground
truth into three sets: points with highly negative mean curva-
ture (H < −0.2), highly positive mean curvature (H > 0.2),
and points with low absolute curvature (|H | ≤ 0.2). Areas of
highly negative mean curvature (denoted by H −) correspond
to macropinocytotic cups, while areas of highly positive mean
curvature (denoted by H +) correspond to filopodia.

For boundary difference measures, we first define the
boundary of a shape in a binary image volume as the set of
foreground voxels with at least one adjacent background voxel
(26-connected). The distance from a point p to a boundary
set B is given as

d(p, B) = min
q∈B

‖p − q‖, (13)

where ‖·‖ is the Euclidean norm. For a ground truth boundary
set BGT and segmented boundary set BS EG , the Hausdorff
distance is given as

H D = max{ max
p∈BGT

d(p, BS EG), max
q∈BSEG

d(q, BGT )}. (14)

The mean boundary displacement error (BDE) is an asymmet-
ric measure of the distance between the surfaces. The mean
BDE from BGT to BS EG is given as

B DEGT →S = 1

|BGT |
∑

p∈BGT

d(p, BS EG). (15)

The mean BDE from BS EG to BGT is similarly defined. The
Hausdorff measure reflects the area on the surface where
the segmentation performs the worst, and a high Hausdorff
distance can indicate failure to detect either protrusions or
invaginations. The mean BDE gives a more directed measure,
where a high BDE from ground truth to segmentation would
indicate a failure to capture protrusions, while a high BDE
in the reverse direction would indicate a failure to capture
invaginations.

IV. RESULTS

We tested the curvature-enhanced random walker (CERW),
random walker (RW), pretrained convolutional neural net-
work (CNN), random forest pixel classifier (RF), band pass
segmentation (BP), and power watershed (PW) on a synthetic
3D test image, a training dataset taken from the Cell Tracking
Challenge (www.celltrackingchallenge.net) [12], [13], and our
own microscopy data. Four evaluation methods were used
to compare the performance of these segmentation methods:
the Jaccard score, the localized Jaccard score, the Hausdorff
distance, and boundary displacement error. Our method was
also externally evaluated by the Cell Tracking Challenge on
test datasets, where the ground truth is not publicly available.
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Fig. 3. Results of experiments on the synthetic test image. A: Minimum
local Jaccard scores (Eq. 10) for a range of parameter values. The optimal
values of β and κ are negatively correlated, although even at high values
of β a non-zero value of κ shows improvement on the standard random
walker. Black contour line represents the 90th percentile. B: Comparison
of the segmentation algorithm at point b (standard random walker) with
the original mask. C: Comparison of the segmentation algorithm at point c
(optimal values of β and κ) with the original mask. Red represents false
positives, green represents false negatives, inset shows the position of
the slice.

A. Synthetic Test Image
1) Relationship Between β and κ : The first experiment using

the synthetic test shape aims to investigate the relationship
between β and κ in terms of segmentation performance. Here
we use the localized Jaccard score with a neighborhood of
square cross-section (width 21) and depth equal to the depth
of the stack (80 slices). This neighborhood was constructed
to include the full lengths of any protrusions or invaginations
that intersect with the neighborhood. Here we investigate the
minimum local Jaccard score Jmin, which highlights the score
corresponding to the area of the shape where the segmentation
performed the weakest. The results of this experiment are
shown in Fig. 3. This shows that the curvature enhancement
improves the random walker segmentation for all values of β.
Additionally, we see that the values of β and κ that optimize
the local Jaccard score are negatively correlated.

2) Comparison With Other Methods: The broader set of
segmentation methods are compared in Table I and Fig. 4.
Unsurprisingly, the RF outperforms all other methods in this
example, due to the fact that the image being analyzed is
directly based on a binary image. Of the remaining methods,
either the CERW or BP perform best, depending on the
measure. More specifically, the BP performs best in the global
measures (Jaccard score and mean BDE), while the CERW
performs best in local Jaccard score, and the methods are
tied on the Hausdorff distance. This suggests that the BP is
able to recover more of the overall shape than the CERW,
but loses some of the finer details of the shape, which are
better-identified by the CERW. The CERW performs better
than both the RW and PW in all scores. The PW and, to a
lesser extent, the RW are particularly affected by the noise
added to the image, as can be seen in Fig. 4. This noise sensi-
tivity is avoided in the CERW because it enables the value of β
to be reduced (compared to the optimal RW), which reduces
the impact of variable gradients between neighboring voxels.
Additionally, the curvature enhancement is able to compensate
for the increased impact of blurring in the finer features, as
can be seen in the slices in Fig. 4. Note that the CNN failed
to segment the synthetic shape due to the marked difference
to the training data and has been omitted from these results.

TABLE I
COMPARISON OF SEGMENTATION METHODS APPLIED TO THE

SYNTHETIC IMAGE

B. Cell Tracking Challenge Data

1) Optimization of β and κ : Optimization was performed
separately for each movie in the training datasets, and the same
parameter values were used to apply the CERW to the cor-
responding movies in the test datasets. Using the information
gained in Section IV-A.1 on the relationship between β and κ ,
we employed an optimization strategy of initially obtaining
the optimal value of β, and subsequently optimizing kappa
for a range of β values below this optimal β. Due to the large
processing times (see Section IV-D), the optimization method
was coarse-grained, and may be improved on with further
processing. The optimal value of β for κ = 0 was identified
by incrementing the value by 500 from an initial manually
selected estimate until the Jaccard score for the RW reached a
maximal value. The equilibrium values from these incremental
steps were subsequently used as the initial conditions for the
CERW. Starting with β at the optimal value for κ = 0,
the optimal value of κ was identified by incrementing κ by 0.1
until a value producing the minimal Hausdorff distance was
found, subject to a minimum Jaccard score of 0.6. The value
of β was then decreased by 500 and the same method was
used to optimize κ , starting at the optimal value of κ from
the previous step. This sequence of decreasing β by 500 and
optimizing κ was repeated for all values of β used in the initial
optimization of β.

2) Comparison With Other Methods: For the externally eval-
uated test datasets, the results of the CERW and the two
other highest-performing segmentation methods competing in
the Cell Tracking Challenge are shown in Table II. Our
method attained second place in Fluo-C3DH-A549 (real cells)
and third place in Fluo-C3DH-A549-SIM (simulated cells).
Both of the other high-scoring methods utilize CNNs and are
therefore dependent on training data. In particular our method
performs almost as well as the highest performing CNN in
real cells. This result is in part due the fact that the CERW
appears to perform better in the real cell images, but also
may be due to the reduced amount of training data available
for this dataset. Our method can be optimized as described in
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Fig. 4. Comparison between the synthetic shape mask and random forest classifier (RF), power watershed (PW), band pass segmentation (BP),
random walker (RW), and curvature-enhanced random walker (CERW). Top row: synthetic shape surface (left) and surfaces generated by each
segmentation method. Middle row: differences between segmentation results and the synthetic mask, where red marks false positive and green
marks false negative. FP: false positive rate, FN: false negative rate. Bottom row: slices through each surface compared to the original image volume.
While the RF clearly performs best, this is likely due to the synthetic nature of the image. The BP shows better results than the remaining methods,
and the CERW outperforms both PW and RW, only showing small errors for both parameter sets.

TABLE II
CELL TRACKING CHALLENGE TEST DATA RESULTS

Section IV-B.1 using only a small number of annotated frames,
and therefore it has an advantage in segmenting cells where
manually annotated ground truth is difficult to obtain.

We use our own comparison measures on the segmentation
of training data from Fluo-C3DH-A549-SIM in order to gain a
more detailed understanding of the performance of the CERW.
For the purposes of comparison, the binary image stacks for
ground truth, RF segmentation, and BP segmentation were
scaled in z to achieve isotropic resolution, using the nearest
neighbors method for interpolation. We use the localized
Jaccard score with neighborhood given by a cube of side
21 voxels (5.67 μm), evaluated at all points on the simulated
cell surface. Curvature is used to separate this measure into
areas of highly negative (H −), low (H 0), and highly posi-
tive (H +) mean curvature, as described in Section III-E. Of
particular interest in this dataset is the accuracy of filopodia
segmentation, which is most strongly reflected in the local
Jaccard score in H + areas, the mean boundary displacement
error from ground truth to segmentation (B DEGT →S), and the
Hausdorff distance. We focus our attention on the CNN, RW,
and CERW, which are the best-performing machine learning
and pixel-based methods, respectively, in both movies. The

results for these methods can be found in Table III, while the
full results are summarized in Supplementary Table IV.

In the first movie, the RW and CERW outperform all other
methods in all scores except the Hausdorff measure, where
the CNN performs best. The curvature enhancement yields
improvements in measures corresponding to protrusions
(local Jaccard in H + areas, Hausdorff, and B DEGT →S)
and general evaluation measures (Jaccard and local Jaccard
in H 0 areas), while decreasing accuracy in other measures.
This suggests that, while the curvature enhancement shows
an improvement in filopodia detection, as can be seen in the
top row of Fig. 5, there are other areas of the cell where
the curvature enhancement decreases the accuracy of the
segmentation. Surprisingly, the CERW generally outperforms
the CNN, which was trained on similar datasets [9]. The top
row of Fig. 5 shows that, while the CNN detects the position
filopodia well, it produces longer filopodia than in the ground
truth, an effect not present in the CERW. This suggests that
the CERW can improve upon deep learning-based methods
even with an abundance of training data.

The second movie demonstrates how the curvature enhance-
ment can dramatically improve the random walker segmen-
tation. In Fig. 5, it is clear that there are several branching
structures that are absent in the RW segmentation, but have
been recovered by the CERW. In comparison with other meth-
ods, the CNN performs best in all measures, as expected given
that it was trained on similar datasets [9]. As shown in Fig. 5,
the CNN is better able to detect the branches of the filopodia
than the CERW. A limitation of the CERW is that while larger
values of κ could potentially improve the segmentation of
these branching structures, this will destabilize the system.
This issue could be resolved by spatially varying κ , but this
extension is beyond the scope of this article.
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TABLE III
COMPARISON OF SEGMENTATION METHODS APPLIED TO CELL TRACKING CHALLENGE TRAINING DATA

TABLE IV
COMPARISON OF SEGMENTATION METHODS APPLIED TO REAL DATA

C. Microscopy Data
1) Relationship Between β and κ : As with the synthetic

shape, we first evaluate how the segmentation is affected by
the choice of β and κ . Here we use the localized Jaccard
score with neighborhood given by a cube of side 21 voxels
(3.465 μm in-plane, 4.2 μm in z) evaluated at all points on
the manually segmented cell surface. We use local curvature
to separate this measure into areas of highly negative (H −),
low (H 0), and highly positive (H +) mean curvature, as
described in Section III-E. Of particular interest in these
datasets is the accuracy of filopodia and cup segmentation,
which are most strongly reflected in the local Jaccard scores
in H + and H − areas, respectively.

The mean local Jaccard scores for a range of β and κ
values for each curvature range are summarized in the top
row of Fig. 6. As with the synthetic shape, these images show
that the addition of the curvature enhancement improves the
segmentation scores for all values of β. All three images show
a negative correlation for the optimal values β and κ , but with

the optimal range of values being offset depending on the
curvature of the surface. The global Jaccard scores for each of
the volumes are summarized in the bottom row of Fig. 6. Here
we see a similar relationship between the optimized values
of β and κ as observed in the localized scores and synthetic
image. Examples of segmentations of all real image volumes
are provided in the supplementary material.

Comparing results in Fig. 6 to the minimum annotator
agreement (Supplementary Table V), we see that the local
Jaccard scores for areas of highly negative (Fig. 6 top left) and
low curvature (Fig. 6 top middle) almost entirely lie above the
minimum annotator agreement (0.744 and 0.784 respectively).
This suggests that the addition of the curvature enhancement
may not be producing a result that is any closer to the true
segmentation in areas of highly negative or low curvature.
However, for areas of highly positive curvature (Fig. 6 top
right), all RW segmentations yield scores below the minimum
annotator agreement (0.740). This suggests that the addition
of the curvature term does produce results closer to the true
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Fig. 5. Comparison between Cell Tracking Challenge training dataset
Fluo-C3DH-A549-SIM ground truth and pretrained convolutional neural
network (CNN), random walker (RW), and curvature-enhanced random
walker (CERW). Top row: surfaces of each segmentation for movie 01.
Bottom row: surfaces of each segmentation for movie 02. In the first
movie, the CERW better captures the full length of the filopodia than
the RW, while the CNN segmentation gives filopodia longer than in
the ground truth. The second movie shows that the CERW is able to
recover filopodia branches not identified by the RW, identifying most
of the branching structures. The post-processing step described in
Section III-D.2 reduces the width of the filopodia, but has little impact
on the length. The CNN is better able to capture the full extent of these
branching structures, although again some length has been added in
comparison to the ground truth. Binary volumes for ground truth have
been rescaled using the nearest neighbors method, which leads to the
step effect in the images.

Fig. 6. Top row : Mean local Jaccard scores for negative, low and positive
curvatures of the surface of the manual segmentation of a cell, for a range
of parameter values. As with the synthetic image, the optimal values
of β and κ are negatively correlated. Bottom row : Minimum, mean, and
maximum Jaccard scores for all segmented microscopy images for a
range of parameter values. Again the negative correlation of the optimal
values of β and κ is evident. Black contour lines represent the 90th
percentile.

segmentation in areas of highly positive curvature. Further-
more, the curvature enhancement does show improvement on
the standard random walker for all measures in comparison to
all other manual annotations (Supplementary Tables IX–XI).

2) Comparison With Other Methods: Comparison of the
CERW with other segmentation methods is summarized
in Table IV. Of particular interest here are the scores
corresponding to protrusions (local Jaccard in H + areas,
B DEGT →S , Hausdorff) and invaginations (local Jaccard
in H − areas, B DES→GT , Hausdorff) since these correspond
to the biological features of interest.

The CERW outperforms all other methods in all scores.
Fig. 7 shows this result in the context of an image volume
(see also Supplementary Fig. 3). While the CNN performs well
on seven of the images, it fails to identify much of the cell in

the remaining four images. In the images where the CNN does
perform well, the segmented filopodia tend to be longer than
the ground truth, as can be seen in Fig. 7. The RF tends to have
a low false negative rate but a high false positive rate, which
manifests as an expanded boundary. Similarly, the BP has a
high false positive rate, but also fails to identify all protrusions.
The PW tends to be highly affected by noise, giving a rough
boundary that can lead to large areas of false positives and
large areas of false negatives. The RW provides a smoother
segmentation, but fails to accurately segment the protrusions,
due to variation in intensity along these protrusions (see slices
in Fig. 7). The curvature enhancement allows the recovery of
these protrusions, leading to a more accurate segmentation.
Additionally, the false positive and false negative rates are
much more balanced in the CERW than in the other meth-
ods, which suggests that it has less bias toward over- or
under-segmenting the image.

The CNN, RF, BP, and PW all yield scores worse than
the minimum annotator agreement (Supplementary Table V).
For most measures, both the RW and CERW score better
than the minimum annotator agreement. This suggests that
random walker-based methods yield segmentations closer to
the true segmentation than all other methods. The measures
where the RW performs worse than the minimum annotator
agreement are the local Jaccard score in H + areas (as observed
in Section IV-C.1) and the Hausdorff distance. These measures
are both formulated to detect differences in protrusion detec-
tion, and therefore the improvement in these measures from the
curvature enhancement indicates an improvement in detecting
protrusions in the true segmentation.

Similar results to those shown in Table IV can be seen in
comparison with the other manual segmentations and majority
voting segmentations in Supplementary Tables IX–XI, with a
notable exception that the CNN performs considerably better
on the three images that were segmented by multiple annota-
tors. Here we see that the CNN scores better than the CERW
in comparison to the individual annotators in some scores,
but worse in all scores in comparison with the aggregated
segmentation, which suggests that the CERW provides a better
segmentation than the CNN in these images. The other major
difference in these tables in terms of comparative scores is
that the RF performs better than our method in the Hausdorff
distance. The RF scores worse than the CERW in all other
measures, suggesting that the RF oversegments the image,
yielding a good Hausdorff distance but poor precision, as can
be seen in Fig. 7.

D. Processing Times

A comparison of the average time required to segment
image volumes from each dataset with each method is pro-
vided in Supplementary Table XII. The CERW is the slowest
method in all cases, with the larger and more complex image
volumes in the second movie of the Cell Tracking Challenge
data requiring roughly 20 times longer to process than the
slowest non-random walker-based method (the PW). However,
roughly half of the computation time for the CERW is taken up
by the initial RW segmentation. We simulated diffusion for this
step, in order to provide continuity between methods, but faster
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Fig. 7. Comparison between manual segmentation and pretrained convolutional neural network (CNN), random forest classifier (RF), power
watershed (PW), band pass segmentation (BP), random walker (RW), and curvature-enhanced random walker (CERW). Top row: surfaces of each
segmentation. Middle row: differences between segmentation results and manual segmentation, where red marks false positive, green marks false
negative, and reduced opacity is given to voxels with a boundary error of 1 (low BE). FP: false positive rate, FN: false negative rate, numbers in
brackets are error rates of high BE points only. Bottom row: slices through each surface compared to original image, scale bars represent 5 μm.
The CERW outperforms all other methods, with almost all errors having low boundary error. Filopodia detected by all other methods are excessively
long (CNN, RF, PW), short (BP, RW), or wide (RF, BP). Note a region on the left is marked as false positive in most segmentations. The slices in
Supplementary Fig. 4 give alternative manual segmentations from separate annotators, showing that only one annotator has included this region in
the cell, and that the majority vote excludes this region.

methods for computing the initial RW values are available [7],
[8], which would greatly improve the speed. Furthermore,
the method of simulation for the curvature enhancement
step has not been optimized for time-efficiency, and could
potentially be improved upon to reduce the segmentation time.
Finally, the seed selection also requires a significant proportion
of the processing time. However, this step was not performed
on a GPU, which could significantly reduce computation time.

V. DISCUSSION

We have added a curvature term to the non-linear diffusion
representation of the random walker method. This yielded
an improvement to the original random walker in both real
microscopy image stacks and the synthetic test image, and in
filopodia detection in the Cell Tracking Challenge datasets.
Furthermore, our method outperforms all other methods
tested on our microscopy images, and performs competitively
against state of the art deep learning-based methods in
challenge datasets.

Our method is capable of segmenting cells with similar
accuracy to deep learning-based methods even when those
networks are trained with data captured in the same manner as
the test data. Furthermore, our method is more reliable at seg-
menting our data than a pretrained CNN [9]. Since the CERW
does not require manually annotated data with which to train,
this result suggests that the CERW can be utilized to segment
images where manual annotations are unavailable, such as
those produced with novel markers or new imaging techniques.
Additionally, not relying on manual annotations reduces the
level of experimenter bias introduced into the results.

The main advantage of using the curvature-enhanced ran-
dom walker over the standard random walker is the ability to

recover finer details in the image, as is evident in Figs 5 and 7.
This is especially useful in microscopy images, where image
capture tends to blur these finer features and deconvolution
can only partially compensate for this effect. In particular,
given the recent discovery of the involvement of filopodia in
macropinocytosis [3], being able to accurately segment these
fine structures is vital for identifying the mechanisms involved.

Another advantage of the curvature-enhanced random
walker over the standard random walker is that lower values
of β can be used with a sufficiently large κ , which reduces
the impact of noise on the segmentation. This is because a
low value of β reduces the impact of noise-induced low-level
fluctuations in image gradients, but also reduces the ability of
the random walker to capture finer details. The introduction
of a high level of curvature enhancement (large κ) enables
the recovery of these details. Furthermore, since the curvature
enhancement is independent of the original image, it is not
affected by noise. This effect is especially advantageous when
analyzing how the cell surface changes over time, since the
segmentation surface is less prone to arbitrary noise-induced
variations between time frames.

While we have not explicitly examined the stability of the
curvature-enhanced random walker, our experiments show
that there is a range of values of β and κ that produce
stable results (see Figs 3 & 6). The only case where we
observed instability was for high β and high κ (top right
in Fig. 6). In such instances, the system did not converge,
and this instability is only mitigated by the diffusion term in
Eq. 7. This effect is likely due to the fact that the curvature
enhancement term introduces instability into the system,
which is only mitigated by the diffusion term in Eq. 7. If β
is large, then this reduces the rate of diffusion, which in turn
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reduces the stability of the system. The question of stability
will be a topic of future research.

The relationship between the optimal values of β and κ
depends on the local curvature in our microscopy data (Fig. 6).
Specifically, areas of highly positive curvature require a larger
value of κ than areas of highly negative curvature to attain
the optimal Jaccard scores, although there is a small overlap
in these optimal values. Additionally, areas of highly positive
curvature have a lower Jaccard score than areas of highly
negative curvature for all seeded methods (see Table IV).
This is potentially due to the nature of the structures on the
cell membrane that give rise to these curvature values; highly
positive curvature corresponds to filopodia, which are long,
thin protrusions on the cell membrane, while highly negative
curvature corresponds to macropinocytotic cups, which in our
data were much wider than the filopodia and relatively shallow.
This means that highly positive curvature is associated with
sharper features than highly negative curvature, which suggests
that the variation in κ is linked to the shape of the features
being segmented, rather than the sign of the curvature.

One major drawback of the current implementation of our
method is the time required to process images, particularly
the more complex images from the Cell Tracking Challenge.
However, our implementation of the CERW only uses minimal
speed optimization methods, and therefore we expect to dra-
matically improve on this issue in future implementations. One
possible improvement would be to employ a faster random
walker algorithm for the initial segmentation [8]. Improve-
ments could be made by reducing the segmentation volume
over time; for much of the image, the curvature enhancement
has little impact, and therefore the curvature enhancement
step could be restricted to areas where the curvature term is
changing the segmentation. Finally, we note that our method
is based on a PDE, and therefore could be computed faster by
using more advanced PDE solvers.

Another limitation of our method is that in order to segment
the large branching structures in Section IV-B.2 a large value
of κ is required, which can lead to segmentation errors in other
areas of the cell. Furthermore, increasing κ beyond the level
used leads to destabilization of the system. This issue could be
addressed by varying κ based on the input image so that the
curvature term only affects the relevant areas. This variation
could also be used for the speed improvements mentioned
above, by reducing the segmentation to areas with non-zero κ .

We have only investigated the application of our
method to single-cell image stacks. The extension of the
curvature-enhanced random walker to multi-cell image stacks
can be applied in a manner similar to previous random walker
implementations [7]. Our method could also be applied to 2D
images, using curvature in place of mean curvature.

VI. CONCLUSION AND FUTURE WORK

We have shown that our curvature-enhanced random walker
segmentation method yields improvements on the standard
random walker method, and performs better than other state
of the art methods in Dictyostelium image volumes. We have
also shown that our method performs similarly to state of the
art deep learning-based methods in externally evaluated data.

One limitation of our method is the time required to segment
more complex image volumes. Future implementations will
aim to deal with this drawback by using faster methods of
simulation and seeding.

Extensions in the curvature enhancement could include
spatially varying κ , or using a formulation to increase the Will-
more energy of implicit surfaces. The curvature enhancement
presented here could also be applied to other methods, such
as active contour segmentation, regularized by shape priors to
reduce instability [61].

In terms of biological data, we have only applied the
curvature-enhanced random walker to light microscopy images
of Dictyostelium and lung cancer cells. This method would
also be well-suited to segmenting other objects with complex
surface structures, such as computed tomography images of
vertebrae or lungs, or electron microscopy images of complex
cell structures.
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