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Abstract

Cancer is a complex disease, driven by a range of genetic and environmental factors.
Every year millions of people are diagnosed with a type of cancer and the survival
prognosis for many of them is poor due to the lack of understanding of the causes
of some cancers. Modern large-scale studies offer a great opportunity to study
the mechanisms underlying different types of cancer but also brings the challenges
of selecting informative features, estimating the number of cancer subtypes, and
providing interpretative results.

In this thesis, we address these challenges by developing efficient clustering algo-
rithms based on Dirichlet process mixture models which can be applied to differ-
ent data types (continuous, discrete, mixed) and to multiple data sources (in our
case, molecular and clinical data) simultaneously. We show how our methodology
addresses the drawbacks of widely used clustering methods such as k-means and
iClusterPlus. We also introduce a more efficient version of the clustering methods
by using simulated annealing in the inference stage.

We apply the data integration methods to data from The Cancer Genome Atlas
(TCGA), which include clinical and molecular data about glioblastoma, breast can-
cer, colorectal cancer, and pancreatic cancer. We find subtypes which are prognos-
tic of the overall survival in two aggressive types of cancer: pancreatic cancer and
glioblastoma, which were not identified by the comparison models.

We analyse a Hospital Episode Statistics (HES) dataset comprising clinical infor-
mation about all pancreatic cancer patients in the United Kingdom operated during
the period 2001 - 2016. We investigate the effect of centralisation on the short- and
long-term survival of the patients, and the factors affecting the patient survival. Our
analyses show that higher volume surgery centres are associated with lower 90-day
mortality rates and that age, index of multiple deprivation and diagnosis type are
significant risk factors for the short-term survival.

Our findings suggest the analysis of large complex molecular datasets coupled with
methodology advances can allow us to gain valuable insights in the cancer genome
and the associated molecular mechanisms.
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Chapter 1

Introduction

In this chapter we describe the application which motivates the development of the
Bayesian clustering methods presented in this thesis. We then review some of the
most common inference methods employed in the following chapters. We present
some concepts related to clustering and evaluation measures, which are fundamental
to the thesis, and discuss the advantages of adopting a Bayesian approach when
working with complex, high-dimensional data.

1.1 Motivation

Cancer is a major global health problem with 18.1 million new cases being diagnosed
every year and estimated 9.6 million cancer deaths yearly [World Health Organi-
sation, 2018]. There are more than 100 distinct types of cancer, and subtypes of
tumours can be found within specific organs [Hanahan and Weinberg, 2000]. The
survival prognosis for many of them is poor and there is lack of effective treatments
especially for late-stage cancers due to the lack of understanding of the causes of
some cancers. Despite the differences between cancer types, Hanahan and Weinberg
[2000] suggested that the formation of tumours is a result of the same 6 alterations
in cell physiology (Figure 1.1):

• self-sufficiency in growth signals

• insensitivity to growth-inhibitory signals

• evasion of apoptosis 1

1programmed cell death
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• limitless replicative potential

• sustained angiogenesis 2

• tissue invasion and metastasis.

Later Hanahan and Weinberg [2011] add deregulating cellular energetics and avoid-
ing immune destruction as emerging hallmarks, and define genome instability and
mutation, and tumour-promoting inflammation as enabling characteristics which are
associated with the acquisition of hallmark capabilities.

Figure 1.1: Acquired capabilities of cancer. Not all processes are involved in the
development of all tumours. Credit: Hanahan and Weinberg [2000]

Identifying the changes in the cancer genome and understanding how they inter-
act and affect the patient should lead to earlier detection, better treatment and
prevention [Verma, 2012].

Modern large-scale studies offer great opportunities to study the mechanisms un-
derlying different types of cancer and to stratify patients into distinct subgroups
that are characteristic of response to treatments and/or overall survival. For exam-
ple, The Cancer Genome Atlas project [Weinstein et al., 2013] (TCGA), run jointly
between the US National Cancer Institute and the National Human Genome Re-
search Institute, has generated comprehensive, multi-dimensional maps of genomic
changes of 33 different tumour types, using data from over 11000 patients, such as

2formation of new blood vessels
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gene expression levels, methylation, single nucleotide polymorphisms (SNP) 3 and
copy number variation. Another large-scale genomic study is METABRIC [Curtis
et al., 2012], which was a collaboration between Canada and the UK, and aimed to
classify breast tumours into further subgroups, based on molecular signatures in or-
der to determine the optimal course of treatment for each patient. The International
Cancer Genome Consortium [International Cancer Genome Consortium and others,
2010] (ICGC) is a worldwide project which coordinates a large number of research
projects studying different types of cancer in a range of populations. This project
similarly aims to unravel the genomic changes present in the cancer genomes.

Each of these large-scale studies involves working with a large amount of data,
often from different sources. This brings the challenges of selecting informative
features, estimating the number of cancer subtypes, and providing interpretative
results. Identifying informative features is especially important when using genomic
data as we expect only a fraction of them to contain useful information and ex-
tracting these features will improve the quality of the output. Often the expected
number of cancer subtypes in a given analysis has to be pre-specified [Shen et al.,
2009] which can affect the final results; however, jointly learning the cluster param-
eters and the number of subtypes may give better quality results that can be used
to make better informed clinical decisions. Many recent studies [Shen et al., 2009;
Yuan et al., 2011; Kirk et al., 2012; Mo et al., 2013, 2017; Gabasova et al., 2017] pro-
pose integrative clustering approaches to address these problems. They are based
on the idea that none of the individual datasets can fully capture the complexity of
cancer, but collectively, they can offer a better understanding of the true oncogenic
mechanisms.

1.2 Statistical background

1.2.1 Bayesian Methods

In the Bayesian formalism of the world, probabilities capture a belief state about
events. If we consider an uncertain event X , we can encode our prior beliefs about
the modelM that generated it by a prior p(θ|M) on the model parameters θ. Once
we observe the event, we can update our beliefs, in a principled manner, by using
the Bayesian framework, and Bayes’ theorem in particular.

3the most common type of genetic variation among people. Each SNP represents a difference in
a single DNA building block, called nucleotide.
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The proof of Bayes’ theorem makes use of the product rule p(X,Y ) = p(Y |X)p(X),
which together with the sum rule p(X) =

∑
Y p(X,Y ) form the fundamental axioms

of probability, and of the symmetry property p(X,Y ) = p(Y,X). This means that
we can express the joint probability distribution p(θ,X|M) in two ways:

p(θ,X|M) =p(X , θ|M) (1.1)

p(X|θ,M)p(θ|M) =p(θ|X ,M)p(X|M), (1.2)

which can be rearranged as

p(θ|X ,M) = p(X|θ,M)p(θ|M)
p(X|M) . (1.3)

Equation (1.3) is what is more widely known as Bayes’ theorem or Bayes’ rule,
where p(X|θ,M) is the probability of X conditioned on θ and the model, also
known as likelihood; p(θ|X ,M) is the posterior probability of θ after observing
X . The normalising constant p(X|M) in (1.3), also called marginal likelihood or
evidence, is given by

p(X|M) =
∫
p(X , θ|M)dθ (1.4)

=
∫
p(X|θ,M)p(θ|M)dθ. (1.5)

These Bayesian concepts are extremely useful not only for incorporating our prior
beliefs about uncertain events, but also for performing model selection.

1.2.2 Model selection

Once we have a collection of models that could explain our data D, how do we
choose the ‘best’ model? Multiple information criteria have been proposed to aid
model selection. One of these is Akaike Information Criterion (AIC) [Akaike,
1974], which is based on Kullback-Leibler divergence. It does not assume that the
true model is amongst the models under consideration and that the models must be
nested. In AIC the number of model parameters θ is subtracted from the log density
given the maximum likelihood parameter estimates θ̂MLE to account for how much
the fitting of K parameters will increase the accuracy:

AIC = −2 log p(D|θ̂MLE) + 2K. (1.6)
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This criterion is appropriate for linear models with flat priors but if we work with
hierarchical models with informative priors, it becomes less accurate [Gelman et al.,
2014b].

Deviance Information Criterion (DIC) [Spiegelhalter et al., 2002] is a Bayesian
version of AIC and replaces the maximum likelihood estimate θ̂ with the posterior
mean θ̂Bayes = E(θ|y), and K with a data-based bias correction:

DIC = −2 log p(D|θ̂Bayes) + 2pDIC , (1.7)

where pDIC is the effective number of parameters:

pDIC = 2
(

log p(D|θ̂Bayes)− Epost(log p(D|θ))
)
, (1.8)

and Epost is an average of θ over its posterior distribution, which is calculated us-
ing simulations θs, s = 1, . . . , S and Epost(log p(y|θ)) = 1

S

∑S
s=1 log p(y|θs). DIC is

easier to compute in comparison with AIC as it does not require maximising of the
likelihood because it uses MCMC samples from the posterior. However, it requires
the mean to be a good estimator of the posterior, which is not true for skewed
distributions, for example.

Watanabe-Akaike/widely applicable criterion (WAIC) [Watanabe, 2013] is a
cheaper approximation of cross-validation and is defined as follows:

WAIC = −2lppd+ 2pWAIC2, (1.9)

where lppd is the log pointwise predictive density and is equal to

computed lppd =
n∑
i=1

log
(

1
S

S∑
s=1

p(Di|θs)
)
, (1.10)

where θs are the draws from the posterior simulations, Di is the ith data point,
and pWAIC2 is a correction for the effective number of parameters to adjust for
overfitting:

pWAIC2 =
n∑
i=1

varpost(log p(yi|θ)). (1.11)

Here varpost is the posterior variance of the log predictive density for each data point
V S
s=1 log p(yi|θs) where V S

s=1 represents the sample variance.
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Bayesian Information Criterion (BIC) [Schwarz et al., 1978] adjusts for the
number of fitted parameters with a penalty that increases with the sample size N
and favours simpler models:

BIC = log p(D|θMAP )− 1
2K logN, (1.12)

where θMAP are the parameters which maximise the posterior. BIC assumes that
the sample size N is much larger than the number of parameters K [Aho et al.,
2014; Kuha, 2004].

Bayesian Model Selection

Another way of comparing models is through performing Bayesian analysis where
each model is given a prior probability, and then by multiplying it by the model
marginal likelihood, we obtain a quantity proportional to the model posterior prob-
ability.

In Bayesian model selection, we select the model that corresponds to the most prob-
able model M given X , i.e. the model with highest posterior probability p(M|X ).
With the increase in the number of observations of X , the mass of p(M|X ) typically
concentrates around one model. Hence, picking the model with the highest posterior
probability is a reasonable choice.

In addition, if we place uniform prior over all modelsM, we can express the posterior
p(M|X ) as follows:

p(M|X ) = p(X|M)p(M)∫
p(X|M)p(M) dM (1.13)

=p(X|M)p(M)
p(X ) (1.14)

∝p(X|M). (1.15)

It turns out that instead of computing the posterior p(M|X ), we can use the evidence
p(X|M) to perform model selection. If we work with conjugate priors, we can
compute (1.4) in closed form [Bishop, 2006]. Although this is rarely the case when
we work with real, high-dimensional datasets, we can still use the evidence if we
make use of certain approximations, in particular the Laplace approximation.
We briefly summarise below the use of the Laplace approximation, which aims to
find a Gaussian approximation q(z) to a probability density p(z) = f(z)∫

f(z)dz
defined
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over a set of M -dimensional continuous variables.

As the Gaussian distribution has the property that its logarithm is a quadratic
function of the variables, we consider a Taylor expansion of log f(z) centred on the
stationary point z0 where the gradient ∇f(z) vanishes:

log f(z) ≈ log f(z0)− 1
2(z− z0)ᵀA(z− z0), (1.16)

where A is the Hessian matrix defined by A = −∇∇ log f(z)|z=z0 . Taking the
exponential of both sides of (1.16), we get

f(z) ≈ f(z0) exp{−1
2(z− z0)ᵀA(z− z0)} (1.17)

which means that we can write q(z) as

q(z) = |A|
1
2

(2π)
M
2

exp{−1
2(z− z0)ᵀA(z− z0)} (1.18)

=N (z|z0,A−1) (1.19)

since it is proportional to p(z).

Using this result, we can now approximate the model evidence in the following way:

p(X|M) =
∫
p(X|θ,M)p(θ|M)dθ (1.20)

≈p(X|θ̂,M)p(θ̂|M)
∫

exp{−1
2(θ − θ̂)ᵀA(θ − θ̂)}dθ (1.21)

≈p(X|θ̂,M)p(θ̂|M)(2π)
M
2 |A|−

1
2 , (1.22)

where θ̂ is the value of θ at the mode of the posterior distribution.

When we perform statistical analysis, we usually consider multiple modelsMi each
with parameters θi. We can easily extend the ideas presented above to compare
multiple models Mi. If we put prior p(θi|Mi) over the model parameters, then
we can approximate the model evidence p(D|Mi) by the Bayesian Information
Criterion (BIC) [Schwarz et al., 1978]

log p(D|Mi) ≈ log p(D|θMAP ,M) + log p(θMAP |M) + K

2 log(2π)− 1
2 |A| (1.23)

≈ log p(D|θMAP )− 1
2K logN, (1.24)

where θMAP are the parameters which maximise the posterior, K is the number of
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free parameters, N is the number of data points in D and A is the Hessian matrix
of second derivatives of the negative log posterior (A = −∇∇ log p(θMAP |D,X )).
Since BIC is an approximation of the model evidence and we use it when we perform
model selection in the analyses we conduct in this thesis.

1.2.3 Probability distributions

Bernoulli distribution

This is the distribution for a single binary variable x ∈ {0, 1}. It is a special case of
the Binomial distribution for a single observation, and has the following form:

Bern(x|µ) = µx(1− µ)1−x, (1.25)

where µ is the probability of observing x = 1. The expectation and the variance of
a Bernoulli distributed variable are:

E[x] = µ (1.26)

var[x] = µ(1− µ). (1.27)

Binomial distribution

The binomial distribution describes the probability of observing m occurrences of
x = 1 in a set of N samples from a Bernoulli distribution, where the probability of
observing x = 1 is µ:

Bin(m|N,µ) =
(
N

m

)
µm(1− µ)N−m. (1.28)

The expectation and the variance of a binomially distributed variable are:

E[x] = Nµ (1.29)

var[x] = Nµ(1− µ). (1.30)

Negative Binomial distribution

The negative binomial distribution is closely related to the Bernoulli distribution.
It is a discrete probability distribution of the number of successes in a sequence
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of independently and identically distributed Bernoulli random variables before a
specified, non-random number of failures r occurs. It has two parameters r, which
is the number of failures until the experiment is stopped, and p, which is the success
probability in each experiment:

Neg-Bin(x|r, p) =
(
x+ r − 1
r − 1

)(
p

p+ 1

)r(
1

p+ 1

)x
. (1.31)

The mean and the variance of a negative binomial random variable are:

E[x] = r

p
(1.32)

var[x] = r

p2 (p+ 1). (1.33)

Multinomial distribution

The multinomial distribution is a multivariate generalisation of the binomial distri-
bution and gives the distribution over counts mk for a K-state discrete variable to
be in state k given a total number of observations N :

Mult(m1,m2, . . . ,mK |µ,N) =
(

N

m1m2 . . .mK

)
K∏
k=1

µmk
k , (1.34)

where µk is the probability that xk = 1, µk ∈ [0, 1] and
∑K
k=1 µk = 1. The expecta-

tion and the variance of a multinomially distributed random variable are:

E[mk] = Nµk (1.35)

var[mk] = Nµk(1− µk). (1.36)

Categorical distribution

The categorical distribution, also known as multinoulli distribution, is a discrete
probability distribution describing the possible results of a random variable that
can take on one of K possible categories.

Cat(x|p1, . . . , pk) =
k∏
i=1

p
I[x=i]
i , (1.37)
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where pi is the probability that x = i such that 0 ≤ pi ≤ 1 and
∑k
i=1 pi = 1, and I

is the indicator function.

Poisson distribution

The Poisson distribution is the probability of a given number of random events
occurring in a fixed interval of time. The shape of the distribution is governed by
the rate of occurrence λ > 0, which is also the expected rate of occurrence:

Poi(x|λ) = 1
x!λ

x exp(−λ). (1.38)

The expectation and variance of Poisson-distributed random variable are the same:

E[x] = λ (1.39)

var[x] = λ. (1.40)

Beta distribution

The beta distribution is conjugate to the Bernoulli and binomial distributions. It
is a distribution over a continuous variable x ∈ [0, 1]. It has two shape parameters
α, β > 0

Beta(x|a, b) = Γ(α+ β)
Γ(α) + Γ(β)x

α−1(1− x)β−1, (1.41)

where Γ(x) is defined by Γ(x) =
∫∞

0 ux−1 exp(−u) du. We have that

E[x] = α

α+ β
(1.42)

var[x] = αβ

(α+ β)2(α+ β + 1) . (1.43)

Gamma distribution

The Gamma distribution is conjugate to the Poisson distribution. It is a distribution
over a continuous random variable x > 0, and has a shape α and scale β parameters:

Ga(x) = βα

Γ(α)x
α−1 exp(−βx). (1.44)
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The corresponding expectation and variance are:

E[x] = α

β
(1.45)

var[x] = α

β2 . (1.46)

Dirichlet distribution

The Dirichlet distribution is a continuous multivariate distribution, generalising the
beta distribution. It is conjugate to both the categorical and multinomial distri-
butions. The shape of the distribution is governed by concentration parameters
α1, . . . , αk > 0:

p(x) = Γ(α1 + . . .+ αk)
Γ(α1) . . .Γ(αk)

xα1−1
1 . . . xαk−1

k , (1.47)

where x = (x1, . . . , xk) is a k-dimensional vector with 0 ≤ xk ≤ 1 and
∑
k xk = 1.

The expectation and variance have the following forms:

E[xi] = αi
α0

(1.48)

var[xi] = αi(α0 − αi)
α2

0(α0 + 1)
, (1.49)

where α0 =
∑
i αi.

Gaussian distribution

The Gaussian distribution is widely used to model the distribution of continuous
variables because of the Central limit theorem, which states that under some mild
conditions, the sum of random variables has a distribution that becomes increasingly
Gaussian with the increase in the number of terms in the sum [Walker, 1969]. In the
case of a single variable x, the distribution is governed by a mean µ and variance
σ2:

N (x|µ, σ2) = 1
(2πσ2)

1
2

exp (− 1
2σ2 (x− µ)2). (1.50)

The corresponding expectation and variance are:

E[x] = µ (1.51)

var[x] = σ2. (1.52)
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For a D-dimensional vector x, the multivariate Gaussian distribution is of the form:

N (x|µµµ,Σ) = 1
(2π)

D
2

1
|Σ|

1
2

exp (−1
2(x−µµµ)ᵀΣ−1(x−µµµ)), (1.53)

where µµµ is the D-dimensional mean vector and Σ is the D ×D covariance matrix.

We have that

E[x] = µµµ (1.54)

cov[x] = Σ. (1.55)

1.2.4 Graphical models

Throughout this thesis we use graphical models to compactly illustrate assumptions
between the variables in some of the models we consider. A graphical model
is a way of representing a joint distribution by making conditional independence
assumptions. The nodes represent the random variables. The graphical models
used in this thesis are directed in order to illustrate some of the model assumptions
we make.

w

x1 xN⋯

(a) A simple directed graphical model.

w

xn

N

(b) A compact representation of a di-
rected graphical model.

Figure 1.2: Different ways of representing a graphical model. The shaded nodes
x1, . . . , xN represent the observations, and the unshaded nodes w linked to them -
any model parameters and unobserved variables.

Figure 1.2 represents a typical directed graphical model. The shaded nodes xi in
Figure 1.2b are the observed variables X = {x1, . . . , xN} generated i.i.d from a
probabilistic model with parameters w, usually represented by unshaded nodes. A
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directed graphical model often includes unobserved, latent variables, such as cluster
indicators, component means, and this graphical representation aids their inference.

1.2.5 Inference

The methods we use to perform inference in the experiments in this thesis rely on
simulated annealing. To highlight the reasons behind our choice of inference scheme,
we first introduce the Markov Chain Monte Carlo methods to which simulated an-
nealing is closely related.

Markov Chain Monte Carlo (MCMC) methods are a popular way to infer model
parameters. They simulate a Markov chain whose stationary distribution is equal
to a target distribution, in our case the posterior distributions, from which it is
usually hard to sample. Here we present a short summary of the most commonly
used MCMC techniques with a particular focus on the ones used in the thesis.

The main idea of Gibbs Sampling [Geman and Geman, 1987] is to approximate
a distribution with a set of samples. The theory around Gibbs sampling implies
that we can sample from a joint distribution by sampling sufficiently many times
from the conditional distributions of each variable. We use it when we can derive
the conditional distributions p(θi|θjj 6=i) of the parameters we want to sample. For
example, if we have K variables, we can update one variable at a time at iteration
t+ 1 as follows:

θ
(t+1)
1 ∼ p(θ1|θ(t)

2 , θ
(t)
3 , . . . , θ

(t)
K )

θ
(t+1)
2 ∼ p(θ2|θ(t+1)

1 , θ
(t)
3 , . . . , θ

(t)
K )

...

θ
(t+1)
K ∼ p(θK |θ(t+1)

1 , θ
(t+1)
2 , . . . , θ

(t+1)
K−1 ).

Here the target distribution is the joint posterior and the conditional distributions
are required to sample from it.
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θ1

θ2 θ3 θ8

θ6

θ7

θ4 θ5

Figure 1.3: A directed graphical model

To compute the conditional distributions, we need to use only the concept of Markov
blanket [Pearl, 2014], which is defined as the smallest set of nodes that makes a
node conditionally independent of all the other nodes in the graphical model. This
implies that the conditional distribution p(θi|θjj 6=i) depends only on the nodes in
the neighbourhood of θi, i.e. the parents of θi, the children of θi and the other
parents of the children of θi. For example, the Markov blanket of θ5 in the model
presented on Figure 1.3 is mb(5) = {4} ∪ {6, 7} ∪ {3} = {3, 4, 6, 7} and we get that

p(θ5|θ−5) ∝ p(θ5|θ4)p(θ6|θ3, θ5)p(θ7|θ4, θ5) (1.56)

Another popular MCMC method is Metropolis sampling [Metropolis et al., 1953],
which is an adaptation of random walk that uses an acceptance/rejection rule to
converge to the specified target distribution. The algorithm proceeds as follows:

Algorithm 1.1: Metropolis sampling
Draw a starting point θ0 from a starting distribution p0(θ) ;
for t = 1, 2, . . . , do

a) sample a proposal θ∗ from a proposal distribution Jt(θ∗|θt−1), which
must be symmetric (Jt(θa|θb) = Jt(θb|θa)) ;

b) Calculate r = p(θ∗|x)
p(θt−1|x) ;

c) Set θt to θ∗ with probability min(r, 1) and to θt−1 otherwise.
end

We have used the Metropolis Hastings algorithm [Robert and Casella, 1999;
Hastings, 1970] as well, which generalises the Metropolis sampler by allowing the

14



jumping rules Jt not to be symmetric and by correcting for asymmetry.

Algorithm 1.2: Metropolis Hastings sampling
Draw a starting point θ0 from a starting distribution p0(θ) ;
for t = 1, 2, . . . , do

a) sample a proposal θ∗ from a proposal distribution Jt(θ∗|θt−1) ;
b) Calculate r = p(θ∗|x)

p(θt−1|x)
Jt(θt−1|θ∗)
Jt(θ∗|θt−1) ;

c) Set θt to θ∗ with probability min(r, 1) and to θt−1 otherwise.
end

There are a few practical issues that need to be considered when working with
MCMC algorithms. If we run the chain for a sufficiently long time, we will eventually
obtain samples from the posterior distribution. But how long is sufficiently long and
can we predict how long it will take to equilibrate?

Another important issue is detecting convergence. Cowles and Carlin [1996] de-
scribe the practical tools available to diagnose convergence. They point out that
the diagnostic tools often fail to detect convergence, could be difficult to implement
and often require problem-specific coding. The authors recommend using a variety
of diagnostic tools instead, and running a few parallel chains with starting points
picked systematically.

As using MCMC methods often involve time-consuming intensive simulations, we
would ideally want to use methods which converge faster. One such method is
simulated annealing [Kirkpatrick et al., 1983]. It is an optimisation method
inspired by statistical physics, and can be used to find an approximation to the
global maximum of the posterior distribution, as opposed to the MCMC methods
which try to sample from the posterior distribution.

Similarly to Metropolis Hastings, we sample a new state according to a proposal
distribution θ′θ′θ′ ∼ q(.|θθθk), which is often a random walk proposal θ′θ′θ′ = θθθk + εεεk, where
εεεk ∼ N (0,Σ) for real-valued parameters. After the proposal of the new state, we
compute

α = exp((f(θ′θ′θ′)− f(θθθ))/Tk), (1.57)

where f is the function we want to optimise and Tk is the computational tem-
perature. We accept the new state and set θθθk+1 = θ′θ′θ′ with probability min(1, α),
otherwise we stay in the current state and set θθθk+1 = θ′θ′θ′. This means that if the
new state is more probable (and has lower energy), we will definitely accept it. But
if it is less probable (has higher energy), we might still accept it depending on the
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current temperature. In this way, simulated annealing deals with the issue of getting
stuck in a local minimum/maximum - it will sometimes accept worse solutions than
the current one in order to explore the sample space.

The exploration of the parameter space is governed by the cooling schedule, which
is the rate at which the temperature changes over time. Kirkpatrick et al. [1983]
show that if the temperature is cooled sufficiently slowly, then the algorithm will
probably find the global optimum. It is, however, difficult to quantify ‘sufficiently
slowly’, which is the main drawback of the algorithm.

There are different cooling schedules that can be used. It is common to use the
exponential cooling schedule of the following form Tk = T0C

k, where T0 is the initial
temperature (often T0 ≈ 1) and C is the cooling rate (often C is between 0.9 and
0.99). Another cooling schedule is the logarithmic one of the form Tk = 1

log(k) . We
performed numerical experiments and the final schedule we considered in this thesis
is of the form Tk = T0 × 0.95k, with T0 being either 100 or 1000 which we found to
be good choices in order to allow the parameter space to be well explored.

1.3 Clustering methods

1.3.1 Clustering methods for continuous data

Clustering methods can be broadly divided into distance-based and model-based.

K-means clustering [Hartigan and Wong, 1979] is a method which clusters dataset
D = {x1, . . . ,xN} with N observations into K clusters, where K has to be specified
by the user. The objective is to minimise the sum of squares of the distances between
each data point xn and the assigned cluster centre,

J =
N∑
n=1

∑
xn∈Cj

(xn −µµµj)2, (1.58)

where Cj are the data clusters and µµµj are their respective means/centres. The
algorithm is initialised by randomly selecting the K centres and assigning the data
points to the closest centre. Then iteratively, it recalculates the cluster centres
based on the assignments and re-assigns the data points to the new nearest centre
until convergence. Usually the algorithm is run for a wide range of values for K,
the within-cluster sum of squares (WSS) is calculated for each K and the ‘optimal’
K is chosen with the ‘elbow method’ such that there is no significant decrease in
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WSS after that (see Figure 1.4 for illustration of the elbow method). There have
been different statistics proposed to replace the ‘elbow method’ such as the Calinski-
Harabasz index [Caliński and Harabasz, 1974] and the gap statistic [Tibshirani et al.,
2001].
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Figure 1.4: Illustration of the elbow method for selection of the number of clusters
in k-means clustering. We applied k-means clustering to the iris dataset [Fisher,
1936]. The number of clusters is plotted against the total within groups sum of
squares. The number of clusters is determined by the point after which there is
no significant decrease in the within-cluster sum of squares. In this example, the
optimal number of clusters is chosen to be 2.

There are two main approaches of performing hierarchical clustering [Duda et al.,
1995]: bottom-up (agglomerative) and top-bottom (divisive). They both take as
an input a dissimilarity matrix, which represents the pairwise distances between
observations in the dataset, and produce a clustering. Agglomerative clustering
starts with N groups, each initially containing one object, and at each step it merges
the two most similar groups until there is a single group containing all the data.
There are three common forms of agglomerative clustering based on the similarity
rule used: single linkage, complete linkage, and average linkage. In single linkage,
the two clusters with the closest pair of elements are combined, whereas in complete
linkage, the two clusters separated by the furthest pair of elements are merged.
In average linkage hierarchical clustering, the two nearest clusters A and B are
combined, with the distance being the average of all distances between all pairs of
objects in A and objects in B.

Divisive clustering starts with all the points in a single cluster and at each step,
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Figure 1.5: An example of a dendrogram. This was constructed by applying average
linkage agglomerative clustering to 50 observations from the iris dataset.

using a splitting rule, splits a cluster into two clusters. One way of choosing the
cluster to split is to pick the cluster with the largest diameter (distance between the
two furthest points in the cluster) and split it into two clusters using K-means with
K = 2, which is called bisecting K-means [Steinbach et al., 2000].

The merging/splitting process in hierarchical clustering can be represented in a
dendrogram (binary tree) (see Figure 1.5 for an example of a dendrogram), where
the initial objects are leaves and every time they are merged, we join them in the
tree. The root node represents the group containing all the data, and the height
of the branches represents the dissimilarity between the groups to be joined. The
number of groups is picked in a similar way as in k-means clustering.

Mixture models [McLachlan and Peel, 2004] produce clustering, based on a prob-
ability model of the data. In finite mixture modelling, we assume that there are
K clusters (with parameters θk) and each of observations belongs to one of them.
Finite mixture models can accommodate different types of data by changing the
data generating distribution and have the general form:

p(x) =
K∑
k=1

πkf(x|θk), (1.59)

where πk are the mixture proportions with 0 ≤ πk ≤ 1 and
∑K
k=1 πk = 1, and

f(x|θk) is the selected distribution. The clusters are usually modelled by members
of the same parametric density family. We can use any distribution for the fk(X),
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with the most common mixture model being the mixture of Gaussians of the
form:

p(X) =
∑
C

p(C)p(X|C) =
K∑
k=1

πkN (X|µµµk,Σk) (1.60)

where 0 ≤ πk ≤ 1, is the mixture proportion for the kth component, µµµk and Σk are
the parameters for the kth component, and C = {c1, . . . , cn} is the collection of n
cluster labels ci ∈ {1, . . . ,K}, indicating the cluster membership of the ith observa-
tion xi. Bayesian mixture models contain a prior over the mixing distribution
and a prior over the cluster parameters.

The Expectation Maximisation (EM) algorithm [Dempster et al., 1977] is the most
commonly used technique for estimating the parameters of a mixture model, for ex-
ample Lee and McLachlan [2014]; O’Hagan et al. [2012]; Steiner and Hudec [2007],
but one can also use MCMC methods, such as Gibbs sampling, to infer the cluster
indicators C, the mixture proportions πk and the cluster parameters (mean µµµk and
covariance Σk). This is usually done by specifying priors for all model parameters
and then estimating the posterior distributions which would become the target dis-
tributions in Gibbs sampling. A Dirichlet prior is usually placed on the mixture
weights πk, and inverse-Wishart and Gaussian priors are popular choice for priors
on the cluster covariance and mean, respectively.

As we will see later in this thesis, mixture models are particularly useful when
working with heterogeneous data with non-i.i.d.4 structure. However, they face
computational and statistical difficulties when the data is very high-dimensional
Friedman et al. [2008]; Zhao et al. [2012]. Penalised approaches such as [Städler
et al., 2017; Zhou et al., 2009] using lasso and graphical lasso penalties have been
applied to mixtures in high dimensions. A recently proposed model called model-
based clustering via adaptive projections (MCAP) Taschler et al. [2019] takes a
different approach and instead of estimating the mixtures in the original space, it
models a low-dimensional representation of the data obtained by a linear projection.
The key idea behind MCAP is to achieve a bias-variance tradeoff controlled by the
projection dimension q, which is set in a data-adaptive manner using a stability-
based score derived from clustering subsets of the original data.

The projection dimension itself plays an important role and governs a type of bias-
variance tradeoff with respect to recovery of the relevant signals. MCAP sets the
projection dimension automatically in a data-adaptive manner, using a proxy for the
assignment risk. Combining a full covariance formulation with the adaptive projec-

4independent and identically distributed
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tion allows detection of both mean and covariance signals in very high dimensional
problems.

Spectral clustering [Ng et al., 2002] views clustering in terms of graph cuts. It
creates a weighted undirected graph W from a dissimilarity matrix S and tries to
find a partition into K clusters A1, . . . , AK which minimises

cut(A1, . . . , AK) = 1
2

K∑
k=1

W (Ak, Āk), (1.61)

where Āk is the complement of A and W (A,B) =
∑
i∈A,j∈B wij . This, however,

may lead to clusters with single points. To avoid this, the normalised cut can be
minimised instead:

normalised cut(A1, . . . , AK) = 1
2

K∑
k=1

cut(Ak, Āk)
vol(Ak)

, (1.62)

where vol(Ak) =
∑
i∈A di and di =

∑N
j=1wij is the weighted degree of node i.

1.3.2 Clustering methods for categorical data

The lack of an inherent ordering or geometric distance in categorical data prohibits
the application of the above deterministic clustering methods with categorical data.
Most of the models for discrete data are focused on developing a measure/distance
for categorical data. Here we present a short summary of the most widely used meth-
ods, which could be broadly classified into 3 groups: using overlap-based simi-
larity measure, context-based similarity measure or information-theoretic
clustering criterion.

The methods using overlap-based similarity measure, such as k-modes [Huang,
1998] and ROCK [Guha et al., 2000], compare the overlap between the observations.
K-modes uses a matching dissimilarity measure for categorical objects, which is
the total number of mismatches of the corresponding attributes of two categorical
objects X and Y . The algorithm then finds the modes, which are defined as the
vectors that minimise the dissimilarity measure between the vectors and the clusters,
in a similar fashion to k-means. Guha et al. [2000] introduce a robust clustering
algorithm for categorical data called ROCK, which is an adaptation of agglomerative
hierarchical clustering for categorical data. It heuristically optimises a criterion
function defined in terms of the number of ‘links’ between data points, which is
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the number of common neighbours they have in the dataset. Starting with each
data point in its own cluster, the two closest clusters are merged until the required
number of clusters is reached.

The methods using context-based similarity measure, such as CACTUS [Ganti
et al., 1999] and STIRR [Gibson et al., 1998], compare the context in which the
attributes of the observations appear. For two categorical attribute values, the
context is defined as the values of other attributes with which they co-occur in the
dataset. The idea behind CACTUS (Clustering Categorical Data Using Summaries)
is that a summary of the entire dataset is sufficient to compute a set of ‘candidate’
clusters which can then be validated to determine the actual set of clusters. STIRR is
an iterative algorithm based on non-linear dynamical systems, where each attribute
value is represented as a weighted vertex in a graph. Multiple copies b1, . . . , bm,
called basins, of this set of weighted vertices are maintained, with b1 being a principal
basin and b2, . . . , bm - non-principal basins. Starting with a set of weights on all
vertices, the system is iterated until a fixed point is reached. The authors argue
that when the fixed point is reached, the weights in one or more of the basins
b2, . . . , bm isolate two groups of attribute values on each attribute: the first with large
positive weights and the second with small negative weights, and that these groups
correspond to projections of clusters on the attribute. However, the automatic
identification of such sets involves a non-trivial post-processing step, which also
makes identifying the clusters a very difficult task. Algorithms such as COOLCAT
[Barbará et al., 2002] which use an information theoretic criterion aim to generate
clusters with low entropy as this implies that the clusters are homogeneous. Given
a set of clusters, COOLCAT places the next point in the cluster which minimises
the overall expected entropy. It acts incrementally and is able to cluster every new
point without having to reprocess the entire set.

1.3.3 Clustering methods for mixed data

Clustering mixed data (e.g. datasets comprising both continuous and categorical
measurements) possesses similar challenges to clustering categorical data in addi-
tion to the challenge of modelling different types of data. Here we present a short
summary of the most widely used techniques.

k-prototypes [Huang, 1997], is an extension of k-means clustering to mixed data
and dynamically updates the k prototypes (cluster centres) in a similar fashion to
k-means in order to maximise the intra-cluster similarity of objects. The object
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similarity measure is derived from both numeric and categorical attributes, with
the similarity measures being the squared Euclidean distance and the number of
mismatches between object and cluster prototypes. This algorithm can be used
with large datasets with many features. Huang et al. [2005] modify the algorithm
by incorporating weights on the features, based on the importance of the features
in generating the clustering result (small weights reduce the effect of noisy vari-
ables). Modha and Spangler [2003] similarly use weights on the features but use
squared Euclidean distance for the continuous variables and cosine distance for the
categorical features.

Another popular algorithm is similarity based agglomerative clustering (SBAC)
[Li and Biswas, 2002]. It uses a similarity measure that gives greater weight to un-
common attribute value matches and outputs the partition using agglomerative
clustering. Philip and Ottaway [1983] apply agglomerative clustering approach as
well in which the similarity matrix is computed using Gower’s similarity measure 5.

Another approach to clustering mixed data is to use an ensemble method. One
such method is cluster ensemble based mixed data clustering (CEBMDC),
developed by He et al. [2005]. It applies numeric and categorical clustering algo-
rithms to the data, which is divided into 2 datasets, numeric and categorical, and
then finds a final partition by using cluster ensembling, which combines several runs
of different clustering algorithms to obtain a common partition. Here the cluster
ensemble problem is transformed into a categorical data clustering problem, where
the partitions of the continuous and categorical datasets are combined into a dataset
which is then clustered with a method for clustering categorical data. The authors
use the Squeezer algorithm introduced in He et al. [2002] which adds an observation
to a cluster based on a similarity measure related to cluster summary statistics.

Liverani et al. [2015] present an alternative to these approaches by implementing
a Dirichlet process mixture model in their R package PReMiuM [Liverani et al.,
2015]. The model performs profile regression which nonparametrically links a (bi-
nary, categorical, count and continuous) response variable to (continuous and dis-
crete) covariate data through the cluster membership. The model allows as well for
the modelling of missing data.

5this involves dividing the features into two subsets: one for the categorical data, and another
for the numeric features [Gower, 1971]
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1.3.4 Nonparametric Bayesian methods for clustering

A common challenge with the clustering models that we introduced is that they
require the choice of the number of clusters K in advance. This is why we are
interested in models in which we do not specify K, but instead allow the complexity
of the model to grow as more data is observed. The Bayesian nonparametric (BNP)
approach to clustering achieves that by estimating the number of clusters from the
data and by allowing future data to exhibit unseen clusters. The main assumption
in this approach is that there is an infinite number of clusters, but only a finite
number of clusters is used to generate the data. This is achieved by placing a prior
P (C) on the cluster indicators C that favours assigning the observations to only
a small number of clusters. An example of such prior is called Dirichlet process
[Antoniak, 1974; Escobar and West, 1995], which will present in more details as it
will play an important role in the models we will develop in this thesis.

The Dirichlet process (DP) [Ferguson, 1973] defines a distribution on distribu-
tions. If Θ is a measurable space, then a Dirichlet process is parameterised by a base
measure G0 on Θ and a positive scalar concentration parameter α. It is characterised
by the distribution it induces on finite measurable partitions of the parameter space.
This means that if we divide the parameter space into measurable partitions, we
want the probability distribution G on Θ to follow a Dirichlet distribution on each
partition. We formalise this in the following theorem:
Theorem 1. Let G0 be a probability distribution on a measurable space Θ, and α

be a positive scalar. Consider a finite partition (T1, . . . , TK) of Θ, with ∪Kk=1Tk = Θ
and Tk∩Tl = ∅. A random probability distribution G on Θ is drawn from a Dirichlet
process if its measure on every finite partition (T1, . . . , Tk) of Θ follows a Dirichlet
distribution

(G(T1), . . . , G(TK)) ∼ Dir(αG0(T1), . . . , αG0(TK)) (1.63)

Proof. The characterisation in (1.63) is true if the probabilities add appropriately
when a partition’s cells are combined. This is guaranteed by the aggregation prop-
erties of finite Dirichlet distribution (1.64). Another way of proving the existence of
Dirichlet process is by using Kolmogorov’s consistency conditions [Ferguson, 1973]
which are satisfied for any stochastic process.

The base measure G0 in a Dirichlet process specifies the mean of DP(α,G0) as
E[G(T )] = G0(T ). The Dirichlet process draws distributions around the base dis-
tribution in the same way the normal distribution draws real numbers around its
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mean.

The concentration parameter α can be interpreted as an inverse variance since
Var[G(T )] = G0(T )(1−G0(T )

α+1 [Teh, 2011]. The larger α, the smaller the variance and
the mass of the DP concentrates around the mean.

This can be seen from the plots below (Figure 1.6) which show realisations of the
Dirichlet distribution for different concentration parameter α. Higher values of α
result in more spread out draws, whereas lower values of α give more concentrated
draws.

alpha = 0.1 alpha = 1 alpha=10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0.00

0.25

0.50

0.75

1.00

Figure 1.6: Samples from a Dirichlet distribution for α = {0.1, 1, 10}.

One of the useful properties of the Dirichlet distribution is the aggregation property,
which is particularly helpful for deriving the posterior and predictive distributions
for the Dirichlet process. If πππ ∼ Dir(α), then the multinomial parameters attained
by aggregation also follow Dirichlet distribution. For example, adding the first two
parameters results in

(π1 + π2, π3, . . . , πK) ∼ Dir(α1 + α2, α3, . . . , αK). (1.64)

Aggregation of any subset of the categories results in a Dirichlet distribution.
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Posterior distribution

If the prior on G is a Dirichlet process (p(G) = DP(α,G0)), and we observe θ

(p(θ|G) = G(θ)), then the posterior distribution is also a Dirichlet process because
of the conjugacy of Dirichlet distribution:

(G(T1), . . . , G(TK)|θ ∈ Tk) ∼ Dir(αG0(T1), . . . , αG0(Tk) + 1, . . . , αG0(Tk)). (1.65)

This can be extended to N observations:

p(G|θ1, . . . , θn) = DP(α+ n,
α

α+N
G0 + 1

α+N

N∑
i=1

δθi
), (1.66)

which can be shown to be true using the conjugacy of finite Dirichlet distributions
[Teh, 2011].

Other representations

The preceding subsections provided implicit representation of the Dirichlet process
and outlined some of its properties but they did not provide a scheme for sampling
from a Dirichlet process or an expression for its predictive distribution. We will
now describe three different representations of the Dirichlet process: the Chinese
Restaurant Process [Hjort et al., 2010],the stick-breaking process [Sethura-
man, 1994] and the Pólya Urn Model [Blackwell and MacQueen, 1973], which
have been popular in the Bayesian nonparamterics literature and play an important
role in the computational methods for Dirichlet processes.

The implicit data partition property of the Dirichlet process evokes a comparison
with the idea of the never-ending tables in San Francisco’s Chinatown, named Chi-
nese restaurant process (CRP) [Pitman et al., 2002; Hjort et al., 2010]. Let
us imagine an initially empty restaurant with an infinite number of tables in it
K = 1, . . ., where only a finite number of them are going to be occupied. Customer
1 (with value φ1) comes and by sitting down starts a group and sets the group/table
parameter θ1 for the rest of the group. After that customer 2 comes and joins cus-
tomer 1 with probability 1

α+1 or sits on a new table with probability α
α+1 . Similarly,

the N + 1st customer sits down at a new table with probability α
α+N or joins table

k with probability Nk
N+α , where Nk denotes the number of people already at table k

and N is the total number of customers so far. In this way, we obtain a procedure
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for drawing samples from DP.

We summarise the algorithm for generating samples from a Chinese restaurant pro-
cess below:

Algorithm 1.3: Generating samples from Chinese restaurant process
Customer 1 enters the restaurant and sits at table 1
φ1 = θ1,K = 1, N = 1, Nk = 1 ;

for N = 2, . . . , do
customer N sits at table k with probability Nk

N−1+α and at table K + 1 (new
table) with probability α

N−1+α ;
if new table was chosen then

K ← K + 1, θK+1 ∼ G0 ;
end
set φN to θk of the table k at which customer N sat ;
set Nk ← Nk+1

end

We can represent the same generation of samples in two analogous ways by using
the concept of Pólya Urn Model [Blackwell and MacQueen, 1973] and the stick-
breaking process [Sethuraman, 1994].

In the Pólya Urn model, we start with an urn containing αG0(x) balls of colour x
for each possible colour of x, withG0 denoting the base distribution. At each step, we
draw a ball from the urn, note its colour and then return it back in the urn together
with another ball from the same colour. This generates samples from a Dirichlet
process without having to construct the underlying mixture G ∼ DP(α,G0).

The following theorem summarises the model and the derivation of the predictive
distribution.
Theorem 2. Let G ∼ DP(α,G0) be distributed according to a Dirichlet process,
where the base measure G0 has corresponding density g(θ). If we consider a set of N
observations θ̄i ∼ G taking K distinct values {θ}Kk=1, then the predictive distribution
of the next observation is equal to

p(θ̄N+1 = θ|θ̄1, . . . , θ̄N , α,G0) = 1
α+N

(
αg(θ) +

K∑
k=1

Nkδ(θ, θk)
)

(1.67)

where Nk is the number of previous observations of θk.

The stick-breaking process provides another way of generating samples from a
Dirichlet process. We will provide first the theorem which outlines the process.
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Theorem 3. Let π = {πk}∞k=1 be an infinite sequence of variables derived from the
following stick-breaking process, with a parameter α > 0:

βk ∼ Beta(1, α) k = 1, 2, . . . (1.68)

πk = βk

k∏
l=1

(1− βl) = βk(1−
k−1∑
l=1

πl). (1.69)

Given a base measure G0 on Θ, consider the following discrete random measure:

G(θ) =
∞∑
k=1

πkδ(θ, θk) θk ∼ G0. (1.70)

This construction guarantees that G ∼ DP(α,G0). Conversely, samples from a
Dirichlet process are discrete and have a representation as in (1.9)

This construction is illustrated in Figure 1.7. Variables πk partition the unit length
stick, with the kth variable πk being a random proportion βk of the remaining stick.
We use π ∼ GEM(α) [Ishwaran and Zarepour, 2002; Pitman et al., 2002] to indicate
the set of variables sampled from this process, where GEM is named after Griffiths,
Engen and McCloskey.

β1 1 - β1

β2 1 - β2

β3 1 - β3

β4 1 - β4

π1

π2

π3

π4

⋮

Figure 1.7: Diagram representing the stick-breaking process for sampling from a
Dirichlet process

This construction provides an alternative representation of the concentration pa-
rameter α. As βk ∼ Beta(1, α), then we have that

E[βk] = 1
1 + α

1
. (1.71)

larger α.

These three different representations of the Dirichlet process illustrate not only the
discreteness property of draws from a DP, but also the clustering property of DP.
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The unique values of θ1, . . . , θN induce a partitioning of {1, . . . , N} into clusters,
with each cluster taking the same value θ∗k.

Exchangeability

It is important to note that the cluster assignments under the CRP distributions
are exchangeable as this enables inference in models which use DPs. The property
follows immediately from de Finetti’s theorem [De Finetti, 1937; Diaconis, 1977]
and means that the joint distribution

p(c1, c2, . . . , cN ) = p(c1)p(c2|c1)p(c3|c1, c2) . . . p(cN |c1, c2, . . . , cN−1)

is independent of the order of which the observations are assigned to clusters. We
will now show why this is the case.

If Ik denotes the set of indices of customers assigned to the kth group, K is the
number of occupied groups and Nk is the number of customers assigned to the
kth group, then the product of terms that correspond to the customers in the kth

group α.1.2...(Nk−1)
(Ik,1−1+α)(Ik,2−1+α)...(Ik,Nk

−1+α) can be derived as follows: the first customer
in group k contributes α

Ik,1−1+α as he/she starts a new cluster, the second customer
contributes 1

Ik,2−1+α , the third one - 2
Ik,3−1+α and so on. Hence, we can rewrite the

joint distribution

p(c1:N ) =
K∏
k=1

α(Nk − 1)!
(Ik,1 − 1 + α)(Ik,2 − 1 + α) . . . (Ik,N − 1 + α)

= αK
∏K
k=1(Nk − 1)!∏N

i=1(i− 1 + α)
,

(1.72)

which implies the exchangeability.

In addition to the exchangeability, the probability of starting a new group depends
on the concentration parameter α - lower α corresponds to fewer clusters (a priori),
whereas the higher α leads to more clusters. It can be shown that the number
of occupied tables K almost surely approaches α log(N) as N → ∞ [Petrone and
Raftery, 1997; Pitman et al., 2002; Müller and Mitra, 2013].
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1.3.5 Clustering methods for data integration

The advances of measurement technologies such as sequencing the human genome
[National Human Genome Research Institute, 2018] (Figure 1.8) has led to the
availability of very detailed and precise genomic information about large cohorts of
cancer patients. This data has provided many insights in the changes occurring in
different types of cancer and in the different cancer subtypes [Cancer Genome Atlas
Network and others, 2012a,b; Shen et al., 2009; Gabasova et al., 2017; Argelaguet
et al., 2018].

Figure 1.8: The cost of sequencing human genome. Credit: National Human
Genome Research Institute [2018].

In order to model the high dimensionality and complexity of omics data appropri-
ately, many novel methods have been developed, for example Shen et al. [2009];
Savage et al. [2010]; Yuan et al. [2011]; Lock et al. [2013]; Lock and Dunson [2013];
Kirk et al. [2012]. One of the most commonly used approaches for modelling multi-
source input is to separately cluster each data type and then manually integrate
the results [Hoadley et al., 2014]. This, however, does not model the interactions
between the different data types and leads to inconsistent clustering. Here we are
interested in the development of integrative approaches which allow joint inference
(across all datasets) and which identify a single clustering structure. There are two
major challenges to the development of such approach. To capture both concor-
dant and unique alterations across data types, separate modelling of the covariance
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between data types and the variance-covariance structure within data types is re-
quired. The second challenge is incorporating dimensionality reduction, which is
a key to the feasibility and performance of integrative clustering approaches when
modelling high-dimensional data.

Shen et al. [2009] address these challenges using the connection between k-means
clustering and latent variable models. Their model, iCluster, is based on a joint
latent variable model, which models tumour subtypes as clusters in an unobserved
(latent) space which can be estimated simultaneously from all available data type.

iCluster jointly estimates the latent variables Z from, for example, copy number vari-
ation data X1, methylation data X2, gene expression data X3 and other continuous
genomic datasets. The mathematical form of the model is as follows:

X1 = W1Z + εεε1

X2 = W2Z + εεε2

...

Xt = WtZ + εεεt,

where t is the number of different datasets, Z denotes the latent variables which
induce dependencies across all data types and represent the underlying driving fac-
tors than can be used for disease subtype assignment, W. are the loading matrices
which project the data onto a lower dimension space, and εεε. are the independent error
terms which represent any unaccounted variances. An Expectation-Maximisation
algorithm, which alternates between computing the expected value of the complete-
data log-likelihood with respect to Z given X and the current estimates of W. and
εεε. in the E-step, and updating W. and εεε. in the M-step is used to infer the model
parameters. Once convergence is reached, the posterior mean E[Z|X] is computed
and the final partition is found by applying k-means to E[Z|X]. The model selection
is performed using a proportion of deviance (POD) metric, defined in terms of the
cluster separability. The model closest to having perfectly separated clusters, and
thus with the lowest POD, is chosen as the final model. Shen et al. [2009] deal with
the high dimensionality of the data by using a lasso penalty [Tibshirani, 1996] to
perform variable selection. This also reduces the variance of the model and leads to
better clustering performance.

To address the limitation of iCluster to modelling only continuous data, iClus-
terPlus [Mo et al., 2013] was developed to integrate different data types (binary,
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categorical, continuous).

In iClusterPlus, the genomic variables xijt (ith sample, jth genomic feature, tth data
type) are connected to the latent process via a parametric joint model in which
different genomic features are correlated through zi. If xijt is a binary variable, for
example, mutation or gender, it is modelled by a logistic regression

log p(xijt = 1|zi)
1− p(xijt = 1|zi)

= αjt + βjtzi, (1.73)

where p(xijt = 1|zi) is the probability of gene j being mutated in patient i given
the value of the latent factor zi, αjt is an intercept term, and βjt is a length-k row
vector of coefficients that determine the weights genomic variable j contributes to
the latent variables.

If xijt is a multicategory variable, a multilogit regression is used to model it:

P (xijt = c|zi) = exp(αjct + βjctzi)∑C
l=1 exp(αjlt + βjltzi)

, (1.74)

where the coefficients have similar interpretation to the logit case.

If xijt is a continuous variable, then it is modelled by a linear regression to follow a
Normal distribution:

xijt = αjt + βjtzi + εijt, (1.75)

where the error terms are uncorrelated.

Finally, if xijt is a count variable, it is modelled by a Poisson regression:

log(λ(xijt|zi)) = αjt + βjtzi (1.76)

where λ(xijt|zi) is the conditional mean of the count given zi.

Similarly to iCluster, the lasso (L1-norm) penalty is applied in iClusterPlus to iden-
tify the genomic variables which make important contributions to the latent process.
A modified Monte Carlo Newton-Raphson algorithm has been used to address the
intractable joint log-likelihood when different types of data are modelled. In ad-
dition, the number of clusters is determined by a deviance ratio metric that can
be interpreted as the percentage of total variation explained by the correct model.
The optimal number of clusters is determined by the point of transition after which
there is no significant change in the deviance ratio. Although iClusterPlus deals
well with the challenge of modelling different types of data, the statistical inference
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is not very straightforward. This is due to the fact that for each number of princi-
pal components, an extensive parameter search needs to be performed in order to
determine the optimal penalty parameter values.

The authors of iCluster and iClusterPlus address the disadvantages of the models
by developing iClusterBayes [Mo et al., 2017], which not only jointly models omics
data of continuous and discrete data types but also improves on the inference and
computational speed. It models a continuous variable yijt in the tth dataset by a
linear regression

yijt = xiΓΓΓjtβββjt + εεεijt, (1.77)

where βββjt = (β0jt, . . . , βkjt)ᵀ is the coefficient vector associated with the jth feature
in the tth data set with βββjt ∼ N (βββ0t,ΣΣΣ0t), ΓΓΓjt = diag(1, γjt, . . . , γjt) with γjt ∼
Be(qt), xi = (1, zi), where zi is the ith latent variable and zi ∼ N (0, Ik) where k
is the number of latent dimensions, and εεεijt ∼ N (0, σ2

jt) is a random error term
with σ2

jt ∼ IG(ν0/2, ν0σ
2
0/2). Gibbs sampling is used to sample from the posterior

distributions of σ2
jt and βββjt, where Metropolis Hastings is used to infer γjt and zi.

If yijt is a binary variable, indicating , for example, the presence or absence of a
mutation, it is modelled by logistic regression:

log p(yijt = 1|zi)
1− p(yijt = 1|zi)

= xiΓΓΓjtβββjt, (1.78)

where zi,ΓΓΓjt and βββjt have the same interpretation and priors as in the continuous
case. If yijt is a count variable, then it is modelled by Poisson regression

log(λ(yijt|zi)) = xiΓΓΓjtβββjt, (1.79)

where zi,ΓΓΓjt and βββjt have the same interpretation and priors as in the continuous
and binary cases. As the posterior distributions of ΓΓΓjt and βββjt have no closed form
expressions in the binary and count data case, they are inferred via Metropolis
Hastings.

Savage et al. [2010] propose a data fusion model which infers transcriptional modules
by integrating gene expression and transcription factor binding data. The model
extends the hierarchical Dirichlet process model of Teh et al. [2005] to allow the
data fusion on gene-by-gene basis. It introduces an indicator variable for each gene
to determine whether the gene should join a cluster based on both data sources or
if it should be clustered separately for each source.
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Patient-specific data fusion model (PSDF) proposed by Yuan et al. [2011] is
an extension of the model proposed by Savage et al. [2010]. It similarly uses a
two-level hierarchy of Dirichlet processes, where each patient has a binary state ri
that defines whether their data are concordant across the data types and are either
fused (allocated to the same cluster across all datasets, ri = 1) or unfused (ri = 0).
PSDF requires discretisation of the data, which is then modelled by a naive Bayes
data model. It incorporates feature selection by using another indicator variable
Ia, which denotes whether a feature is on or off. Similarly to Savage et al. [2010],
the inference is performed by MCMC methods, which also require considerable
computational costs.

Another Bayesian method for unsupervised integrative clustering of multiple datasets
is Multiple Dataset Integration (MDI) [Kirk et al., 2012]. Each dataset is mod-
elled as a finite approximation to a Dirichlet process mixture model [Ishwaran and
Zarepour, 2002], which has the following form:

p(x) =
N∑
c=1

πcf(x|θc). (1.80)

In (1.80) f(x) is the probability density model for the data, πc are the mixing
proportions, f is a parametric density and θc are the parameters of component c. To
aid inference, latent component allocation variables cj ∈ {1, . . . , N} are introduced,
with ci being the component responsible for xi. The full model specification is as
follows:

xi|ci, θ ∼ F (θci)

ci|π ∼Mult(π1, . . . , πN )

π1, . . . , πN ∼ Dir(α/N, . . . , α/N)

θc ∼ G(0),

where F is the distribution corresponding to density f , π = (π1, . . . , πN ) is the N
mixture proportions, α is a concentration parameter, and G(0) is the prior for the
component parameters. MDI can be applied to any type of data; for example, Kirk
et al. [2012] use Gaussian process models for gene expression time series data and
multinomial model for categorical data. The inference of the model parameters is
performed using a Gibbs sampling scheme.

MDI links the models for the datasets via the conditional prior on the component
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allocation variables

p(ci1, ci2, . . . , ciK |φ) ≈
K∏
k=1

πcikk

K−1∏
k=1

K∏
l=k+1

(1 + φklI(cik = cil)), (1.81)

where I is the indicator function, φkl ∈ R≥0 is a parameter that controls the strength
of association between datasets k and l and φ is the collection of all φkls. Note that
cik is the component allocation variable associated with gene i in model k, and that
πcikk is the mixture proportion associated with component cik in model k. The larger
φkl, the more likely it is that cik and cil will be the same, and hence the greater
similarity between the clustering structure of dataset k and dataset l. As MDI only
looks at the pairwise relations between datasets, this can limit the interpretability of
the results. Although the authors use the model to find groups of genes that cluster
together in gene expression and ChIP-chip data, it can similarly be applied to find
groups of patients that cluster together in different genomic data sources [Savage
et al., 2013].

Other data integration methods similarly use Dirichlet process mixture model since
it offers scalable inference and learns the number of clusters from the data. One
example is Bayesian Consensus Clustering (BCC) proposed by Lock and Dun-
son [2013]. This model extends a Dirichlet process mixture model to accommodate
data from M sources X1, . . . ,XM . Each dataset is available for a common set of N
objects and requires a probability model fm(Xn|θm) parameterised by θm. There is
a separate clustering of the objects for each data type, but they adhere loosely to
an overall clustering based on a parameter αm.

The source specific clusterings Lm are connected to the overall clustering C via a
dependence function ν:

P (Lmn = k|Cn) = ν(k,Cn, αm), (1.82)

where Lmn ∈ {1, . . . ,K} is the component corresponding to object n in dataset
m and Cn ∈ {1, . . . ,K} is the overall mixture component for object n. Since the
datasets are independent of C conditional on the source-specific clusterings, C serves
to unify the source-specific clusterings.

BCC differs from traditional consensus clustering, often used to combine multiple
realisations from the same algorithm, in that the clusterings are modelled in a statis-
tical way that allows for uncertainty in all parameters, and both source-specific and
consensus clusterings are estimated simultaneously and the strength of association
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is learned from the data. However, as the authors point out, the model tends to
select a large number of clusters even when the Dirichlet process concentration pa-
rameter is very small, which is unrealistic from biological point of view. Thus they
consider an alternative heuristic measure that selects the number of clusters which
give maximum adherence to an overall clustering. The use of this measure coupled
with a Gibbs sampling inference scheme, leads to more computationally demanding
and less straightforward inference.

Some of the methods described above consider only the shared structure between
the molecular datasets. However, the individual data structure can be informative.
To account for both shared and individual structure, Lock et al. [2013] develop the
Joint and Individual Variation Explained (JIVE) model. It uses the biolog-
ical relation between different types of molecular data, which motivates the idea
of shared patterns between these types of data, referred to as the joint structure.
JIVE decomposes a dataset into a sum of three terms: a low-rank approximation
capturing joint structure between data types, low-rank approximations capturing
structure individual to each data type, and residual noise.

For example, if we want to integrate data from multiple data sources X1, . . . ,Xk,
where k ≥ 2, then each of the matrices is decomposed as follows:

X1 = J1 + A1 + εεε1

...

Xk = Jk + Ak + εεεk,

where Ai is the matrix representing the individual structure of Xi, Ji is the subma-
trix of the joint structure matrix associated with Xi, and εεεi are pi×n error matrices
of independent entries. The joint structure matrix J has all the Ji matrices stacked
together and the rows of the joint and individual patterns are orthogonal: JAᵀ

i = 0.
This implies that the sample patterns responsible for joint structure between data
types are unrelated to sample patterns responsible for individual structure.

The joint and individual structures are estimated by minimising the sum of squared
error. R is the p × n matrix of residuals after accounting for joint and individual
structure. The matrices J,A1, . . . ,AK are estimated by minimising ||R||2 under the
given ranks. This is accomplished by iteratively estimating the joint and individual
structure:

• Given J, find A1, . . . ,Ak to minimise ||R||.
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• Given A1, . . . ,Ak find J to minimise ||R||.

• Repeat until convergence.

We finish our review of clustering algorithms for data integration with two of the
most recently developed algorithms: Clusternomics [Gabasova et al., 2017] and
a multi-omics factor analysis model, created by Argelaguet et al. [2018]. Clus-
ternomics is a probabilistic clustering method which models clusters on the level of
individual datasets using hierarchical Dirichlet process mixture models [Teh et al.,
2005], whilst also extracting global structure that arises from the local cluster as-
signments. The method makes the assumptions that the clustering structure in one
of the datasets should influence the clustering in other, and that different degrees
of dependence should be allowed between clusters across datasets. However, Clus-
ternomics requires setting up the number of global clusters to a specific value, and
derives the global clusters as a combination of local clusters, which often results
in prohibitively many combinations to compute in timely fashion. Although the
authors provide a way of reducing the number of combinations required to define
the global clusters, the model inference which uses Gibbs sampling is still slow.

The multi-omics factor analysis (MOFA) model proposed by Argelaguet et al. [2018]
is a generalisation of principal component analysis to multi-omics data. The method
builds on group factor analysis [Virtanen et al., 2012; Khan et al., 2014; Klami et al.,
2015; Bunte et al., 2016; Leppäaho et al., 2017] and models each dataset Ym for
m = 1, . . . ,M as follows

Ym = ZWmᵀ + εεεm, (1.83)

where Z are the latent factors, Wm is the loadings matrix associated with the
mth dataset and εεεm is the residual error associated with the mth dataset. It can
handle missing data and model different types of data, and performs inference using
variational approximations. Although the inference scheme is faster than in other
methods, it does not provide a full posterior of the model parameters.

We summarise the most important features of the integrative clustering methods in
Table 1.1.
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Model Data types Estimate num-
ber of clusters

Inference Reference

iCluster continuous proportion of
deviance

Expectation
Maximisation

Shen et al.
[2009]

iClusterPlus continuous, bi-
nary, categori-
cal, count

deviance ratio modified
Monte Carlo
Newton-
Raphson

Mo et al.
[2013]

iClusterBayes continuous, bi-
nary, categori-
cal, count

deviance ratio random walk
MH

Mo et al.
[2017]

MDI continuous, bi-
nary, categori-
cal, count

DPMM Gibbs Sam-
pling

Kirk et al.
[2012]

PSDF continuous, bi-
nary, categori-
cal, count

DPMM Gibbs Sam-
pling

Yuan et al.
[2011]

BCC continuous, bi-
nary, categori-
cal, count

Max adher-
ence to an
overall cluster-
ing

Gibbs Sam-
pling

Lock and
Dunson
[2013]

JIVE continuous Using scores Optimisation Lock et al.
[2013]

Clusternomics continuous, bi-
nary, categori-
cal, count

Using DIC Variational in-
ference/Gibbs
sampling

Gabasova
et al. [2017]

MOFA continuous, bi-
nary, count

Using scores Variational in-
ference

Argelaguet
et al. [2018]

Table 1.1: Important features of the data integration clustering methods used in
the analyses summarised in this chapter.
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1.3.6 Variable selection

When we perform variable selection for a clustering task, we ideally want to keep
only the relevant features, which contain essential information to perform the task,
and discard any uninformative variables that offer no discriminative power. There
are two main types of methods that aim to achieve that: filter and wrapper [Fop
et al., 2018].

The filter techniques assess the relevance of features by looking only at the statistics
of the data such as variance, correlation or mutual information. These techniques are
often used to preselect variables in the analyses of datasets with too many variables.
The inferred classification is then used to assess the quality of the selected variables.
Since the variable selection and model estimation are decoupled,this approach can
miss important and relevant information.

In contrast, the wrapper methods perform learning and variable selection at the
same time. They have become increasingly popular because they can provide a
better representation of the data generating process and lead to a more accurate
classification Dy and Brodley [2004]; Law et al. [2004]. The wrapper methods are
split into 3 categories based on the statistical approach used to select the variables.
The Bayesian approach assumes that there is a latent variable indicating whether
an observed variable is informative or not. The model selection approach refor-
mulates the task of variable selection as a model selection problem. The features are
selected by comparing the models using a predefined criterion. The third approach
is performed using a penalisation term which shrinks the estimates for the model
parameters towards an overall common value, which implies the irrelevance of the
corresponding features.

1.3.7 Comparing two clustering partitions

In order to compare the outputs from the models summarised above and developed
in this thesis, we need a meaningful ‘measure’, which should ideally tell us how
similar two partitions are, how close to the ground truth a certain partition is and
whether the algorithm is susceptible to small perturbations and to the order of the
data. We provide below a short summary of the most commonly used measures,
which serves as a justification for our choice of measure.

Consider a finite dataset X with cardinality |X| = N , and two clustering partitions
of the dataset C = {C1, . . . , Ck} and C ′ = {C ′1, . . . , C ′l}, with C1, . . . , Ck being the
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k clusters forming partition C and C ′1, . . . , C ′l being the l clusters forming partition
C ′. We can measure how similar two partitions are based on counting pairs, on
mutual information and on set overlaps. We will focus on the first two types of
measure as the measures based on set overlaps are difficult to use because of their
asymmetry [Wagner and Wagner, 2007].

The measures based on counting pairs count the number of pairs of objects classified
in the same way in both clusterings.

One such measure is the Chi-squared coefficient [Mirkin, 2001], which is defined
as follows:

χ(C,C ′) =
k∑
i=1

l∑
j=1

(mij − Eij)2

Eij
, (1.84)

where mij = |Ci
⋂
Cj | and Eij = |Ci||C′j |

n . Although this measure is easy to use, it
requires strong assumptions such as the independence of the two clusterings.

The Rand Index [Rand, 1971] was motivated by classification problems where the
ground truth is known. It counts the number of correctly classified pairs of elements
and is defined as follows:

RI(C,C ′) = 2(n11 + n00)
N(N − 1) , (1.85)

where n11 is the number of pairs in the same cluster under C and C ′ and n00 is the
number of pairs in different clusters under C and C ′. The value of the Rand index
ranges from 0 to 1 but is highly dependent on the number of clusters as shown by
Morey and Agresti [1984].

The expected value of the Rand Index of two random partitions does not take a con-
stant value. To address this issue, Hubert and Arabie [1985] propose an adjustment
which assumes a generalised hypergeometric distribution as the null hypothesis.
This means that two clusterings are drawn randomly with a fixed number of clus-
ters and a fixed number of elements in each cluster. The proposed adjusted Rand
Index measure [Kuncheva and Hadjitodorov, 2004] is the normalised difference of
the Rand index and its expected value under the null hypothesis:

ARI(C,C ′) =
∑k
i=1

∑l
j=1

(mij

2
)
− t3

1
2(t1 + t2)− t3

, (1.86)

where t1 =
∑k
i=1

(|Ci|
2
)
, t2 =

∑l
j=1

(|C′i|
2
)

and t3 = 2t1t2
N(N−1) . This index has expected

value zero for independent clusterings and maximum value of 1 for identical clus-
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terings. We should take into account the strong assumptions about the model of
randomness this index makes when we use it.

Another widely used measure is the Jaccard index, which is very similar to the
Rand Index but it disregards the pairs of elements that are in different clusters for
both clusterings. It is defined as follows:

J (C,C ′) = n11
n11 + n10 + n01

, (1.87)

where n10 is the number of pairs that are in the same cluster under C but in different
ones under C ′, and n01 is the number of pairs that are in different clusters under C
but the same under C ′.

Another popular approach to comparing two partitions is based on mutual infor-
mation.

When applied to clustering, the entropy associated with clustering C [Meilă, 2007]
is

H(C) = −
k∑
i=1

P (i) log2 P (i), (1.88)

where P (i) = |Ci|
n is the probability that this element is in cluster Ci. This implies

that the entropy of a clustering is a measure for uncertainty about the cluster of a
randomly picked element. This notion of entropy can be extended to that of mutual
information, which describes how much we can reduce the uncertainty about the
cluster of a random element when knowing its cluster in another clustering of the
same set of elements. It is defined as follows

I(C,C ′) =
k∑
i=1

l∑
j=1

P (i, j) log2
P (i, j)
P (i)P (j) , (1.89)

where P (i, j) is the probability that an element belongs to cluster i in C and to
cluster j in C ′. The mutual information is a metric on the space of all clusterings
but it is not bounded by a constant value which makes it difficult to interpret.

Strehl and Ghosh [2002] try to address this issue by developing a normalised
mutual information metric which is defined below

NMI1(C,C ′) = I(C,C ′)√
H(C)H(C ′)

(1.90)

and is bounded between 0 and 1.
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Another proposal for normalised mutual information is made by Ana and Jain
[2003]. Their proposed metric takes the following form

NMI2(C,C ′) = 2I(C,C ′)
H(C) +H(C ′) , (1.91)

which is similarly bounded between 0 and 1. However, NMI has been shown to
favour partitions with more clusters and to overestimate the number of true clusters
[Amelio and Pizzuti, 2015].

Based on the advantages and disadvantages of the measures outlined above we have
picked to work with the Adjusted Rand Index (1.86) when the ground truth is
available.

1.4 Latent variable models

A latent variable model aims to express the distribution of N d-dimensional
observations X = (x1, . . . ,xN ) with a set of p-dimensional latent (unobserved) vari-
ables Z, where p < d. We assume that we can factorise the joint distribution
p(X,Z) = p(X|Z)p(Z) =

∏N
i=1 p(xi|Z)p(Z). Under a latent variable model, the con-

ditional distribution p(X|Z) can be expressed in terms of a mapping W from the
latent variables to the observations

X = f(Z; W) + εεε (1.92)

where f is the mapping with parameter W and εεε is noise, independent from the
latent variables. The definition of the latent variable model is completed by spec-
ifying a prior on the latent variables Z, a prior on the noise p(εεε) and a mapping
f(Z; W) [Bishop, 1998].

1.4.1 Latent variable models for continuous data

We start by describing principal component analysis (PCA) [Hotelling, 1933;
Jolliffe, 1986], which although not a probabilistic model, can be extended to a prob-
abilistic latent variable model. It is a well-established technique for dimensionality
reduction that is widely used for applications such as image processing, feature
extraction, exploratory data analysis, visualization, and pattern recognition.

There are two commonly used definitions of PCA which give rise to the same model.
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The most common derivation of PCA is in terms of orthogonal projection of the
data onto a lower-dimensional linear space, also called principal subspace, so that
the retained variance under the projection is maximised. It can be shown that for
a set of observed d-dimensional data xn, n ∈ {1, . . . , N}, the p (p < d) principal
axes wj are those orthonormal axes which satisfy the maximal variance condition.
The p principal components of the observed vectors xn are given by the vectors
zn = Wᵀ(xn − x̄) where W = {w1,w2, . . . ,wp}.

An alternative derivation of PCA is based on the minimisation of error projection.
Bishop [2006] shows that of all orthogonal linear projections zn, the principal com-
ponent projections minimise the reconstruction error

∑
n |xn − x̂n|2, and that the

optimal linear reconstruction of xn is given by x̂n = Wzn + x̄.

A probabilistic extension of PCA, known as probabilistic PCA (PPCA) has been
proposed by both Roweis [1998] and Tipping and Bishop [1999] independently.
PPCA has certain practical advantages, including the existence of a computation-
ally efficient Expectation Maximisation algorithm, a principled approach for dealing
with missing data, and a likelihood function which allows for the comparison with
other probabilistic models.

We can formulate probabilistic principal component analysis by introducing
first the latent variables Z with a Gaussian prior

p(Z) ∼ N (0, I), (1.93)

which correspond to the principal component subspace. Next, we define a Gaussian
conditional distribution of the observations X conditioned on Z

p(X|Z) ∼ N (X|WZ +µµµ, σ2I), (1.94)

where W is the loadings matrix and the mapping function in this case, whose
columns span a linear subspace within the data space that corresponds to the prin-
cipal subspace, µµµ is the mean vector, and σ2 governs the variance.

If we want to determine the likelihood estimates for the model parameters W, σ2,
we need to derive first the marginal distribution of the observations p(X). We have
that the marginal distribution is

p(X) =
∫
p(X|Z)p(Z)dZ, (1.95)

which by using (1.93) and (1.94) means that the marginal distribution p(X) is also
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Gaussian and is given by
p(X) = N (X|µµµ,C), (1.96)

where C = WWᵀ + σ2I is the covariance matrix.

We can now derive maximum likelihood estimates for the model parameters W, σ
and µµµ by differentiating the likelihood function with respect to each of the model
parameters:

log p(X|µµµ,W, σ2) =
N∑
i=1

log p(xi|W,µµµ, σ2) (1.97)

=− ND

2 log(2π)− N

2 log |C| − 1
2

N∑
i=1

(xi −µµµ)ᵀC−1(xi −µµµ)

(1.98)

where D is the dimensionality of the data, and N is the number of observations.

Setting the derivative of (1.97) with respect to µµµ equal to 0 gives that µµµ = X̄, which
is the data mean. Using this, we can rewrite (1.98) as follows:

log p(X|W,µµµ, σ2) = −N2 {D log(2π) + log |C|+ Tr(C−1S)}, (1.99)

where S is the data covariance matrix.

Tipping and Bishop [1999] show that the maximum likelihood estimate of W can
be written as

WML = UM (LM − σ2I)
1
2 R (1.100)

where UM is the D×M matrix whose columns are the M eigenvectors of the data
covariance matrix S with the largest eigenvalues λi, L is M ×M diagonal matrix
with entries equal to the eigenvalues λi, and R is an arbitrary rotation M × M

orthogonal matrix, usually set to be the identity matrix.

The corresponding maximum likelihood solution for σ2 is given by

σ2
ML = 1

D −M

D∑
i=M+1

λi, (1.101)

which is the average variance associated with the discarded dimensions.

We can also derive an expression for the posterior distribution of the latent variables
in order to learn them as well. Using Bayes theorem and the results for conditional
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distribution of a Gaussian variable in [Bishop, 2006], we have that:

p(Z|X) = N (M−1Wᵀ(X−µµµ), σ2M−1) (1.102)

where M = WᵀW + σ2I.

zi

xi

σ2

μ W

N

Figure 1.9: Graphical model of PPCA - the shaded node xi represents the observa-
tions, zi - the latent variables, W - the loadings matrix, µµµ - the mean vector and
σ2 - the error term.

The number of latent dimensions can be found by using crossvalidation since PPCA
has a well-defined likelihood function, and selecting the model corresponding to the
largest log likelihood on a validation dataset. However, this can often be computa-
tionally costly.

Alternative approaches are to use model selection techniques such as Bayesian infor-
mation criterion, or Bayesian principal component analysis (BPCA) [Bishop,
1999], which determines the latent dimensionality in an efficient way. BPCA uses
the idea of evidence approximation, which Bishop [1999] points out is a suitable
choice in the case of many data points and tightly peaked posterior. The only way
in which BPCA differs from PPCA is in the prior with hyperparameter α over the
columns of the mapping W (see the graphical model on Figure 1.10), that allows
extra dimensions in W to be excluded.
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zi

xi W

σ2

μ

N

α

Figure 1.10: Graphical model of BPCA - the shaded node xi represents the obser-
vations, zi - the latent variables, W - the loadings matrix, µµµ - the mean vector and
σ2 - the error term.

The final linear latent variable model we will consider is factor analysis which is
closely related to PPCA. Its definition differs from that of PPCA in the conditional
distribution of the observed variables X given the latent variables Z

p(X|Z) = N (X|WZ +µµµ,Ψ) (1.103)

where Ψ is a diagonal matrix, and the columns of W capture the correlations be-
tween the observations (Figure 1.11). If Ψ = σ2I, then we recover PPCA. However,
unlike PPCA, there is no closed-form maximum likelihood solution for W. We can
instead use an EM algorithm proposed by Rubin and Thayer [1982].

zi

xi W

Ψ

μ

N

Figure 1.11: Graphical model of factor analysis - the shaded node xi represents the
observations, zi - the latent variables, W - the loadings matrix, µµµ - the mean vector
and Ψ - the error matrix.
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Figure 1.12: A graphical model representing the categorical PCA model.

1.4.2 Latent variable models for discrete data

Latent variable models can be used with discrete data as well. Such models are
often used in text and image analysis, information retrieval, bioinformatics and
social sciences.

Some examples include categorical PCA [Murphy, 2012], multinomial PCA
[Buntine and Jakulin, 2004; Buntine, 2002], Latent Dirichlet allocation [Blei
et al., 2003].

In categorical PCA (see Section 12.4 [Murphy, 2012]), the observations have the
form xij ∈ {1, . . . , Rj}, where j is the number of features and Rj is the number of
categories that the jth feature can take (Figure 1.12). Each xij is generated from a
latent variable zi ∈ RL, which is passed through a softmax function:

p(zi) =N (0, I) (1.104)

p(xi|zi, θ) =
R∏
r=1

Cat(xir|S(Wᵀ
rzi + w0r)), (1.105)

where Wr ∈ RL×M is the factor loading matrix for the rth feature, w0r is the offset
term for the rth feature and Rj is the number of different categories. The softmax
function transforms a K-dimensional real-valued vector η into a K-dimensional vec-
tor S(η) of real values, where each entry is in (0, 1) and all entries add up to 1:

S(η)j = exp(ηj)∑K
k=1 exp(ηk)

. (1.106)
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The corresponding distribution of the observations does not have closed-form solu-
tion:

p(xi,1:R) =
∫ [ R∏

r=1
p(xir|zi,W.,w0.)

]
N (zi|µµµ,ΣΣΣ)dzi. (1.107)

However, we can fit the model using a modified version of EM [Khan et al., 2010],
for example. In the E-step, a Gaussian approximation to the posterior distribution
p(zi|xi, {Wr}Rr=1, {w0r}Rr=1) is inferred, and in the M-step, the model parameters
({Wr}Rr=1, {w0r}Rr=1) are maximised.

We can model count data by using a Poisson model

p(xi|zi) =
V∏
v=1

Poi(xiv| exp(wᵀ
v,:zi)). (1.108)

We can fit the model in a similar manner to Categorical PCA.

We can model count vectors whose total sum is known with multinomial PCA
[Buntine, 2002; Buntine and Jakulin, 2004] (Figure 1.13). This is similar to the
multinomial model above but instead of using the softmax function, we use a matrix
B with entries 0 ≤ bv,k ≤ 1 and

∑
v bv,k = 1, and a vector πππ ∼ Dir(α) such that

p(xi|Li,πππ) = Mult(xi|Li,Bπi). (1.109)

πi

xi B

α

N

Figure 1.13: A graphical model representing the multinomial PCA model.
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If we have a variable length sequence of known length, we can use instead

p(xi,1:L|πππ) =
L∏
i=1

Cat(xil|Bπi), (1.110)

which corresponds to the latent Dirichlet allocation model [Blei et al., 2003].

1.5 Thesis outline

The rest of this thesis proceeds as follows:

Chapter 2 introduces a novel Bayesian nonparametric method for clustering mixed
data, which is based on Dirichlet process mixtures, and highlights its advantages
over traditional clustering approaches. The model, which we call BayesCluster, is
implemented in Chapter 3, where we demonstrate its useful properties with synthetic
and real datasets and compare its performance with other commonly used methods.

In Chapter 4, we present several extensions to BayesCluster, based on the ideas of
non-local priors, split-merge and cluster-size priors, and illustrate how they lead to
stronger model parsimony and the identification of more interpretable clusters.

In Chapter 5, we extend BayesCluster to a combined data integration and clustering
model. The core idea being the integrative framework we adopt is that the model
learns a common set of latent features jointly from multiple heterogenous data types.
We consider the application of the data integration model to identify cancer subtypes
indicative of overall survival and present the results from four studies, involving
genomic datasets from different projects part of The Cancer Genome Atlas.

Chapter 6 explores the impact of different clinical factors on the short- and long-
term survival of pancreatic cancer patients following pancreatic cancer resection.
We present the results from a study using the Hospital Episode Statistics database,
which aims to assess the impact of centralisation of surgeries on the patients’ sur-
vival.

Finally, we summarise the main contributions of this thesis in Chapter 7, and outline
directions for future work.
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Chapter 2

Mixed Data Clustering: Theory

The datasets we work with in this thesis require the development of clustering al-
gorithms that can model different types of data - continuous, discrete, and binary.
As we want to combine the information about the same patient cohort from dif-
ferent high-dimensional datasets, we also need a model that can provide efficient
dimensionality reduction and hence, a more concise description of the data. Many
latent variable models provide a framework for the accomplishment of these tasks
and we make use of them in the development of a Bayesian framework to clustering
mixed data. We outline the theory behind the novel clustering algorithm, called
BayesCluster, which can be applied to different types of data. BayesCluster com-
bines Bayesian nonparametric clustering with latent variable representations of the
data. We focus on clustering a single, potentially mixed, dataset in this chapter -
we extend the model to multiple datasets in Chapter 5.

2.1 BayesCluster - a model for mixed data clustering

We introduce BayesCluster, a method for clustering mixed data. It offers the advan-
tages of both latent variable models, which offer a lower-dimensional representation
of the data, and Bayesian nonparametric models, which require few assumptions
about the data and are relatively insensitive to outliers since their approach is to fit
a single model that can adapt its complexity to the data instead of specifying the
number of components in advance [Hollander et al., 2013].
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2.1.1 Model specification for continuous data

We assume that the dataset X = (x1, . . . ,xN ) that we want to model is normalised,
i.e. has mean zero and unit variance, and that x1, . . . ,xN are independent and
identically multivariate distributed Gaussian variables.

We model each D-dimensional continuous observation xi by a Gaussian likelihood
with unknown mean and variance

p(xi|zi,W, εεε) = N (xi|Wzi, σ2I), (2.1)

where zi is the corresponding P -dimensional latent variable, W is the D×P loadings
matrix, which is the projection matrix that maps the data to a lower-dimensional
space, and εεε is the error term, representing the residual variance. We assume that
εεε is N (0, σ2I) Gaussian noise.

We place a Normal prior on the means of the clusters of latent variablesµµµk ∼ N (0, I),
and assume that the latent variables zi are independent Normally distributed ran-
dom variables with p(zi|ci = k,µµµk) = N (zi|µµµk, I), where ci is the cluster indicator
for the ith latent variable.

The latent variables Z are modelled using an infinite mixture model [Rasmussen,
1999]:

p(Z) =
∞∑
k=1

πkf(Z|θθθk), (2.2)

where we place a Dirichlet process prior Dir(π|α) on the mixing propotions π and
use a Normal distribution N (zi|µµµk, I) to model the latent variables. We assume that
the clusters of latent variables have the same covariance to simplify the model and
infer only the cluster means.

Using this approach, we cluster the lower-dimensional latent variables Z rather high-
dimensional observations X, and we do not need to specify the number of clusters
as we learn this from the data. We can summarise the probabilistic model and the

50



assumptions we make as follows:

p(π|α) =Dir(α)

p(ci|πππ) =Mult(πππ)

p(zi|ci = k,µµµk) =N (zi|µµµk, I)

p(xi|zi,W, εεε) =N (xi|Wzi, σ2I)

p(µµµk) =N (µµµk|0, I)

p(W) =
D∏
d=1
N (wd|0, I)

p(εεε) =N (εεε|0, σ2I).

The graphical model below (Figure 2.1) presents the generative model and dependen-
cies between the parameters and the observations, and we have listed the parameters
and their interpretation in the Notation table 2.1 below.

ci zi

xi

W σ2

μkπα

N

∞

Figure 2.1: A graphical model representing the independence assumptions for the
BayesCluster model applied to continuous data.

Inference

A standard approach to performing inference in Dirichlet process mixture models
involves using MCMC methods. For example, Neal [2000] outlines different inference
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Parameter Domain Interpretation
N Z+ number of observations
D Z+ dimension of data
P Z+ number of principal components
xi RD the ith observation
xCi RD−R the continuous part of the ith mixed observation
xDi RR the discrete part of the ith mixed observation
Nk Z+ number of observations in cluster k
Nk,−i Z+ number of observations in cluster k excluding

the ith observation

K Z+ number of occupied clusters
ci {1, . . . ,K} ith cluster indicator variable
C {c1, . . . , cN} the collection of indicator variables
πk [0, 1] mixing proportion for the kth cluster
zj RP jth latent factor
Z RN×P the collection of all latent factors
W RD×P loadings matrix (continuous variables)
WD

r RR×P rth loadings matrix (discrete variables)
WD {WD

1 , . . .WD
r } the collection of all loadings matrices (discrete

variables)
w0r RR rth offset term
w0 RR the collection of all offset terms
εεε RD residual noise (continuous variables)
θθθk RP ,RP×P the model parameters for cluster k (µµµk,ΣΣΣk)
µµµk RP mean of the kth cluster
α R+ concentration parameter

Table 2.1: Parameters in the BayesCluster model for mixed type data, their domains
and interpretation

schemes for models with conjugate and non-conjugate priors, whereas Ishwaran and
James [2001] propose a blocked Gibbs sampler. However, latent variable models are
often optimised with respect to the model parameters.

We will first outline the MCMC steps for updating the model parameters, which we
then use to define a simulated annealing optimiser.

Since the mixing proportions πππ have a symmetric Dirichlet process prior with con-
centration parameter α which is conjugate to the multinomial prior on the cluster
indicator ci, we can integrate out the mixing proportions and thus have fewer pa-
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rameters to learn:

p(c1:N |α) =
∫
p(c1:N |πππ)p(πππ|α)dπππ (2.3)

= Γ(α)
Γ(α+N)

K∏
k=1

Γ(Nk + α/K)
Γ( αK ) . (2.4)

In this model specification, we assume that the hyperparameter α is fixed but later
on we will adopt a Bayesian approach and infer α. Hence, the model parameters
we have left to infer are the cluster indicators ci, the latent factors Z, the cluster
means µµµk, the loadings matrix W and σ2.

To infer the cluster partition C, we follow the procedure outlined by Neal [2000]. It
states that the posterior marginal distribution of the cluster indicators, given all the
other model parameters and data, is fully specified by the computing the probability
that ci = k, where k is an existing occupied cluster, and the probability that ci = k∗,
where k∗ is a new cluster.

Using Bayes’ rule, we can express the probability of assigning the ith observation
to an existing cluster k as follows

p(ci = k|c−i,Z,πππ, α) ∝p(ci = k|c−i,πππ, α)p(zi|z−i, ci = k, c−i) (2.5)

=p(c1:N |α)
p(c−i|α) p(zi|z−i, ci = k, c−i), (2.6)

where c−i denotes all cluster indicators of the latent variables excluding the ith
one, and z−i denotes all latent variables without the ith one. We have omitted the
normalising constant.

By exchangeability we assume that ci is the cluster indicator variable of the last
data point. Following Antoniak [1974], we can derive a simpler expression for the
numerator in the first term in (2.6) as follows:

p(c1, . . . , cN |α) =
∫
p(c1, . . . , cN |π)p(π|α)dπ (2.7)

= Γ(α)
Γ(N + α)

K∏
k=1

Γ(Nk + α
K )

Γ( αK ) , (2.8)

where Nk is the number of data points allocated to cluster k and we have made use
of the relation Γ(x+ 1) = xΓ(x). Γ(x) is the gamma function defined as follows for
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x > 0 [Abramowitz and Stegun, 1965]:

Γ(x) =
∫ ∞

0
ux−1 exp(−u)du (2.9)

Hence,

p(ci = k|c−i, α) =p(c1:N |α)
p(c−i|α) (2.10)

=
1

Γ(N+α)
1

Γ(N+α−1)
×

Γ(Nk + α
K )

Γ(Nk,−i + α
K ) (2.11)

=
Nk,−i + α

K

N + α− 1 . (2.12)

The second term in (2.6) is equal to N (zi|µµµk, I) using Rasmussen [1999].

Hence, the probability of assigning zi to an existing cluster k is equivalent to

p(ci = k|c−i,Z,πππ, α) =
Nk,−i + α

K

N + α− 1N (zi|µµµk, I). (2.13)

This derivation assumes that we are working with a finite mixture model when we
know/have fixed the number of occupied components K. Instead, we can work
with an infinite Dirichlet mixture model and learn the number of occupied clusters
K from the data which is a more realistic scenario when we work with real-world
datasets and do not know the ground truth. If we take K → ∞, then Equation
(2.13) is equal to

p(ci = k|c−i,Z,πππ, α) ∝ Nk,−i
N + α− 1N (zi|µµµk, I). (2.14)

To derive the probability of starting a new cluster, we follow Rasmussen [1999] and
Neal [2000], and get that it is equivalent to

p(ci = k∗|c−i,Z, π, α) ∝ α

N + α− 1

∫
N (zi|µµµk, I)N (µµµk|0, I)dµµµk. (2.15)

We have omitted the normalising constant here as well.

After we have computed the probabilities of allocating the ith observation to any of
the existing clusters and of starting a new cluster, one would normally perform a
Gibbs sampling step. However, we instead choose to convert this to an optimiser by
assigning the ith item to the most probable cluster. Throughout the whole algorithm,
we work with log probabilities as they offer improved numerical stability. In addition,
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maximising the log probability is equivalent to maximising the probability.

After we have reallocated all the data points, we can update the other model pa-
rameters. We present below the derivations of the conditional distributions, which
we obtain using the model specification in 2.3 and the graphical model, presented
on Figure 2.1.

The conditional distribution of the mean µµµk of cluster k is equal to:

p(µµµk|Z, C) ∝ p(µµµk)
∏
i:ci=k

p(zi|ci = k,µµµk)

= N (µµµk|0, I)
∏
i:ci=k

N (zi|µµµk, I)

= N
(
µµµk|

1
Nk + 1

∑
i:ci=k

zi,
1

Nk + 1I
)
,

where Nk is the number of observations allocated to the kth cluster.

Using the identities related to computing conditional distributions of Gaussian vari-
ables presented in Chapter 2 of Bishop [2006], we find that the conditional distri-
bution of the latent factors Z have the following form

p(zi|ci,µµµk,xi,W, εεε) ∝ p(xi|zi,W, εεε)p(zi|ci,µµµk)

= N (xi|Wzi, σ2I)N (zi|µµµk, I)

= N (zi|(σ2WᵀW + I)−1(Wᵀ(σ2Ixi +µµµk), (σ2WᵀW + I)−1).

We are not able to obtain a closed-form expression for the conditional distribution
of the loadings matrix W. However, we can use the approximation X ≈ WZ to
update W after updating the latent factors Z. We do that in the following way:
let Z∗ denote the updated latent variables. Then we obtain an update for W by
solving X = WZ∗. We have that

XZ∗ᵀ = WZ∗Z∗ᵀ (2.16)

which implies that we can use the following expression to update W as follows

W = XZ∗ᵀ(Z∗Z∗ᵀ)−1. (2.17)

Finally, we can find the conditional distribution for σ2 using the results in Murphy
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[2007]:

p(σ2|X,Z,W, C,µµµ) = IG
(1 +N

2 ,
1 + (X−WZ)ᵀ(X−WZ)

2
)
. (2.18)

Since we are going to work with different types of data, for example discrete data
where we can not obtain closed-form expressions for most of the posterior distri-
butions of the model parameters, we would like to use an inference scheme which
can be applicable for all data types. One such method is random walk Metropolis
Hastings.

We can apply it in the case of continuous BayesCluster as follows:

• Reassign the cluster indicators C using (2.14) and (2.15);

• At iteration t, propose a move from the current state S = {Z(t),µµµ(t), εεε(t),W(t)}
to a new state S∗, where the latent factors Z, cluster means µµµ, and error term
εεε have been updated using the following proposal distributions:

– z∗j = z(t)
j +N (0, 0.01× I)

– µµµ∗k = µµµ
(t)
k +N (0, 0.01× I)

– σ∗ = σ(t) +N (0, 0.001)

and the update of the loadings matrix W has been obtained using the approx-
imation X ≈WZ.

• Accept the move to S∗ with probability min(1, r), where r = exp(f(S∗) −
f(S)) and f is the model log posterior calculated as outlined in Appendix B.1;
otherwise remain in S.

The MCMC methods, however, are mainly useful when we work with datasets of
small or moderate size and become infeasible in large-scale data analyses due to
the computation costs. In addition, working with Metropolis Hastings requires
manually tuning the proposal distributions in order to explore the posterior space
efficiently (Chapter 1). There are numerous alternatives to using MCMC methods
in Dirichlet process mixture models: predictive recursion [Newton and Zhang, 1999;
Martin et al., 2009], variational Bayes [Blei et al., 2006; Kurihara et al., 2007],
weighted Chinese restaurant sampling [Ishwaran and Takahara, 2002; Ishwaran and
James, 2003] and sequential importance sampling [Bush and MacEachern, 1996;
Quintana and Newton, 2000]. However, the predictive recursion method requires the
approximation of a normalising constant at each update step, whereas the variational

56



methods involve more parameters to be tuned and are often sensitive to the starting
values.

We propose instead an inference scheme based on simulated annealing since it is a
stochastic optimiser and can avoid getting stuck in local maxima. In addition, using
simulated annealing will provide us with a near optimal solution much faster than
the MCMC methods. The main drawback of simulated annealing is that we do not
get the full posterior of the model parameters but since our main interest will be in
finding a single summary clustering partition, we believe this to be an acceptable
trade-off.

Section 1.2.5 highlights the close relation between random walk Metropolis Hastings
and simulated annealing, and shows that we can easily adapt the inference procedure
in BayesCluster to perform simulated annealing instead. We proceed in the following
way: after we reassign all cluster indicators C using (2.14) and (2.15), we propose
a move from the current state S to a state S∗, where the latent factors Z, cluster
means µµµ, and error term εεε have been updated using the same proposal distributions
as in Section 2.1.1, and the update of the loadings matrix W has been obtained
using the approximation X ≈ WZ. After the proposal of the new state S∗, we
compute

r = exp
((f(S∗)− f(S)

Tk

)
, (2.19)

where f is the model log posterior and Tk is the temperature at iteration k of the
cooling schedule. We accept the new state S∗ and update the model parameters with
probability min(1, r), otherwise we stay in the current state S and do not update
model parameters. We finish this iteration by increasing the iteration counter from
k to k + 1.

We use an exponential cooling schedule Tk = T0C
k, with T0 = 100 and C = 0.95,

which have been picked based on numerical experiments. At the end of each itera-
tion, we check for convergence using the log posterior, with the stopping criterion
being |fk − fk−1| < 0.0001, and continue until either a certain number of iterations
has been reached (we set the maximum number of iterations to 1000, which our
experiments have shown to be sufficient to explore the parameter space) the model
has converged.
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Initialisation and model selection

Simulated annealing is often initialised with a random starting point but its per-
formance can be improved by using a heuristic strategy such as a k-means solution
[Van Laarhoven and Aarts, 1987]. We adopt this initialisation approach in our ex-
periments. Since the k-means solution is sensitive to the initial choice of cluster
centres [Baswade and Nalwade, 2013; Bradley and Fayyad, 1998], we initialise the
model from a few different random starting points (5 in the experiments in this
thesis) and choose the final clustering partition to be the one corresponding to the
maximum a posteriori for each of the random initialisations. We apply PPCA to
initialise the latent variables Z and the loadings W, and sample σ2 from IG(1, 1).

We run BayesCluster for a range of number of latent dimensions (P = 2, . . . , 10)
and we use the Bayesian information criterion to select P . An alternative approach
to model selection is to set a prior over the columns of W as in Bayesian PCA and
infer the number of latent dimensions automatically. This is straightforward when
we are working with continuous data. However, when we work with discrete data,
we would need to introduce a prior over the columns of each loadings matrix, which
increases the model complexity. Since we want to select the final model in a similar
manner for the different types of data (continuous, discrete and mixed), we choose
to use the Bayesian information criterion for model selection in BayesCluster.
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We can summarise the workflow of continuous BayesCluster as follows:

Algorithm 2.1: Continuous BayesCluster
Perform PPCA to initialise the latent variables Z and the loadings matrix W,
and sample σ2 from IG(1, 1) ;

Initialise the cluster partition by using k-means clustering on the latent factors
Z;

while t < numiterations & not converged do
Sample a random permutation τ of 1, . . . , N ;
for j ∈ τ do

Remove the ith observation from its current cluster and update the
cluster’s sufficient statistics ;

Compute the probabilities of joining an existing cluster and of starting a
new cluster using (2.14) and (2.15);

Set ci = arg max1,...,K,k∗ log p(ci = k|c−i,Z,πππ, α) and update the
cluster’s sufficient statistics ;

end
Update the model parameters using simulated annealing ;
Compute the model log posterior ;
Check for convergence.

end

2.1.2 Model specification for discrete data

BayesCluster can be applied to different types of discrete data after making certain
adjustments. We focus on modelling categorical data, which is the one we most
commonly encounter in the applications we consider in this thesis.

The data which we model has the form xij ∈ {1, . . . , rj}, where j is the number of
features and rj is the number of categories for the jth feature. We assume that each
xij is generated from a latent variable zi ∈ RP , which has a Gaussian prior, and is
passed through the softmax function as follows

p(zi|µµµk, ci = k) = N (µµµk, I) (2.20)

p(xi|zi, θ) =
R∏
r=1

Cat(xir|S(WT
r zi + w0r)) (2.21)

where Wr ∈ RP×M is the loadings matrix for the rth feature, and w0r ∈ RM is the
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Figure 2.2: A graphical model, representing the independence assumptions of Cat-
egorical BayesCluster.

offset for the rth feature. We place a Gaussian prior N (0, I) on each row of of each
loadings matrix Wr, and similarly a Gaussian prior N (0, I) on the offsets w0r as
suggested by [Khan et al., 2010]. Similarly to the continuous case of BayesCluster,
we place a Gaussian prior N (0, I) on the means of the clusters of latent variables
µµµk. The graphical representation of the model is shown on Figure 2.2.

We can summarise the probabilistic model and the assumptions we make as follows:

p(π|α) =Dir(α)

p(ci|πππ) =Mult(πππ)

p(zi|ci = k, µk) =N (zi|µµµk, I)

p(xi|zi,Wr,w0r) =
R∏
r=1

Cat(xir|S(Wᵀ
rzi + w0r))

p(µµµk) =N (µµµk|0, I)

p(Wr) =
J∏
j=1
N (wj |0, I)

p(w0r) =N (w0r|0, I).

Inference

The inference procedure for the discrete BayesCluster is very similar to the model
for continuous data. We briefly summarise it below, highlighting the differences.

After we apply logistic PCA [Landgraf and Lee, 2015] to initialise the latent factors
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Z, we use k-means to obtain the initial cluster membership.

The probabilities of the ith observation joining an existing cluster or starting a
new cluster are the same as in the model for continuous data and are given by
(2.14) and (2.15). We then allocate the observation to the cluster with the highest
log probability, and after we have reallocated all of them, we update the model
parameters simulated annealing and check for convergence. We repeat until either
convergence or we have reached a certain number of iterations.

We infer the model parameters using simulated annealing as we can not derive their
conditional posteriors in closed form. This is because the marginal likelihood of the
observed variables is

p(xi,1:R) =
∫

[
R∏
r=1

p(xir|zi,Wr,w0r)]N (zi|µµµk, I)dzi, (2.22)

which can not be computed because of the lack of conjugacy.

We use similar settings to the continuous BayesCluster ones to perform simulated
annealing. The proposal distributions for Z and µµµ are given in Section (2.1.1). In the
case of modelling discrete data, we need to infer all model parameters Z, WD, wD

0 ,
µµµ, C as we cannot use the approximation X ≈ WZ to find the loadings matrices
WD. The proposal distributions for the loading matrices WD and the offset terms
wD

0 are as follows:

WD∗
.r = WD(t)

.r +N (0, 0.001× I) (2.23)

wD∗
0r = wD(t)

0r +N (0, 0.001× I). (2.24)

We accept moving to the new state S∗ with probability min(1, r), where r is found
using (2.19) and f is the model log posterior calculated using the derivation in
Appendix B.2.

We initialise the model and determine the final partition and number of occupied
clusters in the same manner as in the model for continuous data.
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We can summarise the steps involved in discrete BayesCluster as follows:

Algorithm 2.2: Discrete BayesCluster
Perform Categorical PCA to initialise the latent variables Z, sample the
loadings matrices WD and offsets w0 from the corresponding priors ;

Initialise the cluster partition by using k-means clustering on the latent
variables Z;

while t < numiterations & not converged do
Sample a random permutation τ of 1, . . . , N ;
for i ∈ τ do

Remove ith observation from its current cluster and update cluster’s
sufficient statistics ;

Compute the probabilities of joining an existing cluster and of starting a
new cluster using (2.14) and (2.15);

Set ci = arg max1,...,K,k∗ log p(ci = k|c−i,Z, π, α) and update cluster’s
sufficient statistics ;

Update model parameters using simulated annealing ;
Compute the model log posterior using B.2;
Check for convergence.

end
end

Modelling other types of discrete data

We can model other types of discrete data by using the same modelling framework
where we reduce the dimensionality and cluster the latent factors Z with Dirichlet
process mixture model. For example, if we have count data, then we can use a
Poisson model [Murphy, 2012]

p(xi|zi) =
V∏
v=1

Poi(xiv|exp(wT
v,:zi)) (2.25)

to model the dataset appropriately. This model is an example of exponential family
PCA, developed by Collins et al. [2002] and Mohamed et al. [2009].

If we have have ordinal data, we can use item response theory [Johnson and Albert,
2006; Fox, 2010] for example, which assumes that the observed variables xi are the
categorical manifestation of the latent variables zi. For each ordinal variable xij
with Kj levels, we assume that its value is determined by the value of zi in relation
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to Kj + 1 vector of thresholds λj , (−∞ = λj,0 ≤ λj,1 ≤ . . . λj,Kj ≤ ∞). If, for
example, the latent zi is such that λj,k−1 < zi < λj,k, then the value of xi is k.
In addition, we can express the probability of observing a variable of level k as the
difference between two Gaussian cumulative distributions:

p(xi = k) = Φ
(δk −µµµi

σi

)
− Φ

(δk−1 −µµµi
σi

)
, (2.26)

where δk is the proportion of observed values of variable i which are less or equal to
k, and zi ∼ N (zi|µµµi, σi).

2.1.3 Model specification for mixed data

We can combine the models presented in Sections 2.1.1 and 2.1.2 to model mixed
data. To ease the task of having to cluster mixed type data, we consider the dataset
to be the result of the integration of two or more smaller datasets. For example, if
there is a dataset with real-valued and categorical features, we treat the dataset as
the integration of a real-valued and a categorical dataset, which are used to jointly
infer a single set of latent variables, and thereby a single clustering partition.

As the data we consider consists of both continuous and categorical observations,
we denote by xCi the continuous vector corresponding to the ith observation, and
by xDi - the categorical vector. We assume that each xCi is Normally distributed
N (Wzi, σ2I), and each discrete variable xDir is multinomially distributed with pa-
rameters achieved through the softmax transformation of WD

r zi + w0r. We can
summarise the model as follows:

p(zi|µµµk, ci = k) = N (µµµk, I) (2.27)

p(xi|zi,WC , εεε,WD,wD
0 ) = N (xCi |WCzi, σ2I)

R∏
r=1

Cat(xDir |S(WDᵀ
r zi + w0r)).

(2.28)
where W and εεε are the loadings matrix and error, respectively, for the continuous
observations, WD = {WD

1 , . . . ,WD
R} and wD

0 = {wD
01, . . . ,wD

0R} are the loadings
matrices and offset terms, respectively, for the discrete variables. We place a Gaus-
sian prior N (0, I) on each row of each loadings matrix WD

r and of W, and similarly
a Gaussian prior N (0, I) on the offsets wD

0r as suggested by Khan et al. [2010]. Sim-
ilarly to the continuous and discrete cases, we place a Gaussian prior N (0, I) on
the cluster mean µµµk and IG(1, 1) prior on σ2. The plate diagram of the model is
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Figure 2.3: A graphical model, representing the independence assumptions of Mixed
BayesCluster.

presented on Figure 2.3.

We can summarise the probabilistic model and the assumptions we make as follows:

p(π|α) =Dir(α) (2.29)

p(ci|πππ) =Mult(πππ) (2.30)

p(zi|ci = k,µµµk) =N (zi|µµµk, I) (2.31)

p(xi|zi,WC ,WD,w0r, εεε) =N (xi|WCzi, σ2I)
R∏
r=1

Cat(xir|S(WDᵀ
r zi + wD

0r)) (2.32)

p(µµµk) =N (µµµk|0, I) (2.33)

p(WC) =
D∏
d=1
N (wC

d |0, I) (2.34)

p(εεε) =N (εεε|0, σ2I) (2.35)

p(WD
r ) =

J∏
j=1
N (wD

j |0, I) (2.36)

p(wD
0r) =N (wD

0r|0, I). (2.37)
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Inference

We assume that the continuous and discrete parts of the dataset share the same
latent variables. This follows from our aim of trying to learn a single coherent
latent representation of all our data. We perform jointly the lower dimensional
projection and the learning of the clustering structure by applying categorical PCA
and PPCA to the discrete and continuous parts of the dataset respectively and by
using a Dirichlet process mixture to model the cluster membership.

We reassign the data points to new clusters using (2.14) and (2.15) in the same way
as for the continuous and discrete data. Khan et al. [2010] suggest using variational
Expectation-Maximisation to infer the other model parameters. This, however,
increases the already high number of parameters we need to learn and requires the
use of approximations. Thus, we use similar inference scheme to the ones employed
in the continuous and discrete BayesCluster models. We use simulated annealing
to infer the latent variables Z, the loadings matrices WD, offsets w0 and residual
error εεε, and use the approximation X ≈WCZ to find the loadings matrix WC . The
proposal distributions for the parameters in the new state S∗ are given in (2.1.1) and
(2.23). We accept the move to the new state with probability min(1, r), where r is
found using (2.19) and f is the model log posterior, calculated using the derivation
in Appendix B.3.

We initialise the model and determine the final partition and number of occupied
clusters in the same manner as in the model for continuous data.
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We can summarise the steps involved in mixed BayesCluster as follows:

Algorithm 2.3: Mixed BayesCluster
Perform PPCA or Categorical PCA to initialise the latent variables Z, sample
the loadings matrices WC , WD, offsets wD

0 and residual error εεε from the
corresponding priors ;

Initialise the cluster partition using k-means clustering;
while t < numiterations & not converged do

Sample a random permutation τ of 1, . . . , N ;
for i ∈ τ do

Remove the ith observation from its current cluster and update cluster’s
sufficient statistics ;

Compute the probabilities of joining an existing cluster and of starting a
new cluster using (2.14) and (2.15);

Set cj = arg max1,...,K,k∗ log p(cj = k|c−j ,Z,πππ, α) and update the
cluster’s sufficient statistics ;

end
Update model parameters using simulated annealing ;
Compute the model log posterior ;
Check for convergence.

end

2.2 Conclusions

We have presented a novel method for Bayesian clustering based on Dirichlet pro-
cess mixtures and linear latent variable models to handle mixed data types, called
BayesCluster. It has several advantages over traditional approaches, which we have
highlighted throughout this chapter, and it can be applied to continuous, discrete
and mixed data. In Chapter 3 we explore the applicability of BayesCluster with
synthetic and real-world datasets, and in Chapter 4, we propose several extensions
which lead to the identification of more interpretable and well-defined clusters.
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Chapter 3

Mixed Data Clustering:
Numerical Experiments

We introduced BayesCluster in Chapter 2, which can be applied to continuous, dis-
crete or mixed data to identify meaningful clusters. In this chapter, we demonstrate
its useful properties with synthetic and real datasets. We compare its performance
with other commonly used methods for clustering continuous, discrete and mixed
data.

Code to perform the experiments in this chapter is available at: https://github.

com/ilianapeneva.

3.1 Continuous data

We compared continuous BayesCluster with k-means clustering, Gaussian mixture
model (GMM) and iClusterPlus over 5 datasets (4 real and 1 synthetic). Another
frequently used clustering approach involves first projecting the dataset down to a
P -dimensional space using PPCA or PCA, with P chosen using cross-validation, and
then using GMM or k-means to perform clustering in this lower dimensional space.
Some examples of this approach can be found in [Holter et al., 2000; Alter et al.,
2000]. However, this procedure is very inflexible as once the number of dimensions
is selected, it remains fixed throughout the clustering process. This means that
if the data distribution is different from the assumed one, the dimensions selected
using PPCA or PCA might deviate from the optimal and hence, the quality of the
clustering output could be poor. We ideally want to do the dimensionality reduction
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and clustering jointly because this allows us to adapt the approach more easily to
working with mixed data types and with multiple datasets.

We selected real datasets from the University of California Irvine (UCI) machine
learning repository which are well studied and for which the ground truth is known.
These datasets are often not high-dimensional but the availability of the ground
truth enables the comparison with other clustering methods. We investigate the
performance of BayesCluster on high-dimensional datasets with synthetic datasets.
The four real datasets we used are the iris dataset (150 observations, 3 classes (se-
tosa, versicolor, virginica), 4 attributes), Wisconsin breast cancer diagnostic dataset
(569 observations, 2 classes (benign, malignant), 10 attributes), glass identification
dataset (214 observations, 7 classes, 10 features), and wine dataset (178 observations,
3 classes, 12 features) which are available on the UCI machine learning repository
https://archive.ics.uci.edu/ml/datasets/. The heatmaps of the normalised
datasets (zero mean and unit variance) are presented on Figure 3.1. We used the
generative model of BayesCluster to create 10 synthetic datasets, with each having
150 observations with 3 classes (50 observations in each class) and 100 features.
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Figure 3.1: Heatmaps of the continuous datasets. The observations are on the y-axis
and are ordered according to the ground truth cluster membership, and the features
are on the x-axis.

We used the following R packages in the experiments:

• ‘stats’ [R Core Team, 2018] for the implementation of k-means clustering;

• ‘mclust’ [Scrucca et al., 2017] for the implementation of Gaussian mixture
models and the computation of the adjusted Rand index;

• ‘iClusterPlus’ [Mo and Shen, 2016] for the implementation of iClusterPlus.

We implemented k-means using the ‘stats’ package for number of clusters from 1
to 20 and maximum number of iterations set to 50. We used the within-group sum
of squares metric and the elbow method to select the final number of clusters K
(Figure C.1 in Appendix C). We implemented the Gaussian mixture model using
the ‘mclust’ package with all possible covariance structures (spherical, ellipsoidal
and diagonal) and for number of clusters from 1 to 9. We used BIC to select the
final model (Figure C.2 in Appendix C). We implemented iClusterPlus with the
default options in the package - we set the number of MCMC burn-in steps to 100,
the total number of MCMC draws to 200, the number of maximum iterations for
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the EM algorithm to 20 and the threshold for convergence set to 1e-4. We chose to
implement iClusterPlus rather than iCluster for consistency reasons as iClusterPlus
can be applied to continuous, discrete and mixed data whereas iCluster can be
applied to continuous data only. We ran ClusterPlus for number of latent dimensions
between 1 and 10 and used the deviance ratio metric to pick the final P (Figure
C.3 in Appendix C). We ran BayesCluster with 5 random initialisations for 1000
iterations and for number of latent dimensions P between 2 and 10. The threshold
for convergence was set to 1e-4, and model parameters were initialised as outlined in
Chapter 2. We used BIC to select the final number of latent dimensions P (Figure
C.4 in Appendix C).

3.1.1 Synthetic data

We generated 10 synthetic real-valued datasets in the following way: for each
dataset, we chose the first two principal components to capture most of the variation,
and generated three clusters with 50 observations each, with the assumption that
the datasets were normalised and have zero mean and unit variance. We sampled
the three cluster means µµµ1,µµµ2,µµµ3 as follows:

µµµ1 ∼ N ((0, 0), I) (3.1)

µµµ2 ∼ N ((2, 2), I) (3.2)

µµµ3 ∼ N ((4, 4), I). (3.3)

We then generated the latent variables Z by sampling from the following Gaussian
distributions N (µµµ1, I), N (µµµ2, I) and N (µµµ3, I). After that, we generated the loadings
matrix W by sampling from the priors on the rows of the loadings matrices N (0, I),
and the error terms εεε by sampling from its prior N (0, σ2I), where σ ∼ IG(1, 1). We
finally generated the dataset X using

p(xi|zi,W, εεε) = N (xi|Wzi, σ2I). (3.4)

Figure 3.2 presents an example of a continuous dataset, generated using BayesClus-
ter as a generative model.
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Figure 3.2: An example of a synthetic continuous dataset (zero mean and unit
variance), generated using the BayesCluster generative model. The observations are
on the y-axis and are ordered according to the ground truth cluster membership,
and the features are on the x-axis.

The experiments with synthetic data allow us to test the model in different scenar-
ios. With these datasets we aim to investigate how well BayesCluster can model
overlapping clusters. Figure 3.3 shows the final partitions for one of the synthetic
datasets. In this case, none of the methods have modelled well the overlap between
the black and the red clusters: for example, GMM has created an additional cluster
to model some of the overlap. iClusterPlus and k-means have identified the correct
number of clusters (K = 3), whereas BayesCluster and GMM have overestimated it
by creating additional clusters in the cases which are hard to model.

71



−2 0 2 4 6

−
2

0
2

4
6

PC 1

P
C

 2

(a) k-means

−2 0 2 4 6

−
2

0
2

4
6

PC 1

P
C

 2

(b) GMM

−2 0 2 4 6

−
2

0
2

4
6

PC 1

P
C

 2

(c) iClusterPlus

−2 0 2 4 6

−
2

0
2

4
6

PC 1

P
C

 2

(d) BayesCluster

−2 0 2 4 6

−
2

0
2

4
6

PC 1

P
C

 2

(e) ground truth

Figure 3.3: Comparison between the clustering partitions of the dataset presented
on Figure 3.2 with k-means clustering, Gaussian mixture model, iClusterPlus and
BayesCluster, and the ground truth. The latent variables Z which have been used for
the generation of the data are plotted and coloured according to cluster membership.
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BayesCluster outperforms the other methods in regards with mean adjusted Rand
index (Table 3.1). It also managed to identify the correct number of clusters (K = 3)
in most of the datasets although it did not always identify correctly the latent
dimensionality (P = 2).

Model mean ARI Est. Est. p-value Comp.
(± st. error) K (prop.) P (prop.) time

k-means 0.513 2, 3, 7 - 0.7496 0.53sec
(0.339,0.686) (0.5,0.4,0.1)

GMM 0.356 1-7 - 0.1854 3.53 sec
(0.114,0.598) (0.2,0.1)

iClusterPlus 0.446 3, 7, 8 2, 6, 7 0.4718 1.13 min
(0.225,0.666) (0.6,0.2,0.2) (0.6,0.2,0.2)

BayesCluster 0.52 3, 4 2 , 6 - 18.84 min
(0.343,0.657) (0.6,0.4) (0.7,0.3)

Table 3.1: Comparison of the results on the synthetic data in terms of adjusted Rand
index (ARI) averaged over the 10 synthetic datasets, ± st. error ARI, estimates of
the number of clusters K, estimates of the latent dimensionality P where applicable,
p-values from a t-test testing the hypothesis that there is no difference between the
results from BayesCluster and from the comparison methods in terms of ARI, and
computation time per run. The proportion of times a certain value for the number
of clusters K or for the number of principal components P is estimated is put into
brackets after the value.

3.1.2 Real datasets

We compared the accuracy of the final partitions in terms of mean (and ± standard
error) adjusted Rand Index (ARI), estimated number of clusters K, estimated latent
dimensionality P and computation time. We summarise the results in Tables 3.2,
3.3, 3.4 and 3.5. In terms of computation time, BayesCluster is slower than all
comparison methods, which is due to using multiple different starting positions, and
to the R code for BayesCluster not being as well optimised as the other methods.

Iris dataset

All methods apart from iClusterPlus have similar performance on the iris dataset in
terms of the adjusted Rand index. iClusterPlus was the only method that managed
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to identify the true number of clusters (K = 3) correctly but it did not allocate all
versicolor and virginica observations in the correct clusters. K-means, the Gaussian
mixture model and BayesCluster merged the observations from the versicolor and
virginica groups into one cluster which could be because the observations from these
two iris types have similar sepal width values.

Model mean ARI Estimated Estimated p-value Comp.
(± st.error) K P time

k-means 0.568 2 - 0.1679 0.07 s
(0.568,0.568)

GMM 0.568 2 - 0.1679 1.31 s
(0.568,0.568)

iClusterPlus 0.482 3 2 0.00388 2.75 s
(0.413,0.552)

BayesCluster 0.567 2 2 - 29.87 s
(0.566,0.568)

Table 3.2: Comparison of the results on the iris dataset in terms of mean adjusted
Rand index (ARI), ± st. error ARI, estimates of the number of clusters K, estimates
of the latent dimensionality P where applicable, p-values from a t-test testing the
hypothesis that there is no difference between the results from BayesCluster and
from the comparison methods in terms of ARI, and computation time per run.

Wisconsin breast cancer dataset

K-means clustering outperforms BayesCluster on the Wisconsin breast cancer dataset,
which could be because we initialise the BayesCluster partition with the k-means
solution, and then the inference scheme gets stuck in a local maximum with worse
partition. The Gaussian mixture model overestimated the number of clusters and
found 5 patient groups, whereas iClusterPlus found 3 clusters.
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Model mean ARI Estimated Estimated p-value Comp.
(± st.error) K P time

k-means 0.839 2 - 7.417e-07 0.40 s
(0.839,0.839)

GMM 0.357 5 - 1.726e-11 5.41 s
(0.357,0.357)

iClusterPlus 0.659 3 2 2.797e-05 43.68 s
(0.633,0.685)

BayesCluster 0.728 2 2 - 21.45 min
(0.699,0.757)

Table 3.3: Comparison of the results on the Wisconsin breast cancer dataset in
terms of mean adjusted Rand index (ARI), ± st. error ARI, estimates of number
of clusters K, estimates of latent dimensionality P where applicable, p-values from
a t-test testing the hypothesis that there is no difference between the results from
BayesCluster and from the comparison methods in terms of ARI, and computation
time per run.

Glass dataset

The glass dataset is the only continuous dataset where BayesCluster did not pro-
duce competitive results. The poor result may be a consequence of inappropriate
assumption of Gaussianity or uninformative data (see Figure 3.1). None of the
methods correctly estimated the true number of clusters (K = 7) and they all had
low adjusted Rand indices.
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Model mean ARI Estimated Estimated p-value Comp.
(± st.error) K P time

k-means 0.183 13 - 0.8794 0.16 s
(0.155,0.211)

GMM 0.156 3 - 0.0001 1.58 s
(0.156,0.156)

iClusterPlus 0.24 6 5 2.373e-06 14.84 s
(0.218,0.262)

BayesCluster 0.182 4 3 - 7.02 min
(0.168,0.195)

Table 3.4: Comparison of the results on the glass dataset in terms of mean adjusted
Rand index (ARI), ± st. error ARI, estimates of the number of clusters K, estimates
of the latent dimensionality P where applicable, p-values from a t-test testing the
hypothesis that there is no difference between the results from BayesCluster and
from the comparison methods in terms of ARI, and computation time per run.

Wine dataset

All methods apart from iClusterPlus performed well on the wine dataset in regards
with both adjusted Rand index and estimated number of clusters. They all found
that there were K = 3 clusters and clustered incorrectly only a few observations.

Model mean ARI Estimated Estimated p-value Comp.
(± st.error) K P time

k-means 0.897 3 - 0.0029 0.14 s
(0.897,0.897)

GMM 0.929 3 - 6.692e-06 6.16 s
(0.929,0.929)

iClusterPlus 0.437 5 4 1.51e-09 19.49 s
(0.369,0.505)

BayesCluster 0.872 3 2 - 8.94 min
(0.853,0.892)

Table 3.5: Comparison of the results on the wine dataset in terms of average adjusted
Rand index (ARI), ± st. error ARI, estimates of the number of clusters K, estimates
of the latent dimensionality P where applicable, p-values from a t-test testing the
hypothesis that there is no difference between the results from BayesCluster and
from the comparison methods in terms of ARI, and computation time per run.
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3.2 Discrete data

We compared discrete BayesCluster with k-modes and iClusterPlus over 3 datasets
(2 real and 1 synthetic). We selected real datasets from the UCI machine learning
repository as the ground truth is known for them. These datasets are often not
high-dimensional but the availability of the ground truth enables the comparison
with other clustering methods. We investigate the performance of BayesCluster on
high-dimensional datasets with synthetic datasets. The two datasets we used are
Spect heart dataset (267 observations, 2 classes, 22 attributes), and congressional
voting records (435 observations, 2 classes, 16 attributes), which are available on the
UCI Machine Learning Repository https://archive.ics.uci.edu/ml/datasets/.
The voting dataset consists of the votes for each of the US House Representatives
congressmen on 16 key votes in 1984, and the votes are recorded as ‘yes’, ‘no’, ‘NA’.
We set the missing values to be another category, which represents abstained from
voting. The heatmaps of the datasets are presented on Figure 3.4.
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Figure 3.4: Heatmaps of the discrete datasets. The observations are on the y-axis
and are ordered according to the ground truth cluster membership, and the features
are on the x-axis.
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We used the following R packages in the experiments:

• ‘klaR’ [Weihs et al., 2005] for the implementation of k-modes clustering;

• ‘iClusterPlus’ [Mo and Shen, 2016] for the implementation of iClusterPlus.

We implemented k-modes using the ‘klaR’ package with the following parameters:
we set the maximum number of iterations to 20 and we did not use the weighted
version of the distance between the clusters. We implemented k-modes for number of
clusters from 1 to 20 and used the within-group sum of squares and the elbow method
to select the number of clusters K (Figure C.5 in Appendix C ). We implemented
iClusterPlus with the default options in the package - we set the number of MCMC
burn-in steps to 100, the total number of MCMC draws to 200, the number of
maximum iterations for the EM algorithm to 20 and the threshold for convergence
set to 1e-4. We ran iClusterPlus for number of latent dimensions P between 1 and
11 and used the deviance ratio metric to pick the final P (Figure C.6 in Appendix
C). We ran BayesCluster for 1000 iterations with 5 random initialisations and for
number of latent dimensions P between 2 and 10. The threshold for convergence set
to 1e-4, and model parameters initialised as outlined in Chapter 2. We used BIC to
select the final number of latent dimensions P (Figure C.7 in Appendix C).

3.2.1 Synthetic data

We used the generative model of discrete BayesCluster to create 10 synthetic datasets,
each with 150 observations, 2 classes and 100 attributes. For each discrete dataset,
we chose the first two principal components to capture the most of the variation,
and generated two clusters with 50 observations and 100 observations respectively.
We sampled the two cluster means µµµ1 and µµµ2 as follows:

µµµ1 ∼ N ((0, 0), I) (3.5)

µµµ2 ∼ N ((20, 20), I) (3.6)

We then generated the latent variables Z by sampling from the following Gaussian
distributions N (µµµ1, I) and N (µµµ2, I). After that we generated the loading matri-
ces W1, . . . ,WR by sampling from the priors on the rows N (0, I), and the offset
terms w0r, . . . ,w0R by sampling from their prior N (0, I). We generated the dataset
X by sampling from a multinomial distribution with parameters derived from the
softmax transformation of the linear mapping of the latent variables onto a higher
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Figure 3.5: An example of a synthetic discrete dataset, generated using the
BayesCluster generative model. The observations are on the y-axis sorted by cluster
membership and the features are on the x-axis.

dimensional space:

p(xi|zi,W1:R,w01:0R) =
R∏
r=1

Cat(xir|S(Wrzi + w0r)). (3.7)

Figure 3.5 presents an example of a discrete dataset, generated using BayesCluster
as a generative model.

The results, presented in Table 3.6, show that both latent variable models performed
better than k-modes. The worse performance of k-modes was because it identified
6 clusters in one of datasets. BayesCluster was able to estimate both the latent
dimensionality (P = 2) and the number of clusters (K = 2) accurately, and when it
failed to do so, it was usually because it created a small third cluster. iClusterPlus
estimated the latent dimensionality correctly but found 3 clusters in the datasets
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due to the procedure it uses to determine the number of clusters (it sets K = P +1).

Figure 3.6 shows the final partitions for the synthetic dataset on Figure 3.5 obtained
with k-modes, iClusterPlus and BayesCluster. Both k-modes and BayesCluster have
identified correctly the number of clusters, though they have not allocated all the
observations from the black cluster to the correct group.
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Figure 3.6: Comparison between the clustering partitions of the synthetic dataset
presented on Figure 3.5) with k-modes clustering, iClusterPlus and BayesCluster,
and the ground truth. The latent variables Z which have been used for the genera-
tion of the data are plotted and coloured according to cluster membership.
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Model mean ARI Est. Est. p-value Comp.
(± st. error) K (prop.) P (prop.) time

k-modes 0.875 2, 3, 6 - 0.0002 27.21 s
(0.78,0.96) (0.5,0.3,0.2)

iClusterPlus 0.789 3 3 0.0162 1.36 min
(0.61,0.97) (1.00) (1.00)

BayesCluster 0.948 2, 3 2, 3, 4 - 18.98 min
(0.91,0.98) (0.5, 0.5) (0.7,0.1,0.2)

Table 3.6: Comparison of the results on the synthetic data in terms of adjusted
Rand index (ARI) averaged over the 10 datasets, ± 1 st. error ARI, estimates of
the number of clusters K, estimates of the latent dimensionality P where applicable,
p-values from a t-test testing the hypothesis that there is no difference between the
results from BayesCluster and from the comparison methods, and computation time
per run. The proportion of times a certain value for the number of clusters K or
for the number of principal components P is estimated is put into brackets after the
value.

3.2.2 Real datasets

We compared the accuracy of the final partitions in terms of mean (and ± standard
error) adjusted Rand Index (ARI), estimated number of clusters K, estimated latent
dimensionality P and computation time. We summarise the results in Tables 3.7
and 3.8 below. In all of the experiments, BayesCluster found the partition with the
highest adjusted Rand Index.

Spect heart

Interestingly, all models performed poorly on the Spect heart dataset which might
be due to the preprocessing involved to obtain binary features. The observations
were first obtained from database of Spect image sets, which were then processed
to extract 44 continuous features which summarise the images. These continuous
patterns were further processed to get 22 binary features. BayesCluster was the only
method that managed to identify correctly the true number of clusters (K = 2).
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Model mean ARI Estimated Estimated p-value Comp.
( ± st.error) K P time

k-modes -0.025 4 - 0.0293 4.28 s
(-0.048,-0.002)

iClusterPlus 0.032 3 2 0.1762 47.15 s
(0.013,0.051)

BayesCluster 0.019 2 4 or 5 - 23.57 min
(-0.004,0.044)

Table 3.7: Comparison of the results on the Spect heart dataset in terms of mean
adjusted Rand index (ARI), ± st. error ARI, estimates of the number of clus-
ters K, estimates of the latent dimensionality P where applicable, p-values from
a t-test testing the hypothesis that there is no difference between the results from
BayesCluster and from the comparison methods in terms of ARI, and computation
time per run.

Congressional voting dataset

In the voting dataset, BayesCluster identified the correct number of clusters (K = 2)
and found the partition with the highest mean ARI of 0.543. K-modes also identified
the correct number of parties and produced similar results to BayesCluster, while
iClusterPlus overestimated it and found 4 parties.

Model mean ARI Estimated Estimated p-value Comp.
(± st. error) K P time

k-modes 0.523 2 - 0.04769 3.34 s
(0.505,0.541)

iClusterPlus 0.268 4 3 6.187e-08 3.06 min
(0.202,0.334)

BayesCluster 0.543 2 2 or 5 - 30.15 min
(0.519,0.567)

Table 3.8: Comparison of the results on the voting dataset in terms of mean adjusted
Rand index (ARI), ± st. error ARI, estimates of the number of clusters K, estimates
of the latent dimensionality P where applicable, p-values from a t-test testing the
hypothesis that there is no difference between the results from BayesCluster and
from the comparison methods in terms of ARI, and computation time per run.
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3.3 Mixed data

We compared mixed BayesCluster with k-prototypes and iClusterPlus over 3 datasets
(2 real and 1 synthetic). We selected real datasets from the UCI machine learning
repository which are well studied and for which the ground truth is known. We
investigate the performance of BayesCluster on high-dimensional datasets with syn-
thetic datasets. Since iClusterPlus cannot be used to cluster mixed data, we treat
the mixed datasets as a result of the integration of a continuous and a discrete
dataset, similarly to BayesCluster. The two real datasets we used are a credit ap-
proval dataset (690 observations, 2 classes, 15 attributes) and a heart disease data
(270 observations, 5 classes, 13 attributes) available on the UCI machine learning
repository https://archive.ics.uci.edu/ml/datasets/. The heatmaps of the
datasets are presented on Figure 3.7. We have split the datasets into continuous
and discrete parts to distinguish between the different type features.
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Figure 3.7: Heatmaps of the mixed datasets. The observations are on the y-axis
and are ordered according to the ground truth cluster membership, and the features
are on the x-axis.

We used the following R packages in the experiments:

• ‘clustMixType’ [Szepannek, 2018] for the implementation of k-prototypes clus-
tering;

• ‘iClusterPlus’ [Mo and Shen, 2016] for the implementation iClusterPlus.

We implemented k-prototypes with the following parameters: we ran the algorithm
for number of clusters between 1 and 20, set the number of maximum iterations
to 100 and did not use the parameter α, which describes the trade off between
the Euclidean distance between numeric variables and a matching coefficient metric
between categorical variables. We used the within-cluster sum of squares metric and
the elbow method to determine the number of clusters K (Figure C.8 in Appendix
C). We implemented iClusterPlus with the default options in the package - we set the
number of MCMC burn-in steps to 100, the total number of MCMC draws to 200,
the number of maximum iterations for the EM algorithm to 20 and the threshold for
convergence set to 1e-4. We ran iClusterPlus for the number of latent dimensions P
between 1 and 10 and selected the final P using the deviance ratio metric (Figure
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C.9 in Appendix C). We ran BayesCluster with 5 random initialisations for 1000
iterations and for number of latent dimensions P between 2 and 10.We set the
threshold for convergence to 1e-4 and initialised the model parameters as outlined
in Chapter 2. We chose the final number of latent dimensions using BIC (Figure
C.10 in Appendix C).

3.3.1 Synthetic data

We used the generative model of mixed BayesCluster to create 10 synthetic mixed
datasets. For each dataset, we chose the first two principal components to capture
the most of the variation, and generated three clusters with 50 observations each
with 100 continuous and 100 discrete features (each with 2 categories), with the
assumption that the continuous observations were normalised and have zero mean
and unit variance. We sampled the three cluster means µµµ1,µµµ2,µµµ3 as follows:

µµµ1 ∼ N ((0, 0), I) (3.8)

µµµ2 ∼ N ((2, 2), I) (3.9)

µµµ3 ∼ N ((4, 4), I). (3.10)

We then generated the latent variables Z by sampling from the following Gaussian
distributions N (µµµ1, I),N (µµµ2, I) and N (µµµ3, I). After that, we generated the loadings
matrices WC and WD

1 , . . . ,WD
R for the continuous and discrete variables, respec-

tively, by sampling from the priors on the rowsN (0, I), the offset terms wD
01, . . . ,wD

0R
from their prior N (0, I), and the error term ε from sampling from its prior N (0, σ2I)
where σ ∼ IG(1, 1). We finally generated the dataset X using

p(xi|zi,WC ,WD,wD
0 , ε) = N (xi|Wzi, σ2I)

R∏
r=1

Cat(xir|S(Wᵀ
rzi + wD

0r)) (3.11)

Figure 3.8 presents an example of a mixed dataset (split into continuous and dis-
crete), generated using BayesCluster as a generative model.
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Figure 3.8: An example of a synthetic mixed dataset, generated using the BayesClus-
ter generative model, and split into continuous and discrete subsets. The observa-
tions are on the y-axis and the features are on the x-axis. The heatmap for the
discrete dataset shows that it is hard to distinguish between two of the clusters,
which could be due to the softmax transformation used to generate the data.

With the synthetic datasets, we tested how well each of the methods could identify
overlapping clusters. Figure 3.9 shows the results for the synthetic dataset presented
on Figure 3.8. iClusterPlus was the only model to correctly identify the number of
components (K = 3) but it did not model well the overlap between the green and
red clusters. k-prototypes merged the overlapping clusters, whereas BayesCluster
modelled the overlap by introducing new clusters.
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Figure 3.9: Comparison between the clustering partitions of the synthetic dataset
with k-prototypes clustering, iClusterPlus and BayesCluster, and the ground truth.
The latent variables Z which have been used for the generation of the data are
plotted and coloured according to cluster membership.

Both latent variable models outperformed k-prototypes in regards with adjusted
Rand index (Table 3.9). iClusterPlus managed to estimate the latent dimensionality
(P = 2) and number of clusters (K = 3) correctly in all datasets which is due to
the assumptions we made when creating the datasets (P = 2 and K = 3) and to
the method iClusterPlus uses to find the number of clusters (K = P + 1).
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Model mean ARI Est. Est. p-value Comp.
(± st. error) K (prop.) P (prop.) time

k-prototypes 0.43 2, 3 - 3.99e-08 3.29 min
(0.43,0.43) (0.9 , 0.1)

iClusterPlus 0.533 3 2 0.05418 2.25 min
(0.504,0.561) (1.00) (1.00)

BayesCluster 0.558 2 - 5 2, 3 - 1hr 2min
(0.538,0.578) (0.1, 0.1) (0.5, 0.5)

Table 3.9: Comparison of the results on the mixed data in terms of adjusted Rand
index (ARI) averaged over the 10 datasets, ± st. error ARI, estimates of the number
of clusters K, estimates of the latent dimensionality P where applicable, p-values
from a t-test testing the hypothesis that there is no difference between the results
from BayesCluster and from the comparison methods in terms of ARI, and com-
putation time per run. The proportion of times a certain value for the number of
clusters K or for the number of principal components P is estimated is put into
brackets after the value.

3.3.2 Real datasets

We compared the accuracy of the final partitions in terms of mean (± standard
error) adjusted Rand index (ARI), estimated number of clusters K, estimated la-
tent dimensionality P and computation time. The results from all experiments are
summarised in Tables 3.10 and 3.11 below.

Heart disease dataset

All methods performed poorly on the heart disease dataset - BayesCluster and
iClusterPlus tended to underestimate the true number of clusters (K = 5), whereas
k-prototypes overstimated them. Combining the four classes which indicate the
presence of heart disease into one, and trying to cluster the patients into either
disease-free or disease-present might lead to more accurate results.
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Model mean ARI Estimated Estimated p-value Comp.
(± st. error) K P time

k-prototypes 0.1 6 or 7 - 3.26e-08 6.41 min
(0.068,0.131)

iClusterPlus 0.12 3 2 0.0001 47.65 s
(0.065,0.175)

BayesCluster 0.219 2 2 - 29.87 s
(0.194,0.245)

Table 3.10: Comparison of the results on the heart disease dataset in terms of
mean adjusted Rand index (ARI), ± st. error ARI, estimates of the number of
clusters K, estimates of the latent dimensionality P where applicable, p-values from
a t-test testing the hypothesis that there is no difference between the results from
BayesCluster and from the comparison methods in terms of ARI, and computation
time per run.

Credit approval dataset

In the case of the credit approval data, both iClusterPlus and BayesCluster had low
adjusted Rand indices, which might be due to the models’ assumptions. Although
BayesCluster identified the correct number of clusters (K = 2), it allocated a large
proportion of the ‘non-approved’ observations to the ‘approved’ cluster. Looking
at the continuous part of the credit approval dataset (Figure (c) 3.7), we notice
that the observations have similar values across the six continuous features. In
addition, the features included in this dataset have been anonymised and we can
not assess their relevance to the clustering task. Hence, the outputs of BayesCluster
and iClusterPlus could have been affected by uninformative data.
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Model mean ARI Estimated Estimated p-value Comp.
(± st. error) K P time

k-prototypes 0.336 3 - 1.65e-11 8.06 min
(0.307,0.365)

iClusterPlus 0.082 4 3 0.0164 2.32 min
(0.049,0.114)

BayesCluster 0.055 2 2 - 43.06 min
(0.049,0.062)

Table 3.11: Comparison of the results on the credit approval dataset in terms of av-
erage adjusted Rand index (ARI), ± st. error ARI, estimates of number of clusters
K, estimates of latent dimensionality P where applicable, p-values from a t-test test-
ing the hypothesis that there is no difference between the results from BayesCluster
and from the comparison methods in terms of ARI, and computation time per run.

3.4 Discussion

We have presented the application of BayesCluster to both synthetic and real
datasets and shown that the model provides competitive clusterings of real-world
data as measured by the adjusted Rand index with respect to known labels.

There were cases in the experiments with continuous data where BayesCluster failed
to identify clusters close to the ground truth, for example in the case of the iris
dataset, it merged two of the clusters into one. Some of the reasons for that could
be that this was a particularly difficult clustering problem or that some of the model
assumptions are not appropriate.

In the experiments with discrete datasets, BayesCluster provided competitive re-
sults in comparison with k-modes and iClusterPlus. The only dataset on which
BayesCluster did not perform well was the Spect heart dataset, which could be be-
cause of uninformative features result of the preprocessing performed on the original
Spect data.

The experiments with mixed data, in particular with the credit approval data, high-
lighted the importance of data quality and informative/relevant features to the qual-
ity of the clustering results.

In terms of computation time, BayesCluster is slower than all comparison methods,
which is mainly due to not making use of the fast C++ libraries available in R,
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which are used in the other methods. We expect that further work on the code base
could substantially close this gap in the run time.

In this Chapter we applied BayesCluster to datasets from a range of different ap-
plications - ecology, medicine, politics. The results from the numerical experiments
show that BayesCluster can provide competitive clustering results regardless of the
context of the data. There were cases where a simpler model such as k-means
outperformed BayesCluster, which could be due to the model assumptions and in-
ference scheme we use. There are different ways to counteract the shortcomings of
BayesCluster, which will explore in Chapter 4. We will also present extensions to
BayesCluster which lead to the identification of more interpretable and well-defined
clusters. We will investigate the application of BayesCluster to genomic data in
Chapter 5.
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Chapter 4

Extensions to BayesCluster

In Chapter 2 we presented the theory behind BayesCluster, which can be used to
identify clusters in mixed datasets. In building the model, we made use of the
flexibility of Dirichlet process mixture models and of the efficiency of simulated an-
nealing. The numerical experiments in Chapter 3 demonstrated well the advantages
of BayesCluster over other clustering methods when applied to synthetic and real
data.

However, the methods for clustering and inference we use have inherent drawbacks
that can affect the quality of the model output. For example, Dirichlet process
mixture models have been shown to often overestimate the number of true clusters
[West and Escobar, 1993; Onogi et al., 2011; Miller and Dunson, 2018], and simulated
annealing can result in non-optimal solution. In addition, often, when dealing with
noisy genomic and clinical data, which will be the case in Chapter 5, we wish to
prioritise clearly-separated (and hence biologically distinctive) clusters.

In this chapter, we address these issues and present extensions to BayesCluster based
on the ideas of non-local priors, split-merge and cluster-size priors, which lead to
stronger model parsimony and to the identification of more interpretable clusters.

4.1 Non-local priors extension to BayesCluster

Non-local priors [Johnson and Rossell, 2012; Fúquene et al., 2016; Rossell and
Telesca, 2017] encourage parsimony by enforcing separation between the clusters
under consideration.
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4.1.1 Overview of non-local priors

Fúquene et al. [2016] introduce non-local priors in the context of mixture models.
They consider data x = (x1, . . . ,xn) arising from density

p(xi|ϑϑϑk,Mk) =
k∑
j=1

πjp(xi|θj), (4.1)

where Mk is a model with k components and parameters ϑϑϑk, which include the
mixture proportions πj and the component parameters θj for j = 1, . . . , k, and
present a statistical framework for selecting the number of components k. If we
have multiple modelsM1,M2, . . . and for example,M1 is nested withinM2, these
models are not very well separated. If x was truly generated from M1, then M1

will receive high marginal likelihood. However, the marginal likelihood for M2 will
also be relatively large sinceM1 is contained inM2. If we perform Bayesian model
selection via posterior model probabilities, then M1 will be eventually favoured as
the sample size n grows towards infinity since Bayesian model selection automatically
incorporates Occam’s razor.

To address the problem of weakly separable models, Fúquene et al. [2016] build
upon the idea of repulsive mixtures [Petralia et al., 2012] and avoid the limitations
of shrinkage priors such as inference sensitive to value of the concentration parameter
α or the number of components k, and lack of posterior model probabilities. They
introduce non-local priors, formally defined as follows:

Definition 1. Let Mk be a mixture with k components as in (4.1). A continuous
prior density p(ϑϑϑk|Mk) is a non-local prior if and only if

lim
ϑϑϑk→t

p(ϑϑϑk|Mk) = 0, (4.2)

for any t ∈ Θk such that p(x|t,Mk) = p(x|ϑϑϑk′ ,Mk′), for some M′k with k′ compo-
nents as in (4.1) and ϑϑϑk′ ∈ Θk′ , k

′ < k.

This means that a non-local prior under Mk assigns vanishing density to any ϑϑϑk

such that (4.1) is equivalent to a mixture with k′ < k components. A local prior
is defined as any prior p(ϑϑϑk|Mk) not satisfying (4.2), and examples of local priors
include the normal and Cauchy distributions. Figure 4.1 presents a comparison
between local priors and non-local priors in the context of hypothesis testing.
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Figure 4.1: Comparison between local and non-local priors

We can reformulate Definition 1. to simplify checking whether a prior is non-local
as follows: p(ϑϑϑk|Mk) defines a non-local prior if and only if lim p(ϑϑϑk|Mk) = 0 as
either

1. πj → 0 for any j = 1, . . . , k ;

2. θθθi → θθθj for any i 6= j.

We can easily construct a non-local prior from an arbitrary local prior in the fol-
lowing way:

p(ϑϑϑk|Mk) = dϑϑϑ(ϑϑϑk)pL(ϑϑϑk|Mk), (4.3)

where d(ϑϑϑk) is a continuous penalty function converging to 0 under condition 1. or
2., and pL(ϑϑϑk|Mk) is an arbitrary local prior such that p(ϑϑϑk|Mk) is a proper prior.
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We can express (4.3) as

p(ϑϑϑk|Mk) = dθθθ(θθθ)pL(θθθ|Mk)Dir(πππ|α), (4.4)

where

dθθθ(θθθ) = 1
Ck

 ∏
1≤i<j≤k

d(θθθi, θθθj)

 , (4.5)

with Ck =
∫ (∏

1≤i<j≤k d(θθθi, θθθj)
)
pL(θθθ|Mk)dθθθ being the normalising constant. The

form of dθθθ(θθθ) depends on the model under consideration and some of the most
commonly used penalties are:

• moment (MOM) [Johnson and Rossell, 2010] d(θθθi, θθθj) = (µµµi − µµµj)ᵀA−1(µµµi −
µµµj)/g;

• exponential moment (eMOM) [Rossell et al., 2013] d(θθθi, θθθj) = exp{−g/(µµµi −
µµµj)ᵀA−1(µµµi −µµµj)},

where A is a symmetric positive matrix and g is a dispersion parameter similar to
the parameter used in the repulsive mixtures introduced by Petralia et al. [2012].

We choose to use the MOM prior in BayesCluster as the normalising constant Ck
can be computed in closed form in specific model settings and it has been shown
empirically that both MOM and eMOM result in strong model separation [Johnson
and Rossell, 2012, 2010].

Fúquene et al. [2016] have shown that non-local priors induce extra parsimony via
the penalty term dϑϑϑ(ϑϑϑk) and provide posterior consistency. An approximation to
the marginal likelihood p(x|Mk) can be derived as well but as we do not require
the computation of marginal likelihood, we omit the derivation of its approximation
here. Proofs of the parsimony and posterior consistency properties are omitted but
the reader can refer to Fúquene et al. [2016] if interested.

We adapt the Moment non-local prior for BayesCluster. Following Fúquene et al.
[2016], we place a MOM prior on the cluster means µµµk:

p(µµµk) = 1
Ck

∏
1≤i<j≤k

(µµµi −µµµj)ᵀA−1
Σ (µµµi −µµµj)
g

N (µµµk|0, gAΣ) (4.6)

We set AΣ to be the identity matrix. We set up g so that there is small prior
probability that any 2 components are poorly separated and give rise to unimodality.
Ray and Lindsay [2005] point out that although the number of modes in normal
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mixtures depends on nontrivial parameter combinations, in the case when π1 = π2 =
0.5 and ΣΣΣ1 = ΣΣΣ2 the mixture is bimodal if and only if κ = (µµµ1−µµµ2)ᵀΣΣΣ−1(µµµ1−µµµ2) > 4.
Hence, we need to set the dispersion parameter g so that p(κ < 4|Mk) = 0.05 or
0.1 (we use 0.05 based on the numerical results provided in Fúquene et al. [2016]).
As (4.6) implies a Gamma prior on κ Ga(κ|p/2 + 1, 1/4g) where p is the dimension
of the data, setting g amounts to numerically solving an integral. We present in the
table below (Table 4.1) the values of g for a range of number of dimensions p:

p g

1 5.68
2 2.81
3 1.745
4 1.225
5 0.922
6 0.731
7 0.60
8 0.505
9 0.437
10 0.384

Table 4.1: Values of the dispersion parameter g for number of dimensions between
1 and 10.

Using non-local priors in the BayesCluster model does not require the computation
of the normalising constant Ck, which is quite expensive, as it is not involved in
the allocations of the observations or in the Metropolis Hastings/simulated anneal-
ing updates. The only differences from the models presented in Chapter 2, are in
computation of the log posterior of the model where we have an extra term for the
penalty, and in the calculation of the probability of starting a new cluster. Because
of the penalty term, we cannot integrate the base measure but we can still find
the probability of starting a new cluster using the ‘no gaps’ algorithm proposed by
MacEachern and Müller [1998] and adapted by Neal [2000]. We compute the proba-
bility of starting a new cluster by introducing an auxiliary variable c∗, representing
the new state, and we sample a cluster mean µµµ∗ for the new (temporary) cluster
from the base measure. After that we compute the conditional probability using:

p(ci = c∗|c−i,Z) ∝ α

α+N − 1N (zi|µµµ∗, I). (4.7)
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Similarly to the models from Chapter 2, we then assign the ith item to the most
probable cluster. We use the same proposal distributions for the other model vari-
ables as outlined in Chapter 2.

We illustrate how using non-local priors leads to better cluster separability us-
ing some of the real datasets from Chapter 3. We picked the iris dataset, since
BayesCluster was not able to identify the true number of clusters in this case and
merged two of the clusters; the Wisconsin breast cancer dataset and the glass dataset
as BayesCluster did not perform well on these datasets. We set the concentration
parameter α to be equal to 3 for all the experiments as recommended by Fúquene
et al. [2016].

Iris dataset

Using the non-local priors for the cluster means, BayesCluster was able to identify
the true number of clusters (K = 3) in the iris dataset. Although it did not model
well the overlap between the versicolor and virginica clusters, the clusters it identified
were well separated (see Figure 4.2).

Model mean ARI Est. Est. p-value Comp.
(± st.error) K P time

BayesCluster 0.567 2 2 0.06362 29.87 sec
(0.565,0.569)

BayesCluster 0.588 3 2 - 1.12 min
(0.557,0.62)

(non-local priors)

Table 4.2: Comparison of the results on iris data in terms of mean adjusted Rand
index (ARI), ± standard error, estimates of the number of clusters K, estimates of
the latent dimensionality P , p-value from a t-test testing the hypothesis that there
is no difference between the results from BayesCluster with and without non-local
priors in terms of ARI, and computation time per run.

Wisconsin breast cancer dataset

The non-local priors (NLP) extension of BayesCluster achieved better results in re-
gards with adjusted Rand index (Table 4.3, mean ARI =0.762, p-value = 0.03328).
However, it did not identify the correct number of cluster K = 2 and instead es-
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Figure 4.2: Comparison between the final partitions of the iris data, identified by
BayesCluster and BayesCluster with non-local priors. The first two principal com-
ponents are plotted and coloured according to the cluster membership.

timated that there were 3 clusters. This could be because it decided to create a
separate cluster to model the observations with similar characteristics (see Figure
4.3) or it is finding another subtype of breast cancer.
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Figure 4.3: Comparison between the final partitions of the Wisconsin breast can-
cer data, identified by BayesCluster and BayesCluster with non-local priors. The
first two principal components are plotted and coloured according to the cluster
membership.

Model mean ARI Est. Est. p-value Comp.
(± st. error) K P time

BayesCluster 0.728 2 2 0.03328 21.45 min
(0.699,0.757)

BayesCluster 0.762 3 2 27.95 min
(0.726,0.798)

(non-local priors)

Table 4.3: Comparison of the results on Wisconsin breast cancer data in terms of
mean adjusted Rand index (ARI), ± standard error, estimates of the number of
clusters K, estimates of the latent dimensionality P , p-value from a t-test testing
the hypothesis that there is no difference between the results from BayesCluster
with and without non-local priors in terms of ARI, and computation time per run.
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Figure 4.4: Comparison between the final partitions of the glass data, identified
by BayesCluster and BayesCluster with non-local priors. The first two principal
components are plotted and coloured according to the cluster membership.

Glass dataset

The non-local priors extension of BayesCluster achieved better results on the glass
dataset in regards with adjusted Rand index (Table 4.4). Although it did not identify
the correct number of clusters (K = 7), the NLP version estimated that there were
5 clusters and it got closer to the ground truth K. Both versions of BayesCluster
modelled well the lilac cluster (Figure 4.4) but struggled to model the other clusters
as a lot of them have similar characteristics (see heatmap on Figure 3.1b).
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Model mean ARI Est. Est. p-value Comp.
(± st. error) K P time

BayesCluster 0.182 4 3 0.05806 7.02 min
(0.165,0.191)

BayesCluster 0.195 5 2 9.61 min
(0.179, 0.219)

(non-local priors)

Table 4.4: Comparison of the results on the glass data in terms of adjusted Rand
index (ARI), mean ARI ± 1 standard error, estimates of the number of clusters K,
estimates of the latent dimensionality P , p-value from a t-test testing the hypothesis
that there is no difference between the results from BayesCluster with and without
non-local priors in terms of ARI, and computation time per run.

4.2 Drawbacks of Dirichlet process mixture models and
possible solutions

Although Dirichlet process mixture models have been shown to provide consistent
estimates for the density [Ghosh and Ramamoorthi, 2003; Wu and Ghosal, 2010],
this does not imply they give consistent estimates for the number of components:
a good density estimate might include components with very small weights. This
problem has been studied in detail by West and Escobar [1993] and Onogi et al.
[2011], who have shown empirically that the posterior inference of the number of
clusters tends to put its mass on a range of values greater or equal to the true
number of clusters. Miller and Harrison [2013] show with the simple example of
fitting a Dirichlet process mixture model to data generated from a single univariate
Normal distribution, that the posterior probability of the number of clusters being
equal to 1 does not converge to 1 almost surely, but decreases to 0 instead as the
amount of data increases. The reason for this inconsistency is that Dirichlet process
mixture models strongly prefer having some very small clusters and will introduce
extra clusters even when they are not needed. Arratia et al. [2003] showed that as
the number of observations N →∞, the expected number of clusters K is equal to

E[K] =
N∑
i=1

α

N − 1 + α
≈ α logN (4.8)
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and that the expected number KM of clusters of size M is

lim
N→∞

E[KM ] = α

M
, (4.9)

which implies that in expectation, there will be a small number of large clusters, cor-
responding to the ‘rich-get-richer’ property of Dirichlet process, and a large number
of small clusters.

Often these tiny clusters are dealt with by being removed, which results in an in-
accurate model. Some researchers have put a prior on the number of components
[McCullagh et al., 2008; Nobile and Fearnside, 2007; Green and Richardson, 2001;
Nobile, 1996] but this becomes an unrealistic approach to take when working with
real complex, high-dimensional datasets and not knowing the ground truth or hav-
ing prior knowledge of the number of clusters. This might suggest that using a finite
mixture model would be a more appropriate approach. However, Miller and Dunson
[2018] show empirically that finite mixture models with unknown clusters exhibit a
similar inconsistency. In addition, Cai et al. [2017] demonstrate this inconsistency
of finite mixtures theoretically and highlight the importance of understanding un-
der what conditions we can make robust inference and deal effectively with model
misspecifications.

We take a different approach to solving this issue and propose an extension which
deals with tiny clusters in a more principled way. This is desirable particularly in
biological contexts such as those we are interested in because it is hard to interpret
small clusters.We achieve this by putting a prior on the size of the clusters which
discourages very small clusters.

4.2.1 Prior on the cluster size

The idea of controlling the cluster size with a prior or constraints is not new - it has
been applied in both deterministic and model-based clustering over the last decade,
for example in the constrained k-means clustering developed by Bradley et al. [2000].

There are different ways of controlling the size of the clusters: for example, Wallach
et al. [2010] explore the properties of the uniform process introduced by Qin et al.
[2003] and Jensen and Liu [2008], and show that using the uniform process instead
of Dirichlet process or Pitman-Yor process as a prior leads to more uniformly-sized
clusters. Bradley et al. [2000] transform the k-means clustering algorithm into a
linear programming problem with constraints on the minimum cluster size. Banerjee
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and Ghosh [2006] study a variant of k-means which enforces equal size for all clusters,
whereas Zhu et al. [2010] apply balancing constraints to k-means and make use of
prior knowledge of the distribution of the data by trying to find a partition that
satisfies the constraints. Another approach to controlling the cluster size involves
the concept of microclustering, introduced by Miller et al. [2015]. In microclustering
models the size of the clusters grows sublinearly with respect to the sample size and
to ensure that, negative binomial [Miller et al., 2015] and uniform priors [Klami and
Jitta, 2016] have been used for the cluster size. Jitta and Klami [2018] generalise this
work to the use of wider range of priors on the cluster size. The model they propose
for mixture-based clustering replaces the i.i.d. observations with i.i.d. clusters, and
the joint density factorises as

p(X, C|θ) =
K∏
k=1

(
p(sk)

N∏
n=1

p(Xn|θn)I[cn=k]
)
, (4.10)

where sk is the number of samples in the kth cluster, Xn is the nth observation and
cn is the corresponding indicator variable. This formulation allows control over the
cluster size but removes the ability to sample the cluster indicators individually -
now they all have to be updated simultaneously.

We adapt the approach of Jitta and Klami [2018] but incorporate the cluster size
prior as an implicit constraint, and include a term

∑K
k=1 log p(sk) in the computation

of the model log posterior.

We consider the following priors on the cluster size: Poisson, Gamma, negative
binomial and uniform. Other possible choices for the prior include the delta distri-
bution, and a mixture of Gaussian/Gamma distributions. We illustrate the effect
of the different priors over the size of the clusters using three of the continuous
synthetic datasets generated in Chapter 3.

We consider four models, where we have placed uniform (U(10, 150)), Gamma
(Ga(10, 5.5)), negative binomial (NBin(50, 1/2)) and Poisson (Poi(50)) priors (see
Figure 4.5 for illustration of the priors) on the size of the clusters. We have picked
the parameters of the priors so that small clusters with fewer than 10 data points
are heavily disfavoured.
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Figure 4.5: Examples of priors on the cluster size we consider in this chapter.

We present a comparison between the different priors on a synthetic dataset, gen-
erated in the same manner as the continuous synthetic datasets in Chapter 3. We
performed experiments only with synthetic data since we did not observe very small
clusters in the experiments with real data in Chapter 3. Using continuous BayesClus-
ter on the dataset, there were 5 clusters identified, with one of them (the light blue)
having fewer than 10 data points in it. By setting a prior on the cluster size, we can
see that the resulting partitions do not have any small clusters and include clusters
of similar sizes (Figure 4.6).
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Figure 4.6: Comparison between the cluster partitions identified by BayesClus-
ter when using different priors on the cluster size, the cluster partition obtained
BayesCluster without any prior on the cluster size, and the ground truth. The use
or the lack of prior on the cluster size is indicated in the figure captions.

We further compared the different cluster size priors in regards with adjusted Rand
index and estimated number of clusters to pick a prior to work with later. All
models apart from the one using the Negative binomial prior identified 5 clusters.
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The models produced similar final partitions and performed similarly in regards
with adjusted Rand index, with the model with negative binomial prior having the
highest mean ARI of 0.884 (Table 4.5). As the model with negative binomial prior
was the closest to the ground truth and modelled well the tiny clusters, it is a more
preferable choice to use for prior on the cluster size.

prior mean ARI Estimated Estimated p-value
(± st. error) K P

Uniform 0.836 5 2,3 0.8612
(0.764,0.907)

Gamma 0.863 4,5 2,4 0.6525
(0.806,0.921)

Negative binomial 0.884 4 2,3 0.3131
(0.843,0.925)

Poisson 0.844 5 2,3,4
(0.785,0.903)

Table 4.5: Comparison of the results obtained using different cluster size priors with
BayesCluster on a synthetic dataset, in terms of mean adjusted Rand index (ARI),
± standard error, estimates of the number of clusters K, estimates of the latent
dimensionality P . The p-values are from a t-test testing the hypothesis that there
is no difference between the results from BayesCluster with Poisson prior on the
cluster size and with any of the other 3 cluster size priors in terms of ARI.

4.3 Split-merge MCMC

We investigated the idea of split-merge sampling because we often observed a tail of
small clusters in our experiments which might be in part due to simulated annealing
getting stuck in local modes. To address this issue, we adopted a method, inspired
by split-merge MCMC [Jain and Neal, 2004; Green and Richardson, 2001; Wang and
Blei, 2012; Hughes et al., 2012; Jain et al., 2007; Dahl, 2003; Wang and Dunson,
2011]. Split-merge MCMC methods have been motivated by some of the drawbacks
of Gibbs sampling, which can become trapped in isolated modes and result in an
inappropriate clustering of the data. Celeux et al. [2000] point out that this problem
is due to the incremental nature of Gibbs sampling which is unable to simultaneously
move a group of observations to a new component. In addition, the incremental
updates are unlikely to move a single observation to a new cluster because such
move has a low probability and is unlikely to be accepted [Celeux et al., 2000].
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There have been developed many different split-merge MCMC methods. For exam-
ple, Green and Richardson [2001] propose a complex split-merge in the reversible
jump networks, which is based on conserving specific moment conditions, and is
accepted or rejected by Metropolis-Hastings acceptance probability. This scheme,
however, is not particularly practical when working with high-dimensional data as
the computation of the probability of accepting/rejecting the proposed move be-
comes more complex.

Jain and Neal [2004] propose a simpler scheme, which is more suitable for high-
dimensional data. They consider two different split-merge moves: simple random
split and restricted Gibbs sampling. In the random split, two random points are
considered, and if they are in the same cluster k, they are split into two clusters i
and j, and all points from the kth cluster are added to either the ith cluster or the
jth cluster, which is accepted with a Metropolis-Hastings probability. If the points
are in different clusters, then all the points from the two clusters are merged in one
and this move is accepted with a Metropolis-Hastings probability. This split-merge
move is unlikely to be often accepted as it does not take into account the cluster
information. In the restricted Gibbs sampling move, the points after the split are
assigned to a new cluster in a deterministic manner and then a restricted Gibbs
sampling is performed on the new cluster.

We propose a different approach: we split the clusters containing fewer than 10
data points into singletons, and then consider a merge where we add all points
from the tiny clusters to the most likely large cluster, and accept the merge by
using a simulated annealing acceptance probability. Note that the detailed balance
equations do not need to be satisfied since we apply the split-merge approach in the
context of simulated annealing. Modifying the inference scheme with split-merge
helps guard against the inference getting stuck in local modes. It does not change
the posterior, and thus, does not change the tendency of the Dirichlet process to want
a tail of small clusters. Hence, we need to use both split-merge and cluster size prior
to counteract the inherent drawbacks of the model and the inference scheme. We
summarise the steps involved in the algorithm, as applied in the case of continuous
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BayesCluster, below:

Algorithm 4.1: Continuous BayesCluster with split-merge
Perform PPCA to initialise the latent variables Z, sample the loadings matrices
W and residual error ε from the corresponding priors ;

Initialise the cluster partition using k-means clustering;
while t < numiterations & not converged do

Sample a random permutation τ of 1, . . . , N ;
for j ∈ τ do

Remove zj from its current cluster and update cluster’s sufficient
statistics ;

Compute the probabilities of joining an existing cluster and of starting a
new cluster using (2.14) and (2.15);

Set cj = arg max1,...,K,k∗ log p(cj = k|c−j ,Z,πππ, α) and update the
cluster’s sufficient statistics ;

end
if numpoints in (a) cluster(s) < 10 then

Compute the probabilities of joining all the points to a cluster with
more than 10 data points ;

Add all points to the cluster with the highest probability and
accept/reject with a simulated annealing acceptance probability ;

Update the cluster’s sufficient statistics
end
Update model parameters using simulated annealing ;
Compute the model log posterior ;
Check for convergence.

end

We examined a merge move based on Euclidean distance as well. In this case,
we considered merging clusters with fewer than 10 data points with the closest
large cluster, where we determined the closest cluster by measuring the distances to
cluster means. This, however, was not a very efficient split-merge scheme because the
proposed merges were often rejected as different data points from the tiny clusters
were often close to two different large clusters and hence, adding all points from the
small cluster to one of these large clusters had a low acceptance probability (see
Figure 4.7).
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Figure 4.7: An example of why a merge move based on Euclidean distance does not
work well in the case of BayesCluster. If we propose a merge of the blue cluster
with a larger cluster (in this case the red cluster) based on the distance of the blue
points from the centres of the large clusters, it will be rejected since some of the
blue points (circled in yellow) would favour a merge with another cluster (the yellow
one).

We present below a comparison between the results of using split-merge and of not
using split-merge on a synthetic continuous dataset, generated in the same way as
outlined in Chapter 3.

Using the adjusted Rand Index to compare the clustering partitions (Table 4.6), we
see that we managed to escape local maxima consistently with the proposed-split
merge, and obtained better defined clusters (see Figure 4.8 and Figure 4.10), with
no very small clusters. Without applying split-merge, there were cases when we
ended up stuck in local maxima with a partition including small clusters (see Figure
4.9).
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Approach Mean ARI Est. Est. p-value
(± std. error) K P

No split-merge 0.757 2,3 2 0.03066
(0.612,0.902) 3 - 8 2,3

Split-merge 0.891
(0.795,0.987)

Table 4.6: Comparison between the accuracy of the clustering with split-merge and
no split-merge on a single synthetic dataset in terms of mean adjusted Rand index (±
std.error), estimated number of clusters K, estimated number of latent dimensions
P . The p-value is from a t-test testing the hypothesis that there is no difference
between the results from BayesCluster with and without split-merge in terms of
ARI.
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Figure 4.8: An example of a cluster partition when we use split-merge.
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Figure 4.9: An example of a cluster partition when we do not use split-merge and
get stuck in a local maximum.
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Figure 4.10: The ground truth of the clustering partition for the synthetic dataset
under consideration.
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4.4 Concentration parameter inference

So far we have fixed the concentration parameter α to a small value in the experi-
ments in Chapters 3 and 4. This is a standard practice when working with Dirichlet
process mixture models [Gelman et al., 2014a] as in such way, allocation to only a
small number of clusters is favoured. However, it is possible to learn α from the
data as both Dunson [2009] and Gelman et al. [2014a] point out that in practice,
the data are highly informative about the concentration parameter and a Bayesian
approach to learning α is more appropriate. For example, Wang and Dunson [2011]
use a prespecified grid with a large range and put a prior on each value. A common
approach is to first choose a Gamma hyperprior α ∼ Gamma(a, b), and then use
MCMC methods to update α [West, 1992; Escobar and West, 1995; Richardson and
Green, 1997].

Considering the different approaches, we decided to place a Gamma prior on α and
update the concentration parameter with Metropolis-Hastings or simulated anneal-
ing. As the definition of non-local priors requires that α > 1, a Gamma(2, 1) prior
on α would be a better choice when we use non-local priors and resampling α if
we draw a value less than 1, and Gamma(1, 1) prior when we do not use non-local
priors (see Figure 4.11 for illustration of the hyperpriors).
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Figure 4.11: Examples of Gamma priors on the concentration parameter α.
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To study the effect of updating the concentration parameter α on the final partition,
we generated a continuous synthetic dataset where we sampled α from Gamma(1, 1)
obtaining a value of 0.456. We then generated the mixing proportions using the
stick-breaking process, introduced in Section 1.3.4 by truncating the stick at K = 3
and setting β3=1 [Ishwaran and James, 2001], and sampled the other model pa-
rameters and observations in the same manner as in Chapter 3. The dataset has
100 observations (3 clusters with 44, 38 and 18 observations respectively) and 100
features. The heatmap of the resulting dataset is presented on Figure 4.12, and the
latent variables used to generate the dataset are plotted on Figure 4.13, coloured
according to their cluster membership.
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Figure 4.12: The heatmap of the synthetic dataset, generated with α = 0.456.
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Figure 4.13: The latent variables used for the generation of the synthetic dataset
(Figure 4.12) are plotted and coloured accoding to their cluster membership.

We compared the partitions we obtained when we set α to a low value (0.01 in this
case) and when we updated it using the procedure outlined above. We repeated the
experiment 5 times with the true value of α being 0.456 in each simulation.

If we do not update α, BayesCluster often ends up overestimating the number of
clusters and sets them to 5 (see Figure 4.14). If we update α at each iteration, the
final partitions have higher adjusted Rand index (mean of 0.517) and the number
of clusters is closer to the ground truth (K = 3). Although the resulting partitions
(Figure 4.16 and Table 4.7) may be seen as better in comparison with the fixed α

version ones, the α values learned do not match the generating α well (Figure 4.16).
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Figure 4.14: Example of a clustering partition when we do not update α.
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Figure 4.15: Example of a clustering partition when we update α.
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Approach Mean ± std. error estimated estimated
ARI ARI K P

Fixed α 0.486 (0.432,0.546) 5 2
Update α 0.517 (0.500,0.534) 4 2

Table 4.7: Comparison between the partitions obtained when we update α and
when we have it fixed. The p-value from t-test testing the hypothesis that there is
no difference between updating and not updating α is 0.292.
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Figure 4.16: Plot of concentration parameter α, learned by BayesCluster. The
generating α is plotted in a black dashed line, and the learned values are in the
blue.

4.5 Conclusions

In this Chapter we developed extensions to BayesCluster that deal in a principled
manner with drawbacks inherent to the Dirichlet process mixture model and MCMC
methods, which play an important role in BayesCluster. We have combined the
concepts of non-local priors, prior on the cluster size and split-merge MCMC and
illustrated the efficacy of the extensions with real and synthetic data examples. Our
experiments with the iris, Wisconsin breast cancer and glass datasets demonstrated
how by incorporating non-local priors, BayesCluster could identify well defined clus-
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ters which are closer to the ground truth in cases where it previously could not. In
particular, BayesCluster identified the true number of clusters K = 3 in the iris
data, where most of the comparison methods found only 2. In addition, the split-
merge remedied the issue of the inference getting stuck in local maxima, whereas
imposing priors on the size of the clusters was shown experimentally in this Chapter
to deal with very small clusters in a principled way.

We investigate further the applicability of BayesCluster to integrate the information
from multiple real, noisy genomic datasets to identify more clinically meaningful
subtypes in Chapter 5.
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Chapter 5

Data Integration using
BayesCluster

5.1 Motivation

Cancer is a complex disease, driven by a range of genetic and environmental fac-
tors. It is highly heterogeneous in its formation and progression, and response to
treatment. This heterogeneity is usually a consequence of genetic, transcriptomic,
epigenetic, and/or phenotypic changes in different cancers and even within tumours
[Vogelstein et al., 2013], and this creates great challenges to treating patients ef-
fectively and to developing novel treatments. The advancement of high-throughput
technologies, however, has made it possible to collect more detailed and precise data
about large cohorts of patients that could be used to gain better understanding of
the genetic makeup of many cancers, and to detect and treat cancer in a timely
manner [Levy and Myers, 2016; Lipinski et al., 2016; Gagan and Van Allen, 2015].
These advances also signify a shift in the treatment paradigm - from ‘one size fits all’
to more personalised, genotype-guided treatments. For example, there are available
screening tests for bowel cancer in the UK and Canada [Aubin et al., 2011; Tan and
Du, 2012], which enable patients with unaltered KRAS gene to get more appropriate
treatment much quicker. There is an oestrogen receptor test for breast cancer as
well which can be used to guide the patients’ treatment [National Cancer Institute,
2018a].

This personalised approach is expected to lead to accelerated and more precise di-
agnosis, early disease detection and improved targeted therapies to boost efficacy
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and to reduce adverse drug reactions [Ginsburg and Phillips, 2018]. Personalised
medicine is an exciting opportunity with many benefits not only for the patients but
also for the doctors, hospitals and the health system. To make the most of it, how-
ever, the right patient needs to be identified first. Molecular data has shown great
promise in identifying cancer subtypes that are indicative of response to treatment
and overall survival [Guinney et al., 2015; Haque et al., 2012; Collisson et al., 2011].
Many different molecular data types can be informative of the disease progression
and response to treatment. For example, gene expression has been used in identi-
fying subtypes prognostic of survival outcome [Tibshirani et al., 2002; Van’t Veer
et al., 2002; Golub et al., 1999], whereas methylation levels have been shown to pro-
vide good biomarkers for different tumours [Cancer Genome Atlas Research Network
and others, 2014; Rodŕıguez-Rodero et al., 2013; Kulis and Esteller, 2010]. These
data types often provide distinct but also complementary views of cancers as they
interact with each other [Kulis and Esteller, 2010]. This is why the focus of research
has shifted towards integrative approach to identifying cancer subtypes [Shen et al.,
2009; Mo et al., 2013; Savage et al., 2010; Yuan et al., 2011; Kirk et al., 2012; Lock
and Dunson, 2013]. This approach identifies patient groups that share similar molec-
ular characteristics across the different data types and incorporate the interactions
between the different molecular data in the final output.

In Chapter 1, we saw that a lot of the current integrative clustering methods suffer
from slow parameter inference and are limited in the type of the datasets they can
model. These drawbacks motivate the development of an integrative algorithm,
which can model different types of data and has efficient inference. We extend
BayesCluster to model more than one dataset in this chapter. The use of a mixture
model in this extension allows to model easily different types of data and perform
faster, more efficient inference.

5.2 Data Integration with BayesCluster

5.2.1 The integrative clustering framework

BayesCluster can be extended to a combined data integration and clustering model
and applied to a wide range of different data types. The core idea of integrative
clustering is that the model learns a common set of latent features (in our case
cancer subtypes) jointly from the multiple data types.

Let us consider a study where we have m datasets from different data sources about
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the same set of patients, and we want to identify patient groups that share similar
molecular signatures.

We assume that the datasets we model share the same set of latent variables Z,
which represent the shared structure between the datasets.

We can jointly estimate Z from the available datasets. The key idea of the integrative
framework is to reduce the high-dimensional datasets to a low-dimensional subspace
which still captures the major data variations. We then model the lower-dimensional
representation of the data, rather than the high-dimensional dataset, and determine
the patient subtypes using a Dirichlet Process mixture model [Rasmussen, 1999]:

p(Z) =
∞∑
k=1

πkf(Z|θk), (5.1)

where p(Z) is the probability density model for the latent variables, πk’s are the
mixing proportions, f is a parametric density and θθθk are the parameters associated
with the kth component.

Using this integrative framework not only identifies the common structure shared be-
tween the different data types, but also models appropriately the individual dataset
structure, which ultimately leads to the identification of more clinically meaningful
subtypes.

We assume that the means of the clusters of latent variables µµµk have the Moment
prior, as introduced in Chapter 4:

p(µµµk) = 1
Ck

∏
1≤i<j≤k

(µµµi −µµµj)ᵀ(µµµi −µµµj)
g

N (µµµk|0, gI), (5.2)

where Ck is the normalising constant and g is the dispersion parameter which drives
the separation between the clusters. Using non-local priors in the model offers
better separability between the clusters and does not involve computations with
high complexity as we already saw in Chapter 4.

5.2.2 Statistical models

For the analyses in this Chapter, we use two different statistical models, which are
applied for real-valued and discrete data, respectively.

We model each D-dimensional continuous observation in dataset t (such as gene
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expression, copy number variation, microRNA) xit by a Gaussian likelihood with
unknown mean and precision

p(xit|zi,Wt, εεεit) = N (xit|Wtzi, σ2
t I), (5.3)

where the P -dimensional latent variables zi represent the molecular subtypes to be
discovered. Wt ∈ RD×P is the loadings matrix associated with dataset t and that
maps the data to a lower dimensional space, and εεεit is the error term, representing
the residual variance.

If we have discrete data, for example binary data indicating the presence of muta-
tions, we assume that observations are modelled as the realisation of multinomial
distribution whose parameters are achieved through a softmax transformation of the
linear projection of the latent factor vector. Therefore the probabilistic model has
the following form:

p(xi|zi,WD
1:R,wD

01:0R) =
R∏
r=1

Cat(xir|S(WD
r zi + wD

0r)) (5.4)

where WD
r is the loadings matrix for the rth response variable and wD

0r is the offset
term for the rth response variable.

In the case of mixed type of data (for example, a clinical dataset containing infor-
mation such as age, gender, follow-ups, TNM staging), we can treat the dataset as
the result of integration of two datasets - a continuous one and a discrete one, and
the probabilistic model has the following form:

p(xi|zi,WC , εεεi,WD,wD
0 ) = N (xCi |WCzi, σ2I)

R∏
r=1

Cat(xDir |S(WD
r zi + wD

0r)), (5.5)

where xCi and xDi are the continuous and discrete part of the ith observation respec-
tively, WC is the loadings matrix associated with the continuous part, WD, wD

0 are
the loadings matrices and offsets associated with the discrete part. This case has
already been extensively considered in Chapter 2 where we presented the model,
and in Chapter 3 where we performed numerical experiments.

If we have m datasets X1, . . . ,Xm from different data sources (continuous and dis-
crete), then the mathematical form of the model which integrates the information
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from all datasets is as follows:

X1 = W1Z + εεε1
...

Xk = WkZ + εεεk (5.6)

p(Xk+1|Wk+1,1:R,
D wk+1,r:k+1,R) =

∏N
i=1

∏R
r=1 Cat(Xi,k+1|S(WD

k+1,rzi + wD
k+1,r))

...

p(Xm|WD
m,1:R,wD

m,r:m,R) =
∏N
i=1

∏R
r=1 Cat(Xi,m|S(WD

m,rzi + wD
m,r))

where X1, . . . ,Xk are the continuous datasets which have been normalised (have
mean zero and variance 1), Xk+1, . . . ,Xm are the discrete datasets, W1,W2, . . .Wk,

WD
k+1,1, . . . ,WD

k+1,R, . . . ,WD
m,1, . . . ,WD

m,R are the loading matrices which map the
corresponding data onto a lower dimensional space, wD

k+1,1, . . . ,wD
k+1,R,wD

m,1, . . . ,

wD
m,R are the offset terms and εεε1, . . . , εεεk are the remaining variances unique to each

data type after accounting for correlation between data types.

5.2.3 Inference

If we are integrating X1, . . . ,Xm, in order to infer the model parameters, we need to
derive the full joint distribution. Using the full joint distribution, we can easily find
the expressions for the conditional distributions of the model parameters. However,
modelling multiple datasets from different data sources means that we can rarely
derive closed-form expressions for the conditional distributions; for example, here
we can derive a closed-form expression for the conditional distribution of the cluster
means only. Hence, we can not use Gibbs sampling for the inference.

As in Chapters 2 and 3, we use simulated annealing [Kirkpatrick et al., 1983], which
allows to explore efficiently a high-dimensional sample space, which would take
significantly longer time if we were to use an MCMC algorithm.

In the case when we integrate only continuous datasets, we infer the latent variables
Z, cluster means µµµ, the noise variables εεεi using the proposal distributions (2.1.1),
and use the approximation Xi ≈WiZ to learn the corresponding loadings matrices.

When we integrate continuous and discrete datasets, we infer the latent variables
Z, cluster means µµµ, the noise variables εεεi, the loadings matrices for the discrete
observations WD

1 . . . ,WD
R and the offset terms wD

01, . . . ,wD
0R using the proposal

distributions (2.1.1) and (2.23), and use the approximation Xi ≈WiZ to learn the
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loadings matrices for the continuous variables.

In the case of integration of discrete datasets only, we infer all model variables using
simulated annealing.

Initialisation

When we integrate continuous datasets, we apply probabilistic principal component
analysis (PPCA) [Tipping and Bishop, 1999] to each dataset, and use the output
loadings to initialise Wi. We pick the latent variables Z to be the PPCA scores
from one of the datasets (chosen at random). We initialise the error terms using
random draws from an inverse Gamma prior IG(1, 1). We apply k-means clustering
to the latent variables to initialise the cluster partition.

When we model discrete data, we initialise the loadings WD
1 , . . . ,WD

R and the offsets
wD

01, . . . ,wD
0R by sampling from their Normal priors, and the latent variables Z by

using the output from logistic PCA [Landgraf and Lee, 2015] applied to the discrete
data.

Since the initialisation of the model parameters depends on the dataset we choose
for estimating Z, we run the data integration method for all possible initialisation
scenarios, i.e. we use each of the datasets in turn to initialise the latent variables
Z and run the algorithm for a range of number of principal components (from 2 to
10). In addition, simulated annealing is not guaranteed to find the optimal solution
[Kirkpatrick et al., 1983] and the estimates will depend on the initial parameters.
Therefore, for each initialisation scenario, we run BayesCluster from multiple differ-
ent starting points and select the one that corresponds to the highest log posterior.

We place a negative binomial prior on the cluster size (NBin(100,0.5) or NBin(20,0.5)
in the pancreatic cancer study) and Gamma(2,1) prior on the concentration param-
eter α.

We run BayesCluster for 1000 iterations and assess convergence using the model
log posterior and the stopping condition |ft − ft−1| < 0.0001, where ft is the log
posterior at iteration t.

We can summarise the steps involved in applying BayesCluster to integrate the
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information from multiple datasets X1, . . . ,Xm in the following algorithm:

Algorithm 5.1: BayesCluster for the integration of information from multiple
datasets X1, . . . ,Xm

for i ∈ 1, . . . ,m do
Perform PPCA/logistic PCA on Xi to initialise the latent variables Z,
sample the loadings matrices WC , WD, error terms εεεm and offsets wD

0
from the corresponding priors (depending on the type of the data) ;

Initialise the cluster partition by using k-means clustering on the latent
variables Z;

while t < numiterations & not converged do
Sample a random permutation τ of 1, . . . , N ;
for j ∈ τ do

Remove zj from its current cluster and update cluster’s sufficient
statistics ;

Compute the probabilities of joining an existing cluster and of
starting a new cluster ;

Set cj = arg max1,...,K,k∗ log p(cj = k|c−j ,Z,πππ, α) and update
cluster’s sufficient statistics ;

end
Update model parameters using simulated annealing ;
Compute the model log posterior ;
Check for convergence.

end
end
Use BIC to select the final model.

Illustration of the workflow involved in using BayesCluster for data integration is
provided in Figure 5.1
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Figure 5.1: The workflow of BayesCluster. We first reduce the dimensionality of
the datasets to obtain the latent variables Z, i.e. the latent subtypes. We then
model the patient subtypes using Dirichlet process mixture model and obtain a
cluster partition. After that we use the clinical and omics data to specify the cancer
subtypes and investigate whether they differ in overall survival. Using the follow-
up data, we perform survival analysis and using the clinical data, to examine the
differences between the subtypes with different survival prognosis.

5.2.4 Model selection

Since the initialisation of the model parameters depends on the dataset we choose
for that, we run the data integration method for all possible initialisation scenarios
for a range of number of latent dimensions (P = 2, . . . , 10) and we use the Bayesian
information criterion to select P .

5.2.5 Connections with other models

In its construction, integrative BayesCluster is similar to iCluster, and its extensions
iClusterPlus and iClusterBayes. Both BayesCluster and iCluster model continuous
data using the latent variable model X = WZ + εεε. However, iCluster collates
the datasets X1, . . . ,Xm, which are integrated, into one data matrix X, and the
corresponding loadings W1, . . . ,Wm into one loadings matrix W, and then clusters
the latent variables Z using k-means clustering.

iClusterPlus and iClusterBayes treat each of the datasets we want to integrate sepa-
rately and use latent variable models differently from the ones used in BayesCluster
(see Chapter 1 for more details on the specific models) to model the different data
types. Similarly to BayesCluster, iClusterBayes uses Metropolis Hastings to infer
the model parameter because the schemes used in iClusterPlus and iCluster are not
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efficient and require search over a large parameter space.

The generalised mixture of factor analysers, presented in [Khan et al., 2010], models
mixed type of data in the following way:

p(xi|zi, ci = k,θθθ) = N (xCi |WC
k zi +µµµCk ,ΣΣΣC

k )
D∏
d=1
M(xDid|S(WD

dkzi +µµµDdk)), (5.7)

which is similar to the approach of BayesCluster to model mixed data. However,
this generalised mixture of factor analysers clusters the observations rather than the
latent variables.

The integrative version of BayesCluster is built upon the BayesCluster model speci-
fication for mixed data. The main difference between the two models is the inclusion
of non-local priors, prior on the cluster size and a split-merge move in the integrative
model (as described in Chapter 4) in order to obtain more biologically meaningful
clusters.

5.3 Data

5.3.1 Data types

In this chapter, we work mainly with the following genomic data types: gene ex-
pression, copy number variation, methylation and microRNA data.

Gene expression is expression of messenger RNA (mRNA) 1 from a given gene.
The transcription of genes can be switched on/off depending on the needs and cir-
cumstances of the cell and this process is regulated by DNA methylation together
with other mechanisms. In cancer cells, this regulation is often affected which leads
to uncontrollable cancer cell proliferation [Delgado and León, 2006].

DNA methylation is an epigenetic modification of the genome that is involved in reg-
ulating many cellular processes such as transcription, carcinogenesis, X-chromosome
inactivation, and genomic imprinting [Robertson, 2005]. Properly established and
maintained DNA methylation patterns are essential for the normal functioning of
people. There is evidence that aberrant DNA methylation is associated with multi-
ple human diseases [Brown and Strathdee, 2002].

1carries the genetic information copied from DNA in 3-letter genetic code [Lodish et al., 2008]
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Copy number is the number of copies of particular region of the genome occurring
in that genome. Redon et al. [2006] define copy number variation as a DNA
segment of one kilobase or larger that is present at a variable copy number in
comparison with the reference genome. Some copy number variations have no effect
on the phenotype whereas others have been linked to disease susceptibility [Gamazon
and Stranger, 2015], for example in Mendelian disorders [Blair et al., 2013; Al-Thihli
et al., 2008] and in common, complex diseases such as diabetes and cardiovascular
diseases [Mitchell, 2012]. Studying the gene expression levels together with copy
number variations can improve our understanding of their effect on the disease
[Lonsdale et al., 2013; Henrichsen et al., 2009].

MicroRNA (miRNA) are small single-stranded, non-coding RNA molecules and
can silence the expression of a particular target gene within the cell [MacFarlane
and R Murphy, 2010]. They bind to target messenger RNA molecules and suppress
translation of the mRNA into protein. miRNAs play an important role in the
regulation of numerous metabolic and cellular pathways, including those controlling
cell proliferation, differentiation and survival [Zhao et al., 2005; Monticelli et al.,
2005; Garzon et al., 2006b]. Dysregulation of miRNA expression profiles has been
observed in many different tumours [Garzon et al., 2006a; Volinia et al., 2006].

These processes interact with each other and are involved in the normal cell function-
ing. Disruption in any of them will affect the other processes. Hence, an integrative
clustering algorithm which uses all data types would be able to capture these inter-
actions and identify more clinically meaningful cancer subtypes in comparison with
a clustering algorithm which uses an individual data source.

5.3.2 TCGA data

We downloaded genomic and clinical data for breast cancer, pancreatic cancer,
glioblastoma and colorectal cancer from the Synapse homepage of the project https:

//www.synapse.org/ (accession numbers: syn1910185, syn1910259, syn1910197,
syn1910201 and syn1910239, respectively). We matched samples across all data
types for each type of cancer, and removed any duplicate sample for the same pa-
tient by making a blind selection of the first sample, based on barcode ordering.
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Breast cancer

We downloaded breast cancer data [Cancer Genome Atlas Network and others,
2012a], including gene expression and methylation data, as well as clinical data.
After matching samples across all data types, we were left with 313 samples for
which we have complete genomic data.

We used the publicly available level 3 gene expression data on the UNC Agi-
lentG4502A 07 platform and level 3 methylation data on HumanMethylation450
platform. We selected the genes to work with based on their variability within each
of the datasets. We set the threshold for gene expression to 2.1 and the threshold
for methylation to 0.3. The threshold values were selected so that the number of
genes fulfilling the criterion is as close to 100 as possible. This approach left us with
122 genes in the gene expression dataset and 115 in the methylation dataset.

We included clinical data about the patients, which contains information about the
tumour stage, the patient treatments, age, ethnicity. We use this information to
further specify the patient subtypes.

Pancreatic cancer

We downloaded pancreatic cancer data, including gene expression, copy number
variation and methylation data, as well as clinical data. After matching samples
across all data types, we are left with 34 samples for which we have complete genomic
data.

We use the publicly available gene expression data on the Illumina HiSeq platform.
We use the publicly available level 3 methylation data on HumanMethylation450
platform. We selected the genes to work with based on their variability within each
of the datasets. We set the threshold for gene expression to 2.1 and the threshold
for methylation to 0.26. The threshold values were selected so that the number of
genes fulfilling the criterion is as close to 100 as possible. This approach left us with
141 genes in the gene expression dataset and 143 in the methylation dataset.

We included clinical data about the patients, which contains information about the
tumour stage, the patient treatments, age, smoking status, presence of diabetes. We
use this information to further specify the patient subtypes.
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Colorectal cancer

We downloaded colorectal cancer data [Cancer Genome Atlas Network and others,
2012b], including gene expression, copy number variation and methylation data, as
well as clinical data. After matching samples across all data types, we were left with
147 samples for which we had complete data.

We used the publicly available level 3 gene expression data on the UNC Agi-
lentG4502A 07 platform, publicly available level 2 copy number data and publicly
available level 3 methylation data on HumanMethylation27 platform, and set all
missing values to 0. We used level 2 copy number data as it gives us access to all
probes unlike level 3 data which are segmented into regions probes. For each of the
datasets we selected the most highly variable genes, which resulted in the selection
of 108, 145, 103 genes from the gene expression, copy number variation and methyla-
tion datasets. We set the threshold for gene expression to 1.8, the threshold for copy
number variation to 0.6 and the threshold for methylation to 0.3. The threshold
values were selected so that the number of genes fulfilling the criterion is as close to
100 as possible.

We included clinical data about the patients, which contains information about the
tumour stage, the patient treatments, age, presence of colon polyps, mutations.

Glioblastoma

We downloaded glioblastoma data [McLendon et al., 2008], including gene expres-
sion, copy number variation, microRNA, methylation data, as well as clinical data.
After matching samples across all data types, we were left with 211 samples for
which we have complete data.

We used the publicly available level 3 gene expression data on the UNC Agi-
lentG4502A 07 platform, publicly available level 2 copy number data, and the pub-
licly available level 3 microRNA data, generated by UNC on the H-mirna 8x15K
platform. We set all missing values to 0 as we assumed zero-centred and normalised
data. We use the publicly available level 3 methylation data on HumanMethyla-
tion27 platform. The data were in the form of beta values, which measure the
ratio of methylation signal to methylation + background signal. After selecting the
genes based on their variability, with threshold set to 0.29, we binarised the data
(β > 0.85) as the data were noisy and removed any features with fewer than 10 hits.
This left us with 106 features.
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We selected the genes to work with based on their variability within each of the
datasets. We set the threshold for gene expression to 1.95, the threshold for copy
number variation to 0.8 and the threshold for miRNA to 0.6. The threshold values
were selected so that the number of genes fulfilling the criterion is as close to 100 as
possible. This approach left us with 122 genes in the gene expression dataset, 115
in the copy number variation dataset, and 125 in the miRNA dataset.

We included clinical data about the patients, which contains information about the
tumour stage, the patient treatments, age, ethnicity.

We summarise the characteristics of the datasets for each type of cancer in the table
below:

Cancer nSamples Clinical GE ME CNV microRNA

breast cancer 213 23 122 115 - -
pancretic cancer 34 23 141 142 - -
glioblastoma 212 23 122 106 115 125
colorectal 214 23 108 145 103 -

Table 5.1: Summary of the number of patients and number of features per data type
for each of the types of cancer.

5.4 Methods

5.4.1 Inference, initialisation and model selection

We follow the inference and initialisation procedures outlined in Section 5.2 - we
infer all model parameters by using simulated annealing. We use BIC to select the
final model.

5.4.2 Comparison methods

We compare the performance of BayesCluster with another integrative clustering
method, iClusterPlus [Mo et al., 2013]. As BayesCluster can be used on single
datasets, we select methods to compare its performance with. In the case of clus-
tering real-valued data, we choose k-means and Gaussian mixture model, and in the
case of discrete data, we pick k-modes.
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5.5 Experiments with synthetic data

5.5.1 Experiment 1

One of the main model assumptions of BayesCluster in the integrative case is that
the datasets we model have the same underlying structure. This facilitates the
inference scheme and the incorporation of information from different data types.
However, it is not unreasonable to expect that the datasets we want to integrate
have different clustering structure and that this could have an effect on the final
partition. To investigate the impact of this model assumption, we performed an
experiment where we used BayesCluster to cluster 10 pairs of synthetic datasets,
where one of the datasets has 3 clusters, each with 50 observations and 100 features,
and the other has 2 clusters, each with 75 observations and 100 features. We used the
generative model of continuous BayesCluster, presented in Section 3.1 of Chapter
3, to generate the datasets and we chose the first two principal components to
capture the most of the variation for each dataset. We sampled the cluster means
µµµ11,µµµ12,µµµ13 of the first dataset and µµµ21,µµµ22 of the second dataset as follows:

µµµ11,µµµ21 ∼ N ((0, 0), I) (5.8)

µµµ12,µµµ22 ∼ N ((2, 2), I) (5.9)

µµµ13 ∼ N ((4, 4), I). (5.10)

We then generated the latent variables Z1 of the first dataset by sampling from the
following Gaussian distributions N (µµµ11, I), N (µµµ12, I) and N (µµµ13, I), and Z2 of the
second dataset by sampling from the following Gaussian distributions N (µµµ21, I) and
N (µµµ22, I). After that, we generated the loadings matrices W1 and W2 of the first
and second dataset, respectively, by sampling from the priors on the rows of the
loadings matrices N (0, I), and the error terms εεε1 and εεε2 by sampling from their
priors N (0, σ2

1I) and N (0, σ2
2I), where σ1 ∼ IG(1, 1) and σ2 ∼ IG(1, 1). We finally

generated the pair of datasets X1 and X2 using

p(x1i|z1i,W1, εεε1) = N (x1i|W1z1i, σ
2
1I) (5.11)

p(x2i|z2i,W2, εεε2) = N (x2i|W2z2i, σ
2
2I). (5.12)

The heatmaps on Figure 5.2 present one pair of the synthetic datasets that were
generated in this manner.
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Figure 5.2: Heatmaps of two datasets with different underlying structure generated
using continuous BayesCluster

We ran BayesCluster with 5 random initialisations for 1000 iterations, with the
threshold for convergence set to 1e-4. We used an exponential cooling schedule for
the simulated annealing scheme with starting temperature T0 = 100 and cooling
rate C = 0.95, with proposal distributions as outlined in Section 2.1.1 of Chapter 2.
We initialised the model parameters as described in Chapter 2 and set α to 1. We
compare the final partition to the clustering structures of the individual datasets in
terms of adjusted Rand index.

Table 5.2 demonstrates the effect of modelling two datasets with different underlying
structure on the performance of BayesCluster. The model overestimates the number
of clusters in each of the experiments and its accuracy as compared with any of the
two clustering structures is very low (mean ARIs of 0.233 and 0.182). However,
these results are overly pessimistic as there is not a single ground truth to compare
against, so we expect the drop in the performance of BayesCluster not to be that
dramatic in reality.

132



Comparison Mean ARI Est. Est.
dataset (± std. error) K (prop.) P (prop.)
Dataset 1 0.233 5-7 2-4

(0.062,0.405) (0.2,0.4, 0.4) (0.3,0.4, 0.3)
Dataset 2 0.182 5-7 2-4

(0.109,0.255) (0.2,0.4,0.4) (0.3,0.4, 0.3)

Table 5.2: Comparison between the accuracy of BayesCluster when integrating 2
informative datasets and when integrating an informative and a noisy datasets, in
terms of mean adjusted Rand index (± std.error), estimated number of clusters K,
estimated number of latent dimensions P .

5.5.2 Experiment 2

Not every dataset used in the integrative scenario will contain relevant information
to obtain the final output. To study the effect of the inclusion of a non-informative
dataset, we consider an experiment where we integrate two synthetic datasets where
one of them has a well-defined structure and the other one is made of noise. We
generated 10 pairs of datasets, with one informative and one noisy dataset each. We
used the generative model of continuous BayesCluster, presented in Section 3.1 of
Chapter 3, to generate the datasets and we chose the first two principal components
to capture the most of the variation for each dataset. Both datasets have 3 clusters,
each with 50 observations and 100 features. We sampled the cluster means µµµ1,µµµ2,µµµ3

as follows:

µµµ1 ∼ N ((0, 0), I) (5.13)

µµµ2 ∼ N ((2, 2), I) (5.14)

µµµ3 ∼ N ((4, 4), I). (5.15)

We then generated the latent variables Z by sampling from the following Gaussian
distributions N (µµµ1, I), N (µµµ2, I) and N (µµµ3, I). After that, we generated the loadings
matrix W by sampling from the prior on the rows of the loadings matrix N (0, I),
and the error terms εεε1 and εεε2 by sampling from their prior N (0, σ2

1I), where σ1 ∼
IG(1, 1). We set σ2 to 100. We finally generated the pair of datasets X1 and X2

using

p(x1i|zi,W, εεε1) = N (xi|Wzi, σ2
1I) (5.16)

p(x2i|zi,W, εεε2) = N (x2i|Wzi, σ2
2I). (5.17)
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The heatmaps on Figure 5.3 present one pair of the synthetic datasets that were
generated in this manner.
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Figure 5.3: Heatmaps of an informative and a noisy dataset generated using con-
tinuous BayesCluster.

We ran BayesCluster with 5 random initialisations for 1000 iterations, with the
threshold for convergence set to 1e-4. We used an exponential cooling schedule for
the simulated annealing scheme with starting temperature T0 = 100 and cooling
rate C = 0.95, with proposal distributions as outlined in Section 2.1.1 of Chapter
2. We set α to 1. We use adjusted Rand index to assess whether including a noisy
dataset in the data integration task affects the final output and compare against the
performance of BayesCluster on integrating pairs of informative datasets, which we
presented in Chapter 3.

Table 5.3 illustrates well the drop in the performance of BayesCluster when we
include a noisy dataset in the integrative scenario: the mean ARI falls from 0.52
to 0.365, and the number of datasets is consistently overestimated. In addition,
BayesCluster does not estimate the number of latent dimensions P as accurately as
in the informative datasets case. Although the difference in the results is not statis-
tically significant with a p-value of 0.06717, we would recommend a careful variable

134



Datasets Mean ARI Est. Est. p-value
(± std. error) K (prop.) P (prop.)

2 informative 0.52 3,4 2,6 0.06717
datasets (0.343,0.657) (0.6,0.4) (0.7,0.3)
An informative and 0.365 5-7 2,3
a noisy dataset (0.229,0.502) (0.3,0.3,0.4) (0.5,0.5)

Table 5.3: Comparison between the accuracy of BayesCluster when integrating 2
informative datasets and when integrating an informative and a noisy datasets, in
terms of mean adjusted Rand index (± std.error), estimated number of clusters K,
estimated number of latent dimensions P . The p-value is from a t-test testing the
hypothesis that there is no difference between the results from BayesCluster in the
two cases.

selection in order to ensure that none of datasets we model is made predominantly
of noise.

5.6 Results

We performed survival analysis on the clusters identified by the different methods,
with the right-censored event being death. We considered only clusters with at least
5 patients in each case study and tested the hypothesis that there was no difference
in the overall survival between the subtypes. We plotted the Kaplan-Meier curves
and included the unadjusted p-value from the performed log-rank test.

We used the clinical data to further specify the identified cancer subtypes and to
investigate the differences between them.

We used the following R packages:

• survival [Therneau and Grambsch, 2013] to create the survival objects;

• survminer [Kassambara and Kosinski, 2018] to perform the survival analysis
and plot the Kaplan-Meier curves;

• gplots [Warnes et al., 2016] to plot the heatmaps of the data sources;

• viridis [Garnier, 2018] to use a nicer colour palette for the heatmaps.
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5.6.1 Breast cancer

We analysed gene expression and methylation data for the 216 patients with breast
cancer. We compared the results we obtained from using the individual datasets
and from the integration of the data from the two sources. This can help us answer
questions such as which data type drives the difference in the patient survival and
whether the integration of the datasets leads to more precise subtype specification.

BayesCluster identifies 4 breast cancer subtypes using the information from all
datasets. Although we cannot reject the null hypothesis that the subtypes have
the same survival outcome as the unadjusted p-value of the log-rank test is 0.75
(see Figure 5.4a), it will be worth investigating further whether they are prognostic
for other right-censored outcomes such as new tumour event, tumour regression or
recurrence. The clinical data shows that one of the BayesCluster subtypes (Cluster
3) consists predominantly (23 out of 44, with 13 additional patients with equivocal
or indeterminate Her2 status that could potentially have triple negative breast can-
cer) of patients with triple negative breast cancer and who do not have receptors
for oestrogen, progesterone and Her2 protein (see Appendix H for more details and
comparison between the patient subtypes).

We also looked at patient clusters identified by BayesCluster on the gene expression
and methylation datasets individually. We used log-rank test to test that there was
no difference between the subtypes in their survival prognosis. BayesCluster finds 6
and 8 patient clusters, respectively, with the survival outcome prognosis not being
statistically significant in both cases (unadjusted log-rank p-values of 0.82 and 0.6,
respectively, see Figures F.1 and F.2 in Appendix F).
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Figure 5.4: Breast cancer subtypes identified using integration of gene expression
and methylation by BayesCluster and iClusterPlus

We compare these results with the output from iClusterPlus (in the case of inte-
grating the gene expression and methylation data) and from k-means/k-modes and
Gaussian mixture model applied to the individual datasets.

iClusterPlus identifies 5 breast cancer subtypes using the gene expression and methy-
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lation data (Figure 5.4b). Although the identified subtypes do not have statistically
different survival prognosis outcome (with unadjusted p-value of 0.75), it manages
to identify a subtype where the majority of the patients have triple negative subtype
(25 out of 43 patients in Cluster 2 have triple negative breast cancer, with 13 addi-
tional patients with equivocal or indeterminate Her2 status that could potentially
have triple negative breast cancer; see Appendix H).

Clustering the gene expression dataset using k-means and a Gaussian mixture model
identifies 2 and 3 clusters, respectively, with similar survival prognosis (unadjusted
log-rank p-values of 0.8 and 0.97). The results from the application of k-means to
the methylation data show that methylation patient clusters do not have different
survival prognosis (unadjusted log-rank p-value of 0.88), whereas the Gaussian mix-
ture model finds only one cluster. This shows that we are able to discover more
specific characteristics about the patient subgroups by using data integration and
that one dataset cannot capture the complexity of breast cancer.

We present a summary of the comparisons between the models in Table 5.4. We
test the null hypothesis that there is no difference between the subtypes in their
survival prognosis.

model gene expression methylation all

k-means 0.8 0.88 -
GMM 0.97 - -
iClusterPlus 0.16 0.91 0.75
BayesCluster 0.82 0.6 0.75

Table 5.4: Unadjusted p-values for Kaplan-Meier survival curves (breast cancer
data). We test the null hypothesis that there is no difference between the subtypes
in their survival prognosis using a log-rank test.

5.6.2 Pancreatic cancer

We analyse gene expression and methylation data for the 34 patients with pancreatic
cancer, and consider the subtypes identified using each individual data type only
and both data types. For each case, we plot the Kaplan-Meier curves for the patient
groups, identified by BayesCluster, after the removal of any patients with no follow
up. We test the null hypothesis that there is no difference between the subtypes
in their survival prognosis, and the resulting unadjusted log-rank p-values are 0.09
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and 0.027 for the subtypes identified using only methylation and both gene expres-
sion and methylation data, respectively. In the case of the gene expression data,
BayesCluster identifies only one cluster and we can see from the heatmap of the
gene expression data, the measurements across the patients are similar (Figure 5.5).
This implies that using only gene expression data cannot capture the complexity of
pancreatic cancer, and that an integrative approach would be more appropriate.

−3 −2 −1 0 1 2 3

Figure 5.5: Heatmap of the pancreatic cancer gene expression data. The patients are
on the x-axis and are ordered according to their membership to integrative cluster,
and the normalised gene expression measurements on the y-axis.

We have identified 2 pancreatic cancer subtypes using both gene expression and
methylation data (unadjusted log-rank p-value of 0.027, Figure 5.6). The patients
from both clusters have similar characteristics in regards with median age at diag-
nosis, tumour stage, presence of diabetes and smoking history (see Appendix H for
comparison between the two clusters in terms of tumour stage, age at diagnosis and
other clinical characteristics). However, a third of the patients from cluster 2 (7
out of 19), which has median survival of less than 5 months, have family history of
cancer, which has been associated with increased risk of pancreatic cancer [Jacobs
et al., 2010].
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Figure 5.6: Comparison of the survival of the pancreatic cancer subtypes identified
by BayesCluster using gene expression and methylation data.

−2 −1 0 1 2

Figure 5.7: Heatmap of the methylation pancreatic cancer data. The patients,
grouped using the integrative version of BayesCluster, are on the x-axis, while the
genes, clustered using hierarchical clustering with average linkage, are on the y-axis.
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We compare theses results with the output from iClusterPlus, k-means and Gaussian
mixture model.

iClusterPlus identifies 4 pancreatic cancer subtypes using the gene expression and
methylation data (Figure 5.8), for which we cannot reject the null hypothesis of
no difference between the survival of the different subtypes (unadjusted log-rank
p-value of 0.09).

The Gaussian mixture model finds only one gene expression subtype, similarly to
BayesCluster, and identifies the same three methylation subtypes as iClusterPlus
(see Figures F.3 and F.4 in Appendix F for a comparison between the different
subtypes).
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Figure 5.8: Comparison of the survival of the pancreatic cancer subtypes identified
by iClusterPlus using gene expression and methylation data.
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model gene expression methylation all

k-means 0.178 0.054 -
GMM - 0.082∗ -
iClusterPlus 0.36 0.246 0.27
BayesCluster - 0.18 0.054

Table 5.5: Bonferroni-adjusted p-values for Kaplan-Meier survival curves (pancre-
atic cancer data). We test the null hypothesis that there is no difference between
the subtypes in their survival prognosis using a log-rank test. The p-value for the
Gaussian mixture model is unadjusted as there is only cluster found using the gene
expression data.

5.6.3 Glioblastoma

We analyse gene expression, copy number variation, microRNA and methylation
data for the 211 patients with glioblastoma. We consider five different ways for de-
riving the disease subtypes: from each individual data type and from the integration
of all datasets.

We perform survival analysis, with the right-censored event being death. We have
considered only clusters with at least 5 patients.

For each case, we plot Kaplan Meier curves for the patient groups, identified by
BayesCluster, after the removal of any patients with no follow up. We test the null
hypothesis that there is no difference between the subtypes in their survival progno-
sis, and the resulting unadjusted log-rank p-values are 0.18, 0.22, 0.77, 0.031, 0.33
for the subtypes identified using only gene expression, only copy number variation,
only microRNA, only methylation and all data types, respectively.

We have identified 5 glioblastoma subtypes using the information from all 4 datasets
(see Figure 5.9a). Patients from cluster 3, who have the best survival prognosis and
median survival of over year and a half, have the lowest median age in comparison
with the other patient groups (59 vs 60.5 (cluster 1), 60 (cluster 2), 59.5 (cluster
4), 60 (cluster 5)). A more detailed comparison of the clinical characteristics of the
clusters can be found in Appendix H.
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Figure 5.9: Glioblastoma subtypes identified using integration of gene expression,
copy number variation, miRNA and methylation by BayesCluster and iClusterPlus
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Figure G.3 in Appendix G shows that integrative cluster 5 (in pink), which in-
cludes 25 patients, has distinctive copy number variation patterns (loss of copies, in
particularly in genes part of the TTTY family) and methylation (high levels).
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We have also identified a large subtype of 177 patients based on methylation (Figure
5.10) for which there is an extremely poor survival outcome, with a third of the
patients dying within 6 months of diagnosis. This group of patients has low levels
of methylation in the majority of genes chosen for the analysis(see the red cluster
on Figure 5.11). A larger study with more patients is required to investigate this
further and confirm the low methylation levels as biomarker.
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Figure 5.10: Comparison of the survival of the glioblastoma subtypes identified by
BayesCluster using methylation data.
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Figure 5.11: Heatmap of glioblastoma methylation data. The patients are on the
x-axis, sorted by their membership to one of the two methylation clusters, whereas
the genes are on the y-axis, sorted using hierarchical clustering with average linkage.

iClusterPlus identifies 5 subtypes of glioblastoma patients using the information
from all 4 datasets (Figure 5.9b, unadjusted log-rank p-value of 0.18). The five
groups do not have statistically different survival outcome, and there is no patient
subtype that has a noticeably better survival prognosis than the rest.

We also look at the patient clusters, identified by k-means/k-modes and Gaussian
mixture models (GMM) for each of the glioblastoma datasets. In each of the cases, k-
means/k-modes and GMM are not able to capture the difference between the patient
subtypes. This suggests that combining the information from different glioblastoma
data sources could identify more clinically meaningful subtypes than using a single
data source.

We present a summary of the comparisons of the models in Table 5.6. We have ad-
justed the p-values using Bonferroni correction in the cases where we have performed
multiple hypothesis testing.
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model GE CNV microRNA ME all

k-means/k-modes 0.6 0.06 1.00 0.59∗ -
GMM 0.16∗ - - - -
iClusterPlus 0.95 0.225 1.00 0.036 0.9
BayesCluster 0.90 1.00 1.00 0.155 1.000

Table 5.6: Bonferroni-corrected p-values for Kaplan-Meier survival curves (glioblas-
toma data). We test the null hypothesis that there is no difference between the
subtypes in their survival prognosis using a log-rank test. As GMM resulted in one
large cluster and singletons in the case of copy number variation and microRNA,
we excluded these results from the analysis. The p-value for the k-modes model was
not adjusted as well as the model was applied only to methylation data.

5.6.4 Colorectal cancer

We analyse gene expression, copy number variation and methylation data for the
147 patients with colorectal cancer. We compare the results we obtained from using
the individual datasets and from the integration of the data from all sources.

The survival analysis of the integrative clusters found by BayesCluster reveals 2 clus-
ters with poor survival (Clusters 1 and 5), 2 clusters with good outcomes (Clusters
3 and 4) and 1 intermediate cluster (Figure 5.12).
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Figure 5.12: Comparison of the survival of the colorectal cancer subtypes identified
by BayesCluster using gene expression, copy number variation and methylation data.

Integrative cluster 4, which has the best survival prognosis, includes patients with
very low relative levels of methylation (the blue cluster on Figure G.4c), which
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occurs less often in cancer, and normal copy number variation measurements, apart
from a few gains (Figure G.4b). In addition, the median age at diagnosis of patients
from clusters 3 and 4 (63 and 68, respectively) are lower in comparison with the
other three clusters with median ages of 69.5, 74 and 77 (Table H.4).

−2 −1 0 1 2

Figure 5.13: Heatmap of the colorectal cancer methylation data. The patients are
on the x-axis sorted by their membership to one of the 5 integrative clusters, whereas
the genes are on the y-axis, sorted using hierarchical clustering with average linkage.
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Figure 5.14: Heatmap of the colorectal cancer copy number variation data. The
patients are on the x-axis sorted by their membership to one of the 5 integrative
clusters, whereas the genes are on the y-axis, sorted using hierarchical clustering
with average linkage.

Clustering only the copy number variation data using BayesCluster results in 5
clusters, whereas clustering only the methylation data produces 6 patient clusters
as well (see Figures F.10 and F.11 in Appendix F). The lack of statistically different
survival prognosis in both partitions implies that neither copy number variation
data, nor methylation data on their own can capture the mechanisms underlying
colorectal cancer.

We compare these results with the output from iClusterPlus (in the case of inte-
grating gene expression, copy number variation and methylation data) and from
k-means and Gaussian mixture model applied to the individual datasets.

iClusterPlus identifies 3 colorectal cancer subtypes using the information from all
data sources (Figure 5.15) the identified patient subtypes do not differ in the survival
prognosis, with cluster 3 having the best survival outcome.
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model gene ex-
pression

copy number
variation

methylation all

k-means 0.99 0.75 0.48 -
GMM 1.00 0.36 0.57 -
iClusterPlus 1.00 1.00 0.92 1.00
BayesCluster 0.44 0.72 1.00 0.84

Table 5.7: Bonferroni-corrected p-values for Kaplan-Meier survival curves (colorectal
cancer data). The unadjusted p-values can be found on figures of the corresponding
Kaplan-Meier curves. We test the null hypothesis that there is no difference between
the subtypes in their survival prognosis using a log-rank test.
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Figure 5.15: Comparison of the survival of the colorectal cancer subtypes identified
by iClusterPlus using gene expression, copy number variation and methylation data.

Table 5.7 shows that using k-means clustering or Gaussian mixture model fails
to capture any difference between the patient subtypes. This might be because
the mechanisms driving the gene expression, methylation levels and copy number
changes are too complex to be properly captured, or because the data used in the
analysis were not informative.
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5.6.5 Comparison of computational speed

We compared the performances of BayesCluster and iClusterPlus in terms of com-
putational speed. We summarise the results for each of the case studies in Table 5.8
below:

Dataset(s) nItems nFeatures BayesCluster iClusterPlus

BRCA (GE&ME) 213 2hr 16min 19.25min
BRCA (GE) 213 122 55.68min 7.47min
BRCA (ME) 213 115 1hr 45min 1.93min

PAAD (GE&ME) 34 1.24 min 1.32 min
PAAD (GE) 34 141 8.16min 22 s
PAAD (ME) 34 142 6.63min 22 s

CRC (GE&CNV&ME) 214 1hr 22min 16min
CRC (GE) 214 108 32.33min 1.21min
CRC (CNV) 214 103 32.33min 1.16min
CRC (ME) 214 145 3.84min 1.11min

GBM
(GE&CNV&ME&MiRNA)

212 2hr 40min 3hr 40min

GBM (GE) 212 122 50.33min 1.74min
GBM (CNV) 212 115 1hr 10min 1.45min
GBM (ME) 212 106 37.25min 1.55min
GBM (MiRNA) 212 125 34.40min 1.69min

Table 5.8: Comparison of the computational speed of BayesCluster and iCluster-
Plus. We used the following abbreviations for ease: BRCA (breast cancer), PAAD
(pancreatic ductal adenocarcinoma), CRC (colorectal cancer), GBM (glioblastoma);
GE (gene expression), ME (methylation), CNV (copy number variation), MiRNA
(microRNA)

BayesCluster and iClusterPlus have similar speed performance in the pancreatic can-
cer data integration study. Although iClusterPlus is faster in most of the case stud-
ies, especially in the integrative cases, due to its implementation in C++, it takes
over 3 hours to find the optimal integrative clustering partition in the glioblastoma
study. The reason for this is that iClusterPlus has to search through 307 possible
values of the penalty parameter λ for every selected number of principal components
(from 1 to 9) and to find a cluster partition for each combination of λ and latent di-
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mensionality in order to select the optimal λ. Using parallel computation to do that
does not lead to speed up in the computation time for the integration of 4 datasets
but the speed-up is noticeable in the case when we integrate 2 or 3 datasets. With
more datasets to integrate, iClusterPlus will need to perform a search of even bigger
parameter space, which will lead to a much longer computation time. One of the
reasons for this is the not straightforward statistical inference, used in iClusterPlus.

5.7 Discussion and future work

We have presented an application of BayesCluster in integrative context where we
aimed to discover cancer subtypes indicative of overall survival. We have applied the
integrative version of BayesCluster to four different types of cancer: breast cancer,
glioblastoma, pancreatic cancer and colorectal cancer. Using BayesCluster, we were
able to identify subtypes which are prognostic of survival outcome in pancreatic
cancer, and which we were not able to identify using iClusterPlus, k-means and
Gaussian mixture model.

However, there were cases where BayesCluster could not identify cancer subtypes
with different survival prognosis, which could be due to selecting uninformative fea-
tures and to learning only the cluster means. We intend to explore the feature
selection and interpretability in more detail by incorporating estimation of the pos-
terior probability of each omics feature, which can be used as a criterion for feature
selection as suggested by Mo et al. [2017]. We could model more appropriately the
cluster variability by detecting signals in both cluster-specific means and covariances,
in a manner similar to [Taschler et al., 2019].

In addition, the analysis undertaken in this chapter highlighted the great level of
disagreement between the subtypes identified with the different methods. In some
of the case studies, such as the pancreatic cancer one, that could be due to the low
power of the study. A natural next step for each of these studies would be to validate
the results by considering a different patient cohort, for example part of the ICGC
project, which would allow the confirmation of low methylation levels and of EGFR
mutations as biomarkers for aggressive subtypes of glioblastoma and of colorectal
cancer, respectively.
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Chapter 6

Studying the impact of clinical
factors on 90-day and long-term
survival following surgery for
pancreatic cancer

This chapter explores the impact of different clinical factors on the short- and long-
term survival of pancreatic cancer patients following pancreatoduodenectomy (PD),
also known as Whipple procedure or pancreatic resection. Pancreatoduodenectomy
is a complex surgical operation performed to remove tumours of the head of the
pancreas, and is the only potentially curative procedure currently in clinical use
to remove malignant pancreatic tumours [Clancy, 2015]. Centralisation, which was
implemented in the UK in 2001 [Department of Health, 2011], aims to improve
the outcomes of cancer surgery by centralising the surgical procedures to hospitals
with higher annual volume. This could lead to improvement in the access to and
quality of care, better outcomes, less invasive procedures and shorter recovery times.
We present a study of the 90-day mortality following pancreatoduodenectomy in
England, which we performed with data from the Hospital Episode Statistics (HES)
database. To the author’s best knowledge, there are no previous studies investigating
the impact of centralisation on the 90-day survival of pancreatic cancer patients in
the UK; hence, it is of interest to study the potential positive/negative impact of
it on survival. We also look at the impact of different clinical factors on the longer
term survival, in particular 2-year survival.
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A note on autorship: the thesis’ author performed the multivariate statistical anal-
ysis for the 90-day mortality study. This study [Liu et al., 2018] is a result of a
collaboration with a great team from the University Hospitals Birmingham, the In-
formatics Unit, and researchers from the University of Warwick. The data were
extracted by Felicity Evison, the univariate statistical analysis was conducted by
Zhangdaihong Liu. Dr Richard Savage, Dr Keith Roberts and Felicity Evison pro-
vided guidance and assistance during the project. The study on the long-term
survival was performed entirely by the thesis’ author.

6.1 Motivation

Pancreatic cancer is the 10th most common cancer in the UK [Office for National
Statistics, 2017; IDS, 2018; Welsh Cancer Intelligence and Surveillance Unit, 2018].
Around 8800 people in UK are diagnosed with the disease every year [Cancer Re-
search UK, 2018]. It most frequently occurs from the ducts within the pancreas
(ductal adenocarcinoma) when abnormal cells in the pancreas grow out of control,
forming a mass of tissue (tumour). Pancreatic cancer is classified as either exocrine
1 tumour (accounting for 95% of the pancreatic cancer cases) or endocrine 2 tumour
based on the location of the tumour. They are diagnosed and treated differently,
and they exhibit different symptoms. The most common type of cancer is pancreatic
ductal adenocarcinoma, and it is predicted to become the second leading cause of
cancer mortality by 2030 [Rahib et al., 2014].

It is difficult to diagnose pancreatic cancer as it usually does not give rise to any
symptoms or signs in the early stages. There is no programme for pancreatic can-
cer anywhere in the world to screen the general population as there is no suitable
test that has been developed to do this. Tobacco smoking is the only established
environmental risk factor for pancreatic cancer, and patients with diabetes are also
at increased risk of getting pancreatic cancer [Lowenfels and Maisonneuve, 2006].
The risk of pancreatic cancer increases with age - with over 8 in 10 cases of pancre-
atic cancer occurring in people over 60 [Cancer Research UK, 2018]. Despite recent
medical advances, the survival rate of pancreatic cancer patients has not shown
statistically significant improvement since 1971 (Figure 6.1).

1producing digestive enzymes
2producing hormone (endocrine)
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Figure 6.1: Comparison of age-standardised ten-year net survival trends of the most
common cancers (adults, aged 15-99) in England and Wales over the period 1971-
2011. There is no signifcant improvement in the survival prognosis for pancreatic
cancer patients unlike the noticeable improvement for most of the other types of
cancer. Credit: Cancer Research UK

6.2 Towards a risk score model

Despite recent advances in surgery procedures and clinical care, the perioperative 3

mortality rate associated with pancreatic resection remains very high [Büchler et al.,
2007; McPhee et al., 2007]. There has been a lot of effort focused on the development
of a score model [Lowenfels and Maisonneuve, 2005; Hassan et al., 2007; Raimondi
et al., 2009; Yadav and Lowenfels, 2013; Maisonneuve and Lowenfels, 2014] to predict
the risk of in-hospital mortality following pancreatoduodenectomy. A risk score
model has the potential to lead to improvements in patient care as patients who
have statistically higher risk of mortality could be provided with more support, and

3occurring at or around the time of an operation
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with the help of their surgeon and clinicians, reduce the risk by adjusting modifiable
risk factors such as their diet, alcohol intake. Here we summarise some of the risk
score models, developed in the USA, the Netherlands and Japan.

Hill et al. [2010] use the Nationwide Inpatient Sample (NIS) to develop a model
for preoperative evaluation of patients in the USA. The predictor variables, chosen
based on clinical usefulness and biological plausability, include age, sex, Charlson
comorbidity score 4, type of pancreatectomy performed (what proportion of the
pancreas is removed) and hospital volume. The statistical analyses, performed in
this study, identify all predictive variables as statistically significant factors affecting
patient mortality, with patient age over 80 years and having a pancreatic resection
at a low-volume centre being the factors with the largest effect on the survival. It
should be noted that although this is a nationwide study, it includes only 20% of the
US hospitals and hence, it may not include certain centres of excellence in pancreatic
resection.

Are et al. [2009] use the NIS database as well to develop a nomogram, that can be
used in the preoperative setting to counsel patients about the perioperative mortality
associated with pancreatectomy. The nomograms are graphical models that use
models such as Cox proportional hazards model to estimate the probability of an
outcome such as cancer recurrence or death, for a given individual [Evesham, 2010]
(see Figure 6.2 for an example of nomogram). The data used in the study include
information about the patient’s age, sex, admission type, hospital size and type,
pancreatectomy type. The information about patients admitted between 2000 and
2004 was used to create a predictive model and the data from year 2005 was used to
validate the model. The results showed excellent agreement between the observed
and the predicted probabilities.

4predicts the 10-year mortality for a patient who may have existing co-morbid conditions. Higher
score indicates more present comorbidities.
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Figure 6.2: An example of nomogram, used to estimate recurrence-free survival in
resected primary gastrointestinal stromal tumor. This is done in the following way:
we first draw an upward vertical line to the ‘Points’ bar based on different features of
the tumour to calculate points. Based on the sum, after that we draw a downward
vertical line from the ‘Total Points’ line to calculate the recurrence-free survival.
Credit: [Balachandran et al., 2015]

Venkat et al. [2011] develop another risk model to predict the 30-day and the 90-
day mortality after a PD using data about patients admitted to the John Hopkins
Hospital from 1st January 1998 to 30th June 2009. They include covariates such
as age, Charlson index, albumin level 5, sex, tumour size, creatinine level 6, his-
tologic diagnosis, type of surgery. The analysis shows that age, sex, tumour size,
type of surgery and preoperative serum albumin level are predictors for the 30-day
mortality rate, whereas age, sex, tumour size, Charlson score, type of surgery, pre-
operative serum albumin level are predictors for the 90-day mortality rate. The
Hosmer-Lemeshow test, which is a statistical test for goodness of fit for logistic re-
gression [Hosmer and Lemesbow, 1980], used to assess whether or not the observed
event rates match the expected event rates, confirms that there are no statistical
differences between observed and expected 30-day and 90-day mortality rate. Hence,
the score models can be used to identify certain risk groups that may be considered
for stratification or exclusion from clinical trials.

5the most abundant protein in human blood plasma. It is produced in the liver and is responsible
for the transportation of thyroid hormones, fatty acids and many drugs. It maintains the oncotic
pressure, which is generated by proteins such as albumin. Decreased oncotic pressure leads to
decreased effective circulating fluid volume [Koeppen and Stanton, 2012]

6important indicator of renal health because it is an easily measured byproduct of muscle
metabolism that is excreted unchanged by the kidneys
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ACS-NSQUIP is another database that contains data about pre-operative risk fac-
tors, post-operative morbidity and mortality to assess the surgical quality at more
than 200 US hospitals. Parikh et al. [2010] use this data to develop a pancreatec-
tomy risk calculator to predict the post-operative adverse outcomes. The variables
included in the model for mortality are age group, systemic sepsis, functional health
status, ASA classification 7, history of congestive heart failure, dyspnoea 8, previ-
ous/concurrent chemotherapy, esophageal varices 9 and type of surgery. The vari-
ables part of the predictive model for morbidity are age group, gender, BMI classi-
fication, systemic sepsis, functional status, ASA classification, surgical extent, coro-
nary heart disease, history of severe chronic obstructive pulmonary disease (COPD)
10, smoking status, dyspnoea, bleeding disorders and weight loss greater than 10%.
The results from the fitted forward stepwise logistic regression models show that
age over 74 years, male gender, BMI over 40, pre-operative sepsis, dependent func-
tional status, ASA class more than II, history of coronary heart disease, dyspnoea,
a bleeding disorder and the contemplated procedure are risk factors for pancreatic
cancer.

Vollmer et al. [2012] evaluate whether any of the risk assessment tools presented
above can sufficiently predict and account for actual clinical events that are often
identified by root-cause analysis. A root-cause analysis is a retrospective method
employed to understand adverse events. It allows for a more objective review of the
events which lead to an endpoint. In this study, high-volume pancreatic surgical
specialists from 14 academic/affiliate or private institutions and 4 countries had to
provide data on preoperative demographics, disease process, medical comorbidities,
operative details, and the course of postoperative care for all mortalities in their
practice during the study period. They were asked to comment on the cause of the
death and whether it was predictable. The study shows that none of the risk score
models is superior to the others and that in many cases (about a quarter of the
analysed in the paper), the death cause cannot be determined and hence prevented.

We summarise the main aspects of the presented studies in the table below:
7classes range from ASA I - normal healthy patient, to ASA VI - a declared brain-dead patient

whose organs are being removed for donor purposes [American Society of Anesthesiologists]
8difficult breathing
9abnormally enlarged veins in the tube connecting the throat and the stomach (esophagus). It

occurs most often in people with serious liver conditions
10a group of lung conditions (emphysema and chronic bronchitis) that cause breathing difficulties;

it is common amongst middle-aged and older people who smoke.
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Study Data Study pe-
riod

Risk factors

Hill et al. [2010] NIS 1998 - 2006 age over 80 and having a
pancreatic resection in a low-
volume centre

Are et al. [2009] NIS 2000 - 2005 age, sex, admission type, hos-
pital size and type, pancreate-
ctomy type

Venkat et al.
[2011]

John Hopkins
Hospital

1998 - 2009 age, sex, tumour size, type
of surgery, preoperative serum
albumin level

Parikh et al.
[2010]

ACS-NSQUIP 2005 - 2008 age over 74, BMI over 40,
male gender, pre-operative
sepsis, ASA class more than
II, history of coronary heart
disease, dysponea, bleeding
disorder, contemplated proce-
dure

Table 6.1: Summary of studies developing a risk score model for pancreatic cancer

6.3 Studying the impact of centralisation in other coun-
tries

Gooiker et al. [2011] aim to evaluate whether the centralisation of pancreatic surg-
eries in the Western part of the Netherlands has improved clinical outcomes
and changed referral patterns. The data used in this study include information
from Leiden University Medical Centre and Reinier de Graaf Hospital, and pro-
vide patient demographics information, pathological notes, TNM staging 11, data
on surgical and additional treatments, comorbidities, detailed postoperative compli-
cations, length of stay and margin status of all patients who underwent pancreatic
surgery between 2006 and 2008.

The researchers compared the outcomes for 3 time periods: 1996 - 2000 (when no
11T describes the size of the tumour and whether it has spread to nearby tissue, N - the nearby

lymph nodes that are involved, and M - whether and how far the tumour has metastasised [National
Cancer Institute, 2018b]
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quality control was applied to the surgeries), 2001 - 2005 (when quality standards
were implemented) and 2006 - 2008 (when surgeries were centralised to 2 hospitals),
in order to assess whether the implemented changes had impact on the 30-day mor-
tality, 90-day survival, 1-year survival and 2-year survival. The performed analysis
found that greater risk of death was associated with higher age, a tumour located
in the pancreas, stage III and IV pancreatic adenocarcinoma, and diagnosis in the
early time periods. The results also show that after centralisation, the survival of
the patients improved and a higher proportion of patients received surgery. In addi-
tion, the centralisation did not lead to increased waiting times and longer length of
stay. Some of the reasons for the improved survival might be the better selection for
surgery, improvements in the diagnosis, surgical technique or post-operative care,
the better facilities in high-volume centres and the more experienced surgical team.

Although the study used reliable and complete clinical, population-based data, only
data of the malignant diagnoses was collected, and no information on the structural
changes in the management of the pancreatic cancer was gathered. Since there was
no data on comorbid diseases until 2006, no risk adjustments could be made.

de Wilde et al. [2012] present another study performed on data from the Nether-
lands. The aims of this study were to discover whether the concentration of pan-
creatic cancer surgery led to higher survival and resection rates, and to evaluate the
association between hospital volume and survival. The population-based Nether-
lands Cancer Registry (NCR) was the source of data for the study, and it contained
information about patient characteristics (age, sex), tumour characteristics (TNM
stage), treatment (resection, adjuvant treatment 12, hospital of treatment), hospital
of diagnosis and hospital of treatment. The information covered the period from 1st
January 2000 to 31st December 2009.

The comparison between the periods 2000-2004 (before centralisation was intro-
duced) and 2005-2009 (after centralisation was introduced) showed an increase in
the resection rate but no difference in the overall survival between the two periods.
In addition, there was no statistically significant difference between high volume
and medium/low-volume hospitals in terms of postoperative mortality. However,
the difference in 1- and 2-year survival rates after resection in high-volume hospitals
was statistically significant.

Though this study was based on reliable and complete clinical, population-based
data which could be adjusted for confounding factors, it did not include information

12additional cancer treatment given after the primary treatment to lower the risk that the cancer
will recur.
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on comorbidity, which might have a serious impact on the survival outcome, and
the type and date of surgery before 2005.

Gooiker et al. [2014] performed another Dutch study with data from NCR, aiming
to determine the impact of hospital volume on hospital mortality, length of stay and
total costs after PD. The clinical data included information such as the patient’s
age and sex, diagnoses and comorbidities, administered drugs, length of stay and
total costs. Patients who had a PD between July and December in each year from
2007 to 2010 were identified. Hospital volume was defined as the number of PDs
performed annually at each hospital and was categorised into quantiles (very low,
low, medium, high and very high). The primary endpoint was in-hospital mortality,
defined as death at any time before hospital discharge. Secondary endpoints were
post-operative length of stay and total costs during the hospital stay.

The results of the performed statistical analyses show that patients in very high-
volume group were younger than those in the very low-volume group. In addition,
higher hospital volume was found to be associated with shorter length of stay and
lower total costs. However, surgeon volume, which could be more informative than
hospital volume, was not included in the analysis. Moreover, the adoption of the
reporting system by community hospitals is voluntary so the database may not be
representative of all hospitals.

LaPar et al. [2012] aim to reassess the volume-outcome relationship of the hospital
procedures which use volume as a quality measure, which is adopted by the Agency
for Healthcare Research and Quality (AHRQ) in USA as a quality indicator for
several high-risk surgical procedures. The data for the study were extracted from
the 2008 Nationwide Inpatient Sample (NIS) database, which contains information
about in-hospital mortality, patient’s age, gender, comorbidity. The models used
were adjusted for differences in patient’s age, sex, elective admission status and
comorbid disease. Hospitals were included in the models as random effects, allow-
ing the relationship between volume and in-hospital death to be different across
hospitals.

Although hospital volume was not associated with mortality, many patient-related
factors were strongly associated with mortality. The factors with the strongest as-
sociations with mortality included patient’s age and comorbidities, elective status,
female sex. The major finding of this study is that there was no threshold value
for hospital procedure volume at which mortality risk was significantly increased.
However, the study did not include analysis of the relationship between individ-
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ual surgeon volume and outcome, and other important clinical endpoints including
long-term survival, inpatient resource utilization or hospital readmission were not
addressed.

Ho and Heslin [2003] performed another US study, using patient data for California
and Florida for the period 1988 − 1998. The aim was to investigate the relative
impact of procedure volume versus years of hospital experience on inpatient death
rates after PD. The patient characteristics chosen for the analysis included age
(< 60, 60− 69, 70− 79, 80+), gender, and comorbidities, and the patients who were
treated in 1998 were used to derive the model predictions.

The analysis found that the higher volume hospitals tended to operate on younger
patients. In addition, the number of years of experience that a hospital had in
performing PD was also associated with a lower probability of inpatient mortal-
ity. The results in this study indicate that both increased procedure volume and
increased experience were associated with lower mortality rates for patients under-
going the Whipple procedure. High volume rather than experience was associated
with marked reductions in inpatient mortality that were statistically significant. As
the reduced mortality could be a consequence of more younger patients being oper-
ated on in the higher volume hospitals, it is important to include the patient’s age
in the model to account for it.

6.4 Ninety day mortality following pancreatoduodenec-
tomy in England

In this section we present the first study to the author’s knowledge that studies the
impact of centre volume on the ninety-day mortality following pancreatoduodenec-
tomy in England. We present the statistical models and data used in the study, the
performed statistical analyses and some of the most important results. The reader
can refer to the paper [Liu et al., 2018] for a more detailed list of the results.

6.4.1 Statistical models

We briefly outline the models we used in studying the long-term survival patterns
following pancreatoduodenectomy.

One of the survival models we use is Cox proportional hazards model (Cox
PH) [Cox, 1992]. This is a linear survival model, modelling the instantaneous rate
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at which some event, such as death or tumour progression, occurs at time T given
that the event has not yet occurred at time t < T . The function modelling this is
known as the hazard function, taking the form

λ(t|z) = limδt→0
P (t ≤ T < t+ δt|T ≥ t, z)

δt
, (6.1)

where the numerator is the probability that, given that the event has not occurred
before time t, the event will not occur before time t+ δt. This is a general definition
applicable to all survival models, where z is a vector of covariates applying to some
individual. In the case of the Cox proportional hazards model, the hazard function
takes the particular form

λ(t|z) = λ0(t) exp(zᵀβ), (6.2)

where λ0(t) is the unspecified baseline hazard function, which describes how the risk
of the event per time unit changes over time at base-line levels of covariates.

In order to use the Cox PH model, we need to make sure that certain assumptions
are satisfied. First, we need to ensure that the design of the study is set up so that
the mechanisms giving rise to the censoring of the individuals are not related to the
probability of the event occurring. The proportional hazards assumption has to be
satisfied as well. The survival curves for two strata must have hazard functions that
are proportional over time for the assumption to be valid. Due to the proportional
hazards assumption we make, the baseline hazard function will turn out to cancel
from the analysis and its form will not affect the results. For example, for any two
sets of covariates z0 and z1, we get that

λ(t|z1)
λ(t|z0) =λ0(t) exp (zᵀ1β)

λ0(t) exp (zᵀ0β) (6.3)

= exp((zᵀ1 − zᵀ0)β). (6.4)

We also consider fitting regression models to predict the survival outcomes. We used
stepAIC [Venables and Ripley, 2013] to select the best fitted regression model.
This procedure uses the Akaike Information Criterion (AIC) [Akaike, 1974], which
we introduced in Section 1.2.2 in Chapter 1 to decide which model fits the data
the best. It does not evaluate the AIC for all models but uses instead a search
method that compares models by removing covariates from the model sequentially
until there is no improvement in the AIC score.

We applied as well more sophisticated linear models such as the generalised lin-
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ear model with elastic net penalty to model the survival outcomes, where the
following optimisation problem is solved:

min(β0,β)∈Rp+1

[ 1
2N

N∑
i=1

(yi + β0 − xTi β)2 + λPα(β)
]
, (6.5)

where Pα(β) =
∑p
j=1

[
1
2(1−α)β2

j +α|βj |
]

is the elastic net penalty, x is the predictor
variable and y is the response variable. The elastic net penalty is a compromise
between the ridge regression and lasso regression penalties. If α = 0, then (6.5) is
equivalent to ridge regression, which shrinks the coefficients of correlated predictors
towards each other, allowing them to borrow strength from each other. If α = 1,
then (6.5) corresponds to lasso regression, which is indifferent to very correlated
predictors and will tend to pick one and ignore the rest. As α increases from 0
to 1, for a given λ, the sparsity to a solution of the elastic net problem increases
monotonically from 0 to the sparsity of the lasso solution.

Random Survival Forests

Ishwaran et al. [2008] extended random forests to the setting of right-censored sur-
vival data by introducing random survival forest. The model does not rely on
restrictive assumptions such as proportional hazards and does not use parameters.
Random survival forests follow the principle outlined by Breiman [2001], which re-
quires that all aspects of growing a random forest take into account the outcome.
The splitting criterion used in growing a tree must explicitly involve survival time
and censoring information.

A good split for a node maximises survival difference between the resulting two
branches. The best split for a node is found by searching over all possible x variables
and split values c, and choosing that x∗ and c∗ that maximise survival difference. By
maximising survival difference, the tree pushes dissimilar cases apart. Eventually,
as the number of nodes increase, and dissimilar cases become separated, each node
in the tree becomes homogeneous and is populated by cases with similar survival.

We implemented the model using R package randomForestSRC (https://github.

com/kogalur/randomForestSRC).
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Performance measures

In order to assess how well the models above describe the data, we need appropriate
metrics to measure their performance.

We use concordance index (C-index) [Harrell et al., 1996; Pencina and D’Agostino,
2004] to assess the accuracy of a survival model. C-index is defined as the propor-
tion of patients in which predictions and outcomes are concordant, i.e. the number
of pairs of patients with predicted survival times correctly ordered among all sur-
vival times that can actually be ordered. Hence, a C-index of 1 means perfect
rank-ordered prediction accuracy, whereas a C-index of 0.50 is as good as a random
predictor. The concordance index was calculated in R using the concordance.index
function, part of the package ‘survcomp’ [Schröder et al., 2011].

We use receiver operating characteristic curve (ROC curve) [Zweig and Camp-
bell, 1993; Mason and Graham, 2002; Fawcett, 2006; Powers, 2011] as well. It is a
graphical plot that illustrates the performance of a binary classifier as its discrimi-
nation threshold is varied. There are four possible outcomes from a binary classifier:

• true positive - if the outcome from a prediction is positive and the actual value
is p;

• false positive - if the outcome from a prediction is positive and the actual value
is n;

• true negative - if both the prediction and the actual value are n;

• false negative - if the prediction is n and the actual value is p.

The ROC curve is constructed by plotting the True Positive Rate (also called sensi-
tivity) versus the False Positive Rate (equal to 1-specificity). The true positive rate
is defined as

true positive
true positive + false negative , (6.6)

where the false positive ratio is defined as

false positive
false positive + true positive (6.7)

An example of some realisations of receiver operating characteristic together with
their interpretations is provided on Figure 6.3.
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Figure 6.3: An example for the realisations of receiver operating characteristic for
different settings. Point D corresponds to perfect classification, point C - to random
guessing, point E - to worse than random guessing. Predictions associated with
point A are more conservative in comparison with those associated with point B.

The ROC curves in this thesis were plotted using the roc function from the ‘pROC’
package [Robin et al., 2018] in R.

6.4.2 Data

In this study we used data from the Hospital Episode Statistics (HES) database
in England. The HES database contains details about all admissions, accident and
emergency attendances and outpatient appointments at NHS hospitals in England
[NHS Digital, 2018]. Mortality data were provided by the Office for National Statis-
tics and captured in and out of hospital deaths. The data contained information
about patients aged 18 or over who underwent PD between April 2001 and March
2016. We removed patients with incomplete information as well any patients with
length of stay of four days or less since they were likely to be the result of miscoding.
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Following the analyses in the studies presented in Sections 6.2 and 6.3, we chose to
include information about the patient’s gender, age (categorised based on quartiles
[18-59, 60-65, 77-72 and 73-90]), ethnicity (white, Asian, black, Chinese and other,
mixed, and unknown), Charlson comorbidity index (categorised into three groups
[0, 1-4 and 5+, with 0 corresponding to the healthiest group, and 5+ - to the
group with the most existing comorbidities], the index of multiple deprivation (IMD)
(categorised into 5 groups, with 1 being the most deprived and 5 being the least
deprived), the year of treatment (the fifteen-year period was divided into five 3-year
periods) and centre volume.

We followed the definitions used in the Dutch study performed by de Wilde et al.
[2012] and grouped the centres initially in the following categories: < 5, 5 − 10,
11 − 20 and > 20 PD per year. As there was no plateau of 90-day mortality by
centre volume (see Figure 6.5), the centre volumes were based upon quartiles of PD
performed per year (very low - ≤ 3, low - 4 to 15, medium - 16 to 35 and high
volume > 35 PD per year). Very high volume centres (> 60 per year) were then
defined as the top decile of centres for volume.

The outcome of interest in this study was defined to be death from any cause within
90 days of the date of PD.

6.4.3 Statistical analysis

Univariate analysis using log-rank test was performed to determine the variables to
be included in the multivariate model. A Cox proportional hazards model [Cox,
1992] was then fitted. The model was fitted using backward stepwise selection.

6.4.4 Results

The goals of this study were to determine whether there were any differences between
the groups operated in the different volume centres; whether there were significant
differences between the characteristics of the alive and dead patients at 90 days, and
if mortality rates changed over the 15-year period. We also investigated whether
the mortality rate and centre volume were correlated, and a potential difference in
the survival of the patients operated at the high (> 35 PDs per year) and at the
very high volume (> 60 PDs per year) centres. We tried to determine as well the
factors related to 90-day mortality.

We present a summary of the main results in the next few subsections.
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Figure 6.4: Survival analysis of the whole cohort grouped by centre volume (very
low (≤ 3), low (4-10), medium (16-35), high (36-60) and very high ( > 60) volume
centres of PDs per year

Mortality following PD

At the last follow-up 8456 (56.6%) patients had died and 970 (6.5%) patients had
died within 90 days of PD. The 30-day and in-hospital mortality rates were 3.7%
(551) and 4.7% (700) respectively. The characteristics of the patients grouped by
survival status at 90 days following PD are presented in Table 6.2 and Figure 6.4.
Age, Charlson score, diagnosis, ethnicity and centre volume all varied significantly
on univariate analyses with regards to 90-day mortality.
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Alive at
90 days
(N = 13965)

Dead at
90 days
(N = 970)

p-value

Gender Male 7806 (93.2%) 567 (6.8%) p = 0.0121
Female 6159 (93.9%) 403 (6.1%)

Age group 18-59 4559 (96.3%) 177 (3.7%) p < 0.001
60-65 2765 (94.1%) 172 (5.9%)
66-72 3565 (93.3%) 256 (6.7%)
73-90 3076 (89.4%) 365 (10.6%)

Deprivation 1 2419 (93.3 %) 174 (6.7%) p = 0.057
2 2596 ( 93.7%) 175 (6.3%)
3 2794 (93.2%) 203 (6.8%)
4 3173 ( 93.2%) 230 (6.8%)
5 2976 (94.1%) 187 (5.9%)

Charlson
score

0 7878 (94.6%) 448 (5.4%) p < 0.001

1-4 2071 (94.2%) 127 (5.8%)
5+ 4016 (91.0%) 395 (9.0%)

Ethnicity White 11416 (93.9%) 743 (6.1%) p < 0.001
Asian 308 (93.9%) 20 (6.1%)
Black 176 (95.7%) 2 (4.3%)
Other 161 (94.7%) 9 (5.3%)
Unknown 1859 (90.8%) 188 (9.2%)

Volume
(PD p.a.)

very low (≤ 3) 248 (85.5%) 42 (14.5%) p < 0.001

low (4-15) 1200 (89.4%) 143 (10.6 %)
medium (16-
35)

3723 (92.5 %) 300 (7.5%)

high (36-60) 4103 (94.8 %) 225 (5.2%)
very high (>
60)

4691 (94.7%) 260 (5.3 %)

Diagnosis pancreas can-
cer

6123 (93.1%) 451 (6.9 %) p = 0.048

ampullary can-
cer

2156 ( 94.8%) 118 (5.2%)

cholangio-
carcinoma

1432 (94.0%) 92 (6.0%)

duodenal can-
cer

679 (92.3%) 57 (7.7%)

other malig-
nant

1710 (93.8%) 113 (6.2%)

benign 1865 (93.1%) 139 (6.9%)

Table 6.2: Summary of the cohort, tested variables as part of univariate analysis
and the differences between alive and dead patients at 90 days, following PD
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Table 6.2 shows that 90-day mortality has reduced over time. The highest mortality
was seen in the first time period (2001-4, 10.0%) with mortality falling sequentially
until the most recent period (2013-16, 4.1%).

Time
period

very low
(≤ 3)

low (4− 15) medium
(16− 35)

high (36 −
60)

very high
(> 60)

2001/04 26 of 141 73 of 722 74 of 732 17 of 309 12 of 126
2004/07 4 of 76 55 of 453 83 of 1168 29 of 491 37 of 445
2007/10 8 of 37 13 of 126 72 of 992 65 of 832 84 of 1375
2010/13 * of 24 * of 33 43 of 654 62 of 1411 65 of 1279
2013/16 * of 12 0 of 9 28 of 477 52 of 1285 62 of 1726

Table 6.3: 90-day mortality following PD in relation to centre volume and time
period. * indicates that the number of patients is so small (n < 5) that there is
potential for patient identification and thus data is not presented in line with the
accepted principles of data reporting from these databases.

Centre volume

The 90-day mortality rates in the highest volume centres were significantly lower
than the rates in the lowest volume centres (p-value = 0.001, Table 6.2). In addition,
the mortality rates have lowered following the introduction of centralisation as we
can see from Table 6.3, which summarises the deaths following PD in the different
volume centres over the period 2001-2016, which has been divided in 5 sub-periods.

The highest 90-day mortality rate is observed in the very low volume centres (14.5%).
It is worth noting that the mortality rates are similar for the high and very high
volume centres over the whole study period (5.2% and 5.3% respectively), which
might be due to the skewed data for the very high volume centres between 2001 and
2007. The lowest 90-day mortality rate was observed during 2013 and 2016.

Figure 6.5 illustrates the relationship between centre volume and 90-day mortality.
During the early period, before the centralisation, the higher volume centres were
associated with lower mortality rates in comparison with the lower volume centres.
Interestingly, the highest volume centres in the early period appear to be associated
with higher rates of mortality than neighbouring lower volume centres. In the later
period (2009− 2016), the higher volume centres are similarly associated with lower
mortality rates; in particular, we observe that the very high volume centres are
associated with a further reduction in the 90-day mortality rates.
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Figure 6.5: The relationship between centre volume and 90-day mortality between
early/before centralisation (2001-8) and late/after centralisation (2009-2016) peri-
ods. The increase in the centre volume is associated with a decrease in the 90-day
mortality. We observe plateaus during both time periods.

Factors related to 90-day mortality

A Cox proportional hazards model was fitted to assess the relationship between the
variables we selected and the 90-day mortality (Table 6.4).

The different age groups have statistically significant differences in survival (see
Table 6.4) with the oldest group (73− 90) having the worst survival.

Although the index of multiple deprivation was not significant in the univariate
analysis, there are significant differences in the survival of patients from different
social groups. The patients from the least deprived social group had better 90-day
survival relative to the most deprived group (p-value = 0.022, Table 6.4).

Patients undergoing resection for ampullary carcinoma 13 have better survival out-
come compared to those undergoing resection for pancreatic cancer (p-value =

13carcinoma that forms in the ampulla of Vater. The ampulla of Vater is a small opening that
enters into the first portion of the small intestine, and is the spot where the pancreatic and bile
ducts release their secretions into the intestines
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HR 95% CI p-value
Gender Male 1

Female 0.90 0.79, 1.02 0.095
Age group 18-59 1

60-65 1.66 1.34, 2.05 < 0.001
66-72 1.95 1.60, 2.37 < 0.001
73-90 3.30 2.74, 3.97 < 0.001

Deprivation 1 1
2 0.89 0.72, 1.10 0.299
3 0.91 0.74, 1.12 0.361
4 0.91 0.75, 1.12 0.381
5 0.78 0.64, 0.97 0.022

Charlson score 0 1
1-4 1.12 0.92, 1.37 0.251
5+ 1.79 1.56, 2.06 < 0.001

Centre volume very low 1
low 0.70 0.50, 0.99 0.046
medium 0.58 0.41, 0.80 0.001
high 0.45 0.32, 0.63 < 0.001
very high 0.44 0.31, 0.63 < 0.001

Period 2001/04 1
2004/07 0.83 0.68, 1.02 0.074
2007/10 0.80 0.65, 0.99 0.037
2010/13 0.55 0.44, 0.70 < 0.001
2013/16 0.45 0.35, 0.58 < 0.001

Diagnosis pancreas
cancer

1

ampullary
cancer

0.73 0.60, 0.89 0.002

cholangio-
carcinoma

1.11 0.90, 1.37 0.331

duodenal
cancer

1.15 0.87, 1.52 0.316

other ma-
lignant

0.96 0.77, 1.21 0.753

benign 1.36 1.12, 1.66 0.002

Table 6.4: Multivariate analysis using Cox PH model of factors related to 90-day
mortality. The variables were one-hot encoded.
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0.002), whereas the survival of the patients undergoing resection for benign disease
have worse survival outcome (p-value = 0.002).

6.5 Long-term survival following pancreatoduodenectomy
in England

6.5.1 Data

In this study we used data from patients who underwent PD between April 2001
and March 2014 from the Hospital Episode Statistics (HES) database in England,
together with mortality data from the Office for National Statistics. We preprocessed
the data in similar way to the 90-day survival study and we were interested in
studying the factors related to 2-year survival.

6.5.2 2-year survival

We begin the analysis by looking into the difference in the survival outcome of
different patient groups. We compared the survival of male and female patients
using Cox proportional hazards model and tested the null hypothesis that they
come from the same distribution. The p-value of 0.237 suggests that both female
and male patients have similar 2-year survival patterns.

Figure 6.6: Kaplan-Meier curves comparing the 2-year survival of male and female
pancreatic cancer patients.The survival patterns are not statistically different

We also looked into how the patient’s age affects their long-term survival. We used
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the same age subgroups as in the short-term survival analysis: between 18 and 59,
between 59 and 66, between 66 and 72, and over 72 years old. As we can see from
Figure 6.7, the 4 age groups differ in their long term survival (p-value of 7.48e−19),
with the youngest group (18-59) having the best survival and the oldest group (above
72) having the worst survival.

Figure 6.7: Kaplan-Meier curves comparing the 2-year survival of the different age
bands.The survival patterns are statistically different

Next we checked how the presence of comorbidities affected the long-term survival.
Similarly to the 90-day survival analysis, we divided the patients into 4 groups
based on their Charlson score: a group with the fewest present comorbidities (0-5),
a group with low number of present comorbidities (5-10), a group with medium
to high number of comorbidites (10-20), and a group with very high number of
comorbidities (over 20). Figure 6.8 shows that the group with the highest number
of existing comorbidities had the worst survival outcome: approximately half of the
patients die within one year after pancreatic cancer resection. The group with fewest
comorbidities had the best 2-year survival.
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Figure 6.8: Kaplan-Meier curves comparing the 2-year survival of pancreatic cancer
patients from different Charlson score groups.The survival patterns are statistically
different with the patients with the highest Charlson score having the lowest survival
rate

Index of multiple deprivation (IMD) could be an important factor affecting the
long-term patient survival as it incorporates information about the patient access to
health institutions, living environment conditions and existing barriers to houses and
services [Department for Communities and Local Government, 2018]. We divided
the patients in 5 groups, corresponding to IMD = {1, 2, 3, 4, 5}, with IMD= 1 being
the most deprived group and IMD= 5 being the least deprived group. Figure 6.9
demonstrates that the areas where the patients lived had an affect on their survival
- the patients from the most deprived regions had the worst survival which could be
due to the lack of easy access to hospitals.
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Figure 6.9: Kaplan-Meier curves comparing the 2-year survival of patients from dif-
ferent IMD groups.The survival patterns are statistically different with the patients
from the lowest IMD group (the most deprived patients) having the lowest survival
rate

We finish this analysis by investigating whether there was any difference between
the survival of patients operated in low volume centres and the survival of patients
operated in the other centres combined. Figure 6.10 illustrates that the survival
of the two groups differ in the first year but in the second year after surgery, this
difference becomes less pronounced.

Figure 6.10: Kaplan-Meier curves comparing the 2-year survival of patients operated
in low-volume centres and non-low-volume centres.The survival patterns are not
statistically different

We present a summary of the results from the univariate analysis in Table 6.5:
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Variable p-value

Gender Male 0.232
Female

Age group [18,59) < 0.001
[59,66)
[66,72)
[72,88]

Charlson score [0,5) < 0.001
[5,10)
[10,20)
[20, max)

IMD 1 < 0.001
2
3
4
5

Centre volume Low 0.301
the rest

Table 6.5: Univariate analysis of factors related to 2-year mortality.

Model comparison

We also looked into using different models to study the factors affecting long-term
survival. We compared the predictions from Cox proportional hazards model with
the results from stepAIC and glmnet using concordance index (Figure 6.11). We
included gender, ethnicity, IMD and centre volume as categorical variables, and
age at diagnosis and Charlson score as continuous variables. We performed 5-fold
cross-validation. The Cox model found the age at diagnosis, IMD, Charlson score
and centre volume to be significant, whereas the stepAIC model found the age at
diagnosis, IMD, Charlson score and ethnicity to be significant. The models output
similar results as we can see from Figure 6.11, and although their predictions were
better than random guesses, the accuracy of the survival models was low.
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Figure 6.11: Comparison of the different models using concordance index. The
mean C-index ± one standard deviation is plotted for Cox PH model, stepAIC
model and generalised linear model with elastic net penalty. Cox PH model found
age at diagnosis, IMD, Charlson score and centre volume to be significant; stepAIC
found age at diagnosis, IMD, Charlson score and ethnicity to be significant.

6.5.3 Predictive models for 90-day survival

We were interested as well whether we could predict the 90-day survival of patients
operated in 2013 and 2014 with models trained on the data about patients oper-
ated between 2007 and 2012. We chose to consider the patients after 2007 because
centralisatiton of pancreatic resections was introduced then, and using the patients
operated before then might confound the results.

We compared the predictions from a regularised generalised linear model and from
a random survival forest. We included different covariates in the random survival
forest classifier as it does not include feature selection. We used AUC as a measure
of how accurate the model predictions were.

The results show that the predictions from every model were not much better than
just a random guess (see Figures 6.12a, 6.12b,6.12c, 6.12d). We tried including
only a few of the covariates for random survival forest, which have been identified
as significant in the previous analyses (see the model with including age, Charlson
score, IMD score) but this did not lead to an improvement in the accuracy. The
model with the best predictions is the generalised linear model with lasso and elastic
net penalty (Figure 6.12d).
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(a) RSF (IMD score, Charlson score, age,
gender)

(b) RSF (age, gender, Charlson score, IMD
score).

(c) RSF (age, Charlson score, centre volume,
IMD score) (d) generalised linear model

Model AUC 95 % CI
RSF (age, gender, Charlson
score, centre volume, IMD)

50.9 % 49.6 % - 56.2 %

RSF (age, gender, Charlson
score, IMD)

51.8 % 49.5 % - 56.6 %

RSF (age, Chalson score, cen-
tre volume, IMD)

54.2 % 50.3 % - 58.6 %

GLM 55.2 % 51.5 % - 60.9 %

Table 6.6: Summary of the developed predictive models and the corresponding
AUCs and confidence intervals (RSF = random survival forest classifier, GLM =
generalised linear model)
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6.6 Conclusions

In this chapter, we studied the impact of different clinical factors on the short and
longer term survival of pancreatic cancer patients following pancreatoduodenectomy
in England after the introduction of centralisation in 2001. The multivariate analysis
showed a steady reduction in the 90-day mortality associated with increasing annual
centre volume. In addition, the data demonstrated similar 90-day mortality rates
between centres performing 36-60 PD procedures per year and those undertaking
> 60 operations. This might indicate that a threshold for the ‘ideal’ centre volume
has been demonstrated which has not been shown in previous studies, in which
increasing surgical volume has been associated with a reduction in the post-operative
mortality without reaching a plateau. The analysis showed as well that age, index
of multiple deprivation and diagnosis type were significant factors for the short-
term survival. We also looked into whether data from previous time periods could
be used to help predict the outcomes in future periods. Our analysis using data
about patients operated between 2007 and 2012 showed that we could not predict
accurately the 90-day survival of patients operated in 2013 and 2014.

In the analysis of the long-term survival data, we compared different survival models:
Cox proportional hazards model, stepAIC and generalised linear model with elastic
net penalty; which identified age, Charlson score and index of multiple deprivation
to be significant factors. However, none of the models we used could predict the
outcomes very accurately - the mean concordance indices of all of them were between
0.57 and 0.58. The analyses and the model predictions would benefit from the
inclusion of more detailed information about the cause of death and the surgical
procedures.
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Chapter 7

Conclusions

Cancer research is currently undergoing a data revolution. Multi-omics and clinical
data of high dimensionality, resolution and accuracy have been rapidly accumu-
lated across multiple cancer projects as part of The Cancer Genome Atlas and the
International Cancer Genome Consortium, and have shown potential to offer valu-
able insights into the complex processes underlying cancer. The data are promising
to change how we diagnose, treat and prevent cancer but in order to be able to
achieve this, we need to create efficient methods and tools that can help us model
these complex, high-dimensional, heterogeneous data appropriately. In this thesis,
we focused on the development of efficient Bayesian clustering methods to identify
cancer subtypes that are indicative of overall survival and/or response to treatment.
Learning more about the differences between the patient groups can lead to earlier
diagnosis, better and more personalised treatment, and help identify biomarkers in
very aggressive cancers.

As we saw in Chapter 1, a lot of the currently used clustering methods are limited
in the type of data they can model, require data transformations, often have com-
putationally expensive inference schemes or require setting the number of clusters
manually. This motivated the development of a Bayesian clustering method, called
BayesCluster. The model combines the advantages of latent variable models, which
provide an efficient lower-dimensional representation of the data, and Bayesian non-
parametric models, which offer flexibility.

We highlighted the advantages of BayesCluster over other clustering methods through-
out Chapter 2, and some of these include the ability to model mixed type data, a
Bayesian inference scheme and learning the number of clusters from the data.
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The experiments in Chapter 3 illustrated the applicability of BayesCluster to syn-
thetic and real datasets from different areas: economics, politics, medicine. The
tests with synthetic data allowed us to validate and test the model in different sce-
narios. Although it provided competitive results on the real datasets in comparison
with other commonly used methods such as k-means, k-modes, iClusterPlus, there
were cases in which BayesCluster allocated only a small part of the observations
to the correct cluster. There are many reasons for this: inappropriate model as-
sumptions, uninformative data, or some of the inherent limitations of the Dirichlet
process mixture model, which have been shown to often overestimate the number of
true clusters [West and Escobar, 1993; Onogi et al., 2011; Miller and Dunson, 2018].
These issues motivated a detailed study of the properties of Dirichlet process mix-
ture model in Chapter 4. We looked into different ways to counteract the tendency
of Dirichlet process mixture models to overestimate the true number of clusters and
found that by putting a prior on the cluster size which disfavours very small clusters,
we were able to get a consistent and accurate estimate of the true number of clus-
ters. We proposed two further extensions of BayesCluster: one based on the idea of
split-merge, which helps the inference algorithm escape local maxima, and another
based on non-local priors, which has been found to be particularly helpful in the
cases of model misspecification and to lead to more interpretable clusters [Fuquene
et al., 2016].

In Chapter 5 we applied BayesCluster in the context of data integration of molecular
data. We outlined a simple integrative framework which uses the information from
multiple data sources to derive a single clustering partition, and demonstrated its
ability to easily implementable inference with four case studies using data from
TCGA. Using BayesCluster, we were able to discover subtypes which were prognostic
of the overall survival in two aggressive types of cancer: pancreatic cancer and
glioblastoma, and which we were not able to identify using iClusterPlus or simpler
models. In addition, the clinical data helped us investigate the clinical characteristics
of the different subtypes, and explain the different survival outcomes.

There are several different ways that we can extend BayesCluster in order to make
modelling more complex data possible and get more interpretable results. In this
thesis, we considered only a linear mapping from the latent space to the observed
space and a simple variable selection method. However, we saw in Chapter 5 that
there were cases, for example the breast cancer case study, where BayesCluster could
not identify cancer subtypes that were associated with different survival prognosis.
One of the avenues we could explore involves incorporating the variable selection
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in the model by adopting for example, a Bayesian approach and computing the
posterior distribution of selecting a particular gene/mutation for further analysis.
[Law et al., 2004] and [Tadesse et al., 2005] adopt this approach by including a binary
variable ϕj such that ϕj = 1 if the jth variable is relevant and ϕj = 0 otherwise.
Law et al. [2004] define the quantity ρj = p(ϕj = 1) as the saliency of the jth feature
or the importance of the variable in characterising the cluster structure of the data.
They then place a Dirichlet prior on ρ to infer it and identify the relevant features.
Tadesse et al. [2005] assume a prior on ϕ of the form:

p(ϕ|η) =
J∏
j=1

ηϕj (1− η)1−ϕj , (7.1)

where J is the number of features and the hyperparameter η is the proportion
of variables expected to discriminate between the clusters. The best clustering
variables are then considered to be those with the largest marginal posterior p(ϕj =
1|X) > t with a prespecified t. Another option would be to detect signals not only in
cluster-specific means but also in cluster specific covariances, in a manner similar to
[Taschler et al., 2019]. In this way, we should be able to model more appropriately
the cluster variability.

In Chapter 5 we focused on the application of BayesCluster to genomics data. How-
ever, the sequencing technologies used in cancer research generate a wider range of
data such as spatial proteomics data 1 and ChIP-seq data 2, which could help us un-
derstand better the differences between the cancer subtypes. In order to be able to
incorporate these datasets in the data integration framework, we need appropriate
statistical models for these data types. For example, we can adapt a Hidden Markov
model for the ChIP-seq data [Spyrou et al., 2009], and the Bayesian mixture model
proposed by Crook et al. [2018] for the spatial proteomics data.

Cancer is a complex disease, driven not only by changes in the genome, but also
by environmental factors. Hence, it is important to study the effect of factors such
as patient’s age, gender, presence of comorbidities, hospital size, access to health
services, on the short- and long-term survival following cancer-related surgeries as
often these factors are easily modifiable and can improve the survival outcome. In
Chapter 6, we presented a pilot study using Hospital Episode Statistics data about
pancreatic cancer patients from England who underwent pancreatoduodenectomy,
which aimed to investigate the effect of the centralisation on the patient survival.

1it is used to study the location of proteins on large scale
2it is used to analyse the interactions of the proteins with the DNA.
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Our analysis indicated that higher volume surgery centres were associated with lower
90-day mortality rates. In addition, the multivariate analysis showed that age, index
of multiple deprivation and diagnosis type were significant risk factors for the short-
term survival, whereas age, Charlson score and index of multiple deprivation were
important factors for the long-term survival. This study shows promising results
that the patient survival for aggressive diseases such as pancreatic cancer could be
improved by modifying factors such as centre referral and access to healthcare.

In this thesis, we have seen how the analysis of large complex molecular and clinical
datasets coupled with methodology advances can help us understand better what
drives the different patient survival. The rapid accumulation of high-dimensional
and heterogeneous data requires the creation and use of models that could enable us
to extract useful patterns and identify novel patient subtypes to provide personalised
treatment and better monitoring. Here we proposed Bayesian methods that take
into account the interactions between the different data sources to determine cancer
subtypes and thus, offer valuable insights into the biological dynamics of cancer.
The increasing availability of precise, detailed molecular and clinical data together
with the development of new statistical methods show a great promise of making a
more personalised cancer treatment the new standard of care.
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Appendix A

Efficient computation of
sufficient statistics

A.1 Sufficient statistics for multivariate Normal distri-
bution

We use definitions and propositions from Bernardo and Smith [2001] to derive re-
sults for efficient computations of the sufficient statistics for multivariate Normal
distribution. We have omitted the proofs of the propositions.

Definition. Given random vectors x1, . . . ,xm with specified sets of possible values
X1, . . . , Xm respectively, a random vector tm : X1× . . .×Xm → Rk(m) with k(m) ≤
m, is called a k(m)-dimensional statistic.

Some examples of statistic are the sample mean; the sample size, sum and sum of
squares.

Proposition The sequence t1, t2, . . . , is parametric sufficient for infinitely exchange-
able x1,x2, . . ., if and only if, for any m ≥ 1, the density P(x1, . . . ,xm|θ, tm) is
independent of θ.

Using results from [Bernardo and Smith, 2001], it can be shown that the sufficient
statistics of the multivariate Normal distribution are the mean and the covariance
matrix.

As the collapsed Gibbs sampling (Chapter 2) requires the update of the sufficient
statistics after the removal/addition of an observation to a cluster, we have de-
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rived calculations to speed up the step. We provide more details in the following
subsections.

A.1.1 Removing an observation from a cluster

Let assume that the cluster consists of N data points x1, . . . ,xN , the mean of this
cluster is denoted by x̄ and the covariance is S, and the mean of the cluster after
the point removal is x̄? and the corresponding covariance is S?. We assume for
simplicity that the data point we remove is xN .

Updating the cluster mean

In the case of updating the cluster mean, we have that

x̄ = 1
N

N∑
i=1

xi (A.1)

x̄? = 1
N − 1

N−1∑
i=1

xi. (A.2)

Hence,

x̄? = 1
N − 1(

N−1∑
i=1

xi + xN − xN ) (A.3)

= 1
N − 1(

N∑
i=1

xi − xN ). (A.4)

Therefore, the mean of the new cluster is x̄? = 1
N−1(

∑N
i=1 xi − xN ).
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Updating the cluster covariance

In the case of updating the cluster covariance, we have that

S? = 1
N − 2

N−1∑
i=1

(xi − x̄?)ᵀ(xi − x̄?) (A.5)

= 1
N − 2(

N−1∑
i=1

xᵀ
i xi − (N − 1)x̄ᵀ

?x̄?) (A.6)

= 1
N − 2((

N∑
i=1

xᵀ
i xi − xᵀ

NxN )− 1
N − 1

N−1∑
i=1

xi
N−1∑
i=1

xi). (A.7)

A.1.2 Adding an observation to a cluster

Let assume that the cluster consists of N data points x1, . . . ,xN , the mean of this
cluster is denoted by x̄ and the covariance is S, and the mean of the cluster after
the addition of point is x̄new and the cluster covariance is Snew. We assume for
simplicity that the data point is xN+1.

Updating the cluster mean

In the case of updating the cluster mean, we have that

x̄ = 1
N

N∑
i=1

xi (A.8)

x̄new = 1
N + 1

N+1∑
i=1

xi (A.9)

= 1
N + 1(

N∑
i=1

xi + xN+1). (A.10)

Hence, the mean of the new cluster is x̄new = 1
N+1(

∑N
i=1 xi + xN+1).
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Updating the cluster covariance

In the case of updating the cluster covariance, we have that

Snew = 1
N

N+1∑
i=1

(xi − x̄new)ᵀ(xi − x̄new) (A.11)

= 1
N

(
N∑
i=1

xᵀ
i xi + xᵀ

N+1xN+1 − (N + 1)x̄ᵀ
newx̄new) (A.12)

= 1
N

(
N∑
i=1

xᵀ
i xi + xᵀ

N+1xN+1 −
1

N + 1

N+1∑
i=1

xi
N+1∑
i=1

xi). (A.13)

These results imply that we can efficiently update the sufficient statistics for multi-
variate Gaussian distribution by caching the sum of the observations and the sum
of squares of the observations.
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Appendix B

Derivation of model log
posterior (Chapter 2)

B.1 Continuous BayesCluster

Using the graphical model in Figure 2.1, we can derive the posterior of the continuous
BayesCluster, which we need for the computation of the acceptance probability
(after we integrate out the mixing proportions π and assume that α is fixed) as
follows:

p(Z,W, ε,µµµ,C|X, α) = p(X,Z,W, ε,µµµ,C|α)
p(X|α)

∝ p(X|Z,W, ε)p(Z|µµµ,C)p(W)

=
[ N∏
i=1
N (xi|Wzi, σ2I)

[ N∏
i=1
N (zi|µµµk, I)

][ D∏
d=1
N (wd|0, I)

]

×
[ K∏
k=1
N (µµµk|0, I)

][ N∏
i=1

Cat(C|α)
]
.
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Hence, we can write the log posterior as follows:

log p(Z,W, ε,µµµ,C|X, α) =
[ N∑
i=1

logN (xi|Wzi, σ2I) +
[ N∑
i=1

logN (zi|µµµk, I)
]

+
[ D∑
d=1

logN (wd|0, I)
]

+
[ K∑
k=1

logN (µµµk|0, I)
]

+
[ N∑
i=1

log Cat(C|α)
]
.

B.2 Discrete BayesCluster

Using the graphical model in Figure 2.2, we can derive the posterior of the discrete
BayesCluster, which we need for the computation of the acceptance probability
(after we integrate out the mixing proportions π and assume that α is fixed) as
follows:

p(Z,WD,wD
0 ,µµµ, c|X, α) =p(X,Z,WD,wD

0 ,µµµ, c|α)
p(X|α)

∝p(X,Z,WD,wD
0 ,µµµ, c|α)

=p(X|Z,WD,wD
0 )p(Z|µµµ, c)p(WD)p(wD

0 )p(µµµ)p(c|α).
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Hence, we can write the log posterior as follows:

log p(Z,WD,wD
0 ,µµµ, c|X, α) = log

N∏
i=1

R∏
r=1

Cat(xir|S(Wᵀzi + w0r) + log
R∏
r=1

D∏
d=1
N (wdr|0, I)

+ log
R∏
r=1
N (w0r) + log

N∏
i=1
N (zi|µµµk, I)

+ log
K∏
k=1
N (µµµk|0, I) + log

N∏
i=1

Mult(ci|α)

=
N∑
i=1

R∑
r=1

log Cat(xir|S(Wᵀzi + w0r) +
R∑
r=1

D∑
d=1

logN (wdr|0, I)

+
R∑
r=1

logN (w0r) +
N∑
i=1

logN (zi|µµµk, I)

+
K∑
k=1

logN (µµµk|0, I) + log Γ(α)− log Γ(α+N)

+
K∑
k=1

(
log(Γ(Nk + α

K
))− log(Γ( α

K
))
)

B.3 Mixed BayesCluster

Using the graphical model in Figure 2.3, we can derive the posterior of the mixed
BayesCluster, which we need for the computation of the acceptance probability
(after we integrate out the mixing proportions π and assume that α is fixed) as
follows:

p(Z,WD,w0,WC , ε,µµµ,C|X, α) = p(X,Z,WD,w0,WC , ε,µµµ,C|α)
p(X|α)

∝ p(X|Z,WD,w0,WC , ε)p(Z|µµµ,C)p(WD)p(WC)

× p(w0D)p(ε)p(µµµ)

=
[ N∏
i=1
N (xCi |WCzi, σ2I)

R∏
r=1

Cat(xDir |S(Wᵀ
rzi + w0r))

]

×
[ N∏
i=1
N (zi|µµµk, I)

][ R∏
r=1

Jr∏
j=1
N (wjr|0, I)

][ D∏
d=1
N (wC

d |0, I)
]

×
[ R∏
r=1
N (w0r|0, I)

][ K∏
k=1
N (µµµk|0, I)

][ N∏
i=1

Cat(C|α)
]
.
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Hence, we can write the log posterior as follows:

log p(Z,WD,w0,WC , ε,µµµ,C|X, α) =
[ N∑
i=1

R∑
r=1

logN (xCi |WCzi, σ2I)Cat(xDir |S(Wᵀ
rzi + w0r))

]

+
[ N∑
i=1

logN (zi|µµµk, I)
]

+
[ R∑
r=1

Jr∑
j=1

logN (wjr|0, I)
]

+
[ D∑
d=1

logN (wC
d |0, I)

]

+
[ R∑
r=1

logN (w0r|0, I)
]

+
[ K∑
k=1

logN (µµµk|0, I)
]

+
[ N∑
i=1

log Cat(C|α)
]
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Appendix C

Determining the number of
clusters Chapter 3

C.1 Continuous data
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Figure C.1: Determining the number of clusters K for k-means clustering (K = 3)
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Figure C.2: Determining the number of clusters K for Gaussian mixture model
(K = 7)
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Figure C.3: Determining the latent dimensionality P in the case of the iClusterPlus
model for the dataset presented on Figure 3.2iClusterPlus (P = 2)
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Figure C.4: Determining the latent dimensionality P in the case of BayesCluster for
the dataset presented on Figure 3.2 (P = 2)
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C.2 Discrete data
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Figure C.5: Determining the number of clusters K for the dataset presented on
Figure 3.5 for k-modes clustering. The number of clusters is chosen to be 2 in this
case.
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Figure C.6: Determining the latent dimensionality P in the case of iClusterPlus for
the dataset presented on Figure 3.5 (P = 2)
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Figure C.7: Determining the latent dimensionality P in the case of BayesCluster for
the dataset presented on Figure 3.5 (P = 2).
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C.3 Mixed data
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Figure C.8: Determining the number of clusters K in the case of k-prototypes for
the dataset presented on Figure 3.8.
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Figure C.9: Determining the latent dimensionality P in the case of iClusterPlus for
the synthetic dataset presented on Figure 3.8 (P = 2)
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Figure C.10: Determining the latent dimensionality P in the case of BayesCluster
for the synthetic dataset presented on Figure 3.8 (P = 2)
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Appendix D

Summary of clinical data
(Chapter 5)

D.1 Breast cancer

Feature Categories Number of patients

Age < 50 73(33%)
[50, 64] 94(44%)
≥ 65 49(23%)

Vital status alive 186(86%)
dead 30(14%)

Gender female 213(99%)
male 3(1%)

Progesterone status positive 141(65.3%)
negative 74(34.3%)
indeterminite 1(0.4%)

Estrogen status positive 166(77%)
negative 50(23%)

Her2 status positive 22(10%)
negative 109(50%)
equivocal 43(20%)
not available 42(20%)

Stage T1 52(24%)
T2 122(56%)
T3 30(14%)
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T4 4(2%)

Table D.1: Summary of the characteristics of the clinical data for breast cancer
patients.

D.2 Pancreatic cancer

Feature Categories Number of patients

Age < 50 4(12%)
[50, 64] 13(38%)
≥ 65 17(50%)

Vital status alive 18(53%)
dead 16(47%)

Gender female 15(44%)
male 19(56%)

Stage T1 2(6%)
T2 30(88%)
T3 1(3%)
T4 1(3%)

Diabetes yes 5(15%)
no 16(47%)
not available 13(38%)

Family history of cancer yes 10(29%)
no 7(21%)
not available 17(50%)

Table D.2: Summary of the characteristics of the clinical data for pancreatic cancer
patients.
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D.3 Glioblastoma

Feature Categories Number of patients

Age < 50 46(22%)
[50, 64] 87(41%)
≥ 65 77(36%)

Vital status alive 64(30%)
dead 145(69%)

Gender female 82(39%)
male 128(61%)

Karnofsky score 20 2(1%)
40 8(4%)
60 45(21%)
80 86(41%)
100 14(7%)

EGFR mutation not available 126(60%)
missence 20(10%)
wild-type 64(30%)

Table D.3: Summary of the characteristics of the clinical data for glioblastoma
patients.
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D.4 Colorectal cancer

Feature Categories Number of patients

Age < 50 13(6%)
[50, 64] 52(24%)
≥ 65 141(70%)

Vital status alive 198(93%)
dead 15(7%)

Gender female 104(49%)
male 109(51%)

Stage T1 46(22%)
T2 77(36%)
T3 54(25%)
T4 35(17%)

Table D.4: Summary of the characteristics of the clinical data for colorectal cancer
patients.
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Appendix E

Methods Chapter 5

E.0.1 Breast cancer

Using the statistical models (Section 5.2.2) and the integrative framework (Section
5.2.1), we can derive the mathematical form of the model which integrates the breast
cancer gene expression (GE) and methylation (ME) datasets as follows:

Xbrca,ge = Wbrca,geZbrca + εbrca,ge (E.1)

Xbrca,me = Wbrca,meZbrca + εbrca,me, (E.2)

where Wbrca,ge and Wbrca,me are the loading matrices which map the corresponding
data onto a lower dimensional space, Zbrca are the latent variables corresponding
to the underlying breast cancer subtypes, εbrca,ge and εbrca,me, are the remaining
variances unique to each data type after accounting for correlation between data
types.

E.0.2 Pancreatic cancer

We can similarly derive the model which integrates the pancreatic cancer gene ex-
pression (GE) and methylation (ME) datasets:

Xpdac,ge = Wpdac,geZpdac + εpdac,ge (E.3)

Xpdac,me = Wpdac,meZpdac + εpdac,me, (E.4)

203



where Wpdac,ge and Wpdac,me are the loading matrices which map the corresponding
data onto a lower dimensional space, Zpdac are the latent variables corresponding to
the underlying pancreatic cancer subtypes, εpdac,ge and εpdac,me, are the remaining
variances unique to each data type after accounting for correlation between data
types.

E.0.3 Glioblastoma

The integrative model which uses the information from the glioblastoma gene ex-
pression (GE), copy number variation (CNV), methylation (ME) and microRNA
(miRNA) datasets can be wrtitten as follows:

Xgbm,ge = Wgbm,geZgbm + εgbm,ge (E.5)

Xgbm,cnv = Wgbm,cnvZgbm + εgbm,cnv (E.6)

p(Xgbm,me|Wgbm,1:R,wgbm,01:0R) =
N∏
i=1

R∏
r=1

Cat(Xme,ir|S(Wgbm,rzgbm,i + wgbm,0r))

(E.7)

Xgbm,miRNA = Wgbm,miRNAZgbm + εgbm,miRNA (E.8)

where Wgbm,ge, Wgbm,cnv and Wgbm,miRNA are the loading matrices which map the
corresponding data onto a lower dimensional space, Wgbm,1, . . . ,Wgbm,R are the
loading matrices associated with the methylation dataset, wgbm,01, . . .wgbm,0R are
the offsets, Zgbm are the latent variables corresponding to the underlying glioblas-
toma subtypes, εgbm,ge, εgbm,cnv and εgbm,miRNA, are the remaining variances unique
to each data type after accounting for correlation between data types.

E.0.4 Colorectal cancer

The integrative model which uses the information from the colorectal cancer gene
expression (GE), copy number variation (CNV) and methylation methylation (ME)
datasets can be expressed as follows:

Xcrc,ge = Wcrc,geZcrc + εcrc,ge (E.9)

Xcrc,cnv = Wcrc,cnvZcrc + εcrc,cnv (E.10)

Xcrc,me = Wcrc,meZcrc + εcrc,me, (E.11)
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where Wcrc,ge, Wcrc,cnv and Wcrc,me are the loading matrices which map the
corresponding data onto a lower dimensional space, Zcrc are the latent variables
corresponding to the underlying colorectal cancer subtypes, εgbm,ge, εgbm,cnv and
εgbm,miRNA, are the remaining variances unique to each data type after accounting
for correlation between data types.
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Appendix F

Kaplan-Meier curves Chapter 5

F.1 Breast cancer

F.1.1 Gene expression
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Figure F.1: Breast cancer gene expression subtypes, identified by k-means, Gaussian
mixture model, BayesCluster, iClusterPlus

F.1.2 Methylation
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(b) BayesCluster
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Figure F.2: Breast cancer methylation subtypes, identified by k-means, BayesClus-
ter, iClusterPlus
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F.2 Pancreatic cancer

F.2.1 Gene expression
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Figure F.3: Pancreatic cancer gene expression subtypes, identified by k-means and
iClusterPlus
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F.2.2 Methylation
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Figure F.4: Pancreatic cancer methylation subtypes, identified by k-means, Gaus-
sian mixture model, BayesCluster, iClusterPlus
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F.3 Glioblastoma

F.3.1 Gene expression
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Figure F.5: Glioblastoma gene expression subtypes, identified by k-means, Gaussian
mixture model, BayesCluster, iClusterPlus

210



F.3.2 Copy number variation
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Figure F.6: Glioblastoma copy number variation subtypes, identified by k-means,
Gaussian mixture model, BayesCluster, iClusterPlus
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F.3.3 MicroRNA
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Figure F.7: Glioblastoma microRNA subtypes, identified by k-means, BayesCluster,
iClusterPlus
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F.3.4 Methylation
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Figure F.8: Glioblastoma metylation subtypes, identified by k-modes, BayesCluster,
iClusterPlus
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F.4 Colorectal cancer

F.4.1 Gene expression
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Figure F.9: Colorectal cancer gene expression subtypes, identified by k-means, Gaus-
sian mixture model, BayesCluster, iClusterPlus

214



F.4.2 Copy number variation
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Figure F.10: Colorectal cancer copy number variation subtypes, identified by k-
means, Gaussian mixture model, BayesCluster, iClusterPlus
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F.4.3 Methylation
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Figure F.11: Colorectal cancer methylation subtypes, identified by k-means, Gaus-
sian mixture model, BayesCluster, iClusterPlus
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Appendix G

Heatmaps from Chapter 5

G.1 Breast cancer

−10 −5 0 5 10

(a) Gene expression data
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0.2 0.4 0.6 0.8

(b) Methylation data

Figure G.1: Heatmaps of the breast cancer gene expression and methylation data.
The patients are on the x-axis, sorted by the integrative clustering partition. The y-
axis gives the selected features for each data type, sorted using hierarchical clustering
with average linkage.
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G.2 Pancreatic cancer
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(a) Gene expression data

−2 −1 0 1 2

(b) Methylation data

Figure G.2: Heatmaps of the pancreatic cancer gene expression and methylation
data. The patients are on the x-axis, sorted by the integrative clustering partition.
The y-axis gives the selected features for each data type.
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G.3 Glioblastoma
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(a) Gene expression data
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(b) Copy number variation data
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0 0.2 0.6 1

(c) Methylation data
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(d) MicroRNA data

Figure G.3: Heatmaps of the glioblastoma cancer gene expression, copy number
variation, methylation and microRNA data. The patients are on the x-axis, sorted
by the integrative clustering partition. The y-axis gives the selected features for
each data type. The methylation data has been binarised.
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G.4 Colorectal cancer
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(a) Gene expression data
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(b) Copy number variation data
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−2 −1 0 1 2

(c) Methylation data

Figure G.4: Heatmap of the colorectal cancer gene expression, copy number variation
and methylation data. The patients are on the x-axis, sorted by the integrative
clustering partition. The y-axis gives the selected features for each data type. The
methylation data has been binarised.
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Appendix H

Cluster specification (Chapter
5)

H.1 Breast cancer

Table H.1 presents the differences between the clusters identified by BayesCluster
using the information from the gene expression and methylation data.

Feature Cluster 1 Cluster 2 Cluster 3 Cluster 4

Number of patients 26 64 44 82
Median age at diagnosis 54.5 58 50 59
Age range (38,71) (26,83) (29,83) (29,83)
Progesterone receptor:
negative 11 11 40 12
positive 15 53 3 70
indeterminite 0 0 1 0

Estrogen receptor:
negative 6 4 38 2
positive 20 60 6 80

Her2 status:
negative 12 24 28 45
positive 7 4 1 10
equivocal 3 19 6 15
indeterminite 0 1 1 0
not evaluated 3 12 8 8
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not available 1 1 0 1
Triple negative 0 0 23 1
subtype

Table H.1: Summary of the characteristics of the four integrative clusters identified
by BayesCluster

Table H.2 presents the differences between the clusters identified by iClusterPlus
using the information from the gene expression and methylation data.

Feature Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Number of patients 42 43 67 44 20
Median age at diagnosis 59.5 55 58.5 49 57
Age range (30,82) (29,83) (27,81) (29,83) (26,79)
Progesterone receptor:
negative 16 40 5 8 5
positive 26 2 62 36 15
indeterminite 1

Estrogen receptor:
negative 7 37 3 2 1
positive 35 6 64 42 19

Her2 status:
negative 16 29 39 17 8
positive 13 0 1 4 0
equivocal 6 5 10 17 5
indeterminite 0 1 0 1 0
not evaluated 6 8 8 5 4
not available 0 0 3 0 0

Triple negative 1 25 0 0 0
subtype

Table H.2: Summary of the characteristics of the four integrative clusters identified
by iClusterPlus.
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H.2 Pancreatic cancer

Table H.3 presents the differences between the two clusters identified by BayesClus-
ter using the information from the gene expression and methylation data.

Feature Cluster 1 Cluster 2

Number of patients 15 19
Median age at diagnosis 65 64
Age range (49,81) (41,85)
Tumour stage:
T2 0 3
T3 14 16
T4 1 0

Diabetes:
no 5 11
yes 2 3

Family history
of cancer:
no 3 4
yes 3 7

Smoking
(number of pack years):
≤ 20 2 2
(21, 30] 1 1
> 30 1 1

Table H.3: Summary of the characteristics of the two integrative clusters identified
by BayesCluster.

H.3 Glioblastoma

Table H.4 presents the differences between the five clusters identified by BayesClus-
ter using the information from the gene expression, copy number variation, methy-
lation and microRNA data. We have included information for all patients with
follow-up information.
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Feature Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Number of patients 48 70 37 32 25
Median age at diagnosis 60.5 60 59 59.5 60
Age range (30,88) (10,89) (23,85) (21,83) (36,83)
Gender
female 18 24 15 13 12
male 30 45 22 17 13

Karnofsky score:
20 0 0 0 1 1
40 2 2 3 1 0
60 11 20 5 2 7
80 15 28 7 13 13
100 4 7 1 2 0

EGFR mutation:
wild-type 14 19 13 9 8
silent 2 0 0 1 0
missense 0 0 1 0 0
(silent)
missense 7 6 2 0 4
not available 27 44 21 20 13

Table H.4: Summary of the characteristics of the five integrative clusters identified
by BayesCluster.

H.4 Colorectal cancer

Table H.5 presents the differences between the five clusters identified by BayesClus-
ter using the information from the gene expression, copy number variation and
methylation data. We have included information for all patients (100) with follow-
up information.
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Feature Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Number of patients 22 35 23 15 5
Median age at diagnosis 69.5 74 63 68 77
Age range (50,83) (43,89) (41,87) (35,77) (62,82)
Gender
female 0 34 15 0 0
male 22 1 8 15 5

Tumour stage:
T1 0 2 3 0 1
T2 7 3 5 7 0
T3 14 26 13 8 4
T4 1 4 2 0 0

Table H.5: Summary of the characteristics of the five integrative clusters identified
by BayesCluster.
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schemes. The Annals of Statistics, pages 353–355, 1973.

David R Blair, Christopher S Lyttle, Jonathan M Mortensen, Charles F Bearden,
Anders Boeck Jensen, Hossein Khiabanian, Rachel Melamed, Raul Rabadan,
Elmer V Bernstam, Søren Brunak, et al. A nondegenerate code of deleterious
variants in mendelian loci contributes to complex disease risk. Cell, 155(1):70–80,
2013.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet allocation.
Journal of Machine Learning Research, 3(Jan):993–1022, 2003.

David M Blei, Michael I Jordan, et al. Variational inference for Dirichlet process
mixtures. Bayesian Analysis, 1(1):121–143, 2006.

Paul S Bradley and Usama M Fayyad. Refining initial points for k-means cluster-
ing. In International Conference on Machine Learning, volume 98, pages 91–99.
Citeseer, 1998.

PS Bradley, KP Bennett, and Ayhan Demiriz. Constrained k-means clustering.
Microsoft Research, Redmond, 20(0):0, 2000.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Robert Brown and Gordon Strathdee. Epigenomics and epigenetic therapy of cancer.
Trends in Molecular Medicine, 8(4):S43–S48, 2002.
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