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Prediction of mortality in severe 
acute malnutrition in hospitalized 
children by faecal volatile organic 
compound analysis: proof 
of concept
Deborah A. van den Brink1,2*, Tim de Meij4, Daniella Brals2,3, Robert H. J. Bandsma1,6,7,10, 
Johnstone Thitiri7,8, Moses Ngari7,8, Laura Mwalekwa8, Nanne K. H. de Boer5, 
Alfian Wicaksono11, James A. Covington11, Patrick F. van Rheenen1 &  
Wieger P. Voskuijl2,3,7,9*

Children with severe acute malnutrition (SAM) display immature, altered gut microbiota and have 
a high mortality risk. Faecal volatile organic compounds (VOCs) reflect the microbiota composition 
and may provide insight into metabolic dysfunction that occurs in SAM. Here we determine whether 
analysis of faecal VOCs could identify children with SAM with increased risk of mortality. VOC 
profiles from children who died within six days following admission were compared to those who 
were discharged alive using machine learning algorithms. VOC profiles of children who died could 
be separated from those who were discharged with fair accuracy (AUC) = 0.71; 95% CI 0.59–0.87; 
P = 0.004). We present the first study showing differences in faecal VOC profiles between children 
with SAM who survived and those who died. VOC analysis holds potential to help discover metabolic 
pathways within the intestinal microbiome with causal association with mortality and target 
treatments in children with SAM.
Trial Registration: The F75 study is registered at clinicaltrials.gov/ct2/show/NCT02246296.

While there has been a substantial improvement in the under-five mortality rate over the past decades, still 16,000 
children die worldwide daily, of which under-nutrition is considered a key factor in almost 50%1. Sub-Saharan 
Africa is hit the hardest, where 1 in every 12 children will die before their fifth  birthday1. Undernourished 
children can be classified as either being moderately malnourished (moderate acute malnutrition or MAM), 
or severely malnourished (severe acute malnutrition or SAM). Complicated SAM (with medical complications 
such as systemic or respiratory infection or profound diarrhoea) requires in-patient  treatment2. Even under 
strict adherence to treatment guidelines, case fatality rate for patients with complicated SAM in African hospitals 
remains high (> 20%)3,4. So, there is an urgent need to improved understanding of the pathophysiology in this 
vulnerable group of children as well as better identification of children with SAM with the highest mortality. 

OPEN

1Department of Paediatrics, Centre for Liver, Digestive and Metabolic Diseases, University of Groningen, 
University Medical Centre Groningen, Groningen, The Netherlands. 2Amsterdam Centre for Global Child Health, 
Emma Children’s Hospital, Amsterdam University Medical Centres, Amsterdam, The Netherlands. 3Department 
of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam University Medical 
Centres, Amsterdam, The Netherlands. 4Department of Paediatric Gastroenterology, Emma, Children’s Hospital, 
Amsterdam University Medical Centres, Amsterdam, The Netherlands. 5Department of Gastroenterology and 
Hepatology, Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam University Medical 
Centres, Amsterdam, The Netherlands. 6Division of Gastroenterology, Hepatology and Nutrition and Translational 
Medicine Program, Hospital for Sick Children, Toronto, Canada. 7The Childhood Acute Illness & Nutrition Network 
(CHAIN), Nairobi, Kenya. 8KEMRI/Welcome Trust Research Programme, Kilifi, Kenya. 9Department of Paediatrics, 
College of Medicine, University of Malawi, Blantyre, Malawi. 10Department of Biomedical Sciences, College of 
Medicine, University of Malawi, Blantyre, Malawi. 11School of Engineering, University of Warwick, Coventry, 
UK. *email: d.a.vandenbrink@amsterdamumc.nl; w.p.voskuijl@amsterdamumc.nl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-75515-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18785  | https://doi.org/10.1038/s41598-020-75515-6

www.nature.com/scientificreports/

Several risk factors have been associated with this persistent high mortality, including HIV, very low anthropom-
etry, oedema, and gastro-intestinal dysfunction leading to diarrhoea, present in roughly half of SAM patients. 
However clinical models, for high-accuracy prediction of mortality and understanding its mechanisms in SAM, 
are not well validated nor established so  far5,6. Increasing evidence suggests that the gut microbiota plays a cru-
cial etiological role in gastrointestinal  dysfunction7–12. Studies in Bangladeshi and Ugandan children revealed 
that malnourished children had an ‘immature’ microbiota, characterized by decreased microbial  diversity9,10. 
Identification of a microbial ‘signature’ associated with increased risk for mortality could hypothetically select 
high-risk SAM patients, increase our understanding of pathophysiology and open avenues towards development 
of targeted therapeutic interventions aimed at reducing mortality rates.

Volatile organic compounds (VOCs) are carbon-based molecules originating from metabolic processes in the 
human body and reflect microbiota composition, metabolic function, and interaction with the  host13. Faecal VOC 
analysis has been shown to have potential as a diagnostic biomarker (i.e. monitor gut changes non-invasively) 
particularly for diseases in which microbiota alterations are considered to play an etiological role, including 
(paediatric) inflammatory bowel disease, necrotizing enterocolitis, colorectal cancer, and  sepsis14–18. Faecal VOCs 
are produced in the gastrointestinal tract mainly by residing microbes, fermentation of non-starch polysac-
charides, as well as the hosts response to changes in gut bacterial compositions and health. In order to establish 
this method, we explored the potential of faecal VOCs as a non-invasive measure for predicting mortality in 
malnourished children. We hypothesized that faecal VOCs from survivors of SAM differ from non-survivors.

Results
Characteristics of 57 patients, including by survival outcome are presented in Table 1. The mean age among chil-
dren who were discharged (n = 38) was 25.9 months and children in this group were discharged from the hospital 
after on average 6.9 days. Children who died (n = 19) were significantly younger than children discharged, with 
a mean age of 16.8 months (P = 0.04), had a lower MUAC at admission (P = 0.03), and were more likely to have 
early warning signs upon admission (P = 0.006), as compared to the discharged children. 

Healthy control children were older (P < 0.001) and had a higher MUAC (P < 0.001), as compared to SAM 
patients (see Table 2).

Analysis was conducted on 100 features, 50 features, and 20 features. A feature map illustrating locations 
on the FAIMS output of VOC profiles from children who died within 6 days following admission compared to 
those who were discharged alive can be seen in Fig. 1.

Table 1.  Characteristics of study participants upon admission and by outcome (discharged vs. died). MUAC  
mid upper arm circumference, HIV human immunodeficiency virus 1. *World Health Organisation (WHO) 
danger signs suggestive of systemic illness or clinical deterioration (respiratory distress, profuse diarrhoea, 
hypoglycaemia, tachycardia, etc).

SAM Discharged Died

PN = 57 N = 38 N = 19

Study site [n (%)]

Coast Provincial General Hospital 25 (43.9) 15 (39.5) 10 (52.6)

Kilifi County Hospital 5 (8.8) 4 (10.5) 1 (5.3)

Queen Elizabeth Central Hospital 27 (47.4) 19 (50.0) 8 (42.1) 0.59

Age [mean (SD)], months 22.9 (15.7) 25.9 (16.1) 16.8 (13.3) 0.04

Male [n (%)] 35 (61.4) 23 (60.5) 12 (63.2) 0.85

Fully breastfed [n (%)] 23 (40.4) 14 (36.8) 9 (47.4) 0.45

Anthropometrics [mean (SD)]

MUAC cm 11.2 (1.6) 11.5 (1.6) 10.5 (1.5) 0.03

Height-for-age z-score 55; − 3.1 (1.7) 38; − 3.2 (1.5) 17; − 3.1 (2.3) 0.9

Weight-for-age z-score  − 4.0 (1.4)  − 3.8 (1.3)  − 4.3 (1.6) 0.17

Weight-for-height z-score 53; − 3.3 (1.4) 37; − 3.1 (1.4) 16; − 3.7 (1.4) 0.19

Oedema [n (%)] 22 (38.6) 17 (44.7) 5 (26.3) 0.18

Vomiting [n (%)] 14 (24.6) 7 (18.4) 7 (36.8) 0.13

Diarrhoea [n (%)] 23 (40.4) 12 (31.6) 11 (57.9) 0.06

HIV test result [n (%)]

Negative 38 (66.7) 28 (73.7) 10 (52.6)

Positive 14 (24.6) 7 (18.4) 7 (36.8)

Refusal or died before HIV testing 5 (8.8) 3 (7.9) 2 (10.5) 0.26

Tuberculosis [n (%)] 1 (1.8) 1 (2.6) 0 (0.0) 0.48

Fever [T > 38 °C; n (%)] 19 (33.3) 9 (23.7) 10 (52.6) 0.03

Severe pneumonia [n (%)] 17 (29.8) 10 (26.3) 7 (36.8) 0.42

Any danger signs at admission [n (%)]* 8 (14.0) 2 (5.3) 6 (31.6) 0.006
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Four different classifiers were run for each comparison, and the best performing machine learning classifica-
tions are shown in Table 3 and Fig. 2. The results of all applied classifiers for each comparison can be found in 
Table S1 in the Supplementary Data. VOC profiles of children dying on day 4, 5 or 6 of admission (‘late’ mortal-
ity) could be separated from the VOC profiles of children who were discharged with high accuracy [area under 
the receiver operating characteristic curve (AUC) 0.82; 95% CI 0.67–0.96; P < 0.001], whereas VOC profiles 
of children dying within the first 3 days of admission could be separated from the VOC profiles children who 

Table 2.  Characteristics of study participants with SAM and healthy control children. MUAC  mid upper arm 
circumference.

Healthy controls SAM

PN = 7 N = 57

Age [months; mean (SD)] 52.9 (22.1) 22.9 (15.7)  < 0.001

Male [n (%)] 4 (57.1) 35 (61.4) 0.83

MUAC [mean (SD)] 15.1 (2.0) 11.2 (1.6)  < 0.001

Figure 1.  Feature map illustrating locations on the FAIMS output from children who died within 6 days of 
admission. (A) Positive feature locations (B) Negative feature locations.
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were discharged with fair accuracy (AUC = 0.73; 95% CI 0.57–0.9, P = 0.02). We were also able to separate early 
mortality from late mortality with high accuracy (AUC = 0.8; 95% CI 0.57–1; P = 0.001).

Healthy controls (siblings) could be separated from children with complicated SAM with very high accuracy 
(AUC = 0.99; 95% CI 0.98–1; P < 0.001). In addition, the classifiers were also able to separate the following VOC 
profiles: WAZ ≤ − 3 form WAZ > − 3 (AUC = 0.7; 95% CI 0.54–86; P = 0.02), oedema from no oedema (AUC = 0.71; 
95% CI 0.56–0.87; P = 0.003), diarrhoea from no diarrhoea (AUC = 0.66; 95% CI 0.51–0.81; P = 0.02), HIV posi-
tive from HIV negative (AUC = 0.73; 95% CI 0.58–0.87; P = 0.01), and age ≤ 2 years months from age > 2 years 
(AUC = 0.79; 95% CI 0.66–0.89; P < 0.001). Only the VOC profiles of children with pneumonia could not be 
separated from the VOC profiles of children without pneumonia (AUC = 0.63; 95% CI 0.47–0.75; P = 0.06).

Discussion
This is the first study showing differences in faecal VOC profiles between children with SAM who survived and 
those who died, and this likely reflects microbiota composition differences between these 2 groups. Fecal VOCs 
of children who died from SAM could be separated from children who were discharged with fair accuracy. Dis-
criminative accuracy increased even further to high accuracy when taking only VOC profiles of late mortality 
subjects into account.

Current evidence supports the increasing notion that children with SAM have a specific, altered metabolic and 
microbial signature compared to non-malnourished  children19–25. By non-invasive VOC analysis we were able 
to run algorithms that predicted mortality with a fair AUCs as well as a high degree of sensitivity and specificity. 
Noteworthy was the finding that the difference in VOC-profiles between children who died and those surviving 
to discharge became more pronounced when the longer interval between admission and dying was chosen (6 
versus 3 days). This observation warrants further investigation as we would assume that volatiles associated with 
an increased risk for dying would be higher among early mortality patients. Another explanation could be that 
early mortality is more impacted by the acute illness and later mortality more to microbiome-related effects.

We also grouped VOC profiles according to other important clinical characteristics (and known contributors 
to mortality) in order to ascertain that observed differences between the mortality and survival group could 
not be solely attributed to one of these factors (i.e. age, oedema, HIV, diarrhoea, and low weight-for-height). 
The SAM oedematous phenotype (kwashiorkor) is known to have a different microbiota profile compared with 
non-oedematous malnourished children (marasmus)7,8,10,19 and we were able to show this with these preliminary 
data. Also, HIV positive children could be discriminated from HIV negative children confirming HIV disrupts 
intestinal immunity, which can lead to chronic  inflammation26, and microbial  dysbiosis27. Antibiotics are another 
factor that can influence the  microbiome28–31, and while samples were collected at admission, many children 
might have already been given antibiotics prior to referral to our study sites. Future studies would need to look 
at the effect of both antibiotic use and the use of different Microbiota-Directed Complementary  Foods11,12 on 
VOCs, both qualitative as quantitative.

Growth and health of children is functionally associated to microbial changes (including maturation)7. Mal-
nourished children have an immature and altered  microbiome10,19, as well as an increased likelihood of metabolic 
 dysfunction32. VOCs are not merely produced by gut microbiota alone, but may at least partly result from the 
intestinal mucosal inflammatory process and metabolic alterations associated with SAM. Further studies are 
needed to address the specific VOCs leading to observed differences next to unravelling the (micro-biotic) origin 
of these volatiles. Identification of specific VOCs associated with mortality may allow for enhanced understand-
ing of pathophysiological processes underlying different pathways in children with SAM as well as development 
of tailor-made sensors to be used as handheld VOC analyser in clinical practice (as an early prediction tool).

Strength of this study is that samples were used from 3 sites across 2 countries in sub-Saharan Africa, allow-
ing to capture VOC profiles of different African SAM  populations33. Our patients had an extensive and detailed 

Table 3.  Machine learning classification results. AUC  area under the receiver operating characteristic 
curve, WAZ weight-for-age z-score, HIV human immunodeficiency virus 1, yrs. years. Definitions: early 
mortality = mortality within 3 days of admission; late mortality = mortality on day 4, 5, or 6 of admission.

Best performing algorithm Features (number) AUC (95% CI) P Sensitivity (95% CI) Specificity (95% CI) PPV NPV

Mortality classifications

Mortality vs. survival Support vector machine 100 0.71 (0.56–0.87) 0.004 0.76 (0.6–0.89) 0.63 (0.38–0.84) 0.81 0.57

Early mortality vs. survival Random forest 100 0.73 (0.57–0.9) 0.02 0.89 (0.52–1) 0.55 (0.38–0.71) 0.32 0.95

Late mortality vs. survival Sparse logistic regression 50 0.82 (0.67–0.96)  < 0.001 0.82 (0.66–0.92) 0.7 (0.35–0.93) 0.91 0.5

Early vs. late mortality Support vector machine 50 0.8 (0.57–1) 0.001 0.78 (0.4–0.97) 0.8 (0.44–0.97) 0.78 0.8

Morbidity classifications

SAM vs. healthy controls Sparse logistic regression 100 0.99 (0.98–1)  < 0.001 0.96 (0.88–1) 1 (0.59–1) 1 0.78

WAZ ≤  − 3 vs. WAZ >  − 3 Sparse logistic regression 100 0.7 (0.54–0.86) 0.02 0.73 (0.39–0.94) 0.7 (0.54–0.82) 0.36 0.91

Oedema vs. no oedema Sparse logistic regression 20 0.71 (0.56–0.87) 0.003 0.77 (0.55–0.92) 0.66 (0.48–0.81) 0.59 0.82

Diarrhoea vs. no diarrhoea Support vector machine 100 0.66 (0.51–0.81) 0.02 0.45 (0.24–0.68) 0.89 (0.73–0.97) 0.71 0.72

Pneumonia vs. no pneumonia Gaussian process 100 0.63 (0.47–0.75) 0.06 0.59 (0.33–0.82) 0.73 (0.56–0.85) 0.48 0.81

HIV + vs. HIV − Support vector machine 100 0.73 (0.58–0.87) 0.01 0.93 (0.66–1) 0.53 (0.36–0.69) 0.42 0.95

Age > 2 yrs. vs. age ≤ 2 yrs Random forest 20 0.79 (0.66–0.92)  < 0.001 0.75 (0.51–0.91) 0.76 (0.59–0.88) 0.63 0.85
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prospective collection of clinical data and our machine learning algorithms have been validated in other paedi-
atric  populations13,14,16,34. Children who died and those who survived had mostly similar baseline characteristics 
(including the use of antibiotics) making the (interpretation of) VOC differences even stronger. Finally, collec-
tion, storage and transport of the samples were performed strictly according standardized protocols, while fae-
cal VOC analysis was performed using optimal sampling conditions according to reference values as described 
 previously35.

Our study has limitations as well. First, the number of included patients was a relatively small, biased set from 
a larger study, and our findings need to be validated in a larger external cohort, preferably including children with 
SAM from different geographical areas. Another limitation is that FAIMS technology allows for rapid analysis 
of the complete spectrum of volatile molecules, but does not allow for identification of individual compounds 
contributing to the observed differences in VOC profiles. We did however cluster patients according to (clinical) 
characteristics associated with increased mortality in complicated SAM in an attempt to bring forward some 
theories as to what signals or factors are underlying these signals. The healthy controls were much older than 
the children with SAM, and the children who died were younger than those discharged alive. Finally, the lack of 
microbiome data is also limiting interpretation of our results. We also acknowledge the limitation of our small 
control group of 7 children. This is a small group when using machine learning but we believe that inclusion of 
this small control group was still important for the study.

Figure 2.  (A) Mortality v survival. Support vector machine (100 features). (B) Early mortality v survival. 
Random forest (100 features). (C) Late mortality v survival. Sparse logistic regression (50 features). (D) Early 
mortality v late mortality. Support vector machine (50 features).
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This study brings forth an exciting discovery that VOC analysis is able to detect altered metabolic signals from 
the microbiota that are linked to mortality in SAM. With future studies that are able to separate the individual 
components of these altered signals we hope to identify specific compounds and metabolites that are linked to 
mortality in SAM. This would improve our understanding of underlying, pathophysiological pathways to mortal-
ity in children with SAM. Once potential mechanisms are established this could lead to better targeted treatment 
and potentially identify high-risk patients early on admission; both aiming at reducing the current unacceptable 
high mortality rates. Conversely, identification of low-risk children with SAM could lower the overall burden 
of clinical care, might prevent the need for broad-spectrum antibiotics and facilitate earlier discharge. Future 
larger scale research on the risk stratifying purpose of VOCs is needed to validate these results both in African 
as well as Asian populations with different microbial  profiles36.

Methods
Study population. This was a case–control study, matched by site and sex, using faecal samples of 57 chil-
dren included in a multicentre randomized, double blinded intervention study (F75 study, ClinicalTrials.gov; 
no. NCT02246296). Children were enrolled in 3 centres: Queen Elizabeth Hospital, in Malawi; Kilifi County 
Hospital in Kenya, and Coast Provincial General Hospital in Kenya. The “F75 study” included 843 patients and 
evaluated whether modified F75 formula would decrease the time to clinical stabilization compared to the stand-
ard F75 nutrition rehabilitation  formula33.

Inclusion criteria for the original F75 study were as follows: children aged 6 months to 13 years, classified as 
complicated SAM with either medical complications or failing an appetite test, who were admitted to the mal-
nutrition  ward33. SAM was defined as a mid-upper arm circumference (MUAC) score < 11.5 cm, or a weight-for-
height z-score WHZ (WHZ) <  − 3, or/and bilateral oedema according to WHO  guidelines2,37. All children were 
placed on a F75 formula, a standardized WHO refeeding formula which was produced by Nutriset (Nutriset, 
Malaunay, France) which was given every 3 h. There were two different formulas used where protein was con-
sistent at 5.3%33. F75 formula has 31.5% lipids and 63.2% carbohydrates, whereas the modified F75 contained 
51.7% lipids and 43%  carbohydrates33. Children were randomized to both milk formulas for the study. Later on 
during admission children were placed on standardized Ready to Use Therapeutic Foods (RUTF), also given 
every 3 h. Informed consent was obtained from parents prior to enrolment in the study. Both HIV-positive and 
HIV-negative children were included in the study. Ethical approval was obtained from the College of Medicine 
Research Ethics Committee of the University of Malawi, the KEMRI Ethical Review Committee in Kenya, the 
Oxford Tropical Research Ethics Committee, and the Hospital for Sick Children, Toronto. This study was carried 
out in accordance to the regulations of each respective country and ethical committee.

The 57 faecal samples analysed in the present study were selected in the following manner: first, 72 children 
from the original F75 trial, aged between 6 months and 5 years, that had died within 6 days of admission were 
randomly selected, and then matched by site and sex, with children who were discharged from the hospital.

For the measurement, we needed a faecal sample size of at least 0.4 g which limited our original matched selec-
tion, and resulted in 19 faecal samples of children who died within 6 days after admission (cases) and 38 faecal 
samples of children who were discharged alive.

Faecal samples of 7 healthy siblings of SAM patients recruited at Queen Elizabeth Hospital served as a healthy 
control group since it is known that the microbiota of healthy children do differ significantly from children with 
SAM. Eligibility to serve as a healthy control was as follows: sibling of a F75 study patient, between 6 months 
and 6 years of age, WHZ >  − 2, MUAC > 12.5 cm, no oedema, no hospital admission in the last year, no diarrhoea 
in the past month, and no fever in the past month. Since this was an initial proof of principle study, no formal 
sample size calculation was performed.

Clinical data and biological sample collection. At admission to hospital, comprehensive clinical and 
anthropometric data were collected and recorded including appetite and dietary data, anthropometric data, 
degree of oedema, medical complications, and comorbidities, and prior antibiotic prescription. For a complete 
list of variables see Online Online Appendix 2: Table S2. Stool samples were collected on admission day.

VOC analysis by field asymmetric ion mobility spectrometry (FAIMS) technology. VOC analy-
sis was undertaken by Ion Mobility Spectrometry, specifically using a FAIMS technique. Here a commercial 
system was used, which is a portable, self-contained unit (Lonestar with ATLAS sampling system, Owlstone Ltd., 
UK). FAIMS is able to separate complex mixtures of chemicals through a combination of ionisation followed by 
measuring the difference in ion mobility in high-electric  fields38. We have used this technique over more tradi-
tional analytical approaches at it has high sensitivity, rapid/simple sample throughput (e.g. uses air as the carrier) 
and lower sampling/unit cost. The ionisation process is undertaken through the exposure of the gaseous species 
to a radioactive source (Ni-63 in our case). The resultant ions are then pushed between two plates onto which 
an asymmetric electric field is applied, comprising of a short high potential being applied in one direction and 
longer lower potential applied in the opposite direction (but with the period × applied potential being equal). 
This results in the ions moving between the plates (in a zig-zag pattern) and are detected as they exit the plates. 
These ions can be attracted, repelled or not affected by the difference in electric field depending on its properties. 
Any ion that collides with a plate loses its charge and is not detected. To counteract any movement of the ions, 
a compensation voltage is applied (from + 6 V to − 6 V in 512 steps). This scanning process allows ions of differ-
ent mobilities to be detected. Furthermore, the magnitude of the electric field was also scanned from 0 to 100% 
in 51 steps (as ion movement in non-linear with electric field) to further increase the information content. As 
both positive and negative ions are measured, the total number of data points per sample is 52,224. Each sample 
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was tested 3 times, with the second sample used. From previous studies, we have found that this second sample 
provides the most useful discriminatory information.

Procedures. Faecal samples were collected at admission to the hospital, homogenised, aliquoted into cryovi-
als, and stored at – 80 °C within 30 min after collection. They were transported on dry ice by a certified courier 
from Malawi and Kenya to The Netherlands and thawed prior to analysis with the Lonestar. VOC Analyses were 
performed in December 2017. Faecal samples were defrosted on ice 1–2 h prior to the VOC analysis. Approxi-
mately 0.40 g of faeces was weighed out with a 15% error margin. 10 ml of sterilised tap water was mixed in with 
the sample in a sterilized glass jar. The flow rate was consistent across the samples, with temperatures being set 
at 35 °C for the sample, 70 °C for the transfer unit, and 100 °C for the inlet filter temperatures. This protocol 
was consistent with methodology applied in previous studies and based upon outcome of a study on optimized 
sampling conditions in faecal VOC analyses using  FAIMS14,16,35,38.

Statistical analysis. Our primary outcomes were: SAM versus healthy controls (validation); mortality 
within 6 days versus discharge (survival); mortality within 3 days (i.e. early mortality) versus discharge; mortal-
ity before within 6 days (on day 4, 5, or 6 i.e. late mortality) versus discharge; early mortality versus late mortality. 
As mortality in children with SAM is multi-factorial, we included secondary outcomes which are known risk 
factors for mortality in this population. Secondary outcomes were: weight-for-age z-score (WAZ) ≤  − 3 standard 
deviation (SD) versus WAZ >  − 3 SD; oedema versus no oedema; diarrhoea versus no diarrhoea; pneumonia ver-
sus no pneumonia; HIV positive versus HIV negative; age ≤ 2 years versus age > 2 years. Baseline characteristics 
were compared using T-tests.

Though the FAIMS technique is highly sensitive, it is unable to identify specific chemicals and thus a pattern 
recognition technique was applied. To this end, we have developed a data analysis pipeline to undertake this task, 
which has been used on a number of previous studies. The detailed steps can be found in previous  reports14,16,18,38. 
In brief, first both the positive and negative ion data are combined together to create a single 2D array for each 
sample. We then applied a threshold to remove the background/areas that contain no information to reduce 
the computational overhead of the following steps. Then a tenfold cross validation approach is applied. Here 
the data is split into a 90% training set and a 10% test set. To the training set, a rank-sum test is applied to each 
data point to identify the top 100 data points/features that contain the most discriminatory information. These 
features are then used to train four different classifiers (specifically: Random Forest, Gaussian Process Classifier, 
Support Vector Machine, and Sparse Logistic Regression. This is part of our standard pipeline), which are then 
applied to the test set. This process is repeated 10 times until all the samples are classified as test samples and as 
the feature selection is within the fold, it reduces issues associated with over-fitting of data. The resultant data is 
then used to calculate statistical parameters, such as sensitivity and specificity.

From there, several machine learning algorithms using only the VOC data were used to determine whether 
the sub-groups could be separated based on faecal VOC profiles.

Data availability
All machine learning results are available in the Supplementary Tables. The raw VOC data is also available in 
the supplementary data (Supplement 3).

Received: 1 December 2019; Accepted: 8 September 2020

References
 1. UNICEF. Levels and Trends in Child Mortality (UNICEF, New York, 2015).
 2. WHO. Guideline: Updates on the Management of Severe Acute Malnutrition in Infants and Children (WHO, Geneva, 2013).
 3. Heikens, G. T. et al. Case management of HIV-infected severely malnourished children: Challenges in the area of highest preva-

lence. Lancet (London, England) 371, 1305–1307 (2008).
 4. Brewster, D. R. Inpatient management of severe malnutrition: Time for a change in protocol and practice. Ann. Trop. Paediatr. 31, 

97–107 (2011).
 5. Kerac, M. et al. Follow-up of post-discharge growth and mortality after treatment for severe acute malnutrition (FuSAM study): 

A prospective cohort study. PLoS ONE 9, e96030 (2014).
 6. Probert, C. S. J. et al. Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases. J. Gastrointest. 

Liver Dis. 18, 337–343 (2009).
 7. Blanton, L. V., Barratt, M. J., Charbonneau, M. R., Ahmed, T. & Gordon, J. I. Childhood undernutrition, the gut microbiota, and 

microbiota-directed therapeutics. Science 352, 1533 (2016).
 8. Smith, M. I. et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554 (2013).
 9. Kristensen, K. H. S. et al. Gut microbiota in children hospitalized with oedematous and non-oedematous severe acute malnutrition 

in Uganda. PLoS Negl. Trop. Dis. 10, 1–11 (2016).
 10. Blanton, L. V. et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 

351, 3311 (2016).
 11. Raman, A. S. et al. A sparse covarying unit that describes healthy and impaired human gut microbiota development. Science 365, 

4735 (2019).
 12. Gehrig, J. L. et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 365, 4732 

(2019).
 13. Buijck, M. et al. Sniffing out paediatric gastro-intestinal diseases: The potential of volatile organic compounds as biomarkers for 

disease. J. Pediatr. Gastroenterol. Nutr. 63, 585–591 (2016).
 14. van Gaal, N. et al. Faecal volatile organic compounds analysis using field asymmetric ion mobility spectrometry: Non-invasive 

diagnostics in paediatric inflammatory bowel disease. J. Breath Res. https ://doi.org/10.1088/1752-7163/aa6f1 d (2017).

https://doi.org/10.1088/1752-7163/aa6f1d


8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18785  | https://doi.org/10.1038/s41598-020-75515-6

www.nature.com/scientificreports/

 15. De Meij, T. G. J., Boer, N. K. H., Benninga, M. A., Bodegraven, A. A. & Schee, M. P. P-008: Fecal gas analysis by electronic nose: 
A novel, non-invasive technique for assessment of active and quiescent pediatric inflammatory bowel disease. J. Crohn’s Colitis 8, 
S396 (2014).

 16. Berkhout, D. J. C. et al. Detection of sepsis in preterm infants by fecal volatile organic compounds analysis: A proof of principle 
study. J. Pediatr. Gastroenterol. Nutr. 65, e47–e52 (2017).

 17. de Meij, T. G. J. et al. Early detection of necrotizing enterocolitis by fecal volatile organic compounds analysis. J. Pediatr. 167, 562 
(2015).

 18. de Meij, T. G. et al. Electronic nose can discriminate colorectal carcinoma and advanced adenomas by fecal volatile biomarker 
analysis: Proof of principle study. Int. J. Cancer 134, 1132–1138 (2014).

 19. Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014).
 20. Bartz, S. et al. Severe acute malnutrition in childhood: Hormonal and metabolic status at presentation, response to treatment, and 

predictors of mortality. J. Clin. Endocrinol. Metab. 99, 2128–2137 (2014).
 21. Owino, V. et al. Environmental enteric dysfunction and growth failure/stunting in global child health. Pediatrics 138, e20160641–

e20160641 (2016).
 22. Tickell, K. D. & Denno, D. M. Inpatient management of children with severe acute malnutrition: A review of WHO guidelines. 

Bull. World Health Organ. 94, 642–651 (2016).
 23. Tilg, H. & Moschen, A. R. Malnutrition and microbiota—A new relationship?. Nat. Rev. Gastroenterol. Hepatol. 10, 261–262 (2013).
 24. Murray, E. & Manary, M. Possible role of the microbiome in the development of acute malnutrition and implications for food-based 

strategies to prevent and treat acute malnutrition. Food Nutr. Bull. 36, 72S-75S (2015).
 25. Freemark, M. Metabolomics in nutrition research: Biomarkers predicting mortality in children with severe acute malnutrition. 

Food Nutr. Bull. 36, S88-92 (2015).
 26. Zilberman-Schapira, G. et al. The gut microbiome in human immunodeficiency virus infection. BMC Med. 14, 83 (2016).
 27. Bandera, A., De Benedetto, I., Bozzi, G. & Gori, A. Altered gut microbiome composition in HIV infection: Causes, effects and 

potential intervention. Curr. Opin. HIV AIDS 13, 73–80 (2018).
 28. Vemuri, R. et al. Gut microbial changes, interactions, and their implications on human lifecycle: An ageing perspective. Biomed. 

Res. Int. 2018, 4178607 (2018).
 29. Willing, B. P., Russell, S. L. & Finlay, B. B. Shifting the balance: Antibiotic effects on host-microbiota mutualism. Nat. Rev. Microbiol. 

9, 233–243 (2011).
 30. Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. 

Cell 158, 705–721 (2014).
 31. Cully, M. Antibiotics alter the gut microbiome and host health. Nat. Res. 15, S19 (2019).
 32. Attia, S. et al. Mortality in children with complicated severe acute malnutrition is related to intestinal and systemic inflammation: 

An observational cohort study. Am. J. Clin. Nutr. 104, 1441–1449 (2016).
 33. Bandsma, R. H. J. et al. A reduced-carbohydrate and lactose-free formulation for stabilization among hospitalized children with 

severe acute malnutrition: A double-blind, randomized controlled trial. PLoS Med. 16, e1002747 (2019).
 34. de Meij, T. G. J. et al. Characterization of microbiota in children with chronic functional constipation. PLoS ONE 11, e0164731 

(2016).
 35. Bosch, S. et al. Optimized sampling conditions for fecal volatile organic compound analysis by means of field asymmetric ion 

mobility spectrometry. Anal. Chem. 90, 7972–7981 (2018).
 36. Pop, M. et al. Diarrhea in young children from low-income countries leads to large-scale alterations in intestinal microbiota 

composition. Genome Biol. 15, R76 (2014).
 37. WHO. Management of Severe Malnutrition: A Manual for Physicians and Other Senior Health Workers (World Health Organization, 

Geneva, 1999).
 38. Bomers, M. K. et al. Rapid, accurate, and on-site detection of C. difficile in stool samples. Am. J. Gastroenterol. 110, 588–94 (2015).

Acknowledgements
We would like to acknowledge and thank all the participants and their families who took part in this study.

Author contributions
Conceptualization: D.A.v.d.B., W.P.V. and T.d.M. Data acquisition: J.T., M.N. and L.M. Formal analysis: D.A.v.d.B., 
W.P.V., T.d.M., J.A.C. and A.W. Investigation/Methodology: D.A.v.d.B., T.d.M., D.B., R.H.J.B., N.K.H.d.B., P.F.v.R. 
and W.P.V. Project administration: D.A.v.d.B. and W.P.V. Writing—original draft: D.A.v.d.B., W.P.V., T.d.M. and 
D.B. Writing- review & editing: D.A.v.d.B., T.d.M., D.B., R.H.J.B., J.T., M.N., L.M., N.K.H.d.B., A.W., J.A.C., 
P.F.v.R. and W.P.V.

Funding
The F75 study was funded by the Thrasher Research Fund, number 9403; analysis was supported by the CHAIN 
Network with funding from the Bill & Melinda Gates Foundation, grant number: OPP1131320; funders had no 
input in the design, data collection, analysis, or preparation of this manuscript. In addition, we would also like 
to acknowledge Owlstone FAIMS technology. We do want to clarify while we used the technology, at no point in 
time did they have any input in our data or analysis. There was also no funding or grants received from Owlstone.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https ://doi.org/10.1038/s4159 8-020-75515 -6.

Correspondence and requests for materials should be addressed to D.A.v.d. or W.P.V.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/s41598-020-75515-6
www.nature.com/reprints


9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18785  | https://doi.org/10.1038/s41598-020-75515-6

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

http://creativecommons.org/licenses/by/4.0/

	Prediction of mortality in severe acute malnutrition in hospitalized children by faecal volatile organic compound analysis: proof of concept
	Results
	Discussion
	Methods
	Study population. 
	Clinical data and biological sample collection. 
	VOC analysis by field asymmetric ion mobility spectrometry (FAIMS) technology. 
	Procedures. 
	Statistical analysis. 

	References
	Acknowledgements


