

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/144582

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/144582
mailto:wrap@warwick.ac.uk

PARAMETERIZED APPROXIMATION SCHEMES FOR STEINER
TREES WITH SMALL NUMBER OF STEINER VERTICES ∗

PAVEL DVOŘÁK† , ANDREAS E. FELDMANN‡ , DUŠAN KNOP§ , TOMÁŠ MASAŘÍK¶,

TOMÁŠ TOUFAR† , AND PAVEL VESELÝ‖

Abstract. We study the Steiner Tree problem, in which a set of terminal vertices needs to be
connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively
studied from the viewpoint of approximation and also parameterization. In particular, on one hand
Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number
of non-terminals (Steiner vertices) in the optimum solution. In contrast to this, we give an efficient
parameterized approximation scheme (EPAS), which circumvents both hardness results. Moreover,
our methods imply the existence of a polynomial size approximate kernelization scheme (PSAKS) for
the considered parameter.

We further study the parameterized approximability of other variants of Steiner Tree, such as
Directed Steiner Tree and Steiner Forest. For neither of these an EPAS is likely to exist for the
studied parameter: For Steiner Forest an easy observation shows that the problem is APX-hard,
even if the input graph contains no Steiner vertices. For Directed Steiner Tree we prove that
approximating within any function of the studied parameter is W[1]-hard. Nevertheless, we show
that an EPAS exists for Unweighted Directed Steiner Tree, but a PSAKS does not. We also
prove that there is an EPAS and a PSAKS for Steiner Forest if in addition to the number of Steiner
vertices, the number of connected components of an optimal solution is considered to be a parameter.

Key words. Steiner Tree, Steiner Forest, Approximation Algorithms, Parameterized Algorithms

AMS subject classifications. Mathematics of computing → Combinatorics, Mathematics
of computing → Graph theory, Theory of computation → Parameterized complexity and exact
algorithms

1. Introduction. In this paper we study several variants of the Steiner Tree
problem. In its most basic form this optimization problem takes an undirected graph
G = (V,E) with edge weights w(e) ∈ R+

0 for every e ∈ E, and a set R ⊆ V of terminals
as input. The non-terminals in V \ R are called Steiner vertices. A Steiner tree is
a tree in the graph G, which spans all terminals in R and may contain some of the
Steiner vertices. The objective is to minimize the total weight

∑
e∈E(T) w(e) of the

computed Steiner tree T ⊆ G. This fundamental optimization problem is one of the 21

∗Submitted to the editors November 16, 2020. The research was done while the authors were at
Charles University. An extended abstract of this manuscript appeared at STACS 2018 [16].

Funding: This work was partially supported by the project SVV–2017–260452. T. Masař́ık
was supported by project 17-09142S of GAČR. A.E. Feldmann was supported by the Czech Science
Foundation GAČR (grant #17-10090Y), and by the Center for Foundations of Modern Computer
Science (Charles Univ. project UNCE/SCI/004). A.E. Feldmann, T. Masař́ık, T. Toufar, and P. Veselý
were supported by the project GAUK 1514217. D. Knop is supported by the OP VVV MEYS
funded project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics”. P. Veselý was
supported by European Research Council grant ERC-2014-CoG 647557. The research leading to
these results has received funding from the European Research Council under the European Union’s
Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 616787.
†Computer Science Institute, Charles University, Prague (koblich@iuuk.mff.cuni.cz, tou-

far@iuuk.mff.cuni.cz).
‡Department of Applied Mathematics, Charles University, Prague, Czech Republic (feld-

mann.a.e@gmail.com).
§Faculty of Information Technology, Czech Technical University, Prague, Czech Republic (du-

san.knop@gmail.com).
¶Faculty of Mathematics, Informatics and Mechanics of University of Warsaw, Poland & Department

of Applied Mathematics, Charles University, Prague, Czech Republic (masarik@kam.mff.cuni.cz).
‖Department of Computer Science, University of Warwick, Coventry, UK

(pavel.vesely@warwick.ac.uk).

1

mailto:koblich@iuuk.mff.cuni.cz
mailto:toufar@iuuk.mff.cuni.cz
mailto:toufar@iuuk.mff.cuni.cz
mailto:feldmann.a.e@gmail.com
mailto:feldmann.a.e@gmail.com
mailto:dusan.knop@gmail.com
mailto:dusan.knop@gmail.com
mailto:masarik@kam.mff.cuni.cz
mailto:pavel.vesely@warwick.ac.uk

2 P. DVOŘÁK, A. E. FELDMANN, D. KNOP, T. MASAŘ́ıK, T. TOUFAR, AND P. VESELÝ

original NP-hard problems listed by Karp [26] in his seminal paper from 1972, and has
been intensively studied since then. The Steiner Tree problem and its variants have
applications in network design, circuit layouts, and phylogenetic tree reconstruction,
among others (see survey [24]).

Two popular ways to handle the seeming intractability of NP-hard problems are
to design approximation [33] and parameterized [11] algorithms. For the former, an
α-approximation is computed in polynomial time for some factor α specific to the
algorithm, i.e., the solution is always at most a multiplicative factor of α worse than
the optimum of the input instance. The Steiner Tree problem, even in its basic
form as defined above, is APX-hard [10], i.e., it is NP-hard to obtain an approximation
factor of α = 96

95 ≈ 1.01. However, a factor of α = ln(4) + ε ≈ 1.39 can be achieved in
polynomial time [6], which is the currently best factor known for this runtime.

For parameterized algorithms, an instance is given together with a parameter p
describing some property of the input. The idea is to isolate the exponential runtime
of an NP-hard problem to the parameter. That is, the optimum solution is computed
in time f(p) · nO(1), where f is a computable function independent of the input size n.
If such an algorithm exists, we call the problem fixed-parameter tractable (FPT) for
parameter p. Here, the choice of the parameter is crucial, and a problem may be FPT
for some parameters, but not for others. A well-studied parameter for the Steiner
Tree problem is the number of terminals |R|. It is known since the classical result of
Dreyfus and Wagner [15] that the Steiner Tree problem is FPT for this parameter,
as the problem can be solved in time 3|R| · nO(1) if n = |V |. A more recent algorithm
by Fuchs et al. [19] obtains runtime (2 + δ)|R| · nOδ(1) for any constant δ > 0. This
can be improved to 2|R| · nO(1) if the input graph is unweighted via the algorithm of
Nederlof [29] (using results of Björklund et al. [2]). A somewhat complementary and
less-studied parameter to the number of terminals is the number of Steiner vertices
in the optimum solution, i.e., p = |V (T) \ R| if T is an optimum Steiner tree. It is
known [14] that Steiner Tree is W[2]-hard for parameter p and therefore is unlikely
to be FPT, in contrast to the parameter |R|. This parameter p has been mainly studied
in the context of unweighted graphs before. The problem remains W[2]-hard in this
special case and therefore the focus has been on designing parameterized algorithms
for restricted graph classes, such as planar or d-degenerate graphs [25, 32].

In contrast to this, our question is: What can be done in the most general case, in
which the class of input graphs is unrestricted and edges may have weights? Our main
result is that we can overcome the APX-hardness of Steiner Tree on one hand, and
on the other hand also the W[2]-hardness for our parameter of choice p, by combining
the two paradigms of approximation and parameterization.1 We show that there is an
efficient parameterized approximation scheme (EPAS), which for any ε > 0 computes a
(1 + ε)-approximation in time f(p, ε) · nO(1) for a function f independent of n. Note
that here we consider the approximation factor of the algorithm as a parameter as
well, which accounts for the “efficiency” of the approximation scheme (analogous to an
efficient polynomial time approximation scheme or EPTAS). In fact, as summarized in
the following theorem, our algorithm computes an approximation to the cheapest tree
having at most p Steiner vertices, even if better solutions with more Steiner vertices
exist.

Theorem 1. There is an algorithm for Steiner Tree, which given an edge-
weighted undirected graph G = (V,E), terminal set R ⊆ V , ε > 0, and an integer p,

1This area has recently received growing interest (cf. the Parameterized Approximation Algorithms
Workshop)

https://sites.google.com/site/aefeldmann/workshop
https://sites.google.com/site/aefeldmann/workshop

STEINER TREES WITH SMALL NUMBER OF STEINER VERTICES 3

computes a (1+ε)-approximation to the cheapest Steiner tree T ⊆ G with p ≥ |V (T)\R|
in time 2O(p2/ε4) · nO(1). 2

It is worth noting that here we treat the actual value of p as a parameter; not
as a “hard constraint”. That is, the solution returned by our algorithm may contain
more than p Steiner vertices and only its quality (cost) is compared to the cost of
the cheapest solution that contains at most p Steiner vertices. This is true for all our
approximation algorithms.

Many variants of the Steiner Tree problem exist, and we explore the applicability
of our techniques to some common ones. For the Directed Steiner Tree problem
the aim is to compute an arborescence, i.e., a directed graph obtained by orienting
the edges of a tree so that exactly one vertex, called the root, has in-degree zero
(which means that all vertices are reachable from the root). More concretely, the input
consists of a directed graph G = (V,A) with arc weights w(a) ∈ R+

0 for every a ∈ A,
a terminal set R ⊆ V , and a specified terminal r ∈ R. A Steiner arborescence is an
arborescence in G with root r containing all terminals R. The objective is to find
a Steiner arborescence T ⊆ G minimizing the weight

∑
a∈A(T) w(a). This problem

is notoriously hard to approximate: No O
(
log2−ε(n)

)
-approximation exists unless

NP ⊆ ZTIME(npolylog(n)) [21]. But even for the Unweighted Directed Steiner
Tree problem in which each arc has unit weight, a fairly simple reduction from the
Set Cover problem implies that no ((1− ε) lnn)-approximation algorithm is possible
unless P = NP [12, 21]. At the same time, even Unweighted Directed Steiner
Tree is W[2]-hard for our considered parameter p [25, 28], just as for the undirected
case. For this reason, all previous results have focused on restricted inputs: Jones
et al. [25] prove that when combining the parameter p with the size of the largest
excluded topological minor of the input graph, Unweighted Directed Steiner
Tree is FPT. They also show that if the input graph is acyclic and d-degenerate,
where degeneracy is measured in the underlying undirected graph, the problem is FPT
for the combined parameter p and d.

Our focus again is on general unrestricted inputs. We are able to leverage our
techniques to the unweighted directed setting, and obtain an EPAS, as summarized
in the following theorem. Here, the cost of a Steiner arborescence is the number of
contained arcs.

Theorem 2. There is an algorithm for Unweighted Directed Steiner Tree,
which given an unweighted directed graph G = (V,A), terminal set R ⊆ V , root
r ∈ R, ε > 0, and integer p, computes a (1 + ε)-approximation to the cheapest Steiner

arborescence T ⊆ G with p ≥ |V (T) \R| in time 2p
2/ε · nO(1). 2

Can our techniques be utilized for the even more general case when arcs have
weights? Interestingly, in contrast to the above theorem we can show that in general
the Directed Steiner Tree problem most likely does not admit such approximation
schemes, even when allowing “non-efficient” runtimes of the form f(p, ε) · ng(ε) for any
computable functions f and g. This follows from the next theorem, since setting ε to
any constant, the existence of such a (1 + ε)-approximation algorithm would imply
W[1] = FPT.

Theorem 3. For any computable function f , it is W[1]-hard to compute an
f(p)-approximation of the optimum Steiner arborescence T for Directed Steiner

2If the input to this optimization problem is malformed (e.g., if p is smaller than the number of
Steiner vertices of any feasible solution) then the output of the algorithm can be arbitrary (cf. [27])

4 P. DVOŘÁK, A. E. FELDMANN, D. KNOP, T. MASAŘ́ıK, T. TOUFAR, AND P. VESELÝ

Tree parameterized by p = |V (T) \R|, if the input graph is arc-weighted.

Another variant of Steiner Tree is the Node Weighted Steiner Tree
problem, in which the Steiner vertices have weights, instead of the edges. The aim is to
minimize the total weight of the Steiner vertices in the computed solution. A similar
reduction as the one used to prove Theorem 3 (from Dominating Set) shows that
also in this case computing any f(p)-approximation is W[1]-hard, even if all Steiner
vertices have unit weight.

Other common variants of Steiner Tree include the Prize Collecting
Steiner Tree and Steiner Forest problems. The latter takes as input an edge-
weighted undirected graph G = (V,E) and a list {s1, s′1}, . . . , {sk, s′k} of terminal pairs,
i.e., the set of terminals is R = {si, s′i | 1 ≤ i ≤ k}. A Steiner forest is a forest F in G
for which each {si, s′i} pair is in the same connected component, and the objective is
to minimize the total weight of the forest F . For this variant it is not hard to see that
parameterizing by p = |V (F) \R| cannot yield any approximation scheme, as a simple
reduction from Steiner Tree shows that the problem is APX-hard even if the input
has no Steiner vertices (see subsection 2.1). For the Prize Collecting Steiner
Tree problem, the input is again a terminal set in an edge-weighted graph, but the
terminals have additional costs. A solution tree is allowed to leave out a terminal but
has to pay its cost in return (cf. [33]). It is also not hard to see that this problem is
APX-hard, even if there are no Steiner vertices at all.

These simple results show that our techniques to obtain approximation schemes
reach their limit quite soon: With the exception of Unweighted Directed Steiner
Tree, most common variants of Steiner Tree seem not to admit approximation
schemes for our parameter p. We are however able to generalize our EPAS to Steiner
Forest if we combine p with the number c of connected components in the optimum
solution. In fact, our main result of Theorem 1 is a corollary of the next theorem,
using only the first part of the above mentioned reduction from Steiner Tree
(cf. subsection 2.1). Due to this, it is not possible to have a parameterized approximation
scheme for the parameter c alone, as such an algorithm would imply a polynomial
time approximation scheme for the APX-hard Steiner Tree problem. Hence the
following result necessarily needs to combine the parameters p and c.

Theorem 4. There is an algorithm for Steiner Forest, which given an edge-
weighted undirected graph G = (V,E), a list {s1, s′1}, . . . , {sk, s′k} ⊆ V of terminal
pairs, ε > 0, and integers p, c, computes a (1 + ε)-approximation to the cheapest
Steiner forest F ⊆ G with at most c connected components and p ≥ |V (F) \R| where

R = {si, s′i | 1 ≤ i ≤ k}, in time (2c)O((p+c)2/ε4) · nO(1). 2

As mentioned for Theorem 1, our algorithm might compute an approximate
solution with more than p Steiner vertices. Analogously, it may also compute a forest
with more than c components, even if its cost is compared to the best one containing
at most p Steiner vertices and c components only.

A topic tightly connected to parameterized algorithms is kernelization. We here
use the framework of Lokshtanov et al. [27], who also give a thorough introduction to
the topic (see subsection 2.2 for formal definitions). Loosely speaking, a kernelization
algorithm runs in polynomial time, and, given an instance of a parameterized problem,
computes another instance of the same problem, such that the size of the latter
instance is at most f(p) for some computable function f in the parameter p of the
input instance. The computed instance is called the kernel, and for an optimization
problem it must be possible to efficiently convert an optimum solution to the kernel

STEINER TREES WITH SMALL NUMBER OF STEINER VERTICES 5

into an optimum solution to the input instance.
A fundamental result of parameterized complexity says that a problem is FPT if

and only if it has a kernelization algorithm [11]. This means that for our parameter p,
most likely Steiner Tree does not have a kernelization algorithm, as it is W[2]-hard.
For this reason, the focus of kernelization results have previously shifted to special
cases again. By a folklore result, Steiner Tree is FPT for our parameter p if the
input graph is planar (cf. [25]). Of particular interest are polynomial kernels, which
have size polynomial in the input parameter. The idea is that computing the kernel in
this case is an efficient preprocessing procedure for the problem, such that exhaustive
search algorithms can be used on the kernel. Suchý [32] proved that Unweighted
Steiner Tree parameterized by p admits a polynomial kernel if the input graph is
planar.

Our aspirations again are to obtain results for inputs that are as general as
possible, i.e., on unrestricted edge-weighted input graphs. We prove that Steiner
Tree has a polynomial lossy (approximate) kernel, despite the fact that the problem
is W[2]-hard: An α-approximate kernelization algorithm is a kernelization algorithm
that computes a new instance for which a given β-approximation can be converted
into an αβ-approximation for the input instance in polynomial time. The new instance
is now called a (polynomial) approximate kernel, and its size is again bounded as a
function (a polynomial) of the parameter of the input instance.

Just as for our parameterized approximation schemes in Theorems 1 and 4,
we prove the existence of a lossy kernel for Steiner Tree by a generalization to
Steiner Forest where we combine the parameter p with the number c of connected
components in the optimum solution. Also, our lossy kernel can approximate the
optimum arbitrarily well: We prove that for our parameter the Steiner Forest
problem admits a polynomial size approximate kernelization scheme (PSAKS), i.e.,
for every ε > 0 there is a (1 + ε)-approximate kernelization algorithm that computes
a polynomial approximate kernel. An easy corollary then is that Steiner Tree
parameterized only by p also has a PSAKS, by setting c = 1 in Theorem 5 and
using the above mentioned reduction from Steiner Tree to Steiner Forest
(cf. subsection 2.1).

Theorem 5. There is a (1 + ε)-approximate kernelization algorithm for Steiner
Forest, which given an edge-weighted undirected graph G = (V,E), a list of terminal
pairs {s1, s′1}, . . . , {sk, s′k} ⊆ V , and integers p, c, computes an approximate kernel of

size ((p+ c)/ε)
2O(1/ε)

, if for the optimum Steiner forest F ⊆ G, we have p ≥ |V (F)\R|
where R = {si, s′i | 1 ≤ i ≤ k}, the number of connected components of F is at most c,
and ε > 0. 2

Analogous to approximation schemes, it is possible to distinguish between efficient
and non-efficient kernelization schemes: A PSAKS is size efficient if the size of the
approximate kernel is bounded by f(ε) · pO(1), where p is the parameter and f is
a computable function independent of p. Our bound on the approximate kernel
size in Theorem 5 implies that we do not obtain a size efficient PSAKS for either
Steiner Forest or Steiner Tree. This is in contrast to the existence of efficient
approximation schemes for the same parameters in Theorems 1 and 4. We leave open
whether or not a size efficient PSAKS can be found in either case. Interestingly, we also
do not obtain any PSAKS for the Unweighted Directed Steiner Tree problem,
even though by Theorem 2 an EPAS exists. In fact, we prove the following theorem.

Theorem 6. No (2− ε)-approximate kernelization algorithm exists for the Un-

6 P. DVOŘÁK, A. E. FELDMANN, D. KNOP, T. MASAŘ́ıK, T. TOUFAR, AND P. VESELÝ

weighted Directed Steiner Tree problem parameterized by the number p =
|V (T) \R| of Steiner vertices in the optimum Steiner arborescence T for any ε > 0,
unless NP ⊆ coNP/Poly.

1.1. Used techniques. Our algorithms are based on the intuition that a Steiner
tree containing only few Steiner vertices but many terminals must either contain a large
component induced by terminals, or a Steiner vertex with many terminal neighbors
forming a large star. A high-level description of our algorithms for Unweighted
Directed Steiner Tree and Steiner Forest therefore is as follows. In each
step a tree is found in the graph in polynomial time, which connects some terminals
using few Steiner vertices. We save this tree as part of the approximate solution and
then contract it in the graph. The vertex resulting from the contraction is declared
a terminal and the process repeats for the new graph. Previous results [25, 32] have
also built on this straightforward procedure in order to obtain FPT algorithms and
polynomial kernels for special cases of Unweighted Directed Steiner Tree and
Unweighted Steiner Tree. In particular, in the unweighted undirected setting it
is a well-known fact (cf. [32]) that contracting an adjacent pair of terminals is always
a safe option, as there always exists an optimum Steiner tree containing this edge.
However, this immediately breaks down if the input graph is edge-weighted, as an
edge between terminals might be very costly and should therefore not be contained in
any (approximate) solution.

Instead, we employ more subtle contraction rules, which use the following intuition.
Every time we contract a tree with ` terminals we decrease the number of terminals
by `− 1 (as the vertex arising from a contraction is a terminal). Our ultimate goal
would be to reduce the number of terminals to one—at this point, the edges that we
contracted during the whole run connect all the terminals. Decreasing the number of
terminals by one can therefore be seen as a “unit of work”. We will pick a tree with
the lowest cost per unit of work done, and prove that as long as there are sufficiently
many terminals left in the graph, these contractions only lose an ε-factor compared
to the optimum. As soon as the number of terminals falls below a certain threshold
depending on the given parameter, we can use an FPT algorithm computing the
optimum solution in the remaining graph. This algorithm is parameterized by the
number of terminals, which now is bounded by our parameter. For the variants of
Steiner Tree considered in our positive results, such FPT algorithms can easily be
obtained from the ones for Steiner Tree [2, 15, 19]. Adding this exact solution to
the previously contracted trees gives a feasible solution that is a (1 + ε)-approximation.

Each step in which a tree is contracted in the graph can be seen as a reduction rule
as used for kernelization algorithms. Typically, a proof for a kernelization algorithm
will define a set of reduction rules and then show that the instance resulting from
applying the rules exhaustively has size bounded as a function in the parameter. To
obtain an α-approximate kernelization algorithm, additionally it is shown that each
reduction rule is α-safe. Roughly speaking, this means that at most a factor of α is
lost when applying any number of α-safe reduction rules (see subsection 2.2 for formal
definitions).

Contracting edges in a directed graph may introduce new paths, which did not
exist before. Therefore, for the Unweighted Directed Steiner Tree problem, we
need to carefully choose the arborescence to contract. In order to prove Theorem 2,
we show that each contraction is a (1 + ε)-safe reduction rule. However, the total size
of the graph resulting from exhaustively applying the contractions is not necessarily
bounded as a function of our parameter. Thus, we do not obtain an approximate

STEINER TREES WITH SMALL NUMBER OF STEINER VERTICES 7

kernel.
For Steiner Forest the situation is in a sense the opposite. Choosing a tree to

contract follows a fairly simple rule. On the downside however, the contractions we
perform are not necessarily (1 + ε)-safe reduction rules. In fact there are examples
in which a single contraction will lose a large factor compared to the optimum cost.
We are still able to show that after performing all contractions exhaustively, any β-
approximation to the resulting instance can be converted into a (1+ε)β-approximation
to the original input instance. Even though the total size of the resulting instance
again cannot be bounded in terms of our parameter, for Steiner Forest we can go
on to obtain a PSAKS. For this we utilize a result of Lokshtanov et al. [27], which
shows how to obtain a PSAKS for Steiner Tree if the parameter is the number of
terminals. This result can be extended to Steiner Forest, and since our instance
has a number of terminals bounded in our parameter after applying all contractions,
we obtain Theorem 5.

To obtain our inapproximability result of Theorem 3, we use a reduction from
the Dominating Set problem. It was recently shown by Srikanta et al. [31] that
this problem does not admit parameterized f(k)-approximation algorithms for any
function f , if the parameter k is the solution size, unless W[1] = FPT. We are able to
exploit this to also show that no such algorithm exists for Directed Steiner Tree
with edge weights, under the same assumption. To prove Theorem 6 we use a cross
composition from the Set Cover problem, for which Dinur and Steurer [12] proved
that it is NP-hard to compute a (1− ε) ln(n)-approximation. We are able to preserve
only a constant gap; thus, we leave open whether stronger non-constant lower bounds
are obtainable, or whether Unweighted Directed Steiner Tree has a polynomial
size α-approximate kernel for some constant α ≥ 2.

1.2. Related work. As the Steiner Tree problem and its variants have been
studied since decades, the literature on this topic is huge. We only present a selection
of related work here, that was not yet mentioned above.

For general input graphs, Zelikovsky [34] gave the first polynomial time approx-
imation algorithm for Steiner Tree with a better ratio than 2 (which can easily
be obtained by computing an MST on the terminal set). His algorithm is based on
repeatedly contracting stars with three terminals each, in the metric closure of the
graph, which yields a 11/6-approximation. This line of work led to the Borchers and
Du [4] Theorem, which states that for every Steiner Tree instance with terminal set
R and every ε > 0 there exists a set of sub-trees (so-called full components) on at most
2O(1/ε) terminals from R each and with all leaves being terminals, such that their union
forms a Steiner tree for R of cost at most 1 + ε times the optimum. As a consequence,
it is possible to compute all full components with at most 2O(1/ε) terminals (using
an FPT algorithm parameterized by the number of terminals [15, 19]), and then find
a subset of the precomputed solutions, in order to approximate the optimum. This
method is the basis of most modern Steiner Tree approximation algorithms, and
is for instance leveraged in the currently best (ln(4) + ε)-approximation algorithm of
Byrka et al. [6]. The Borchers and Du [4] Theorem can also be interpreted in terms
of approximate kernelization schemes, as Lokshtanov et al. [27] point out (cf. proof of
Theorem 5). It is interesting to note that our algorithms are also based on finding
good sub-trees. However, while computing optimum full components is NP-hard, the
sub-trees we compute in each step can be found in polynomial time, regardless of how
many terminals they contain.

For planar graphs [5] it was shown that an EPTAS exists for Steiner Tree. For

8 P. DVOŘÁK, A. E. FELDMANN, D. KNOP, T. MASAŘ́ıK, T. TOUFAR, AND P. VESELÝ

Steiner Forest a 2-approximation can be computed in polynomial time on general
inputs [1], but an EPTAS also exists if the input is planar [17]. If the Unweighted
Steiner Tree problem is parameterized by the solution size, it is known [13] that no
polynomial (exact) kernel exists, unless NP ⊆ coNP/Poly. If the input is restricted to
planar or bounded-genus graphs it was shown that polynomial kernels do exist for this
parameterization [30]. It was later shown [32] that for planar graphs this is even true
for our smaller parameter p.

For the Directed Steiner Tree problem it is a long standing open problem
whether a polylogarithmic approximation can be computed in polynomial time. It is
known that an O (|R|ε)-approximation can be computed in polynomial time [7], and
an O

(
log2 n

)
-approximation in quasi-polynomial time [7]. Feldmann and Marx [18]

consider the Directed Steiner Network problem, which is the directed variant of
Steiner Forest (i.e., a generalization of Directed Steiner Tree). They give a
dichotomy result, proving that the problem parameterized by |R| is FPT whenever the
terminal pairs induce a graph that is a caterpillar with a constant number of additional
edges, and otherwise the problem is W[1]-hard. Among the W[1]-hard cases is the
Strongly Connected Steiner Subgraph problem (for which the hardness was
originally established by Guo et al. [20]), in which all terminals need to be strongly
connected. For this problem a 2-approximation is obtainable [8] when parameterizing
by |R|, and a recent result shows that this is the best possible [9] under the Gap
Exponential Time Hypothesis.

In the same paper, Chitnis et al. [9] also consider the Bidirected Steiner
Network problem, which is the directed variant of Steiner Forest on bidirected
input graphs, i.e., directed graphs in which for every edge uv the reverse edge vu
exists as well and has the same cost. These graphs model inputs that lie between
the undirected and directed settings. From Theorems 1 and 5, it is not hard to see
that the Bidirected Steiner Tree problem (i.e., Directed Steiner Tree on
bidirected inputs) has both an EPAS and a PSAKS for our parameter p, by reducing
the problem to the undirected setting. Since the PSAKS for parameter p follows from
the PSAKS for parameter |R| given by Lokshtanov et al. [27], it is interesting to note
that for parameter |R|, Chitnis et al. [9] provide both a PSAKS and a parameterized
approximation scheme for the Bidirected Steiner Network problem whenever the
optimum solution is planar. This is achieved by generalizing the Borchers and Du [4]
Theorem to this setting. As this is a generalization of Bidirected Steiner Tree, it
is natural to ask whether corresponding algorithms also exist for our parameter p in
the more general setting considered in [9].

2. Preliminaries.

2.1. Reducing Steiner tree to Steiner forest. By a folklore result, we may
reduce the Steiner Tree problem to Steiner Forest. For this we pick an arbitrary
terminal r of the Steiner Tree instance, and for every other terminal v of this
instance, introduce a terminal pair {v, r} for Steiner Forest.

If we want to construct an instance without Steiner vertices, we can add a new
vertex w′ for every Steiner vertex w of Steiner Tree and add an edge ww′ of cost 0.
Additionally, we introduce a terminal pair {w,w′} to our Steiner Forest instance.
Hence, R = V in the constructed Steiner Forest instance (i.e., there are no Steiner
vertices), but an optimum Steiner forest in the constructed graph costs exactly as much
as an optimum Steiner tree in the original graph. As Steiner Tree is APX-hard, the
same is true for Steiner Forest, even if all vertices are terminals.

STEINER TREES WITH SMALL NUMBER OF STEINER VERTICES 9

2.2. Lossy kernels. We give a brief introduction to the lossy kernel framework
as introduced by Lokshtanov et al. [27]. See the latter reference for a thorough
introduction to the topic.

For an optimization problem, a polynomial time preprocessing algorithm is a pair
of polynomial time algorithms: the reduction algorithm R and the solution lifting
algorithm L. The former takes an instance I with parameter p of a given problem
as input, and outputs another instance I ′ with parameter p′. The solution lifting
algorithm L converts a solution for the instance I ′ to a solution of the input instance
I: Given a solution s′ to I ′, L computes a solution s for I such that s is optimal for I
if s′ is optimal for I ′. If additionally the output of R is bounded as a function of p,
i.e., when |I ′| + p′ ≤ f(p) for some computable function f independent of |I|, then
the pair given by R and L is called a kernelization algorithm, and I ′ together with
parameter p′ is the kernel. If the reduction and solution lifting algorithms get an input
that is not an instance of the problem (for example if the parameter does not correctly
describe some property of the optimum solution), then the outputs of the algorithms
are undefined and can be arbitrary.

An α-approximate polynomial time preprocessing algorithm is again a pair of
a reduction algorithm R and a solution lifting algorithm L, both running in time
polynomial in the input size. The reduction and solution lifting algorithms are as
before, but there is a different property on the output of the latter: If the given
solution s′ to the instance I ′ computed by R is a β-approximation, then the output of
L is a solution s that is an αβ-approximation for the original instance I. Analogous to
before, an α-approximate kernelization algorithm is an α-approximate polynomial time
preprocessing algorithm for which the size of the output of the reduction algorithm
is bounded in terms of p only. The output of R is in this case called an approximate
kernel, and it is polynomial if its size is bounded by a polynomial in p.

In the context of lossy kernels, a reduction rule is a reduction algorithm R. It is
called α-safe if a solution lifting algorithm L exists, which together with R form a
strict α-approximate polynomial time preprocessing algorithm. This means that if s′

is a β-approximation for the instance computed by R, then L computes a (max{α;β})-
approximation s for the input instance. As shown in [27], the advantage of considering
this stricter definition is that, as usual, reduction rules can be applied exhaustively,
until a stable point is reached in which none of the rules would change the instance
any longer. The algorithm resulting from applying these rules, together with their
corresponding solution lifting algorithms, forms a strict α-approximate polynomial time
preprocessing algorithm (which is not necessarily the case when using the non-strict
definition; see [27]).

3. The weighted undirected Steiner forest and Steiner tree problems.
In this section we describe an approximate polynomial time preprocessing algorithm
that returns an instance of Steiner Forest containing at most O

(
(p+ c)2/ε4

)
terminals if there is a Steiner forest with at most p Steiner vertices and at most c
connected components. We can use this algorithm in two ways. Either we can proceed
with a kernelization derived from Lokshtanov et al. [27] and obtain a polynomial size
lossy kernel (Theorem 5), or we can run an exact FPT algorithm derived from Fuchs
et al. [19] on the reduced instance, obtaining an EPAS running in single exponential
time with respect to the parameters (Theorems 1 and 4). In both cases we use the
combined parameter (p, c).

10P. DVOŘÁK, A. E. FELDMANN, D. KNOP, T. MASAŘ́ıK, T. TOUFAR, AND P. VESELÝ

Steiner Forest
Input: A graph G = (V,E), with edge weights w(e) ∈ R+ for each e ∈ E,

and a list {s1, s′1}, . . . , {sk, s′k} of pairs of terminals.
Solution: A Steiner forest F ⊆ G containing an si-s

′
i path for every i ∈ [k]

3.1. Algorithm description. We first rescale all weights so that every edge
has weight strictly greater than 1. Using a standard preprocessing procedure, we also
take the metric closure of the input graph, i.e., every edge of the graph is present
and its weight is equal to the shortest path distance of the endpoints in the original
input graph. It is easy to see (and folklore) that solving Steiner Forest in the
metric closure is equivalent to solving it for the original input graph. Moreover, every
solution still exists as a subgraph in the metric closure, so that our parameters remain
unchanged.

Then, in each step of our algorithm we pick a star, add it to the solution, and
contract the star in the current graph. After the contraction, the edge weights may not
obey the triangle inequality anymore. However, this is not needed for our algorithm.
Instead, we only need that the graph is always complete, so that a star to contract
can always be found. We repeat this procedure until the number of terminals falls
below a specified bound depending on ε, p, and c. To describe how we pick the star to
be contracted in each step, we need to introduce the ratio of a star.

Definition 7. Let C be a set of edges of a star, i.e., all edges of C are incident to
a common vertex which is the center of the star, and denote by Q the set of terminals
in V (C), where V (C) is the set of vertices in C. Provided |Q| ≥ 2, we define the ratio
of C as w(C)/(|Q| − 1), where w(C) =

∑
e∈C w(e).

Note that we allow C to contain only a single edge if it joins two terminals,
and that due to rescaling of edge weights each star has ratio strictly greater than 1.
Observe also that the ratio of a star is similar to the average weight of an edge in the
star. However the ratio is skewed due to the subtraction of 1 in the denominator. In
particular, for two stars of the same average weight, the one with more terminals will
have the smaller ratio. Thus, in this sense, picking a star with small ratio favors large
stars.

In every step, our algorithm contracts a star with the best available ratio (i.e., the
lowest ratio among all stars connecting at least two terminals). Since we assume that
our input is a complete graph, a star containing two terminals always exists (except
in the trivial case when there is only one terminal). Moreover, due to the following
lemma, a star with the best ratio has a simple form: It consists of the cheapest ` edges
incident to its center vertex such that all leaves are terminals. As there are n possible
center vertices and at most n incident edges to each center which can be sorted in
time O (n log n), the best ratio star can be found in time O

(
n2 log n

)
.

Lemma 8. Let v be a vertex and denote by q1, q2, . . . the terminals adjacent to v,
where w(vq1) ≤ w(vq2) ≤ · · · , i.e., the terminals are ordered non-decreasingly by the
weight of the corresponding edge vqi. The star with the best ratio having v as its center
has edge set {vq1, vq2, . . . , vq`} for some `.

Proof. Let C be an edge set of a star with center vertex v. First note that if this
star contains a Steiner vertex w as a leaf, vw can be removed from C in order to
decrease the ratio w(C)/(|Q|−1), since only the terminals Q of the star are counted in
the denominator. Also if C does not contain some edge vqi but an edge vqj with j > i,
then we may switch the edge vqj for vqi in C in order to optimize the ratio: The

STEINER TREES WITH SMALL NUMBER OF STEINER VERTICES 11

denominator stays the same, but the numerator cannot increase, as the terminals
q1, q2, . . . are ordered non-decreasingly according to the weights of vqi.

We now formally describe different graphs resulting from each contraction step t,
together with their terminal pairs. Initially, we set G0 to the input graph, and in each
step t ≥ 0 we obtain a new graph Gt+1 from Gt by contracting a set of edges Ct in
Gt, such that Ct forms a star of minimum ratio in Gt. That is, we obtain Gt+1 from
Gt by identifying all vertices in V (Ct), removing all resulting loops, and among the
resulting parallel edges we delete all but the lightest one with respect to their weights.
We also adjust the terminal pairs in a straightforward way: Let v be the vertex of
Gt+1 resulting from contracting Ct. If Gt had a terminal pair {s, s′} such that s is
incident to some edge of Ct while s′ is not (i.e., s ∈ V (Ct) and s′ /∈ V (Ct)), then we
introduce the terminal pair {v, s′} for Gt+1. Also every terminal pair {s, s′} of Gt for
which neither s nor s′ is incident to any edge of Ct is introduced as a terminal pair
of Gt+1. Somewhat counter-intuitively, we also introduce the (trivial) terminal pair
{v, v} for Gt+1 if there was a terminal pair in Gt for which both s and s′ were incident
to edges of Ct. In particular, this means that v can be a leaf of a contracted star in a
subsequent step, even though the solution might not require any connection from v to
some other terminal. The reason we need to keep v as a terminal is that otherwise
the number of Steiner vertices of the considered solution, i.e., our parameter p, might
increase. Still, our analysis below shows that contracting such a trivial terminal v in a
best-ratio star will not cause any problems.

The number of terminals in any given instance with terminal pairs
{s1, s′1}, . . . , {sk, s′k} is the size of the set R = {si, s′i | 1 ≤ i ≤ k}. This in par-
ticular means that if a terminal appears in several pairs or is in a trivial terminal
pair, it is only counted once. The algorithm stops contracting best-ratio stars when
there are less than τ terminals left in R; we have τ = O

(
(p+ c)2/ε4

)
, but we specify

the precise value of τ in the analysis below. If the algorithm stops in step t̃, the
solution lifting algorithm takes a feasible solution F of Gt̃ and returns the union of F

and
⋃t̃

t=0 Ct. Such a solution is clearly feasible, since we adapted the terminal pairs
accordingly after each contraction. Algorithm 3.1 gives a pseudo-code of the resulting
algorithm.

3.2. Analysis. For the purpose of analysis, we consider a solution in the current
graph Gt that originates from a solution of the original instance G0, but may contain
edges that are heavier than those in Gt. More concretely, denote by F ∗0 a solution in
G0 with at most p Steiner vertices and at most c components, i.e., F ∗0 is a Steiner
forest containing an si-s

′
i path for any i. We remark that F ∗0 may or may not be an

optimum solution of G0, and that we think of F ∗0 as a subgraph of G0, isomorphic to
a forest, without isolated vertices.

Given F ∗t for t ≥ 0, we modify this solution to obtain a new feasible solution
F ∗t+1 on the terminal pairs of Gt+1 (as defined above). F ∗t+1 will again be a subgraph
of Gt+1 without isolated vertices. Note that the edges of the contracted star Ct might
not be part of F ∗t . We still mimic the contraction of the star in F ∗t : To obtain F ∗t+1

from F ∗t , we identify all leaves of Ct (which are terminals by Lemma 8 and thus part
of the solution F ∗t) and possibly also the center v of Ct if it is in F ∗t . (Note that if
v is not a terminal, it may not be a part of the solution F ∗t , which does not contain
isolated vertices.) This results in a vertex v′ and a solution F ′t+1 for Gt+1, which
however may well contain some cycles or loops.

We now want to delete edges incident to v′ in such a way that we are left with an

12P. DVOŘÁK, A. E. FELDMANN, D. KNOP, T. MASAŘ́ıK, T. TOUFAR, AND P. VESELÝ

Algorithm 3.1 An algorithm for solving Steiner Forest. If we stop before line 11
we obtain the reduced instance.
input :undirected graph G = (V,E), list of terminal pairs {s1, s′1}, . . . , {sk, s′k}, edge

weights w(e) ∈ R+
0

output : a forest F ⊆ G that contains an si-s
′
i path for any i ∈ {1, . . . , k}

1 Function BestStar(v)
2 if v is a terminal then z ← 1;
3 else z ← 0;
4 q1, . . . , qk ← terminals adjacent to v sorted by the weight of edge vqi /* k ≥ |R|−1

in the metric closure */

5 for i in 2− z, . . . , k do

6 ri ←
∑i

j=1 w(vqj)/(i+ z − 1)

7 return edges {vq1, . . . , vqi} of a star with the smallest ri

8 while |R| ≥ τ do
9 C ← arg min{w(Cv) | Cv ← BestStar(v), v ∈ V } /* a star exists in the

metric closure */

10 Contract C, then remove loops and among parallel edges, keep only the lightest.
Adjust the terminal pairs accordingly.

11 Run FPT algorithm parameterized by the number of terminals and connected compo-
nents

acyclic feasible solution for Gt+1. Let Qt denote the set of terminals in V (Ct). We
repeat the following simple step to find an inclusion-wise minimal feedback edge set
Dt of F ′t+1 that is incident to v′: As long as there is a cycle K in F ′t+1 (possibly, K is
a loop), remove from F ′t+1 an edge e of K such that in solution F ∗t , edge e is incident
to Qt (thus, in particular, e is incident to v′ in F ′t+1). We claim that K must contain
an edge e that is incident to a terminal in Qt in solution F ∗t . Indeed, observe first that
K must contain v′, since otherwise K appears in F ∗t , which contradicts the acyclicity
of F ∗t . Recall that the only vertex of V (Ct) that may be a Steiner vertex is the center
v of the star Ct. If K is a loop, then the only edge e of K connects two vertices in
V (Ct), so e is incident to Qt. Otherwise, K contains two edges e′ and e′′ incident to
v′ that do not connect two vertices in V (Ct), because edges connecting vertices in
V (Ct) become loops after the contraction. Since both e′ and e′′ cannot be incident to
v in F ∗t (otherwise, K would be a cycle in F ∗t), one of e′ or e′′ must be incident to Qt,
which shows the claim. It follows that the above procedure is well-defined.

Once there is no cycle in F ′t+1, we set F ∗t+1 := F ′t+1, which now forms a forest
connecting all terminal pairs of Gt+1. Note that for each edge in F ∗t+1 there is a
corresponding edge in Gt+1, which however may be lighter in Gt+1, as from each
bundle of parallel edges in Gt we keep the lightest one, but this edge may not exist
in F ∗t . Let Dt := E(F ∗t) \ E(F ∗t+1) be the set of edges that were deleted from the
solution. (We remark that we do not optimize the total length of edges in Dt.)

To show that our algorithm only loses an ε-factor compared to the cost of the
solution F ∗0 , we will compare the cost of the edges Ct contracted by our algorithm to
the set Dt of deleted edges of F ∗t . Note that for any two time steps t 6= t′, the sets Dt

and Dt′ , but also the sets Ct and Ct′ , are disjoint. Thus if w(Ct) ≤ (1 + ε)w(Dt) for
every t, then our algorithm computes a (1 + ε)-approximation. Unfortunately, this is
not always the case: there are contractions for which this condition does not hold (see
Figure 2) and we have to account for them differently.

STEINER TREES WITH SMALL NUMBER OF STEINER VERTICES 13

· · · · · ·

v

Ct

F ∗t

v′ v′

F ∗t+1

Fig. 1. An example of creating F ∗t+1 from F ∗t after contracting Ct. Solid edges (including the
thick one) belong to solutions F ∗t+1 and F ∗t , while edges in Ct are dashed. Note that in this example,
no edge in Ct belongs to F ∗t , although this is not true in general. Set Dt consists of all edges deleted
in the second step, i.e., all edges incident to v′, except for the thick edge, which cannot be in Dt

because it is not incident to any terminal.

Definition 9. If w(Ct) ≤ (1 + ε)w(Dt) we say that the contracted edge set Ct in
step t is good; otherwise Ct is bad. Moreover, if F ∗t has strictly more components
than F ∗t+1, we say that Ct is multiple-component, otherwise it is single-component.

Our goal is to show that the total weight of bad contractions is bounded by an
ε-fraction of the weight of F ∗0 . We start by proving that if the set Qt of terminals in a
contracted edge set Ct is sufficiently large, then the contraction is good. Intuitively,
this means that skewing the ratio such that large stars are favored (compared to just
picking the star with the smallest average weight) tends to result in good contractions.
We define

λ :=
(1 + ε)(p+ c)

ε
.

Lemma 10. If |Qt| ≥ λ, then the contracted edge set Ct is good.

Proof. Let r = w(Ct)/(|Qt| − 1) be the ratio of the contracted star, and let `′ be
the number of deleted edges in Dt that connect two terminals. Note that any such
edge has weight at least r, since it spans a star with two terminals, which has ratio
equal to its weight, and since each edge in F ∗t (of which Dt is a subset) can only be
heavier than the corresponding edge in the current graph Gt.

Let u1, . . . , uq be the Steiner vertices adjacent to edges in Dt, and let `i be the
number of edges in Dt incident to one such Steiner vertex ui (see Figure 3). Since Dt

is a feedback edge set in which any edge was incident to a terminal in Qt before the
contraction, there is no edge in Dt which connects two Steiner vertices. Consider the
star spanned by the `i edges of Dt incident to ui. If `i ≥ 2, the ratio of this star is
at least r, since its edges are at least as heavy as the corresponding edges in Gt and
the algorithm chose a star with the minimum ratio in Gt. Thus, the weight of edges
in Dt incident to ui is at least r(`i − 1). In the case where `i = 1, the lower bound
r(`i − 1) = 0 on the weight holds trivially.

Any edge in Dt not incident to any Steiner vertex ui connects two terminals.
Therefore, we have `′ +

∑q
i=1 `i = |Dt| as any edge in Dt is incident to a terminal in

Qt and we thus do not count any edge twice.
We observe next that from the construction of F ∗t we get that there are at least

|Qt| − c edges in Dt. Recall that we contracted terminals in Qt in the forest F ∗t which
has at most c connected components in order to obtain F ∗t+1. Indeed, a forest on
n vertices and c components has n − c edges. We decrease the number of vertices
of F ∗t by at least |Qt| − 1 (one more if the center of the star with edge set Ct was

14P. DVOŘÁK, A. E. FELDMANN, D. KNOP, T. MASAŘ́ıK, T. TOUFAR, AND P. VESELÝ

t2 t1

· · ·

M

M

M

M

MM

M

M

M

MM

1

1

1

11

1

1

1

1 1

M

11

Fig. 2. An example of a bad contraction. The optimum solution consists of the thick edges. The
numbers of terminals and the weight M can be arbitrarily large. Note that any edge in the metric
closure between any two terminals has length of at least M if there are at least M + 1 terminals. The
star centered at t1 and containing the incident terminal t2 has ratio M , while every other star in the
metric closure of the graph has ratio slightly more than M . By contracting the star t1, t2 we create a
cycle in the optimum solution containing edges of weight 1 only. Thus, for a sufficiently large value
of M the contraction cannot be charged.

a Steiner vertex present in F ∗t), and we decrease the number of components by at
most c− 1. Let z be the number of vertices in F ∗t . We conclude that the forest F ∗t+1

has at most z − |Qt|+ 1 vertices and at least 1 connected component. Thus, there are
at most z − |Qt| edges in F ∗t+1 and we get that |Dt| ≥ z − c− (z − |Qt|) = |Qt| − c.

Since F ∗t contains at most p Steiner vertices we have q ≤ p, and we obtain

w(Dt) ≥ r`′ +
q∑

i=1

r(`i − 1) = r

(
`′ +

q∑
i=1

`i − q

)
= r(|Dt| − q) ≥ r

(
|Qt| − p− c

)
.

Finally, using |Qt| ≥ λ we bound w(Ct) by (1 + ε)w(Dt) as follows:

(1 + ε)w(Dt) ≥ (1 + ε)r
(
|Qt| − p− c

)
= r|Qt|+ r

(
ε|Qt| − (1 + ε)(p+ c)

)
≥ w(Ct) + r

(
ε

(1 + ε)(p+ c)

ε
− (1 + ε)(p+ c)

)
= w(Ct) .

Note that there may be a lot of contractions with |Q| < λ. However, we show
that only a bounded number of them is actually bad. The key idea is to consider

STEINER TREES WITH SMALL NUMBER OF STEINER VERTICES 15

· · ·

u1

· · · · · · · · ·

uq

· · ·

v

Qt

Ct

Dt

`′
`1 `q

Fig. 3. The contracted star Ct and a part of the optimal solution spanned by the terminals Qt

of the star Ct.

contractions with ratio in an interval
(
(1 + δ)i; (1 + δ)i+1

]
for some δ > 0 and integer i.

Due to the rescaling of weights every star belongs to an interval with i ≥ 0. The
following crucial lemma of our analysis shows that the number of bad single-component
contractions in each such interval is bounded in terms of p and ε, if δ is a function
of ε. In particular, let δ :=

√
1 + ε− 1, so that (1 + δ)2 = 1 + ε. We call an edge set

C with ratio r in the i-th interval, i.e., with r ∈
(
(1 + δ)i; (1 + δ)i+1

]
, an i-contraction,

and define

κ :=
(1 + δ)p

δ
+ p .

Lemma 11. For any integer i the number of bad single-component i-contractions
is at most κ.

Proof. Let us focus on bad single-component i-contractions only, which we here
just call bad i-contractions for brevity. Suppose for a contradiction that the number of
bad i-contractions is larger than κ. The plan is to show that at each of the κ steps t in
which a bad i-contraction happens, there must be a cheap edge et in the corresponding
set Dt. Since the deleted sets Dt are disjoint, all of these edges are also present in Gt̃

of the first step t̃ with a bad i-contraction, i.e., t̃ is the minimum among all t for which
w(Ct) > (1+ε)w(Dt) and w(Ct)/

(
|Qt|−1

)
∈
(
(1+δ)i; (1+δ)i+1

]
and the contraction

is single-component. We then show that among all the cheap edges in Gt̃ there is a
“light” star with ratio at most (1 + δ)i, and consequently the algorithm would do a
j-contraction for some j < i. This leads to a contradiction, since we assumed that in
step t̃ the contraction has ratio in interval i. Note that it is sufficient to find such a
light star in F ∗

t̃
as for each edge in F ∗

t̃
there is an edge in the graph Gt̃ between the

same vertices of the same weight or even lighter.
We claim that for each step t in which the algorithm does a bad i-contraction there

is an edge et ∈ Dt with weight at most (1 + δ)i−1. We have w(Ct) > (1 + ε)w(Dt) as
Ct is bad and w(Ct) ≤ (1 + δ)i+1

(
|Qt| − 1

)
as the ratio of Ct is in interval i. Putting

it together and using the definition of δ we obtain

w(Dt) <
(1 + δ)i+1

1 + ε

(
|Qt| − 1

)
= (1 + δ)i−1

(
|Qt| − 1

)
.

Because Ct is single-component, we have |Dt| ≥ |Qt| − 1 and therefore there is an edge
et ∈ Dt with weight at most (1 + δ)i−1, which proves the claim.

16P. DVOŘÁK, A. E. FELDMANN, D. KNOP, T. MASAŘ́ıK, T. TOUFAR, AND P. VESELÝ

Note that the edge et also exists at time step t̃, as t̃ ≤ t and F ∗t is obtained from
F ∗
t̃

by a sequence of edge contractions and deletions. At time t̃ it cannot be that et
connects two terminals, since we assume that the algorithm picked a star of ratio more
than (1 + δ)i in step t̃ (recall that each edge connecting two terminals is a star with
ratio equal to its weight). It may happen though that et connects two Steiner vertices
in step t̃. We discard any such edge et that connects two Steiner vertices in step t̃.
That is, let S be the set of light edges et that connect a Steiner vertex and a terminal
in step t̃. Note that edges et and et′ for steps t < t′ with bad i-contractions are distinct,
because Dt ∩ Dt′ = ∅ as all edges in Dt are deleted from F ∗t . There are at most
p− 1 edges et /∈ S connecting two Steiner vertices in F ∗

t̃
, since F ∗

t̃
is a forest and the

solution from which F ∗
t̃

is derived contained at most p Steiner vertices. Summarizing,
we assume that there are more than κ bad single-component i-contractions, each of
which contributes one edge et that is incident to a Steiner vertex, and we remove less
than p edges et that connect two Steiner vertices, which implies that set S of the
remaining edges et satisfies |S| > κ− p.

At step t̃ there must be a Steiner vertex v in F ∗
t̃

incident to at least |S|/p >
(κ−p)/p ≥ (1+δ)/δ edges in S. Consider a star C with v as the center and with edges
from S that are incident to v; we have |C| ≥ (1 + δ)/δ. The ratio of this star is at most
|C|(1 + δ)i−1/

(
|C| − 1

)
. Since |C|/

(
|C| − 1

)
≤ (1 + δ) (by a routine calculation) we

get that the ratio of C is at most (1 + δ)i which is a contradiction to the assumption
that the algorithm does an i-contraction in step t̃.

We remark that the proof of Lemma 11 does not use that the number of terminals
in a bad i-contraction is bounded by λ, as shown in Lemma 10. Instead we will bound
the total weight of bad contractions in terms of λ. For this let j be the largest interval
of any contraction during the whole run of the algorithm, i.e., the ratio of every
contracted star is at most (1 + δ)j+1. As there are at most κ bad single-component
contractions in each interval and at most c− 1 (bad) multiple-component contractions,
and as the interval size grows exponentially, we can upper bound the total weight of
bad contractions in terms of κ, c, λ, and (1 + δ)j . We can also lower bound the weight
of w(F ∗0) in terms of (1 + δ)j and the lower bound τ on the number of terminals in the
graph. If τ is large enough, then the total weight of edge sets Ct of bad contractions
is at most ε · w(F ∗0). These ideas are summarized in the next lemma.

Lemma 12. Let j be the largest interval of any contraction during the whole run
of the algorithm and let WB be the total weight of the union edge sets Ct of bad
contractions. Then, the following holds.
(1) WB ≤ (κ+ c) · λ · (1 + δ)j+2/δ .
(2) w(F ∗0) ≥ (1 + δ)j · (τ − c− p).
(3) Let

τ := (κ+ c) · λ · (1 + δ)2

εδ
+ c+ p ,

then WB ≤ ε · w(F ∗0).

Proof. To prove (1), observe first that if Ct is a multiple-component edge set, F ∗t+1

must have at least one component fewer than F ∗t . Since F ∗0 has at most c components,
there are less than c bad multiple-component contractions. Each of them has at
most λ terminals by Lemma 10 and has ratio at most (1 + δ)j+1 by the choice of j.
Thus, the total weight of all bad multiple-component contractions can be bounded by
(1 + δ)j+1 · c · λ.

Note that it follows from Lemmas 10 and 11 that the total weight of bad single-

STEINER TREES WITH SMALL NUMBER OF STEINER VERTICES 17

component i-contractions is at most κ ·λ · (1 + δ)i+1. The bound on the total weight of
bad contractions follows by summing over all intervals in which the algorithm possibly
does a contraction:

κ · λ ·
∑

1≤i≤j

(1 + δ)i+1 + c · λ · (1 + δ)j+1

= κ · λ · (1 + δ)j+2 − (1 + δ)

(1 + δ)− 1
+ c · λ · (1 + δ)j+1

≤ (κ+ c) · λ · (1 + δ)j+2

δ
.

This proves (1).
For (2), when our algorithm contracted a star having ratio r ≥ (1 + δ)j in the

largest interval j in some step t, all stars in Gt with at least two terminals had ratio at
least r. Let v1, . . . , vq be the Steiner vertices of F ∗t and u1, . . . , uq′ be Steiner vertices
of F ∗t which are connected to at least one terminal. Thus, if `i is the number of
terminals adjacent to ui in F ∗t , then these terminals together with ui form a star of
weight at least r · (`i−1) if `i ≥ 2, since no edge in F ∗t is lighter than the corresponding
edge of Gt. If `i = 1 then lower bound r · (`i − 1) = 0 on the weight trivially holds.
Similarly, all edges between terminals in F ∗t have weight at least r; let `′ be the number
of such edges.

Since F ∗t has at least τ terminals in step t (otherwise the algorithm would have
terminated), it contains q Steiner vertices, and has at most c components, the total
number of edges of F ∗t is τ + q − c. Those of its edges that connect two Steiner
vertices form a forest on at most q vertices, and there can therefore be at most q − 1
such edges. Hence the number of edges in F ∗t that are incident to a terminal is

`′ +
∑q′

i=1 `i ≥ τ + q − c− (q − 1) ≥ τ − c. Using p ≥ q′, the total weight of edges in
F ∗t is at least

`′r +

q′∑
i=1

r · (`i − 1) ≥ r · (τ − c− p) ≥ (1 + δ)j · (τ − c− p) .

This shows (2) as w(F ∗t) ≤ w(F ∗0).
To get (3), by (2) and using the value of τ we have

ε ·w(F ∗0) ≥ ε(1+δ)j ·(τ−c−p) = ε(1+δ)j ·(κ+c) ·λ · (1 + δ)2

εδ
= (κ+c) ·λ · (1 + δ)j+2

δ
,

which is the upper bound on WB by (1).

The above lemma can now be used to prove that all the contractions put together
(with ε scaled appropriately) form a (1 + ε)-approximate preprocessing procedure with
respect to F ∗0 (cf. subsection 2.2).

Lemma 13. The algorithm outputs an instance with τ ∈ O
(
(p+ c)2/ε4

)
terminals

and (together with the solution lifting algorithm) it is a (1+2ε)-approximate polynomial
time preprocessing algorithm with respect to F ∗0 .

Proof. The upper bound on the number of terminals follows directly from the
description of the algorithm. To bound the running time, we already noted that finding
a minimum ratio star to contract can be done in O

(
n2 log n

)
time. Since such a star

with at least two vertices is contracted in each step t to form the next graph Gt+1,
the total time used for contractions until only τ terminals are left is polynomial in n.

18P. DVOŘÁK, A. E. FELDMANN, D. KNOP, T. MASAŘ́ıK, T. TOUFAR, AND P. VESELÝ

Let us focus on the (1 + 2ε)-approximate part. Let H = Gt̃ be the graph left after
the last contraction step t̃, and let FH be a Steiner forest for the remaining terminal
pairs. The solution lifting algorithm simply adds all contracted edge sets C0, C1, . . .
to FH in order to compute a Steiner forest FG in the input graph G0. We need to
show that, if FH is a β-approximation to the optimum solution F ∗H in H, the resulting
forest FG is a

(
(1 + 2ε)β

)
-approximation to the solution F ∗0 of G0.

Let us call a step t of the algorithm good (bad) if the corresponding contracted
edge set Ct is good (bad). As all sets Ct are disjoint, we use Lemma 12 to bound the
weight of FG by

w(FG) =
∑

good t

w(Ct)+
∑
bad t

w(Ct)+w(FH) ≤
∑

good t

(1+ε)w(Dt)+ε·w(F ∗0)+β ·w(F ∗H).

The forest F ∗
t̃

left after the last contraction corresponds to a feasible solution in H.
As the edge weights might be less expensive in H than in F ∗

t̃
, we have w(F ∗H) ≤ w(F ∗

t̃
).

At the same time, the deleted sets Dt and the edges of F ∗
t̃

are disjoint, so that∑
good t w(Dt) ≤

∑
t w(Dt) ≤ w(F ∗0)− w(F ∗

t̃
). Therefore, the above bound becomes

w(FG) ≤ (1 + ε)
(
w(F ∗0)− w(F ∗t̃)

)
+ ε · w(F ∗0) + β · w(F ∗t̃)

≤ (1 + ε)β
(
w(F ∗0)− w(F ∗t̃) + w(F ∗t̃)

)
+ ε · w(F ∗0) ≤ (1 + 2ε)β · w(F ∗0) ,

which proves the claim.

Note that in case the given p is smaller than the number of Steiner vertices in F ∗0 ,
or c is smaller than the number of connected components in F ∗0 , the algorithm still
outputs a Steiner forest, but the approximation factor may be arbitrary. Finally, we
provide proofs of Theorems 4 and 5.

Proof of Theorem 4. Obtaining an FPT algorithm for Steiner Forest parame-
terized by the number of terminals and connected components is not hard given an
FPT algorithm as the one given in [19] for Steiner Tree: We only need to guess the
sets of terminals that form connected components in the optimum Steiner forest. We
can then invoke the algorithm of [19] on each subset to compute an optimum Steiner
tree connecting it. To bound the number of partitions of the terminal set, recall that
the input to our algorithm has an integer c upper-bounding the number of components
in a solution with which we compare our solution. Thus, each terminal can be in one
of at most c components, so there are at most c|R| partitions of the terminal set R
that need to be considered. The algorithm of [19] runs in time (2 + δ)|R| ·nO(1) for any
constant δ > 0, and this results in an algorithm with runtime ((2 + δ)c)|R| · nO(1) to
solve Steiner Forest. We run this algorithm on the Steiner Forest instance that
our preprocessing algorithm of Lemma 13 computes, in order to obtain Theorem 4.

To obtain Theorem 5 on lossy kernels, we rely on the fact that a PSAKS exists
for Steiner Tree parameterized by the number of terminals. It is known that
despite being FPT [15, 19], this problem does not admit polynomial (exact) ker-
nels [13], unless NP ⊆ coNP/Poly. However, as shown by Lokshtanov et al. [27],
the Borchers and Du [4] Theorem can be reinterpreted to show that a PSAKS exists.
Obtaining a PSAKS for Steiner Forest can be done in essentially the same way as
described in [27], and together with Lemma 13 this gives a PSAKS for our choice of
parameters.

Proof of Theorem 5. The Borchers and Du [4] Theorem states that for any opti-
mum Steiner tree T on terminal set R there exists a collection of trees T1, . . . , Tk, such

STEINER TREES WITH SMALL NUMBER OF STEINER VERTICES 19

that all leaves of each tree belong to R, each Ti contains 2O(1/ε) terminals of R, and
the union

⋃k
i=1 Ti is a (1 + ε)-approximation of T . This theorem can also be applied

to each tree in the optimum Steiner Forest solution, since each such tree must be
an optimum Steiner tree for its contained terminal set.

In particular, to compute a kernel, first we take the metric closure of the graph
with τ terminals computed by our algorithm, so that any minimum cost tree connect-
ing 2O(1/ε) terminals can be assumed to only contain 2O(1/ε) Steiner vertices as well.
We then compute an optimum Steiner tree for each subset of R of size at most 2O(1/ε).
This is done using an FPT algorithm parameterized by the number of terminals, which
takes polynomial time if ε is a constant. Within the union of all computed Steiner trees
exists a (1 + ε)-approximate Steiner forest due to the Borchers and Du [4] Theorem,

and the total number of vertices in this union is |R|2O(1/ε)

. However, the union is not
of polynomial size in |R| yet, due to the edge lengths. Lokshtanov et al. [27] show that
it is possible to round the edge lengths in such a way that the cost of every Steiner
tree grows by at most a factor of (1 + ε), and the edge lengths can be encoded using
at most O (log(|R|) + log(1/ε)) bits. For this an estimate on the cost of the optimum
solution is needed, which can be obtained using the polynomial time 2-approximation
algorithm for Steiner Forest by Agrawal et al. [1].

The number of terminals in the instance that we obtain after exhaustively applying
our contractions is bounded in terms of our parameters p, c, and ε by Lemma 13.
Hence, the union of all computed solutions for terminal sets of size at most 2O(1/ε) with
rounded edge lengths is a polynomial-sized (1 + ε)-approximate kernel for Steiner
Forest.

4. The unweighted directed Steiner tree problem. In this section we pro-
vide an EPAS for the Unweighted Directed Steiner Tree problem, in which
each arc has unit weight.

Unweighted Directed Steiner Tree
Input: A directed graph G = (V,A), and a set R of terminals with a root

terminal r.
Solution: A Steiner arborescence T ⊆ G containing a directed path from r to

each terminal v ∈ R.

The idea behind our algorithm given in this section is to reduce the number of
terminals of the input instance via a set of reduction rules. That is, we would like to
reduce the input graph G to a graph H, and prove that the number of terminals in H
is bounded by a function of our parameter p and the approximation ratio (1 + ε). On
H we use the algorithm of Nederlof [29] to obtain an optimum solution.

Our first reduction rule represents the idea that a terminal in the immediate
neighborhood of the root can be contracted to the root. Observe that in this case our
algorithm has to pay 1 for connecting such a terminal to the root, however, any feasible
solution must connect this terminal as well using at least one arc—this argument is
formalized in Lemma 14 (cf. subsection 2.2).

Reduction Rule R1. If there is an arc from the root r to a terminal v ∈ R, we
contract the arc (r, v), and declare the resulting vertex the new root.

Lemma 14. Reduction Rule R1 is 1-safe and can be implemented in polynomial
time. Furthermore, there is a solution lifting algorithm running in polynomial time
and returning a Steiner arborescence if it gets a Steiner arborescence of the reduced
graph as input.

20P. DVOŘÁK, A. E. FELDMANN, D. KNOP, T. MASAŘ́ıK, T. TOUFAR, AND P. VESELÝ

s

s

Fig. 4. An example of ex-
tended neighborhood of Steiner ver-
tex s. The set N0

Ext(s) is depicted
on the top using full arcs, while
the vertices connected by dotted arcs
are not a part of this set. The set
N1

Ext(s) is depicted on the bottom
using full arcs.

Proof. The implementation of the reduction rule is straightforward. Let H be a
graph resulting from G after the contraction of the arc (r, v) to the new root r′, let
T ∗H and T ∗G denote optimal Steiner arborescences for H and G, respectively, and let
TH be a Steiner arborescence in H.

Our solution lifting algorithm constructs a Steiner arborescence TG in G by simply
taking TH and uncontracting (r, v) in it. Note that TG spans all terminals, as TH does
in H and we added (r, v). Also, TG is an arborescence, since r has in-degree zero (as r′

has), v has in-degree one, and TG is clearly a tree. Thus TG is a Steiner arborescence
in G.

The solution lifting algorithm adds 1 to the solution value, so that w(TG) =
w(TH) + 1. Note that w(T ∗G) ≥ w(T ∗H) + 1 as the optimal solution in G must
additionally connect v to r, i.e., it has to add some arc of cost 1. Finally we have

w(TG)

w(T ∗G)
≤ w(TH) + 1

w(T ∗H) + 1
≤ max

{
w(TH)

w(T ∗H)
;

1

1

}
,

so that if TH is a β-approximation of T ∗H , then TG is a (max{1;β})-approximation of
T ∗G. Hence, the rule is 1-safe.

The idea behind our next reduction rule is the following. Assume there is a Steiner
vertex s in the optimum arborescence T connected to many terminals with paths
not containing any other Steiner vertices. We can then afford to buy all these paths
emanating from s together with a path connecting the root to s. Formally, we say
that a vertex u is a k-extended neighbor of some vertex v, if there exists a directed
path P starting in v and ending in u, such that V (P) \ {v} contains at most k Steiner
vertices. Note that a vertex is always a k-extended neighbor of itself for any k, and
that each of the above terminals connected to s in T is a 0-extended neighbor of s. We
denote by Nk

Ext(v) the set of all k-extended neighbors of v, and call it the k-extended
neighborhood of v (see Figure 4). By the following observation, the Steiner vertex s
of T lies in the p-extended neighborhood of the root r. Therefore, there is a path
containing at most p Steiner vertices connecting r to s.

Observation 15. Let G = (V,A) be a directed graph with root r ∈ R. Suppose
there exists a Steiner arborescence T ⊆ G with at most p Steiner vertices. It follows
that V (T) ⊆ Np

Ext(r).

In what follows we fix ε > 0. The second reduction rule contracts a path from r to
a Steiner vertex s in the p-extended neighborhood of r together with the 0-extended

STEINER TREES WITH SMALL NUMBER OF STEINER VERTICES 21

neighborhood of s if this neighborhood is sufficiently large.

Reduction Rule R2. If there exists a Steiner vertex s with
∣∣N0

Ext(s)
∣∣ ≥ p/ε and

s ∈ Np
Ext(r), so that there is an r → s path P containing at most p Steiner vertices,

then we contract the subgraph of G induced by N0
Ext(s) and P in G, and declare the

resulting vertex the new root.

Lemma 16. Reduction Rule R2 is (1 + ε)-safe and can be implemented in polyno-
mial time. Furthermore, there is a solution lifting algorithm running in polynomial
time and returning a Steiner arborescence if it gets a Steiner arborescence of the
reduced graph as input.

Proof. Checking the applicability of Rule R2 and finding s together with N0
Ext(s)

can be done in polynomial time as follows. We set arc lengths so that each arc ending
at a terminal has length zero, while arcs ending at Steiner vertices have length one.
Now a length of a directed path P from the root corresponds to the number of Steiner
vertices in P . Then, we run an algorithm for finding a shortest path from r to each
vertex which allows us to find the set Np

Ext(r). Finally, for each s ∈ Np
Ext(r) we

compute N0
Ext(s) by a simple breadth-first search.

We now specify the solution lifting algorithm. Denote by H the reduced graph
obtained from G by applying R2. Let TH be a solution of the reduced instance H
and let T ∗H be an optimal solution in H. Consider the graph Q, which is the union
of P and the subgraph of G induced by N0

Ext(s). The solution lifting algorithm first
computes an arborescence A of Q rooted in r (e.g., by a depth-first search). Define
TG as the union of TH and A. We show that TG is a Steiner arborescence.

First, observe that TG spans all terminals as TH contains all terminals in H and
A is an arborescence containing all vertices in Q. Note that TG is a tree as A is an
arborescence of Q, TH is a tree, and TH contains at most one arc from the root in H
to each vertex (recall that the root in H was created by contracting N0

Ext(s) ∪ V (P)).
The root in TG has clearly in-degree zero, while all other vertices have in-degree one,
since this holds for H as TH is an arborescence, and A is an arborescence of Q rooted
in r. Thus TG is a Steiner arborescence in G.

It remains to show the safeness of the rule. Let x be the total number of terminals
in N0

Ext(s) ∪ V (P) (not counting the root) and let T ∗G be an optimal solution in G.
Note that w(TG) ≤ w(TH) + x + p. We obtain a solution for H of weight at most
w(T ∗G) − x by starting with T ∗G, removing x arcs each having one of the x non-root
terminals in N0

Ext(s)∪ V (P) (and thus not in H) as their head, identifying all vertices
in N0

Ext(s) ∪ V (P) with the new root, and removing loops and parallel arcs. Thus
w(T ∗G) ≥ w(T ∗H) + x and we get

w(TG)

w(T ∗G)
≤ w(TH) + x+ p

w(T ∗H) + x
≤ max

{
w(TH)

w(T ∗H)
;
x+ p

x

}
≤ max

{
w(TH)

w(T ∗H)
; 1 + ε

}
.

The last inequality is valid because x ≥ p/ε. Thus if TH is a β-approximation of
T ∗H , then TG is a (max{1 + ε;β})-approximation of T ∗G, and so the reduction rule is
(1 + ε)-safe.

Now we prove that if none of the above reduction rules is applicable and our
algorithm was provided with a correct value for parameter p, then the number of
terminals in the reduced graph can be bounded by p2/ε.

Lemma 17. Let G be an instance of Directed Steiner Tree, and denote by
H the graph obtained from G by exhaustive application of Reduction Rules R1 and R2.

22P. DVOŘÁK, A. E. FELDMANN, D. KNOP, T. MASAŘ́ıK, T. TOUFAR, AND P. VESELÝ

Suppose that there exists a Steiner arborescence in G containing at most p Steiner
vertices. It follows that the remaining terminal set R of H has size less than p2/ε.

Proof. Observe first that both our reduction rules use contractions in the underly-
ing graph and thus if there was a solution T ∗G in G with at most p Steiner vertices,
then there is a solution T ∗H in H again containing at most p Steiner vertices.

Since Reduction Rule R1 is not applicable to H, we conclude that N0
Ext(r)∩R = ∅.

As Reduction Rule R2 is not applicable to H, it holds that
∣∣N0

Ext(s) ∩R
∣∣ < p/ε for

every Steiner vertex s ∈ Np
Ext(r). Therefore, |R| < p2/ε, since any terminal in H must

be in the 0-extended neighborhood of some Steiner vertex in T ∗H and there are at most
p Steiner vertices in T ∗H .

The last step of the algorithm (cf. proof of Theorem 2) is to compute an optimum
solution in the graph H obtained from the input graph G after exhaustively applying
Reduction Rules R1 and R2. From the resulting arborescence in H, we obtain an
arborescence in G by running the solution lifting algorithms for each reduction rule
applied (in the reverse order); the existence and correctness of the solution lifting
algorithms for our reduction rules is provided by Lemmas 14 and 16. The algorithm is
summarized in Algorithm 4.1.

Algorithm 4.1 Algorithm for solving Directed Steiner Tree. As explained earlier,
all steps except line 10 can be implemented in polynomial time.

input : directed graph G = (V,A), terminals R ⊆ V , root r ∈ R, and integer p
output : Steiner arborescence T ⊆ G, if p is at most the nr. of terminals in the

optimum

1 if R \Np
Ext(r) 6= ∅ then /* no solution with at most p Steiner vertices */

2 return “no”

3 while Reduction Rule R1 or R2 is applicable do
4 if there is an arc from r to v ∈ R then /* Reduction Rule R1 */

5 Contract the arc (r, v), and declare the resulting vertex the new root.

6 if there exists s ∈ V \R with s ∈ Np
Ext(r) and

∣∣N0
Ext(s)

∣∣ ≥ p/ε then
/* Reduction Rule R2 */

7 Find an r → s path P with at most p Steiner vertices. Contract the subgraph
of G induced by N0

Ext(s) and P , and declare the resulting vertex the new root.

8 if |R| > p2/ε then /* no solution with at most p Steiner vertices */

9 return “no”

10 Run the FPT algorithm of [29]; let T be the returned solution.
11 In the reverse order of application of Reduction Rules R1 and R2:
12 Revert the contraction of the reduction rule.
13 Run the solution lifting algorithm for the reduction rule on T .
14 Store the resulting arborescence in T .
15 return T

Proof of Theorem 2. If neither Reduction Rule R1 nor R2 is applicable and the
current number of terminals exceeds the bound p2/ε we can return “no” as it follows
from Lemma 17 that no optimal solution with at most p Steiner vertices exists. If
this is not the case we return an optimal solution using the algorithm of [29], which
runs in time 2|R| · nO(1) where R is the current set of terminals with size at most

STEINER TREES WITH SMALL NUMBER OF STEINER VERTICES 23

a

b

c

d

e

f

a b c d e f

a b c d e f

root

1

0

Fig. 5. An example for the reduction. A graph G with its dominating set U = {c, e} on the left.
The corresponding instance of Directed Steiner Tree to the right.

p2/ε. As explained earlier both reduction rules can be implemented in polynomial
time, together with their solution lifting algorithms. Thus the total running time is
2p

2/ε · nO(1). The approximation guarantee and correctness of the obtained solution
follow from Lemmas 14 and 16.

5. The weighted directed Steiner tree problem. Here, we prove that the
standard reduction from the Dominating Set problem to the Directed Steiner
Tree problem (with arc weights) translates into inapproximability of the latter problem.
By a recent result of Srikanta et al. [31], there is no f(b)-approximation algorithm
for the Dominating Set problem, even when parameterizing by the size b of the
optimum solution, unless W[1] = FPT.

Dominating Set
Input: an undirected graph G = (V,E).
Solution: the smallest dominating set U ⊆ V for which every v ∈ V either is in

U or v has a neighbor in U .

Proof of Theorem 3. We give a parameterized reduction from the Dominating
Set problem parameterized by the size of the solution U , which we denote by b = |U |.

For an overview of the reduction please refer to Figure 5. Let G = (V,E) be
a graph in which we are searching for the smallest dominating set of size b and let
n = |V | and m = |E|. We create an instance of Directed Steiner Tree having
2n+ 1 vertices and n+ 2m arcs as follows. There are n terminals, each corresponding
to a vertex in V , one auxiliary terminal (the root), and n Steiner vertices again
corresponding to vertices in V . There are arcs of two kinds. The first kind of arcs are
of weight 1 and connect the root to each Steiner vertex, i.e., they are directed towards
the Steiner vertices. The second kind of arcs are of weight 0 and connect the Steiner
vertices with the terminals, directed towards the terminals. There is an arc from each
Steiner vertex corresponding to a vertex w ∈ V to every terminal corresponding to a
vertex v ∈ V if v = w or v is a neighbor of w in G.

Observe that there is a dominating set of size b in G if and only if there is
an arborescence connecting the root to all terminals of cost b. Note also that this
arborescence contains b Steiner vertices. Thus we set the parameter p to value b.

Suppose that there is a parameterized f(p)-approximation algorithm for the
Directed Steiner Tree problem for parameter p and a computable function

24P. DVOŘÁK, A. E. FELDMANN, D. KNOP, T. MASAŘ́ıK, T. TOUFAR, AND P. VESELÝ

f . Then, we would obtain a parameterized f(b)-approximation algorithm for the
Dominating Set problem parameterized by the size b of the solution. This would
imply W[1] = FPT by [31].

6. Refuting a PSAKS for Unweighted Directed Steiner Tree. In this
section, we prove that the Unweighted Directed Steiner Tree problem does
not admit a (2 − ε)-approximate polynomial kernel for any constant ε > 0 unless
NP ⊆ coNP/Poly. We use a framework for proving lower bounds on approximate
polynomial kernels by Lokshtanov et al. [27] and present an α-gap cross composition
(for α = 2− ε). For the composition, we need to define a polynomial equivalence.

Definition 18. An equivalence relation ≡ on Σ∗, where Σ is a finite alphabet, is
called a polynomial equivalence relation if

1. The equivalence of any x, y ∈ Σ∗ can be checked in time polynomial in |x|+ |y|.
2. Any finite set S ⊆ Σ∗ has at most (maxx∈S |x|)O(1) equivalence classes.

Now we explain how the composition works. Let L ⊆ Σ∗ be a language, and let
x1, . . . , xt ∈ Σ∗ be strings belonging to the same class of some polynomial equivalence ≡.
The composition, given x1, . . . xt, runs in time polynomial in

∑t
i=1 |xi| and computes

c ∈ R and an instance (G,R, p) of the Unweighted Directed Steiner Tree
problem parameterized by p such that:

1. If xi ∈ L for some 1 ≤ i ≤ t, then G contains a Steiner arborescence containing
at most c arcs.

2. If xi 6∈ L for all 1 ≤ i ≤ t, then any Steiner arborescene of G contains at least
α · c arcs.

3. The parameter p is bounded by a polynomial in log t+ max1≤i≤t |xi|.
By the framework of Lokshtanov et al. [27], if L is an NP-hard language, then the
Unweighted Directed Steiner Tree problem does not admit a polynomial-sized
α-approximate kernel for parameter p, unless NP ⊆ coNP/Poly. We use the Set
Cover problem as the language L.

Set Cover
Input: A universe U , a set P of subsets of U , and a positive integer b.
Solution: A set C ⊆ P such that |C| ≤ b and U =

⋃
C∈C C.

We call b the budget. Let I1, . . . , It be instances of the Set Cover problem. We
define the polynomial equivalence ≡ as follows. Two Set Cover instances (U1,P1, b1)
and (U2,P2, b2) are equivalent in ≡ if |U1| = |U2| = n, |P1| = |P2| = m and b1 = b2 = b.
Thus, we can suppose that all instances I1, . . . , It are over the same universe U . It is
straightforward to verify that the relation ≡ is a polynomial equivalence relation.

We can also suppose that m is polynomial in n and either each instance Ii has a
set cover of size at most b or each set cover has size at least γb for arbitrary constant
γ (actually γ can be O(log n) but we do not need this here). By a result of Dinur and
Steurer [12], the Set Cover problem is still NP-hard in this case.

The first step of the α-gap cross composition is to convert each instance Ik
to an instance Gk of the Unweighted Directed Steiner Tree problem. The
construction is similar to the reduction in the proof of Theorem 3. Let Ik = (U,Pk, b)
be an instance of Set Cover. We create a terminal root rk and for each Sk

j ∈ Pk

we create a Steiner vertex skj . We add a directed path of length n from rk to each

skj . Then we create a terminal tki for every i ∈ U and create the incidence graph of U

and P, i.e., we add an arc (skj , t
k
i) if i ∈ Sk

j where Sk
j is the set in P corresponding

to skj .

STEINER TREES WITH SMALL NUMBER OF STEINER VERTICES 25

rd

P1

Pk

Pt

r1 rk rt

sk1 skm

n

t1 tn

Ik

s11 s1m st1 stm

I1 It

Gk

Fig. 6. Sketch of the (2−ε)-gap cross composition. All arcs are oriented in “top-down” direction
from the root r to terminals ti. The graph Ik is an incident graph of the instance Ik = (U,Pk, b) of
the Set Cover problem. The graph Gk is the graph Ik with paths from the vertex rk to the vertices
sk1 , . . . , s

k
m.

If Ik is a yes-instance (it has a set cover of size at most b), then Gk has a Steiner
arborescence with bn+ n = (b+ 1)n arcs. On the other hand, if Ik is a no-instance
(each set cover has size at least γb), then each Steiner arborescence of Gk has more
than γbn+ n arcs.

Now we combine all Gk into one instance G of the Unweighted Directed
Steiner Tree problem. First, we create a root r of the instance G. We connect r
and each vertex rk (the root of the instance Gk) by a directed path Pk of length d (the
value of d will be determined later). Thus, the root r has degree t. Finally, we identify
all terminals tki of all graphs Gk corresponding to the same element i in U into one
terminal ti, i.e., the graph G has n terminals apart from the root. See Figure 6 for a
sketch of the composition.

Lemma 19. If for some k, Ik is a yes-instance then G has a Steiner arborescence
with at most d+ (b+ 1)n arcs.

Proof. Let C be a set cover of Ik of size at most b. The arborescence T contains
the path Pk from r to rk, thus it contains d arcs. Let S be Steiner vertices in Gk

corresponding to the sets in C. We add to T all the paths from rk to Steiner vertices in
S; as |S| ≤ |C| ≤ b, these paths have at most bn arcs. Since C is a set cover, there are
n arcs from Steiner vertices in S to all terminals of G and we add them to T . Thus, T
connects the root r of G to all the terminals of G and it has d+ (b+ 1)n arcs.

Lemma 20. Let T be a Steiner arborescence of G. Suppose T contains two distinct
paths Pi and Pj. Then, T has at least 2d+ 3n arcs.

Proof. The paths Pi and Pj are edge disjoint and each contains d arcs. Further, T
contains at least n arcs from ri to some Steiner vertex in Gi and at least n arcs from
rj to some Steiner vertex in Gj . Finally, we still need n arcs to connect the terminals
and we get

|E(T)| ≥ 2d+ 3n.

Lemma 21. Let T be a Steiner arborescence of G such that T contains only one
path Pk. If all instances I1, . . . , It are no-instances, then any Steiner arborescence of

26P. DVOŘÁK, A. E. FELDMANN, D. KNOP, T. MASAŘ́ıK, T. TOUFAR, AND P. VESELÝ

G has at least d+ n(γb+ 1) arcs.

Proof. Let T ′ be an arborescence we get from T when we remove the path Pk.
Since V (Pk) ∩ V (T ′) = {rk}, the arborescence T ′ is a Steiner arborescence of Gk.
Thus, the arborescence T ′ has at least n(γb + 1) arcs, because the instance Ik is a
no-instance. Adding the d edges of Pk, we obtain the claimed bound.

Now we calculate the value of d. We set d large enough so that Steiner arborescences
which contain more than one path Pk are bigger than Steiner arborescences which
contain only one such path. Formally, by the above two lemmas we want

2d+ 3n ≥ d+ n(γb+ 1).

Thus, we set d = n(γb − 2) and we get the following corollary of Lemma 20 and
Lemma 21.

Corollary 22. If all instances I1, . . . , It are no-instances, then each Steiner
arborescence of G has at least n(2γb− 1) arcs.

Observation 23. The graph G has a Steiner arborescence T with at most d+n2+n
Steiner vertices.

Proof. We take a path Pk from r into an arbitrary vertex rk (with d Steiner
vertices) and an arbitrary Steiner arborescence in Gk (with at most n2 + n Steiner
vertices—from a trivial set cover when each element is covered by its own set).

Thus, our parameter p of G (the number of Steiner vertices in the optimum) is
bounded by a polynomial in n, as d = n(γb− 2) and b ≤ n. If there is a yes-instance
among I1, . . . , It, then by Lemma 19 we know that the optimal Steiner arborescence
of G has at most d+ (b+ 1)n = n

(
(γ + 1)b− 1

)
arcs. If there are no-instances among

I1, . . . , It only, then by Corollary 22 the optimal Steiner arborescence of G has at
least n(2γb− 1) arcs. This means that

n(2γb− 1)

n
(
(γ + 1)b− 1

) ≥ 2− ε

for γ large enough. Thus, for any constant ε > 0 we created a (2 − ε)-gap cross
composition from the Set Cover problem to the Unweighted Directed Steiner
Tree problem parameterized by the number of Steiner vertices in the optimum. This
refutes the existence of polynomial-sized (2− ε)-approximate kernels for this problem,
unless NP ⊆ coNP/Poly, and proves Theorem 6.

7. Conclusions and open problems. Recently, it was shown that contract-
ing stars not only leads to parameterized approximation schemes for the Steiner
Tree problem, as outlined in this paper, but also behaves well in practical computa-
tions [22, 23]. In fact, this idea was used as a heuristic, which significantly improves
approximations of minimum spanning trees. The implementation of this idea together
with only a few additional heuristics was awarded the 4th place (out of 24) in the
PACE challenge 2018 in the very competitive Track C [3].

From our theoretical work, we leave the following open problems:
• The runtimes of our approximation schemes may be improvable. In particular,

we conjecture that a linear dependence on our parameter p should suffice in
the exponent of both algorithms in Theorems 1 and 2. It would also be very
interesting to obtain runtime lower bounds for our approximation schemes
under some reasonable complexity assumption.

STEINER TREES WITH SMALL NUMBER OF STEINER VERTICES 27

• Given that we obtain a PSAKS for the Steiner Tree problem, but not for
the Unweighted Directed Steiner Tree problem (even though we show
an EPAS for each of them), one remaining open question is what the best
approximation ratio obtainable by a polynomial-sized kernel is for the latter.
Namely, is there a polynomial-sized α-approximate kernel for Unweighted
Directed Steiner Tree for some constant α ≥ 2?

• As mentioned in subsection 1.2, a parameterized approximation scheme and a
PSAKS exist for the Bidirected Steiner Network problem with planar
optimum [9] for parameter |R|. The PSAKS uses a generalization of the PSAKS
for Steiner Tree with parameter |R| by Lokshtanov et al. [27]. Hence, it
is natural to ask whether or not this is also the case for our parameter p,
i.e., whether or not there is a parameterized approximation scheme and/or
a PSAKS for Bidirected Steiner Network with planar optimum when
parameterized by p.

Acknowledgments. We would like to thank Michael Lampis and Édouard Bonnet
for helpful discussions on the problem. Also, we thank Jǐŕı Sgall and Martin Böhm for
finding a mistake in a preliminary version of the proof of Lemma 11.

References.
[1] Ajit Agrawal, Philip Klein, and R. Ravi. When trees collide: An approximation

algorithm for the generalized steiner problem on networks. SIAM Journal on
Computing, 24(3):440–456, jun 1995, doi:10.1137/s0097539792236237.

[2] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier
meets möbius: fast subset convolution. In Proceedings of the thirty-ninth an-
nual ACM symposium on Theory of computing - STOC 07. ACM Press, 2007,
doi:10.1145/1250790.1250801.

[3] Édouard Bonnet and Florian Sikora. The PACE 2018 Parameterized Algorithms
and Computational Experiments Challenge: The Third Iteration. In Christophe
Paul and Michal Pilipczuk, editors, 13th International Symposium on Parameter-
ized and Exact Computation (IPEC 2018), volume 115 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 26:1–26:15, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-084-2,
doi:10.4230/LIPIcs.IPEC.2018.26.

[4] Al Borchers and Ding-Zhu Du. The k-Steiner Ratio in Graphs. SIAM Journal on
Computing, 26(3):857–869, 1997, doi:10.1137/S0097539795281086.

[5] Glencora Borradaile, Philip Klein, and Claire Mathieu. AnO(nlogn) approximation
scheme for steiner tree in planar graphs. ACM Transactions on Algorithms, 5(3):
1–31, jul 2009, doi:10.1145/1541885.1541892.

[6] Jaros law Byrka, Fabrizio Grandoni, Thomas Rothvoss, and Laura Sanità. Steiner
tree approximation via iterative randomized rounding. Journal of the ACM, 60
(1):1–33, feb 2013, doi:10.1145/2432622.2432628.

[7] Moses Charikar, Chandra Chekuri, To yat Cheung, Zuo Dai, Ashish Goel, Sudipto
Guha, and Ming Li. Approximation algorithms for directed steiner problems.
Journal of Algorithms, 33(1):73–91, oct 1999, doi:10.1006/jagm.1999.1042.

[8] Rajesh Chitnis, MohammadTaghi Hajiaghayi, and Guy Kortsarz. Fixed-parameter
and approximation algorithms: A new look. In Parameterized and Exact Compu-
tation, pages 110–122. Springer International Publishing, 2013, doi:10.1007/978-3-
319-03898-8 11.

[9] Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi. Parameterized
Approximation Algorithms for Bidirected Steiner Network Problems. In 26th

http://dx.doi.org/10.1137/s0097539792236237
http://dx.doi.org/10.1145/1250790.1250801
http://dx.doi.org/10.4230/LIPIcs.IPEC.2018.26
http://dx.doi.org/10.1137/S0097539795281086
http://dx.doi.org/10.1145/1541885.1541892
http://dx.doi.org/10.1145/2432622.2432628
http://dx.doi.org/10.1006/jagm.1999.1042
http://dx.doi.org/10.1007/978-3-319-03898-8_11
http://dx.doi.org/10.1007/978-3-319-03898-8_11

28P. DVOŘÁK, A. E. FELDMANN, D. KNOP, T. MASAŘ́ıK, T. TOUFAR, AND P. VESELÝ

Annual European Symposium on Algorithms (ESA 2018), volume 112 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 20:1–20:16, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-
95977-081-1, doi:10.4230/LIPIcs.ESA.2018.20.

[10] Miroslav Chleb́ık and Janka Chleb́ıková. Approximation hardness of the steiner
tree problem on graphs. In Algorithm Theory — SWAT 2002, pages 170–179.
Springer Berlin Heidelberg, 2002, doi:10.1007/3-540-45471-3 18.

[11] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015, doi:10.1007/978-3-319-21275-3.

[12] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing -
STOC 14. ACM Press, 2014, doi:10.1145/2591796.2591884.

[13] Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds
through colors and IDs. ACM Transactions on Algorithms, 11(2):1–20, oct 2014,
doi:10.1145/2650261.

[14] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer New York,
1999, doi:10.1007/978-1-4612-0515-9.

[15] Stuart E. Dreyfus and Robert A. Wagner. The steiner problem in graphs. Networks,
1(3):195–207, 1971, doi:10.1002/net.3230010302.

[16] Pavel Dvořák, Andreas Emil Feldmann, Dušan Knop, Tomáš Masař́ık, Tomáš
Toufar, and Pavel Veselý. Parameterized approximation schemes for steiner trees
with small number of steiner vertices. In 35th Symposium on Theoretical Aspects
of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France,
pages 26:1–26:15, 2018, doi:10.4230/LIPIcs.STACS.2018.26.

[17] David Eisenstat, Philip Klein, and Claire Mathieu. An efficient polynomial-
time approximation scheme for steiner forest in planar graphs. In Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 626–638. Society for Industrial and Applied Mathematics, jan 2012,
doi:10.1137/1.9781611973099.53.

[18] Andreas Emil Feldmann and Dániel Marx. The Complexity Landscape of Fixed-
Parameter Directed Steiner Network Problems. In 43rd International Colloquium
on Automata, Languages, and Programming (ICALP 2016), volume 55, pages
27:1–27:14, 2016, doi:10.4230/LIPIcs.ICALP.2016.27.

[19] Bernhard Fuchs, Walter Kern, D Molle, Stefan Richter, Peter Rossmanith, and
Xinhui Wang. Dynamic programming for minimum steiner trees. Theory of
Computing Systems, 41(3):493–500, 2007, doi:10.1007/s00224-007-1324-4.

[20] Jiong Guo, Rolf Niedermeier, and Ondrej Suchý. Parameterized complexity of
arc-weighted directed Steiner problems. SIAM J. Discrete Math., 25(2):583–599,
2011, doi:10.1137/100794560.

[21] Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. In
Proceedings of the thirty-fifth ACM symposium on Theory of computing - STOC
03, pages 585–594. ACM Press, 2003, doi:10.1145/780542.780628.

[22] Radek Hušek, Tomáš Toufar, Dušan Knop, Tomáš Masař́ık, and Eduard Eiben.
Steiner tree heuristics for PACE 2018 challenge track C, 2018. https://github.
com/goderik01/PACE2018.

[23] Radek Hušek, Dušan Knop, and Tomáš Masař́ık. Approximation algorithms for
steiner tree based on star contractions: A unified view. In 15th International
Symposium on Parameterized and Exact Computation (IPEC 2020), pages 16:1–
16:18, 2020, doi:10.4230/LIPIcs.IPEC.2020.16.

http://dx.doi.org/10.4230/LIPIcs.ESA.2018.20
http://dx.doi.org/10.1007/3-540-45471-3_18
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1145/2591796.2591884
http://dx.doi.org/10.1145/2650261
http://dx.doi.org/10.1007/978-1-4612-0515-9
http://dx.doi.org/10.1002/net.3230010302
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.26
http://dx.doi.org/10.1137/1.9781611973099.53
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.27
http://dx.doi.org/10.1007/s00224-007-1324-4
http://dx.doi.org/10.1137/100794560
http://dx.doi.org/10.1145/780542.780628
https://github.com/goderik01/PACE2018
https://github.com/goderik01/PACE2018
http://dx.doi.org/10.4230/LIPIcs.IPEC.2020.16

STEINER TREES WITH SMALL NUMBER OF STEINER VERTICES 29

[24] Frank K Hwang, Dana S Richards, and Pawel Winter. The Steiner tree problem,
volume 53. Elsevier, 1992, doi:10.1016/s0167-5060(08)x7008-6.

[25] Mark Jones, Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Ondřej
Suchý. Parameterized complexity of directed steiner tree on sparse graphs.
SIAM J. Discret. Math., 31(2):1294–1327, 2017, doi:10.1137/15M103618X. https:
//doi.org/10.1137/15M103618X.

[26] Richard M. Karp. Reducibility among combinatorial problems. In Complexity
of computer computations, pages 85–103. Plenum, 1972, doi:10.1007/978-1-4684-
2001-2 9.

[27] Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh.
Lossy kernelization. In Proceedings of the 49th Annual ACM SIGACT Sym-
posium on Theory of Computing - STOC 2017, pages 224–237. ACM Press, 2017,
doi:10.1145/3055399.3055456.

[28] Daniel Mölle, Stefan Richter, and Peter Rossmanith. Enumerate and expand:
Improved algorithms for connected vertex cover and tree cover. Theory of
Computing Systems, 43(2):234–253, oct 2007, doi:10.1007/s00224-007-9089-3.

[29] Jesper Nederlof. Fast polynomial-space algorithms using möbius inversion: Im-
proving on steiner tree and related problems. In Automata, Languages and
Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July
5-12, 2009, Proceedings, Part I, pages 713–725, 2009, doi:10.1007/978-3-642-02927-
1 59.

[30] Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen.
Network sparsification for steiner problems on planar and bounded-genus graphs.
In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
IEEE, oct 2014, doi:10.1109/focs.2014.37.

[31] Karthik C. Srikanta, Bundit Laekhanukit, and Pasin Manurangsi. On the param-
eterized complexity of approximating dominating set. J. ACM, 66(5), August
2019. ISSN 0004-5411, doi:10.1145/3325116.

[32] Ondřej Suchý. Extending the kernel for planar steiner tree to the number of steiner
vertices. Algorithmica, 79(1):189–210, 2017, doi:10.1007/s00453-016-0249-1.

[33] David P Williamson and David B Shmoys. The design of approximation algorithms.
Cambridge university press, 2011, doi:10.1017/cbo9780511921735.

[34] Alexander Zelikovsky. An 11/6-approximation algorithm for the network Steiner
problem. Algorithmica, 9:463–470, 1993, doi:10.1007/BF01187035.

http://dx.doi.org/10.1016/s0167-5060(08)x7008-6
http://dx.doi.org/10.1137/15M103618X
https://doi.org/10.1137/15M103618X
https://doi.org/10.1137/15M103618X
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1145/3055399.3055456
http://dx.doi.org/10.1007/s00224-007-9089-3
http://dx.doi.org/10.1007/978-3-642-02927-1_59
http://dx.doi.org/10.1007/978-3-642-02927-1_59
http://dx.doi.org/10.1109/focs.2014.37
http://dx.doi.org/10.1145/3325116
http://dx.doi.org/10.1007/s00453-016-0249-1
http://dx.doi.org/10.1017/cbo9780511921735
http://dx.doi.org/10.1007/BF01187035

	Introduction
	Used techniques
	Related work

	Preliminaries
	Reducing Steiner tree to Steiner forest
	Lossy kernels

	The weighted undirected Steiner forest and Steiner tree problems
	Algorithm description
	Analysis

	The unweighted directed Steiner tree problem
	The weighted directed Steiner tree problem
	Refuting a PSAKS for Unweighted Directed Steiner Tree
	Conclusions and open problems

