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UNIQUENESS OF ASYMPTOTICALLY CONICAL TANGENT FLOWS

OTIS CHODOSH AND FELIX SCHULZE

ABSTRACT. Singularities of the mean curvature flow of an embedded surface in R® are
expected to be modeled on self-shrinkers that are compact, cylindrical, or asymptotically
conical. In order to understand the flow before and after the singular time, it is crucial to
know the uniqueness of tangent flows at the singularity.

In all dimensions, assuming the singularity is multiplicity one, uniqueness in the compact
case has been established by the second-named author [Sch14], and in the cylindrical case by
Colding—Minicozzi [CM15]. We show here the uniqueness of multiplicity-one asymptotically
conical tangent flows for mean curvature flow of hypersurfaces.

In particular, this implies that when a mean curvature flow has a multiplicity-one conical
singularity model, the evolving surface at the singular time has an (isolated) regular conical
singularity at the singular point. This should lead to a complete understanding of how to
“flow through” such a singularity.

1. INTRODUCTION

1.1. Uniqueness of tangent flows. By work of Huisken [Hui90], White [Whi94], and II-
manen [[Im95], singularities of mean curvature flow can be modeled by self-similar shrinking
solutions to the flow. For flows of embedded surfaces in R3, Ilmanen proves [[Im95] that self-
shrinkers arising as tangent flows at the first singular time are smooth and embedded (possi-
bly with higher multiplicity). Wang [Wanl6] has proven that such shrinkers, if non-compact,
have ends that are asymptotic to a cylinder or smooth cone (cf. Definition ; see also
[SW20]. Moreover, Kapouleas—Kleene-Mpgller [KKMI5] and Nguyen [Ngu09, Ngul0|, Ngul4]
have constructed embedded, smooth, self shrinkers in R? with (smoothly) conical ends.

An important question is to determine whether or not these tangent flows are unique. The
second-named author has proved [Schi4] that this holds (in all dimensions and co-dimension)
when there is a compact, multiplicity one, (smooth) tangent flow. Colding—Minicozzi [CM15]
(cf. [CIMI5]) have proven that uniqueness holds (for hypersurfaces, in all dimensions) for
multiplicity one cylindrical tangent flows; see also [BW15].

In this work, we show that uniqueness also holds in the case of multiplicity one tangent
flows whose self shrinker is smoothly conical.

Theorem 1.1 (Uniqueness of conical tangent flows). Fiz ¥" C R"™! an asymptotically
conical self-shrinker. Let M = (u)¢e(—t,0) be an integral n-Brakke flow so that the self-
similar shrinking multiplicity one Brakke flow associated to 3, My, arises as a tangent flow
to M at (0,0). Then My is the unique tangent flow to M at (0,0).

See Section for estimates concerning the rate of convergence. We expect that the
argument will extend to higher codimension with little change.

An interesting feature of our proof of Theorem [I.1]is that it shows that the Lojasiewicz—
Simon approach to uniqueness of blow-ups can be applied in the case of a non-compact
singularity model. Colding—Minicozzi’s work on the uniqueness of cylindrical tangent flows
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2 OTIS CHODOSH AND FELIX SCHULZE

[CM15] does not proceed via a reduction to the finite dimensional Lojasiewicz inequality a la
Simon, but rather proves a Lojasiewicz-type inequality by hand, using the explicit structure of
the cylinder in a fundamental way. Here the situation is different: we do not use any explicit
structure of the conical shrinkers, so instead must rely on a Lojasiewicz—Simon inequality
proven by “abstract” methods, after introducing relevant weighted function spaces.

This approach has the drawback that it requires much stronger “closeness” of the flow
relative to the shrinker. Thus, we must develop a new “extension of closeness” mechanism
that is not present in the cylindrical case (cf. Lemma and Proposition . We then
must combine this mechanism with several crucial ideas of Colding—Minicozzi concerning
improvement and extension of curvature estimates to overcome the non-compactness of the
problem.

Our approach seems to be quite general and flexible; we expect that it will apply to the
uniqueness of non-compact singularities in other geometric problems, when the singularity is
“well behaved” at infinity.

1.2. The structure of the singular set around an asymptotically conical shrinker.
We note that conjecturally (cf. Ilmanen’s no cylinder conjecture [[lm03l #12]), the cylinder
is the only shrinker in R? with a cylindrical end. Combing Theorem [L.1]with [Schi4], [CM15],
and [Wanl6], it would follow that for the mean curvature flow of a smooth embedded surface
in R3, all multiplicity one tangent flows at the first singular time are unique.

Uniqueness of tangent flows gives important information about the singular behavior of the
flow. Using their result on the uniqueness of cylindrical tangent flows, Colding—Minicozzi have
proven [CM16] (among other things) that a mean curvature flow of hypersurfaces in R"*!
with only multiplicity one cylindrical tangent flows has space-time singular set contained in
finitely many compact embedded (n — 1)-dimensional Lipschitz submanifolds and a (n — 2)-
dimensional set. Moreover, in R? they have shown that such flows are smooth for almost all
times, and any connected component of the singular set is completely contained in a time-slice
(see also [CM18]).

Similarly, Theorem (and the pseudolocality arguments used in Lemma below) im-
plies the following

Corollary 1.2. For M and ¥ as in Theorem there is € > 0 so that for all t € (—&2,0),
we have p| B:(0) = H™| M, for a smooth family M; of embedded surfaces flowing by mean
curvature in B:(0). The surfaces My are diffeomorphic to 3. Moreover, ast /0, the flow
M; N (B:(0) \ {0}) converges in CX. to a smooth surface My C B:(0) \ {0} with a conical
singularity at 0 smoothly modelecﬂ on the asymptotic cone of 3.

We note that Colding-Minicozzi have proven [CM12] that the plane, sphere, and cylinders
are the unique entropy stable shrinkers. They have proposed this as a mechanism for a
possible way to construct a generic mean curvature flow. Corollary suggests that one
can flow through points with conical tangent flows, instead of trying to perturb them away.
Understanding the flow through these “non-generic” situations will be particularly important
towards understanding families of mean curvature flows. We will investigate this elsewhere.

1.3. Some recent results in singularity analysis of mean curvature flow. We re-
mark that Brendle has recently proven [Brel6] that the only smooth properly embedded self
shrinkers in R? with genus zero are the plane, sphere, and cylinder; hence, a conical shrinker
must have non-zero genus. Moreover Bernstein-Wang have shown [BW16] that the round

IIn other words, rescaling My around 0 converges in C5%(R™1\ {0}) to the asymptotic cone of X.
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sphere has the least entropy among any closed hypersurface (up to the singular dimension, cf.
[Zhu20] and see also [CIMW13|[KZ18]); the same authors have extended [BW17b| this to non-
compact surfaces in R? (see also [BWI8b]). Wang has proven [Wanl4] that two shrinkers
asymptotic to the same smooth cone must be identical. Ketover has recently constructed
[Ket16] self-shrinking Platonic solids.

Brendle-Choi have classified [BC19] the bowl solition as the unique strictly convex ancient
solution in R? (cf. [Wanlll, [Has15, [Her20, BCI8]). Moreover, Angenent-Daskalopoulos—
Sesum have classified closed non-collapsed ancient solutions that are uniformly two-convex
[ADS20]. Finally, Choi-Haslhofer-Hershkovits [CHH18] have proven the mean convex neigh-
borhood conjecture in R3, by classifying low entropy ancient solutions (see also [HIW20]).

1.4. Idea of the proof of Theorem The basic idea to prove Theorem [I.1]is to rely on
a Lojasiewicz-type inequality (see [L0j65] [Sim83) [Sim96al) to show uniqueness of the tangent
flow. Indeed, this strategy was already successful in the compact [Schl4] and cylindrical
[CMI15] cases. In the cylindrical and conical cases, the non-compactness of the shrinker
causes serious issues (beyond simply those of a technical nature), due to the fact that one
cannot write the entire flow as a graph over the shrinker.

Unlike the cylindrical case [CM15], we do not exploit any specific structure of the shrinker
(beyond the fact that it has conical ends). Conical ends seem to be less degenerate with
regards to the uniqueness problem, allowing us to obtain very strong estimates in annular
regions around the point where the singularity is forming. Because we do not assume any
specific structure of the shrinker, we must prove the Lojasiewicz—Simon inequality by “ab-
stract” methods (i.e., by a finite dimensional reduction to Lojasiewicz’s original inequality
[L0j65]). In Section |3, we construct weighted Holder and Sobolev spaces in which Simon’s
argument [Sim83|] can be used to prove a Lojasiewicz—Simon inequality for entire graphs over
the shrinker (see Theorem {4.3). Roughly speaking, we consider Holder spaces (inspired by
IKKM15]) CS%’?(E) of functions v : ¥ — R so that in coordinates (r,w) € (1,00) x I" on the
end of ¥ (where I' is the link of the asymptotic cone of ¥),

flrw) = c(w)r +0(r™)
where the error term is taken in C*“ on balls of unit size. We also require the improved
radial derivative estimate

O, f(r,w) = c(w) + O(r™?)
in C%*, Geometrically, we can think of CSz’lo‘ (X) as functions whose graphs are asymptotically
conical (for a different cone) and decay to their asymptotic cone at a rate O(r~1) in C%.

The linearized shrinker operator maps the space CSE’?(E) to CSE’IO‘(E), ie. Lu=O(r 1

in C% (this is where the improved radial derivative estimate is needed). We can prove
Schauder estimates for the L operator between these spaces (see Proposition . Moreover
(based on ideas communicated to us by J. Bernstein [Berl(]) one can also establish (see
Section regularity and existence for the L operator (the linearized shrinker operator)
between L*-based Sobolev spaces L, (X) and H2,(X), when weighted by the Gaussian density
p=(4m)"ze I ?/4. Combining these facts, we find that the L operator behaves between these
spaces in essentially the same way as in the compact cases considered by Simon [Sim83].
This yields a Lojasiewicz—Simon inequality for entire graphs over ¥ (Theorem [4.3)), i.e., if
|’“”C$2'f(2) is sufficiently small, then for M = graph u,

(L1) F(M) - F(5)[' < C ( / W‘an);_
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Here F(M) is the Gaussian area (see Definition and ¢ is the deviation from M being a
shrinker (see Definition [A.3)).

To apply to prove uniqueness of conical tangent flows, the basic strategy is to show
that if a Brakke flow M has a multiplicity one conical tangent flow (modeled by ) at (0,0),
then it is possible to write part of M as a graph over part of ¥, and that this graphical
function extends to a function that is small in CSz’la (X). At this point can be applied
to this extended function. Applying the resulting inequality to M introduces errors based
on the fact that M is not an entire graph over 3. Controlling the size of these errors relative
to the terms in is a serious issue, which we now describe in some detail.

We consider the rescaled mean curvature flow around (0,0); assume the rescaled flow
consists of surfaces M, for 7 € [-1,00) and M;, — ¥ in C%, along some sequence 7; — 00.
We seek to prove by a continuity argument that for r fixed and 7 sufficiently large, M, N B,
is a CT! graph of a function with C**!-norm bounded by b. This is (roughly) the core
graphical hypothesis (*p,) (see Definition . Notice that the core graphical hypothesis will
not suffice to control the errors when applying the Lojasiewicz inequality. The reason for this
is that we must not destroy the term

| 1o =
M,

on the right hand side of (1.1). We call R(M;) the shrinker scale (Definition E| On the
other hand, cutting off the Lojasiewicz—Simon inequalitioutside of a ball of radius R will
2

introduce terms on the order of o(l)e_RT (see Theorem . Thus, we must show that M is

graphical over ¥ N Bp for R ~ R(M;). More precisely, we must show that there is u : ¥ — R

with [Jul|,g2.0 =) sufficiently small so that M, N Bpg is contained in the graph of u. We call
-1

the largest R satisfying this property the conical scale (Definition , denoted by ry(M,).
We would thus like to show that the the conical scale ry(M;) is comparable to the shrinker
scale R(M;).

Observe that this is far from clear: we must show that M, decays like O(r~!) towards a
cone (which is close to the asymptotic cone of ¥) nearly all the way to R(M;). However,
if R(M,) is very large, we have to transmit the graphical information contained in the core
graphical hypothesis (only on a fixed compact set) essentially all the way to R(M;), while
even obtaining decay!

The way we do this has some features in common with the methods used in [CM15], but
the argument on the whole is rather different. To obtain control on the conical scale ry(M;)
we first introduce a weaker notion, the rough conical scale t¢(M;) (Definition , which is
the largest radius where the curvature of M, behaves like the curvature along a cone. As a
preliminary step, we prove that the rough conical scale improves very rapidly, as long as the
core graphical hypothesis (%) is satisfied.

Indeed, to control the rough conical scale ¥y(M,) we first observe that pseudolocality
applied to the unrescaled flow gives curvature estimates on an annular region that persist all
the way up to the singular time (using the fact that the flow is close on a large compact set
to the conical shrinker). This is depicted in Figure |1] (the region where we obtain curvature
estimates is shaded in blue). When translated to the rescaled flow, this annular region will
grow exponentially. This initially seems like a problem, since the inner boundary is also
moving away exponentially. However, as long as the core graphical hypothesis is satisfied, we

_ R(M7)?
4

2Note that our shrinker scale differs from the definition used in [CM15] slightly, due to the nature of our
Lojasiewicz—Simon inequality.
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(0,0)

conical part of M_;

FIGURE 1. The conical nature of the shrinker ¥ (and thus the unrescaled flow
at time t = —1) yields—via pseudolocality—curvature estimates in the region
that is shaded blue. Note that we can only expect to give useful bounds
below the parabola, since this is the set where the backwards heat kernel p is
uniformly bounded away from zero.

t
t=0
_ 1

t=-3

t=—1

conical part of M_

1
2

FIGURE 2. Assuming that we have control over M; via (1.1]) inside of the wide

parabola (for ¢t € [—1, —%)), we can then use pseudolocality out of the conical

region in M_1 to gain curvature estimates on a larger region (still shaded
2

blue). This is our first improvement /iteration mechanism.

can use the pseudolocality estimates at a later time to get curvature estimates further inside.
This is shown in Figure [2| The argument we have just described shows that as long as the
core graphical hypothesis (%) applies, we have that ¥,(M,) > Ce? (see Lemma

Finally, we must show that the core graphical hypothesis (x;,) together with the estimate
we have just obtained on the rough conical scale T;(M;) imply that the conical scale (i.e.,
the scale at which we can cut off ) is comparable to the shrinker scale R(M;). Since the
rough conical scale is improving exponentially, it basically suffices to show that the conical
and shrinker scales are comparable, when the shrinker scale is much smaller than the rough
conical scale, i.e., R(M;) < 1;(M;) (see for the case where this does not hold).

At this point, we can use the argument of Colding-Minicozzi from [CMI5, Corollary 1.28]
to argue that because R(M;) < T¢(M:), the function ¢p;, = 3 (z,va,) — Hy, (which
measures how close M, is to a shrinker) must be very small (see the proof of Theorem [8.1J).

Finally, we show that this (along with the rough conical scale T;(M;) estimates) suffices
to extend the graphicality (and decay estiamates) from the core B, nearly all the way out to
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the shrinker scale R(M;) (see Proposition [7.2)). Because this step is delicate and forms a key
part of the argument, we explain this argument in a model situation below.

Lemma 1.3 (Model problem for the extension of the conical scale). Fiz Sy > 0 and suppose
that u : R? — R satisfies

E%u = Au — %(r&,u—u) =0

on R? and |VFu| = O(r'=%) for all k € N. Finally, assume that ulles(Bys) < 0 forr

sufficiently large and b sufficiently small dependinﬂ on Bo. Then, there is ¢ : S* — R and
f:R? = R so that outside of By

u(r,0) = c(0)r + f(r,0)
and ||el[costy + 7 fllcomey < Bo

Before proving this lemma, we explain the relationship with the full improvement /extension
result (Proposition . Firstly, we have considered the simplest possible conical shrinker
R? C R? instead of a general asymptotically conical shrinker ¥ ¢ R"*!. In the full problem,
we have that ¢/, is very small, so the part of M, that is graphical over ¥ roughly solves the
graphical shrinker equation. The L1 operator is the linearization (at the flat plane) of the

2
shrinker equation, so to simplify this situation we have simply assumed that Li1u = 0. The

2
higher derivative estimates on u are the analogue here of the rough conical scale estimates.
Finally, the C3-smallness of u in B,yo is analogous to the core graphical hypothesis. We

have simplified the conclusion above, in Proposition we prove full CS%’? (X) estimates for
u (but the result described here contains the essential ideas).

We note that a key technical difficulty present in Proposition that does not occur in
this model problem is the fact that M, is not an entire graph over ¥ (and a priori is only
graphical up to B,). Thus, the argument below must be coupled with a continuity argument
outwards; this necessarily complicates the argument.

Proof. The beginning of the proof is very similar to proof of [KKMI5, Theorem 8.9]. As
an initial step, we treat the Laplacian in £1 as an error term, since Au = O(r~1) from the

Hessian estimates on u. Thus, we find that ’
(1.2) 20, (E> =r0u—u=0(r"").
T

Integrating this to infinity, we find

0
¢() := lim u(r, )
r—00 r
is well defined (and continuous). Thus, we have obtained the asserted decomposition. It
remains to prove the asserted estimates for ¢ and f.
We begin by proving that ¥ is small (we have already proven that it is bounded). Inte-
grating (1.2) from r to r, we find that
6 0
(1.3) ulnf) wlnb) g2 o2y,

r r -

3We will think of the \Vku\ estimates as being given a priori, so everything here is allowed to depend on
the implied constants.



UNIQUENESS OF ASYMPTOTICALLY CONICAL TANGENT FLOWS 7

In particular,

+0(r™?),

We can arrange that the right hand side is less than %0 by choosing r large (to control the
second term) and b small (to control the first term). This proves the desired estimate for
c(0).

We now turn to the estimate for f. The key idea is to interpolate smallness in the C° norm
of u (that we have just obtained) with scale invariant boundedness of higher derivatives: this
implies that the Laplacian term in L1 is controlled with a small constant. Then, integrating

2

the resulting ODE estimate to infinity, we obtain decay (and, more importantlyﬁ smallness)
estimates for f.
First of all, we note that by (1.3]), we have

lu(r,0)| < 82r,

for r > r, where we can take § small below (at the cost of taking r larger and b smaller).
Interpolating this (on balls of unit size) with |D¥u| = O(r!1=F), for k large, we find that

|Aul < O(0)r ™,
for r > r. Now, returning to L1u = 0 we have gained smallness in the constant on the right
2

hand side of , ie.,
d, (9) — 0(8)r3,

,
Now, integrating this on [r, c0), we find

c(f) = ”(7;’ 9 1 or2).
Because u(r,0) = c¢(8)r + f(r,0), this gives

f(r,0) =0(5r™ ).

Choosing ¢ sufficiently small (in terms of fy), we find that [|rf[|com2\p,(0)) < % This
completes the proof (since we already control u, and thus f inside of B, (0)). O

At this point, we have proven that the conical scale ry(M;) is sufficiently large, so that when
cutting off the Lojaisewicz—Simon inequality at this scale, the error terms do not affect
the right hand side of the equation. At this point, we can use the now-standard uniqueness
argument based on the Lojasiewicz inequality for parabolic equations (cf. [Schi4) [Sim83]).
This completes the sketch of the proof of Theorem

1.5. Organization of the paper. In Section [2| we prove several estimates on the geometry
of asymptotically conical self-shrinkers. In Section [3| we establish the relevant linear PDE
theory in weighted Holder and Sobolev spaces. In Section [l we apply these estimates to
establish the Lojasiewicz—Simon inequality for entire graphs over a conical shrinker. So as
to localize this inequality, in Section [5| we define the various scales used later. This then
allows us to localize the inequality in Section [6] In Section [7] we carry out the central
improvement /extension argument (cf. the model problem Lemma above). In Section
we establish our final Lojasiewicz—Simon inequality. Putting this all together, we prove the
uniqueness of conical tangent flows (Threorem in Section @ In Appendix we recall
several standard definitions and conventions, while in Appendix [B] we recall some useful

4Note that the initial step in the proof can be used to prove decay for f, but not smallness.
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interpolation inequalities. Appendix [C] contains an analysis of normal graphs and Appendix
recalls the first and second variations of Gaussian area. Appendix [E|recalls an entropy-area
bound estimate. Finally, we include a list of notation.

1.6. Acknowledgements. We are grateful to Jacob Bernstein for several useful discus-
sions. O.C. was partially supported by a Sloan Fellowship, a Terman Fellowship, and NSF
grants DMS-1811059 and DMS-2016403. F.S. was supported by a Leverhulme Trust Research
Project Grant RPG-2016-174.

2. GEOMETRIC PRELIMINARIES

Throughout this section we fix ¥* C R"*! a smooth, smoothly asymptotically conical
self-shrinker. We denote by
C =limv—tX

t 0
the asymptotic cone of ¥ and assume that C" is the cone over I"~! C S"”. Note that the
induced metric on C satisfies
ge = dr @ dr +r’grp
for r = |z| the radial variable.
The following estimate is a straightforward consequence of the smooth convergence of
/—t3 to C combined with scaling considerations.

Lemma 2.1. For R > 0 sufficiently large, the induced metric, gs, on 3\ Br(0) satisfies

gs =gc+h

for b a symmetric (0,2)-tensor on ¥\ Br(0) satisfying [V h| = o(r~7) as r — oo, for all
j > 0. The second fundamental form of ¥ satisfies

V) Az| = O
as r — oo for j > 0.

In the sequel, we will improve these estimates based on the fact that X is a self-shrinker.
Indeed, the shrinker equation ((A.1)) and second fundamental form decay in the previous
lemma combine to yield decay for (x,vy) that is faster than scaling:

Corollary 2.2. For R > 0 sufficiently large, we have
V9 (@,vs) | = O(r771)
asr — oo forj > 0.
2.1. Improved conical estimates for shrinkers.
Lemma 2.3. For R > 0 sufficiently large, there is w € C*°(C \ Br(0)) so that
graphw := {p + w(p)re(p) : p € C\ Br(0)} C X

parametrizes X outside of a compact set. The function w satisfies

w=0(r1)
and

VO = O@r=177+m)

as r — oo for any n > 0 and j > 1. Moreover, the radial derivatives satisfy the sharper
relation 8w = O(r=177).
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Proof. For p € ', consider the plane T,,C with normal vector v¢(p). After a rotation, we can
assume that T,C = {2"*1 = 0} and v¢(p) = £e™L. Define

Iep:={z€T,C: [(z,p)| > (1 —¢)|z|,|z| > R}.
For € > 0 sufficiently small and R sufficiently large, there is u, u : I'e g — R so that

graphu = {(y,u(y)) : y € T g} C X,
graph uoo = {(y, us(y)) : y € T g} CC.
We have that
VOu(y) = VOus(y) + o[yl )

as y — 00.

We recall that
n (—Vu,1)

1+ |Vul?

Thus, by Corollary 2.2 we find that
(2.1) (y, Vu(y)) — uly) = O(ly| ™).

Thus, the function v(s) = @ satisfies limg_,oo v(s) = 0 (because us(sp) = 0) and v/(s) =
O(s73) by (2.1)). Integrating this, we find that

(2.2) u(sp) = O(s™1).
Thus (taking R larger if necessary), we may find w € C*°(X \ Br(0)) so that
graphw := {q +w(q)ve(q) : ¢ € C\ Br(0)} C X
parametrizes ¥ outside of a compact set. From we find that
jw]=0(").
This yields the first asserted decay estimate. Furthermore, scaling considerations yield
VDu] = o(r ),

as r — oo for j > 1. Hence, the second assertion follows by interpolating these two estimates
(cf. Lemma [B.1)). Finally, by differentiating (2.1)) in the radial direction, the improved radial
derivative estimate follows. O

Corollary 2.4. For R > 0 sufficiently large, we have the following improved estimates on
the induced metric:

gs = dr @ dr +r2gr + h
for h a symmetric (0,2)-tensor on X\ Bgr(0) satisfying |h| = O(r~2) and [VYh| = O(r—2-7+m)
asr — oo, for all j > 1 andn > 0.
Proof. Write F' : C\ Br(0) — X, F(p) = p+ w(p)ve(p). We compute (using the fact that
Ac(0r,-) =0)
O F = 0r + (0rw(p))ve(p),
P 00 F = 1700 + 17 (B w(p))ve(p) — w(p) Aclp(r™ By, )

That |h| = O(r~2) follows from these expressions and Lemma The higher derivative
estimates follow from interpolation, as in Lemma 0
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Lemma 2.5. The unit normal to 3 satisfies

n—1
ve(F(p)) = O(r )0, + Y O > )r~ 19, + (1 = O(r~**"))ue(p)
j=1
forn>0asr— oo.
Proof. Write
n—1
(2.3) ve(F(p)) = Ad. + > Bjr~ 'y, + Cre(p),
j=1
where .
2 2 2
A2+ BI4+CP=1
j=1

Because (v, 0, F) = <VE, r‘lawiF> =0, we find that
0= A+ COu(p)

n—1

0= Z B;(d;; + O(T72)) + C(Tilawiw(p))

=1

This implies the claim. j O

Lemma 2.6. We have |V (rd,w(p) — w(p))| = O(r~7) for any j > 0.

Proof. Revisiting the proof of Lemma we find that the components of vy in satisfy
A= —C(0,u(p))

n—1
0=""B;(0ij + bj) + C(r0,w(p))
j=1

where [b;| = O(r=2) and |[VWb;| = O(r~277+7). Thus, we find that the expressions from the
proof of Lemma [2.5| can be differentiated in the sense that

A=-0w(p)+a
B = —r 10, w(p) + b;
C=1+c¢,
where |[VWa| = O(r=5=71m) VWb = |V | = O(r—*9%7)). This implies that
(F(p),v=(F(p) =rA+w(p)C
= w(p) — royw(p) + (ar — cw).
Using Corollary and the above estimates for a, ¢, we conclude the proof. O
Lemma 2.7. The second fundamental form of ¥ satisfies
As (0, F,0,F) = O(r—?)
As (0, F,r 10, F) = O(r—?)
As(r™ 0, Fyr 100, F) = Ac(r™' 0,771 0.,) + O(r—317)

as r — co. Moreover, |Vék) (Ag o F — Ag)| = O(r=37%+1) for any n > 0 and k > 1.
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Proof. We compute
07, F = (87, w(p))ve(p)
7182 iF:T728wi+ri ( w)ve(p) — ( w(p))Aclp(r™ wu')
7283;, wJF:AC‘p(Tilawm 1&0])’/0(17) (852,% w(p))ve(p)
_Til(awiw( ))AC’p( wyv') - (awyw( ))AC’p( wm')
WD) (Vg A 0u,)

Using Lemma the first and third equation follow immediately. For the second, we use
the expression for 719, F (which is orthogonal to vs,(F(p)) to write

P2 = 120, F 4 (02w — Duw(p))ve(p) + v (w(p) — rdrw(p) Acl ()

Using Lemmas 2.5 and [2.6] the first estimates follow. The higher derivatives follow by
differentiating these expressions. O

Lemma 2.8. The vector field V := projps, F(p) — rO, F is tangent to ¥ and satisfies |V| =
o@r=h), IV®V| = O+ for n > 0.

Proof. Because (F(p),vs(F(p))) = O(r~!), we compute
projrs, F(p) = F(p) = (F(p), vs(F(p))) v (F(p))
= p+w(p)re(p) +O(r™")
=10, +w(p)re(p) + O(r™")
=70, F+O0(r™ ).
The higher derivatives follow similarly. O

The function w from Lemma gives a diffeomorphism from C \ Bg(0) ~ T' x [R, c0) to
the non-compact part of X, where we recall that I' is the link of the asymptotic cone C. We
will thus parametrize points of ¥ by (r,w) € T' X [R,00) below. We will write g¢ for the
metric on the end of X given by

ge = dr & dr + r’grp

in this parametrization. We emphasize that the coordinate r along ¥ is not exactly equal to
dgrs(+,0) (like it is along the cone). It is useful to extend r to 7 defined on all of ¥ so that
7> 1on ¥ and 7 = r outside of By for R as above.

Lemma 2.9. The radial derivative satisfies
T-Vef=r0f+a3-Vf,
where |az| = O(r~1) and [VWas| = O(r=19t1) forn >0 and j > 1, as r — oo.
Proof. This follows from Lemma [2.8] O

3. LINEAR ESTIMATES IN WEIGHTED SPACES

In this section we consider the relevant weighted function spaces which will play a role in
our proof of the Lojasiewicz—Simon inequality for the conical shrinker X" C R™*!. Our choice
of Holder spaces will be heavily influenced by the work of N. Kapouleas, S. J. Kleene, and
N. M. Mgller [KKM15] except for the complication that in [KKM15], it was only neccessary to
define the spaces on a flat R? (which is, of course, a conical shrinker), whereas, here we must
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consider general conical shrinkers. Additionally, in various points of [KKMI5], the discrete
symmetry of the problem was used in certain places, which will not be available to us here.

3.1. Weighted Hoélder spaces. We now define the relevant weighted Holder spaces. We
begin with the most basic weighted space.

Definition 3.1 (Homogeneously weighted Hélder spaces). We define a norm, for v € R,
IF1162, = sup #(z)”|f ()]
€Y

and a semi-norm
[f]hom = sup 1 ‘f(.’IJ) B f(y)‘
a—y—a = :

eyes T(X) 772+ 7 (y) 7 Jr -yl

We thus define C2* (%) to be the set of functions f : £ — R so that

hom,—~

7162y == LB + (1o —a

is finite. Similarly, we define C’ﬁ(’)?n (%) to be the set of f : X — oo so that the norm
2
I35y = > (V) il
j=0
is finite.
2,0

Loosely speaking, C} () is the space of C*“ functions whose C*% norm falls off

om,—7
like 7=7 at infinity. We now define a space which will require stronger weights in the radial
direction.

Definition 3.2 (Anisotropically weighted Holder spaces). We define Cif_l(il) to be the

space of f € C2% (%) so that

hom,—1
= h
1155 -1 = N5y + 1Z - V2 f 6o,
is finite.

Now, we fix a cutoff function x : [0,00) — [0, 1] so that supp x C [R, 00), x = 1 in [2R, 00),
and |[V7x| < CR™7 for j > 1 and C independent of R sufficiently large. This now allows us
to define our primary Holder space.

Definition 3.3 (Cone Hoélder spaces). We define CSB’?(E) =0 1(3) and

hom,—
CS*P (D) = C2(I) x C22 ().
An element (c, f) € CS%’? (X) will be considered as a function on ¥ given by

U = U(e,f) (7’, (.U) - X(T’)C(W)T’ + f(7"7 w)
for r > R, and u = f otherwise. We will frequently conflate u with (¢, f). We take the norm

an

llloszasy = lellczay + £ 1551

Observe that an element of CSE’f‘ (X) is allowed to grow linearly at infinity, but only in

a particularly prescribed manner. The remaining terms then must decay like r— 1.

standard exercise to observe that all of the above spaces are indeed Banach spaces.

It is a
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3.2. Mapping properties. We observe that the cone spaces are well suited to the analysis
of the L1 operator
2
1 1
Liu:= Ayu — if Vsu + §u
2
(see also Definition [A.5)) in the following sense.

Lemma 3.4. For a : ¥ — R with ||a|co.e(p, (z)) = O(|z|72) for x € ¥ with |z| — oo, i.e.,
a € Cg(’)or‘n__z(E), we have that the operator

Ly +a:CS2(D) - CS ()
1s bounded.

Proof. This follows directly from the definition of the cone spaces (after observing that the
linear term rc(w) exhibits a cancelation in the term % (u — &' - V¥u); note that this fact does

not hold for general £, when ~ # %) O

3.3. Schauder estimates. In this section, we prove Schauder estimates for the £ operator
in the cone Holder spaces. These estimates are essentially the generalization of [KKMI15,
Proposition 8.8] to our setting, and we will closely follow their arguments, with some necessary
modifications as discussed above. We note that Schauder estimates for the linearization of the
expander equation on asymptotically conical self-expanders were proven by a related method
in [BW17al Proposition 5.3].

Proposition 3.5. Consider a : ¥ — R with ||a]co.e(p, ) = O(z|7?) for x € ¥ with |z| —
00, i.e., a € O (X). Then, there is C = C(X,a) so that if u € C2%(%) NClomi11(X) has

hom;—2 loc

Liu+au € CSB’?(E), then u € CSE’la(Z) and we have the estimate
2

lulleszeqs) < € (lullp,,. ) + 1E3u+ aullogoes, ) -

om,+1

Because the £ operator is related to the linearization of the shrinker equation, which is, in
turn, a special case of the mean curvature flow (whose linearization is related to the heat equa-
tion), we might expect that such an estimate can be proven from standard parabolic Schauder
estimates. This is nearly the case, except it turns out the appropriate time parametrization
of the equations will produce functions which are not Holder continuous (at ¢ = 0) in the time
variables. As such, we will require the following non-standard parabolic Schauder estimates
due to A. Brandt [Bra69]. We note that these estimates were strengthened in [Kne81] (see
also [Lie92]) but we will not make use of these stronger estimates here.

Theorem 3.6 (Non-standard interior Schauder estimates, [Bra69]). Suppose that By C R™
and we are given coefficients a;;j(x,t),bi(z,t),c : By x [=2,0] — R and functions f,u :
By x [-2,0] — R so that u is a classical solution of
ou
ot
Assume that the coefficients a;j;, b;, c have spatial Holder norms bounded uniformly in time,
e.g.,

2
—a;;Diju—b;Diu — cu = f.

B (laii G, ) llcowa(my) + 10: (s )l o sy + e B)llcoa(n,)) < A
€2,

and that the equation is uniformly parabolic in the sense that

aij(z,1)&& > NE?
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for A\ > 0. Then, for T € (—1,0],

sup u(- )| czeip) < C sup  ([[ul,8)llcomy) + £ D)l coe(sy))
te[—1,T] te[—2,T]

for some C = C(n, A\, A).

We now explain how to relate the £ 1 -operator considered in Proposition [3.5to a parabolic
equation where we can apply Theorem 3.6

Definition 3.7 (Intrinsic shrinker quantities). It is useful to consider the intrinsic behavior
of the shrinker ¥ under the mean curvature flow. To this end, for ¢ € [-1,0), we define

the (time dependent) vector field X; = ﬁxT. Here, 27 is the tangential component

of the position vector along 3. For ¢t € [—1,0), define &; : ¥ — 3 to be the family of
diffeomorphisms generated by X; (i.e., %@t = Xy 0 ®y) with ®_; = Id. Finally, define the
metric gy := (—t)P}gs.

Observe that if F': ¥ — R"*! is the embedding of ¥ in R"*!, then
Fyi=V—=t(Fo®,):% — R"!

is a mean curvature flow of hypersurfaces parametrized by normal speed. Moreover, we have
that §; = F}ggn+1. Thus, because the (extrinsic) blow-down of ¥ is C, we see that (X, g, p)
converges in the pointed C'°°-Cheeger—Gromov sense to (the incomplete metric) (C, g¢, p) for
any point p sufficiently far out in the conical part of . This will be useful in the sequel.

As in the proof of Corollary [2.4] we write the end of ¥ via the map F : C\ B,(0) — £,p —
F(p) +w(p)re(p) as a normal graph over the cone C with coordinates (r,w) € I’ X [R, 00) for
R sufficiently large. We consider the induced flow of ®; in these coordinates, i.e.

i)t ::F_loq)toF
For t € [-1,0) we consider the map
¢1 1 (R,00) x T — (R, 00) x T, (r,w) > ((—t) "%, w).
Then we have the following estimates.

Lemma 3.8. Fort € [—1,0), for r sufficiently large, we have

e (B1r0).000,0)) S A

Moreover, in the coordmateﬁﬂ (r,w) we have the (non-sharp) estimate

DY (D4 — ¢1)|(r,0) S

—fyplti-n
forj>1andn>0.

Proof. We denote the ambient radius by r(z) := |z| and compute along ¥, using Lemma
0

5o @) = (Vgr)o®

= <:L‘T, V§>g oy

SWe emphasize that in this estimate we are not using the conical metric, but rather the flat cylindrical
metric dr? + gr to estimate these derivatives. This avoids defining derivatives of diffeomorphisms as sections
of an appropriate bundle and this estimate here suffices for our purposes.
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2(—t)
Integrating this, we see that
1 c 1 c
1 — —— | <r(® < — —— .
(3.1) = (10— 25 s s < o5 (s - )
Now, we have that
el =70, F +0(r 1)
by Lemma [2.8] This implies that
0 = 1
3.2 —& = —— (r0, + O(r™ 10, + O(r~%)d,,
(32) oy = 5 (0 + 000, + 06~
where the right hand side is evaluated at ®;(-). Note that ¢ satisfies
0 1
o= 510,
2(—t)
where the right hand side is evaluated at ¢;(-). In combination with ( . this implies that
0 c
g dge (® ()¢t())§(<dgc )+T((I)t('))>
< (dgc () + \/—t> .
2(—t r(-)
Integrating this yields
c
(®:(), 04(-) <€ =~
QC _tz()
The derivative estimates follow similarly. O

Now, assume that £1u+au = E for some u € CIQO?(E) and a : ¥ — R with [[a|co.a(p, (2)) =
2
O(|z|72) for z € ¥ with |z| — co. We define

. - 1 . 1
Wz, t) = V=t(u(@(x)),  Blat):= ﬁE(@t(w))a a(w,t) = (_t)a(@t(ﬂf))
Then, we find that
A@t’ll = \/;(Agu) ] (I)t,

since the Laplacian is diffeomorphism invariant, as well as

((;2: =V—t(Vx,u)o®; — 2\/1th o P,
= 2\/1jt(f-Vguo<I>t—uo(I>t).
We thus find that
(3.3) ?;Z — A —ai = F.

We now use this equation in conjunction with Theorem to prove the desired Schauder
estimates. Observe that Lemma and the presumed decay of a shows that a(-,¢) is uni-
formly bounded in C%® on sufficiently far out balls of unit size, allowing us to apply Theorem
0.0l
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Proof of Proposition 3.5 We can choose R sufficiently large such that the normal evolution
of ¥y := /t- ¥ for t € [~2,0) is almost orthogonal to x outside of Bpys. Applying Theorem
to (3.3) we find that (where the implied constant is independent of R sufficiently large)

s[up ) ‘|D925a("t)HCO(Etﬁ(BRH(U)\BRH(O))) +t SH{)O) HDfﬁﬁ(”t)HCO(Etﬁ(BRH(U)\BRH(U)))

+ sup [D2a(, )]s 5n(Bris (0)\Brsa (0))
te[—1,0)

S sup (Al B)loominBris©@)\Ba©) T SUP B E)as sin(Brys0)\Br(0)-
te[—2,0) te[—2,0)

On the other hand, Lemma [3.8] implies that for R sufficiently large, we can estimate the
Hoélder norms of @ in terms of weighted norms of u as follows:

sup [|DZa(:, t)llcomn(Ba200\Brpa @) + 5P I1Dza(, )llcosn(B 200\ Brin (0))

te[—1,0) te[—1,0)
+ sup [Dg‘ﬂ(" t)]oé;zﬁ(BRH(U)\BRH(O))
te[—1,0)
Zz  sup  r(x)|Du(a)]
z€X\Br+1(0)
L e 1 |D2u(a) - DPu(y)|
eweS\Bpryr (0) (@) T+ r(y) e |z —yl* '

Arguing similarly for the other terms, we thus rewrite the above parabolic Schauder estimates
as weighted elliptic estimates.

2 —_ N2
s r(x)|D%u(x)| +  sup 1 |Dhula) = D)l
2€X\BRr+1(0) 2,y€X\Br41(0) ’I“(x) + r(y) |x _ y‘

< sup r(@)Hu(@)+ sup (@) E(x)
2€S\Bp/2(0) 2€E\BR/2(0)

1 E - F
f o 1 IF@-Ew)
2,y€S\Bg 2 (0) r(z) +7(y) |z —

This implies

HDQUHC‘ggf‘(g\BRH(O)) = sup T’(IL’)‘DQU(ZE”

2€X\BRr+1(0)
1 [Du(z) — DPu(y)
T e o @) T )T oyl
z,y€X\BRr41(0) Yy r—y

S sup r(@) Mul@)|+ sup r(x)|E(x)|
J)GZ\BR/Q(O) mEE\BR/Q(O)
1 E —F
+ swp _ _— |E(z) a(y)!
2,y€S\ B 2(0) () +7(y) [z —y
5 HUHC’}?OIH;H(E\BR/Q(O)) + HEHCSEvf(z\BR/Q(O))'
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Arguing similarly for Du and combining all of this with standard interior (elliptic) Schauder
theory, we thus find

2
(3.4) |’DuHc$Evf(2) + 1D uHcs@f(z) S HUHC}?OMH(E) + HEHcggvla(g)

Note that we can combine this inequality with an interpolation between v in C° and C' to
find

”u“cgé?n;+1(2) S Huucﬁom;ﬂ(Z) + HEHcsﬂvf(z)-

This allows us to bound au in CSE’IO‘ (X) in the sequel.
We now argue that u can be decomposed as u(r,w) = x(r)c(w)r + f(r,w) making u into
an element of CS>%(X). We have that

w:=rou—u=—2F+2Au+ 2au — (¥ Vyu — rou).
Combining (3.4) with Lemma we see that w € CSE’? with
“w”csﬂvf‘(z) S Hu”cgom;ﬂ(z) + HEHcsgf(z)

Now, we define

u(R,w) * w(s,w)
(3.5) c(w) = —R + /R 3 ds,

where R is chosen large above (we emphasize that this expression is independent of the choice
of R and that the integral is finite, thanks to the fact that w € CSE’?(Z)).

We note that the functions
u(r, w)

”
have uniformly bounded C?%(T") norm for r sufficiently large. On one hand, they converge in
C%*(T) to ¢(w) by the previous analysis. On the other hand, by Arzeld—Ascoli, they converge
in C%A(T") (for any 8 < @) to c(w) € C>*(I'), and we find that (by lower semicontinuity of
the Holder norm in this situation)

lellcay < 1D?ulegsasy < lullcg. )+ I1Bllesos s
where we again used (3.4) in the second inequality. Now, defining

f(’ra w) = X(T)C(w)’r - u(T7w)a

we see that f € C2%(X). Note for r sufficiently large we have from (3.5) that

loc
S = [ 5 gy,

52
which implies
Hf”cgg’f(g) rg ||UHC£0m;+1(E) + HE”csgaf(z) :
Moreover, using the estimates for D?u (and for D?(x(r)rc(w)) which are easily derived from
the % estimate for c¢), along with interpolation, we find that

”f”oﬁ(ﬁﬂﬁl(z) 5 HUHC‘gom;H(E) + ||E||csg’1a(2) :

Finally, it remains to estimate - Vyx f € C’}?(’)il _,1(X). However, this follows from

rof=f—-w
and Lemma This completes the proof. O
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3.4. Weighted Sobolev spaces. In this section, we combine the Holder space theory devel-

oped above, with integral estimates and a Fredholm alternative to establish existence results

for the £1 operator. The way to use these weighted Sobolev spaces to prove the Fredholm
2

alternative (cf. Theorem below) was explained to us by J. Bernstein [Ber10].
We denote by L%V the space of measurable functions f : ¥ — R with

Iy = [ Ppanr <oc.

We then define the Sobolev norm

k
1A =D (V) Fli-

Jj=0

It is easy to see that the associated Sobolev space HE.(X) is precisely the closure of C§°(X)
under this norm.

We recall the following Sobolev inequlity due to Ecker [Eck00, p. 109] (see also [BW17h
Lemma B.1].

Proposition 3.9. For f € H}\,(X), we have
/ fHz)?pdH" < 4/ (nf? + 4|V f?) pdH"
b b

Proof. Assume first f € C§°(X). Consider the vector field V := f2p# in the (Euclidean) first
variation formula along . We obtain

1
[ (n2 4252 9sr = LT pant = [ £ G pane
b)) b
Using the shrinker equation, we thus find
1
/ (nf?+2f%-Vsf)pdH" = 2/ 2|2 p dH"
b)) b

Thus, we find that
1 1
5 / 2o dH < / (nf? +2f7 - Vs f) pdH" < / <nf2+4|sz|2+4!fﬂl2f2>pd%”
> > >

Now let f € Hy,(X) and choose f; € C§°(Z) such that f; — f in Hyj,(X). The above estimate
yields for any R > 0

[ gpapoanr <a [ (o a9siP) pan

$NBRr(0) b

Letting ¢ — oo and then R — oo yields the statement. U
Corollary 3.10. The map L : H3,(X) — L,(X) is bounded.

Proof. Apply Ecker’s Sobolev inequality to the gradient of f to bound #-Vyf € L%, (3). O
Lemma 3.11 (cf. [BWI8al, Proposition 3.4]). For f € H%, (),

112 < Lo fllwlfllw
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Proof. It suffices to prove this for f € C3°(X). Note that Ly is self adjoint with respect to
the Gaussian area. Thus,

0= [ colsparr =2 [ (VIP + fLof)pdn
s s
This proves the claim. (|
Lemma 3.12 ([BWIT7b, Proposition B.2]). The inclusion Hy, C L%, is compact.

Proof. For f; € Hy;, with || f;| gy, < O, the classical Rellich compactness theorem applied

to an exhaustion of ¥ shows that (after passing to a subsequence) there is f € H&V so that
fi — fin LIQOC. That f; — f follows easily from Ecker’s Sobolev inequality, which implies
that

< ¢

fi = PpdH" S -
/E\BA(O)( 0 A2
This concludes the proof. ]
Lemma 3.13 (cf. [BWI18al, Proposition 3.4]). For f € HZ,(X), we have
£ 12 < CUILof I + 11£1)

Proof. 1t suffices to prove this for f € C§°(X). Using the Bochner identity and the Gauss
equations, we find (using |Ax| = O(1))

1

iﬁofvzfp

. 1
= |V2f]? + (VsAsf, Vs f) + Rics(Vs f, Vs f) — 1 (z, VIV f]*)

= [V 4 (VsBsf, Vsf) — 1+ (2. VIV I)
+ Hy - As(Vsf, Vs f) = (A2)*(Vsf, V=)
= (V214 (VLo Vs )) + 4 (Va(E- Vsf), Vsf) — 1 (&, VIVIP)
+ Hy - As(Vsf, Vs f) = (42)*(Vs f, Vsf)
= [V + (VsLof, Vaf) + 5[Vs P + Hy - Ax(Vsf, Vsf) — (49)(Vsf, Vi)
= [V2 2+ (VsLof Vs f) + O(VsfP).

Integrating this and using that Lg is self adjoint with respect to the Gaussian area, the
conclusion follows (after integrating by parts the second term in the right hand side, and
using Lemma, to control the H}}, norm of f). O

This suffices to establish an existence theory for the L operator (cf. [BW18al Proposition
3.4]) where

1
Li=Ly+ |As|? = Ay — 3@ Ve —1)+ |As|2.
Define 1
Byu,0) = [ (Vs Fsb+ (3= 145 - 5 ) o ) pan
b

the bilinear form naturally associated to L+~. For «y sufficiently large so that v > maxy, | Ax|?+
%, we see that
2
[ulliv < By(u,v),
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so B, is coercive on H%V(E) It is clearly bounded, so applying the Lax—Milgram Theorem,
and applying the standard Fredholm alternative to this setting (combining Lemma with
Lemma [3.12)), we have the following result:

Theorem 3.14. The space ker L C HI}V of weak solutions to Lu = 0 is finite dimensional.
For f € L,(X), Lu = f has a weak solution in Hyy, () if and only if f is L}, -orthogonal to
ker L. Moreover, if u is orthogonal to ker L and satisfies Lu = f, then we have the estimate

lull iz, ) < Cllf Nz, 5)-
To complete this section, we now show that for f € CS§%,(X) perpendicular to ker L, we

can solve Lu = f. It remains to check that a solution of Lu = f with f € cs@f‘ (X) satisfies
u € Cgom;Jrl(E) a priori.

Lemma 3.15. For f € L?,(X) N CYY), if Lu = f for u € H{, (%), then u € Cﬁom;H(E)
and for R sufficiently large,

[Jullco o S I fllcosy + lullco=nBr(0))-

hom;+1

Proof. For ¢ : R"1 — R, we compute

1
Lo = A = 5(F- Vap = @) + |As |

1
= Apni1p — D*p(vs, vs) — Hy: (Us, Vni1p) — 5(1’ Vs —¢) + |As|?e

1 1
= Agni1p — D*p(vs, v5) — 5 (T VRing) + 50+ |As .

We consider ¢(z) = a|z| — f. Then,

— Z, vs)?
L¢=a<” Lo mr) )—;mow?)(am—ﬁ)

] |z

< =51+ 0(2] )8 + O(|z e

N

Thus, v = u — ¢ satisfies
1 _ _
Lo > f+ 5(1+0(l2]7)8 = O(lz[ )
We fix R > R(X) and set

a=2sup|f|+2R™" sup |y
S $NOBR(0)

B=dsupl|f|+ R sup |,
5 SNBR(0)

This yields

1
Lv> (1= O(R ™ ))sup|f|+ R (L+O(R™)) sup |uf >0,
> 2 $NOBR(0)
for R sufficiently large. Moreover, we find that

sup v < —(1—R™') sup |ul —2(R—2)sup|f] <0
YNdBR £NOBg z
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as long as R is sufficiently large. Thus, we have arranged that v < 0 in a neighborhood of
% N OBgR(0). We now argue that v <0 on ¥\ Bg(0). Because v+ € H},, we find that

1
[ aspet et s [ atzgepant = [ (<ot ot ) pan
S\Br(0) S\Br(0) 2 S\Br(0)

Thus, using Ecker’s Sobolev inequality, Proposition [3.9] we find that

R2/ (vT)2pdH™ < (8+4n+O(R_2))/ (vT)2pdH".
¥\Br(0) Y\Bg(0)

For R sufficiently large, we thus see that v™ = 0. Thus, u < ¢ on ¥\ Bg(0). Applying the
same reasoning to —u completes the proof. O

Combining this estimate with Proposition [3.5 we arrive at:

Corollary 3.16. For [ € CSE’?(Z), ifu € Hjy (X) satisfies Lu = f weakly, thenu € CSE’la(E)
and for R > 0 fixed sufficiently large,

[ullesze sy S lullcosnpro) + [1fleson(s)-

Combined with Theorem [3.14] we thus see that the following standard solvability condition
continues to hold in our setting:

Corollary 3.17. If f € CSE’IO‘(E), then we can find u € CSE’IO‘(Z) solving Lu = f if and only
if f is L}, -orthogonal to ker L C H}, (2).

4. THE LOJASIEWICZ—SIMON INEQUALITY FOR ENTIRE GRAPHS

We now show that the weighted Holder and Sobolev spaces considered in the previous
section (along with the solvability criteria proven for L) provides a framework to prove
the Lojasiewicz—Simon inequality following the arguments in the compact case (cf. [Sim83),
Sim96b, [Sch14l Zem16]). By the Fredholm alternative, Theorem ker L C H},(2) is
finite dimensional and we can define IT : L%, (X) — L, (X) N CSE’IO‘(E), the projection on to
ker L.

Recall (see Appendix @ that the Euler-Lagrange equation (with respect to the L, -inner
product) is

-1

J(y,v, Vev)p(y +v(y)vs)p(y)

r=y+v(y)vs(y)

(4.1) M(v) = Hpoy, <ﬁM + ”“";)

where Il 1y, is the projection on to the normal bundle to ¥ and

J(y,v, Vxv) = Jac(D exp, (v(y)vs(y)))

is the area element.
We now observe that M is a well behaved map between the weighted Holder spaces con-
sidered in the previous section.

Lemma 4.1. For 8 sufficiently small depending on 3, we have a continuous map
M: €822 (E) N {|[ullggre sy < B} = CST(E).

Moreover, M is Fréchet differentiable with derivative at 0 given by L.
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Proof. Fix v € CS%’?(E) N {”“”csi*f‘(z) < B}. Note that

20(y) (y,vs) + (v(y))2>

(42) Tlyo, Vsodoly + ool = o0, o) exo (- b

and this is easily seen to be uniformly bounded in C%%(X N By(y)) as y € ¥ — oco. Thus, it
remains to check the first term. Observe that the mean curvature term is uniformly bounded
in C%*(X N By(y)) by ¢/r as y € ¥ — o0o. Recall that differentiating the shrinker equation

yields (or see Lemmas and
AT ) =007?).
Combining this with and the shrinker equation for ¥ we get for the other term that
(w,v) = (1+|(1d = v8) " (VM) )72 (v = (3, V) ) + O(ly| ),
in C%*(2NB(y)) as y — co. Observing that v — v— (y, Vxo) is a bounded map CS>%(¥) —
CSB’la (X)) we obtain the first assertion. The second follows similarly. O

We define
N =M+II
which has the same mapping properties as M. Moreover, N is Fréchet differentiable with
derivative at 0 given by L + IT (which is bijective as a linear map CS>%(%) — CS¥*(%)).
Thus, the implicit function theorem allows us to find open neighborhoods of 0,

W1 C CS27(E) N {[lullggea sy < B)
Wy C CS%9(%)

so that NV : Wi — Wh is bijective with inverse ¥ : Wy — Wp. Moreover (cf. [Sim96al,
§3.13] and [Sch14, p. 168]), N and ¥ are holomorphic, after tensoring with C (and possibly
shrinking Wy, Wa).

We now prove that M is continuous as a map Hgv NnNW; — LIQ/V and that W is continuous
as a map L%,V NWy — H‘%V

Lemma 4.2. Shrinking W1, Ws if necessary, there is C' > 0 so that

[M(u1) = M(u2)ll 2 () < Cllur — uall gz (s
for uy,us € W1 and moreover

1V (f1) = ¥(f2)lmz, sy < Cllfr = follrz, )

for f1, f2 € Wa.
Proof. We claim that
(4.3)  M(u1) — M(ug) = L(uy — ug) + A-V(uy — ug) + B - V(ug — ug) + Clug — us)
where
(4.4) sup(4] + |BI + 1)) § luallggag s + 2lesee oy
This follows from using (4.1), (C.2), (C.3) and (C.4)) together with the shrinker equation

along ¥ to write
M(u) = Lu + Q(p, u, Vu, V>u)
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and interpolating Q(p, u, Vu, VZu) in the standard way between u; and us. Combined with
Corollary this proves the first assertion. The second claim now follows from standard

arguments (cf. [Sim96al, §3.12]) given (4.3)), (4.4)), and Theorem [3.14] O
At this point, we can follow the arguments in [Sim96al, §3.11-3.13] essentially verbatim

(except we use Corollary Theorem Lemma and Lemma in place of their
standard counterparts in the compact case) to prove

Theorem 4.3 (Lojasiewicz—Simon inequality for entire graphs). There is 5y > 0 sufficiently
small, 8 € (O,%), and C > 0, all depending on X, so that if M is the graph over ¥ of a
function in u € CS>¥(X) with lullgszo sy < o, then

-1

PO = FOP < M@l < [ 10panr)”

We note that the second inequality here follows a similar reasoning to (4.2)) (so as to control
the change in p when evaluated along M and as opposed to X).

5. DEFINING THE RELEVANT SCALES

In order to apply the inequality obtained in Theorem we must understand the various
geometric scales involved.

5.1. Pseudolocality and the scale of the core of the shrinker. These definitions are
relevant to the pseudolocality based improvement argument in Lemma 9.1

Proposition 5.1 (Pseudolocality [INSI19, Theorem 1.5]). Given § > 0, there exists v > 0
and a constant p = p(n,d) € (0,00) such that if a mean curvature flow {M;}e(—1,0) satisfies
that M_1 N B,(0) is a Lipschitz graph over the plane {x,+1 = 0} with Lipschitz constant less
than v and 0 € M_y, then M; N B,(0) intersects Bs(0) and M; N Bs(0) remains a Lipschitz
graph over {x,+1 = 0} with Lipschitz constant less than § for all t € [—1,0].

Definition 5.2 (Fixing the Pseudolocality constants). We will fix § = 1072 in the preceding
Pseudolocality result. We denote the corresponding v by ~. and p = p,. For consistency, we
also write d, = . We will always assume that p, > 1.

Definition 5.3 (Scale of the core of the conical shrinker). For an asymptotically conical self-
shrinker £" C R™*!, we choose R(X) so that for € ¥\ Bg(x)(0), we have that ¥ N By, (z)
is a Lipschitz graph over T,,% with Lipchitz constant less than v, /2. Furthermore, we require
that the map from the end of C described in Lemma is defined outside of Bp(s)_1.

It is clear that for an asymptotically conical shrinker, we may take R(3) < oco.

5.2. Scales of hypersurfaces near the shrinker. The definitions here are relevant to the
radius at which one can apply a cut-off version of Theorem

Definition 5.4 (Shrinker scale). For M™ C R"™! we define the shrinker scale R(M) by

_Rn)?

(5.1) R S / 62pdH™.
M
Definition 5.5 (Rough conical scale). For M™ C R"*! ¢ € N, and Cy > 0 we define the
rough conical scale ¥¢(M) to be the largest radius so that M™ N Bg,(5)(0) is smooth and
|V(k)AM| < Cg(l + T)_l_k
for k€ {0,...,0+1}.
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Definition 5.6 (Conical scale). Fix an asymptotically conical self-shrinker ¥ C R"*! and
choose By = Bp(X) > 0 as in Theorem For a hypersurface M™ C R™*! we define the
conical scale r¢(M) to be largest radius in [R(X), T¢(M)] so that there is u : ¥ — R with

graphu]gmgre(m cM and M 0 By, (m)y-1 C graphu,
2,a .
where v € CS7{(X) with Hu||csi,?(2) < Bo.
Definition 5.7 (Core graphical hypothesis). We say that M satisfies the core graphical
hypothesis, denoted by (xp,,), if To(M) > r and there is u : ¥ N B, (0) — R so that
graphu C M and M N B,_1 C graphu

and Hu||cz+1(B£(0)) S b.

We will always assume that r > v/2n (so that 0B,(0) expands under the rescaled mean
curvature flow).

We fix b > 0 to be very small (e.g. b < ) in Proposition

6. LOCALIZING THE LOJASIEWICZ—SIMON INEQUALITY

We now localize Theorem to hypersurfaces that are not entire graphs over 3. For the
definition of A\(M) see Definition

Theorem 6.1 (The local Lojasiewicz—Simon inequality). For M™ C R™ 1 with A(M) < X,
v € (1,2), and R € [1,ry(M) — 1], we have that

2(1179) i R2 R2
|[F(M) - F(X)|<C / 6% p dH™ + R0 ¢ 50-0) 4 ¢ 4y
M

NBr(0)

for C = C(3, N\, r,7y). Here 6 € (0, %) depends on X and the Hoélder coefficient o; 0 is fized
in Theorem [{.3

Proof. By definition of ry(X) (Definition [5.6]), there is u : ¥ — R with
graph u|snp,0) C M and M N Bgr(0) C graphu
with HuHCSz,a(E) < Bp. We may thus apply Theorem to graphu to obtain (allowing the
-1

constant C' to change from line to line as usual)

FOn - FE) = | [ pan - Fs)

<[ - F()
MNBR(0)
R2

< / de"—F(E)I—i—Ce_‘W
graphu

2

_R?
+ Ce *

2(11—9) i
<C (/ |¢>|2de”> +Ce 1.
graphu

It remains to argue that we can restrict the first integral to ¥ N Br(0). It is easy to see that
7| Pgraphu| < CBo by definition of CS*¢ (). Using

o3 4 B
/ r" e adr S RV e 1,
R
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we thus obtain

R2

2(11_9) n—4 R2
|F(M) - F(X)| <C / 9|20 dH™ + CR2=0¢ 80-0) 4+ Ce™ 47.
(g

raph u)NBg(0)

This completes the proof. ]

7. APPROXIMATE SHRINKERS UP TO THE ROUGH CONICAL SCALE

For 0 fixed in Theorem define

(=) (0]

Definition 7.1. For R > r, we say that M™ C R"*! is a roughly conical approzimate shrinker
up to scale R if:

(1) we have OR < 1y(M),

(2) M satisfies the core graphical hypothesis (¥, ), and

(3) || + (1 +[z)|Ve] < s(1 +[x])~" on M N Ber(0).

We will fix s, b sufficiently small in the following proposition giving a lower bound on the
conical scale.

Proposition 7.2. Taking ¢ sufficiently large, there are constants b, s > 0 sufficiently small,
depending on the shrinker 33, the conical scale constant [y, the rough conical scale constant
Cy, and the entropy bound Mo with the following property. If M™ C R™ ™! has A(M) < Ao and
is a roughly conical approximate shrinker up to scale R in the sense of Definition then
there is a function u : % — R with

graph ulsnp, ) C M and M N Br-1(0) C graphu
and HUHCSET‘(E) < Bo. Equivalently, the conical scale satisfies ro(M) > R.

Certain aspects of the following proof are inspired by the proof of [KKMI5, Theorem 8.9].

Proof. We claim that for b, s sufficiently small, the conclusion eventually holds for any R > r.
As such, we will take b, s — 0 and will prove that for any given (sequence) of R > r, the
conclusion eventually holds for R. We may assume that R — oo (the subsequent argument
is easily modified to the case where R is bounded). It is clear that M converges to ¥ in
C* in B,_; with multiplicity one. Moreover, M converges in CfOC(R”H) toﬂ M’, which
satisfies ¢ = 0, and is thus a properlyﬂ embedded shrinker. Unique continuation implies tha
M’ = ¥. Finally, it is clear that M converges to ¥ in C* with multiplicity one everywhere
by connectedness of ¥ and the multiplicity one convergence on B,_1.

Hence, if we let R € [r, R] denote the largest radius (depending on b,s) so that the
conclusion holds with R (in the place of R), it is clear that R — 0o. We will prove that the

6By Lemma M’ is a properly embedded hypersurface.

7Properness of M’ follows from the entropy bounds, which imply local area bounds by Lemma

8Note that there cannot be more than one component of M’. One way to see this is that it would have
to lie outside of B,(0) and we chose r > v/2n; this would contradict the maximum principle. Alternatively
this follows from the Frankel property for shrinkers (i.e., two properly embedded shrinkers must intersect);
see [CCMS20| Corollary C.4] for Ilmanen’s proof of this fact.
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proposition holds up to R := T(1+ ©)R (note that this is a fixed factor less than ©R). This
will then imply the claim by a straightforward contradiction argument.

First of all, we can assume that R/R — A € [1,00]. Observe that (R)"'M converges
in Cf _(Bex(0) \ {0}) to a cone C which is a C? graph over the original cone C. Moreover,
because we have assumed that the proposition holds up to R, we see that the cones are close
in the sense that dg(C,C) = O(ﬁg)ﬂ Thus, we can find a C* function u : ¥ N Bz(0) — R
with

graphu C M and M N Bg_, C graphu.

Moreover, r~tu| < O(By) on XN (Bx(0) \ Br(0)) by the above observation that the blow-
down cones are O(f3p)-close. Furthermore, the second fundamental form estimates coming
from the rough conical scale estimate ry(M) > OR yield

(7.1) |D*Fy) = O(r=F)
on N (Bgp(0)\ By(0)), for k € {0,...,¢—1}. Finally, because M converges in Cf, (R"*1)

ocC
to X (as b, s — 0), for § € (0,7 !) fixed sufficiently small depending only on 3y (this will be
made explicit in the last line of the proof), we can assume that [|ul|cssnp,, ;1 (0) < 53.

We now relate the smallness condition on ¢ to decay properties of u. These computations
are similar to those considered in Section for an exact shrinker (except we are now
parametrizing M over the shrinker ¥, rather than parametrizing the end of ¥ over the cone
C; this complicates certain aspects of the subsequent computation).

We write F(p) = p+u(p)vs(p) for the function parametrizing (part of) M over XN Bj(0).
The computations below will hold for p € ¥ with |p| € [R(X), R], with error terms uniform
with respect to b, s — 0. Recall that we have fixed coordinates (r,w) on X\ Bp(s) in Section

In particular, the vector fields 0, and 9, are tangent to EH

We write
n—1
va(F(p)) = Ad, + > Bjr~ ', + Cus(p),
j=1
where
n—1
(7.2) A+ B +C?=1+0(r7?)

=1

by Corollary (we emphasize that (r,w) are the coordinates induced on the end of ¥ by
the parametrization over C constructed in Lemma .

Moreover, we find for p € ¥ with |p| sufficiently large (assuming that w; are normal
coordinates at w for p = (r,w)) we find

0= A(1+0(r2) — u(p) As|(0:,0,))
n—1
+3 B (0(r?) = u(p) Aslp(0y, 77 10,,)) + C(O,u(p))
j=1
0=A(0(r™?) —u(p)As|p(0r,77'0.,))

9We have written dp for the Hausdorff distance in S"~* between the two links of the cones.
101, particular, we reiterate that the vector field 9, is not the Euclidean radial vector field!
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n—1
+ Z B]((;’Lj + O(T_2) - u(p)AE‘p(T_laqu r_lawj')) + C(T_lawiu(p))’
j=1
Now, using Lemma, we find that
n—1
(7.3) 0=A(1+0(r )+ B;(0(r2)) + C(du(p))

J=1

and
n—1

(7.4) 0= A0 )+ > Bj(6i; — u(p) Aclp(r™" 0y, 7 0u;) + O(r™>1) + Cr™ Dy ulp)).
j=1

Observe that (7.3)) yields (since A, B,C' = O(1))
A+ C(0yu) = O(r™2).

Moreover, as long as 3 is sufficiently small so that that r~|u(p)|supp |Ar| < 1, we see that
C~1 =0(1), ie., C is not tending to zeroH
We now compute

n—1
(F(p),vm(F(p))) = <p +u(p)vs(p), Ad, + > Bjr 0., + CVz(p)>

=1

n—1
= Ap,0:) + Y By (p,r 7 0u;) + Cu(p) + C (p, vs(p))
j=1

A(r+0(r™")) + Cu(p) + 2CHx(p) + O(r ™)
= C(u(p) = (r+ O(r™1))dru(p)) + O(r™")
= C(u(p) = rdru(p)) + O(r~ ") dru(p) + O(r™ ).

We begin by analyzing this expression (below, we will repeat the above derivation to yield
more precise estimates). We have that

(F(p),va(F(p)) = 2¢(F(p)) + 2Hun(F(p)) = O(r™").
Thus, (and C~! = O(1)) gives
rdyu(p) — u(p) = O(r~")du(p) + O(r~1).

Thus,
&nuga) = r_2(7‘8ru(p —u(p))
= O(r™*)d,u(p) + O(r?)
_ o(ﬂ)aru(rp) — O ulp) + O(™).

Thus, using 7~ 'u = O(1), we conclude that

aﬂ‘gf)) =0(r™).

Hypdeed, if C — 0, then this condition on 8y combined with (7.4) yields B; — 0 as well; returning to (7.3)
yields A — 0, which contradicts (7.2).
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We integrate this from 6~ to r € (6~1, R] to find

u(r,w)

= du(d7 w) + 0(8%) + O(r~2) = 0(6?) + O(r2),

,
using the fact that HU||C3(EmB§_1(0)) < 63. Thus,
(7.6) uw=0(%)r+ 0.
Note that we immediately get
dru(p) =~ u(p) + O(r~?) = O(8%) + O(r?).

We now interpolate (7.6) (on balls of radius 1) with the higher derivative estimates from
(7.1), using Lemma [B.1] This yields

ID?u| S (O(8%)r + O(r~1)! = 170707
— 0@t +0(rt ).
Similarly, we can obtain an estimate for the full gradient
|Du| < (O(8%)r + O(r— 1) =707
=0(0* 1)+ 0(ri?)

Now we return to (7.5 and use this improved decay for the derivatives to derive a sharper
equation. Firstly, we note that as long as 5y is small, as above, using the gradient estimate

for u, , together with , implies that
B; =05 1),
for r > 6!, Finally, using this, A + C(0,u) = O(r~2), and (7.2), we find that
C=1+0(1),

for r > 6L
Now, repeating the derivation used in (7.5), with this additional information on B; and
C, we find

n—1
(F(p),vm(F (p))) = <p +u(p)vs(p), Ad, + > Byr 0., + Cl/z(p)>

J=1

n—1
=Ap,d:) + > Bj (p.r 0w} + Cu(p) + C (p,vs(p))
(7.7) =1

A(r +0(r™Y) + Cu(p) + 2Hs(p) + O(8*~ 117
Clu(p) — (r + O(Til))aru(p)) + 2Hyx(p) + 0(527%7“71)
C(ulp) — rdru(p)) + O(r~H)du(p) + 2Hs(p) + O(6% tr 1)

We thus have
26(F(p)) + 2Hu (F(p)) = C(u(p) = r0,u(p)) + O(r")d,u(p) + 2Hs (p) + O(0* 1171,
Moreover, we have that (for ¢ sufficiently large)

Hy(F(p) — Hs = (14 O(|Vul*))O(ID?ul) = O(@)r~ + O(r™2) = O(é)r ",
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since r > 6. Thus, we find that
0,"12) _ o(5)r=3

(assuming that s < 0, which can be arranged since we have fixed ¢ independently of the
value of s).

We now define
u(R,w)

R
and observe that by interpolation of with (7.1)), we have ||c[cz.ary = O(6). Then, we
set

c(w) :=

f(r,w) = u(r,w) - c(w)r
We have that f(R,-) = 0 and

Thus,
rf(r,w) =0(8)(1 —r’R™2) = 0(5).

These two expressions imply that 9, f = O(§)r—2
1-

Moreover, we easily see that |D¥f| = O(r ) for k € {2,...,¢}. Interpolating this (and

discarding some unnecessary decay with respect to r), we find that I fllc2e = O(6 2+a) -1
where the Holder norm is taken on balls of unit size.

These estimates provide C’ _, estimates on f, so it remains to extend f to all of X while
only increasing these norms by a fixed factor (we can trivially extend c(w)r). Before we do
this, we must obtain improved estimates for 92 f. Using C' N C* C C? interpolation applied
to the 1-dimensional function r — f(r,w) (for w fixed but arbitrary), on a unit interval, we
see that

)

92F(R,w)| S (O R) T ROI7r = 0@ wn) e
Thus, taking ¢ sufficiently large, we see that
(7.8) R|f(R,w)| + R?[0, f(R,w)| + R?|0] f(R,w)| = O(6")

for some absolute constant p > 0. In particular, we emphasize that the third term in is
better than the C _, norm requires (we need this improved estimate when we extend f to
all of X).

We now define

flr,w) = fr,w) r<R
T 0 f(Bw)(r— R) + 2 f(R,w)(R+3—-1)(r—R)? r>R

(Recall that f(R,-) = 0.) We then fix a cutoff function ¢ with ( =1 on (—00,0) and ¢ =0
n (1,00). Then, we set f(r,w) = f(r,w){(r — R). Using (7.8]), we easily see that

17l ez ) = O(3").
Thus,
(e, J?)Hcgivf‘(z) = O(d").
Taking ¢ sufficiently small depending on [y, this concludes the proof. O
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8. THE FINAL LOCALIZED LOJASIEWICZ—SIMON INEQUALITY AND THE ROUGH CONICAL
SCALE

We now show that the error terms in the localized Lojasiewicz—Simon inequality (Theorem
6.1)) are small, under the assumption that the rough conical scale is larger than the shrinker
scale.

Theorem 8.1 (The final localized Lojasiewicz—Simon inequality). Assume that M™ C Rt
has A\(M) < Mg and R(M) sufficiently large depending on . Assume that M additionally
satisfies the core graphical hypothesis (xp,) and R(M) < t;(M) —1. Then,

|F(M)—-F((X)|<C </M !d)\%d’}-{”)w

for C = C (%, X, ). Note that 0 is fived in Theorem[{.5,

Proof. We first claim that M is a roughly conical approximate shrinker up to scale R =
©~2R(M) in the sense of Definition We have already assumed that the first two condi-
tions hold, so it remains to check that

ol + (1 + [2]) Vo] < s(1+ Jz[) ™

on M N Bgr(0). We will do this by modifying the proof of [CM15, Corollary 1.28].
Pick z € M N Begr(0). Set r, = (1 + |z|)~!, so that the Gaussian weight p has uniformly
bounded oscillation in B,_(z). Set

2 R(M)?2
U(z) = ( / \¢M\2pd”H”> <e w
MNBy, (2)

Hoélder’s inequality yields

2
n z2 n z2
[ lolanr s ries (/ |¢|2de“> .
B""z(z) B’f'z(z)

Because 1 + OR < 1¢(M), we have that (see Definition
[V¥6| < Co(1+[2)'*

on MNB,_(z),fork € {1,...,£} and z € MNBgr(0). Now, by the L'NC* ¢ C? interpolation
inequality described in Lemma [B.2] we have that

(1+12]) sup |¢|

ry (2

nooy2 nooy2 g n
<C (rz12e|8 Y+ (7’3 eSlw) (1+ |z])(1_z)(1_“"’”)_1)

2|2 122

agn
<O (@rEDE Ty (ot ((F0) ) 0-00e)

+e s

<C (R(M)Zﬂe

(10~ YH)R(M)2 aé,n(l@_Q)R(M)z)
3

The negative powers in the exponentials allow us to arrange that this is smaller than s, as
long as R(M) is sufficiently large. A similar argument can be used to bound |V¢|.
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Thus, we see that M is a roughly conical approximate shrinker up to scale R. Proposition
implies that the strong conical scale satisfies ro(M) > R. Thus, we can apply the localized
Lojasiewicz—Simon inequality from Theorem [6.1] to find

n—4 R2 R2

2(1—0)
|[F(M) - F(X)|<C / 6> p dH" + RZ=0 ¢ 50-0) 4 ¢~ 4y
MﬂBR(O)

11—.9 n—4 R? R2
((/ |¢’ pd/Hn> _|_R2(1 0) ¢ 8(1— 9)—|—6_4’Y>.

Note that
n—4 __R? no4 _ _ROD?
R2(-6) ¢ 81-0) — (@_QR(M))KPG)B 864 (1-0)
R(M)?2
— (@_2R(M))2<1 9)6 T 8(1-0/2)
< R(M)2> 2(179/3>
<(Cle 1
( 19/)
2(1—-6/3
—c( [ woppan)
M
and )
R2 oty
e = </ \(b\zden) ’,
M
so choosing v = 2074(1 — 0/3) € (1,2), we conclude the proof. O

9. THE UNIQUENESS OF CONICAL TANGENT FLOWS: PROOF OF THEOREM [I.1]

Fix r sufficiently large in terms of the scale of the core of the conical shrinker R(X), and
the pseudolocality radius p. (this choice will be made explicit in Lemma below).

Now, fix € = (X, r) > 0 will be chosen sufficiently small below. Suppose that { M} c_1 )
is a rescaled mean curvature flow (Brakke flow) on [—1,00) x R™"! so that there is

uw: (2N B.1(0) x [-1,e73) =R
with

(

1) graphu(-,7) C M;
(2
3

M, N B.-1_ C graphu(-, 7).
(3) lullce+1znp._ (o)) <& and
(4) F(M) - F(¥) <e.

Here, ¢ € N controls the number of derivatives in the definition of ry. It has been fixed in
Proposition[7.2] We additionally fix Ag so that A(Mp) < Ao (which implies that A(M;) < o).
Finally, we assume that there is a sequence if times s; — 0o so that M, converges smoothly
on compact subsets of R"™! to 3 (with multiplicity one).

Recall that the core graphical hypothesis (#p,,) has been defined in Definition Define
the graphical time T by

)
)
)
)

T :=sup{7 € [-1,00) : M, satisfies (xp,) for all 7 € [-1,7]}.

Our first goal is to show that 7 = co. Note that by taking e sufficiently small (depending on
b,r, %, we we can assume that 7 is arbitrarily large.
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Lemma 9.1 (The rough conical scale improves rapidly). There is ro(X, R(X), px) sufficiently
large so that taking r > 1y, €0 = eo(X,r) sufficiently small, and fixzing Cy = Co(X, 1) suffi-
ciently large in the definition of the rough shrinker scale, we have that to(M;) > %egf for all
T €10,7).
Moreover, we can find u : XN By,(0) x [0,7) — R with u(-,7) uniformly bounded in C**+2
and with
graphu(-,7) C M; and M. N Byy—1 C graphu(:, 7).

Proof. Consider 19 € [0,7). Note that ¢ > v/t My _iog(—¢)) = Mt(m) is a mean curvature

flow for t € [—e™,0) and MSO) = M;,. Take b sufficiently small in the core graphical
hypothesis. Then, by definition of the pseudolocality scale p., the scale R(3) of the core of
the shrinker and the core graphical scale r, we can ensure that for

T € MSO)H(m\BR( (0)),

there is some plane 11, through z so that M (7o

Lipschitz constant at most .. Thus, by pseudolocahty (Proposition [5 ., th N Bs, (x) is
non-empty, and a d,-Lipchitz graph over II, for all ¢ € [-1,0).

e B, (x) is a Lipschitz graph over II, with

We can patch these graphs together to write find a family of domains QETO) C X with
(21 (By=3.(0) \ Brey41(0)) €

and a function f)t(m) : Q; — R so that graph @,gm) C M. Using a shrinking sphere as a barrier,

we can see that for ¢ € [—1,0), this graph describes all of MST{’) N (Br-4p.(0) \ Br(s)+2(0)).
The shrinking sphere of radius r —4p, at t = —1 still contains B,_3,, (0) as long as we choose
r sufficiently large so that

1

(C=4p)* < (0=3p.)" =1 & (G4 <r

Px
Now, for w € (0,1), by applying interior estimates [EH91] (cf. [BM17, Corollary 8.4]) for
graphical mean curvature flow, we find that

‘wmm@M@gC:aiMw)

for 2 € M 1 (Br—s5.(0) \ Bresy43(0)), t € [-1 +w,0), and k € {0,...,£}.

By the definition of the core graphical scale, ¥¢(M;) > r, so the desired curvature estimates
hold on M; N B,(0). Moreover, by taking the parameter ¢ sufficiently small, we can ensure
that the desired estimates hold for 7 € [—1,1]. On the other hand, for 7 € [1,7) and

ze M (Bg, . 00\ B0)),
We choose
70 =7 + 2log(|z| 71 (r — 5p4)) € [0,7)
Then,
t=—e™" = —|z|2(r — 5p.)% € [-1 + w,0),
for w =w(n,r) € (0,1) fixed by
wi=1-(1-5"1p,)%€(0,1).

Now, we find that the point x is rescaled to

& =+v/—tz € M) N OB, _s,.(0),
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so the curvature estimates established above yield
@] E VA ) [(2) = [V A 0| () < C = O(8, do, 1)
Unwinding this, we find
2TV Ay, (@) < Clr = 5pe) T,

for k € {0,...,¢}. Thus, by choosing Cy = Cy(3, \g,r) sufficiently large, we find that
to(M;) > e2(r — 5p,), as claimed. As such, the asserted curvature estimates follow by
requiring that r > 10p,.

The above proof also shows that there is a function u : (¥ N By,) X [0,7) — R with

graphu(-,7) C M, and M. N Byy—1 C graphu(-,7),

and so that u(-,7) uniformly bounded in C**2. Note that this u agrees with the function in
the definition of the core graphical hypothesis, on their common domain of definition. O

First, suppose that 7 is such that R(M,) < 1,(M;)— 1. By Theorem 8.1} we have that for
0 =46/3,

1
2(1-07)

POy - P < 0 /. opoan) ™,

~ L PO - F) = 0(F(M,) - F(2)) | lokpanr

dr
1
2 n 2
zc(/ ¢|de) .
M,

On the other hand, suppose that 7 is such that R(M;) > ro(M;) -1 >
. The following coarse estimate will suffice in this case:

3 2
R(M~+
(9.1) (/ |d>|2pd7-["> — 5 < Ce".
M,

Thus, we can conclude that for all 7 € [0,7)

o( /. oPpanr)’ < S (FOL) - FE) 4+

Integrating this, we find that for 79 € [0,7),

— 1
T E / /
(9.2) / (/ |¢2pd’H"> dr < (F(Mypy) — F(2) +e ™ < 46
0 M-
For the function u : (¥ N By,) X [0,7) — R described in Lemma we have that
2 n ou ?
|p|2pdH" > C|| = ,
M, T L2(£N By, (0))

so we see that

0, -
sup |[Ju(+, 7) = u(-, 70)l| p2(mnBy,0) S € e
TE[70,T) L
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Because u(-,7) is uniformly bounded in C**? by Lemma by taking e sufficiently small

and 9 = %6*2, we have that

~ | o

[u(-, 70) [l cet1 (5B (0) <
and

S[llpf) [, 7) = ul 70) | ce+1 (5B, (0) <
TE([T0,T N

— B

Thus, we see that [|u(-,7)|lcet1(mnB,,0) < b for 7 € [0,7). This (combined with pseudolo-
cality and interior estimates) implies that we can extend the graphical hypothesis slightly
beyond 7, a contradiction.

Thus, T = co. Now, returning to , we have that (recall that s — oo are so that

M, — )
0 /
o= dr < (F(My,)—F () +e
or L2(2NBar(0))
Since u(-, s;) — 0in L2(XN By, (0)), we thus see that u(-,7) — 0in L2(XN By, (0)) as 7 — oo,
and thus in C*T1(X N By,(0)).

From this, it is clear that M, converges on compact sets to > as 7 — oco. This completes

the proof of Theorem

sup_[ute7) = w5 |
Sk

TE[sg,00)

9.1. Rate of convergence. Here, we observe that similar arguments can yield a rate of
convergence of M, towards . Arguing as above, we have that

d
FEOL) = FE) =~ [ Jofpan
< —C(F(M,) — F(£))21=0) 4 Ce27
for all 7 € [0,00). We claim that
F(M,) — F(S) < D(1 4 7) 757

for D sufficiently large in terms of My and 3. Indeed, letting 7 denote the first time this
fails, since 2% < (1 + x)~ for all z > 0, we have that

2(1—6")

(F(Mf;) . F(E))2(170’) _ D2(179’)(1 + 7:)—71_29/ > CD2(179’)672‘7'
Thus, as long as D sufficiently large, we find that
D 2(1-9") d

—m(l +7) 1720 < E(F(MT) - F(%)) .
< —C(F(M;z) — F(x))*%)
2(1—6")

< —CD* )1 4 7)o

Taking D larger if necessary, this yields a contradiction. Thus, we have that for any R fixed,

1
oo 2
) s < / ( /M Wpdw) ar

S(F(M;)—F(E) +e™

9/

<A 47) T
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Interpolating yields

6/
77/4,
luls Mllersnpg S 1 +7) 727"

for any k, R, and n > 0, as 7 — oc.

9.2. Proof of Corollary Note that the proof of Theorem implies that there exists
e > 0 such that the surfaces M; N B.(0) for t € (—&2,0) are smooth graphs over /- X. Even
more, one also sees that (M N B-(0)) \ {0} is a smooth normal graph over the asymptotic
cone C of ¥ with curvature bounded by ¢/r (plus all corresponding higher order derivative
estimates). Note that the tangent flow My has as the time zero slice the cone C. Thus
by taking rescaling limits of the flow, including time zero, we see that the uniqueness of the

tangent flow implies that rescalings of My converge smoothly on compact subsets of R \ {0}
to C.

APPENDIX A. STANDARD DEFINITIONS

We recall the following definitions and conventions:

Definition A.1. For M" c R"*! with polynomial area growth, the Gaussian area of M is
F(M) = / pdH"
M

where p = (4m) "2 e 17*/4. Recall, that the entropy A(M) is defined as the supremum of the
Gaussian area over all centers and scales, see [CM12].

Definition A.2. A hypersurface ¥" C R"*! is a self-shrinker if \/—t - ¥ is a solution to
mean curvature flow for ¢ € (—oo,0). This is equivalent to

(A.l) HZ = % <33, VE>

Definition A.3. For a general hypersurface M™ C R"*!, we define the function

¢ = o = % (z,vm) — Hur
Note that X is a self-shrinker if and only if ¢x, = 0.
Definition A.4. A smooth self-shrinker X C R"*! is (smoothly) asymptotically conical if
}% V—t-£=C

in C2 (R™1\]{0}) with multiplicity one, where C is a cone over a smooth closed hypersurface

r—tcs" c R
Definition A.5. We define the following operators along 3:
Lyu:= Ayu — %:E’ Vyu + vyu
Lu = E%u + |As|*u = Agu — %(f Vsu — u) + |As|?u.

Note that L is the full second variation of Gaussian area along ¥. Moreover, £y and L1 will
2
be particularly relevant in the sequel.
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APPENDIX B. INTERPOLATION INEQUALITIES

We recall the following standard interpolation inequalities in multiplicative form.

Lemma B.1. Suppose that u € C*(By), then for j < k,
. 1—1 K
ID7ulloo(y < Cllulgal 1D ullbo s,

for C = C(n,k). Similarly, if u € C**(By), then for j + 8 < k + «,

J+8
[Diu)p.p, < C||U||cok+a [D*u ul ',

for C =C(n,k,a,B).

These follow in a similar manner to the linear inequalities given in [GT01, Lemma 6.32],
except in the proof one should optimize with respect to the parameter p rather than just
choosing p sufficiently small. Alternatively, see [Hor76, Lemma A.2].

We will also need the following interpolation inequality.

Lemma B.2 (cf. [CM15, Lemma B.1]). If u is a oL function on By, C R then
n 1 n
ey < © (7"l + i, 1954l 555 )

bi.n 1—bk n
PVl (s < C (rull sy + i, 1950l 2t )

f07’ C= C(kan)7 Qk.n = k—i—i’n’ and bk,n = k-i-;l

.
APPENDIX C. GEOMETRY OF NORMAL GRAPHS

We consider hypersurfaces M, N in R™*! such that N can be locally written as a normal
graph over M with height function v, where we assume that the C'-norm of u is sufficiently
small (depending on the geometry of M). Let p € M and choose a local parametrisation F,
parametrising an open neighbourhood U of p in M such that F(0) = p. We can assume that
gij = (O;F, 0;F) satisfies

9ij| ,—o = 0ij and Ogijle—0 = 0.
For simplicity we can furthermore assume that the second fundamental form (h;;) is diago-
nalised at p with eigenvalues A1, ..., A,. A direct calculation, see [Wanl4, (2.27)], yields that
the normal vector vy(q), where ¢ = p + u(p)var(q), is co-linear to the vector

" Hu
N=-— F .
; 1_/\i“a L:o—H/M(p)

Denoting the shape operator by S = (h' j) we see that thus in coordinate free notation

(C.1) vn(g) = v (—(Id — uS) "' VMu +vy) (p).,
where v := (1 + |(Id — uS)_l(VMu)P)%. This implies
(C2) (@,vn(0)) = v (u+ (pva(p) — (p, (Id — uS) "' VMu)) .

For the induced metric § one obtains in the above coordinates at p, again see [Wanl4l (2.32)],

gij = (1 = Au)(1 = Aju)dij + Oiudju
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which implies

5% _o O oju
121 —Nu) T = w2 (- ru)?
Furthermore, from [Wanl4l (2.30)] we have

(C.3) g9 =

7 - _ Ai A
hij = <8i2jF7 UN) = 1 (m&-uﬁju + T i\juﬁiuaju

. 2
+ Zk: 1~ v Oku Oihji + hij — Nidju di; + 8Z.ju) 7

(C.4)

which yields a closed expression for the mean curvature H of N, since H(p) = G (p)ﬁij (p).

APPENDIX D. VARIATIONS OF GAUSSIAN AREA AND THE EULER-LAGRANGE EQUATION

Suppose that M™ C R™"! is a normal graph of v : ¥ — R for a fixed shrinker £". Recall
that the Gaussian area is defined as

F(M) := /Mde".

For © a variation of v (i.e., a variation in the normal direction to X), the first variation of F
in the direction of v satisfies (see [Sch14])

— ZEJ‘
S F (M) = — /E oy, (HM + 2)

where Il 1y, is the projection on to the normal bundle to ¥ and
Sy, v, Vev) = Jac(D expy (v(y)rs(y)))

5(y)J (y, v, Vsv)p(y + vs)p(y) ' p(y)dH",
r=y+u(y)vs(y)

is the area element.
Hence, the Euler-Lagrange operator M (with respect to the weighted space L%,V) satisfies
i
_, x —
M) =T (F + %) 7.0, V)oly + v(@)s)o(s)
2 ) la=ytu(y)vs(y)

It is well known that the linearization of M at v = 0 is the L operator (cf. [CM15, Lemma
4.3]).

APPENDIX E. AREA GROWTH BOUNDS FROM (GAUSSIAN AREA ESTIMATES
The following is a well known fact:
Lemma E.1. For M"™ C R with A(M) < \o, there is C = C()\g,n) so that
H™"(M N Bg(x)) < CR"
for all R > 0 and x € R"*1.
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