
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/144266                      
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/144266
mailto:wrap@warwick.ac.uk


Higher order derivatives of heat semigroups on
spheres and Riemannian symmetric spaces

K. D. Elworthy
Mathematics Institute, University of Warwick,

Coventry CV4 7AL, England

October 26, 2020

Abstract

* As a very special case of a more general procedure a formula is derived
for the Hessian of the solutions Ptf of the heat equation for functions on the
sphere Sn. The formula demonstrates that for higher order derivatives there
can be a spectrum of decay/growth rates, unlike the generic situation for first
derivatives which is fundamental for Bakry-Emery theory. The method used
is then applied for higher derivatives for spheres, and could be used for com-
pact Riemannian symmetric spaces.
Key words stochastic analysis, stochastic flows, symmetric spaces, heat
semigroup, Bakry-Emery, diffusion of symmetric tensors, semi-group domi-
nation.
Mathematics subject classification 58J65 (58J70 60H30 60J60 43A85)

1 Introduction
A well known and fundamental result concerning the heat-semigroup
{Pt}t≥0 of a complete Riemannian manifold M is that of Bakry-Emery the-
ory, [1]

|∇Pt(f)| ≤ e−ctPt(|∇f |) iff c|v|2 ≤ Ric(v, v) all v ∈ TM (1)

where Ric : TM
⊕
TM → R is the Ricci curvature of M . Bakry-Emery

theory, [2], [3], shows how to extend it to much more general classes of
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heat semi-groups, and it can then be used to define the notion of gener-
alised Ricci curvature bounded below in much more general situations than
Riemannian geometry. An obvious question is whether similar expressions
hold for higher derivatives of Ptf with exponential rates given in terms of
the geometry of the Riemannian manifold. With this in mind we obtain ex-
pressions for the second and third derivatives of Ptf when M is a sphere
with its standard Riemannian structure, Theorems 4.1 and 5.5 respectively,
and also give expressions for all symmetrised derivatives in Theorem 5.1.
These suggest that the situation is more complicated, and possibly more in-
teresting, than expected. The approach we give, based on earlier work with
Yves LeJan & Xue-Mei Li, [13], can be extended to arbitrary compact Rie-
mannian symmetric spaces, and should give similar formulae. However we
have not done this.

The second derivative, or Hessian, is symmetric. This is not true in
general for higher derivatives; see Subsection 5.1 below. It is simpler to
compute the symmetrised versions. For the symmetrised versions the ex-
ponential rate is controlled by a Weitzenböck term, in the sense of [13],
[8], which for spheres turns out to be essentially the Weitzenböck term for
the Lichnerowicz Laplacian, eg see [5]. For general M , the latter has been
shown by Bettiol & Mendes, [6], to characterise sectional curvature bounds.
However our exponential rate can be expected to involve derivatives of cur-
vature for general M ; for spheres these vanish.

A relevant result by James Thompson, [27], is that if M is compact then
for each p ∈ N and ε > 0 there is a constant Cp(ε) > 0 such that for all C1

functions f : M → R

|∇pPtf |∞ ≤ Cp(ε)e−λt|∇f |∞ for all t > ε

where λ > 0 is the spectral gap of M . This involves the smoothing be-
haviour of the semigroup when p > 1, which is why t needs be kept away
from 0. It demonstrates that there is uniform rate of decay for all derivatives
as t→∞, but our formulae suggests that a more detailed analysis involving
the directions of the derivatives could be rewarding. Indeed for spheres our
estimate (68) shows that for derivatives taken in orthonormal directions the
rate of decay increases with 1 ≤ p ≤ n. For p = 2 it is bounded above by
e−nt, ( 51). For Sn with 1

24 the spectral gap, is n
2 .

An excellent survey of work on higher order derivative formulae can be
found in the introduction to Xue-Mei Li’s article, [19]. Much of this con-
cerns the technically harder problem of considering derivatives of the heat
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kernels. Usually just the first and second derivatives are discussed, though a
notable early example giving path integral formulae is Norris’s work, [25].
See Section 55 for the result of applying [19] to our situation on Sn.

Our treatment here of Snis as a very special illustrative example of the
more general situation described in [14]. We give the necessary geometric
background, and give the proof of a simple case concerning the expectation
of representations of diffusing Lie group elements. As pointed out in section
4.1, below, there are alternative methods for Sn, and a purely algebraic one
could be the most economical.

1.1 Acknowledgement
This was written for the 80th Birthday of Sergio Albeverio, and I am very
happy to be able to record my appreciation of Sergio as a mathematical col-
league, and my enjoyment at having known him personally for close to half
of those 80 years. Thanks also to the organisers of the joyous and stimulating
workshop in the beautiful city of Verona in honour of that birthday.

2 Brownian motion on spheres as symmet-
ric spaces

2.1 The sphere as a symmetric space
Consider the sphere Sn as the set of unit vectors of Rn with its induced
topology, differential structure, and Riemannian metric. It is acted on tran-
sitively and smoothly by the special orthogonal group SO(n+ 1). Let x0 be
a given point in Sn; we can take it to be the North Pole, (0, 0, 0..., 1). This
identifies the subgroup SO(n+ 1)x0 , of those θ ∈ SO(n+ 1) which fix x0,
with SO(n). We have the projection

p : SO(n+ 1)→ Sn p(k) = k(x0) k ∈ SO(n+ 1) (2)

which identifies Sn with the quotient space SO(n + 1)/SO(n). It is a
principal bundle with group SO(n). For us the main import of that will be
that there is the right action of SO(n)

SO(n+ 1)× SO(n)→ SO(n+ 1) (k, g) 7→ k.g

with p(k.g) = p(k).
We want p to be a Riemannian submersion. This means that we have an
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inner product 〈−,−〉k on each tangent space TkSO(n + 1) such that Tkp :
TkSO(n+1)→ Tp(k)S

n, the derivative of p at k is an orthogonal projection.
We also want this Riemannian structure to be bi-invariant and so it suffices
to take

〈A,B〉Id = −1

2
traceAB∗ A,B ∈ so(n + 1) ∼= TeSO(n+ 1).

With this choice, if {kt}t≥0 is a Brownian motion on SO(n+1) starting
at the identity Id, then {xt}t≥0 with xt = p(kt) = kt.x0 is a Brownian
motion on Sn from x0. Moreover if we define ξt : Sn → Sn by ξt(y) = kt.y
we have a stochastic flow of Brownian motions on the sphere. For example
see [7] or [13]. In particular if Pt denotes the heat semi-group acting on
continuous functions on Sn then

Ptf(y) = Ef(ξt(y)) f : Sn → R y ∈ Sn (3)

Recall that ft = Ptf : Sn → R, t ≥ 0 is the classical solution to the
heat equation dft

dt = 1
24ft, f0 = f on Rn. Here4 is the Laplace Beltrami

operator,4 = div grad, on Sn.

2.2 Derivatives of the heat semigroup.
Assume now that f is C∞, then we can differentiate equation (3) in the
direction of some v ∈ Tx0Sn to give

d(Ptf)(v) = E{dfxt(Txtξt(v))}. (4)

Recall that the derivative of f gives a differential one-form dfy : TyS
n → R,

and the derivative of the flow gives, random, linear isomorphisms,
Tyξt : TyS

n → Tξt(y)S
n, for y ∈ Sn.

2.2.1 Aside on calculus on spheres

In order to differentiate again we need a connection on Sn. This gives a
covariant derivative operator ∇ with which tensor fields such as df can be
differentiated in tangent directions. Equivalently it gives a differentiation
operator D

dt of tensor fields along C1 curves σ, and a parallel translation
operator //t : Tσ(0)S

n → Tσ(t)S
n of tangent vectors, or of other tensors.

These are related, for example by

D

dt
Vt = //t

d

dt
//−1
t Vt Vt ∈ Tσ(t)S

n, (5)
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and if v = σ̇(0)

∇v(df) =
D

dt
(dfσ(t))|t=0 =

d

dt
(dfσ(t)//t)|t=0 (6)

Stratonovich calculus allows these operations to be extended, almost surely,
to the situation where σ is a continuous semi-martingale, such as our Brown-
ian motion {xt}t. Also we can differentiate our stochastic flow successively,
for example to get∇u0Tξt : Tx0S

n → TxtS
n for u0 ∈ Tx0Sn, given by

∇u0Tξt(v0) =
D

ds
(Tσ(s)ξt(//sv0)|s=0 u0, v0 ∈ Tx0Sn σ̇(0) = u0. (7)

All this holds for any Riemannian manifold, and there is a unique connec-
tion, the Levi-Civita connection, for which parallel translations consist of
orthogonal transformations and also

D

∂s

∂

∂t
f(σ(s, t)) =

D

∂t

∂

∂s
f(σ(s, t)) (8)

for a two parameter σ(s, t) and f : M → R, both smooth.

We will use this. For Sn it has the natural definition that DdtVt is obtained
by considering the vector field Vt along σ as having values in Rn+1, differ-
entiating this in t as usual and projecting the result back to Tσ(t)S

n.

Note: for {ej}nj=1 an orthonormal base for TySn, y ∈ Sn

4f(y) = trace(∇(df))y = Σn
j=1∇ej (df)ej . (9)

The Hessian, Hess(f), of f is just the second derivative considered as a
bilinear form

Hess(f)y = ∇−(df)(−) : TyS
n × TySn → R. (10)

By equation (8), the Hessian is symmetric and so determines a linear map
on the symmetric tensor product TySn

⊙
TyS

n by

Hess(f)(u� v) = ∇u(df)(v) u, v ∈ TySn. (11)

2.3 Higher derivatives of Ptf
Using the Levi-Civita connection we can differentiate equation (4) again to
obtain, for u0, v0 ∈ Tx0Sn:
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Hess(Ptf)(u0�v0) =E{Hess(f)(Tx0ξtu0�Tx0ξtv0)+dfxt∇u0(Tξt)(v0)}.
(12)

An important simplification arises since our flow is a flow of isometries. In
this situation covariant second order derivatives of the flow vanish, see [5].
Thus for u0, v0 ∈ Tx0Sn:

Hess(Ptf)x0(u0 � v0) = E{Hess(f)xt(Tx0ξtu0 � Tx0ξtv0)}. (13)

and repeating the differentiaton, for k = 1, 2, ... and u1
0, ..., u

k
0, v0 ∈ Tx0Sn:

∇(k)d(Ptf)(uk0, ..., u
1
0, v0) = E{∇k(df)(Tx0ξtu

k
0, ..., Tx0ξtu

1
0, Tx0ξtv0)}

(14)
But the derivatives are not symmetric when k ≥ 2 and n ≥ 2; the curvature
intervenes. See Subsection 5.1 below.

We can get a more precise formula from formula (12) by computing the
conditional expectation of

Tx0ξt � Tx0ξt : Tx0S
n � Tx0Sn → TxtS

n � TxtSn

with respect to the σ-algebra Ft generated by the Brownian motion {xs :
0 ≤ s ≤ t}. This technique, of filtering out the redundant noise, has been
a basic tool for looking at first derivatives since [12]. It is described in
detail in [10]. In essence the conditional expectation is obtained by parallel
translation back to the initial point:
Write ut = Tx0ξt(uo) and vt = Tx0ξt(vo) and set ut � vt = E{ut�vt|Ft};
then, essentially by definition,

ut � vt = (//t � //t)E{//−1
t ut � //−1

t vt|Ft}. (15)

Since //−1
t ut � //−1

t vt lies in a fixed vector space its conditional expecta-
tion makes classical sense. There is no problem about integrability, and any
choice of parallel translation in TSn � TSn will do, [10].
We proceed to calculate this conditional expectation using techniques from
[13], see also [8].
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3 Decomposition and conditioning of Tξt �
Tξt

3.1 Decomposition of the flow
Remember ξt is just the action of the Brownian motion {kt}t, on SO(n+1),
on our sphere. Also the Brownian motion {xt}t, from x0 on the sphere, is
given by xt = p(kt) = kt.x0. From [9] we have a skew product decomposi-
tion:

kt = x̃t.gt (16)

where {gt}t is a Brownian motion on SO(n) from the identity, indepen-
dent of {Ft}t≥0, and {x̃t}t is a diffusion process adapted to {Ft}t≥0 with
p(x̃t) = xt for t ≥ 0. In fact {x̃t}t is the “horizontal lift” of Brownian mo-
tion on Sn from the identity, and is the conditioned process of {xt}t given
{Ft}t≥0. Moreover if we write ξ̃t : Sn → Sn for y 7→ x̃t.y then parallel
translation {//t}t≥0 along {xt}t is given by

//t = Tx0 ξ̃t : Tx0S
n → TxtS

n. (17)

See [11] or [13] for more.

Identifying g ∈ SO(n) with its action on Sn let ρ�
2

denote the repre-
sentation of SO(n) on Tx0S

n � Tx0Sn given by

ρ�
2
(g)(u0 � v0) = Tx0Lgu0 � Tx0Lgv0. (18)

From above, using the independence of gt from Ft, we have:

Lemma 3.1 For a C2 function f : Sn → R and u0, v0 ∈ Tx0Sn

Hess(Ptf)(u0, v0) = E
{

Hess(f)xt

(
(//t � //t)E

{
ρ�

2
(gt)(u0 � v0)

})}
.

(19)

We go on to compute the second expectation appearing above.

3.2 Expectations of representations of random ma-
trices: an elementary lemma
The following is a very special case of a similar result for finite dimensional
representations of certain, possibly time inhomogenous, diffusions on pos-
sibly infinite dimensional groups. It is essentially Theorem 3.4.1 of [13],
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but see [8], or below, for a corrected sign in equation (3.19) of [13]. For
completeness the simple proof is given here for Brownian motions on finite
dimensional Lie groups. The more general cases will be discussed in [14].
The integrability of ρ(gt)v was proved by Baxendale, [4], for Wiener pro-
cesses on Polish groups acting on Banach spaces.
Let G be a finite dimensional Lie group with right invariant metric, deter-
mined by an inner product 〈−,−〉e on its Lie algebra g identified with the
tangent space TeG at the identity e ∈ G. We will use the Maurer-Cartan
form determined by right translations Rg, rather than the more usual left
translations Lg. It is the g-valued one-form $ given by:

$g := Tg(Rg)
−1 : TgG → g := TeG g ∈ G.

The co-differential, the adjoint d∗ of d, maps one-forms to functions. It
acts on $ component wise: let {αj}j be an orthonormal base for g and de-
fine the scalar one forms $j by $j(v) = 〈$(v), αj〉g. Then d∗$(g) :=∑

j d
∗$j(g)αj ∈ g for g ∈ G.

Note that

$j(v) = 〈Aαj (g), v〉g g ∈ G, v ∈ TgG

for Aα
j
(g) = TRg(α

j), the right invariant vector field corresponding to αj .
Therefore

d∗$(g) = −
∑
j

divAα
j
(g)αj ∈ g g ∈ G. (20)

The divergence of a vector field measures the infinitesimal rate of change of
Riemannian volume µ, say, under its flow. For us the Riemannian volume
is a right Haar measure. However the flow of a right invariant vector field
is left translation by its 1-parameter subgroup ie L

etα
j for Aα

j
. It follows

that if the right Haar measure is also left invariant, in other words if G is
unimodular then d∗$ = 0. This holds in particular for G a compact Lie
group; the situation of our main present interest. In general (Lg)∗µ is again
right invariant and so a multiple m(g) say of µ. This version m : G →
R(> 0) of the modular function of G is a group homomorphism. Since µ
corresponds to a right invariant top dimensional form it is given by

m(g) = |det Adg|
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for the adjoint action Adg = (TRg)
−1TLg : g→ g.

Thus,

d∗$j(g) = −divAα
j
(g) = − d

dt

d
(
(L

e−tαj
)∗(µ)

)
dµ

|t=0 (21)

= − d

dt
|det Ad

e−tαj
|t=0 (22)

= trace adαj = −
∑
k

〈ad∗αkαk, αj〉 (23)

for ad : g→ L(g; g) the adjoint representation, adα(β) = [α, β].

Lemma 3.2 Let ρ : G → GL(V ) be a smooth representation of G on a
real finite dimensional vector space V and denote by ρ∗ : g→ L(V ;V ) the
derivative of ρ at the identity element.
Let {gt}t be Brownian motion on G from the identity.
Then ρ(gt)v is integrable for each v ∈ V and t ≥ 0 and its expectation is
differentiable in t with

d

dt
E{ρ(gt)v} = λρ(E{ρ(gt)v}) (24)

where λρ ∈ L(V ;V ) is given by

λρ =
1

2
Comp

∑
j

(ρ∗(α
j)⊗ ρ∗(αj)) +

1

2

∑
k

ad∗αkα
k (25)

with
Comp : L(V ;V )⊗ L(V ;V )→ L(V ;V )

the composition map A⊗B 7→ AB. For unimodular groups, and in partic-
ular for compact Lie groups, the term

∑
k ad∗αkα

k vanishes.

Proof. By Itô’s formula, as in equation (4.1) of [13],

ρ(gt)(v) = v +Mdρv
t +

∫ t

0

1

2
4(ρ(−)v)(gs) ds, (26)

where {Mdρv
t }t is the continuous local martingale in V

Mdρv
t =

∫ t

0
dρgs(TeRgs ◦ dBs) (27)

where {Bs}s≥0 is the Brownian motion on g given by dBs := $gs ◦ dgs.
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Now since ρ : G→ GL(V ) is a group homomorphism we see,

(dρ)k = ρ∗ ◦$k(−)ρ(k) : TkG→ L(V ;V ) for any k ∈ G. (28)

Thus

Mdρv
t =

∫ t

0
(ρ∗( dBs)ρ(gs)v) . (29)

Also, using the right invariance of the Laplacian,

4(ρ)(gs) = 4(ρ ◦Rgs)(e) = 4(ρ)(e)ρ(gs) ∈ L(V ;V ).

From (28) and (23) we see

4(ρ)(e) = −d∗(dρ)(e) = −d∗(ρ(−)ρ∗ ◦$−)(e)

=
∑
j

ρ∗(α
j)ρ∗(α

j)− d∗(ρ∗ ◦$)(e)

=
∑
j

ρ∗(α
j)ρ∗(α

j) + ρ∗
∑
k

(ad)∗αkα
k

= 2λρ.

Thus equation (26) reduces to the linear equation with constant coefficients

dρ(gt)(v) = ρ∗( dBt)ρ(gt)v + λρρ(gt)v dt (30)

For compact Lie groups the result is immediate since the local martingale
{Mdρv

t }t will be bounded and so a martingale. In general we can use a
stopping time argument or the basic existence theorems for equations with
Lipschitz coefficients to see that {ρ(gt)(v)}0≤t≤T is bounded in L2 for each
T ≥ 0, so the local martingale has integrable quadratic variation and so is a
martingale [26].

3.3 Calculation for Sn

We must calculate E
{
ρ�

2
(gt)(u0 � v0)

}
to make use of our Hessian for-

mula (19) for Sn. By Lemma 3.2 we have

E
{
ρ�

2
(gt)(u0 � v0)

}
= Wt(u0 � v0) (31)

where Wt = Wρ�
2

t : Tx0S
n � Tx0S

n → Tx0S
n � Tx0S

n satisfies
W0(u0 � v0) = u0 � v0 and

d

dt
Wt(u0 � v0) = λρ

�2

(Wt(u0 � v0)) t ≥ 0.
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Here 2λρ
�2

=
∑

j ρ
�2

∗ (αj)ρ�
2

∗ (αj).

We will use a more algebraic formulation of our representation λρ
�2

defined in (18):

3.3.1 Identification of m with Tx0Sn

As for any smooth left action of a Lie group we have a linear map α 7→ Xα

from so(n+ 1) to smooth vector fields on Sn. It is given by

Xα(y) =
d

ds
((exp sα).y)|s=0.

In particular the derivative Tep : so(n + 1) → Tx0S
n at the identity of our

projection p : SO(n+ 1)→ Sn has Tep(α) = Xα(x0). It is important, [5]
page 182, or [18] page 469, to note the minus sign in the identity

[Xα, Xβ] = −X [α,β] α, β ∈ so(n+ 1). (32)

Let m be the orthogonal complement of so(n) in so(n+1). A fundamen-
tal symmetric space property is that m is invariant under the adjoint action,
Ad, of SO(n) on so(n+ 1), and so under ad : so(n)→ GL(so(n+ 1)), its
derivative at the identity e. There is the following important standard lemma
with versions for more general symmetric spaces:

Lemma 3.3 There are the commutative diagrams:

1. For g ∈ SO(n)

m
Tep - Tx0S

n

6

Adg

m

6

Tx0S
n.-

Tep

TLg

2. For α ∈ so(n)

m
Tep - Tx0S

n

6

adα

m

6

Tx0S
n.-

Tep

∇(−)X
α

11



Proof. For 1. :

TLgTep(α) = TLgX
α(x0) =

d

ds
g exp(sα).x0|s=0

=
d

ds
g exp(sα)g.x0|s=0 = XAdgα(x0)

= Tep(Adgα).

For 2. : if v ∈ m

Tep(adα(v)) = Tep([α, v]) = −[Xα, Xv]

= −∇Xα(0)X
v +∇Xv(0)X

α

= ∇Xv(0)X
α

= ∇(−)X
α ◦ Tep(v).

We will identify m with Tx0S
n by Tep. By the lemma the representa-

tion ρ�
2

: SO(n) → GL(Tx0S
n � Tx0Sn) gets identified with Ad⊗Ad :

SO(n) → GL(m � m) using the restriction of the adjoint action. Then we
have ρ�

2

∗ (α) = adα⊗Id + Id⊗ adα, and so

λρ
�2

=
1

2

∑
j

{adαj ◦adαj ⊗ Id+Id⊗adαj ◦adαj +2adαj ⊗adαj}. (33)

3.3.2 Curvature identities

Let R : TM ⊕ TM → L(TM ;TM) denote the curvature tensor, with
Kobayashi & Nomizu’s convention, so for tangent vectors u, v, w at a point
z we have a tangent vector R(u, v)w at z, and for Sn :

R(u, v)w = 〈v, w〉u− 〈u,w〉v. (34)

The Ricci curvature, Ric : TM ⊕ TM → R is given as the trace,
Ric(u, v) = traceR(−, u)v, with Ric] : TM → TM given by

Ric](u) =
∑
j

R(u, ej)ej

for a suitable o.n. base.
For Sn:

Ric(u, v) = (n− 1)〈u, v〉. (35)
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In our situation, from [18] page 231, and [5] page 193 taking account of
Besse’s different sign convention for R:
for u, v, w ∈ m with m identified with Tx0S

n

R(u, v)w = −[[u, v], w]. (36)

Noting that adα : k → k is skew-symmetric for α ∈ so(n+ 1) we see from
this that if also a ∈ m,

〈R(u, v)w, a〉 = 〈adw([u, v]), a〉 (37)

= −〈aduv, adwa〉. (38)

From this, for u, v ∈ m,

Ric(u, v) = −tracemaduadv (39)

Here we have written tracem to emphasise that the trace is taken for
aduadv : m→ m. Indeed there are the fundamental relations:

[g, g] ⊂ g, [g,m] ⊂ m, [m,m] ⊂ g (40)

where for us g = so(n). See for example [5] page 193, or [18] page 226.
Therefore adu interchanges g and m so

Ric(u, v) = −tracegaduadv = −1

2
trace aduadv (41)

as in [5] page 194.

3.3.3 Decomposition of V � V

To go further we shall decompose m � m into irreducible components for
ρ�

2
.
For a real, n-dimensional, inner product space V, 〈, 〉, the inner product,

being symmetric and bilinear, determines a linear map 〈−〉 : V ⊗ V → R
given by

〈u⊗ v〉 = 〈u, v〉.

It is invariant under the action

u� v 7→ Uu� Uv : U ∈ O(V )

of the orthogonal group O(V ) of V . Its kernel in V � V , denoted by H, is
therefore also invariant. It has codimension one and its elements are some-
times called “traceless” or “harmonic”; the latter because of the representa-
tion of symmetric tensors as homogeneous polynomials, [16], [6]. The space
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V ⊗ V has a distinguished element Ξ :=
∑

j ej � ej for {ej}j an orthonor-
mal basis of V . It corresponds to the identity when V ⊗ V is identified
with L(V ;V ) using the inner product. Using the inner product of V � V
inherited from that of V ⊗ V we see

〈Ξ, u� v〉 =
∑
j

〈u, ej〉〈v, ej〉 = 〈u� v〉.

Thus Ξ is the Riesz representative of 〈−〉 and so orthogonal to the kernel
H and invariant under our orthogonal action. We write

V � V = RΞ⊕H with (42)

u� v =
1

n
〈u, v〉Ξ⊕

(
u� v − 1

n
〈u, v〉Ξ

)
. (43)

Let PH : V � V → V � V be the orthogonal projection ontoH, so

PH(u� v) = u� v − 1

n
〈u, v〉Ξ. (44)

3.3.4 Computations

From (36), starting to compute λρ
�2

from formula (33), with our orthonor-
mal base {αj}j for so(n), and u, v, a, b ∈ m,

∑
j

〈adαju⊗ adαjv, a� b〉 =
∑
j

〈aduα
j ⊗ advα

j , a� b〉

=
1

2

∑
j

{〈adua, α
j〉〈advb, α

j〉+

+ 〈adva, α
j〉〈adub, α

j〉}

= −1

2
{〈R(u, a)v, b〉+ 〈R(v, a)u, b〉}

= −1

2
{〈R(u, a)v, b〉+ 〈R(u, b)v, a〉}

= −〈R](u,−)v,〉 (a� b), (45)

whereR](u,−)v ∈ m�m is the dual to a�b 7→ 1
2〈R(u, a)v+R(v, a)u, b〉.

For Sn using (34)

〈R(u, a)v +R(v, a)u, b〉 = 〈a, v〉〈u, b〉+ 〈b, v〉〈u, a〉 − 2〈u, v〉〈a, b〉
= 2〈u� v, a� b〉 − 2〈u, v〉〈a, b〉
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whence ∑
j

adαju⊗ adαjv = −u� v + 〈u, v〉Ξ. (46)

Furthermore, using (41), for any w ∈ m∑
j

〈adαj ◦ adαju,w〉 = −
∑
j

〈aduα
j , adwα

j〉

=
∑
j

〈adw ◦ aduα
j , αj〉

= −Ric(u,w). (47)

We now see from (33), (47), (45)

λρ
�2

(u� v) = −1

2
{Ric]u� v + u� Ric](v)} −R](u,−)v. (48)

Using the explicit expressions, (35) and (46), for Sn this yields:

λρ
�2

(u� v) = −(n− 1)(u� v)− u� v + 〈u, v〉Ξ
= −nPH(u� v). (49)

4 Main result for Sn

Theorem 4.1 For x0 ∈ Sn and u0, v0 in the tangent space Tx0S
n and a C2

map f : Sn → R the second derivative HessPtf of the solution to the heat
equation

d

dt
Ptf =

1

2
4Ptf

P0f = f

is given by

HessPtf(u0, v0) =
1

n
(1− e−nt)〈u0, v0〉Pt(4f)(x0) + e−ntE{Hess(f)xt(//tu0, //tv0)}

=
1

n
〈u0, v0〉Pt(4f)(x0) + e−ntE{Hess(f)xtPH(//tu0, //tv0). (50)

In particular if u0 and v0 are orthogonal,

||HessPtf(u0, v0|| ≤ e−ntPt(||Hess f ||)(x0)||u0|| ||v0|| t ≥ 0. (51)
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Proof. From (19) and from (31),

Hess(Ptf)(u0, v0) = E {Hess(f)xt ((//t ⊗ //t)Wt(u0 � v0))}

where, using (31),

d

dt
Wt(u0 � v0) = λρ

�2

(Wt(u0 � v0)) t ≥ 0 (52)

= −nPH(Wt(u0 � v0)). (53)

Thus

Wt(u0 � v0) =
1

n
〈u0, v0〉Ξ + e−nt

(
u0 � v0 −

1

n
〈u0, v0〉Ξ

)
=

1

n
(1− e−nt)〈u0, v0〉Ξ + e−nt(u0 � v0).

Write Ξt := (//t ⊗ //t)Ξ. We now see

Hess(Ptf)(u0, v0) =
1

n
〈u0, v0〉E{Hess(f)xt(Ξt)}

+ e−ntE{Hess(f)PH(//tu0 � //tv0))}

equivalently

Hess(Ptf)(u0, v0) =
1

n
(1− e−nt)〈u0, v0〉E{Hess(f)xtΞt}

+ e−ntE{Hess(f)xt(//tu0 � //tv0)}.

Since Hess(f)xtΞt = 4f(xt) the results follow.

4.1 Two alternative approaches
4.1.1 Algebraic

The form of formula (50) is not surprising given the symmetries of the
sphere, and the decomposition of our representation of so(n) into irreducible
components. Indeed for g ∈ so(n + 1) and y ∈ Sn, we have Ptf(gy) =
Pt(f ◦g)(y) . Using the fact that for g ∈ so(n) left translation by g preserves

the law of Brownian motion from x0, we see that λρ
�2

must be invariant
under the action of ρ�

2
(so(n)). It follows that it must be constant on the

irreducible componentsH and RΞ of m�m for that action. Since we must

16



have Hess(Ptf)(Ξ) = 4(Ptf)(x0) = Pt(4f)(x0) we see the second con-
stant must be zero. To compute the first constant we could proceed as in [13]
Corollary 3.4.4, page 50 and relate

∑
j ρ
�2

∗ (αj) ◦ ρ�
2

∗ (αj) with the Casimir
element of our representation, [17] 6.2. That way there need be no men-
tion of curvature. However we have preferred to introduce curvature since
it gives a geometric interpretation of the constants, and also our approach
applies in greater generality.

4.1.2 Doubly damped parallel translation

In [20] and [19] Xue-Mei Li obtains second derivative formulae on rather
general Riemannian manifoldsM by differentiating the standard first deriva-
tive formula dPt(f)(v0) = E{dfξt(x0)Wt(v0)} with {Wt} damped,
or Dohrn -Guerra, parallel translation, and {ξt}t, a gradient stochastic flow.
This gives a term under the expectation of the form dfξt(x0)∇u0Wt(v0).
If we filter out the redundant noise, i.e. condition, ∇u0Wt(v0), this term
becomes dfξt(x0)W

(2)
t (u0, v0) for a certain process W (2)

t (u0, v0) ∈ TxtM
which she calls the doubly damped parallel translation. For our sphere

W
(2)
t (u0, v0) = e−

1
2

(n−1)t//t

∫ t

0
e−(n−1)s (〈u0, v0〉dBs − 〈u0, dBs〉v0)

(54)
for {Bt}t the stochastic anti-development of our Brownian motion on Sn.
and her formula gives:

Hess(Ptf)(u0, v0) = e−(n−1)tE{Hess(f)(//tu0, //tv0)}
+ E{df(W

(2)
t (u0, v0))}. (55)

5 Extensions

5.1 Higher order derivatives
To consider 3rd order, or higher derivatives ∇(k)d(Ptf)(uk0, ..., u

1
0, v0), we

have formula (14) but have to recall that the higher derivatives are not sym-
metric. To deal with this we could look at the representation theory of so(n)
on the full tensor algebra

⊗k m but this will involve sub-representations
such as on ∧km which are not relevant to us. It seems easier to keep to
the symmetric tensor products and then adjust with curvature terms as done
for third derivatives below. For Sn or other symmetric spaces this is much
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helped by the vanishing of the covariant derivatives of the curvature.

5.1.1 Symmetrised derivatives

For the symmetrised version, for each p = 2, 3, ... we use the map

C :

p⊗
Rn →

p−2⊙
Rn

given by

C(u1 ⊗ ...⊗ up) = C(u1 � ...� up) =
∑
i<j

〈ui, uj〉
k 6=i,j⊙

uk.

Let
⊙p(Rn)H denote the kernel of C in

⊙pRn. These are the traceless or
harmonic elements. It is invariant under the representation ρ� of SO(n):

ρ�(g)(u1 � ...� up) = (ρ(g)u1 � ...� ρ(g)up)

for any given orthogonal representation ρ of SO(n) on Rn.
If ρ is irreducible we have the decomposition of

⊙pRn into irreducible
factors under ρ�;

p⊙
Rn =

p⊙
(Rn)H+

p−2⊙
(Rn)H

⊙
Ξ+...+

p−2k⊙
(Rn)H

⊙
(

k⊙
Ξ)+...

(56)
For example see [6] or [16].

For p = 3 the decomposition is

u� v � w =

(
u� v � w − 1

n+ 2
C(u� v � w)� Ξ

)
⊕ 1

n+ 2
C(u� v � w)� Ξ (57)

We can give a precise formula for arbitrarily high symmetric derivatives:

Theorem 5.1 For p = 1, 2, ... and smooth f : Sn → R the symmetrised
p-th covariant derivative of the solution Ptf to the heat equation

∂

∂t
Ptf =

1

2
4Ptf P0f = f

18



is given by

∇p(Ptf)(u1
0 � ...� u

p
0) = E{∇p(f)W

[p]
t (u1

0 � ...� u
p
0)} (58)

where the damped parallel translation W [p]
t :

⊙p Tx0M →
⊙p TxtM is

given in terms of the decomposition ( 56) of
⊙p Tx0M by

W
[p]
t = W

[p]
H,t +W

[p−2]
H,t � //t|Ξ +W

[p−4]
H,t � //t|Ξ � //t|Ξ + ... (59)

where //t|Ξ refers to parallel translation restricted to Ξ, and

W
[q]
H,t :

q⊙
(Tx0M)H →

q⊙
(TxtM)H

is the restriction of W [q]
t to the harmonic tensors and is given by

W
[q]
H,tU0 = e−

q
2

(n+q−2)t//tU0 U0 ∈
q⊙

(Tx0S
n)H. (60)

Proof. The same argument that gave formula (19) yields

∇p(Ptf)(U0) = E{∇p(f)(//tE{ρ�(gt)U0})} U0 ∈
p⊙

(Tx0S
n).

Now

ρ�(V � Ξ) = ρ�(V )� Ξ V ∈
q⊙

(Tx0S
n)

so formulae (58) and (59) hold with W [q]
H,t the restriction of E{ρ�(gt)} to⊙q(Tx0S

n)H. To calculate this we have, by Lemma 3.2

d

dt
E{ρ�(gt)U0} = λρ

�
E{ρ�(gt)U0}

for λρ
�

= 1
2 Comp

∑
r(ρ
�
∗ (αr)⊗ ρ�∗ (αr)).

Since ρ�∗ (αr)(u1 � ...� uq) =
∑

` ρ∗(α
r)u` �j 6=` uj we have

ρ�∗ (αr)ρ�∗ (αr)(u1 � ...� uq) = Ar +Br

where
Ar =

∑
`

ρ∗(α
r)2u` �j 6=` uj

19



and
Br = 2

∑
j<k

ρ∗(α
r)uj � ρ∗(αr)uk �`6=j,k u`.

From formula (47) and the fact that Ric](u) = (n − 1)u for u ∈ TSn
we have ∑

r

Ar(U0) = −q(n− 1)(U0) U0 ∈
q⊙

(Tx0S
n),

while by (46), for U0 ∈
⊙q(Tx0S

n)H,∑
r

Br(U0) = −q(q − 1)U0 + 2C(U0)� Ξ = −q(q − 1)U0,

giving (60), to complete the proof.

In particular for p = 3, using the decomposition (57) we obtain:

Corollary 5.2 . For U0 = u1
0�u2

0�u3
0 ∈

⊙3 Tx0M , with parallel translate
Ut ∈

⊙3 TxtM along the Brownian paths, we have

∇3(Ptf)(U0) = e−
3
2

(n+1)tE{∇3f(Ut)}

+
e−

1
2

(n−1)t

n+ 2
(1− e−(n+2)t)E{∇3f(C(Ut)� Ξt)}.(61)

5.1.2 The full derivative, p=3

Recall that with our use of Kobayashi & Nomizu’s sign conventions the
curvature R∇

E
: TM × TM → L(E;E) of a connection ∇E on a vector

bundle E over a manifold M is given by definition by

R∇
E

(u, v)S(x) = ∇Eu∇EV S −∇Ev ∇EUS −∇E[U,V ](x)S (62)

= (∇E)2S(u, v)− (∇E)2S(v, u) (63)

for u = U(x), v = V (x) some x ∈ M , with U, V vector fields and S a
section of E. To define (∇E)2 a torsion free connection on M is used.
ForE = TM withM Riemannian and∇E = ∇ the Levi-Civita connection,
we write R = R∇

E
as before. It is important to note that with the induced

Levi-Civita connection on the cotangent bundle

R∇
T∗M

(u, v)` = −` ◦R(u, v) for ` ∈ T ∗xM.
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This can be seen by computing the Hessian of the function φ(W (−)) for φ
a one-form and W a vector field, and using its symmetry. More generally, if
S is a section of (

⊗p TM)∗ then

∇2S(u, v)(w1 ⊗ ...⊗ wp)−∇2S(v, u)(w1 ⊗ ...⊗ wp) =

−S(x)
(
R(u, v)w1 ⊗ w2 ⊗ ...+ ...+ w1 ⊗ w2 ⊗ ...⊗R(u, v)wp

)
(64)

for u, v, w1, ...wp ∈ TxM .

Lemma 5.3 For u, v, w ∈ TxM and f : M → R

∇2df(u, v, w) = ∇2df(u� v � w) +
1

3
df (R(v, u)w +R(w, u)v) . (65)

Proof. By the symmetry of Hessians, ∇2df(u, v, w) is symmetric in v, w.
Therefore

∇2df(u� v � w) =
1

3!
∇2df (2u⊗ v ⊗ w + 2v ⊗ u⊗ w + 2w ⊗ u⊗ v) .

Taking S = df in (64)

∇2df(v ⊗ u⊗ w) = ∇2df(u⊗ v ⊗ w)− df(R(v, u)w)

and
∇2df(w ⊗ u⊗ v) = ∇2df(u⊗ w ⊗ v)− df(R(w, u)v),

giving the result by the symmetry of∇2df in the last two variables.

As an example

Example 5.4

d4f(x0)(u) = ∇2df(u⊗ Ξ) = ∇2df(u� Ξ)− 2

3
df
(

Ric](u)
)

(66)

which enables us to rewrite (61) as

∇3(Ptf)(U0) = e−
3
2

(n+1)tE{∇3f(Ut)}+
e−

1
2 (n−1)t

n+2 (1− e−(n+2)t)E
{ (
d4f(C(Ut)) + 2n−2

3 df(C(Ut))
) }
.

Theorem 5.5 For u0, v0, w0 ∈ Tx0Sn write Ut = //tu0 ⊗ //tv0 ⊗ //tw0 for
parallel translation along a Brownian motion from x0. Then for a C3 func-
tion f : Sn → R
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∇3Ptf(U0) = E
{
e−

3
2

(n+1)t∇3f(Ut)

+ 1
n+2e

− 1
2

(n−1)t(1− e−(n+2)t)d4f(C(Ut))
+ e−

1
2

(n−1)t
(
1− e−(n+2)t

)
df( n

n+2C(Ut)− 〈v0, w0〉//tu0)
}

.

In particular if u0, v0, w0 are mutually perpendicular,

∇3Ptf(U0) = e−
3
2

(n+1)tE
{
∇3f(Ut)

}
. (67)

Proof. By formula (65)

∇2dPtf(u0, v0, w0) = ∇2dPtf(u0 � v0 � w0) +
1

3
dPtf(z0)

for

z0 = R(v0, u0)w0 +R(w0, u0)v0

= 〈u0, w0〉v0 + 〈u0, v0〉w0 − 2〈v0, w0〉u0

= C(U�0 )− 3〈v0, w0〉u0

for our sphere.
Now d(Ptf)(z0) = E{e−

1
2

(n−1)tdf(//tz0)}
and

1
3//tz0 + 2(n−1)

3(n+2)(1− e−(n+2)t)C(U�t )

= −〈v0, w0〉//tu0 +
(

n
n+2 −

2(n−1)e−(n+2)t

3(n+2)

)
C(U�t ).

The result follows by using the formula in Example 5.4 with U0 = u0 �
v0 � w0, together with (65) to go back again to our non-symmetrised Ut.

Remark 5.6 Note that for all p = 2, 3, ..n, for a sphere Sn, formula (64)
can be applied inductively to show that if u1, ..., up are mutually orthogonal
then for any Cp function f

∇pf(u1, u2, ..., up) = ∇pdf(u1 � u2...� up)

For y ∈ Sn set

||∇pf ||o.n.(y) = sup
{
|∇pf(v1, ..., vp)|, orthonormal v1, ..., vp ∈ TySn}.

Applying (60) we obtain the pointwise semi-group domination,

||∇pPtf ||o.n. ≤ e−
p
2

(n+p−2)tPt(||∇pf ||o.n.) (68)
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5.2 More general diffusion semi-groups
5.2.1 Heat semigroups on functions and forms on compact Rie-
mannian symmetric spaces

The method described here for spheres should go over directly for the heat
semi-group of a compact Riemannian symmetric space. The representation
theory involved may be more complicated. It should extend similarly to for-
mulae for derivatives of heat semigroups for forms. See also the alternative
approach suggested in Section 4.1.

An additional first order term can be included by combining this method
with the more standard method of filtering out redundant noise, but the for-
mulae will be more complicated unless the term comes from a Killing vector
field.

5.2.2 General diffusions on manifolds;
derivatives of induced semigroups on functions, forms, jets etc

For a heat equations on a general compact Riemannian manifold M a simi-
lar approach can be followed but replacing our bundle p : SO(n+ 1)→ Sn

by a bundle p : Diff(M)→M where Diff(M) is a suitable group of diffeo-
morphisms ofM and p the evaluation map at a base point x0 ∈M . This can
be considered as a principal bundle with group those elements Diffx0(M)
of Diff(M) which fix x0. Our stochastic flow can be considered as a pro-
cess on Diff(M) and has a skew product decomposition generalising that
described in Section 3.1. See [11], [13]. This gives rise to formulae like
(19) and its higher order analogues, but with lower order derivative terms
because the second derivative of the flow will not generally vanish: for sym-
metric spaces it vanished because we had a flow of isometries.

In this case we should look at k-jets of Ptf rather than k-th order covari-
ant derivatives. However the parallel translation in our formula may now not
be metric preserving for any metric on the bundle of k-th order tangent vec-
tors (essentially k-th order differential operators), or its dual, the k-jets. This
makes uniform estimates difficult to obtain. For tensor bundles, associated
to the frame bundle of M , such as

⊗k TM , an SDE can be chosen for our
diffusion so that its conditioned flow determines Levi-Civita parallel trans-
lation, and so is metric preserving, see [10]. For k-th order tangent vectors
the question is crucial but open.
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A result by Mendes & Redeschi, [24], shows that we cannot have the
Levi-Civita connection on tensor bundles induced by an SDE for Brownian
motion which has a solution flow of isometries except in the case we have
been discussing for symmetric spaces. They call an SDE for Brownian mo-
tion which induces the Levi-Civita connection a virtual immersion. Ming
Liao [22] has somewhat related negative results; in particular there are no
isometric stochastic flows of Brownian motions on a Riemannian symmet-
ric space of non-compact type. However Liao shows in [23] that for n > 3
there are a continuum of them on Sn.

In [14], in preparation, this set up is extended to a wide class of semi-
groups induced on sections of natural bundles, such as jet bundles, by a
sum of squares representation of a diffusion operator on M . The operator
need not be elliptic or hypo-elliptic but for the method to work smoothly
it should be cohesive in the sense of [13]. However, the crucial question
of finding stochastic flows inducing metric connections on natural bundles
remains open, to my knowledge.

5.3 Questions
• [Berger’s spheres.] It would be interesting to see how the derivatives

of the heat semigroup change as the sphere gets smoothly deformed,
for example for Berger’s spheres which still retain a lot of symmetry;
see [15] and for a stochastic analytical discussion and more references
[21].

• [Different symmetric space structures.] The same Riemannian mani-
fold can have different symmetric space structures. For example the
3-sphere is also a Lie group and so has the symmetric space structure
with group S3 × S3 acting by (g1, g2).a = g1a(g2)−1 for a ∈ S3.
Can such different structures give different derivative formulae?

• [Non-compact type] Are there corresponding formulae for symmetric
spaces of non-compact type? In particular for hyperbolic space. As
remarked above, [22] and [24] imply that the use of isometric flows as
here does not go over immediately to the non-compact case.
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