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a b s t r a c t 

Infectious diseases remain one of the major causes of human mortality and suffering. Mathematical mod- 

els have been established as an important tool for capturing the features that drive the spread of the 

disease, predicting the progression of an epidemic and hence guiding the development of strategies to 

control it. Another important area of epidemiological interest is the development of geostatistical meth- 

ods for the analysis of data from spatially referenced prevalence surveys. Maps of prevalence are useful, 

not only for enabling a more precise disease risk stratification, but also for guiding the planning of more 

reliable spatial control programmes by identifying affected areas. Despite the methodological advances 

that have been made in each area independently, effort s to link transmission models and geostatisti- 

cal maps have been limited. Motivated by this fact, we developed a Bayesian approach that combines 

fine-scale geostatistical maps of disease prevalence with transmission models to provide quantitative, 

spatially-explicit projections of the current and future impact of control programs against a disease. These 

estimates can then be used at a local level to identify the effectiveness of suggested intervention schemes 

and allow investigation of alternative strategies. The methodology has been applied to lymphatic filariasis 

in East Africa to provide estimates of the impact of different intervention strategies against the disease. 

© 2020 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Geostatistical modelling is increasingly used in epidemiology to 

ombine surveys from multiple locations into a detailed model of 

ocal prevalence or incidence ( Hay et al. 2009; Moraga et al. 2015; 

’Hanlon et al. 2016; Stensgaard et al. 2011; Giorgi et al. 2018 ). 

aps of disease distribution can be used, for example, to plan the 

evelopment of national scale control strategies by informing pol- 

cy makers where intervention effort s should be focused ( Slater 

nd Michael, 2013; Tatem et al., 2010 ). Several examples from the 

iterature have shown that spatial heterogeneity is an important 

pidemiological factor in many diseases ( Pullan et al., 2012; Stur- 

ock et al., 2010 , for example). However, predictions of future cases 

re frequently performed on aggregated data, risking the ecological 

allacy ( Wakefield and Lyons, 2010 ). 
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transmission models: Application to lymphatic filariasis in East Africa, S
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Over the past decades, mathematical models have also been 

stablished as an important tool for evaluating the effect of dif- 

erent control strategies by predicting the progression of the dis- 

ase ( Ferguson et al., 2005; Hollingsworth, 2018; Stolk et al., 

018; Tildesley et al., 2009 ). However, when mathematical mod- 

lling is used to evaluate potential intervention strategies, spa- 

ial heterogeneity is also frequently ignored ( Heesterbeek et al., 

015 ). Some notable exceptions are the papers by Gibson (1997) , 

eeling et al. (2001) and Deardon et al. (2010) who considered 

 spatial model, where the transmission probabilities depend on 

istances between individuals. In this paper we develop a novel 

ethod for taking the output from a geostatistical model and pro- 

ecting the epidemic dynamics forward in time at the pixel level, 

nder a range of potential intervention strategies, in a computa- 

ionally efficient way. An important feature of our approach is the 

bility to capture several sources of uncertainty. 

There are only a limited number of studies linking transmis- 

ion models and geostatistical maps in a way that can dynami- 

ally inform policy at a local level. The African Program for On- 

hocerciasis Control was one of the first groups to develop and 
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pply this approach (for example Alley et al., 1994; Plaisier et al., 

991 ). Kriging was used to extrapolate between survey points and 

hen transmission models were used to project the likely impact 

f intervention programs. These mapped projections had been ex- 

remely useful in informing policy planning over many years and 

ave recently been updated ( Tekle et al., 2016 ). The power of this

ype of approach to inform policy has been illustrated most no- 

ably by Bhatt et al. (2015) in the analysis of the key drivers of

uccesses in malaria interventions over the last 15 years. An im- 

ortant challenge, addressed by our approach, is to appropriately 

stimate and communicate the projections with their uncertainty. 

n particular, our method addresses and quantifies a broad range 

f uncertainties, including uncertainty in the spatial variation in 

revalence, transmission parameters, demographics, interventions 

nd even model structure, and propagates them into the uncer- 

ainty in future predictions. 

Our methodology has many parallels with exact versions of 

pproximate Bayesian Computation (ABC; Beaumont et al., 2002; 

ilkinson, 2013 ), in which simulations from the model are 

eighted (or accepted) according to their likelihood of producing 

he observed data. However, in our framework a likelihood is only 

vailable at the survey points, and so instead we weight the sim- 

lations by the posterior distribution from a geostatistical model 

hat interpolates between surveys to give a prevalence distribution 

t each location. To achieve this weighting, we must change the 

easure of the simulated prevalences from the one induced by the 

rior on the transmission model parameters, to the posterior dis- 

ribution from the geostatistical model using the Radon-Nikodym 

erivative ( Billingsley, 1995 ). However, since this is not available 

n analytical form, we propose an empirical alternative similar to 

oldie and Maller (1999) and references contained within. 

The paper is organised as follows. In Section 2 we describe 

he statistical methodology for combining geo-statistical mapping 

nd transmission modelling, and illustrate its key features with 

 toy example in Section 3 . The proposed method is applied in 

ection 4 to investigate the impact of intervention programs for 

ymphatic filariasis in seven countries in Africa. Finally, we con- 

lude with a discussion on limitations of the current method and 

ossible extensions for further research in Section 5 . 

. Methods 

We develop a Bayesian methodology that captures uncertainty 

rom multiple sources and can be readily applied to different trans- 

ission models and intervention strategies to give a distribution 

f projections across space. The starting point for our analysis is 

he output from a geostatistical model of disease prevalence, cap- 

uring the uncertainty in the spatial distribution of infection. A 

umber of recent studies have adopted a predictive framework 

nown as model-based geostatistics ( Diggle and Ribeiro, 2007 ) for 

he production of prevalence maps, often employing Bayesian in- 

erence for spatial prediction and robust characterisation of uncer- 

ainty surrounding those predictions. In particular we assume that 

he output consists of M Monte Carlo samples from the posterior 

istribution of the geostatistical model. Although we assume that 

he spatial distribution represents the pre-control prevalence here, 

ur methodology can easily be generalised beyond this example. In 

ddition, we assume that other geographical information is avail- 

ble for each pixel (with associated uncertainty), such as popula- 

ion size and other demographic data that can be used as an input 

o the transmission model. 

Our methodology consists of 3 steps. First, we generate a large 

umber of simulations from the transmission model, with suffi- 

ient variability to capture all of the endemic prevalences observed 

n the samples from the geostatistical model. Second, for each spa- 

ial location in the map we reweight the simulations according to 
2 
ow similar they are to the observed prevalence and other spa- 

ial information, such as population data. Finally, we simulate the 

ransmission model further forward in time, possibly under some 

ntervention strategy, and apply the weights to obtain the spatial 

istribution of the projections. A graphical representation of the 

ethod can be found in Fig. 1 . 

.1. Step 1: simulating from the transmission model 

For each pixel on the map, we assign an informative prior on 

he model parameters, πi ( θ) say for pixel i, representing the un- 

ertainty in our beliefs about the parameters of the transmission 

odel at that location. Next, we define a single proposal distri- 

ution over the parameter space, q ( θ) , capable of producing simu- 

ated prevalence levels spanning the values observed in the geosta- 

istical mapping. We then draw J parameter vectors ( θ j ) from the 

roposal, and for each one we run the model forward in time until 

t reaches pre-control equilibrium. Denote the resulting prevalence 

evels by p j , for j = 1 , . . . J. Finally, we calculate an initial I × J ma-

rix of weights for the I pixels and J simulations according to the 

sual importance sampling formula, namely w 

(1) 
i j 

= πi ( θ j ) /q ( θ j ) . 

The proposal distribution q ( θ) might be uniform over the pa- 

ameter space in low dimensions, or for higher dimensions it could 

e developed from pilot simulations, where parameter vectors are 

ampled uniformly from the support of the priors and for each pa- 

ameter vector the equilibrium prevalence is simulated from the 

ransmission model. The importance proposal can then be con- 

tructed on the parameter space to give more weight to frequently 

bserved prevalence values, and zero weight to implausible preva- 

ence values (e.g. prevalences larger than the maximum observed 

n the geostatistical model). The efficiency of the proposal can 

e improved iteratively using adaptive importance sampling tech- 

iques ( Cornuet et al., 2012; Retkute et al., 2020 ). 

.2. Step 2: reweighting the simulations to match pixel prevalence 

istributions 

For each pixel the same simulations are reweighted to match 

he prevalence distribution of that pixel. This prevents unnecessary 

eplication of simulations for pixels that are broadly similar and 

eans that the number of simulations need not increase as the 

umber of pixels increases. More specifically, for pixel i = 1 , . . . , I

nd simulation j = 1 , . . . , J the new weight is given by: 

 

(2) 
i j 

∝ 

f (p j | d i ) 

g(p j | w 

(1) 
i 

) 
w 

(1) 
i j 

(1) 

here d i = (d i 1 , . . . , d iM 

) is the M dimensional vector of posterior 

amples of prevalences in pixel i and w 

(1) 
i 

= (w 

(1) 
i 1 

, . . . , w 

(1) 
iJ 

) . The

unction f represents the probability of having prevalence p j un- 

er the geostatistical model and g represents the probability of 

imulating prevalence p j from the model with parameter vector 

rawn from the prior. The ratio f/g therefore represents the usual 

hange of measure formula (Radon-Nikodym derivative). However, 

ince neither of these probability densities are likely to be avail- 

ble in closed form, we use an empirical approximation given by 

he amount of probability density within δ/ 2 of p j : 

f (p j | d i ) = 

1 

δM 

M ∑ 

m =1 

1 { p j −δ/ 2 ≤ d im ≤ p j + δ/ 2 } , 

(p j | w 

(1) 
i 

) = 

∑ J 

k =1 
w 

(1) 
ik 

1 { p j −δ/ 2 ≤ p k ≤ p j + δ/ 2 } 
δ

∑ J 

k =1 
w 

(1) 
ik 

. 

Note that as long as q ( θ) > 0 implies πi ( θ) > 0 , then w 

(1) 
i j 

> 0

or all j and hence g(p j | w 

(1) 
i 

) > 0 for all j. The bin width δ con-

rols the trade-off between effective sam ple size and the fidelity 
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Fig. 1. Methodology for generating mapping results. Using pre-run model simulations (top), we reweight the simulations for each pixel based on the prevalence and pop- 

ulation information (middle – red lines represent the median of observed data). Finally, the weights are used to evaluate the impact of different intervention strategies 

(bottom). 
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f the distribution of the simulated prevalences to the geostatis- 

ical posterior distribution, and should be set as small as possi- 

le, whilst producing a reasonable effective sam ple size, defined 

s ( 
∑ J 

j=1 
w 

(2) 
i j 

) 2 / 
∑ J 

j=1 
(w 

(2) 
i j 

) 2 . Finally, the weights from Eq. (1) are 

ormalised to give the posterior probabilities (according to the 

eostatistical model) that simulation j is appropriate for pixel i . 

.3. Step 3: running the simulations forward 

The simulations are run forward in time under a given interven- 

ion strategy. For each pixel the projected outcomes are weighted 

ccording to the normalised weights w 

(2) 
i 

= (w 

(2) 
i 1 

, . . . , w 

(2) 
iJ 

) pro- 

uced in Step 2. Step 3 is repeated for each intervention strategy 

nder consideration. 

.4. Lemma on the change of measure 

In this section we introduce a lemma that generates the 

eweighting formula in Eq. (1) . The lemma is proved in Appendix 

.1 of the Supplementary Material (SM). 

emma 1. Let p : R 

d → [0 , 1] denote a deterministic model that pro-

uces a prevalence p( θ) from a vector of parameters θ. Let π( θ) be

 prior distribution over the parameters that induces a prior distri- 

ution over prevalences, which we denote by g(p) . Suppose that there 

xists a differentiable and invertible function φ : R 

d → R 

d that admits 

he prevalence as its first argument, ie. φ( θ) = (p( θ) , q ( θ)) for some

 ( θ) . Finally suppose that we wish to change the probability mea- 

ure over prevalences from g to another measure f that is absolutely 

ontinuous with respect to g. Then the resulting measure over the pa- 

ameter space is given by h ( θ) = 

f (p( θ)) 
g(p( θ)) 

π( θ) . 

Notes: 

1. The same approach can be applied for stochastic transmission 

models as long as the model is defined on a separate proba- 

bility space (�, F , P ) to the prior. For stochastic models we fix 

ω ∈ � and consider the transmission model as a deterministic 

map φ( θ, ω) , applying the Lemma and then integrating over �. 

2. The condition that f must be absolutely continuous with re- 

spect to g means that whenever g(p) = 0 then we must also 

have f (p) = 0 . In other words, when the prior probability of 

a prevalence is zero then the map measure of prevalence must 

also be zero. This has important implications for the implemen- 

tation of our method, discussed further in Appendix A.2. 

.5. Alternative empirical Radon-Nikodym derivatives 

In Step 2 of our algorithm (described in Section 2.2 ) we pro- 

osed an empirical estimate of the Radon-Nikodym derivative f/g

ased on using the prevalences within δ/ 2 of p j . Clearly there are

any possible alternative estimates that could be used and there 

re two in particular that are worthy of further discussion. The first 

s based on histograms and the second is based on minimising a 

iscrepancy measure. 

.5.1. Histogram-based empirical Radon-Nikodym derivative 

If we consider a fixed partition of the prevalence space into bins 

as if we were constructing a histogram) then it is straightforward 

o calculate the Radon-Nikodym derivative f/g for each bin as the 

roportion of posterior samples in the bin divided by the propor- 

ion of the weight belonging to simulations that fall in the bin. 

ore precisely, given a finite set of disjoint intervals with union 

0,1] then if prevalence p j falls in interval I(p j ) we have that 

f (p j | d i ) = 

1 

M|I(p j ) | 
M ∑ 

m =1 

1 { d im ∈ I(p j ) } , 
4 
(p j | w 

(1) 
i 

) = 

∑ J 

k =1 
w 

(1) 
ik 

1 { p k ∈ I(p j ) } 
|I(p j ) | ∑ J 

k =1 
w 

(1) 
ik 

, 

here |I(p j ) | is the length of the interval containing p j . 

The main advantage of this estimate is computational – since 

ll of the simulations in the same interval have the same ratio (for 

 given pixel) then instead of having to calculate J ratios we need 

nly calculate one per interval. A secondary advantage is that the 

eighted histogram of the simulation prevalences will be identical 

o the histogram of the posterior prevalence distribution. However, 

he relative weightings within each bin are unchanged and so a 

ifferent choice of bins will reveal that the two distributions are 

ifferent. 

.5.2. Discrepancy-based empirical Radon-Nikodym derivative 

A second alternative empirical Radon-Nikodym derivative can 

e defined to minimise the difference between the empirical 

umulative distribution functions (cdfs) of the posterior preva- 

ences and the weighted simulated prevalences. Let F (x | d i ) = 

1 
M 

∑ M 

m =1 1 { d im ≤x } be the empirical cdf of the map prevalence distri- 

ution for pixel i and H(x | w 

(2) 
i 

) = 

∑ J 
j=1 

w 

(2) 
i j 

1 { p j ≤x } be the empiri-

al cdf of the final weighted distribution of simulated prevalences, 

hen we can choose w 

(2) 
i 

to minimise some distance || F (·| d i ) −
(·| w 

(2) 
i 

) || . For example, we may wish to minimise 
∫ 1 

0 | F (x | d i ) −
(x | w 

(2) 
i 

) | d x or 
∫ 1 

0 

(
F (x | d i ) − H(x | w 

(2) 
i 

) 
)2 

d x . In this paper we 

ave focussed on the latter of these, for details of the calculation 

e refer the reader to the SM Appendix A.3. 

. Simulation studies: a toy example 

In this section we provide a toy example to assess the perfor- 

ance of the proposed method under different settings. Particular 

ocus was given on how the method was affected by the value of 

, by the choice of the proposal distribution of the parameters and 

he empirical estimate of the Radon-Nikodym derivative. A full de- 

cription of the analysis can be found in SM Appendix B and here 

e summarize the key results. 

Suppose that the prior distribution is π(θ1 , θ2 ) = 2 if 0 < θ2 <

1 < 1 and zero otherwise. Plots illustrating this prior are given in 

M Fig. B.2. For simplicity, assume that the transmission model has 

quilibrium prevalence given by p(θ1 , θ2 ) = θ1 so that the induced 

rior over prevalences is the marginal for θ1 , ie. g(p) = 2 p for 0 <

p < 1 , which is a Beta(2,1) distribution. Further, suppose that we 

re given M = 20 0 0 samples from a pixel with prevalence measure 

f (p) = 2(1 − p) for 0 < p < 1 , representing a Beta(1,2) distribution.

his challenging example allows us to assess how the methodology 

erforms when there are few simulations with low weights in the 

rea of high posterior probability close to p = 0 . 

Simulations were conducted to investigate the accuracy and ef- 

ciency of the proposed method under different settings, where 

he observed pixel and simulated prevalence data are obtained 

rom the toy model. Fig. 2 shows how J = 20 0 0 simulations from

 proposal (centre histogram) can be reweighted (right histogram) 

o resemble the pixel prevalence distribution (left histogram). In 

ig. 2 (a) the proposal is from the prior, whilst in Fig. 2 (b) the pro-

osal is U(0 , 1) . The improvement due to the proposal distribution 

aving good support in all areas of the posterior distribution was 

emonstrated by the substantial increase in effective sam ple size 

ESS; from 368 to 1322), despite a much smaller value of δ. 

Fig. 3 illustrates how the performance changes as δ is increased. 

he left figure shows the distance (given by integrated squared dif- 

erence) between the empirical cumulative distribution functions 

f the weighted simulations and the samples from the pixel pos- 

erior; and the right figure shows the effective sample sizes. The 
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Fig. 2. The estimated weighted prevalence distribution for the suggested value of δ (right panel) is compared to the true pixel prevalence distribution (left panel), under 

different proposal distributions for the prevalence (middle panel): (a) Beta(2,1) and (b) U(0 , 1) . The target densities are also shown on each panel. 

c

N

d

t

e

s

d

p

a

T  

s

d

m

t

t

t

T

b

t  

s

a

d

b

orresponding results from the discrepancy based empirical Radon- 

ikodym derivative (see Section 2.5.2 ) are shown as horizontal 

ashed lines and provide the minimum distance possible between 

he cdfs. The results show that smaller values of δ reproduced the 

mpirical cdf more accurately, unless δ was so small that very few 

imulations were included in each estimate of the density g (the 

enominator in Eq. (1) ). After some experimentation (see SM Ap- 

endix B.1.1) we chose to set δ to be the smallest value for which 

t least three simulations were included in each estimate of g. 

hese values are illustrated by vertical lines on Fig. 3 , and can be

een to come close to achieving the minimum possible squared 

istance between the empirical cdfs, but with larger ESS. 
5 
In our simulations we have evaluated the performance of the 

ethod for the distance-based empirical Radon-Nikodym deriva- 

ive, which is based on using the prevalences within a certain dis- 

ance given by δ/ 2 of p j . We also investigated alternative deriva- 

ives, discussed in Section 2.5 , and the results are summarised in 

able B.1 of the SM. Overall, we observed that the discrepancy- 

ased derivative provides the best possible distance between the 

wo cdfs, but at a cost of a lower ESS in all the scenarios con-

idered. When the proposal was uniform and had simulations in 

ll areas of the posterior distribution then the histogram-based 

erivative performed better than the distance-based derivative 

oth in terms of accuracy and ESS. However, the situation was 
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Fig. 3. Distance between the two cumulative distribution functions (cdfs) (left panel) and effective sample size (ESS) (right panel) obtained under different values of δ and 

choice of proposal distribution for parameter θ1 , for one randomly selected simulated dataset. Orange solid line represents a prevalence proposal distribution equal to the 

marginal prior, i.e. Beta(2,1), whereas the blue line corresponds to a U(0 , 1) proposal. In both cases, the pixel prevalences were drawn from a Beta(1,2) distribution. Dashed 

vertical lines represent the suggested value of δ for each scenario considered. Dashed horizontal lines correspond to the minimum possible distance (left panel) and its 

associated ESS (right panel). 
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eversed when there were areas in the proposal with few simu- 

ations. In that scenario, the distance-based derivative was found 

o have lower integrated squared distance and higher ESS com- 

ared to the histogram-based derivative. Therefore, we used the 

istance-based empirical Radon-Nikodym derivative in our appli- 

ations, since it was more robust to weaknesses in the proposal. 

. Application to lymphatic filariasis data 

In this section, we apply the proposed approach for the anal- 

sis of real data for lymphatic filariasis (LF) in East Africa. LF is 

aused by a mosquito-borne macro-parasite, which was historically 

ndemic in many tropical countries, with over a billion people at 

isk of infection, and millions affected by the disease suffer from 

isability, stigma and associated social and economic consequences 

 Ramaiah and Ottesen, 2014 ). LF is one of the neglected tropical 

iseases (NTDs) targeted for elimination as a public health prob- 

em by 2020 ( WHO, 2012 ), with new guidelines currently being de- 

eloped for 2030. Global efforts to eliminate LF as a public health 

roblem, through the use of mass drug administration (MDA) of 

reatments with an excellent safety record, have reduced preva- 

ence to low levels in many settings ( Ramaiah and Ottesen, 2014 ). 

hile many countries have successfully scaled-up their programs, 

here remain a number of questions on how best to scale up treat- 

ent to assist priority countries in optimising interventions to ac- 

elerate elimination. Therefore, there is an urgent need to provide 

etailed estimates of the impact of current and future control pro- 

rams for donor and policy planning. 

For LF, the intervention strategy for most of Africa is to have 

early MDA at 65% coverage for 5 years, followed by an assessment 

f transmission and, if necessary, further rounds of treatment. In 

reas where MDA has not yet started, alternative strategies may 

e required to meet the WHO target, i.e. the prevalence being less 

han 1% ( WHO, 2012 ) as soon as possible. Enhanced strategies in- 

lude MDA at high coverage or twice-yearly treatment ( Stolk et al., 

018 ). By bringing together statistical mapping and transmission 

odelling, we aim to provide high-resolution quantification of the 

ikely impact of control programs and predictions on both future 

mpact and demand for interventions, allowing policy makers to 

ore effectively target available resources. 

.1. The mathematical model of LF transmission dynamics 

In this section we describe the mathematical model of lym- 

hatic filariasis transmission, TRANSFIL ( Irvine et al., 2015 ), that 
6 
s used throughout the paper. TRANSFIL is an individual-based 

odel of LF infection in human populations, with each host hav- 

ng their own adult worm and microfilariae (mf) burden, as well 

s mosquito bite risk and treatment history. A full description of 

he model is provided in Irvine et al. (2015) and in Appendix C of 

he SM, so here we provide only a brief overview and the updated 

spects of it. 

Each human is assumed to have their own burden of male and 

emale worms denoted by W 

m 

i 
and W 

f 
i 

, respectively. The times at 

hich human i acquires female and male adult worms are given 

y two inhomogenous Poisson processes, both with rate: 

1 
2 
λb i (V/H) ψ 1 ψ 2 s 2 h (a ) , 

here λ is the number of bites per mosquito, V/H is the ratio of 

ectors to hosts, ψ 1 is the probability that a third-stage larvae (L3, 

he infectious stage) leaves the host during a bite, ψ 2 is the prob- 

bility that the L3 enters the host, s 2 is the proportion of L3 that 

evelop into adult worms within the host and h (a ) is the biting 

ate for a human with age a . Both male and female worms are 

ntroduced to a human according to a bite risk b i drawn from a 

amma distribution with mean 1 and shape parameter k . Thus, the 

egree of parasite aggregation amongst humans can be quantified 

y this shape parameter. Finally, we assume that each worm has a 

onstant death rate μ. 

Microfilariae concentration in the peripheral blood, denoted by 

 i , is also modelled for each individual according to the following 

quation: 

d M i 

d t 
= αW 

f 
i 
1 { W 

m 
i 

> 0 } − γ M i , 

ith α being the production rate of mf per worm, γ the constant 

eath rate of mf and the indicator function 1 { W 

m 
i 

> 0 } is one if there 

re male worms and zero if not. Larvae development occurs when 

f enter the mosquito during a blood meal from an infected host. 

ifferent functional forms have been found to describe the rela- 

ionship between the number of mf ingested and the number that 

evelop within the mosquito. For Anopheles , which is the genus of 

he most dominant vector species in East Africa, this relationship 

s expressed as: 

 (m ) = κs 2 

(
1 − e −r 2 m/κs 2 

)2 
, 

here m is the concentration of mf per 20 μL taken during a blood 

eal and r, κs denote the saturation values related to the uptake 

unction as detailed in Gambhir and Michael (2008) . The equilib- 
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Fig. 4. Accuracy assessment of our method. The true distribution of LF prevalence (lower panel) is compared to the estimated prevalence distribution (upper panel) using 

our proposed methodology predicted at 5 × 5 km resolution. Point estimates along with lower (2.5%) and upper (97.5%) percentiles are presented. 
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ium value for L3 in a mosquito is given by: 

 

∗ = 

λg ̃ L 

σ + λψ 1 

, 

here λ is the number of bites per mosquito, g is the proportion of 

osquitoes which pick up infection when biting an infected host, 

is the death rate of mosquitoes and 

˜ L is the average number of 

arvae per mosquito. 

Each human begins life with zero infection and a bite-rate of 

xposure b i . The human death rate is denoted by τ and is assumed 

o be constant throughout an individuals lifetime with a cut-off at 

ge 100. When an individual dies another one is born in order to 

eep the population size constant. 

During an intervention campaign, the impact of MDA is simu- 

ated for an individual by reducing their mf concentration and their 

ale and female worm burden according to the estimated drug 

fficacies from the literature ( Ismail et al., 1998; Michael et al., 

004 ). In addition, there is a period after MDA during which the 

roduction of mf for that individual is diminished. Furthermore, 

he individuals’ compliance after multiple rounds of treatment is 

odelled based on the paper by Griffin et al. (2010) , where the 
7 
uthors model the probability of an individual making the same 

ecision as in the previous round of treatment. 

Finally, we extended the model to include a very low rate of 

mportation of infection from outside the population being mod- 

lled, otherwise the equilibrium distribution (steady state), that is 

sed as the starting point of the simulations, is just the degenerate 

istribution where no-one is infected. The interventions reduce the 

revalence over time, and so we reduce the importation rate after 

ntervention in proportion to the reduction in prevalence seen in 

ilot simulations. Lists of the model parameters are provided in 

ables C.3 and C.4 of the SM. 

.2. Implementation details 

The starting point for our analysis was the spatial map (pixel 

cale 5 × 5 km) providing the predicted distribution of the LF 

revalence based on mf data, generated through a Bayesian geosta- 

istical modelling approach described by Moraga et al. (2015) . The 

op panel of Fig. 4 shows the median of the posterior distribution 

f the prevalence obtained at each pixel, along with estimates of 

ower (2.5%) and upper (97.5%) percentiles. In particular, we anal- 
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Fig. 5. Probability of less than 1% prevalence after 5 years under: a) no intervention; annual MDA with coverage of b) 65%; c) 80% and d) biannual MDA at 65% coverage 

predicted at 5 × 5 km resolution, for Ethiopia, Sudan, South Sudan, Eritrea, Kenya, Tanzania and Uganda. Right of panels: Pixels that achieve elimination (blue) or do not 

achieve elimination (red) using different probability thresholds. 
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sed the following seven African countries: Ethiopia, Sudan, South 

udan, Eritrea, Kenya, Tanzania and Uganda. We linked each pixel 

o the corresponding population estimates obtained from the Grid- 

ed Population of the World ( Worldpop, 2010 ), which provides 

he estimated number of people in each pixel. We avoided han- 

ling pixels with either very small or very large populations as 

he transmission model was not thought to be appropriate in these 

nvironments ( Irvine et al., 2015; Smith et al., 2017 ). More specif- 

cally, for small populations we pooled pixels with less than 300 

eople together, ensuring that the merged pixels belong to the 

ame country and that the groups contain as few pixels as pos- 

ible. We excluded pixels with population estimates over 10 0 0 0 

rom the analysis; resulting in 1.7% of the pixels being excluded. 

The stochastic model of LF transmission TRANSFIL was used 

o investigate and compare the impact of different control strate- 

ies. In order to simulate the entire range of observed baseline mf 

revalence levels, with values up to 95%, we assumed that four 

arameters of the mathematical model were spatially varying: the 

opulation size, the vector to host ratio, the aggregation parame- 

er of individual exposure to mosquitoes and the importation rate, 

sing prior distributions informed from data, pilot simulations and 
8 
revious analyses. We assumed that the parameter prior was the 

ame in each spatial location (discussed in more details in Ap- 

endix C.2 of the SM) except for the population size, which was as- 

umed to be a log normal distribution, ie log (n ) ∼ N 

(
log (N i ) , σ

2 
)
, 

here N i is the reported population of pixel i (adjusted population 

rom Worldpop, 2010 ) and σ is the sample standard deviation of 

he log population estimates available in WorldPop. 

The proposal density of the population sizes, q (n ) , was de- 

igned so that each simulation contributed an equal amount to 

he effective sample size of a set of pixels with populations 

 260 , 261 , . . . , 10 0 0 0 } . This was achieved by calculating the effec-

ive sample size of an initial proposal, namely, q 0 (n ) ∝ 1 . The re-

aining population sizes (10 001 –11 550) were taken to decrease 

inearly from q (10 0 0 0) to zero. Since the uncertainty in the log-

ormal prior is much greater for large populations, fewer simula- 

ions are needed in these regions. The final proposal was obtained 

rom 10 iterations of q i (n ) ∝ q i −1 (n ) / ESS i −1 (n ) , where ESS i (n ) is

he effective sample size of a simulation with n individuals from 

he proposal q i (see Fig. C.7(a) of the SM). 

A significant merit of our approach is that it can be easily ap- 

lied in parallel which can be utilised to speed up implementation, 
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Fig. 6. Proportion of pixels with prevalence less than 1% using different probability 

thresholds after 5 years under four intervention strategies. 

e

b

c

a

8  

c

4

S

a

s

(

e

a

p

d

i

o

t

n

i

r

o

r

a

t

i

o

l

s

o

g

(  

b

n

r

i

o

m

a

t

w

a

i

a

o

p

o

p

c  

n

m

5

p

t

s

n

a

fi

i

m

t

M

e

M

M

A

e

a

t

t

s

g

2

n

s

A

s

P

t  

t

a

i

c

a

c

2

c

w

r

p

t

w

p

t

m

s

v

t

a

k

w

s

w

b

a

specially in applications involving a large number of pixels. This is 

ecause we are treating each pixel independently and therefore the 

omputation of the weights can be undertaken in parallel. In our 

pplication, the computation time of this step was approximately 

 hours using a 112 core computer cluster (around 30 s on a single

ore for each pixel). 

.3. Results 

In this section, the Bayesian approach presented in 

ection 2 was applied to the LF data. Firstly, we assessed the 

ccuracy of the method, defined as the ability of the transmis- 

ion model weighted simulations to reproduce the pre-control 

baseline) geostatistical map, by comparing the observed and the 

stimated distribution of the baseline (equilibrium) mf prevalences 

t each pixel. Fig. 4 illustrates the median map (with 2.5 and 97.5 

ercentiles), along with the corresponding maps of the observed 

ata. Overall, the results show that the maps are almost identical, 

ndicating that the method is able to reproduce the distribution 

f the observed baseline prevalence in each pixel. In addition, in 

he left panel of Fig. D.8 of the SM we compared the estimated 

umber of people per pixel with the observed value, which were 

n close agreement indicating that the proposed method accurately 

eproduced the number of people in each pixel. In the right panel 

f Fig. D.8 of the SM, we examined the ESS per pixel, which 

epresents the effective number of simulations per pixel and is 

 measure of how well the method performs. We observed that 

he pixels with high prevalence (which may require a change of 

ntervention strategy) have high ESS. 

Secondly, the methodology was applied to evaluate the impact 

f different intervention programs for LF in East Africa. In particu- 

ar, four treatment scenarios were simulated: no interventions; the 

tandard 65% coverage annual MDA (aMDA); 80% coverage aMDA; 

r biannual MDA (bMDA) at 65% coverage, in order to investi- 

ate how these affect the probability of elimination after 5 years 

 Fig. 5 ). Adopting a prevalence of less than 1% as the threshold set

y WHO as a global target for determining LF transmission elimi- 

ation, our analysis predicted that the recommended strategy of 5 

ounds of aMDA at 65% is not enough for eliminating the disease 

n all pixels, with probability of elimination above 90% only for 13% 

f the pixels (see also Fig. 6 ). Moreover, when more intensive treat- 

ents were implemented, i.e. more frequent MDA or higher cover- 

ge, the probability of elimination significantly increased compared 

o aMDA programme at 65%. In particular, bMDA at 65% coverage 

as the most effective of all strategies considered and was able to 

chieve elimination in 88% of the pixels, with at least 90% probabil- 

ty. However, the proportion of pixels which achieved elimination 

fter 5 years reduced to 59% and 25% when the probability thresh- 

ld was increased to 95% and 99%, respectively, illustrating that the 

olicy is sensitive to uncertainty. 

Finally, predictions of mf prevalence for the first and fifth year 

f intervention were summarized by calculating the estimated 
9 
revalence at each pixel, together with the 2.5th and 97.5th per- 

entiles in Figs. D.9 and D.10 of the SM, for each of the four sce-

arios. Very similar observations were made on the predictions of 

f prevalence for the first 5 years of intervention. 

. Discussion 

This study highlights the value of integrating geostatistical 

revalence maps and transmission models for providing predic- 

ions on the impact of interventions aiming to eliminate transmis- 

ion at a local scale. The main contribution is the development of 

ew statistical tools through which existing research in mapping 

nd predictive modelling are combined in a computationally ef- 

cient and flexible way which correctly accounts for uncertainty 

n these different techniques. Although we focus and apply our 

ethodology on LF transmission, it can be applied to other infec- 

ious diseases. 

We have shown that the current strategy of 5 annual rounds of 

DA at 65% coverage will not be sufficient to eliminate the dis- 

ase in most areas. We also found that a change in the current 

DA strategy, such as increasing the coverage and frequency of 

DA, will be required if LF elimination is to be accelerated in East 

frica. This suggests that it may be necessary to employ different 

nhanced intervention plans at a fine scale, according to the char- 

cteristics of each area, in order to achieve the WHO elimination 

argets. 

However, for the results presented here we assumed that no in- 

erventions have been applied in East Africa prior to the prevalence 

urvey. While this assumption is correct for most areas, MDA pro- 

rams began to be implemented in a few districts of Africa since 

0 0 0 and in many more districts thereafter. Therefore, one of the 

ext steps will be to account for previous MDA programmes as 

patio-temporal covariate information in the transmission model. 

part from MDA, insecticide treated bednets have been used in 

ome countries (data can be extracted from the Malaria Atlas 

roject), the use of which has been shown to be an effective addi- 

ional measure for control of the disease ( Bockarie et al., 2009 ). In-

egrating geostatistical maps with transmission models with these 

dditional covariates is more complicated as the simulations must 

nclude the appropriate historical interventions. 

An additional challenge is the gap between reported and true 

overage with an MDA. Where there are parasitological data 

gainst which to test the expected and achieved impact of reported 

overages, they have been shown to be unreliable ( Budge et al., 

016 ). This will pose a particular challenge to interpreting historic 

overage and a challenge in communicating future projections. This 

ork represents our initial framework and future research will be 

equired to extend the methodology to capture these more com- 

lex settings. 

A limitation of our statistical approach is that it doesn’t cap- 

ure the spatial correlations in the predictions, since each pixel is 

eighted independently to produce a marginal posterior for each 

ixel. This approach means that we lose the spatial autocorrelation 

hat was captured in the original geostatistical model and, further- 

ore, that there is no way for nearby pixels to interact during the 

imulations, for example, to account for movements of humans or 

ectors. A more sophisticated approach would be to use the spa- 

ial autocorrelations from the geostatistical model, alongside any 

vailable movement or connectivity data, to define a transmission 

ernel that describes spatial spread. This kernel could be used 

ithin a single meta-population model describing the transmis- 

ion dynamics across the whole map. At present, such an approach 

ould be computationally infeasible at the country scale, but may 

ecome possible in future through improvements in methodology 

nd advances in high-performance computing. 
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