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4.1 Upper left: Wavenumber matching of transverse density perturba-

tions. Laser wavenumber shown as black arrow, while black solid

curve marks wave-vectors where TPD matching conditions are satis-

fied at ne = 0.22ncr and Te = 3.5keV. TPD growth rates for a homoge-
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by blue and green arrows. The two forward (or backward) propa-

gating waves have the same frequency and can be coupled by a den-
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wavenumbers (dashed lines in left panel), with density perturbation

of δn/ne = 0 (black), 0.02 (blue) and 0.04 (green). Dashed lines

neglect Landau damping, solid lines include it. Approximate solu-

tion for δn/ne = 0.04 shown in red. Lower centre: Growth rate as

a function of transverse density perturbation amplitude for TPD at

electron densities indicated. Solid lines show numerical solution while

the dashed lines use equation 4.18. Each curve’s growth rates are nor-

malised to the numerically calculated γ with no density perturbation.
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4.3 Dependence of the TPD growth rate on the location of a second

TPD EPW pair coupled by density perturbations, with Te = 3.5keV,
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5.2 Left: Instantaneous ky energy spectrum of the Ex field component

during initial instability growth at t = 2.1ps. The laser wave-vector

and ∇ne are parallel to the x axis while the laser polarisation is along

the y axis. The white curve indicates where maximal linear growth of

TPD is expected at each density, while the white dashed line marks
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Abstract

In the shock-ignition (SI) approach to direct-drive inertial confinement fusion
(ICF) a high-intensity laser pulse (1015-1016Wcm−2) is used to drive a converging
shock through a pre-compressed fuel pellet to trigger its ignition [Betti et al., 2007].
Studies over the last decade have indicated that laser-plasma instabilities (LPIs) play
a key role in determining the effectiveness of this ignitor shock [Theobald et al., 2012;
Nora et al., 2015]. In particular, the hot electron distribution produced by LPIs is
vital [Betti et al., 2008]. Electrons below a threshold energy, usually taken to be
around 100keV, may be stopped in the dense fuel behind the shock and strengthen
it, while above this threshold the electrons can pre-heat the fuel ahead of the shock
and reduce its strength.

Previous simulation work has investigated SI for short density scale-length
plasmas [Yan et al., 2014] relevant to experiments with targets of a smaller scale than
required for ignition [Theobald et al., 2012]. In this project a series of 2D particle-in-
cell simulations was performed of coronal plasmas with a variety of scale-lengths. Of
these, two are presented in this thesis. In the first simulation the small-scale regime
of [Yan et al., 2014] is revisited, while the second has initial conditions chosen to
represent a full-scale ignition design. It is found that the two-plasmon decay (TPD)
dominates the dynamics and hot-electron production in the small-scale case, while
stimulated Raman scattering (SRS) plays a more prominent role in larger-scale
coronas. In the sub-scale case the spectrum of IAWs that is ponderomotively driven
by TPD is found to be important. Growth rates are derived to treat this, and
offer a possible explanation for the dynamics observed. In the ignition-scale case
SRS is found to exhibit kinetic inflation [Montgomery et al., 2002; Vu et al., 2002],
and two mechanisms are proposed to describe the long-term behaviour observed.
In both cases the hot-electron distribution can be characterised by a relatively low
temperature of around 30keV, which is promising for the SI scheme.
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Chapter 1

Introduction

1.1 Inertial Confinement Fusion

Inertial Confinement Fusion (ICF) is one of the two major approaches to achieving

self-sustaining thermonuclear fusion that are currently being pursued, the other

being Magnetic Confinement Fusion (MCF). In both, the challenge is to confine the

fuel over a sufficient period of time that fusion reactions result in net energy gain.

In the inertial approach, as the name suggests, the inertia of the fuel itself is used

to maintain this confinement.

1.1.1 Fundamental Principles

Nuclear fusion refers to the joining of two atomic nuclei. This occurs when the

Coulomb repulsion between their positively charged protons is overcome by the

attractive force of the strong nuclear interaction. Nuclear reactions result in a change

in potential energy, which can be calculated by considering the mean energy gain per

nucleon that is achieved when assembling a given nucleus. This is shown in figure

1.1. A reaction in which the total binding energy of the reactants is greater than

that of the products is energetically favourable and results in the energy difference

being delivered as the kinetic energy of the products. Considering figure 1.1, one

can deduce that fusion reactions producing nuclei lighter than 56Fe are energetically

favourable. In contrast, producing nuclei heavier than 56Fe is not. Furthermore for

nuclei heavier than 56Fe, energy can only be extracted by their splitting, or fission.

In order to achieve fusion for the purposes of exploiting this energy gain,

the primary difficulty lies in the environment required for the reactions to take

place at an appreciable rate. Due to the short range of the strong nuclear force,

the reactants must reach very short separation before the reaction will take place.
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Forcing two nuclei so close together requires a significant amount of energy due

to the Coulomb repulsion, and so is referred to as the ‘Coulomb barrier’. For the

reaction between Deuterium and Tritium, this energy barrier is on the order of

0.4MeV. If this were the average energy of each reacting particle a temperature of

around 5 × 109K would be required. Fortunately, by considering the reaction rate

averaged over a material with thermally distributed particle energies, a significantly

lower required temperature can be calculated. This is because such a distribution

contains small numbers of particles with energies much larger than the mean particle

energy, and these may be capable of overcoming the Coulomb barrier. Furthermore,

quantum tunnelling lowers the required energy to an extent. Figure 1.2 shows the

fusion reaction rate, averaged over a thermal distribution of reactant velocities,

as a function of temperature for several important fusion reactions. The reaction

with the highest rates at low temperatures is that between deuterium and tritium,

isotopes of hydrogen with one and two neutrons respectively. The reaction may be

written

2
1H + 3

1H
4
2He(+3.5MeV) + n(+14.1MeV). (1.1)

As shown in figure 1.2, this requires temperatures on the order of 10keV (∼ 108K) to

achieve an appreciable reaction rate; two orders of magnitude less than the Coulomb

barrier’s effective temperature. Assuming such a temperature can be achieved, a

simple inequality can be derived for achieving net energy gain in a fusion device.

This is called the Lawson criterion, and balances heating of plasma due to fusion

reactions against energy losses, which are assumed to occur over some confinement

time τE. For DT fuel at a temperature of T = 10keV, the condition may be written

as

nτE & 1021s/m3 (1.2)

where n is the electron number density.

In ICF, confinement is provided by the fuel’s inertia and so τE is very small.

A more useful criterion for ICF can be produced by assuming that the confinement

time is given by the time necessary for a rarefaction wave to travel from the edge

of the fuel to its centre over a distance R. The Lawson criterion can then be

reformulated in terms of an ‘areal density’ ρR

ρR & 1g/cm2, (1.3)

where ρ is the mass density of the fuel. This mass of fuel must be heated to 10keV,
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with the energy required to do so scaling with mass as E ∝ ρR3 = (ρR)3/ρ2.

Constructing a driver capable of delivering greater amounts of energy is generally

very costly so, since the numerator in this expression is fixed by the Lawson criterion,

it is highly advantageous to maximise the final density of the fuel. A target density

on the order of 300g/cm−3 or 1000 times the density of the solid fuel is typically

considered necessary [Atzeni and Meyer-ter Vehn, 2004]. The largest ICF driver

currently delivers an energy of 1.9MJ, while high-performing experiments reach fuel

densities of around 500g/cm−3 with areal densities of up to 0.3g/cm−2 [Meezan

et al., 2017; Hurricane et al., 2019].

In a fusion reactor designed for electricity generation, so as to outweigh

inefficiencies and make such a reactor economical, it would be necessary for the

fusion reactions to produce a much greater quantity of energy than supplied for

target compression and heating. This ratio of output to input energy is referred

to as the gain. It was realised early on in the ICF programme that high gain

cannot be achieved if the drive energy is used to uniformly heat the compressed

fuel. Instead, laser-driven ICF designs attempt to achieve what is known as ‘hot-

spot ignition’ [Nuckolls et al., 1972], through which high gain is thought possible.

This is illustrated in the four inset panels of figure 1.3. In this scheme, the target

is a spherically symmetric pellet formed of three components. The outer layer is

a solid shell called an ‘ablator’, typically composed of plastic. Within this lies a

second shell of solid DT fuel, while the centre of the target is filled with DT gas.

To compress the target the outer layer is progressively ablated by illuminating it

with a powerful radiation source. The resulting pressure on the remainder of the

target causes it to implode and become compressed. On reaching peak compression,

the work done by the dense DT fuel on the central gas fill raises its temperature to

the point where it ignites and therefore heats the remaining fuel to ignition. This

scheme can achieve high gain since only a small mass of fuel (the gas fill) needs to

be heated to temperatures at which it ignites, and acts as a spark to trigger ignition

of a much larger fuel mass.

In order for hot-spot ignition to be successful, the compression of the fuel

must be close to isentropic; heating before the stagnation phase would necessitate a

considerably greater drive energy. In early hot-spot ignition designs, smooth, care-

fully shaped laser pulses were proposed to achieve almost perfectly isentropic im-

plosions [Nuckolls et al., 1972]. Unfortunately, since compression occurs so rapidly,

these pulse shapes are liable to introduce shocks that are less effective at compressing

the target. Rather than attempt to avoid the inevitable, modern designs purpose-

fully drive a series of shocks that are timed to arrive in the hotspot at the same
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Figure 1.3: Illustration of the two main laser drive configurations, direct and
indirect-drive. In the former the target is illuminated directly by the laser, while
in the latter a radiation enclosure formed of a high-Z material such as gold is used
to convert laser photons to X-rays. Lower inset panels show snapshots in time
illustrating an implosion. Reprinted by permission from Nature Physics [Betti and
Hurricane, 2016].

time. By driving multiple small shocks in this manner it can be shown that the

implosion can be made close to isentropic.

1.1.2 Direct & Indirect-drive

Two drive configurations have generally been used for laser-driven ICF. These are

shown schematically in figure 1.3. In the direct-drive scheme the laser beams are

used to directly illuminate the target, and enter from ports that are distributed

uniformly about the (spherical) target chamber. Historically, this approach has

been hindered by poor beam uniformity. This leads to ‘imprint’ of the laser beam’s

spatial intensity profile on the target surface [Peebles et al., 2019] which seeds hy-
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drodynamic instabilities, primarily the Rayleigh-Taylor instability. More recently,

various techniques have been developed to smooth the intensity distribution on tar-

get. These techniques include spatial smoothing (random phase plates or RPPs)

[Kato et al., 1984], temporal smoothing (smoothing by spatial dispersion or SSD)

[Skupsky et al., 1989] and polarisation smoothing [Boehly et al., 1999]. Along with

the lack of progress with the indirect-drive approach, this has renewed interest in

the direct-drive scheme.

In the indirect-drive approach the fuel pellet is placed at the centre of a cylin-

drical radiation enclosure constructed from a high-Z material, called a ‘hohlraum’.

The lasers are arranged in two circular clusters at opposing sides of the target cham-

ber and focused through two holes in the end of the hohlraum at its inner surface.

This leads to their conversion into X-rays which drive the implosion of the target.

The indirect-drive approach leads to a considerable improvement in drive uniformity

by comparison to direct-drive which, among other reasons, is why this approach has

generally been favoured in the past. This method of increasing drive uniformity

comes at a significant price however as the conversion to X-rays is inefficient and

results in loss of roughly two thirds of the laser energy.

1.1.3 Current Status

Since the beginning of the laser-driven ICF programme a succession of facilities

have been built with progressively larger delivered laser energy and beam counts.

Presently the largest laser systems configured for direct and indirect-drive are OMEGA

and the National Ignition Facility (NIF) respectively. Both of these are infrared

Nd:glass lasers, frequency tripled into the UV with an output wavelength of 351nm.

The OMEGA laser facility is a 60-beam system based at the University of Rochester’s

Laboratory for Laser Energetics that delivers 30kJ (UV). The NIF is based at the

Lawrence Livermore National Laboratory and is currently the world’s largest laser

system by delivered energy at 1.9MJ (UV). It is a 192-beam system, though these

are grouped into 48 ‘quads’ that each occupy a single port in the target chamber.

Due to the much larger drive energy available at the NIF for indirect-drive,

this approach currently produces the highest-performing shots. It had been en-

visaged that after construction of the facility in 2009, ignition would be achieved

rapidly within a few years [Moses et al., 2009]. Unfortunately progress was con-

siderably slower than anticipated and as of 2019 ignition has yet to be reached.

Nevertheless certain milestones have been achieved. Perhaps most notable was the

attainment in 2013 of so-called ‘fuel gain’ greater than unity [Hurricane et al., 2014],

where energy delivered to the fuel is exceeded by that produced from fusion reac-
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tions. More recent designs achieve fuel gains greater than two, with a fusion yield

of around 55kJ [Pape, 2018].

Several factors have limited the performance of these experiments. Time-

dependent drive asymmetries, due in part to laser-plasma instabilities, led to many

experiments producing hot-spots with low-mode asymmetries [Kritcher et al., 2016].

These asymmetries cause inefficient transfer of kinetic energy to the hotspot and

present a higher surface area through which it can be cooled. Additionally, hy-

drodynamic instabilities seeded by engineering features such as the gas fill tube or

the plastic film (‘tent’) used to fix the target in place, may cause mixing of high-Z

ablator material into the fuel [Clark et al., 2016]. This leads to considerable loss of

energy through bremsstrahlung X-ray emission and thermal conduction. Strategies

to mitigate these effects have produced higher performing implosions [Dittrich et al.,

2014; Park et al., 2014; Hinkel et al., 2016], but involve sacrifices that limit the per-

formance that can ultimately be reached. The performance of these experiments can

potentially be increased to the point where ignition will occur, and several potential

routes to this are being actively pursued [Hurricane et al., 2019]. However at this

stage it is unclear whether indirect drive ICF will ever be capable of high gain, at

least without radical improvements in the laser driver.

1.1.4 Shock Ignition

With the slow progress made with conventional ICF approaches, there has been

consideration of potential alternative ignition schemes that can leverage modern

technology, such as high-power lasers [Strickland and Mourou, 1985]. Of these al-

ternative schemes, one which has emerged as a promising approach is the shock

ignition (SI) scheme [Betti et al., 2007]. In this direct-drive concept a short, high

intensity ‘spike’ is appended to the conventional laser pulse. This launches an ad-

ditional shock, which is timed to collide with the rebound compression shock in the

central hotspot at peak convergence of the capsule. The converging shock is ampli-

fied through this collision, and subsequently raises the hotspot pressure above the

threshold for ignition. Like other alternative ignition schemes, this arrangement can

be thought of as separating ICF into two phases: creation of a dense fuel assembly

(compression), and delivery of the energy needed to ignite the hotspot (ignition).

There are several advantages to this scheme over conventional direct-drive

ICF. First, it has potential to achieve higher energy gain. This is because the pres-

sure reached in the central hotspot is higher than that of the surrounding cold fuel,

in contrast with conventional schemes where an isobaric fuel assembly is created

[Betti et al., 2007]. Consequently, for the same yield, the shell implosion velocity
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and therefore laser intensity may be lower than a conventional direct-drive implo-

sion. While this is beneficial in terms of reducing the required driver energy, it

also reduces the risk of detrimental effects caused by both hydrodynamic and laser-

plasma instabilities (LPIs). However, during the ‘spike’ in laser power, intensities

of 1015-1016Wcm−2 are required in order to generate a shock of sufficient strength

for ignition of the hotspot. These intensities are considerably larger than those typ-

ically used for direct-drive, which are typically 1014-1015Wcm−2. This places this

portion of the pulse in an intensity regime that has not received much attention in

a direct-drive ICF context.

Laser-plasma instabilities (LPIs) can scatter significant fractions of laser en-

ergy or, indirectly, divert it into supra-thermal (‘hot’) electron populations via Lan-

dau damping of the resulting electron plasma waves (EPWs). The main instabilities

involved are stimulated Brillouin scattering (SBS), stimulated Raman scattering

(SRS) and the two-plasmon decay (TPD). In general LPIs are considered detri-

mental to ICF schemes and conventionally it has been important to minimise their

activity. With regard to SI however, it is possible that the hot electrons produced

by these instabilities could be beneficial. Depending on their energy, these may

either be stopped in the dense shell behind the ignitor shock and enhance its pres-

sure, or deposit energy ahead of the shock and inhibit efficient compression. The

threshold energy above which these electrons are considered detrimental is thought

to be around ∼100keV [Betti et al., 2007]. This has led to some SI designs in which

the production of moderate energy (< 100keV) electrons is maximised - so called

‘electron shock ignition’ [Shang et al., 2017; Theobald et al., 2017]. Naturally these

issues make an understanding of the behaviour of LPIs under relevant conditions

important to the success of SI.

1.2 Previous Work

1.2.1 Experiments

Experiments investigating SI have typically focused on sub-scale target designs as

the laser facilities that were available could not deliver sufficiently energetic pulses

to drive full ignition-scale implosions. This has resulted in most experiments having

plasma conditions near ncr/4 of Te = 1-3.5keV and density scale-length Ln < 350µm

[Cristoforetti et al., 2017, 2018; Baton et al., 2017; Theobald et al., 2012, 2015; Nora

et al., 2015; Hohenberger et al., 2014; Batani et al., 2012, 2014; Baton et al., 2012;

Theobald et al., 2008] (see table 1.1 for a summary of key information from the

associated publications). The results of these have been varied, however there are
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some features of note. In cases where beams were stacked in order to reach high

intensities, common-wave TPD [Myatt et al., 2014] (where beams share a decay

wave) resulted in a hot electron temperature (Thot) that increased with laser intensity

[Hohenberger et al., 2014]. This poses a potentially serious preheat risk for shock

ignition. It was therefore suggested that this could be mitigated in future designs

where common-wave TPD occurs by minimising beam overlap [Hohenberger et al.,

2014]. In contrast, other experiments identified SRS as the dominant source of hot

electrons and found weaker dependence of Thot on laser intensity [Theobald et al.,

2012, 2015, 2017]. In these cases SRS was thought to be triggered by filamentation

of the laser beams at a relatively low density, which prevented large intensities from

reaching ncr/4 [Theobald et al., 2012, 2015, 2017]. The most recent of these studies

examined the effect of ablator material on LPI, finding CH to produce most hot

electrons due to relatively high ion acoustic wave (IAW) damping rates. This is

because IAWs act to limit the saturation amplitude of the LPIs [Theobald et al.,

2017].

1.2.2 Theory & Simulation

At shock ignition intensities, many of the approximations that are made to simplify

modelling of direct-drive experiments are not applicable. For example it is neces-

sary to model the loss of energy of the laser (pump depletion), and self-consistent

modelling of kinetic effects may become more important due to larger suprathermal

electron populations. Prior simulations have therefore resorted to computationally

expensive self-consistent 2D particle-in-cell (PIC) simulations. Like the experiments

described above, these have considered plasmas with short scale-lengths. Simula-

tions with Ln ' 50µm, Te = 5keV and a laser intensity IL = 40-50 × 1015Wcm−2

found that both SRS and TPD were largely suppressed by cavitation near ncr/4 [We-

ber et al., 2012; Klimo et al., 2014]. More recently, collisional simulations modelled

the OMEGA experiments of [Theobald et al., 2012] with coronal plasma parameters

of Ln ' 170µm and Te = 1.6-3.5keV [Yan et al., 2014]. These indicated that, at an

intensity of 2 × 1015Wcm−2, both TPD and absolute SRS were active near ncr/4.

A moderate hot electron temperature of Thot = 30keV was measured, consistent

with the experiments, and was attributed to SRS. Finally, it was found that TPD

occurred in bursts, with a mechanism proposed of the interaction of high and low

density modes via pump-depletion [Yan et al., 2014].

With the construction of megajoule-class laser facilities such as the NIF,

initial experiments have been performed to examine laser-plasma instabilities under

shock-ignition relevant conditions, though results are yet to be published. Targets
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shot on MJ-class facilities are expected to have coronal plasma parameters on the

order of Te ' 4-8keV and Ln ' 400-750µm. At conventional direct-drive intensities

these parameters favour the SRS instability over TPD [Rosenberg et al., 2018; Michel

et al., 2019], in contrast with sub-scale experiments where TPD has generally been

dominant [Seka et al., 2009; Froula et al., 2012]. There has so far however been little

modelling of LPI under these conditions, and none at SI intensities. The main aim

of this project is therefore to address the lack of modelling by performing an initial

study examining how LPI activity differs between the sub-scale design space and

the ignition or NIF-scale regime.

1.3 Normalisations

Here the normalisations used in the remainder of the thesis are defined. Unless

another normalisation is explicitly specified, equations are all written in SI units.

For plots and when quoting values of quantities, the unit system chosen is based

on the customary units of the laser-plasma literature. These are summarised in the

table below.

Quantity Symbol Unit Unit Name Unit value (SI)

Time t ps Picosecond 10−12s

Frequency ω ω0
3rd harmonic

of Nd:Glass laser
2πc/(351nm)

Length µm Micron 10−6m

Wavenumber k ω0/c
Vacuum wavenumber,

Nd:Glass @ 3ω
2π/(351nm)

Temperature T keV kilo-electron volt 1000e/kB

Density n ncr
Critical density,
Nd:Glass @ 3ω

ω2
0meε0/e

2

Electric field E meω0c/e meω0c/e
Magnetic field B meω0/e meω0/e

Intensity I Wcm−2 10−4Wm−2

Kinetic energy Ek keV kilo-electron volt 1000e
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Chapter 2

Theory

In this chapter theoretical descriptions of key phenomena are summarised that will

be invoked to explain the results presented in later chapters. First, in section 2.1 we

begin by discussing the systems of equations that are the foundation for modelling

weakly coupled plasmas, and which underpin all of the subsequent theory. In sec-

tion 2.2 the linear waves supported by these equations in an unmagnetised plasma

are introduced and their basic properties described. The collisionless damping of

the electrostatic waves and nonlinear effects which affect them are then discussed in

sections 2.3 and 2.4. Finally, in section 2.5 the theory of three-wave parametric in-

stabilities is introduced, beginning with general theory and subsequently specialising

to the specific instabilities that are encountered in our simulations.

2.1 Fundamental Equations

The simulations in this thesis model the corona of a directly-driven ICF target. This

is formed by the explosion of the target’s ablator in response to its illumination by

multiple UV laser beams. The laser is typically a frequency-tripled Nd:Glass laser

with vacuum wavelength 351nm. The ablator is usually composed of plastic (CH)

and forms a plasma characterised by a spatially uniform electron temperature of

1-10keV (∼ 107-108K) depending on the experiment and, compared with the bulk

of the target, a low density ranging from vacuum to ne ' 1028m−3. Under these

conditions the plasma is weakly collisional with an electron-ion collision frequency

much lower than the plasma frequency νei/ωpe ∼ 10−5-10−3. As a result the ions are

not in thermal equilibrium with the electrons and usually have a temperature that

is smaller than that of the electrons by a factor of two or more. Since this plasma

is being ablated from the main target its density decreases (usually exponentially)
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with distance from the target’s ablation surface and has a large bulk velocity on the

order of the ion sound speed. Finally, the plasma is usually not magnetised.

In the study of this system we aim to understand the self-consistent motion

of ions and unbound electrons in the electromagnetic fields. Due to the high temper-

ature we can neglect ionisation (assuming a CH plasma). With this assumption one

may derive an equation for the evolution of the single-particle probability density

function in phase-space for each species α1:

∂fα
∂t

+ v · ∇fα +
qα
mα

[E + v ×B] · ∂fα
∂v

=
∑
β

Cαβ(fα, fβ) (2.1)

On the left hand side of the equation are terms describing the so-called ‘collective

behaviour’ of particles in response to the electromagnetic fields. The term on the

right hand side of the equation accounts for interactions between particles on length-

scales ∆x . λD, which are referred to as collisions [Braginskii, 1965]. These in

general act to relax the distribution function towards a thermal equilibrium. Due to

the low collision frequency in the system under consideration, this term is typically

small and plays a relatively minor role in the evolution of the plasma. When the

term is neglected and set to zero, the equation is referred to as the Vlasov equation.

Aside from through the collision term, the equations above are coupled via

the electromagnetic fields whose evolution is described by Maxwell’s equations:

∇ ·E =
ρ

ε0
, (2.2)

∇ ·B = 0, (2.3)

∇×B = µ0J + µ0ε0
∂E

∂t
, (2.4)

∇×E = −∂B

∂t
. (2.5)

It is important to note that the fields E and B in equation 2.1 refer to averaged

quantities which neglect microscopic fluctuations arising due to particle collisions.

The Vlasov-Maxwell system including a collision term represents a ‘gold-

standard’ description for the regime of plasma parameters important to laser-plasma

instabilities in ICF. Unfortunately this description is often prohibitively complex and

so it is often necessary to use a less detailed fluid formulation. This may be derived

1The equation shown is for the non-relativistic case, but may easily be generalised by replacing
the velocity v by the Lorentz boosted velocity u ≡ γv everywhere other than in the 2nd term and
Lorentz force expression.
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by taking moments of the Vlasov equation and leads to the following equations,

referred to as the ‘two-fluid equations’:

∂nα
∂t

+∇ · (nαuα) = 0, (2.6)

mα
∂uα
∂t

+mα(uα · ∇)uα = qα (E + uα ×B)− 1

nα
∇Pα, (2.7)

where:

nα(x, t) ≡
∫
R3

f(x,v, t) d3v, (2.8)

uα(x, t) ≡
∫
R3

vf(x,v, t) d3v, (2.9)

Pα(x, t) ≡
∫
R3

(v − u)(v − u)f(x,v, t) d3v (2.10)

are the density, bulk velocity and pressure tensor of species α.

Formally, the moment equations continue indefinitely and include successive

higher order moments. In order to be tractable they must be truncated at some

order. This is normally done by defining an equation of state that relates the

thermal pressure Pα to lower order moments and the plasma temperature. This

avoids the need for an equation to model heat transfer. Two common choices are

made here, the first being the ideal gas equation of state

Pα = nαkBTα, (2.11)

and second the adiabatic equation

Pα ∝ nγα. (2.12)

where γ ≡ (Nd + 2)/Nd and Nd is the number of degrees of freedom. In fact, the

adiabatic relation is not an equation of state, and so the ideal gas EOS is usually

used to calculate a proportionality constant at a reference temperature. The ideal

gas EOS is applicable for processes with characteristic velocity ω/k � vth,α while

the adiabatic EOS is applicable where ω/k � vth,α. The intermediate case requires

a fully kinetic description as per the Vlasov equation [Kruer, 2003].
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Figure 2.1: Dispersion relations of the three waves supported by an unmagnetised
plasma with Maxwellian distribution function: electromagnetic, electron-plasma and
ion-acoustic waves. Plasma parameters used are: ne = 0.15ncr, Te = 3.5keV, Ti =
1.7keV and Z = 1, which aside from Z = 1 are typical for this thesis. Left and
right panels differ only in the frequency scale used. Frequency and wavenumber
normalisations are the frequency and vacuum wavenumber of light from a frequency-
tripled Nd:Glass laser.

2.2 Plasma Waves

In an unmagnetised plasma with Maxwellian distribution functions three wave modes

are supported: electromagnetic, electron-plasma and ion-acoustic waves. The dis-

persion relations for these three wave types are plotted in figure 2.1 for representative

plasma conditions.

Beginning with electromagnetic (EM) waves, a linearised fluid or kinetic

derivation for these waves produces a dispersion relation given by

ωEM =
√
ω2

pe + c2|k|2. (2.13)

where ωpe is the electron plasma frequency, defined

ωpe =

(
nee

2

meε0

) 1
2

(2.14)

Since the plasma frequency increases with density, the above relation demonstrates

that EM waves propagating through a plasma have a maximum density above which

they cannot propagate. This is known as the critical density and is given by

ncr =
meε0

e2
ω2

0, (2.15)

where ω0 is the EM wave frequency. As the wave propagates its electric field induces
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oscillations of the electrons in the plasma. This is referred to as the electron quiver,

with the amplitude of the oscillations in electron velocity referred to as the quiver

velocity vos. In terms of the electric field amplitude this is given by

vos =
eE0

meω0
. (2.16)

The quiver velocity normalised to the speed of light is denoted a0. Values a0 � 1

indicate a non-relativistic intensity, while for larger values the above dispersion rela-

tion would need a relativistic correction. In this thesis the maximum laser intensity

considered is on the order of 1016Wcm−2, or a0 = 0.03.

The second supported mode is the electron-plasma wave (EPW) which is an

electrostatic wave. Linearising the two-fluid equations, its dispersion relation may

be derived:

ωEPW '
√
ω2

pe + 3v2
th|k|2. (2.17)

Since the electron temperature is on the order 1-10keV, the thermal velocity (vth ≡√
kBTe/me) is ∼ 0.04-0.14c. This means that the group velocity of these waves is

considerably smaller than EM waves. A kinetic treatment of these waves produces a

similar dispersion relation, however with the addition of a damping coefficient. The

above dispersion relation is accurate for kλD � 1, while for kλD & 0.25 the waves

are strongly damped. This is discussed in detail in section 2.3.

The final plasma wave is the ion-acoustic wave (IAW), also an electrostatic

wave. Using a linearised kinetic description and considering a single ion species, a

dispersion relation of the form

ωIAW ' |k|
√
Z
me

mi

v2
th

1 + |k|2λD
+ 3v2

th,i (2.18)

may be derived. Here Z is the ion charge state, mi its mass and vth,i ≡
√
kBTi/mi)

the ion thermal velocity. The kinetic treatment also indicates that these waves are

damped unless Ti � Te. In order for an IAW to be able to propagate distances in

excess of its wavelength requires Te/Ti & 5-10 [Cairns, 1985]. For small kλD the

dispersion relation may be simplified to

ωIAW ' cs|k|, (2.19)

where cs is the ion sound speed
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cs =

√
Z
me

mi
v2

th + 3v2
th,i. (2.20)

In-depth discussion of the IAW dispersion relation and its damping for a plasma

with multiple ion species may be found in [Williams et al., 1995].

Finally it should be noted that as the phase velocity of IAWs is much smaller

than vth, the wave’s frequency can be significantly Doppler shifted. In particular

since the coronal plasma of an ICF target usually has supersonic bulk flow velocities

u this effect is relevant here. Thus the dispersion relation above becomes

ωIAW ' cs|k|+ u · k. (2.21)

2.3 Landau Damping

A key result of kinetic theory is that of Landau damping. Here, electrostatic waves

transfer their energy to particles travelling near the wave phase velocity vph =

ω/k. Electrons travelling at velocity slightly below vph will gain energy by being

accelerated in the potential wells of the wave, while the opposite occurs for those

with velocity slightly higher. If the distribution function has negative gradient with

respect to velocity at v = vph this will lead to net transfer of energy to the electron

population.

This may be described theoretically by considering the case of a small-

amplitude sinusoidal electrostatic wave supported by a perturbed Maxwellian elec-

tron distribution. Application of the linearised Vlasov equation to this scenario

leads to the following dispersion relation

1 +
1

k

e2

meε0

∫
R3

∂f0/∂vz
ω − kvz

dv = 0, (2.22)

where f0 is the initial electron distribution function and the coordinate system is

chosen such that ẑ is parallel to k so that k ≡ |k|. The second term on the left may

be identified as the electron susceptibility χe(ω, k) which can be written as

χe(ω, k) = − 1

2(kλD)2
Z ′
(

1√
2vth

ω

k

)
. (2.23)

Here Z ′(ζ) is the derivative of the plasma dispersion function Z(ζ) [Fried and Conte,

1961] defined

Z(ζ) =
1√
π

∫ ∞
−∞

e−x
2

x− ζ dx. (2.24)
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Figure 2.2: Derivative of the plasma dispersion function plotted in the complex
plane of its argument. Blue and red colour scales in left two plots indicate positive
and negative values respectively, each on a logarithmic scale. The dashed lines in
the two left hand plots indicate paths along which Re (Z ′(z)) = 0 while along the
solid lines Im (Z ′(z)) = 0. The contour lines in the right hand plot indicate where
|Z ′(z)| = 10n, with the highest contour at 108. Solutions to the warm plasma
dispersion relation (equation 2.25) lie along the black solid lines in the two left-hand
plots where Re(Z′(z)) ≥ 0.

This integral must be treated correctly; in its first analysis it was treated by taking

the principal value [Vlasov, 1945] which results in a dispersion relation for undamped

waves. The problem was later revisited, where it was correctly treated via a contour

integration [Landau, 1946] resulting in a dispersion relation with no purely real roots.

This indicates that electron plasma waves are in fact damped. In the following

discussion the plasma dispersion function is evaluated numerically using routines

found in standard libraries [Jones et al., 2001].

The plasma dispersion function has an infinite number of zeros and so the

dispersion relation above has an infinite number of branches. These can be found

by writing the dispersion relation as

Z ′(ζ) = 2(kλD)2, (2.25)

and plotting Z ′(ζ), with ζ = (
√

2vth)−1ω/k. Branches of the dispersion relation lie

along the set of paths where Im(Z ′) = 0 (solid lines in fig. 2.2) and Re(Z ′) ≥ 0 (red

regions of the left hand panel in fig. 2.2).

Writing the ith branch of roots as ωi(k) gives the complex frequency of the

resulting modes, whose real and imaginary components are shown in fig. 2.3. The

real part corresponds to the wave frequency while the imaginary part corresponds
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Figure 2.3: Frequency and damping rates of the solutions to the the warm plasma
dispersion relation. The blue line corresponds to electron plasma waves while the
green, red and turquoise lines are strongly damped modes which are not usually
observed.

to the damping rate. Branch i = 0 represents electron-plasma waves (EPWs) while

branches i > 0 are strongly damped modes that consequently are not observed under

normal circumstances.

The frequency and damping rate of EPWs may be approximated by the

simple expressions

ωRe =
√
ω2

pe + 3v2
thk

2, (2.26)

ωIm = −
√
π

8

ωpe

(kλD)3
e−((kλD)2+3)/2, (2.27)

which are calculated by expanding the integrand in the plasma dispersion function.

These break down for kλD & 0.25, with the damping rate in particular producing

incorrect asymptotic behaviour. Throughout this thesis, unless otherwise stated,

numerical solutions of the dispersion relation above will be used to calculate the

EPW frequency and damping rate.

To calculate these solutions numerically, the function f(ζ,K) ≡ Z ′(ζ)− 2K2

is defined (with K ≡ kλD). The solutions are zeros of this function. Applying the

implicit function theorem gives

dζ

dK
=

∂f

∂K

(
∂f

∂ζ

)−1

, (2.28)

and evaluating the right hand side results in
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dζ

dK
= −2K/Z ′′(ζ). (2.29)

This is an ordinary differential equation and so given a known initial solution ζ(K0)

(tabulated in [Fettis et al., 1973]) the standard algorithms for solving ODEs may

be applied to find solutions at other values of K. This method is advantageous

compared to the naive approach of numerically minimising f(ζ,K) at fixed K since

it ensures that the desired root is found.

It is important to note that the above dispersion relation does not represent

the only way of approaching this problem. Following Landau’s initial work it was

subsequently shown that for each k, there exist stable wave solutions at all real values

of ω [Van Kampen, 1955]. These undamped solutions form a complete orthogonal

set which can be used to construct the damped solutions of Landau [Case, 1959],

meaning that the ‘damping’ can be interpreted as the result of phase mixing of the

Van Kampen modes.

2.4 Particle Trapping

The analysis above is strictly only valid during the initial phase of damping before

the distribution function changes significantly. Considering the rest frame of the

wave, electrons initially at v = vph appear stationary in the wave’s potential wells.

In the initial linear ‘Landau damping’ phase, electrons at positions where dφ/dx 6= 0

(φ is the wave potential) are accelerated by the wave’s electrical potential and gain

kinetic energy. At some point they cross the bottom of the potential well where

dφ/dx changes sign and the particles begin to accelerate in the opposite direction.

Naturally, this situation leads to oscillatory motion within the wells with character-

istic frequency ωB =
√
eEk/me, referred to as the bounce frequency. Therefore after

the initial phase of wave damping the energy of the wave may undergo oscillations

as particles trapped in its potential wells gain and lose energy.

This was the subject of research during the 1960’s where several impor-

tant results were obtained. It was shown by O’Neil that while trapping of parti-

cles initially leads to oscillation between periods of wave growth and damping, the

wave ultimately settles into an undamped state [O’Neil, 1965]. It was subsequently

demonstrated that this process also results in oscillations in the wave’s frequency,

which settles on a steady state shift whose value is [Morales and O’Neil, 1972]

δω = −1.63

√
eE0

mek

(ωpe

k

)2 ∂2f0

∂v2

∣∣∣∣
vφ

∂ε

∂ω

∣∣∣∣−1

ω0

. (2.30)
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The above results depend on the amplitude of the wave not varying signifi-

cantly on timescales of order ω−1
B , which in effect requires that kλD . 0.25 [Dawson

and Shanny, 1968]. Despite this constraint they are solutions of the nonlinear equa-

tion and so the undamped final state represents the nonlinear analogue of the Van

Kampen modes described above, which are solutions of the linearised problem. The

existence of nonlinear, undamped solutions to the Vlasov equation was demonstrated

by Bernstein, Greene and Kruskal [Bernstein et al., 1957].

Another consequence of the harmonic motion of the trapped particles is that

their motion within the wells may be coherent, leading to a two-stream type insta-

bility with respect to the bulk plasma. The process leads to the growth of side-bands

about the wave’s central frequency, referred to as the Trapped Particle Modulational

Instability (TPMI) and first modelled by Kruer and Dawson [Kruer et al., 1969]. An

approximate dispersion relation for this instability is given in that work and may

be used to numerically calculate its growth rate.

Finally, even when the wave’s phase velocity is significantly greater than the

thermal velocity, it remains possible for wave-particle effects to become prominent.

This may occur when the amplitude of the EPW becomes sufficiently large that

the oscillation velocity of the electrons supporting it becomes comparable with the

wave’s phase velocity. When this occurs, a large fraction of the distribution may

come into resonance with the wave and it will collapse - a process referred to as

‘wave-breaking’. This was first treated in the limiting case of a cold plasma [Dawson,

1959], with extension to a waterbag distribution made later by Coffey [Coffey, 1971].

In the latter work a simple expression is given for the field amplitude required for

wave-breaking,

EWB =
mevφωpe

e

√
1− 1

3
β − 8

3
β

1
4 + 2β

1
2 , (2.31)

where β ≡ 3v2
th/v

2
φ. For a Maxwellian distribution there is no well-defined equivalent

amplitude limit since the distribution is not strictly zero anywhere. Nevertheless

the above expression serves as a good indication of the amplitude at which wave-

breaking will become important.

2.5 Parametric Instabilities

The primary instabilities of interest for this thesis fall under the general category

of parametric instabilities. These are the result of nonlinear interactions between

multiple (typically three) waves. Here the general theory of these instabilities is
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presented, followed by results for the three specific instabilities that will be en-

countered: Stimulated Raman Scattering; Stimulated Brillouin Scattering and the

Two-Plasmon Decay.

The concept of a parametric instability is closely related to that of a para-

metric oscillator. The latter is a generalisation of the harmonic oscillator in which

some property of the oscillator, such as its resonant frequency ω0 or damping rate

Γ0, is varied by a small amount in a sinusoidal manner. If the frequency Ω at which

this parameter is varied satisfies a resonance condition Ω ' 2ω0, then the oscilla-

tion at ω0 can be amplified. A similar process occurs for a parametric instability.

Here a nonlinearity of the host medium permits amplification of waves that satisfy

a resonance condition.

2.5.1 Temporal Growth in an Infinite Homogeneous System

To illustrate this process, we follow the formalism of Nishikawa [Nishikawa, 1968].

Beginning with the linear description, the modes of the system are described by a

dispersion relation that permits oscillations at frequencies ω(k). Considering arbi-

trarily three of these frequencies ωi (i ∈ {0, 1, 2}), assuming the system has infinite

spatial extent, has no spatial dependence, and that there is wavenumber resonance

between the waves, the oscillations of these independent modes of the host medium

may be described by [
d2

dt2
+ 2Γi

d

dt
+ ω2

i

]
Xi(t) = 0. (2.32)

In this equation the coefficient Γi is the damping rate of each of the waves. If mode

0 is treated as having large amplitude then the medium’s nonlinear response must

be included. To lowest order, this will be of form X2 (X ≡∑Xi). Assuming mode

zero has negligible damping and that the amplitudes of modes 1 and 2 are small,

this leads to the following coupled system:

[
d2

dt2
+ ω2

0

]
X0(t) = 0 (2.33)[

d2

dt2
+ 2Γ1

d

dt
+ ω2

1

]
X1(t) = 2αX0(t)X2(t) (2.34)[

d2

dt2
+ 2Γ2

d

dt
+ ω2

2

]
X2(t) = 2βX0(t)X1(t). (2.35)

The equation for mode 0 has no nonlinear term as we assume X1X2 to be negligible.
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This equation is therefore independent of the others and can be solved directly to

give oscillation at a constant amplitude X̄0. Taking the Fourier transform of the

remaining equations gives

[
ω2 + 2iΓ1ω − ω2

1

]
X̂1(ω) = −αX̄0

[
X̂2(ω − ω0) + X̂2(ω + ω0)

]
(2.36)[

ω2 + 2iΓ2ω − ω2
2

]
X̂2(ω) = −βX̄0

[
X̂1(ω − ω0) + X̂1(ω + ω0)

]
. (2.37)

In order for there to be coupling between the modes it is necessary for the wave

frequencies to be resonant. This occurs when the frequency matching condition is

satisfied:

ω0 ' ω1 + ω2. (2.38)

If we choose |ω1| ≤ |ω2| and consider ω ' ω1 then the couplings to X̂i(ω± 2ω0) can

be ignored. Then the following equation is obtained [Nishikawa, 1968]

D1(ω) = αβX̄2
0

[
1

D2(ω − ω0)
+

1

D2(ω + ω0)

]
. (2.39)

Zeros of the function Dn(ω) ≡ ω2−ω2
n + 2iΓnω give the complex frequency of wave

n. Here equation 2.39 is examined for the case where ω1/ω0 is sufficiently large that

the D2(ω + ω0)−1 term may be neglected. The case of ω1/ω0 ∼ 0 is also treated in

[Nishikawa, 1968], however is rarely encountered for the instabilities considered in

this thesis and so is not discussed here.

Under the above conditions, equation 2.39 may be separated into equations

for the real and imaginary components of ω. The equation for the imaginary com-

ponent, i.e. the exponential growth rate γ is [Nishikawa, 1968]

(γ + Γ1)(γ + Γ2)

[
1 +

∆ω2

(2γ + Γ1 + Γ2)2

]
= γ2

0 (2.40)

where

∆ω ≡ ω0 − (ω1 + ω2) (2.41)

is the frequency mismatch and

γ0 ≡
X̄0

2

√
αβ

ω1ω2
(2.42)

is the maximum growth rate (when ∆ω = Γ1 = Γ2 = 0) and is also referred to as
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Figure 2.4: From left to right: parametric instability growth rate as a function of
pump strength γ0, total damping rate ΓT ≡ (Γ1 + Γ2)/2 and frequency mismatch
∆ω. In the left two plots the ratio of the two waves’ damping rates (ΓR ≡ Γ2/Γ1)
is varied, with ΓR = 1, 10 and 100 in blue, green and red respectively.

the coupling constant.

These equations illustrate several important features of three-wave instabil-

ities. To begin with, ignoring any frequency mismatch or damping it is clear that

the growth rate γ = γ0 scales with the amplitude of the pump. Allowing non-zero

damping rates but again with ∆ω = 0 equation 2.40 may be solved to give

γ = γ0

√
1 +

(
Γ2 − Γ1

2γ0

)2

− Γ1 + Γ2

2
. (2.43)

A notable feature of this equation is that below a threshold pump amplitude there

are no positive solutions for γ, indicating that there is a threshold amplitude for

growth (see left panel of figure 2.4). This threshold is given by

γ0 > γthr,c ≡
√

Γ1Γ2, (2.44)

or alternatively in terms of pump intensity

I > Ithr ∝ Γ1Γ2 (2.45)

In addition, while intuitively the growth rate decreases linearly with the total damp-

ing rate ΓT ≡ (Γ1 + Γ2)/2, a difference between the damping rates of the two waves

ΓD ≡ (Γ2 − Γ1)/2 acts to increase the growth rate (central panel of figure 2.4).

Now considering the opposite case where there is a frequency mismatch ∆ω

but negligible damping, equation 2.40 becomes
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γ = γ0

√
1−

(
∆ω

2γ0

)2

(2.46)

which indicates that there is a region of mismatched frequencies of width δω = 4γ0

that allow growth (right panel of figure 2.4). Of course, for late time the mode with

frequency ∆ω = 0 will tend to dominate so that in absence of broadening through

other mechanisms the spectrum will be narrower than this.

It is important to note at this stage that the daughter wave amplitudes X1

and X2 were assumed small. This led to the equation for the pump wave X0 (2.33)

being uncoupled from those of the other oscillators. Since the solutions for X1(t) and

X2(t) are exponential, their amplitudes will rapidly grow leading to the violation of

this assumption. At this point the full set of coupled equations are needed instead.

Qualitatively this situation develops with a reduction in amplitude of the pump

amplitude X̄0 and a corresponding slowing of instability growth. This is referred to

as pump depletion and is one possible mechanism for saturation of the instability.

It is also possible that pump depletion never occurs due to some other nonlinear

saturation mechanism.

2.5.2 Growth in a Homogeneous System

The above analysis considered the temporal evolution of a system and ignored any

spatial dependence, calculating its temporal growth rate and demonstrating that

there is a threshold pump intensity for this growth to occur. Here the results

including spatial dependence are summarised.

As with the temporal analysis the waves must be matched in frequency but,

since the spatial dependence is now considered, there must also be wavenumber

matching:

k0 ' k1 + k2. (2.47)

With these conditions satisfied, the equations governing coupled waves can often

be simplified by using the slow-varying envelope approximation to arrive at the

coupled mode equations, which are simply a set of coupled advection equations

[Cairns, 1985]:
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[∂t + Vg,0∂x + Γ0] a0(x, t) = −Ka1(x, t)a2(x, t), (2.48)

[∂t + Vg,1∂x + Γ1] a1(x, t) = Ka0(x, t)a∗2(x, t), (2.49)

[∂t + Vg,2∂x + Γ2] a∗2(x, t) = Ka∗0(x, t)a1(x, t). (2.50)

Here ai is the complex envelope of wave i and Vg,i, Γi are its group velocity and

damping rate. While not included here for brevity, it is straightforward to incorpo-

rate phase factors in order to model wave detuning. Note that for the system to be

written in the symmetric form above, with equal coefficients on the right hand side

of each equation, the amplitudes must be normalised using ai(x, t) ≡
√
ωiAi(x, t).

Neglecting such normalisation constants, the physical quantities modulated by each

wave (e.g. electric field E or density perturbation δn) may be related to the ampli-

tudes ai by

Ei(x, t) =
1

2

[
ai(x, t)e

i(kix−ωit) + a∗i (x, t)e
−i(kix−ωit)

]
. (2.51)

An important result that may be derived from these equation relates to

the transfer of energy. In particular, the energy density of each wave Wi may be

calculated as Wi = ωi|ai|2. Writing the above system of equations in terms of this

energy density and neglecting damping, one may derive the following equations

d

dt

[
W0

ω0
+
W1

ω1

]
= 0, (2.52)

d

dt

[
W0

ω0
+
W2

ω2

]
= 0, (2.53)

d

dt

[
W1

ω1
− W2

ω2

]
= 0. (2.54)

These are known as the Manley-Rowe relations which follow from energy conserva-

tion and describe energy transfer between the waves.

Even with the approximation of slow-varying envelopes, equations 2.48-2.50

are significantly more complex than those previously considered. In order to give

an intuitive description of the physics two simple situations are considered here. As

before we are primarily interested in early time behaviour before the instabilities

cause pump-depletion, meaning that the assumption |a0| � |a1a2| applies and that

the right hand side of equation 2.48 can be neglected. It is also assumed that

Γ0 = 0 so that equation for a0 is simply the advection equation, and we take the
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Figure 2.5: Transient behaviour of the explicit solution to the coupled mode equa-
tions for a homogeneous initial disturbance. a1(t) is the amplification predicted by
equation 2.58 and γ is given by equation 2.43. Parameters used are ΓT = 0.8γ0

and ΓR ≡ Γ2/Γ1 = 100, 101, 102 and 1010 in blue, green red and black respec-
tively. This illustrates that the transient behaviour has very little effect and can be
approximated by the asymptotic solution in most cases.

initial pump amplitude to be a0(x, 0) = a0, meaning that it is constant everywhere

and remains so over the time-period of interest. Then the coupling constant from

the temporal analysis is recovered by writing Ka0 = γ0. The two remaining coupled

equations are solved in appendix A using the method of characteristics and result

in the following general solution

a1(x, t) =

∫ ∞
−∞

eikxe−ikVT t
[
C(k) cosh

(
t
√
γ2

0 − k2V 2
D

)
+ S(k) sinh

(
t
√
γ2

0 − k2V 2
D

)]
dk,

(2.55)

where the functions C(k) and S(k) are determined by the initial conditions on

a1(x, t). Two conditions are required, a1(x, 0) = f(x) and ∂ta1(x, 0) = g(x). Writing

their spatial Fourier transforms as f̂(k) and ĝ(k), C(k) and S(k) are given by

C(k) = f̂(k), (2.56)

S(k) =
ikVT f̂(k) + ĝ(k)√

γ2
0 − k2V 2

D

. (2.57)
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Homogeneous Initial Disturbance

For this first scenario it is imagined that the instability is seeded by an initial

disturbance to a1 that is homogeneous in space and occurs at t = 0. So a1(x, 0) =

A1H(t) and ∂ta1(x, 0) = A1δ(t) where H(t) is the Heaviside step function and δ(t)

its distributional derivative, the Dirac delta-function. These initial conditions make

the Fourier integral above trivial, resulting in the solution

a1(x, t) = A1e
−ΓT t

cosh

(
t
√
γ2

0 − Γ2
D

)
+

1√
γ2

0 − Γ2
D

sinh

(
t
√
γ2

0 − Γ2
D

) .
(2.58)

Here ΓT ≡ 1
2(Γ1 + Γ2) and ΓD = 1

2(Γ2 − Γ2). Expanding the hyperbolic functions

as exponentials and considering the behaviour when t >> γ−1
0 we find

a1(x, t) ∝ exp

[
t

(√
γ2

0 − Γ2
D − ΓT

)]
.

This is the same result that was derived in section 2.5.1, except that here an explicit

time-dependent solution has been found to the partial-differential equations while

previously only the dispersion relation was considered. The transient behaviour of

this solution results in a slightly higher initial growth rate than the asymptotic value,

as shown in figure 2.5 where it is compared with the time-asymptotic solution.

Localised Initial Disturbance

In the second case we treat, the initial condition is taken to be an instantaneous

disturbance to the first daughter wave occurring at x = 0 and t = 0, i.e. a1(x, 0) =

A1δ(x). While a δ-function breaks the assumption of the coupled-mode equations of

slowly varying wave envelopes it simplifies the analysis and produces results which

are applicable to more complex situations.

The Fourier integrals above are examined in appendix A.2, where it is shown

that they may be written in terms of Hankel functions. This is plotted in figure

2.6 with two choices of VT/VD. Assuming without loss of generality that V2 > V1,

the solution vanishes where x − V1t < 0 and x − V2t > 0 while elsewhere there is

exponential growth. That the solution vanishes in these regions is a simple conse-

quence of causality and wave propagation, however it has important implications.

If V1V2 > 0, both daughter waves travel in the same direction and therefore there is

no fixed point in space where the waves will experience indefinite temporal growth.

There may however be indefinite growth in the frame of the pulse. On the other
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Figure 2.6: Spatiotemporal evolution of the wave envelope a1 in response to an
initial disturbance of form a1(x, 0) = δ(x). Left & centre: amplitude plotted on a
logarithmic colour scale with VT/VD = 1.5 and −0.75. The two wave characteristics
are shown as green and blue dashed lines while x = VTt, the mean trajectory of the
pulse, is shown as a black dashed line. Right: amplitude versus time either at fixed
points corresponding to previous two plots (solid lines) or along x = VTt (dashed
line).

hand if V1V2 < 0 and the waves propagate in opposite directions there will be in-

definite temporal growth at all points in space. This type of behaviour, where local

growth occurs indefinitely is referred to as ‘absolute’ growth, while the case where

growth occurs in a propagating frame is referred to as ‘convective’ growth.

In the above scenario, damping of the daughter waves was neglected. Re-

introducing it leads to several additional possibilities. First, considering the case

where V1V2 > 0 and growth can only be convective, it is clear that this is still re-

stricted to occurring when the pump intensity is above the threshold for parametric

instability derived in the temporal analysis. In the case where V1V2 < 0 this thresh-

old still applies, however there is now an additional higher threshold above which

absolute growth can also occur. This new threshold is exceeded when the following

condition is satisfied [Briggs, 1964]

γ0 > γthr,a ≡
√
|V1V2|
2

(
Γ1

|V1|
+

Γ2

|V2|

)
(2.59)

When the pump intensity is above the threshold for instability, but below the ab-

solute threshold there will simply be convective growth. Considering laser-plasma

instabilities in ICF, the threshold for absolute instability is often an important de-

sign consideration for experiments as an absolute instability can in principle grow

without limit while convective instabilities are limited to amplification over the spa-
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tial extent of plasma.

The distinction between convective and absolute growth also motivates dis-

cussion of what is meant by a growth rate. In particular, growth rates can either

be specified as temporal or spatial rates. Spatial growth rates are typically used for

convective instabilities while temporal growth rates may be used for either. This can

lead to confusion when the ‘convective growth rate’ is referred to without specifying

whether this is respect to time or space. Additionally it is important to note that the

absolute growth rate, i.e. the temporal growth rate of the daughter waves at a fixed

point in space, is not the maximum possible temporal growth rate. The maximum

temporal growth rate occurs along a trajectory x = Vmaxt where V1 < Vmax < V2

and Vmax is determined by the damping rates of the daughter waves. This maximum

temporal growth rate corresponds to the growth rate derived in section 2.5.1 and is

referred to in this thesis as the ‘convective temporal growth rate’.

2.5.3 Growth in an Inhomogeneous System

In direct-drive ICF, the plasma through which the laser propagates is inhomoge-

neous, meaning that in order to consider theoretically instabilities occurring in this

regime the above analysis must be further extended. Unfortunately, general ana-

lytic results are difficult to obtain, and much analysis has to be performed either

numerically or for very specific cases. There are however several results that should

be discussed first before considering specific instabilities.

One of the key results in this area was derived by Rosenbluth in 1972. This

particular analysis was performed using an extended version of the coupled mode

equations described above, neglecting the response of the pump [Rosenbluth, 1972]:

[∂t + Vg,1∂x + Γ1] a1(x, t) = γ0a
∗
2(x, t) exp

[
i

∫ x

x0

κdx

]
(2.60)

[∂t + Vg,2∂x + Γ2] a∗2(x, t) = γ0a1(x, t) exp

[
−i
∫ x

x0

κdx

]
. (2.61)

The phase factors included on the right hand side integrate over the wavenumber

mismatch κ(x) ≡ k0 − (k1 + k2) of the waves. This addition models the loss of

resonance of the two daughter waves as they propagate away from a point x0 where

they satisfy the matching conditions perfectly (κ(x0) = 0). As they do so, their

frequency remains fixed however their wavelengths change so as to satisfy their

respective dispersion relations locally, resulting in κ(x) 6= 0. Using these equations

in the absence of damping it was shown that there can be no absolute growth when

30



the mismatch is linear with space, κ(x) ∝ x. For this case it was further shown that

the convective growth that occurs is limited to the exponential growth factor

G =
πγ2

0

V1V2κ′(x)
, (2.62)

where κ′(x) is the derivative of the mismatch. Therefore given an initial wave

amplitude a1, inhomogeneous convective growth will lead to an amplitude of a =

a1e
G. This amplification is frequently referred to as the ‘Rosenbluth gain’. This

analysis was later extended to include the effects of damping [Rosenbluth et al.,

1973].

The initial analysis also considered the case where the mismatch is parabolic

(κ(x) ∝ x2) and therefore has a zero in its derivative. Here it was found that absolute

instabilities may occur and their temporal growth rate was calculated [Rosenbluth,

1972]. Later work extended this to include a damping rate [Liu et al., 1974], giving

γabs = 2γ0

(√
|V1V2|

V1 − V2

)
(1−∆)−

(
Γ2V1 − Γ1V2

V1 − V2

)
, (2.63)

where as usual it is required that V1V2 < 0, we have chosen that V2 < 0 and it is

assumed that |∆| � 1, with ∆ defined

∆ = e−i
π
4 2−

3
2

√
K ′′
(

γ2
0

|V1V2|

)− 3
4

. (2.64)

These are both valuable results, however the WKB methods used to obtain

them introduce restrictive conditions on their applicability. Unfortunately, for many

instabilities of interest to laser-driven fusion, the regions where the WKB method

fails are often the regions that allow for absolute instability. These cases have been

treated theoretically via a number of different methods which are not discussed here

in detail. For a recent analysis of the problem and a review of previous methods see

[Afeyan and Williams, 1997b].

2.5.4 Stimulated Raman Scattering

The Stimulated Raman Scattering (SRS) instability occurs as the decay of an elec-

tromagnetic wave to an electron plasma wave and a scattered electromagnetic wave.

The bottom panel of figure 2.7 illustrates how frequency and wavenumber match-

ing can be satisfied for the particular cases of forward and back-scatter, using the

fluid EPW dispersion relation. More generally, solutions to the frequency and

wavenumber matching conditions are shown in the upper two panels of the fig-
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Figure 2.7: Top: Solution of the SRS frequency and wavenumber matching con-
ditions using the fluid EPW dispersion relation at Te = 3.5keV (coloured lines). In
both panels black lines indicate the zero-temperature limit. The laser wave-vector
is parallel to the kx axis. Left: kx component of the EPW wavenumber as a func-
tion of electron density for SRS forward, back and 90-degree side-scatter in blue,
green and red respectively. Right: ky and kx components of EM (green) and EPW
(blue) wavenumbers at 0.05ncr (solid) and 0.20ncr (dashed). Bottom: Frequency
& wavenumber matching for SRS back (blue) and forward-scatter (green) daughter
waves at Te = 3.5keV & ne = 0.2ncr. Considering each vector (k, ω), it can be seen
that the sum of vectors for the two daughter-waves gives the laser vector (black).

ure at Te = 3.5keV. For comparison solutions are also shown in the limit of Te → 0

(black lines) indicating that there is only a weak dependence on temperature. In

this limit the magnitude of the scattered light wavenumber is given by

|ks| =
ω0

c

√
1− 2

(
ne
ncr

) 1
2

, (2.65)

and its frequency trivially by

ωs = ω0 − ωpe. (2.66)
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lines, neglected for green lines.

This, along with figure 2.7 illustrates several important features of SRS. Since both

decay waves’ minimum frequency is the local electron plasma frequency, the fre-

quency matching condition means that the instability cannot occur above the laser’s

quarter-critical density. In the limit of ne → ncr/4, the EPW wavenumber tends

to k0 while the scattered EM wavenumber tends to zero. This leads to scattered

light with frequency ω0/2. As the density is reduced ωs increases, and for SRS

producing scattered light at angles θ & π to the laser propagation axis, the match-

ing conditions require the EPW wavenumber to increase while the scattered light

wavenumber increases.

In a homogeneous plasma, the coupling constant (or undamped temporal

convective growth rate) is given by [Kruer, 2003]

γ0 =
kvos

4

ωpe√
ωekωs

, (2.67)

where k and ωek are the wavenumber and frequency of the EPW, ωs is the scattered

light frequency, and vos is the quiver velocity of electrons in the laser field. Note that

as expected this has the same form as equation 2.42. Growth rates calculated using

this, equation 2.43, and a numerically evaluated Landau damping rate are shown in

figure 2.8 as a function of density and scattered light angle θ. In the limit of T → 0

the largest growth rates are found for direct backscatter (θ = π), however in a warm
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plasma Landau damping drastically reduces the growth rate of backscatter at lower

density due to the large EPW wavenumbers.

In an inhomogeneous plasma with monotonically increasing density, as would

be found in a direct-drive ICF scenario, SRS forward or back-scatter below ncr/4

can only occur as a convective instability. In these cases the gain is limited to

the Rosenbluth factor [Rosenbluth, 1972]. In contrast, when SRS occurs near the

turning point of the scattered EM wave it may undergo absolute growth since at

this point the wave’s velocity directed along ∇n is close to zero and energy moves

slowly away from the matching point. This occurs at ncr/4 for backscatter and

at successively lower density with increasing k⊥, where k⊥ is the scattered wave’s

perpendicular wavevector. This has been the subject of theoretical analyses over a

period of several decades using successively less restrictive assumptions. An initial

study by Drake & Lee derived the growth rate for backscatter at ncr/4 assuming

normal incidence, a linear density profile, and Te = 0 [Drake and Lee, 1973]. Liu et

al. then generalised this to sidescatter with arbitrary k⊥[Liu et al., 1974]. It was

noted in this study that while sidescatter is absolute in the x direction (collinear

with the laser), the instability is in fact convective in the perpendicular direction.

A decade later, a study by Afeyan & Williams removed the restriction of normal

laser incidence and zero temperature [Afeyan and Williams, 1985]. Finally, after

yet another decade, these authors revisited the topic and extended the theory to

power-law density profiles [Afeyan and Williams, 1997b].

In the above studies absolute growth of SRS was found based on the local

behaviour of the waves, namely the scattered light’s group velocity along ∇n van-

ishing. However, absolute growth may also occur due to behaviour of the waves at

distinct points in the plasma. For example it was shown that absolute growth can

occur for SRS forward-scatter if the laser and SRS-scattered light are both reflected

from their respective critical surfaces and return to the initial point of resonance

[Cairns, 1974]. Similar behaviour can be obtained for a parabolic mismatch profile,

instead with two resonance regions on either side of the extremum coupled together

by scattered light [Williams and Johnston, 1989].

2.5.5 Two-Plasmon Decay

The Two-Plasmon Decay (TPD) instability is the parametric decay of an electro-

magnetic wave to two electron plasma waves, or plasmons. Solutions to the fre-

quency and wavenumber matching conditions using the fluid EPW dispersion re-

lation are shown in figure 2.9 at Te = 3.5keV. The EPW wavenumbers satisfy the

matching conditions on the curve described by
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density of the TPD EPW wavenumbers with largest linear growth rates. Lines
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1
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− ne
ncr

)
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4

|k0|2
ω2

0

] [
1− 3v2

th

|k0|2
ω2

0

cos2 θ

]−1

, (2.68)

where θ is the angle made by the vector k− k0/2 with k0. This is simply the polar

form for an ellipse with centre at (|k0|/2, 0), minor radius given by the square root of

the numerator, and eccentricity e =
√

3vth|k0|/ω0. At non-relativistic temperatures

where e � 1 this is well approximated by a circle. The expression for the minor

radius also makes it clear that, as with SRS, the instability cannot occur above

ncr/4. Due to the wavenumber matching condition the EPW wavenumbers must

be on opposite sides of this curve as illustrated in figure 2.9. As density decreases,

the radius of the circle increases monotonically and the EPW wavevectors lengthen

rapidly.

In a homogeneous plasma, the coupling constant for TPD is given approxi-

mately by [Kruer, 2003]
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γ0 =
k · vos

4

∣∣∣∣ |k|2 − |k0 − k|2
|k||k0 − k|

∣∣∣∣ . (2.69)

Due to the k · vos factor, TPD has largest growth rate in the plane of the laser’s

polarisation. γ0 is plotted for wavevectors in this plane on the colour scale in the left

panel of figure 2.9 and can be seen to have strong dependence on k. In particular

γ0 vanishes where kx = k0/2 or where ky = 0 and is maximised along the hyperbola

given by (
kx −

1

2
k0

)2

= k2
y +

1

4
k2

0. (2.70)

TPD occurring with wavenumbers along this curve always produces EPW pairs in

which one is forward propagating and the other backwards propagating. As density

increases towards the quarter-critical surface, the backwards-propagating wavevec-

tor tends to zero while that of the forwards-propagating wave tends to k0. Since

the EPW wavevectors lengthen quickly with decreasing density, TPD is restricted

to occurring only close to ncr/4 by the large Landau damping rates experienced by

the EPWs at lower density. This is shown in figure 2.10 where the Landau damping

rate of the two EPWs has been included in the growth rate calculation. A laser in-

tensity of 2× 1015Wcm−2 used again. At this intensity growth goes to zero below a

cutoff density of ∼ 0.2ncr. Growth rates are shown for three different temperatures,

including in the limit of T → 0, with temperature having only a minor effect. This

is the case as |k|λD has only a weak dependence on temperature at a fixed density.

In an inhomogeneous plasma with monotonically increasing density, as typ-

ically the case for direct-drive ICF, TPD occurs as an absolute instability near

ncr/4 where the daughter waves are both near their turning points [Lee and Kaw,

1974] and becomes convective at lower density. The linear theory of the absolute

instability has been investigated by several authors [Goldman, 1966; Jackson, 1967;

Lee and Kaw, 1974; Liu and Rosenbluth, 1976; Simon, 1983; Afeyan and Williams,

1997a]. The most recent and comprehensive calculations of these absolute growth

rates were performed in [Simon, 1983] and [Afeyan and Williams, 1997a]. At lower

density where only convective instability is possible, the coupling constant has been

calculated accounting for inhomogeneity in [Yan et al., 2010]. This may be used

to investigate the convective growth of TPD via the coupled wave model described

above.
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Figure 2.10: Homogeneous coupling constant (γ0) for TPD as a function of
wavenumber and density for a laser intensity of 2 × 1015Wcm−2 at Te = 3.5keV.
Left: γ versus wavenumber, as in figure 2.9 but including the Landau damping rate
of the EPWs. Values are in arbitrary units. Note that density is not fixed in this
plot. The location of the Landau cutoff (|k|λD = 0.3) is marked by a blue circle,
assuming a density of 0.2ncr. Right: γ versus density at three different tempera-
tures including Landau damping (solid lines) and excluding it (dashed line). Due to
the small variation in γ0 and exponential behaviour of the damping rate this closely
resembles the left panel of figure 2.4.

2.5.6 Stimulated Brillouin Scattering

The Stimulated Brillouin Scattering (SBS) instability is the decay of an electro-

magnetic wave to an ion-acoustic wave and a scattered EM wave. Since the ion

sound speed is very small by comparison to the group velocity of an EM wave, the

wavenumbers satisfying the matching conditions are well approximated by a circle

in k space of radius k0. For the scattered light wavevector this is simply

|ks| ' |k0|, (2.71)

and is plotted in the left panel of figure 2.11. From the frequency matching condition

the scattered light has frequency

ωs ' ω0 − cs|kiaw| − u · kiaw, (2.72)

indicating a very slight shift relative to the laser frequency and that, unlike the

prior two instabilities, there is no dependence on density. Consequently SBS can

take place anywhere below the laser’s critical density.

It should be noted that due to the small IAW frequency, the assumption made

in the temporal analysis of section 2.5.1 that ω1/ω0 is sufficiently far from zero can
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Figure 2.11: Solution of the SBS frequency and wavenumber matching conditions
using the fluid IAW dispersion relation with Te = 3.5keV, Ti = Te/2, and for
a hydrogen plasma. Left: circles indicate wavenumbers permitted by the SBS
matching conditions at 0.2ncr. The circle’s radius increases monotonically with
decreasing density. The colour scale shows the linear growth rate of SBS for a
given scattered light wavevector (neglecting Landau damping), with an arbitrary
normalisation. Maximum growth is achieved for direct backscatter. Black arrows
mark a possible triad of wavenumbers at 0.2ncr, with the laser wavevector shown
with a dashed line. Right: Growth rate as a function of scatter angle for Te =
3.5keV, Ti = 1.7keV, I = 2 × 1015Wcm−2 (solid lines) and the same parameters
but with halved temperatures (dashed lines). The densities used are 0.2ncr (green),
0.1ncr (blue) and 0.4ncr (red).
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fail when kiaw ∼ 0. This occurs for the ‘forward-scatter’ configuration, which is

just the filamentation instability. In this situation SBS becomes a strongly coupled

instability, with a different growth rate as discussed by Forslund et al. [Forslund

et al., 1975].

In a homogeneous plasma the coupling constant of SBS is given by[Forslund

et al., 1975]

γ0 =
kiawvos

4

ωpi√
ωiawωs

, (2.73)

where ωpi = ωpe

√
me/mi is the ion plasma frequency. This is shown in figure 2.11

as a function of scattered light wavenumber and angle. The growth rates can be

seen to be significantly smaller than those for TPD and SBS in equivalent plasma

conditions due to the dependence on slow ion motion. SBS growth is largest for

direct backscatter, with growth rates decreasing with the scatter angle. For forward

scatter with θ = 0 the growth rates approach zero as here kiaw ' 0.

Due to the Doppler frequency term in equation 2.72, one prominent situation

in which the instability can take place is where the Doppler shift cancels the natural

frequency of the IAW and makes ωs = ω0. When this occurs, laser beams with equal

frequency crossing in the plasma become coupled by SBS leading to a potentially

large transfer of energy between them. This is referred to as Cross-Beam Energy

Transfer (CBET) and is a major issue for both indirect and directly-driven ICF

schemes.

Finally, in an inhomogeneous plasma SBS can occur as an absolute instability

in a similar manner to SRS. Here backscatter is absolute at the critical surface ncr

and sidescatter is absolute at density that decreases with increasing ky. Growth

rates for the absolute instability are given in [Liu, 1974].
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Chapter 3

Methods

This chapter focuses on the simulation code used to perform the modelling presented

in subsequent chapters. The code used, EPOCH [Arber et al., 2015], is a particle-

in-cell code [Birdsall and Langdon, 1991] and is widely used for the simulation of

collisionless and weakly collisional plasmas. In section 3.1 the particle-in-cell method

is introduced and its implementation in the EPOCH code described. Then, in section

3.2 the code is tested by using it to model the linear growth of SRS in a 1D, periodic

domain. The growth rates are then compared to the results in the previous chapter.

Finally, in section 3.3 a description is given of the main diagnostics used in the 2D

simulations that are the subject of this thesis.

3.1 EPOCH & The Particle-in-cell Method

The particle-in-cell (PIC) approach to simulating a plasma is, by comparison to

other simulation techniques, very intuitive. The central concept is to simulate

self-consistently the motion of discrete particles in the electric and magnetic fields.

Naively, this could be done by directly modelling each electron and ion in the plasma

and the pairwise forces between them, an approach known as molecular dynamics.

In the coronal plasmas of directly-driven ICF targets, typical plasma parameters

are of order ne ∼ ncr/4 = 2.26 × 1027m−3 and Te ∼ 1keV. The Debye length is

thus λD ∼ 5nm, so in a volume of λ3
D there would be N ∼ 300 particles. This

may not seem like many for a modern computer, however at each time-step it would

be necessary to compute the pairwise forces between N particles, requiring O(N2)

calculations. Add to this the desire to simulate hundreds or thousands of Debye

lengths in each of two or three dimensions, for many thousands of time-steps, and

the approach clearly becomes intractable.
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The particle-in-cell method drastically reduces these computational require-

ments by making two key approximations. Firstly, the simulation is divided into a

regular grid on which the electromagnetic fields are defined. The cell size of this

grid is typically on the order of a Debye length. The behaviour of the fields are then

dictated by Maxwell’s equations and are solved using standard numerical meth-

ods. Secondly particles are grouped into macroparticles or ‘particle clouds’, and are

propagated as a whole under the motion of the gridded fields via the Lorentz force.

Along with calculating their motion, the method also records the current or charge

at each cell of the EM grid which is then used by the field solver.

These two approximations result in a less computationally expensive algo-

rithm since the particles are no longer directly coupled via the Coulomb force.

Instead they only directly interact with the global electromagnetic fields, producing

a force calculation that is now O(N). In addition to this, the grouping of physical

particles into macroparticles can also dramatically reduce the number simulated rel-

ative to a physical plasma. This is because the number of macroparticles required in

a Debye volume is now dictated by the need to produce a representative statistical

sample of the distribution function rather than by the number of physical particles

present.

Inevitably however, these approximations lose aspects of the real-world physics

that can be important. In the limit of an infinite number of particles and infinites-

imally small cell size it can be shown that the PIC method is equivalent to the

collisionless Vlasov equation. This means that collisions are neglected and that the

fields modelled are not the true EM fields but smoothed versions. Collisional be-

haviour can however be re-introduced by employing one of several algorithms which

have been developed to calculate the effect of collisions on PIC macroparticles. In

addition, since in practice simulations have a finite cell size and number of particles,

the fields are not smooth but include statistical noise from the macroparticles. This

noise can be problematic if the smoothed fields are desired, and is also not equiva-

lent to the fluctuations that would be introduced by collisions. Finally, additional

errors are introduced by the numerical techniques used to propagate the particles

and solve Maxwell’s equations.

These issues may all prevent meaningful simulation results from being ob-

tained, however they are known and quantifiable effects. Provided they are managed,

the PIC method can be a powerful tool in investigating the behaviour of weakly col-

lisional plasmas such as those considered in the subsequent chapters.
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3.1.1 Code Overview

In pseudocode, the main loop of EPOCH reads as follows:

loadParticles(); // Initialise particle positions and momenta

for(int i=0; i<nSteps; i++) {

EBFieldsHalf(); // Update E & B fields from step i->i+1/2

pushParticles(); // Particle positions & momenta i->i+1

depositCurrent(); // Calculate J from particle positions & momenta

outputRoutines(); // Output required data to disk

EBFieldsFinal(); // Update E & B fields from i+1/2->i+1

}

Here it can be seen that the two main components of the code, the field solver

and particle propagation algorithm (referred to as the ‘particle push’), alternate in

updating the fields and particle properties. Furthermore, each of the updates uses

data for ‘source terms’ from intermediate time-steps. For example the particle push

from step i→ i+ 1 uses field data at step i+ 1/2 to calculate particle forces. These

two components are discussed in further detail in subsections 3.1.2 and 3.1.3. In

addition however, since the particles inhabit continuous space while the fields are

defined on a discrete grid, a mechanism is needed through which the particles and

fields can be coupled. This final component of the code is discussed in subsection

3.1.4.

3.1.2 Field Solver

To solve Maxwell’s equations, two regularly spaced grids are defined which are stag-

gered by half a cell-size in each direction. The various field components are assigned

to one of these such that, when centred spatial differences are taken, all quanti-

ties required to update the fields via Maxwell’s equations are known at the same

location. This scheme is due to Yee [Yee, 1966] and is common to most PIC codes.

To update the equations in time a leapfrog-type algorithm is employed. Here

the currents from timestep n are used to update the fields from step n to n + 1/2.

At this point the particle push is performed which generates currents at step n+ 1,

which are then used to complete the field update (n+ 1/2→ n+ 1). The scheme is

written explicitly as [Arber et al., 2015]:
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, (3.1)

Bn+ 1
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∆t
[
∇×En+ 1

2

]
, (3.2)

for the first half-step, and

Bn+1 = Bn+ 1
2 − 1

2
∆t
[
∇×En+ 1

2

]
, (3.3)

En+1 = En+ 1
2 +

1

2
∆t

[
c2∇×Bn+1 − 1

ε0
Jn+1

]
, (3.4)

for the second. When combined and shifted by half a step these equations are

identical to the classic leapfrog algorithm. The advantage of performing a split

update in this way is that the fields are now known at the same time, rather than

at interleaved half timesteps. This is necessary for the particle push and also for the

implementation of other physics modules which frequently rely on this. This does

come at the cost of additional computational expense, however this is typically not

a problem as the field updates usually account for a small fraction of execution time

in a PIC simulation.

3.1.3 Particle Push

To calculate the force on each particle, the gridded fields must be used to calculate

an effective field which the particle experiences. This is discussed in the subsection

below, however taking the results of this procedure for particle α as Ē
n+1/2
α and

B̄
n+1/2
α , the acceleration experienced by each particle is given by the Lorentz force:

dpα
dt

∣∣∣∣n+ 1
2

= qα

[
Ē
n+ 1

2
α + v

n+ 1
2

α × B̄
n+ 1

2
α

]
. (3.5)

For the particle push, the leapfrog method is again used to update the particle

position and momenta. However, as with the field updates this has the disadvantage

that both quantities are not known at the same timestep. Consequently the scheme

is again split, this time by performing two position updates. The equations then

become
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dpα
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x
n+ 1

2
α = xnα +

1

2
∆tvnα, (3.7)

xn+1
α = x

n+ 1
2

α +
1

2
∆tvn+1

α , (3.8)

x
n+ 3

2
α = xn+1

α +
1

2
∆tvn+1

α , (3.9)

In the force calculation above, the particle velocity is required at the half timestep.

Various approaches may be taken to handle this, however in most PIC codes (includ-

ing EPOCH) the momentum update is also split using the Boris rotation algorithm

[Boris, 1971]. In EPOCH, following current deposition where pn+1
α and x

n+3/2
α are

required, this half-timestep position is discarded and so must be re-calculated from

xn+1
α at the beginning of the next particle push.

For accurate simulation results large numbers of particles are required in each

cell. This is often in the range of tens to thousands depending on the problem under

consideration. The particle push is therefore the most computationally expensive

component of the core simulation scheme, and usually accounts for the vast majority

of execution time.

3.1.4 Particle Weighting

To couple the two solvers above an interpolation scheme is required to calculate the

effective force of the field on each particle, and the charge or current contributed

from each particle to each cell. In modern PIC codes the macroparticles represent

a cloud of physical particles distributed over some region of space. The specific

form of the distribution is referred to here as its ‘shape function’ and the cell-sized

differences of the cumulative distribution function (F (x + ∆x) − F (x)) referred to

here as its ‘weight function’ (note that the shape function is sometimes referred to as

a weight function in other texts). The weight function is what is used to interpolate

quantities to/from each cell that the particle occupies.

The shape functions used in EPOCH and most other PIC codes are successive

convolutions of a rectangular function with itself, with each iteration of this proce-

dure producing a closer representation of a Gaussian distribution in accordance with

the central limit theorem. Higher orders of convolution act to smooth the response

of the fields to the motion of the particles and reduce unphysical ‘self-heating’ of the

plasma. The reduction in noise and self-heating from a higher order shape function
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means that fewer particles are required for similar level of accuracy. However, they

also increase the number of operations required per interpolation as each particle

occupies more cells. The choice of shape functions is therefore most commonly first,

second or third order (rectangular, triangular etc.).

With the shape functions defined, the effective field components at the par-

ticle locations may be calculated via a weighted sum over the weight function and

field components. Several methods then exist to calculate the current that is de-

posited onto the grid, with the method used by EPOCH being Esirkepov’s algorithm

[Esirkepov, 2001] which guarantees exact charge conservation.

3.2 Simulations of SRS in a 1D Periodic Box

To illustrate agreement between the simulation code and analytic theory, this section

is dedicated to an investigation of the Stimulated Raman Scattering (SRS) insta-

bility. This was described in the previous chapter so, to ensure agreement between

the simulation code and the linear theory of parametric instabilities, several of the

results presented in that chapter are verified here.

SRS most commonly occurs as a back or forward-scattering instability, with

daughter wave wave-vectors parallel or anti-parallel to that of the pump. For these

cases, and only during its linear growth, this provides a physical justification for

modelling SRS via a 1D simulation. To further simplify the scenario a homogeneous

plasma of infinite extent is considered.

3.2.1 Simulation Setup

Since the plasma is homogeneous and of infinite extent it is a reasonable approxima-

tion to model it using a periodic simulation box. This has the advantage of reducing

computational requirements compared to a large aperiodic domain and avoids any

complications at the boundaries. However the periodicity places certain restrictions

on the simulation parameters.

For a given domain length the simulation can only support wavenumbers

that are integer multiples of the fundamental mode,

ksim
j = j

2π

Lx
, (3.10)

where j is an integer with 0 ≤ j ≤ Nx−1, Lx is the box length and Nx is the number

of simulation cells. To model forward or back-scatter SRS correctly the simulation

domain must accommodate all three SRS wavenumbers. This is not generally pos-
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Figure 3.1: Points in density-temperature parameter space where the SRS daughter
wave wavelengths exactly fit a domain of size Lx = 6λ0 where λ0 is the local laser
wavelength. Blue solid lines represent SRS backscatter; green solid lines forward-
scatter. The dashed black line corresponds to the maximum density at which SRS
can occur. For this case back and forward-scatter are indistinguishable and the
daughter wavenumbers become k = k0 and ks = 0.

sible, however with careful choice of physical parameters the wavenumbers may be

tuned such that they match supported modes of the domain.

Figure 3.1 shows the locations in density-temperature parameter space which

allow for all three wavenumbers to fit in the domain for back and forward-scatter

(blue and green solid lines) respectively with a domain of size Lx = 6λ0. The dashed

black line indicates the upper density boundary for SRS at which back and forward-

scatter become indistinguishable and where k = k0 and ks = 0. The wavenumber

ratios α ≡ k/k0 and β ≡ ks/k0 are given by αi = 1 ± i/N and βi = ∓i/N where

N is the number of laser wavelengths in the box and i ∈ N0 < N , with i increasing

with decreasing density. To illustrate why this is the case, consider the frequency

matching condition in the limit of Te = 0:

ω0 = ωek + ωs

= ωpe +
√
ωpe + c2k2

s

= ωpe +
√
ωpe + β2(ω2

0 − ω2
pe).

Solving for ωpe we find
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ωpe

ω0
=

1±
√

1− β2 + β4

β2
. (3.11)

SRS cannot occur above ncr/4, so 0 < ωpe/ω0 < 1/2. This then means that we must

have β2 < 1 and take the negative square root. The domain must fit some multiple

N of the laser wavelength such that ksim
0 = k0/N , so all simulation wavenumbers

must satisfy ksim
j /k0 = j/N . Therefore β takes on discrete values |βi| = i/N < 1.

Given βi, the EPW wavenumber ratio αi may be found by using the wavenumber

matching condition.

While more verbose, the above analysis is easily extended to Te 6= 0 using

the textbook EPW dispersion relation (eq. 2.26), and was used to produce figure

3.1. This more general analysis may also be used to derive a simple approximation

for the maximum density at which SRS can occur:

ne
ncr

=
1

4

[
1−

(
3

2

vth

c

)2
]
. (3.12)

To further reduce computational expense, all simulations shown here have a

short domain that is always six times the length of the laser wavelength (k0 = 6ksim
0 ).

A grid spacing of ∆x = 0.9λD was used such that all wavelengths of interest were

well resolved and particle self-heating kept small. Additionally 1000 particles per

cell were simulated and particles had triangular shape-functions. To be consistent

with the rest of the simulations in this thesis the laser frequency corresponds to that

of a frequency-tripled Nd:Glass laser with a vacuum wavelength of 351nm. The laser

is modelled as a monochromatic wave that is imposed as an initial condition on the

Ey and Bz fields and the electron velocity drift in the ŷ direction. Finally, since we

are only considering linear growth of SRS the ions are treated as a fixed neutralising

background.

3.2.2 Resonant Undamped Growth

As an initial test of consistency, a single simulation was run to see if SRS would

occur and behave as predicted. The parameters were chosen to allow SRS backscat-

ter only, with a temperature of 1keV and a density of ne ' 0.203. A laser intensity

of I = 1015Wcm−2 was used to ensure that SRS was well above the threshold for

growth, but also that the intensity not be so high as to induce any relativistic effects

(a0 ≡ eE0/meω0c = 9.5× 10−3 � 1). The simulation duration was 0.55ps to allow

the instability to grow and reach saturation. This choice of parameters should pro-

duce backscatter SRS with EPW wavenumber k = 1.19ω0/c (domain mode j = 8)
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Figure 3.2: Spatiotemporal discrete Fourier transform (DFT) of the electrostatic
field component Ex. The narrow curve at ω/ω0 ' 0.5 corresponds to the dispersion
relation for EPWs, excited by thermal noise fluctuations. Fluctuations are also
responsible for the triangular features extending from kx = 0 at low frequency.
These features are not resonant modes of the plasma but are caused by the thermal
motion of the electrons and hence have phase velocities ω/k . 4.5vth. Locations
where the EPW dispersion relation intersects with this region indicate significant
Landau damping of those waves would occur. A large-amplitude EPW is excited
by SRS in this simulation and appears as a peak in the Fourier transform at k =
1.19ω0/c (Fourier mode j = 8). A further peak of smaller amplitude can be seen at
k = 2.38ω0/c (j = 16) which corresponds to the second harmonic of the SRS EPW,
driven by nonlinear fluid effects.

48



−3 −2 −1 0 1 2 3
kx /ω0

c

0.0

0.5

1.0

ω
ω0

10−8

10−7

10−6

10−5

10−4

10−3

eEy
mecω0

Figure 3.3: Spatiotemporal discrete Fourier transform (DFT) of the electromag-
netic field component Ey. The hyperbolic curve that is visible corresponds to the
dispersion relation for EM waves in a plasma, traced out by thermal fluctuations.
Two peaks are visible with amplitude significantly larger than the thermal noise
background. The peak of largest amplitude at k = 0.89ω0/c corresponds to the
laser, while the smaller peak at k = −0.30ω0/c corresponds to the backscattered EM
wave driven by SRS. The low-amplitude curve that extends out from the backscatter
peak is caused by Thomson scattering of the laser off electron plasma waves.
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and scattered EM wavenumber ks = −0.30ω0/c (j = 2). The normalised EPW

wavenumber kλD = 0.11 < 0.25 indicates that Landau damping should be neg-

ligible. For a plasma with mean charge state of Z = 3.5, representative of CH,

the electron-ion collision rate would be νei =3.8ps−1 [Book, 2018], suggesting that

over the duration of the simulation collisions may well be important for a physical

plasma. For this initial simulation an undamped system was desired for simplicity so

collisional effects were neglected by disabling the collision model in the code. There

will still be an effective collision rate brought about by particle noise, but this should

be small. Therefore it is reasonable to describe the system here as undamped.

In figures 3.2 & 3.3 the spatiotemporal Fourier transform of the output is

shown for the Ex and Ey fields, with several notable features visible. In both

electrostatic (Ex) and electromagnetic (Ey) field components the respective linear

dispersion relations are traced out by small-amplitude thermal noise fluctuations. In

the EM field component a large-amplitude peak is visible at (k0, ω0) corresponding

to the laser, however there is an additional peak with negative k and lower frequency.

The values of ω and k for this peak correspond to those expected for SRS backscatter.

A further peak in the electrostatic field component with forward-going wave-vector

matches the expected wavenumber and frequency for the SRS EPW. These peaks

suggest that SRS has occurred.

To investigate this potential SRS growth, the behaviour of the individual

waves was examined. Assuming a given wave’s growth or damping is small relative

to its frequency (|Im(ω)| � |Re(ω)|), the field due to the wave can be written

analytically as

ETa (x, t) = Ea(x, t)e
i(kax−ωat) + E∗a(x, t)e−i(kax−ωat). (3.13)

Here ETa (x, t) is the total field from wave a and Ea(x, t) is the slowly varying wave

envelope, which would be constant for a monochromatic plane wave. Taking a spatial

Fourier transform and assuming no spatial dependence of the wave amplitudes gives

ETa (k, t) = Ea(t)δ(k − ka)e−iωt + E∗a(t)δ(k + ka)e
iωt. (3.14)

This means that by taking the spatial Fourier transform of the simulation Ex or Ey

fields, the time-history of a given wave amplitude (i.e. the wave’s time-envelope) can

be extracted by calculating |E(k = ka, t)|, with the modulus necessary to eliminate

the rapid oscillation of the complex exponential at ωa. This quantity is plotted in

figure 3.4 using the expected wavenumbers of the laser (blue solid line, left panel),

scattered light and EPW (green solid lines, left and right panel respectively).
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Figure 3.4: Amplitude of spatial modes corresponding to the laser (left, blue),
backscattered EM (left, green) and EPW (right, green) as a function of time. The
electric field is normalised by e/(meω0c). The solid black lines are the time-envelopes
of these signals, calculated by applying a complex bandpass filter and taking the
modulus of the resulting signal. This isolates the waves corresponding to backscatter
SRS (the forward-SRS scattered light would occur at the same spatial mode in
the simulation) and reduces noise. The dashed black line in the left panel is the
equivalent envelope for forward-scatter SRS and demonstrates that this is sufficiently
detuned as not to undergo any significant growth.
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In figure 3.4 the solid green lines show clear exponential growth though also

include significant amounts of simulation noise. In addition, in the case of the

amplitude plotted for scattered light it is possible for this to include both forward

and back-scatter SRS. This is because for the simulation parameters chosen, the

scattered light wavenumber for forward-scatter SRS is similar in magnitude to that

of backscatter, though of course opposite in sign. This will appear in the data as a

complex exponential oscillating in the opposite direction to that of the backscatter

as per eq. 3.14.

To eliminate noise and allow backscatter and forward-scatter to be isolated,

the spatially Fourier transformed fields were filtered in time using a complex band-

pass filter. These are plotted as the solid black lines in figure 3.4. In both panels

the amplitude of the backscatter SRS daughter waves begin to grow exponentially.

The dashed black line in the left panel corresponds to the time-envelope for forward-

scattered light. Since forward SRS is not resonant for the chosen simulation param-

eters this does not undergo growth.

The backscatter SRS growth rate in this simulation could be calculated di-

rectly from figure 3.4. However since it was anticipated that many simulations would

be run, a more methodical approach was taken to performing this measurement. As-

suming perfectly linear growth, the growth rate could be measured by numerically

evaluating the quantity

γ =

〈
d

dt
ln [Ea(t)]

〉
t

. (3.15)

Where the angle brackets denote a time-average. In practice there is an initial

equilibration period in the simulations, followed by a linear growth phase and finally

saturation of the instability. This means some method is required to identify where

the growth is linear. A simple way to accomplish this is to calculate the time-

derivative of the growth rate and require that this is lower than some threshold.

dγ

dt
=

d2

dt2
ln [E(t)] < ε. (3.16)

Sensible values for this arbitrary threshold can be obtained by considering order of

magnitude estimates for the expected growth rate. The growth rate is then measured

by taking the longest contiguous sequence of data below this threshold and taking

its time-average.

This procedure was applied to the above data and gave an exponential growth

rate of γsim = 2.34 × 10−3ω0 which is close to the theoretical value of γ0 = 2.55 ×
10−3ω0, though this leaves a ∼ 10% error. This will be explained in the next section.
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The laser amplitude is plotted as the solid blue line in the EM field plot (left pane

of fig. 3.4). After approximately 0.4ps the laser intensity begins to drop as the

daughter waves remove significant fractions of its energy causing pump depletion.

This saturates the instability and marks the end of the linear growth phase.

3.2.3 Off-resonant Undamped Growth

The above results indicate that for perfectly matched waves, SRS grows at a rate

close to that expected by theory. However the theory also predicts growth for

unmatched waves. In a physical system or an aperiodic simulation it is usually

difficult to observe off-resonant growth. Here the periodic nature of the simulation

domain allows a frequency mismatch to be directly imposed and therefore for a

measurement of the off-resonant growth rates. This allows for a comparison with

equation 2.46, written again here for convenience:

γ2 = γ2
0 −

1

4
∆ω2.

To explore this relationship a series of simulations were run with fixed tem-

perature of 1keV but with density varied by a small amount (±7.5×10−3ncr) about

the ‘perfectly matched’ density chosen above. Note that the domain length Lx is

also varied in order to fit the laser wavelength at each density. If SRS is able to

grow in one of these ‘off-resonant’ simulations, the wavenumbers for the EPW and

EM wave will be forced to be one of the modes of the domain rather than the

wavenumbers they would naturally grow at. Provided this shift is small, their mode

number j will remain the same as for the perfectly matched case. This means that

they will still satisfy the wavenumber matching condition. However, according to

the linear wave dispersion relations, the frequencies of these waves will no longer

precisely satisfy the frequency matching condition and this is what results in the

deviation from perfect resonance.

Growth rates for this series of simulations are shown in figure 3.5 as a func-

tion of density (left) and theoretical frequency shift (right). These were measured

following the procedure described in the previous section. In the left panel it can

be seen that the range of densities considered spans a region in which both forward

and backscatter are able to grow. In the right-hand panel the data have been fitted

by the relationship expected from equation 2.46, extended to included an observed

frequency shift (∆ωobs) and scaled maximum growth rate (aobs):

γ2 = (aobsγ0)2 − 1

4
(∆ω −∆ωobs)

2 . (3.17)
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Figure 3.5: Measured growth rates for varying frequency mismatch in a periodic
simulation for SRS backscatter (blue points) and forward scatter (green points). The
frequency mismatch is varied by changing the simulation density. Over the range of
densities considered both forward and back-scatter are present (left pane). In the
left figure dashed lines indicate the infinite homogeneous growth rates (γ0) while
solid lines are linear interpolations between points to guide the eye. In the right
hand figure the growth rates, normalised to the theoretical infinite homogeneous
growth rate (γ0), are plotted as a function of the theoretical mismatch (∆ω). This
would be expected to give peak growth at ∆ω = 0 which the data do not follow,
indicating that there is an unexpected frequency shift to the SRS daughter wave
dispersion relations. The data are fitted by the theoretical model (eq. 3.17) which
includes an arbitrary frequency shift and scaled maximum growth rate (solid lines,
right). This gives ∆ωf = −1.6×10−3ω0 and ∆ωb = −2.1×10−3ω0 for the frequency
shift.
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As seen in the right hand plot from figure 3.5 this fit closely matches the shape of the

measured growth rates and gives good agreement with the maximum growth rate

(aobs,b = 0.985, aobs,f = 0.988). However the data clearly indicate that maximum

growth occurs some distance from where the frequencies are expected to be matched.

This means that the simulated wave dispersion relations differ by some shift relative

to the linear relations used for the calculation of the matching plasma parameters.

The fitted curves give the value of this shift as ∆ωobs,b = −2.13×10−3ω0, ∆ωobs,f =

−1.65× 10−3ω0 for back and forward-scatter respectively.

There are several physical effects that are known to produce frequency shifts,

however most of these can be ruled out. Such effects include trapping of electrons in

the EPW [Morales and O’Neil, 1972], the production of EPW harmonics [Winjum

et al., 2007] and shifts due to relativistic effects [Pegoraro and Porcelli, 1984]. In

these simulations we do not observe any significant trapping, ruling out the first

option. Additionally the predicted shift due to EPW harmonics is in the wrong

direction and in any case much smaller than required to explain the observations.

The relativistic correction however gives the appropriate direction and order of mag-

nitude for the shift. To lowest order this may be thought of as a modification to the

plasma frequency [Pegoraro and Porcelli, 1984], brought about by the relativistic

mass increase of high-energy thermal electrons. This is given as

ω2
pe,rel = ω2

pe

(
1− 5

2

v2
th

c2

)
, (3.18)

and for these simulations produces a frequency shift ∆ωrel ' −1.1× 10−3ω0.

To verify that a relativistic correction is indeed responsible for this shift, the

simulations were repeated but with the Lorentz factor neglected in the particle push.

This allows all relativistic effects to be omitted but will maintain other nonlinear

shifts. The resulting growth rates are shown in figure 3.6. Fitting these growth

rates results in much smaller frequency shifts relative to linear theory of ∆ωobs,b =

−0.48 × 10−3ω0, ∆ωobs,f = −0.03 × 10−3ω0 respectively, confirming that the shift

observed above is indeed due to relativistic effects.

3.3 2D Simulation Diagnostics

Even small particle-in-cell simulations often produce sufficient quantities of data that

it is impractical to record their entire output. This means that it is necessary to

reduce the output down to some subset which can be used to interpret the behaviour

of the system. For the 2D simulations presented in subsequent chapters several
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Figure 3.6: Same as figure 3.5 but with simulation data from a non-relativistic
version of the simulation code. The fitted curves in the right hand figure give
frequency shifts of ∆ωf = −0.48× 10−3ω0 and ∆ωb = −3.1× 10−5ω0, considerably
smaller than for the relativistic case. This indicates that the bulk of the frequency
shift is due to relativistic effects.

diagnostics have been implemented and were utilised in all of the 2D simulations

performed as part of this project. Here an overview of the key diagnostics is given.

A detailed description of the simulation setup can be found in chapter 5,

however to aid the discussion below the basic features are described now. The

domain (see figure 3.7) is rectangular and divided into a regular Cartesian grid

parameterised by x and y. The laser enters from the left boundary and propagates

along the x direction, which is also the axis along which plasma density varies.

For the purposes of quantifying the danger posed by laser-plasma instabilities

in ICF, two of their products are of interest: scattered light and supra-thermal

(‘hot’) electrons. Hot electrons are a concern as they may preheat the fusion fuel,

precluding a high compression factor, while scattered light results in redistribution

of energy delivered to the target and may lead to an asymmetric drive. The fraction

of laser energy diverted into these is therefore one of the key quantities that should

be measured in our simulations. To accomplish this, diagnostics were implemented

that record outgoing particle and EM-field energy fluxes.

The outgoing energy flux diagnostics give useful information about the sys-

tem as a whole however, in order to understand the detailed physics involved, addi-

tional measurements in the bulk of the domain are required to diagnose instability

behaviour. Due to the cost of storing data from the entire domain, this was typi-
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Figure 3.7: 2D simulation domain (not to scale), illustrating geometry and location
of diagnostics. Blue dashed lines indicate locations where measurements of outgoing
particle and field fluxes are measured. High frequency field measurements are also
made along red dashed line at y = 0. Laser enters from the left hand boundary as
indicated by cyan arrow. In all simulations the cell sizes ∆x, ∆y are equal.

cally collected infrequently, and includes snapshots of the fields covering the whole

domain and further hot-electron data. Finally, an EM field diagnostic was also im-

plemented to allow temporal filtering or calculation of temporal spectra in the bulk

domain.

3.3.1 Outgoing Flux Diagnostics

Hot electrons

To measure outgoing hot electrons, EPOCH’s ‘probe’ diagnostic was used to define

surfaces parallel to each of the boundaries which were offset by 5 cell widths into

the domain (blue dashed lines in figure 3.7). Simulation electrons whose trajectory

crossed one of these surfaces in the outgoing direction and had kinetic energy greater

than some threshold had their instantaneous position, velocity and weight recorded

in memory. The data from these crossings was accumulated over a period of 0.01ps

and then saved to disk, which defines the temporal resolution of this dataset. The

use of a threshold kinetic energy was designed to restrict the particle data to only

those particles in the tail of the distribution function, since recording information

about the core of the outgoing distribution function would be prohibitively expensive

in terms of disk space.

In addition to simply measuring the energy diverted into hot electrons, this

diagnostic may be used to help determine the specific instabilities taking place. In
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particular SRS and TPD, the two main sources of hot electrons, often produce hot

electrons with differing energy and angular spread.

Reflectivity

The measurement of outgoing EM energy flux was made by recording all field com-

ponents at the same surfaces used to identify outgoing hot electrons (blue dashed

lines in figure 3.7). The offsetting of these surfaces from the simulation bound-

aries reduces the likelihood of boundary artefacts affecting the recorded data. A

high sampling frequency was chosen (ω = 8ω0, where ω0 is the laser frequency) so

that the laser frequency could be resolved. This allows the outgoing EM flux to be

examined spectrally and ensures that the outgoing energy calculated is accurate.

Scattered light generated by instabilities falls into different frequency bands.

SRS generates downshifted scattered light with frequency ωs between ω0/2 and ω0,

with ωs(ne) in the limit of Te = 0 given by ωs ' ω0(1 −
√
ne/ncr) for backscatter

(the downshift increases with Te). Since these simulations do not include a plasma

bulk flow, SBS produces backscattered light with a slight downshift relative to the

laser of ωs ' ω0(1− 2cs/c
√

1− ne/ncr) where cs is the ion sound speed. Since this

downshift is very small (cs/c < 0.01) in all cases considered here, it is difficult to

distinguish SBS-generated light from laser light purely by examining the frequency

content of the diagnostic output. TPD does not directly produce scattered light but

indirectly, via various secondary processes, produces two characteristic ‘doublet’

features, one about ω0/2 and the other about 3ω0/2 (see for example [Seka et al.,

2009]). TPD-scattered light was not considered in the analysis performed in this

thesis, however TPD was examined in detail via other diagnostics.

It was desirable to separate out the contributions from SRS, SBS and the

laser itself, so the following process was performed. First a bandpass filter about ω0,

implemented as a windowed-sinc finite impulse response (FIR) filter, was applied

to all EM field components to isolate the laser (and SBS) frequency. The original

dataset minus this component gives the component due to SRS. The filtered EM

fields were then used to calculate the energy (Poynting) flux in the direction normal

to each boundary. The Poynting vector is defined P = 1/µ0E×B so the flux leaving

in the x̂ and ŷ directions is given by

Px = P · x̂ =
1

µ0
(EyBz − EzBy),

Py = P · ŷ =
1

µ0
(EzBx − ExBz).
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SRS and SBS produce scattered light with the same polarisation as the laser so in

each of Px and Py one of the terms is negligible depending on laser polarisation.

Considering for example backscattered light at frequency ωs with electric and

magnetic field components

Ey = Es(t) cos(−ksx− ωst),

Bz = −Es(t)
ks
ωs

cos(−ksx− ωst),

its Poynting flux at the rear boundary is then given by

Px = − 1

2µ0
Ey,s(t)

2(1 + cos(2ωst)).

Here Es(t) represents a slow variation of the light’s amplitude and is the quantity

we wish to calculate. The high frequency oscillation at 2ωs is not of interest, so

this along with any other high frequency components is filtered out by applying a

low-pass filter with a cutoff at the simulation’s minimum plasma frequency. The

resulting signals are then integrated spatially over each boundary. This results in

two energy fluxes for each boundary, one due to light at the laser frequency and the

other due to SRS.

These various energy fluxes may be given different interpretations. Beginning

with the fluxes at the laser frequency, the flux measured at the laser boundary

contains a component due to the laser itself which is precisely known. Subtracting

this known component means that the remainder must be the result of backscatter

due to SBS. Moving to the boundary on the opposite side of the domain, it was

assumed that light at the laser frequency exiting here was purely due to the laser

and that there was no forward Brillouin scattered light. This transmitted laser

fraction is an important quantity in assessing the efficiency of the various absorption

mechanisms.

For the fluxes due to SRS, the flux exiting in the forwards or backwards

direction is usually assumed to be purely due to forward or backscatter SRS re-

spectively. The transverse fluxes are somewhat more ambiguous, as the simulation

domain is frequently very long and narrow. Therefore SRS scattered light with a

small angle from perfect backscatter could be detected at the transverse boundaries

and be interpreted as sidescatter. Furthermore, where periodic boundaries are used,

any sidescattered light ultimately exits via either the front or rear boundaries and

would be interpreted as forward/back scatter. Analysis of diagnostic data from the
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bulk plasma is used to resolve these ambiguities.

3.3.2 Bulk Plasma Diagnostics

Field Snapshots

One of the main diagnostics of instability activity are snapshots taken at regular

time intervals of the fields across the entire domain. Unfortunately these are costly

in terms of disk space and so it was not feasible to record these at a frequency that

would allow resolution of all expected features of the frequency spectrum. Instead

the sampling frequency was chosen so that instability growth could be resolved, with

typical growth rates of up to γ0 ∼ 0.005ω0 expected. Samples were therefore taken

every 0.01ps (Nyquist frequency ∼ 0.06ω0).

While (temporal) spectral information is therefore severely limited, the spa-

tial information contained in the snapshots in many cases allows the waves produced

by different instabilities to be distinguished. To examine electrostatic (ES) waves,

the Ex component of the EM field is typically used since there should be no con-

tribution from the laser. However, as is evident from the Poynting flux expressions

above, there may be contributions from EM waves propagating at an angle oblique

to the laser (e.g. from SRS sidescatter). Furthermore many of the electrostatic

waves examined here, notably those due to TPD, have polarisation at a significant

angle relative to the laser propagation axis and so the Ex field component only cap-

tures a fraction of the total wave energy. For electromagnetic waves, the Bz field

component is used. Here the fraction of energy measured is unaffected by the waves’

direction of propagation and cannot include electrostatic components, though now

includes the laser which may make smaller signals difficult to discern.

Three main approaches are taken to analyse these individual field compo-

nents, producing distinct and complementary information about the instabilities

present. First, taking the Fourier transform of both spatial dimensions allows most

instabilities to be distinguished. For example examining the electrostatic field com-

ponent isolates the various EPWs from TPD and SRS back/forward scatter due to

their differing directions of propagation. Second, taking the Fourier transform along

only the transverse (ŷ) direction allows the location of the various instabilities to

be determined along the laser axis. Since density in our simulations varies along

this axis only, this is typically the direction in which important variation is seen.

However, the magnitude of the TPD wavevector’s ky component is the same for

both daughter EPWs and so forwards and backwards propagating waves cannot be

distinguished in this way. To separate these, the kx component should be examined,
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however it is desirable to keep some of the spatial resolution in this direction. There-

fore the final method of examining this dataset is to perform a wavelet transform

along this direction. Similar analysis could be performed with a short-time Fourier

transform (STFT) where the x direction is divided up into segments which are each

individually Fourier transformed.

Field Strip

Due to the limited sampling frequency and hence spectral resolution of the above

dataset, another diagnostic was added to attempt to mitigate this. Here field data

from a strip of cells along y = 0 (red dashed line in figure 3.7) is recorded with

the same sampling frequency as the reflectivity diagnostic. This data has several

important uses. Firstly as with the reflectivity diagnostic, by filtering out the laser

or scattered light components, the Poynting flux of laser and scattered light can be

measured. This data may then be used to identify locations where the laser is being

absorbed or scattered. In addition by taking the ω − kx spectrum, wave properties

can be examined in more detail than the domain snapshots allow. This can, for

example, shed light on modification of the dispersion relations via kinetic effects.

Hot Electrons

This final diagnostic aims to examine the electron distribution function in the bulk

domain. As with the outgoing particle flux diagnostic, the particle data itself is

recorded at intervals of 0.01ps. Since we are primarily interested in the electrons in

the tail, only electrons with a x-directed momentum greater than some threshold

px,min are recorded. This threshold was chosen to correspond to the phase veloc-

ity of EPWs generated by SRS backscatter at the lowest density in the domain.

Since the SRS EPW phase velocity increases with density, this is the lowest phase

velocity of SRS-generated electrons possible within the domain. This choice has a

clear deficiency in that it neglects hot electron generation at large angles relative

to the laser. Information about this component of the distribution function can be

examined through the outgoing particle fluxes.
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Chapter 4

Effect of Ion Waves on TPD

Linear Growth

The two-plasmon decay (TPD) instability is saturated as a result of a number of

nonlinear effects. Understanding these saturation mechanisms and more generally

how they affect the saturation state of the instability is important as this determines

how detrimental TPD will be to laser fusion experiments. One mechanism that has

frequently been found important in previous numerical studies is the ponderomotive

driving of ion density perturbations by the daughter electron-plasma waves (EPWs).

In early simulations of TPD in very short scale-length plasmas [Langdon et al.,

1979], these were found to cause saturation by scattering EPWs to modes with

higher |k| that are more strongly damped. This in effect increases the damping rate

of the original EPWs. More recently, in simulations representative of direct-drive

experiments on the 60-beam OMEGA laser [Yan et al., 2010], transverse density

perturbations were instead found to directly prevent TPD growth. It was stated

that above some threshold perturbation amplitude the TPD growth rate vanishes.

Unfortunately however, while this threshold had been calculated for specific cases,

the formulae used for the calculation were not given.

In this chapter the effect of density perturbations on TPD growth is revisited.

We begin by deriving the coupled equations that can be used to treat the effect of

any density perturbation. These are then applied to two cases. In the first case the

perturbations have a wavenumber that is perpendicular to the laser wavenumber;

these are the transverse density perturbations of [Yan et al., 2010]. A simple ex-

pression is derived for the threshold density perturbation that compares favourably

with the values in that prior work. In the second case the effect of density perturba-

tions with an ‘oblique’ wavenumber is considered. These have not previously been
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described in the literature and are found to act in a similar way to the transverse

perturbations in inhibiting TPD growth, however also break its transverse symme-

try. Since these IAW modes are observed in the simulations of later chapters, it is

proposed that the resulting asymmetric growth can explain the asymmetric EPW

amplitudes found in the simulations.

4.1 Derivation of The Coupled Equations

Following [Liu and Rosenbluth, 1976], a fluid model is assumed for the electrons and

the ion response is neglected. A coherent EM wave is incident on the plasma and

has a fixed electric field given by

E =
ŷ

2

[
E0e

i(k0x−ω0t) + E∗0e
−i(k0x−ω0t)

]
. (4.1)

This produces an electron quiver velocity v0

v0 =
ŷ

2

[
vose

i(k0x−ω0t) + v∗ose
−i(k0x−ω0t)

]
(4.2)

where vos ≡ −eE0/(imeω0). The electron velocity is split to give ve = v0(r, t) +

v1(r, t) where v1 is a small perturbation. Finally, this is written as a velocity

potential v1 ≡ ∇ψ.

A homogeneous background plasma density n0 is assumed. Inhomogeneity

could also be introduced as in [Liu and Rosenbluth, 1976], however this would com-

plicate the analysis significantly. The electron density is then also split so that

ne(r, t) = n0 + n1(r, t) + ni(r, t), where n1 is a small perturbation that will include

the EPW response and ni is a fixed density perturbation due to transverse ion den-

sity fluctuations. At this point ni is considered large in order to keep the resulting

coupling terms, and is given the explicit form

ni =
1

2

[
δnei(ki·r−ωit) + δn∗e−i(ki·r−ωit)

]
. (4.3)

The electron continuity and momentum equations now become

∂n1

∂t
+ (n0 + ni)∇2ψ +∇ni · ∇ψ = −v0 · ∇(n1 + ni), (4.4)

∂ψ

∂t
− e

m
φ+ 3v2

th

n1 + ni
n0

= −v0 · ∇ψ, (4.5)

and since the waves of interest are electrostatic only Poisson’s equation is required
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∇2φ =
e

ε0
n1.

To calculate the linear growth rates these are first Fourier transformed using

the convention

f̂(k, ω) =

∫∫
R3

f(r, t)e−i(k·r−ωt)drdt, (4.6)

so that

iωn̂1 + n0|k|2ψ̂ +
1

2
K−δnψ̂(k− ki, ω − ωi) +

1

2
K+δn∗ψ̂(k + ki, ω + ωi)

=
iky
2

[vosn̂1(k−, ω−) + v∗osn̂1(k+, ω+)] ,

(4.7)

iωψ̂ − ω2
ek

|k|2
n̂1

n0
=
iky
2

[
vosψ̂(k−, ω−) + v∗osψ̂(k+, ω+)

]
. (4.8)

Here Poisson’s equation has been used to eliminate φ and the non-resonant v0 ·∇ni
and 3v2

thni/n0 terms are neglected. For brevity we have defined k± ≡ k ± k0,

ω± ≡ ω ± ω0, ω2
ek ≡ ω2

pe + 3v2
th|k|2, and

K± ≡ ∓ki · (k± ki) + |k± ki|2.

Following [Liu and Rosenbluth, 1976] it is assumed that ω ' ωpe and ω0 '
2ωpe, meaning that the only Fourier amplitudes that are important are those at ω

or ω−. In addition v2
th/c

2, kyvos/ω0 and δn/n0 are small so that terms involving

products of them may be neglected [Simon, 1983]. To proceed equation 4.7 is re-

peatedly substituted into equation 4.8 to eliminate n̂1, removing any small terms at

each step. A second equation is also obtained by performing the same procedure,

this time beginning with equation 4.8 shifted by replacing ω with ω− and k with

k−. This results in the following coupled equations:
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(
ω2 − ω2

ek

)
ψ̂ =

ω2
ek

2|k|2
[
K−

δn

n0
ψ̂(k− ki, ω − ωi) +K+ δn

∗

n0
ψ̂(k + ki, ω + ωi)

]
+
kyvosω

2

[
1 +
|k−|2
|k|2

ω2
ek

ωω−

]
ψ̂−,

(4.9)(
ω2
− − ω2

ek,−
)
ψ̂− =

ω2
ek,−

2|k−|2
[
K−−

δn

n0
ψ̂(k− − ki, ω− − ωi) +K+

−
δn∗

n0
ψ̂(k− + ki, ω− + ωi)

]
+
kyv
∗
osω−
2

[
1 +

|k|2
|k−|2

ω2
ek,−
ωω−

]
ψ̂,

(4.10)

where ψ̂− ≡ ψ̂(k−, ω−), ωek,− ≡ ωek(k−) and K±− ≡ K±(k−) have been defined. ψ̂

and ψ̂− are the Fourier amplitudes of the two TPD daughter EPWs, and correspond

to propagating waves with ky (and for maximum growth kx) of opposite sign. Note

that since ω− is negative, the wave represented by ψ̂− would more conventionally

be described by a frequency −ω− and wavenumber −k−.

If no background density perturbation is included (|δn| = 0) and the laser

amplitude is also set to zero (|vos| = 0), the equations are no longer coupled and

each reduce to the dispersion relation of an EPW. Keeping |δn| = 0 but making

the laser amplitude non-zero, the coupled equations can be solved to produce a

modified dispersion relation that may be used to calculate the homogeneous TPD

growth rate. Note also that in this dispersion relation ky always appears in even

powers, so the sign of ky has no effect on growth. This means that for every pair of

growing TPD waves ψ̂(k), ψ̂−(k), an additional symmetric pair of waves will grow

at the same rate with k′y = −ky.
If the background density perturbation is instead retained, coupling can now

be induced with a second pair of TPD EPWs. Since ion density perturbations

are limited to a frequency comparable to the ion-acoustic wave frequency (ωi '
ωIAW . 5 × 10−3ω0), they may only couple pairs of EPWs with a small frequency

difference. Furthermore, the EPWs would not be able to effectively drive a mode

with a large frequency shift relative to the IAW dispersion relation. The possible

pairings allowed by this restriction on ωi will be considered later, however for the

moment it is assumed that ωi can take an arbitrary value so as to develop the general

equations. In particular, two additional equations are required to treat the Fourier

amplitudes coupled by the density perturbation. These are assumed to also satisfy

the TPD frequency and matching conditions, with the forward-propagating wave
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having Fourier amplitude ψ̂(ω + ωi,k + ki). It is not possible for a third TPD pair

to be coupled with forward-propagating wave amplitude at ψ̂(ω − ωi,k − ki). To

find the two further equations required the same procedure is followed as before,

but with ω and k shifted to the respective values of the new EPWs. The full system

of equations becomes

(
ω2 − ω2

ek

ω2
pe

)
ψ̂ = Q

δn∗

n0
ψ̂† +

kyvos

ωpe
Pψ̂−, (4.11)(

ω2
− − ω2

ek,−
ω2

pe

)
ψ̂− = Q−

δn∗

n0
ψ̂†−+

kyv
∗
os

ωpe
P−ψ̂, (4.12)(

ω†
2 − ω†ek

2

ω2
pe

)
ψ̂† = Q†

δn

n0
ψ̂ +

k†yvos

ωpe
P †ψ̂†−, (4.13)ω†−2 − ω†ek,−

2

ω2
pe

 ψ̂†− = Q†−
δn

n0
ψ̂− +

k†yv∗os

ωpe
P †−ψ̂

†. (4.14)

Here the X† notation has been introduced to indicate that the frequency and

wavenumbers used in quantity X are shifted by ωi and ki; for example k† ≡ k + ki.

Deviating slightly from this convention, the P , P−, Q and Q† factors are defined

P ≡ 1

2

[ |k|2 − |k−|2
|k|2

]
, Q ≡ 1

2

k† · k
|k|2 ,

P− ≡
1

2

[ |k|2 − |k−|2
|k−|2

]
, Q† ≡ 1

2

k† · k
|k†|2 ,

with the ‘†’ superscript and ‘−’ subscript and otherwise having their usual meaning

when applied to P, P− and Q,Q† respectively. Additionally, coupling terms on the

right hand side have been simplified by approximating ωek and ω as ωpe and using

ω0 ' 2ωpe. It has been verified numerically that this has negligible effect on the

accuracy of the solution.

To produce the dispersion relation, the coefficients of the Fourier amplitudes

are packed into a 4× 4 matrix to produce a linear equation of form

Ax = 0,

with

x =
[
ψ̂ ψ̂− ψ̂† ψ̂†−

]T
.
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Then as usual we are interested in the non-trivial solution such that det A = 0.

Using the full system above, an 8th order polynomial in ω is obtained, which may

be solved numerically using standard techniques. The numerical solution is used to

produce the plotted growth rates shown later in this section.

In order to instead obtain simple expressions for the growth rates, further

approximations must be made. The left hand side of the system of equations above

may be simplified by observing that the instability does not significantly shift the

EPW frequencies and assuming that |Im(ω)/Re(ω)| � 1. Provided the matching

conditions are satisfied and introducing a transformed variable γ = −i(ω − ωek)

means that ω2 − ω2
ek ' 2iωekγ and ω2

− − ω2
ek,− ' −2iωek,−γ. This is an excellent

approximation for non-relativistic laser intensities. Additionally, the remaining ωek

and ωek,− factors can be replaced by ω0−ωpe and ωpe respectively1, which introduces

a small error in the growth rates at lower densities or a larger error if ωpe is used

for both.

Now applying all of these approximations and calculating the determinant

results in a 4th order polynomial in γ:

γ4 − 1

4

(
v2

os(k
2
yPP− + k†y

2
P †P †−)− δn2

n2
0

ω2
pe(QQ

† +Q−Q
†
−)

)
γ2

+
1

16

(
v2

oskyk
†
yP
†P− −

δn2

n2
0

ω2
peQ

†Q−

)(
v2

oskyk
†
yPP

†
− −

δn2

n2
0

ω2
peQQ

†
−

)
= 0.

(4.15)

where δn and vos are now taken to be the modulus of the complex amplitudes. While

this is a quartic equation, its form is quadratic so that two of the roots are given by

γ3 = −γ1 and γ4 = −γ2 and are redundant. The four roots are in general complex,

with the growth rate given by Re(γ) and frequency shift by ∆ω = Im(γ).

As discussed previously, only small ωi is supported by the density fluctu-

ations, which limits the set of possible couplings to those where the two pairs of

TPD EPWs have similar frequency. In the following sections two potential configu-

rations are examined. These are of particular interest since they are observed in the

simulations presented later. Other configurations are possible, particularly when

considering a full three-dimensional system, but are not treated here.

1ωpe is a better approximation for the backwards-propagating EPW as |k−| < |k| so its frequency
needs a smaller thermal correction. For the forwards-propagating wave this correction is given by
ω0 − ω if the matching conditions are satisfied. In the analysis here swapping the two would make
no difference due to the symmetry of the equations.
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4.2 Transverse Density Perturbations (ki = 2kyŷ)

The first coupling examined is between symmetric sets of TPD waves. This con-

figuration is shown in the left panel of figure 4.1. In this case the waves coupled

by the density fluctuations have exactly equal frequencies implying a static density

fluctuation (ωi = 0). The wave-vector of the density fluctuation is therefore given

by ki = −2kyŷ. This choice means that P = P †, P− = P †−, and Q = Q†, with the

latter given by

Q ≡ 1

2

k2
x − k2

y

|k|2 .

These symmetries considerably simplify the polynomial in the growth rate γ, which

now reduces to

γ4 − 1

4

(
2k2

yv
2
osPP− −

δn2

n2
0

ω2
pe

(
Q2 +Q2

−
))

γ2

+
1

16

(
k2
yv

2
osPP− +

δn2

n2
0

ω2
peQQ−

)2

= 0.

(4.16)

Further progress can be made by making an additional specialisation. In

the absence of damping, TPD undergoes maximum growth when the wavenumbers

satisfy the relation (kx − k0/2)2 = k2
y + k2

0/4. Choosing those wavenumbers means

that Q = −Q− so that the equation becomes

γ4 − 1

2

(
k2
yv

2
osPP− −

δn2

n2
0

ω2
peQ

2

)
γ2 +

1

16

(
k2
yv

2
osPP− −

δn2

n2
0

ω2
peQ

2

)2

= 0. (4.17)

The growth rate is then given by

γ =
1

2

√
k2
yv

2
osPP− −

δn2

n2
0

ω2
peQ

2, (4.18)

so that the threshold density perturbation is

δnthr

n0
= |ky|

vos

ωpe

√
PP−
Q2

. (4.19)

We can verify that these results are consistent with those of Yan et al. [2010]

by calculating the threshold density perturbation for the two cases described there.

In their ‘small-scale’ case the relevant parameters are I = 2 × 1015, Te = 1keV
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Figure 4.1: Upper left: Wavenumber matching of transverse density pertur-
bations. Laser wavenumber shown as black arrow, while black solid curve marks
wave-vectors where TPD matching conditions are satisfied at ne = 0.22ncr and
Te = 3.5keV. TPD growth rates for a homogeneous, unperturbed background den-
sity are shown on the colour scale for varying density, with maximum growth occur-
ring along dashed lines. Two symmetric pairs of TPD daughter waves are indicated
by blue and green arrows. The two forward (or backward) propagating waves have
the same frequency and can be coupled by a density perturbation with ki = ±2kyŷ
(cyan). Upper right: growth as a function of background density ne for TPD max-
imum growth wavenumbers (dashed lines in left panel), with density perturbation
of δn/ne = 0 (black), 0.02 (blue) and 0.04 (green). Dashed lines neglect Landau
damping, solid lines include it. Approximate solution for δn/ne = 0.04 shown in red.
Lower centre: Growth rate as a function of transverse density perturbation am-
plitude for TPD at electron densities indicated. Solid lines show numerical solution
while the dashed lines use equation 4.18. Each curve’s growth rates are normalised
to the numerically calculated γ with no density perturbation.
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and ky ' 1.2ω0/c for the largest IAWs. Assuming that this acts on the TPD pairs

with ky ' 0.6ω0/c gives a plasma density of n ' 0.244ncr. Equation 4.19 then

predicts a threshold of 0.0098ncr while 0.0095ncr is predicted in the paper and the

saturation amplitude in the simulation is approximately 0.013ncr. For the second

case the parameters are I = 1× 1015Wcm−2, Te = 2keV and ky ' 0.35ω0/c for the

TPD waves (so density of around ne ' 0.246ncr). We then predict the threshold to

be 0.0053ncr, which compares favourably with the value given of 0.005ncr and the

measured value of 0.003ncr.

To illustrate the effect of the transverse density perturbations on growth, the

right hand panel of figure 4.1 shows the numerically calculated growth rate plotted

as a function of background plasma density for Te = 3.5keV and I = 2×1015Wcm−2.

The black, blue and green lines are calculated with δn/n0 equal to 0.0, 0.02 and 0.04,

and growth rates are calculated with and without damping (solid and dashed lines

respectively). The red dashed line is the approximate solution given by equation

4.18 for the damped δn = 0.04n0 case, and is in good agreement with the numerical

solution. Two effects are of note here. First, δn produces a larger reduction in

growth at high background density. This is because Q2 increases rapidly as ncr/4 is

approached from below. At lower densities Q2 decays slowly to zero and reduces the

effectiveness of the density perturbations in lowering growth. Secondly, since |δn| is
squared in equation 4.18 there is a sharp transition between it having little effect on

TPD and completely suppressing it. This is also apparent in the lower panel of figure

4.1 where the growth rates at three different densities are shown as a function of

density perturbation amplitude for the numerical (solid) and approximate (dashed)

solutions. This latter plot also confirms that while there is a small error in the value

of the growth rate, the approximate solution preserves the location of the threshold.

4.3 Oblique Density Perturbations

Another way in which TPD EPWs can be coupled is shown in figure 4.2. Here two

pairs of waves are chosen with wavevectors (blue and green arrows) on the matching

curve (black circle) with a small wavevector difference. This small wavenumber

difference means that the frequency separation of the waves will also be small and

therefore they can be coupled by, and drive effectively, IAWs with the wavevectors

indicated by the cyan arrows. Furthermore, the fastest growing TPD EPWs (dashed

black lines) will be coupled by IAWs which have a wavenumber that is roughly

perpendicular to the EPW wavenumbers. These are oblique to the laser and hence

will be referred to as ‘oblique’ density perturbations. Unlike the transverse density
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Figure 4.2: Wavenumber matching of oblique density modes. Laser wavenum-
ber shown as black arrow, while black solid curve marks wave-vectors where TPD
matching conditions are satisfied at ne = 0.22ncr and Te = 3.5keV. TPD growth
rates for a homogeneous, unperturbed background density are shown on the colour
scale for varying density, with maximum growth occurring along dashed lines. Two
pairs of TPD daughter waves with similar ky are indicated by blue and green arrows.
The two forward (or backward) propagating waves have similar frequency and can
be coupled by a density perturbation with wave vector indicated by cyan arrows.

perturbations described in the previous section, oblique density perturbations have

no effect on the symmetric pair of TPD waves (those with ky of opposite sign). They

therefore allow for the ky symmetry of the instability to be broken; this symmetry

breaking is a prominent effect in the simulations presented later.

Unfortunately, the lack of symmetry in this case makes proceeding with

the analysis somewhat complicated. In principle it should be possible to simplify

equation 4.15 by exploiting the fact that the difference of the two EPW wavenumbers

is small. Rather than attempting such a scheme, the growth rates are instead

discussed here by examining the numerical solution. A further complication is that

it is not immediately clear for the oblique case which pairs of TPD EPWs should have

the largest growth rates. In the discussion of the transverse density perturbations

it was assumed that the EPW wavenumbers leading to maximum growth in the

unperturbed case would also have the largest growth rates when δn is included. This

assumption will now be verified. Since there are now two waves whose wavenumbers

can be chosen there is an additional degree of freedom to explore. To aid in this, the

EPW wavenumbers are parameterised in terms of an angle corresponding to their

location on the matching curve. This may be defined

tan(θ) ≡ ky

kx − k0
2

. (4.20)
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Figure 4.3: Dependence of the TPD growth rate on the location of a second TPD
EPW pair coupled by density perturbations, with Te = 3.5keV, I = 2×1015Wcm−2

and background density indicated in the figure. The EPW pairs are parameterised
by an angle made by one of their wavevectors, defined tan(θ) ≡ ky/(kx − k0

2 ).
Here the first TPD pair is located at the angle marked θ1, which is where peak
TPD growth occurs with no density perturbation. Two growth rates are obtained,
one for each pair, shown as blue and red curves corresponding to k(θ1) and k(θ2)
respectively. Density perturbation amplitudes of δn/ne = 0 (black), 0.01 (solid
colour) and 0.02 (dashed colour) are used. A green dot marks the growth rates
corresponding to transverse density perturbations.

so that the wavenumbers can be calculated as

k(θ) ≡
[
k0

2
+ k′(ne, Te) cos(θ)

]
x̂ + k′(ne, Te) sin(θ)ŷ. (4.21)

Note that k′ also has a slight dependence on θ but this may be neglected for vth � c.

The two TPD pairs may therefore be chosen by selecting EPWs with two angles, θ1

and θ2, with the IAW wavenumber then fixed at kIAW = k(θ2)− k(θ1). The second

EPW in each TPD pair has a wavenumber that is determined by the matching

conditions, and is therefore at angle θ − π.

In the transverse density perturbation case, the TPD EPWs were symmetric

and so there was a degeneracy in the roots of equation 4.15. This meant that only

one growth rate was obtained for both TPD pairs. In the general case however,

there may be a separate growth rate for each TPD pair. To begin exploring this

parameter space figure 4.3 shows the TPD growth rates, neglecting damping, as a

function of θ2 with θ1 held fixed. The value for θ1 is chosen to be the angle where

maximum growth occurs for δn = 0. In the left panel the plasma is at 0.24ncr,

while for the right panel it is at 0.22ncr. Other parameters are kept fixed (see figure

caption for details). The growth rate of each TPD pair is given by the blue and
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Figure 4.4: Dependence of the TPD growth rate on the separation of two TPD
EPW pairs that are coupled by oblique density perturbations, with Te = 3.5keV,
I = 2 × 1015Wcm−2 and background density indicated in the figure. The EPW
pairs are parameterised by an angle made by one of their wavevectors, defined
tan(θ) ≡ ky/(kx − k0

2 ). Here the wavevectors are symmetrically distributed about a
central angle, θ0, which is where peak growth occurs when no density perturbations
are included. The two angles are given by θ1 = θ0 −∆θ/2 and θ2 = θ0 + ∆θ/2 so
that their angular separation is ∆θ. The growth rates of the pairs are degenerate
and indicated by blue lines for δn/ne = 0.02. Black lines mark the growth rates
at θ1 and θ2 for δn = 0. Growth rates are also shown for equivalent transverse
density perturbations (green dashed lines) where the wavevectors are located at
θ1 = θ0 + ∆θ/2 and θ2 = −θ1.
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red lines, which correspond to θ1 and θ2 respectively, while the dashed and solid

coloured lines show the solution for δn of 0.01 and 0.02. If no δn is included, the

TPD pair at θ1 is completely decoupled from that at θ2 so that its growth rate

does not vary at all (black straight line). Conversely the growth rate of the TPD

pair at θ2 depends entirely on θ2 (this is shown by the black curve). Considering

small δn/ne of 0.01 (solid coloured lines), the growth rates for both TPD pairs are

are close to the unperturbed solutions, but show a slight reduction in growth. As

expected, the line corresponding to the TPD pair at θ1 is largely independent of θ2,

while that at θ2 also mostly follows the black curve. When the density perturbation

is made larger at 0.02 (dashed coloured lines), there is a greater reduction in growth

and a more marked deviation from the unperturbed behaviour. Both TPD pairs

now show a strong dependence on the second pair’s wavenumbers.

The growth rates in figure 4.3 also display degeneracy. In regions where

θ2 ' ±θ1 the growth rates form a conjugate pair, meaning that the waves have

equal growth rates and a frequency shift of opposite sign but equal value. This

suggests that the coupling produced by the IAW results in the waves acting as a

single parametric instability, which has a lower growth rate than the two uncoupled

three-wave instabilities. The regions where θ2 ' ±θ1 are also the most physically

relevant as these are the angles where the frequency difference of the EPWs is small

and can therefore drive the required IAWs. When θ2 ' −θ1, the configuration of

the wavenumbers is that of the transverse density perturbations (green dots mark

the ‘exact’ transverse case where θ2 = −θ1) while θ2 ' θ1 corresponds to the oblique

case. It is interesting that the ‘transverse’ and ‘oblique’ cases behave differently. At

both densities shown, the range of θ2 where growth rates are degenerate is larger for

transverse density perturbations than oblique ones, and the growth rates themselves

are larger. These differences suggest that the parametric instability mechanism is

more effective for transverse density perturbations and therefore results in a smaller

reduction in growth rate. Finally while the transverse density perturbations have

a smaller effect on growth at low density, the oblique density perturbations do not

appear to depend significantly on plasma density.

Another way of choosing the EPW pairs is shown in figure 4.4. Here the

wavenumbers are distributed symmetrically about the angle where maximal growth

occurs in the unperturbed case. Labelling this θ0, the wavenumber angles are given

by θ1 = θ0 − ∆θ/2 and θ2 = θ0 + ∆θ/2 so that their angular separation is ∆θ.

This separation is then varied up to 50°; a larger angular separation would not be

expected to lead to driving of large density perturbations. Swapping θ1 and θ2 by

choosing ∆θ < 0 produces the same growth rates, as would be expected, and so

74



only positive ∆θ is shown. Growth rates for a perturbation amplitude of 0.02ne are

shown in blue, again for background densities of 0.24ncr and 0.22ncr, and with other

parameters the same as figure 4.3. For reference, black curves show the growth rates

at θ1 and θ2 for δn = 0, and the equivalent transverse density perturbation growth

rates (with wavenumbers at θ1 = θ0+∆θ/2 and θ2 = −θ1) are shown as green dashed

lines. Within this value of δn and range of angular separations, both the oblique

and transverse density perturbations produce degenerate growth rates. Though not

shown here, it is found that a larger δn is required to make the TPD growth rates

degenerate at larger angular separations. As before, there is little difference in the

curves between the low and high density cases for oblique density perturbations.

The principal difference here is a greater reduction in growth at larger separations

in the high density case, and is caused by one of the TPD pairs approaching the

edge of the quadrant (θ0 is smaller for this case so θ1 approaches zero at smaller

∆θ). In contrast, the curves for the transverse density perturbations differ more

significantly between the two densities, indicating again that they are more effective

at suppressing growth closer to ncr/4.

4.4 Summary

The above analysis presents a general, but relatively straightforward model for the

effect of ion density perturbations on TPD linear growth. Two possible configura-

tions were described, with the IAW wavevector either large (∼ 2k0) and transverse to

the laser propagation axis or small (∼ k0/4) and oblique. These cases are therefore

simply labelled ‘transverse’ and ‘oblique’. While the former has previously been as-

sociated with TPD saturation and analysed both theoretically and numerically [Yan

et al., 2010], the theoretical model was not published. The oblique type of density

perturbation has not previously been described in the literature, however is found

to play an important role in the simulations presented in subsequent chapters.

The model illustrates that both kinds of density perturbation lead to the

coupling of previously independent pairs of TPD waves, whose growth rates can

become degenerate so that all four EPWs act as a single parametric instability. The

coupling also results in a lower growth rate for both pairs of waves, with the reduction

increasing with the amplitude of the density perturbation. A threshold density

perturbation therefore exists above which TPD growth is suppressed. A simple

formula was derived for this threshold in the transverse case, and can be obtained

for the oblique case by numerical solution of the general growth rate equation (no.

4.15).

75



The two types of density perturbation lead to different qualitative behaviour

that may help distinguish their effects. Since the transverse density perturbations

act on pairs of TPD waves with equal and opposite ky, the amplitude reached by

both ky ‘branches’ will be equal. In contrast since the oblique density perturbations

act only on waves in one ky ‘branch’, the ky symmetry of overall TPD growth

may be broken. This asymmetry is observed in the simulations described in the

next chapter. Furthermore, it was found that the transverse density perturbations

become less effective at suppressing growth at lower plasma density, while in contrast

the oblique density perturbations retain their effect at low plasma density.

For the present analysis the model was purposefully kept simple. It would

however be of interest to extend it to more complex and physically relevant scenar-

ios. For example, only a single density perturbation mode was included whereas in

reality one would expect a broad spectrum of modes to exist. Secondly, the couplings

examined were those found to be important to the two-dimensional simulations per-

formed later. More possibilities exist, and may also be of importance. These could

be additional pairings of TPD EPWs in the two-dimensional wavevector space, due

for example to inhomogeneity, or couplings of waves within a three-dimensional

wavevector space. Finally, the ion response was neglected, with the density per-

turbation having a fixed amplitude and a frequency chosen to match the frequency

difference of the two EPW pairs. Including ion dynamics would result in a nonlinear

system of equations and so would require a different approach, however could be

used to examine the resulting long-term behaviour in a computationally inexpen-

sive manner. This could potentially act as a simple model for the TPD behaviour

observed in later chapters. Preliminary work has been performed in this vein by

treating the system as a coupled set of ODEs and solving these numerically, however

is currently incomplete and so has not been presented here.
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Chapter 5

Small-scale Simulation

This chapter contains results submitted for publication in Physics of Plasmas:

A. G. Seaton & T. D. Arber, “Particle-in-Cell Simulations of Laser-plasma

Instabilities in Long Scale-Length Plasmas Relevant to Shock-ignition”

In this chapter results are presented from a simulation of laser-plasma insta-

bilities at shock-ignition intensities relevant to ‘small-scale’ plasma coronas. Here

‘small-scale’ refers to density scale-lengths (Ln ≡ (∇ne/n0)−1) on the order of

150µm, which is typical of experiments at the OMEGA laser. The targets used

in these experiments are of a smaller size than required for ignition-relevant de-

signs, which is a simple consequence of the lower drive energy available on OMEGA

(30kJ UV). An ignition-scale target would be expected to produce a significantly

larger coronal plasma with a scale-length on the order of Ln ' 600µm [Rosenberg

et al., 2018]. A simulation with ignition-relevant parameters is examined in the next

chapter.

In section 5.1 the simulation setup is first described. The initial conditions are

taken from a previous investigation of shock ignition in the small-scale regime [Yan

et al., 2014]. A more detailed analysis of the simulation results is performed here

than was presented in [Yan et al., 2014]. These are described in several sections, with

the first concerning the instabilities’ linear growth and initial saturation (section

5.2). A second section then considers the ‘long-term’ nonlinear behaviour (section

5.3) in which particular focus is given to the effect of ion density perturbations.

Notably, the behaviour observed is consistent with the predictions of chapter 4 in

that oblique density perturbations lead to asymmetric TPD growth. These observed

dynamics were not discussed in [Yan et al., 2014], and this is an aspect of TPD

77



0 100 200 300 400 500

x/µm

0.10

0.15

0.20

0.25

0.30

0.35

n
e
/
n

c
r

Ln = 170µm Ln = 600µm

Figure 5.1: Density profiles used for the simulations presented in this and the
next chapter. The large-scale profile is purely exponential (see chapter 6) while the
small-scale profile, used for the simulation in this chapter, is given in [Yan et al.,
2014]. The small-scale profile is a fit to the output of a hydrodynamic simulation of
an experiment on the OMEGA laser [Theobald et al., 2012].

behaviour that has not previously been described elsewhere. Hot electron production

is then considered in section 5.4. It is found that, contrary to the conclusions of

[Yan et al., 2014], hot electrons are predominantly due to TPD. Finally, a summary

of these results is given in section 5.5 where they are compared to observations from

relevant experiments on the OMEGA laser.

5.1 Simulation Setup

As discussed above, the initial conditions chosen for this simulation are taken from

[Yan et al., 2014] and match the high-temperature case described there. These pa-

rameters represent conditions found in OMEGA experiments with spherical targets

[Theobald et al., 2012]. There are several motivations for choosing these parame-

ters. First, they provide us with a ‘base’ scenario to compare larger-scale simulations

against. Additionally, while the analysis presented in [Yan et al., 2014] is helpful

in illuminating some aspects of the behaviour, it was a short preliminary study and

does not provide us with the full dataset required when comparing detailed physics

with larger-scale simulations. Finally, the simulation acts as a benchmark of our

code against the OSIRIS PIC code, allowing us to ensure that the physics is con-

sistent. While both codes are mature projects that have been extensively tested,
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EPOCH has not previously been used for large-scale LPI studies of this kind and

so this simulation provided a useful comparison. One important aspect in which

the codes differ for these simulations is that the collision module was disabled in

all simulations presented in this thesis. In contrast [Yan et al., 2014] use a collision

model based on [Nanbu and Yonemura, 1998]. We were unable to use a collision

model as the algorithm that was implemented in EPOCH at the time would have

required an order of magnitude increase in compute time, which was not available.

Having results from an otherwise identical simulation therefore allows us to assess

the importance of collisions on the resulting LPI behaviour.

The simulation plasma was composed of fully ionised plastic (CH) with an

equal ratio of carbon to hydrogen ions. The electron temperature was spatially

uniform at 3.5keV, and the electron-ion temperature ratio was Te/Ti = 2. This,

along with the plasma composition, results in a high ion-acoustic wave damping

rate. In addition the plasma had no initial bulk motion throughout. 128 particles-

per-cell were used for electrons and 64 for each ion species. The domain was formed

of 10000 × 2000 grid cells and measured 100 × 20µm. Finally, the simulation was

run for 9ps rather than the full 21ps simulated in [Yan et al., 2014].

Density profiles for the simulations presented in this thesis are shown in

figure 5.1. Both have spatial dependence similar to n ∼ exp (x/Ln). In the small-

scale case the profile used was that specified in [Yan et al., 2014], and is based on

hydrodynamic simulations of the experiments of [Theobald et al., 2012]. This spans

a density range of 0.17-0.30ncr.

The front and rear boundaries were thermal for particles and open for fields.

Thermal particle boundary conditions are intended to represent a thermal bath of

particles in contact with the simulation domain. To accomplish this, particles exit-

ing the domain are replaced by inwards-propagating particles with velocity sampled

from a thermal distribution. On the transverse boundaries, periodic boundary con-

ditions were used for both fields and particles. This can be thought of as emulating

a much larger transverse extent of plasma, as would be present in an experiment.

The laser had in-plane polarisation. In this polarisation, TPD has its maxi-

mum growth rates while the SRS side-scatter growth rate is reduced. The effect of

an out-of-plane laser polarisation or alternatively an investigation of the complete

problem via a 3D simulation is a subject that should be examined in future work.

The laser had a uniform ‘plane-wave’ spatial intensity profile, and an intensity of

2× 1015Wcm−2 was used; this is common to all plane wave simulations performed

in this thesis. This is a relatively low intensity for shock-ignition, where intensities

between 1-10 × 1015Wcm−2 are usually encountered. It should be noted however
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Figure 5.2: Left: Instantaneous ky energy spectrum of the Ex field component
during initial instability growth at t = 2.1ps. The laser wave-vector and ∇ne are
parallel to the x axis while the laser polarisation is along the y axis. The white curve
indicates where maximal linear growth of TPD is expected at each density, while
the white dashed line marks TPD Landau cutoff (|k|λD = 0.3). The feature with
small ky near ncr/4 corresponds to absolute SRS backscatter. Right: Measured
TPD linear growth rate (blue). Solid black and red lines indicate the theoretical
convective growth rate at 2× 1015Wcm−2 and 1.2× 1015Wcm−2 [Yan et al., 2010],
including Landau damping. Dashed line shows theoretical absolute growth rate
[Simon, 1983].

that even in higher intensity shock-ignition designs, the intensity of light reaching

ncr/4 will be reduced due to LPIs such as CBET occurring at lower density. Finally

the laser pulse was formed of a one-sided Gaussian temporal profile beginning at

10−3 of the maximum field strength and, on reaching maximum intensity, followed

by constant power for the remainder of the simulation. In this case the rising portion

of the pulse took 2ps, as in [Yan et al., 2014].

5.2 Initial Behaviour

Following the propagation of the laser through the domain, a rapid series of events

takes place. Discussion of these is split into two subsections. The first considers

the instabilities’ linear growth, while in the second we discuss the beginning of the

nonlinear phase by considering effects that cause instability saturation.
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5.2.1 Linear Growth

To examine the linear phase of instability growth a snapshot of the Ex field compo-

nent during this period, Fourier transformed along the perpendicular (y) direction,

is shown in the left panel of figure 5.2. The solid white line indicates the perpen-

dicular wavenumbers (ky) of the electron plasma waves (EPWs) expected to have

maximum TPD linear growth rates. The corresponding features in the simulation

data indicate that this instability is present during the simulation’s linear phase.

A white dashed line marks the TPD Landau cutoff (kλD = 0.3), which is in good

agreement with the lower density bound of TPD growth. EPWs due to SRS are

also visible in figure 5.2 and may be identified as the feature with small ky at ncr/4.

This corresponds to absolute SRS backscatter.

The linear growth rates of TPD were measured using these spectra to give

growth as a function of the perpendicular wavenumber ky. To accomplish this, the

ky spectrum was calculated for each snapshot in time, and integrated over the x

direction. The instantaneous growth rate was then evaluated by using numerical

differences to approximate the quantity

γ(ky, t) =
d

dt
ln[Ex(ky, t)]. (5.1)

A Gaussian filter was applied to γ(ky, t) along both ky and t to reduce the effect

of particle noise. The period when growth was approximately linear was identified

by eye, and the maximum value taken across this period in time to give the growth

rates shown in the right panel of figure 5.2. Absolute growth rates from [Simon,

1983] are plotted (black dashed lines) along with the inhomogeneous convective

growth rates of [Yan et al., 2010] (black solid lines). The range of wavenumbers

that are observed to grow are consistent with those where convective growth is

expected to occur. The measured growth rates are considerably smaller than those

predicted by the theory. This is due to the slow rise-time of the laser pulse in

this case, which varies significantly over the linear growth phase. Using an average

intensity of 1.2 × 1015Wcm−2 for the calculation gives better agreement with the

data. The prominence of convective TPD observed is consistent with previous results

for conventional direct-drive [Yan et al., 2009].

5.2.2 Initial Saturation Effects

Linear instability growth is rapidly arrested during an initial phase of nonlinear

saturation. While several nonlinear effects come into play during this period, the

one which initally causes saturation is pump depletion. This occurs due to the large

81



(a) Intensity at ω0 /1015Wcm−2

0 50 100

x /µm

1.0

1.5

2.0

2.5

3.0

ti
m

e
/p

s

−2

−1

0

1

2
0.17 0.21 0.25 0.29

ne/ncr

(b) 〈E2
x〉y /(mecω0/e)

2

0 20 40 60 80 100

x /µm

1.0

1.5

2.0

2.5

3.0

ti
m

e
/p

s
10−6

10−5

10−4

0.17 0.21 0.25 0.29

ne/ncr

(c) Intensity at ωSRS /1015Wcm−2

0 50 100

x /µm

1.0

1.5

2.0

2.5

3.0

ti
m

e
/p

s

−0.2

−0.1

0.0

0.1

0.2
0.17 0.21 0.25 0.29

ne/ncr

(d) δnC/nC,0

0 50 100

x /µm

1.0

1.5

2.0

2.5

3.0

ti
m

e
/p

s

0.05

0.06

0.07

0.08

0.09

0.10
0.17 0.21 0.25 0.29

ne/ncr

Figure 5.3: Diagnostics of initial LPI growth. Left column: Poynting flux diagnos-
tics, filtered to include only waves at the laser frequency (a) or SRS scattered light
frequency (c). Differing colour scales are used to allow scattered light to be seen.
Positive values denote flux in the +x̂ direction. Striations visible in (c) correspond
to the SRS backscattered light wavelength. (b): Transverse-averaged electrostatic
wave energy. (d): Transverse standard deviation of carbon density fluctuations.
Dashed vertical lines on all plots mark the TPD Landau cutoff (|k|λD = 0.3).
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growth rate and hence inhomogeneous gain of convective TPD at this intensity. To

illustrate this, figure 5.3 shows space-time maps of various important quantities. The

diagnostics shown are laser Poynting flux (a), transverse-averaged electrostatic wave

energy (b), SRS scattered light Poynting flux (c) and finally the transverse standard

deviation density perturbation of the carbon ions (d). For this final diagnostic, the

carbon ion density is chosen as it is relatively noise free compared to the hydrogen

ion density. The density perturbation of a given species is then calculated as

δn(r, t) ≡ n− 〈n〉y
〈n〉y

. (5.2)

To produce figure 5.3 (d), the standard deviation of δn(r, t) is taken across the

transverse direction, as the mean would average to zero.

In all panels of figure 5.3, dashed lines mark the location of the TPD Landau

cutoff (|k|λD = 0.3), and the time period shown is restricted to the initial part of the

simulation. Pump depletion and ion density perturbations can both cause saturation

of TPD. While both of these are observed, it is pump depletion that occurs first.

This takes place at approximately 2.2ps at ncr/4, while density perturbations grow to

large amplitude somewhat later at 2.4ps. At lower densities where Landau damping

of the TPD EPWs produces lower growth rates, TPD growth and saturation take

place with a slight delay. However it is again pump-depletion that saturates the

instability first.

While pump depletion is the effect which first saturates the instabilities, the

density perturbations that initially grow also play an important role. As discussed in

chapter 4 ion density fluctuations can be driven ponderomotively by the beating of

intense TPD daughter EPWs. To show which perturbations initially grow and their

effect on the TPD EPWs, the Ex and carbon density perturbation spectra at 2.2ps

and 2.4ps are plotted in figure 5.4. At 2.2ps the instability has just reached satu-

ration due to pump-depletion, and no significant density perturbations are present.

The EPW spectrum at this time bears close resemblance with that predicted by

linear theory (see for example the left panel of figure 2.10). Note that since these

spectra are calculated from static snapshots, the direction of k is ambiguous. In

the EPW spectrum the direction of propagation may be inferred from the overlaid

theoretical curves.

In the spectra calculated 300fs later at 2.5ps, an initial set of density per-

turbations δn have been driven. At this point in time the main feature of the δn

spectrum is a peak corresponding to the transverse density waves described in chap-

ter 4. Due to the range of densities present this feature is broad, spanning a range
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Figure 5.4: Energy spectra of electrostatic field (Ex, top) and carbon density
perturbations (δnC, bottom) at 2.2ps (left), and 2.5ps (right). The data used cov-
ers the entire domain. In the Ex spectra a dashed line marks the Landau cutoff
(|k|λD = 0.3), the solid circle bounds possible SRS EPW wavenumbers, and solid
curved lines mark the wavenumbers where TPD has its maximum linear growth rate
in a homogeneous plasma. Since these spectra are calculated using instantaneous
snapshots the sign of k is ambiguous; forward-propagating TPD daughter waves at
k = k+ also appear at k = −k+.
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up to ky = 1.8ω0/c and with a width that increases with ky up to approximately

∆kx = 0.5ω0/c. As expected the upper ky limit is roughly double the maximum

transverse wavenumber ky = 0.9ω0/c of the EPW spectrum. In addition the width

∆kx of this feature is also in reasonable agreement with the width of the TPD EPW

spectrum, which also broadens at increasing ky. A further, lower amplitude peak in

the δn spectrum is visible at k ' (2ω0/c, 0). This is due to the beating of forwards-

propagating TPD EPWs with backwards propagating EPWs and can only occur

very close to ncr/4 where the forwards and backwards-propagating EPWs have very

small frequency difference.

The EPW spectrum at 2.5ps has significant differences from that at 2.2ps.

This is largely caused by the ion density perturbations, which scatter the EPWs.

The main part of the TPD spectrum has undergone significant broadening as a

result, with the previously distinct components now blurred into a largely continuous

spectrum. Broad peaks are also visible at high |k|. These waves have very low

amplitude as they are mostly far beyond the Landau cutoff and consequently subject

to large Landau damping rates. Not all of the high-|k| modes can be explained by

scattering from ion density perturbations. Some of these may be caused by beating

of pairs of EPWs with large frequency difference coupling directly to other high-

frequency waves, while others are harmonics of the large-amplitude EPWs.

As discussed in chapter 4, the density perturbations lead to a reduction in

the linear growth rate of TPD. By the time the the density perturbations are driven

the region is already pump-depleted so no growth can occur anyway, however their

presence now limits any future growth when the laser re-enters.

5.3 Long-term Behaviour

After the initial period of rapid instability growth and saturation, the nonlinear sat-

urated state evolves over a longer timescale. LPI activity is primarily due to TPD

and effects resulting from it. While SRS is observed at a low level, it accounts for

a very small fraction of absorbed energy. This can be seen in the reflectivity and

transmission diagnostics shown in figure 5.5. During the initial linear growth phase,

absolute SRS occurred at ncr/4. This is responsible for the spike in backscattered

light observed in the diagnostic at around 2.8ps. Later on in the simulation, forward

and back-scattered light are observed due to convective SRS at lower density, but

the total fraction of laser power delivered in these is on the order of 2%. Since the

transmitted fraction of laser energy ranges between approximately 10-40%, laser

absorption must be at 60-90%. Assuming half of the SRS and SBS-absorbed en-
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Figure 5.5: Left: Scattered light time-history. Green and olive lines measure SRS
and SBS back-scatter detected at the laser entrance boundary, while SRS forward-
scatter measured at the laser exit boundary is shown by the blue line. The SBS curve
is calculated by subtracting the laser’s maximum power from the signal measured
at the laser entrance boundary and negating the result. This does not account for
the laser rise, leading to the apparent 100% SBS scattering before 2ps. Right:
Transmitted light time-history. In both panels, the vertical scale is normalised to
the maximum incident laser power, and a Gaussian filter has been applied to all
signals to remove high-frequency noise with period shorter than 25fs.

ergy is seen as scattered light (with the remainder delivered to EPWs and IAWs),

the observed activity of these scattering instabilities can only account for a small

proportion of total absorption. The vast majority of absorption is instead due to

TPD.

In discussing long-term instability activity, the focus of this section is there-

fore on the behaviour of TPD. Three effects are predominantly responsible for the

observed dynamics, and these are discussed in turn in the next three subsections.

5.3.1 Cavitation

Near the quarter-critical surface, the intense EPWs present lead to the formation of

unstable density depressions or ‘cavities’ that trap the EPWs [DuBois et al., 1995;

Russell and DuBois, 2001]. Consideration of the relative strength of the plasma

thermal pressure and the ponderomotive pressure of the EPWs can be used to

produce a criterion for where these unstable cavities can form [Dendy, 1990]. In

particular, the turbulence parameter W̄ of the EPWs is used to quantify the relative

strength these effects and leads to the condition

W̄ ≡ ε0|E|2
4nekBTe

> 3(kλD)2. (5.3)
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Figure 5.6: Left: Threshold EPW field amplitude as a function of density for
TPD. The wavenumber used in the calculation is that of the backwards-propagating
daughter wave as this produces the lowest threshold. Right: Transverse-averaged
cavitation correlator as a function of space and time. Vertical dashed line marks
the TPD Landau cutoff. Following initial growth, TPD EPWs cause cavitation in
the region closest ncr/4, as predicted by threshold calculation in left panel.

Here the electric field E refers to the field amplitude of an EPW with wavenumber

k. This indicates that cavitation occurs near ncr/4 for TPD due to the short EPW

wavenumbers required in this region. In particular, the backwards-propagating TPD

EPW wavenumber vanishes as ne approaches ncr/4, so the threshold is most eas-

ily satisfied in that region. To illustrate this, the left panel of figure 5.6 shows the

threshold electric field energy as a function of density for the backwards-propagating

TPD EPW, at three different temperatures. Additionally, the upper right panel of

figure 5.7 shows the transverse-averaged electrostatic field energy. Electric field en-

ergy can be seen to be fairly uniform in time and space with a value of approximately

(eE/meω0c)
2 ' 10−4. According to figure 5.6, cavitation should therefore occur in

a narrow density region 0.235 . ne/ncr < 0.25.

To determine where cavitation actually occurs, the transverse-averaged ‘cavi-

ton correlator’ [DuBois et al., 1996] has been evaluated. This is a metric for cavita-

tion activity, and is defined

Cδn|E|2 ≡ −
〈
δn|E|2

〉
〈δn2〉1/2 〈|E|2〉

. (5.4)

Cavitation takes place where EPWs with large electrostatic field amplitude |EES|
are able to drive ion density depressions δn that trap the EPWs. In regions where
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Figure 5.7: (a): Poynting flux, filtered to include only EM waves at the laser
frequency. (c): Poynting flux filtered to include only EM waves at frequency of SRS
scattered light. (b): Transverse-averaged electrostatic wave energy in the Ex field
component. (d): Transverse standard deviation of carbon ion density perturbations.
See main text for an explanation of these figures.
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this occurs, |EES| and −δn should therefore be correlated, so the statistic should

have values above 0.5. Elsewhere the fluctuations due to linear EPWs and IAWs

are uncorrelated and so the statistic should average to zero. The right hand panel

of figure 5.6 shows this statistic for the small-scale simulation. Here it indicates

that cavitation begins shortly after initial instability growth, and persists for the

remainder of the simulation. The range of densities in which cavitation occurs also

corresponds roughly to the same region predicted by the threshold.

Single-beam RPIC (Reduced PIC) simulations that were performed with the

same laser intensity and similar plasma conditions to this simulation have also led

to cavitation ([Vu et al., 2012a], section V). It is therefore unclear why it was not

reported in [Yan et al., 2014], though the spectra presented in their paper display a

broadened EPW spectrum near ncr/4 which is similar to that observed in our results.

While cavitation plays a relatively limited role in our single-beam simulations, it

plays a more important part in RPIC and extended Zakharov simulations of TPD

driven by multiple laser beams [Myatt et al., 2012; Vu et al., 2012a,b]. In those

cases it was identified as the leading source of hot electrons.

5.3.2 Pump Depletion & Wave Propagation

Cavitation has a less important role in this simulation as most laser energy is ab-

sorbed at densities around the TPD Landau cutoff. In this relatively low density

region the threshold field amplitude for cavitation is large, and so other nonlinear

effects saturate TPD instead.

Figure 5.7 shows the same set of diagnostics as figure 5.3, but now spanning

the full duration of the simulation. In all plots the TPD Landau cutoff (|k|λD = 0.3)

is marked with a vertical dashed line. During the initial phase of linear growth, large

amplitude EPWs were produced in the plasma near ncr/4 where Landau damping is

minimal. These can be seen in the EPW energy diagnostic (figure 5.7, upper right)

as an arc spanning roughly 45-70µm. This arc is at a slight angle from horizontal

since the higher density TPD EPWs have slightly larger growth rates and so appear

earlier in time. At later time this arc is seen to continue into the low density region

(between approx. 20-45µm, from 2.5-4.5ps), and notably continues past the Landau

cutoff. The gradient of the arc is now significantly steeper, and in particular is close

to the group velocity of the backwards-travelling TPD EPWs.

In the diagnostic of laser Poynting flux (upper left panel of figure 5.7), pump-

depletion is seen to track the arc of TPD activity. This strong laser absorption

indicates that further instability growth is occurring in the low density plasma. In

[Yan et al., 2014], it was suggested that backwards-propagating waves from the
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high-density plasma can act as large-amplitude seeds for further convective TPD

near the Landau cutoff. These would not be able to undergo significant growth but

might be sufficient to deplete the laser of energy. The same authors also found, in a

previous work, that TPD activity at low density could be enhanced by ion density

perturbations [Yan et al., 2012]. This was explained in terms of the broadening

effect of the ion density perturbations on the EPW spectrum; the additional modes

introduced when the spectrum becomes broadened increase the EPW seed amplitude

that is then amplified by convective TPD. Interestingly it was claimed that ion

density perturbations, and therefore also this mechanism, are not important to LPI

in the low density region of the simulation we have reproduced [Yan et al., 2014]. In

contrast, we find that TPD in this region is affected by density perturbations, and

furthermore, it is clear from the spectra presented in [Yan et al., 2014] that they are

also important there. This will be discussed in the next subsection.

In the original simulation, which was run for 21ps, TPD activity in the low

density plasma diminished after 15ps [Yan et al., 2014]. A second ‘arc’ of TPD

growth was then seen to propagate from ncr/4. A tentative explanation was given

for this. In particular it was suggested that, since pump-depletion in the low density

plasma prevents growth of waves near ncr/4, this could also starve the low-density

TPD activity of a supply of the waves needed to support it from the high density

plasma [Yan et al., 2014]. Since our simulation covers a shorter time duration this

effect is not observed here.

While no second large wave of growth is observed, the behaviour seen for

the remainder of the simulation involves a cyclic pattern of TPD growth in the

low density plasma. These bursts of activity result in a varying degree of pump

depletion, which can be seen from the laser Poynting flux diagnostic (upper left,

fig. 5.7) and the time history of laser transmission (right, fig. 5.5). This illustrates

that the majority of absorption continues to occur about the Landau cutoff, but

that periodic reductions of activity there allow a higher laser intensity to propagate

into the higher density plasma. This allows for continued TPD activity at higher

density, which for example sustains the cavitation near ncr/4.

5.3.3 Ion Density Perturbations

To explain the bursts of TPD growth described above, we examine the effect ion

density fluctuations in the plasma near the TPD Landau cutoff. Figure 5.8 shows

energy spectra of the electrostatic field Ex (left column) and amplitude spectra of

carbon density perturbations δnc (right column). These spectra are calculated at

t = 3.8, 6.3, and 7.3ps (top to bottom rows respectively), using data from the plasma
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Figure 5.8: Spectra of electrostatic field (E2
x, left) and carbon density perturbations

(δnC, right) at 3.8ps (top), 6.3ps (middle), and 7.3ps (bottom). Data from 0.17-
0.23ncr. In the EPW spectra, the dashed line marks the Landau cutoff (|k|λD = 0.3),
solid circles bound possible SRS EPW wavenumbers, and solid lines mark location
of maximum TPD linear growth rate. Dashed boxes in (a) and (b) indicate the
integration regions for figure 5.9.
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at densities below the cavitation region. This spans a density range of 0.17-0.23ncr.

The spectra at early time (3.8ps) are calculated during the first burst of TPD

when the backwards propagating EPWs have almost reached their final position.

Both spectra are symmetric in ky. The EPW spectrum is again broadened due

to scattering of EPWs from the ion density perturbations. In addition, it features

modes at k beyond the Landau cutoff. The δn spectrum contains transverse density

perturbations at k ' (0, 1.8)ω0/c and ‘oblique’ density perturbations with |k| <
ω0/c and ky ' ±kx. Further ion density perturbations are present in the spectrum

due to additional processes.

The two later snapshots are captured at the peak of successive TPD bursts.

In the Ex spectra, the most prominent difference from the spectrum at 3.8ps is the ky

asymmetry that is now apparent. The EPWs with largest amplitude correspond to

a single ‘handedness’ of TPD growth – also visible in the spectra in [Yan et al., 2014]

(panels (e) & (g) of figure 3). Furthermore, the handedness of the EPWs alternates

between successive bursts. The IAW spectra obtained at these times display fewer

features than the spectrum at 3.8ps, however the transverse and oblique density

perturbations remain and indeed are at larger amplitude. At the chosen times there

are some visible asymmetries in the δn spectra, however these are difficult to discern.

The analysis of chapter 4 suggests that the ‘oblique’ density perturbations

could be responsible for the asymmetry observed in the EPW spectra. To examine

whether this is consistent with the simulation data, sections of the EPW and IAW

spectra are integrated to produce individual amplitudes whose time-dependence can

be more easily compared. These are shown in the top two panels of figure 5.9. In

the upper panel, the time histories of the averaged Ex spectra are plotted. The

quantity labelled k is the spectral amplitude |Ex(kx, ky)| averaged over the region

marked by dashed blue lines in the early-time Ex spectrum of figure 5.8. Due to

the ambiguity in the sign of k of the static Fourier transforms used, this captures

the complete set of TPD waves of one ‘handedness’. The opposing set of EPWs is

labelled k† and is measured by integrating the region bounded by the green dashed

lines. The sum of the two TPD signals is also plotted as a solid black line, while

vertical grey lines mark the main ‘bursts’ in TPD activity. In the next panel of

figure 5.9, the time series of density perturbation (δn) amplitudes are shown. These

are colour coded according to the amplitudes they should affect in the upper panel.

Transverse density perturbations are marked k⊥, calculated by averaging |δn(kx, ky)|
in the region shown by the white dashed rectangle in the early-time δn spectrum

in figure 5.8. Finally the two quantities marked kIAW and k†IAW represent oblique

density perturbations and correspond to the regions bounded by blue and green
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Figure 5.9: Diagnostics of ‘bursty’ TPD activity as time series. Upper panel:
Coloured lines show spectral amplitude of TPD EPWs of different handedness, av-
eraged over regions bounded by dashed lines in first Ex spectrum of fig. 5.8. Black
line is the sum of coloured lines. Vertical grey lines mark the peak of each burst.
Second panel: Mean spectral amplitude of density perturbations, averaged over cor-
responding regions of first δn spectrum in fig. 5.8. Third panel: Lineouts of laser
intensity from laser Poynting flux diagnostic of figure 5.7 at locations indicated in
legend. Final panel: Differences between the lineouts of the previous panel, indicat-
ing absorbed intensity over the respective intervals.
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dashed lines respectively in the early-time δn spectrum.

It is clear from the time histories of the various quantities that the density

perturbations and TPD EPWs are related. Each type of density perturbation re-

sponds to changes in the amplitude of the EPW waves responsible for driving it,

and in a manner that is consistent with what would be expected. This is most

apparent after the initial growth has occurred. Focusing for example on the blue

curves, periods of rising δn amplitude occur when the EPWs are at high amplitude

(e.g. at 6.0-6.6ps), while conversely periods of decaying δn amplitude occur when

the EPWs are at low amplitude (e.g. 6.6-8.2ps).

The behaviour observed also appears consistent with the results of chapter 4

in that the EPWs respond to the activity of the oblique density perturbations. The

EPWs undergo periods of decay in amplitude (due to Landau damping) when TPD

growth is suppressed by elevated density perturbation amplitudes (e.g. 6.3-7.1ps for

the blue curves).

Another effect that is apparent from the time histories is that during a burst

in activity of one pair of TPD waves, the other pair does not grow. For example

after the burst between 6.0-6.6ps seen in the ‘blue’ EPWs, it might be expected that

another phase of growth might begin at approximately 7ps when the corresponding

oblique density perturbation has dropped sufficiently in amplitude. Instead, growth

does not resume until around 8ps when the opposing set of ‘green’ EPWs has itself

been suppressed.

A possible explanation for this behaviour can be given in terms of pump

depletion. In particular, during each burst the region where peak absorption occurs

shifts to lower density. This is visible in the laser Poynting flux diagnostic (upper

left panel, figure 5.7). To illustrate this effect as a time-series, lineouts have been

taken from the Poynting flux diagnostic and are also plotted in figure 5.9 (panel

third from top). Three locations are chosen; two bounding the region where most

absorption occurs, and one located roughly in the centre. These lineouts indicate

incident intensity at each point. In the final panel of figure 5.9, the differences of

these intensities has been calculated; these measure the ‘absorbed intensity’ within

each region. The red and cyan curves measure absorption at low and high density

respectively, while the black curve measures absorption over the combined area. This

calculation does not account for the propagation time between each point, however

since the points are closely spaced this should be very short. For the last three

bursts, marked by vertical grey lines, total absorption peaks during each burst.

Additionally, during each of these three bursts absorption first rises in the high

density region (cyan) before moving to the low density region (red). Interestingly
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this pattern is not observed in the lineouts for the burst at 5.5ps, however this is

likely due to absorption instead being centred at higher density as can be seen in

the Poynting flux diagnostic.

The shift of absorption to lower density during each burst is potentially due

to the convective nature of the instability. The backwards-propagating TPD wave

has a significantly lower damping rate than the forwards-propagating one, leading

to each burst of TPD growth occurring as an overall backwards-propagating pulse.

It is possible therefore that in order for a burst to be initiated in a particular

set of TPD EPWs, not only does the amplitude of corresponding oblique density

perturbations have to be sufficiently low, but a large intensity is required at high

density. These conditions are not both satisfied until the opposing set of TPD EPWs

have diminished sufficiently to allow a larger fraction of laser energy to pass into

the high density plasma.

5.3.4 Summary

As we have seen, LPI in this simulation exhibits complex and dynamic behaviour.

TPD is the primary instability active, and its saturation state is subject to a variety

of effects. The density range in which TPD takes place can be split into two sub-

regions that are distinguished by the dominant nonlinear saturation mechanisms.

In the high-density region, adjacent to the quarter-critical surface, the primary

effect is cavitation which has previously been observed in simulations at lower laser

intensity relevant to conventional direct-drive ICF [Vu et al., 2012a,b; Myatt et al.,

2012]. In the low-density region in the vicinity of the TPD Landau cutoff, TPD is

instead saturated by coherent ion density perturbations. These, along with pump-

depletion, lead to regular periods of EPW amplitude growth and decline, and an

asymmetric EPW spectrum. Furthermore, this low-density TPD activity is found

to cause efficient absorption of laser energy, in contrast with the cavitation region.

That TPD is so active in this low-density region is likely a consequence of the higher

laser intensity used and therefore specific to the shock-ignition regime.

5.4 Hot Electron Production

5.4.1 Angular Distribution

In order to investigate the hot electron output of the simulation, data from suprather-

mal electrons leaving the domain was used to construct an inferred distribution

function. The distribution of particle fluxes fF(p) through a given boundary may
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be written in terms of the particle distribution function fB(v) as

fF(v) = v · n̂fB(v), (5.5)

where n̂ is a unit vector normal to the boundary. In this case the convention

is used that n̂ is directed out of the domain. Data from outgoing electrons was

binned according to their momentum in x and y, which produces an estimate of the

flux distribution. The inferred distribution function at a given boundary was then

calculated from this by inverting the above equation.

The inferred distributions from each of the four simulation boundaries were

then combined into a single inferred distribution, which provides an estimate for

the mean hot electron distribution at a given instant in time. Given that there is

significant variation in time of the hot electron production in the simulation, and

that the hot electrons take varying times to reach the different boundaries, this is

clearly a rather crude estimate. However, this can be mitigated by time-averaging to

produce a better estimator of the hot electron population. Data from the transverse

boundaries was intentionally included in this dataset, and means that when time-

averaged, the hot electrons propagating oblique or perpendicular to the laser may

be counted multiple times. This can be thought of as accounting for hot electron

production from a much larger transverse extent of plasma.

The inferred hot electron distribution, time averaged over the entire sim-

ulation is plotted in figure 5.10 (a). Data was not collected in the core of the

distribution, which is bounded by black dashed lines. White dashed lines mark

the phase velocities expected of TPD waves. Note that for both TPD and SRS

the EPW phase velocity increases in magnitude with density. Distinct hot electron

populations can be identified in this figure, which can be associated with different

instabilities. Since TPD is the most prevalent instability in the simulation, signifi-

cant hot-electron populations are found to lie underneath the dashed lines that mark

expected TPD phase velocities.

The inferred distribution shown in figure 5.10 (a) appears symmetric in py,

however on a shorter timescale this is not always the case. In figures 5.10 (b), (c),

and (d), inferred distributions are shown for different averaging periods, indicated

in the respective figures. During the initial growth and saturation phase (figure 5.10

(b)) the hot electron distribution is symmetric in ky, however in the distributions

calculated during successive TPD bursts (figure 5.10 (c) & (d)), there is an asym-

metry which reverses between the two cases. These asymmetries are clearly due to

the asymmetric nature of the nonlinear saturation state of TPD.
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5.4.2 Hot Electron Sources

The distribution function in figure 5.10 (a) also includes features that do not corre-

spond directly to TPD. For example there are also populations propagating parallel

and perpendicular to the laser. To identify the sources of these hot electrons, sub-

sets of the electron distributions in the bulk domain were examined. In figure 5.11

(a) the x-py phase space is shown for forwards-propagating (px > 0) electrons with

kinetic energy Ek > 50keV at t = 4.5ps. It was argued in [Yan et al., 2014] that

features with large |py| correspond to TPD EPW accelerated electrons, while those

with small |py| to electrons from SRS EPWs.

To examine the source of the small-|py| electrons figure 5.11 (b) shows the

density of electrons that have |py| < 0.1mec, px > 0 and Ek > 50keV. This figure

shows only a small section of the domain (x = 46-52µm and y = 2-8µm) to highlight

the structures present. In particular, modulations of hot-electron density clearly

show the trapping of electrons in waves’ potential wells. To identify the waves

responsible for this trapping, the spectrum of this component of the distribution

function is shown in figure 5.11 (c), while the corresponding Ex field spectrum

shown in figure 5.11 (d). Both spectra are calculated using only data from x < 55µm

(ne < 0.23ncr) so as to examine only the region where most hot-electron production

occurs. Here two solid circles bound the wavenumbers of the electrostatic waves

that could be excited by SRS, while solid lines mark wavenumbers where TPD

growth rates are maximised in the linear theory. Finally, dashed lines mark the

Landau cutoff. In the distribution function spectrum several distinct features are

present. Those lying outside the Landau cutoff clearly correspond directly to TPD

waves in the Ex spectrum, while the feature with k ' 0 represents the ‘background’

of particles which have been accelerated, de-trapped and subsequently de-phased.

Since the hot electron density spectrum only includes forward-propagating electrons

there is no feature corresponding to the backwards-propagating TPD EPWs. The

remaining feature has a broad spectrum that is centred at k = k0. Due to the lack

of any obvious SRS features in the EPW spectrum we argue that this hot-electron

population cannot be produced by SRS EPWs. Instead it is most likely due to the

broad background EPW spectrum brought about by scattering of EPWs from ion

perturbations, and is therefore a result of the nonlinear saturation of TPD. Indeed,

as discussed previously, after the simulation’s linear growth phase where absolute

SRS was observed at ncr/4, SRS activity is severely restricted. There is a low level

of convective SRS that remains but this scatters on the order of 1% of the laser

energy and is therefore insufficient to explain the hot electron production observed.

Similar analysis has been performed to identify the sources of the remaining hot
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Figure 5.11: All panels from t = 4.5ps. (a): Distribution of forward-propagating
electrons with kinetic energy Ek > 50keV in x-py phase space. Large |py| popula-
tion due to Landau damping of TPD EPWs. (b): Spatial distribution of small |py|
(|py| < 0.1mec) electrons from (a) in subsection of simulation domain, featuring stri-
ations corresponding to potential wells of EPWs, along with de-phased (uniformly
distributed) electrons. (c): kx-ky spectrum of spatial modes of hot electron density
(same population as in (b), but calculated over entire domain). Bright features
identify EPW wavenumbers causing trapping. (d): EPW spectrum from Ex field
component, showing EPWs responsible for trapped electron populations in (c). Note
that spectra in (c) and (d) are from static snapshots so the sign of k is ambiguous.
In (c) & (d) dashed circle indicates approximate Landau cutoff (|k|λD = 0.3), small
solid circle indicates wavenumbers of SRS EPWs and two curved lines denote TPD
wavenumbers.
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electron populations, confirming that the dominant source of hot electrons is TPD.

5.4.3 Conversion Efficiency & Energy Distribution

To examine overall hot electron production in this simulation, two final diagnostics

of the hot-electron behaviour are now discussed.

The left panel of figure 5.12 shows the time-dependent hot electron flux

through the laser exit boundary. The flux of particles recorded by the diagnostic

have been grouped into broad energy bins, with the vertical scale showing the frac-

tion of laser power delivered by flux in each bin. The E > 50keV and E > 100keV

bins may be used for comparison against [Yan et al., 2014, figure 2 (d)]. The time-

history shown in this figure can be understood in the context of the dynamics de-

scribed in the previous section. Unfortunately this is somewhat complicated as the

various energy bins each have an associated time-of-flight lag that differs according

to the electron energy, direction of propagation and location of initial acceleration.

In general however, all of these effects are expected to contribute to the electrons

in higher energy bins reaching the diagnostic faster, which to an extent is visible in

their initial rise.

The initial rise is composed mainly of electrons in the E > 100keV band,

and is due to growth of instabilities near ncr/4 that produce EPWs with large phase

velocities. The flux in this high-energy band rapidly drops as pump-depletion sat-

urates the instabilities near ncr/4, and TPD at progressively lower densities takes

over hot-electron production. This produces electrons of successively lower energy

due to the lower phase velocity waves involved. Finally, at ∼ 5ps, the simulation

enters a relatively steady state in which hot electron production is mostly in the

lowest energy band, and the fluxes oscillate due to the bursts of TPD. Since these

involve oscillations in the density at which peak absorption occurs, the character-

istic temperature of the hot electron output varies in time, which can be seen as

oscillations in the relative amplitude of the different fluxes.

In the right hand panel of figure 5.12, the time-averaged energy distribution

of electrons travelling through the forward boundary is shown. Here the vertical

scale indicates the energy contained in each bin as a fraction of that delivered by

the laser. The measured distribution is shown in black, with the contribution from

the thermal bulk shown in blue. The flux diagnostic records only particles with

total energy above a threshold, so no data is available for the core of the distribu-

tion. It is clear from this figure that it there are at least two distinct components

to the suprathermal tail of the distribution. A three-temperature fit was found to

closely match the majority of the distribution, and is marked by a purple dashed
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Figure 5.12: Flux of particles travelling through the laser exit boundary. Left:
Instantaneous flux distribution integrated over different energy bins to produce time-
histories of the power carried within these bins, normalised to the laser power.
Flux from the bulk plasma in the lowest energy bin has been subtracted, and is
negligible in higher-energy bins. Right: Flux distribution, time integrated over
the whole simulation and weighted according to the energy of each bin. The y-
axis normalisation is the total delivered laser energy. Curves plotted are simulation
data (black), the expected thermal distribution (blue) and components of a multi-
temperature fit to the hot-electron distribution (green, red and cyan). Bottom:
Same as right, but showing low-energy range. Green line shows an energy-equivalent
single-temperature fit to the multi-component version above.
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line which is almost indistinguishable from the data. This fit was performed ‘by

hand’, by first fitting the highest-energy section of the tail and adding lower-energy

components in turn. The functions used for this fitting were thermal distributions,

with characteristic temperatures obtained of 20keV, 62keV and 160keV. It is im-

portant to note however that these sub-populations are not truly ‘thermal’. These

temperatures simply indicative of the typical energy of the electrons produced by

acceleration from a given set of EPWs.

The distribution was integrated over different time intervals to identify these

components. It was found that the low-temperature component only becomes promi-

nent when TPD activity shifts to lower density, suggesting that this component is

caused by TPD near the Landau cutoff. In a similar manner, the 60keV component

was identified with TPD activity in the high-density plasma near ncr/4. This may

therefore be produced by cavitation and the turbulent, high phase-velocity EPW

spectrum. The final component appears shortly after initial saturation (3-4ps) but

diminishes slowly over the remainder of the simulation. Despite its high tempera-

ture, this component carries a small fraction of laser energy (∼ 1%). This is similar

to the level of SRS scattering recorded by the reflectivity diagnostic, which suggests

that it may be related to SRS, however further analysis would be required to confirm

this.

To compute a single temperature that characterises the overall distribution,

the temperatures Ti of the different components of the multi-temperature fit were

combined into an ‘effective temperature’ using

Teff =

∑
i FiTi∑
i Fi

, (5.6)

where Fi is the total energy flux of the component with Ti. This gives a temperature

of Tave ' 34keV. A hot electron population with this temperature is shown in the

lower panel of figure 5.12. The size of the population shown was chosen so as

to produce an equivalent energy flux to the multi-component fit and, while this

calculation is in no way rigorous, produces a reasonable characterisation of the

section of the distribution carrying the majority of energy. This low overall hot-

electron temperature is a simple consequence of the location at which the instability

is taking place; most TPD observed in the simulation occurs near the Landau cutoff

where the EPW phase velocities expected from linear theory are relatively low.

While the nonlinear saturation spectrum of TPD is somewhat different from what

might be predicted from linear theory, these differences do not significantly alter the

temperature of the resulting hot electron distributions.
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5.5 Summary

One prominent feature of this simulation is the very high fraction of absorption,

which is caused by TPD near the Landau cutoff. The time-averaged transmission

fraction from 2.5ps until the end of the simulation is 23% (see figure 5.5), indicating

that LPI is responsible for absorption of 77% of the laser’s energy. Since the plasma

model is collisionless, energy delivered into EPWs is mostly delivered into hot elec-

trons via Landau damping or collapse of cavities. Therefore as TPD is responsible

for most absorption, a large portion of this energy should ultimately exit the domain

as hot electrons, which would then mainly be seen at the forward boundary. This

can be confirmed by summing and time-integrating the hot-electron fluxes measured

in the left panel of figure 5.12, which indicates a hot-electron fraction of 41%.

Part of the motivation for performing this simulation was to examine the

effect of collisions. A collision model was not enabled for any of the simulations

performed in this project, in contrast to those performed in [Yan et al., 2014]. The

results presented in that work, which otherwise bear close resemblance to ours, differ

in the measured hot electron fraction. In particular the quoted energy fractions in

the 50-100keV and > 100keV bins is given as 11% and 8% respectively. In our

simulation these fractions are 16% and 11%; an overall increase of 45%. While this

may partly be due to the longer duration over which their hot-electron fraction was

measured, previous comparisons of collisional and collisionless simulations have also

observed significant differences in hot-electron production. This was attributed to

the partial suppression of ‘staged-acceleration’, in which individual electrons are

accelerated by multiple EPWs of increasing phase velocity [Yan et al., 2012].

While it would therefore be desirable to include collisional behaviour, this

was unfortunately not feasible for the simulations presented here. It is nevertheless

encouraging that, while the hot-electron fraction measured is somewhat inflated,

the behaviour observed in this simulation and that of [Yan et al., 2014] is otherwise

consistent. If it is indeed the case that collisions lead to a reduction of staged

electron acceleration, one might expect that this would lead to a reduced damping

rate of the higher phase-velocity plasma waves involved. This may therefore lead

to modified activity in the higher-density region of the simulation, but would not

be expected to affect the low-phase velocity EPWs around the TPD Landau cutoff

which are responsible for the majority of absorption.

Initial conditions for this simulation [Yan et al., 2014] were intended to

reproduce those found in early OMEGA experiments investigating shock-ignition

[Theobald et al., 2012]. In those experiments a series of shots was performed with
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beam intensities varied between 0.5-8×1015Wcm−2. The beams were not overlapped

and shots were taken with and without phase plates, though those with phase plates

were only performed at an intensity of 1.5×1015Wcm−2. In the shots without phase

plates, large SRS reflectivities were recorded of up to 24%, which was attributed to

filamentation of the the beams. Since this simulation used a uniform intensity pro-

file, it is likely most representative of the shots with phase plates. In those, an SRS

reflectivity of around 0.5% was recorded, the same as measured in the simulation

(see figure 5.5), and an SBS reflectivity of ∼ 5%. The initial conditions in the

simulation do not include a bulk velocity profile, which is important for modelling

SBS, and the range of plasma densities simulated is smaller than those over which

SBS can occur. These factors are likely why the SBS reflectivity measured in the

simulation is smaller (∼ 1%). No 3/2ω signal (which is associated with TPD) was

measured in the shots without phase plates, and a ∼ 30keV hot electron temper-

ature was recorded, consistent with absorption dominated by filamentation-driven

SRS far below ncr/4. In contrast, in the shots with phase plates, a 3/2ω signal was

observed along with a marginally higher hot-electron temperature of ∼ 40keV and a

hard X-ray signal approximately twice as large as equivalent-intensity shots without

phase plates. However, the diagnostic was not absolutely calibrated and so a hot

electron fraction was not given. While the hot electron temperature measured is

close to our effective temperature of 34keV, it is unfortunate that the hot electron

fraction was not recorded as this is a key prediction of the simulation.
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Chapter 6

Ignition-scale Simulation

This chapter contains results submitted for publication in Physics of Plasmas:

A. G. Seaton & T. D. Arber, “Particle-in-Cell Simulations of Laser-plasma

Instabilities in Long Scale-Length Plasmas Relevant to Shock-ignition”

In this chapter results are presented from a simulation in which parameters

were chosen to represent ignition-scale shock-ignition (SI) experiments. Currently,

igniting SI designs are expected to require a driver that can deliver energy on the

order of that available at the National Ignition Facility. Unfortunately that laser

system is currently configured for indirect-drive and has insufficient bandwidth to

support the pulse shape required by many SI designs [Anderson et al., 2013]. Nev-

ertheless, it is of interest to explore laser-plasma instabilities at this scale to begin

to gain an understanding of their behaviour in this regime.

While there has been little work investigating LPI at SI intensities on the

NIF, experiments have been performed to investigate these instabilities at lower

intensities. The experiments and modelling done in this regime have found that while

at smaller scale TPD was the main instability that was active, at NIF-scale SRS

takes over instead [Rosenberg et al., 2018]. This was given preliminary theoretical

justification in terms of the scaling of SRS and TPD absolute growth thresholds

with temperature and density scale-length [Rosenberg et al., 2018]. Furthermore

it was shown that absolute and convective SRS side-scatter are important [Michel

et al., 2019].

The simulation examined in this section represents the first 2D simulation of

LPI at shock-ignition intensities, and bears marked differences with the small-scale

simulation, with SRS in particular found to play a much greater role here. Inter-
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estingly, no evidence is found of 90° side-scatter, which is potentially a consequence

of the laser polarisation chosen. This chapter is structured in a similar way to the

previous chapter to aid comparison between the two. The simulation setup is first

covered in section 6.1. Results are then described, again beginning with the initial

growth and saturation in section 6.2. Longer-term development is described in sec-

tion 6.3, where it is shown that kinetic inflation [Montgomery et al., 2002; Vu et al.,

2002] plays an important role in the development of the SRS instability at these in-

tensities. An analysis is performed of the resulting behaviour, with two mechanisms

proposed to explain the dynamics that emerge. While kinetic inflation has been

examined in great detail in prior large-scale studies of homogeneous indirect-drive

plasmas, it has received more limited attention in a direct-drive context. This is

therefore the first study in which this effect has been observed in a realistic large-

scale direct-drive simulation. Finally, an analysis of hot electron production is given

in section 6.4, and results are summarised in section 6.5.

6.1 Simulation Setup

The setup used for the NIF-scale case is similar to that used in the previous chapter.

Rather than describe all of the initial conditions again, only the differences will be

covered in this section. Parameters that are not mentioned here may be assumed to

be the same as for the small-scale simulation and can therefore be found in section

5.1.

Plasma parameters for this case were based on reported values from direct-

drive experiments on the National Ignition Facility [Rosenberg et al., 2018]. As such

they may not be representative of a true shock-ignition experiment, however it is

currently unclear as to how these parameters would differ from a conventional direct-

drive shot. The parameters used were therefore an electron temperature of 4.5keV,

along with a density scale-length of Ln = 600µm. Estimates of the ion temperature

and bulk velocity profiles were not available so an electron-ion temperature ratio of

Te/Ti = 2, and a stationary plasma was again used.

Initial NIF-scale simulations were run that spanned a similar range of den-

sities to the small-scale simulation in the previous chapter. Unfortunately however,

spurious SRS occurred at the laser boundary and led to very little laser energy

passing this point after the initial period of instability growth. This suggested that

SRS from lower densities is important and that the range of densities simulated was

insufficient. As a result the density range used for this case was considerably ex-

panded by comparison to the smaller-scale simulations presented in this thesis. The
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density profile chosen was a pure exponential, and spans 0.10-0.26ncr. This is shown

in figure 5.1 along with the sub-scale cases. Due to the larger simulation domain

and consequently longer time required for the laser and scattered light to traverse

it, the simulation duration was 20ps to help ensure that the behaviour observed was

not simply part of a transient phase.

In the small-scale case a laser rise time was used of 2ps. It was unclear what

benefit this relatively lengthy rise had, so in this case the rise was shortened to

0.26ps to help reduce computational costs. All other laser parameters were kept the

same.

The domain itself measured 556 × 19µm, and was composed of a grid of

44200× 1500 cells. This number of cells was determined by choosing the cell size to

be 1.2λD(ne,max) along both axes, where ne,max is the maximum density encountered

in the domain. This helps to avoid significant self-heating and ensures that the waves

of interest are resolved. While the plasma parameters help reduce the computational

cost in this regime (higher temperature results in larger λD, so larger cell size, and

also longer time-step), the considerably larger domain size and simulation duration

required made this by far the most costly simulation presented in this thesis. It was

practically only possible to use around 2000 CPU cores, resulting in a total run-

time of 45 days. This clearly is one of the major deficiencies in such self-consistent

kinetic modelling - such simulations are unlikely to be of use for routine modelling

of experiments. Furthermore there remain several sacrifices that must be made

in terms of the physics modelled which mean that even these extremely detailed

simulations do not capture all aspects that might be of interest. For example it

would be desirable to have a fully 3D model, and to investigate much larger regions

of plasma over hydrodynamic timescales (δt ∼ 100ps). Such modelling remains far

out of reach despite recent advances in computing hardware.

6.2 Initial Behaviour

As in chapter 5, discussion of the initial behaviour of the simulation is split into

an analysis of initial instability growth, and investigation of the initial mechanisms

responsible for saturation.

6.2.1 Linear Growth

The left panel of figure 6.1 shows the ky spectrum of the Ex field component during

the simulation’s linear growth phase, with a solid white line marking the wavenum-

bers for which TPD growth should be maximised. As in the small-scale case (figure
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Figure 6.1: Left: Instantaneous ky energy spectrum of the Ex field component dur-
ing initial instability growth at 2.3ps. The laser wave-vector and ∇ne are parallel to
the x axis while laser polarisation is along the y axis. The solid white curve indicates
where maximal linear growth of TPD is expected at each density, while the dashed
white curve indicates wavenumbers required for absolute 90°SRS side-scatter. The
SRS observed has lower ky and is therefore convective and at lower scatter angles.
Dashed white and green lines mark the Landau cutoffs of TPD and SRS backscatter
respectively. Both are in reasonable agreement with the data. Right: Instantaneous
ky-kx energy spectrum of Bz field component calculated from the same snapshot but
using only data from between x = 350-400µm. Arcs are EM waves from SRS back
and side-scatter at angles of up to 60°from direct backscatter. Overlaid solid white
curves mark bounds on the possible SRS backscatter wavenumbers for the relevant
range of densities.
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Figure 6.2: Measured TPD linear growth rate for NIF-scale simulation (blue). The
solid black line indicates the theoretical inhomogeneous convective growth rate [Yan
et al., 2010] including Landau damping, while the dashed black line indicates the
theoretical absolute growth rates [Simon, 1983]. The observed growth shows better
agreement with the range of wavenumbers where convective growth is expected to
occur, but there is a large discrepancy in the values which is currently unexplained.

5.2) a feature is observed underneath this curve, indicating the presence of TPD.

The dashed white line marks the TPD Landau cutoff (|k|λD = 0.3), and is in good

agreement with the lower density bound of observed growth. To explore TPD growth

further, its growth rates have again been measured using the method described in

chapter 5, and are plotted in figure 6.2. Since the range of wavenumbers where

growth occurs is again most consistent with those spanned by the convective theory

(black solid line), growth is thought to be predominantly convective in nature.

The growth rates in figure 6.2 differ somewhat from the theoretical convective

growth calculation. Two discrepancies are present. First, the range of wavenum-

bers where significant growth occurs is somewhat larger than is predicted by the

theory. In particular, no growth is predicted to occur above 0.8ω0/c, in contrast

with the data where it is observed at up to ∼ 1.25ω0/c. Note that the low ampli-

tude signal above ∼ 1.25ω0/c is due to noise from thermal fluctuations. A possible

explanation for this is that the growth rates plotted are for the maximally growing

TPD EPW wavenumbers at given ky, and the calculation of this maximally growing

wavenumber assumes no Landau damping. In fact at each density TPD grows over

a spectrum of wavenumbers (as seen for example in the left panel of figure 6.1), so

ky does not uniquely determine the growth rate. Landau damping will affect regions

of this wavenumber spectrum differently, so it is possible that the high ky modes

observed to grow in figure 6.2 are waves that do not lie on the maximally growing

wavenumber curve and experience lower Landau damping rates. Secondly, there is

also a prominent difference between the measured and predicted growth rates which
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increases at small ky. This is more difficult to explain, however it is possible that the

difference is caused by relativistic effects, which might have become more important

at this elevated temperature. Alternatively, there may be some interaction with

SRS which has not been included. These issues are left for future investigation.

Features due to SRS are also visible in the ky spectrum. SRS may occur as an

absolute instability where the scattered EM waves are born near their turning point

[Drake and Lee, 1973; Liu et al., 1974]. For backscatter (ky = 0) absolute instability

is only possible at ncr/4. At lower density, for the scattered light to be at its turning

point the scatter angle must be 90°, requiring ky ' (ω0/c)
√

1− 2ωpe/ω0). These

wavenumbers are plotted in the left panel of figure 6.1 as a dashed curve. None of the

SRS activity observed in this simulation below ncr/4 lies on this curve, indicating

that the modes excited are convective in nature. This lack of a 90°sidescatter signal

may be due to the in-plane laser polarisation used, for which the sidescatter growth

rate is minimised. A dashed green line in the electrostatic ky spectrum in figure 6.1

marks the Landau cutoff for SRS backscatter. This is in reasonable agreement with

the observed growth.

While no scattering occurs at 90°, the range of wavenumbers excited dis-

plays a significant spread in ky. This is greater than would be expected for pure

backscatter, and indicates that scattering occurs over a large range of angles. To

examine the angular distribution of SRS scattering, the right panel of figure 6.1

shows the kx-ky energy spectrum of the Bz field in the region x = 300-350µm using

the same snapshot as for the ky spectrum. Viewed on the logarithmic scale, it is

evident that EM waves are present propagating at angles of up to approximately

60 degrees from kx, though the majority of scattering is in fact at angles below 30°.
A similar angular distribution is observed for the rest of the SRS activity in the

domain at this time. Further analysis was performed to resolve the ambiguity in

scattered light propagation direction, and verified that the light observed is purely

backwards propagating (kx < 0).

6.2.2 Initial Saturation Effects

For TPD, saturation occurs in much the same way as was described in the small-scale

case (see section 5.2.2). As before diagnostics are shown in figure 6.3 as space-time

maps for the period between 1-3ps. The diagnostics shown are the laser and SRS

light Poynting fluxes (left column), transverse-averaged electrostatic energy (upper

right) and transverse-standard deviation of carbon ion density perturbations (lower

right). Dashed lines mark the SRS backscatter and TPD Landau cutoffs, which

are located at approximately 0.16ncr and 0.21ncr respectively. In the electrostatic
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Figure 6.3: Diagnostics of initial LPI growth. (a): Poynting flux filtered to include
only waves at the laser frequency. (c): Same, but for SRS scattered light frequen-
cies. (b): Transverse-averaged electrostatic wave energy. (d): Transverse standard
deviation of carbon density fluctuations.
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field diagnostic, features due to TPD can be observed as the intense arc in the

upper right hand corner. SRS is less prominent and produces EPWs of significantly

lower amplitude; its presence can instead be discerned by the signals observed in

the scattered light diagnostic.

It is clear from the Poynting flux and electrostatic field energy diagnostics

that saturation of TPD is initially due to pump-depletion. The ion density perturba-

tion diagnostic indicates that ion density perturbations are indeed driven, however

as in the small-scale case these are observed to grow after the initial phase of sat-

uration. Furthermore, close inspection of the differences in this diagnostic between

figures 5.3 and 6.3 reveals that the ion density perturbations found in this case reach

a lower amplitude than those driven in the small-scale case. This is partially due

to the lower amplitude reached by the EPWs at saturation, but the higher thermal

pressure resulting from NIF-scale parameters may also contribute. The ion density

perturbations that are initially driven have a broadening effect on the EPW spec-

trum. This was discussed in detail in section 5.2.2; similar behaviour is observed

here.

In-depth discussion of SRS behaviour is left until section 6.3.3. It is however

of note that SRS activity, evident in the scattered light diagnostic of figure 6.3,

develops progressively over several picoseconds. This timescale is longer than that

on which SRS linear growth might be expected to occur. Additionally, while there

is clearly pump-depletion occurring in the region where SRS takes place, it does

not occur in the manner observed for TPD where the laser is almost completely

absorbed. This suggests that pump-depletion is, at least at this stage in the simu-

lation, less important to the saturation of SRS than other effects. Finally, the SRS

activity observed is not sufficient to drive density perturbations; these are purely

due to TPD.

6.3 Long-term Behaviour

6.3.1 Two-plasmon Decay

Over the course of the simulation, most laser energy is absorbed at densities below

those where TPD is active (n < 0.19ncr) due to SRS and SBS activity. To examine

how much energy is available to TPD, the laser Poynting flux diagnostic shown in

figure 6.4 is examined. To aid in this, figure 6.5 shows lineouts taken from this
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Figure 6.4: Diagnostics of initial LPI growth. (a): Poynting flux along y =
0, filtered to include only waves at the laser frequency. (c): Same, but for SRS
scattered light frequencies. (b): Transverse-averaged electrostatic wave energy. (d):
Transverse standard deviation of carbon density fluctuations.
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Figure 6.5: Lineouts from figure 6.4 (a) at the densities indicated. These show the
incident intensity available to TPD (0.19ncr) and the remaining intensity at ncr/4.
Note that these intensities are measured at y = 0 and so may not be representative
of the intensity where y 6= 0.

diagnostic at 0.19ncr and 0.25ncr respectively1. During periods when absorption is

dominated by scattering instabilities, the intensity reaching 0.19ncr, and therefore

driving TPD, is around 5× 1014Wcm−2. For reference the TPD absolute instability

threshold is approximately 1.7 × 1014Wcm−2 [Simon, 1983]. In contrast when the

scattering instabilities are less active, the intensity reaching the TPD region rises

significantly to 15-19× 1014Wcm−2.

These swings in laser intensity lead to TPD exhibiting two distinct types of

behaviour, which can be observed in the electrostatic energy diagnostic (fig. 6.4,

upper right). At times when the incident intensity is low, TPD retreats to the

region immediately adjacent to the quarter-critical surface where the wave damping

rates are low but cavitation may occur. During lulls in the scattering instabilities’

activity the incident intensity rises, and TPD becomes active over a larger region

that extends down to the Landau cutoff. This latter behaviour is what defined the

small-scale simulation of chapter 5.

As was previously discussed in chapter 5, EPWs produced by TPD may

cause cavitation in the plasma near ncr/4. This leads to a further kinetic energy

dissipation mechanism when the cavities ultimately collapse and produce hot elec-

trons. The transverse-averaged cavitation correlator was previously introduced to

1This diagnostic only measures Poynting flux at y = 0, so does not necessarily represent the
intensities at other y. The transmitted power diagnostic (shown in the right panel of figure 6.8)
measures intensity across the full domain width, and can be compared with the Poynting flux
diagnostic lineout at ncr/4.

114



400 500

x /µm

0

5

10

15

20

ti
m

e
/p

s

0.0

0.2

0.4

0.6

0.8

1.0
0.21 0.23 0.25

ne/ncr

Figure 6.6: Transverse-averaged cavitation correlator. The white vertical line
marks the TPD Landau cutoff. Values of the statistic that are above 0.5 indicate
probable cavitation activity. Note that in this figure only a subset of the domain is
shown; cavitation does not occur in the lower density plasma.

identify regions where this may be occurring, and is shown for this simulation in

figure 6.6. Note that this figure only shows a section of the domain near ncr/4; the

statistic is close to zero in all of the lower-density plasma. Figure 6.6 indicates that

cavitation sets in relatively late in the simulation, at around 6ps. This delay is due

to the almost complete pump-depletion from the initial TPD burst. Only after the

conclusion of the first burst, which is itself ended by less extreme pump depletion

from SRS and SBS, is a sufficient laser intensity able to reach ncr/4 to cause cav-

itation. Once this begins it persists for the remainder of the simulation, sustained

by the low laser intensity reaching ncr/4. From figure 6.6, cavitation activity can be

seen to span a density range of approximately 0.23-0.25ncr.

At lower density, outside the cavitation region, ion density perturbations are

also observed to grow during the bursts of TPD. These include both ‘transverse’

and ‘oblique’ spectral components. The oblique density perturbations again cause

asymmetric TPD growth however the regular cycles that were observed in the pre-

vious simulation are disrupted by pump depletion from instabilities at lower density.

When incident laser intensity drops, EPW energy in the vicinity of the TPD Landau

cutoff also drops due to Landau damping, while persisting over a longer period in

the plasma closer to ncr/4.
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Figure 6.7: Carbon density perturbation spectra. Left: Evaluated between x = 50-
100µm at 5.0ps. Arc visible at kx ∼ 1.8ω0/c is due to SBS backscatter. Right: Eval-
uated between x = 350-400µm at 14.0ps. Arc at k ' 0 is due to the filamentation
instability; this is also visible at lower amplitude in the left panel.

6.3.2 Stimulated Brillouin Scattering & Filamentation

One instability which has been largely neglected in the discussion so far is SBS. This

was not discussed earlier as it only becomes apparent relatively late in the simula-

tion, some time after the laser first propagates through the domain and the other

instabilities have undergone saturation. The reason for this is its slow growth rate in

comparison to SRS and TPD which involve high-frequency waves. Furthermore, it

is a convective instability here and therefore requires long propagation distances to

cause significant energy transfer. This, in addition to high levels of pump-depletion,

is likely why it was only responsible for very small scattered light fractions in the

small-scale simulation.

Despite its slow onset, SBS scatters very significant fractions of the laser’s

energy in this simulation; a fraction which is likely to be elevated by comparison

to experiments. This is due to the initial conditions used in which there is no

imposed bulk plasma motion and therefore no velocity gradient. Including these

more realistic initial conditions would create a spatially varying IAW Doppler shift

that would act to reduce the possible convective amplification length available to

SBS pulses.

SBS is difficult to diagnose as it produces light with almost no shift relative to

the laser frequency, making it difficult to separate from the laser itself. Furthermore,

the ion-acoustic waves it produces are largely charge-neutral and heavily damped
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under these plasma conditions, so are difficult to observe in the electrostatic wave

spectrum. While it is possible to see the effects of SBS indirectly through the

reduction in measured Poynting flux at the laser frequency, we first confirm that it

is taking place by examining the density fluctuation spectrum. This is shown in the

left hand panel of figure 6.7, in which the kx − ky spectrum of the carbon density

perturbations is plotted. This spectrum is calculated using data from x = 50-100µm

at 5ps. An arc is visible in the spectrum that satisfies the SBS matching conditions –

this is shown as the blue circle in figure 2.11. The arc is centred on k0 ' 2ω0/c which

is consistent with SBS backscatter. As with the SRS observed in this simulation,

SBS scatters over a wide range of angles, though the majority of scattered light

energy is concentrated at relatively small angles.

The space-time map of carbon density perturbations shown in the lower right

panel of figure 6.4 also shows density perturbations associated with SBS. These are

visible as the diffuse bright features on the left hand side of the domain, and are

particularly noticeable at the laser boundary. Unfortunately, this diagnostic only

shows the largest amplitude IAWs driven by SBS; lower amplitude waves are ob-

scured by the high level of background noise that is caused by thermal fluctuations.

This issue is exacerbated by the increase of the thermal background at lower den-

sity. Nevertheless, comparison of this figure with the laser Poynting flux diagnostic

(figure 6.4, upper left) indicates that SBS scatters significant fractions of the laser’s

energy, particularly between 4-6ps and 13-15ps. Due to the convective nature of

the instability, SBS is most effective when scattered light is able to traverse a large

region of plasma. This is clear from the laser Poynting flux diagnostic since the

peaks in SBS-scattered light occur after high laser intensities reach high densities

(n > 0.2ncr). These initiate backwards-propagating SBS seed pulses that grow

convectively as they travel back through the domain.

While diagnosing precisely where SBS occurs is difficult, it is more straight-

forward to measure the overall level of scattered light. This was achieved using the

reflectivity diagnostic, by subtracting the injected laser power from the Poynting

flux (at ω0) at the laser boundary. The remaining signal must therefore be due to

SBS and is shown as a function of time in figure 6.8, along with diagnostics of SRS

scatter and laser transmission. This confirms that the IAW signals discussed above

are indeed responsible for scattering significant fractions of the laser power, peaking

at 70% and 40% during the first two bursts.

An associated effect that occurs throughout the simulation is filamentation.

This may be thought of as ‘SBS forward-scatter’, and can be observed in the right

hand spectrum of figure 2.11. This was evaluated using data from x = 350-400µm
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Figure 6.8: Left: Scattered light time-history. Green and olive lines measure SRS
and SBS back-scatter detected at the laser entrance boundary. SRS forward-scatter
measured at the laser exit boundary is shown by a blue line, however this remains at
∼ 1% for the duration of the simulation. Right: Transmitted light time-history. In
both panels, the vertical scale is normalised to the maximum incident laser power,
and a Gaussian filter has been applied to all signals to remove high-frequency noise
with period shorter than 25fs.

at 14ps. The arc in the spectrum occurring at k ' 0 also satisfies the SBS matching

conditions. In contrast with the SBS backscatter, these features grow in amplitude

with increasing x. Filamentation activity is also evident in the laser Poynting flux

diagnostic. In particular, it is visible as striations in the measured Poynting flux

that are either stationary or move with a velocity much lower than c. The effect of

filamentation is visible in this diagnostic due to the fact that it only records data

along y = 0. If, as is the case for the reflectivity/transmission diagnostic, Poynting

flux were averaged across the transverse extent of the domain these striations would

not be seen.

Unlike SBS backscatter, filamentation is likely to be under-represented in

these simulations. This is because the laser intensity profile used does not contain

a laser speckle pattern. This intensity profile is found in all ICF lasers and provides

the seed for filamentation, though is to some degree mitigated by temporal and

polarisation smoothing. While it might be expected by the unnaturally uniform

intensity profile used in the simulation that no filamentation would occur, some

transverse intensity perturbations are introduced by SRS activity. This may explain

the prominence of the filamentation that is observed.
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6.3.3 Kinetic Inflation of SRS

In addition to SBS, large fractions of laser energy are scattered by SRS. This can

be identified in the SRS scatter Poynting flux diagnostic (lower left, figure 6.4).

Comparing this against the flux at the laser frequency (upper left, figure 6.4), it is

apparent that following the bursts of SBS, pump depletion is also caused by SRS

activity. This can also be seen in the reflectivity diagnostic in figure 6.8.

To identify where SRS is taking place, the electrostatic wave energy diag-

nostic is examined (upper right, figure 6.4). Since scattered light from SRS and

SBS is emitted at oblique angles, this diagnostic also captures EM waves. These

are visible as straight lines with velocity vg ' −c, and propagate away from regions

where SRS growth occurs. By comparing this with the SRS Poynting flux diagnos-

tic, the regions where SRS light is emitted can be identified. This indicates that

the instability is active in bursts, each of which begins at some initial density and

propagates to successively lower densities. During these bursts instability growth is

observed at low densities where Landau damping rates of the SRS EPW are high

and significant growth would not be expected.

SRS is able to grow despite the anticipated large Landau damping rates due

to the kinetic inflation process [Montgomery et al., 2002; Vu et al., 2002]. Here

electron trapping in the electron plasma wave reduces its damping rate. Prior work

has investigated this in great detail for the sparse, homogeneous plasmas relevant to

indirect-drive experiments on the National Ignition Facility [Vu et al., 2002; Brunner

and Valeo, 2004; Yin et al., 2006b,a, 2007; Vu et al., 2007; Yin et al., 2009, 2012,

2013, 2014]. In particular, it has been shown that the trapped particle population

leads to the instability driving beam-acoustic modes (BAM), which have a lower

damping rate and a downshift relative to EPWs [Yin et al., 2006b,a]. Following

amplification, the resulting large amplitude electrostatic waves are unstable to the

trapped particle modulational instability (TPMI) [Kruer et al., 1969]. This causes

saturation of SRS via plasma wave break-up in 1D simulations [Brunner and Valeo,

2004], or EPW bowing and self-focusing in higher dimensions [Yin et al., 2007, 2008].

There has been more limited consideration of the kinetic inflation of SRS

in inhomogeneous plasmas. Here it has been proposed that propagation of each of

the daughter waves may lead to increased SRS gain. Considering the driven EPW,

this would normally become detuned from three-wave resonance due to propagation

into higher density plasma. However if the wave has the correct amplitude the

trapped particle population it creates will allow it to retain its original wavenumber

at higher density as a BAM. This process leads to ‘auto-resonant’ growth over a

region larger than the Rosenbluth gain length [Chapman et al., 2010, 2012]. In
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Figure 6.9: (a) and (b): Ex field energy spectra, calculated along y = 0 between
1.5-2.5ps and 5-6ps for the region x = 300-350µm. Colour scales are shared. White
dashed lines indicate bounds on EPW wave frequencies possible within this region,
while green dashed lines show the Stokes line. Instability occurs at the intersection
of the Stokes line with electrostatic waves. (c) and (d): spatially averaged electron
distribution functions corresponding to each spectrum (blue lines). Range of EPW
phase velocities marked by black dashed lines, distribution function at t = 0 in
green.

addition, propagation of backscattered light may also lead to increased SRS gain.

If this is produced by scattering from BAMs then it will have a relative upshift.

Therefore on propagation to lower density it may become resonant with EPWs and

be further amplified [Yin et al., 2013].

To confirm that SRS here experiences inflationary growth, figure 6.9 shows

data averaged over the region x = 300-350µm at two different times. In panels (a)

and (b) the Ex field’s ω-kx spectrum along y = 0 is shown for t = 1.5-2.5ps and

t = 5-6ps respectively. Dashed white lines indicate the bounding EPW frequencies

for the density range within this region while dashed green lines mark the Stokes

line, on which EM waves beat with the laser and ponderomotively drive electrostatic
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waves. Locations where this crosses electrostatic modes are where SRS growth may

occur. The corresponding spatially averaged instantaneous electron distribution

functions are also shown, with the range of EPW phase velocities possible within

the region indicated by vertical dashed lines. At both times considered, SRS-driven

electrostatic waves have produced a suprathermal electron population. The grow-

ing size of this population, and of the flattened region of the distribution function,

causes increasing deviation of the plasma’s allowed electrostatic modes from those

in a Maxwellian plasma. This is visible in the spectra as increases to the frequency

downshift and wave amplitude, the latter of which is a consequence of the lower

damping rate and hence higher attainable gain. The flattened distribution func-

tions and downshifted SRS-driven electrostatic waves (beam-acoustic modes) are

characteristic features of the kinetic inflation process [Yin et al., 2006b,a].

With reference to figure 6.4, the initial burst of SRS from ∼2-6ps took place

in plasma of density ∼ 0.18-0.22ncr. It was prevented from occurring at higher den-

sity by the TPD-induced pump depletion. At this time there was little SRS activity

at lower density plasma, despite this having had a greater period of time to grow

since the laser propagated through. The burst ends when convective SBS near the

laser boundary causes an additional wave of pump depletion to traverse the domain.

Once the laser is able to propagate back through the domain relatively unattenuated

a second burst of SRS occurs from ∼6-9ps, however this time at significantly lower

density (ne ∼ 0.12-0.15ncr). Furthermore, the location of peak EPW amplitude dur-

ing this second burst moves down the density profile with time. These observations

suggest that SRS at lower density is somehow dependent on prior SRS activity at

higher density.

Two mechanisms are identified that may be responsible for backwards mo-

tion of SRS activity. First, as discussed above, light scattered from beam-acoustic

modes with an upshift relative to EPW-scattered light can act as a seed for SRS

at lower density [Yin et al., 2013]. Generation of this upshifted scattered light is

observed throughout the simulation. In figures 6.10 (a) and (c) the energy spectrum

of the Ex field component along y = 0 is shown for 2-3ps and 4-5ps respectively.

Corresponding Bz energy spectra are shown in figures 6.10 (b) and (d). Assum-

ing a Maxwellian electron distribution function, modes excited by direct back or

forward-scatter SRS would grow along the dashed white and black curves respec-

tively, with side-scatter SRS producing modes at intermediate frequencies. Over the

course of the simulation no backwards-propagating scattered light is emitted with

angle greater than θ ' 60° relative to direct backscatter; this limit is marked by red

dashed lines. The small quantity of forward-propagating scattered light produced
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Figure 6.10: Ex (left column) and Bz (right column) field energy spectra, calculated
along y = 0 between 1.5-2.5ps (upper row) and 4-5ps (lower row). Colour scales are
common on each row. White and black dashed lines indicate expected frequencies of
EM and ES waves from back and forward-scatter SRS. Red dashed line corresponds
to side-scatter at 60° from direct backscatter, the largest angle of scattered light
relative to direct backscatter observed in the simulation. Solid black line in (a) and
(c) marks ωpe. At 1.5-2.5ps, wave growth occurs between red and white dashed lines
as expected. At 4-5ps, SRS electrostatic waves trap electrons leading to downshifted
electrostatic waves and upshifted scattered light. Bright feature at x ' 400µm in
(c) is backwards propagating TPD mode.
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Figure 6.11: (a): Ex energy spectrum along y = 0 between t = 5-6ps and x = 50-
100µm. (b): Electron distribution function spatially averaged over the same region
at 5.5ps. Waves visible in (a) are driven by the beating of the laser and SRS backscat-
tered light. Beat frequencies are not natural frequencies of any electrostatic mode
so are not driven to large amplitude, but are sufficient to produce the suprathermal
electron population seen in (b). Black dashed lines in (b) bound possible phase ve-
locities of SRS EPWs. Red dashed line marks largest phase velocity of waves visible
in (a).

travels collinear with the laser. Therefore growth observed between the red and

black dashed lines in both electrostatic and electromagnetic field components must

be due to back or side-scatter SRS involving beam-acoustic modes. Immediately

after the laser propagates through the domain, SRS scattered light and EPWs are

produced that lie between the white and red lines (figures 6.10 (a) and (b)). Over

time, the excited waves develop an increasing frequency shift due to the growing

population of trapped electrons, leading to modes observed between the red and

black dashed lines (figures 6.10 (c) and (d)). The resulting upshifted SRS light

may be amplified further as it propagates to lower density, and may trigger further

inflationary SRS growth there.

Even in the absence of a frequency upshift, backscattered light produced by

SRS can trigger growth at lower density via a second nonlinear mechanism. As

it propagates away from a perfect phase matching point, backscattered light beats

with the laser and ponderomotively drives electrostatic waves. These have the same

frequency as the initial electrostatic mode that produced the scattered light, but

different wavenumber. If SRS occurs at density ne with pump, EPW, and scattered

EM wavenumbers k0, k, and ks then at density n′e, an ES wave is driven with

wavenumber k′ given by
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k′ = k′0 − k′s ' k
[
1 +

δne
ncr

k2
L

k0ks

]
, (6.1)

where δne ≡ n′e − ne, |δne| � ncr and kL ≡ ω0/c. Since δne < 0 and ks < 0,

the driven ES wave has larger wavenumber (k′ > k). Figure 6.11 (a) shows the

ω − kx spectrum of the Ex field component along y = 0 between x = 50-100µm

and t = 4-5ps. Unlike the spectra in figure 6.9, no SRS-driven EPWs are visible at

the intersection of the Stokes line (green) with the EPW dispersion relation (white

dashed lines). Instead, a spectral streak is visible along the stokes line at k ' 1.3ω0/c

between ω = 0.43-0.48ω0 which corresponds to these ponderomotively driven waves.

Since this frequency range is outside the allowed range for EPWs the waves are not

natural modes of the plasma and so no parametric growth can occur. Nevertheless

they are subject to Landau damping and produce a non-thermal electron population

at their phase velocity v′φ. This may be approximated by

v′φ ≡
ω′ek
k′
' vφ

[
1− δne

ncr

k2
L

k0ks

]
, (6.2)

where vφ ≡ ωek/k. The resulting hot electron population therefore has lower veloc-

ity than the original EPW at ne. Figure 6.11 (b) shows the electron distribution

function spatially averaged over the region considered in 6.11 (a), in which this

suprathermal population is clearly visible. Here dashed black lines mark the range

of EPW phase velocities expected of SRS at this density, while the dashed red line

indicates the maximum phase velocities of the modes in figure 6.11 (a). The accel-

erated electron population’s velocity is therefore in good agreement with the phase

velocities of the driven waves. This hot electron population will propagate up the

density profile and reduce the gradient of the distribution function at v′φ at all higher

densities. As v′φ < vφ this will match the local backscatter SRS EPW phase velocity

at some intermediate density n′′e (n′e < n′′e < ne), lowering its damping rate and

increasing the attainable gain. Subsequent scattered light emission at n′′e may then

cause the process to repeat, and lead to a cascade of SRS growth at successively

lower densities.

Returning to figure 6.4 it is now possible to explain the dynamics observed.

SRS back and side-scatter, along with SBS backscatter, produce intense backwards-

propagating light when the laser reaches relatively high density plasma where the

linear growth rates are large. SBS backscatter undergoes further convective growth

as it returns to the laser boundary, and causes a wave of pump depletion to tra-

verse the domain. Meanwhile the initial SRS undergoes kinetic inflation, producing

increasingly upshifted scattered light. Following the SBS-induced pump depletion,
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this SRS backscattered light causes a cascade of SRS growth at successively lower

densities via the two mechanisms discussed above. At each point, the instability

growth absorbs the majority of laser energy, terminating SRS and SBS growth at

higher density. The ‘pulse’ of backwards propagating SRS activity is ultimately

stopped, which in this simulation occurs simply due to the simulation boundary.

This allows the laser to propagate to high density plasma and trigger another burst.

6.4 Hot Electrons

Effective energy-weighted hot electron distributions for outgoing particles were cal-

culated using the method described in section 5.4.1. These were time-integrated

over the simulation to produce figure 6.12. Compared with the equivalent figure in

the small-scale case (figure 5.10), the form of the distribution is different. The four

lobes produced by Landau damping of the TPD EPWs are less prominent, and a

greater amount of energy is present in hot electrons propagating collinear with the

laser. Both of these differences are suggestive of an increased contribution from SRS

relative to that from TPD.

6.4.1 SRS Hot Electron Production

Identifying the sources of hot electrons is more straightforward in this case than for

the small-scale simulation. This is because for the most part the instabilities take

place in different locations. To determine the contribution of each instability to

hot-electron production, the snapshots of particle data recorded in the bulk domain

were used to calculate an inferred hot electron flux through a surface located at

x = 350µm (∼ 0.18ncr). This data is not directly available from the standard

diagnostics (discussed in section 3.3.1). This location roughly separates the regions

where SRS and TPD are predominantly active, such that the forward-going hot

electrons propagating through it must be due to SRS.

For ease of comparison it was desirable that this inferred data be in the same

form as that output by the boundary hot electron flux diagnostic, which records the

data associated with each particle crossing a surface over the output time interval

(∆tout). To construct such a dataset, the particle data from the bulk domain at

each output time tout,i was taken and advected over the output interval ∆tout. The

data for particles found to cross the diagnostic surface during this period was then

recorded as if it were the output from the particle flux diagnostic at time tout,i+1.

In order to ensure that the output of this calculation is reasonable, the procedure

was performed with a surface placed at x = 550µm, which is close to the laser exit

125



−10 −5 0 5 10

px/pth

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

p
y
/p

th

50 keV

100 keV

150 keV

10−4

10−3

10−2

10−1

100

Figure 6.12: Inferred time-integrated distribution function, calculated from outgo-
ing hot electron data using the method described in section 5.4.1. Time integration
is performed over the entire simulation. Particle counts in each momentum bin have
been weighted according to the energy of the bin. White dashed lines show the mo-
menta expected of TPD-accelerated hot electrons, while the white circles indicate
the particle energy at a given |p|.
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Figure 6.13: Flux of particles travelling in the forwards (+x̂) direction through a
surface at x = 350µm (∼ 0.18ncr), inferred from snapshots of high-energy electrons
in the bulk plasma. These must be produced by SRS as TPD does not occur left of
this surface. Left: Instantaneous flux distribution integrated over different energy
bins to produce time-histories of the power carried within these bins, normalised
to the laser power. Flux from the bulk plasma in the lowest energy bin has been
subtracted, and is negligible in higher-energy bins. Right: Flux distribution, time
integrated over the simulation and weighted according to the energy of each bin. The
y-axis normalisation is the total delivered laser energy. Curves plotted are simulation
data (black), the expected thermal distribution (blue) and a single-temperature fit
to the hot-electron distribution (green).

boundary. Since acceleration by the EM fields is neglected in this calculation, one

might expect there to be a significant error, however the output was found to closely

match that of the boundary flux diagnostic. This is perhaps not surprising as at the

laser exit boundary there tend not to be large electrostatic fields that might modify

the fluxes. This is also true of the surface at x = 350µm. Furthermore, it might

also be expected that while acceleration by the fields occurs on a very fast timescale

of order ωpe, at most times in the simulation the hot electron population will have

quickly reached a steady state and so varies over a longer timescale.

Figure 6.13 shows the analysis of the output of the calculation. The left hand

panel shows the instantaneous flux from particles in different energy ranges, as a

function of time and as a fraction of laser power. This matches the behaviour dis-

cussed in previous sections. In particular, there is notable correlation between the

particle fluxes and the SRS reflectivity diagnostic (figure 6.8, green line). Addition-

ally, at the start of each burst of SRS activity, the flux of electrons in the 25-50keV

bin and 50-100keV bins rise together. Later in the burst, as the location of peak

SRS emission moves to lower density, the 25-50keV flux remains approximately con-

stant while that in the 50-100keV bin drops rapidly. It would be expected that, as
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SRS activity shifts to lower density, the energy of the accelerated electrons would

decrease in accordance with the phase velocity of the EPWs. The behaviour of the

fluxes in these two energy bins is consistent with a hot electron temperature that

reduces over the course of each burst.

The right hand panel of figure 6.13 shows the energy distribution of the

particles within this dataset, time integrated over the duration of the simulation.

The bins are weighted according to their energy, with the time-integrated laser power

(i.e. total delivered laser energy) used to normalise the vertical axis. The simulation

data is plotted in black, with the expected thermal component in blue and a fit to the

suprathermal component shown as the green curve. While the fitted curve cannot

be expected to precisely match the data, and indeed does deviate slightly, the hot

electron output of the SRS activity matches remarkably well. The fit indicates a

temperature of 10keV, which is close to that of the thermal bulk. This reflects the

fact that the instability is active well below the Landau cutoff.

6.4.2 TPD Hot Electron Production

Figure 6.14 shows analysis of the output of the particle flux diagnostic at the laser

exit boundary. This includes fluxes from the regions in which SRS and TPD take

place. Since the SRS hot electron flux has already been measured, it is tempting

to simply subtract this from the total in order to isolate the TPD component.

Careful comparison of the left panel of figures 6.13 & 6.14 (note the differing scales)

shows that this would not give an accurate result. As a specific example of this,

the inferred hot electron flux due to SRS at x = 350µm in the 25-50keV bin is

at approximately 0.15P0 between 13-17.5ps. The flux leaving the domain (at x '
550µm) is 0.1P0 between 15-19ps, leaving a 0.05P0 discrepancy. Some of this may

be explained by the different time-of-flight delay of the electrons within the bin;

25keV and 50keV electrons would take 2.2ps and 1.6ps respectively to traverse the

intermediate 200µm (assuming purely x-directed momenta). However, it is also

possible that this discrepancy is partially caused by further acceleration of some of

these hot-electrons by the TPD EPWs in the high density region, many of which

have phase velocities comparable to electrons of this energy.

Despite these complications it is nevertheless clear that, relative to the hot-

electron flux at x = 350µm, TPD is responsible for producing a sizeable portion

of the hot-electron population that leaves the domain. It is particularly noticeable

from the time-integrated energy distributions that the overall temperature of the hot

electrons is considerably increased at the exit boundary compared to x = 350µm. As

with the small-scale case, the distribution of the electrons leaving the domain (right
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Figure 6.14: Flux of particles through the laser exit boundary. Left: Instantaneous
flux distribution integrated over different energy bins to produce time-histories of
the power carried within these bins, normalised to the laser power. Flux from the
thermal component in the lowest energy bin has been subtracted, and is negligible in
higher-energy bins. Right: Flux distribution, time integrated over the simulation
duration and weighted according to the energy of each bin. The y-axis normalisation
is the total delivered laser energy. Curves plotted are simulation data (black), the
expected thermal distribution (blue) and a three-temperature fit to the suprathermal
distribution (purple), along with the three separate components (green, red and
cyan). Bottom: Same as right panel, but with a single-temperature fit used instead.
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panel, figure 6.14) contains at least two distinct populations. A three-temperature fit

has again been applied (purple, with components shown in green, red, and cyan lines)

and indicates temperatures of 10keV, 30keV, and ∼ 200keV. The lower-temperature

component is most likely that observed at x = 350µm and generated by SRS, as this

was the temperature identified for the SRS hot electrons. The 30keV component is

due to TPD occurring near its Landau cutoff and, when the distribution is integrated

over shorter periods, is found to be correlated with TPD activity. It is again unclear

what is responsible for the hot 200keV component. Given that it is only observed

in the particle fluxes at the laser exit, and not in those at x = 350µm, it cannot be

caused by the backscatter SRS at lower density. It may therefore be a consequence of

TPD or due to SRS forward-scatter, which is observed at low levels in the simulation.

As in the small-scale case, this component accounts for ∼ 1% of laser power.

The effective temperature defined in chapter 5 was again calculated using the

temperatures from the three-component fit. This results in a value of Teff = 32keV,

which is close to the value calculated for the small-scale case (34keV). A hot-electron

distribution with equivalent hot electron energy flux as the original fit is shown in

the lower panel of figure 6.14. This again produces a reasonable characterisation of

the overall hot-electron distribution.

6.5 Summary

The results presented in this chapter are, to our knowledge, the first multi-dimensional

kinetic simulations performed of LPI with parameters relevant to shock-ignition on

the National Ignition Facility. They therefore provide a first indication of the type

of behaviour that may be expected from experiments investigating this scheme. The

analysis presented suggests that both the SRS and TPD instabilities could be im-

portant in this regime, in contrast with the results of the previous section. Despite

this, both simulations produce similar hot-electron fluxes and effective hot-electron

temperatures which are essentially the same (34keV and 32keV for the small and

ignition-scale cases respectively). This is likely a reflection of the fact that TPD

near its Landau cutoff is responsible for a significant fraction of hot electron pro-

duction in both cases. Both instabilities that are active display a wide range of

nonlinear effects which make the resulting behaviour highly complex and deserve

further study.

The role of kinetic effects in the development of SRS in particular warrants

further investigation. It was found here that the instability exhibits bursty be-

haviour. During each burst, SRS activity was seen to shift to lower density, with

130



the two possible mechanisms described that may be responsible for this. Both of

these depend on backwards propagation of scattered light, which suggests that this

behaviour could be sensitive to the beam’s speckle pattern, as has been found in

simulations of indirect-drive plasmas [Yin et al., 2012]. Additionally, one of the

characteristic features of this instability, at least in homogeneous plasmas, is the

existence of a threshold intensity above which inflation occurs [Montgomery et al.,

2002]. If this type of behaviour occurs for inhomogeneous plasmas then it could

prove problematic for shock-ignition schemes, where such a threshold would likely

be exceeded.

Several aspects of the initial conditions neglect effects that may be impor-

tant, and motivate further investigation. The laser polarisation, which in this case

was chosen to be in the simulation plane, results in a lower growth rate for sidescat-

ter than the out of plane case. Since sidescatter has been found to be important in

experiments at lower intensity [Michel et al., 2019], this may also have a prominent

role at shock-ignition intensities. This could potentially reduce the intensity of light

reaching ncr/4 and therefore the activity of TPD. Additionally, the ions were ini-

tialised without a bulk velocity (and therefore no velocity gradient), which resulted

in high levels of SBS. Modelling SBS in a more realistic manner should therefore

be a priority for future simulations. It would also be of interest to examine CBET,

although the geometry required for this would necessitate a significant extension of

the domain in (at least) the transverse direction. This would add significantly to

the computational expense.
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Chapter 7

Conclusion

The aim of this project was to investigate the behaviour of laser-plasma instabilities

(LPIs) in the context of shock ignition, and in particular how this changes at different

target scales. Two large-scale PIC simulations are presented in this thesis. The first

of these used plasma parameters representative of the small target scales that can

be accessed on the OMEGA laser, while the second used parameters expected of

ignition-relevant designs that require a megajoule-class laser such as the National

Ignition Facility (NIF).

The ‘small-scale’ simulation was discussed in chapter 5 and had initial condi-

tions identical to the ‘high-temperature’ case of [Yan et al., 2014], which are intended

to model the well-diagnosed experiments of [Theobald et al., 2012]. The the anal-

ysis presented in [Yan et al., 2014] was focused on long-term dynamics and did

not explore details of LPI behaviour in great depth. Revisiting this case therefore

provided a valuable opportunity for benchmarking our simulation code while im-

proving on the understanding in this regime. The data presented in chapter 5 is

largely in agreement with that of [Yan et al., 2014], which confirms that our sim-

ulation model is accurate. One aspect in which the results differ however is in the

hot-electron fraction, which was found to be 45% larger in our simulation, despite

having a very similar time-dependence and energy distribution. This discrepancy is

likely caused by the omission of a collision module in our case, which has previously

been found to suppress ‘staged-acceleration’ of electrons by multiple electron-plasma

waves (EPWs) [Yan et al., 2012].

A comprehensive study of the LPI activity in the small-scale simulation was

performed. This identified nonlinear effects that had not previously been reported.

The simulation was characterised by high levels of LPI absorption, with only 23% of

the laser’s energy transmitted through the domain. The two-plasmon-decay (TPD)
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was found to be instability primarily responsible for this, while scattering instabili-

ties (stimulated Raman scattering & stimulated Brillouin scattering) were together

responsible for scattering only ∼ 2% of laser energy. Absorption due to TPD oc-

curred primarily in the low-density region near the TPD Landau damping cutoff.

TPD was also active closer to ncr/4, where it was found to result in cavitating

Langmuir turbulence. In the low density region near the TPD Landau cutoff the

threshold amplitude for TPD EPWs to undergo cavitation is much larger. Dynamics

there were instead found to be strongly influenced by coherent ion-acoustic waves

(IAWs). The spectrum of IAWs was found to be composed of two features, having

wavevectors either transverse to the laser wavevector (‘transverse density perturba-

tions’) or oblique to it (‘oblique density perturbations’). The transverse waves have

previously been associated with TPD saturation [Langdon et al., 1979; Yan et al.,

2010], however the oblique waves have not been discussed in the literature in any

detail. This latter type was identified as causing asymmetric EPW activity in the

transverse direction, which should otherwise remain symmetric.

The effect of these coherent IAWs on TPD growth was investigated in chapter

4 via an analysis of the linear growth rates of the pairs of TPD waves that they

couple. It was found that the coupling of pairs of TPD EPWs via IAWs leads each

EPW pair to have a reduced growth rate. Above a threshold density perturbation

amplitude no growth can occur. This type of analysis has previously been performed

by Yan explain behaviour in simulations investigating TPD at lower intensities [Yan

et al., 2010]. However, only transverse density perturbations were considered and the

theory itself was not published. The calculations in chapter 4 are in agreement with

the numerical values quoted in that prior work, and a simple expression is given to

treat that case. However, this theory also permits calculation of the growth rate and

therefore threshold density perturbation amplitude for an arbitrary pairing of TPD

EPWs. These growth rates were explored for different special cases, including the

oblique density perturbations discussed above. This indicated that, while transverse

density perturbations become less effective in reducing TPD growth at lower density,

the threshold density perturbation amplitude does not vary significantly for the

oblique density perturbations.

The second simulation presented was analysed in chapter 6. This had pa-

rameters representative of recent direct-drive experiments on the NIF [Rosenberg

et al., 2018]. At these larger scales it was found that scattering instabilities such

as SRS and SBS become more prominent, and are able to disrupt TPD via pump-

depletion. Despite this, TPD remained active in this case, and exhibited similar

behaviour as was observed in the small-scale simulation. This included cavitation
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in the region near ncr/4 and asymmetric growth in the low-density plasma near the

Landau cutoff. It was found that the variation in laser intensity reaching the TPD

region caused it to occur in bursts, in which its activity would expand to include

the Landau cutoff. Periods of low laser intensity resulted in the instability retreat-

ing from this region since convective modes near the Landau cutoff require a large

intensity to be sustained.

SRS activity in the ignition-scale simulation was found to involve kinetic in-

flation [Montgomery et al., 2002], allowing it to occur at densities well below the

Landau cutoff. This has previously been found important for the largely homoge-

neous plasmas encountered in indirect-drive experiments, but has not been observed

in direct-drive experiments. Its observation here suggests that it may be an issue

for future shock-ignition designs using megajoule-scale lasers. Examination of the

details of this inflationary SRS activity found that it occured in bursts. These were

initiated near the Landau cutoff and subsequently spread to progressively lower den-

sity before terminating at the laser entrance boundary. Backwards propagation of

inflationary SRS activity has previously been described [Yin et al., 2012], however

this occurred in homogeneous plasmas where the backwards-propagating scattered

light remains close to the SRS resonant frequency as it propagates. In an inho-

mogeneous plasma the locally resonant frequency varies with density, so backwards

propagating light may only be amplified by a fixed amplification factor over a lim-

ited range of densities [Rosenbluth, 1972]. Two possible mechanisms were invoked

here to explain the backwards-propagating SRS activity. In the first mechanism,

originally proposed by Yin [Yin et al., 2013], EPWs are downshifted due to electron

trapping and produce upshifted backscattered light that can become resonant with

plasma at a lower density. In the second mechanism, proposed by us, scattered

light drives off-resonant electrostatic modes along its path. These produce small

hot electron populations that can reduce the Landau damping rate experienced by

SRS EPWs.

In both of the simulations presented hot electron production was dominated

by instabilities occurring near their respective Landau cutoffs. Due to the phase

velocity of the electron plasma waves at these densities this produced a hot-electron

distribution composed mostly of low-energy hot electrons, though higher-energy

populations from denser plasma were also present. This distribution could be char-

acterised overall by an effective temperature in both cases; 34keV for the small-scale

simulation and 32keV at NIF-scale. Similar hot electron temperatures have been

measured in sub-scale experiments on the OMEGA laser [Theobald et al., 2012].

These relatively low temperature hot-electron distributions may be of benefit to
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shock-ignition because the portion of the distribution with energy below ∼ 100keV

can be stopped in the dense shell behind the ignitor shock, which has been shown

to strengthen it [Nora et al., 2015; Theobald et al., 2015]. However, despite the

relatively low hot-electron temperature, there remained a significant amount of en-

ergy carried by electrons with energy greater than 100keV (∼ 10% of laser energy).

Electrons with such energies can potentially pre-heat the target ahead of the ignitor

shock, which would reduce its effectiveness.

Several routes are available for further investigation. While the initial con-

ditions used here were chosen so as to be representative of as large a class of experi-

ments as possible, we primarily examined the effect of target scale on LPI behaviour.

It would therefore be of interest to determine whether the behaviour identified here

is generic, or whether it is sensitive to the choice of other aspects of the initial

conditions used. Experiments on the OMEGA laser have observed that SRS reflec-

tivity and hot-electron fractions are affected by ablator material [Theobald et al.,

2017]. In our simulations we found that the saturated state of the TPD instability

is strongly influenced by IAWs, whose damping rate is sensitive to ablator mate-

rial and the electron-ion temperature ratio. This suggests that an understanding

of the effect of varying the IAW damping rate is an important avenue for further

research. Of course, this is by no means the only parameter that can be varied; a

high-dimensional parameter space remains to be explored.

Future studies could also improve on the realism of the modelling, though

many of these improvements are unfortunately computationally expensive. From

the small-scale case, which reproduced the high-temperature case from [Yan et al.,

2014], it is clear that inclusion of collisional physics is important to hot-electron

production – at least in terms of the hot-electron fraction. For realistic modelling

of SBS it would be necessary to include bulk ion motion with a velocity gradient.

Our modelling of the laser was purposefully simplistic so as to be generic, however

one could model a laser speckle pattern, include laser temporal smoothing, and the

effect of oblique laser incidence and beam overlap. Finally, it would be desireable

to perform three-dimensional simulations, though this would require considerably

greater computing resources than were available for this study.

In a different vein, an important aspect of this work is what impact the

laser-plasma instabilities would have on a shock-ignition design. To determine this,

one would need to perform radiation-hydrodynamic simulations of a shock-ignition

implosion where a model was included that captures the instability behaviour iden-

tified here. This could then be used to ascertain what level of hot-electron induced

target preheat may be tolerated, and how this varies with the strength of the ignitor
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shock. A further issue is the high level of inflationary SRS backscatter identified

in the NIF-scale case, and whether this is of net benefit. While the backscattered

light itself represents a loss of energy, the particularly low-energy hot-electrons pro-

duced are likely to strengthen the ignitor shock. It is also possible that absorption

by inflationary SRS backscatter in the low density plasma avoids TPD occurring

near the quarter-critical density surface, that has the potential to produce hotter

electrons that may contribute to target preheat.
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Appendix A

The Coupled Mode Equations

The derivation presented here was performed in collaboration with B. C. G. Reman.

Here the coupled mode equations (equations 2.48-2.50) are solved for the

specific case of a homogeneous medium and assuming no damping or depletion of

the pump wave. Discussion of the result can be found in section 2.5.2.

A.1 Derivation of The General Solution

We begin with the coupled mode equations neglecting damping and inhomogeneity:

[∂t + V1∂x] a1(x, t) = γ0a
∗
2(x, t)

[∂t + V2∂x] a∗2(x, t) = γ0a1(x, t)

First a∗2 is eliminated to give an equation reminiscent of the wave equation

[∂t + V1∂x] [∂t + V2∂x] a1(x, t) = γ2
0a1(x, t).

Applying the method of characteristics, or simply by noting that solutions to the

coupled mode equations when γ0 = 0 are a1(x, t) = F (x − V1t) and a∗2(x, t) =

G(x− V2t), the following change of variables is used

u = x− V1t,

v = x− V2t.

Writing partial derivatives in terms of the new variables reduces the equation to
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∂u,va1(u, v) = − γ2
0

4V 2
D

a1(u, v), (A.1)

where VD ≡ 1
2(V2 − V1). Assuming a separable solution of the form a1(u, v) ≡

A(u)B(v) we find

∂uA

A(u)

∂vB

B(v)
= −γ̄2, (A.2)

where γ̄ = γ0/2VD and we ensure that V2 > V1. This means that without loss of

generality

∂uA

A(u)
= iλγ̄, (A.3)

∂vB

B(v)
=
i

λ
γ̄, (A.4)

where λ is an arbitrary constant. These ordinary differential equations may be

solved to give

A(u) = C1e
iλγ̄u, (A.5)

B(v) = C2e
i
λ
γ̄u, (A.6)

with C1 and C2 constants of integration. This gives us the solution of equation A.1:

a1(u, v) = Ceiγ̄[λu+ 1
λ
v]. (A.7)

Returning to the original variables we now have

a1(x, t) = Ceiγ̄[(λ+ 1
λ

)x−(V1λ+V2
1
λ

)t]. (A.8)

To find particular solutions to the PDE, linear combinations of this function must

be used to construct the initial conditions at t = 0, i.e. a1(x, 0) and ∂ta1(x, 0). In

general this needs to be done via a weighted integral over λ with C = C(λ). This

may be written in more conventional form by making the substitution k = γ̄(λ+1/λ)

and noting that
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γ̄λ =
k

2
±
√
k2

4
− 1, (A.9)

γ̄

λ
=
k

2
∓
√
k2

4
− 1. (A.10)

With this substitution the following two integrals are obtained

a1±(x, t) =

∫ ∞
−∞

eikxC±(k)e−ikVT te±t
√
γ20−k2V 2

Ddk, (A.11)

where VT ≡ 1
2(V1 + V2). Combining these we then arrive at

a1(x, t) =

∫ ∞
−∞

eikxe−ikVT t
[
C(k) cosh

(
t
√
γ2

0 − k2V 2
D

)
+ S(k) sinh

(
t
√
γ2

0 − k2V 2
D

)]
dk,

(A.12)

which evidently is an inverse Fourier transform. Specifying initial conditions as

a1(x, 0) = f(x) and ∂ta1(x, 0) = g(x) we then use their spatial Fourier transforms

f̂(k) and ĝ(k) to determine the weighting functions C(k) and S(k) as

C(k) = f̂(k), (A.13)

S(k) =
ikVT f̂(k) + ĝ(k)√

γ2
0 − k2V 2

D

. (A.14)

Given equations A.12–A.14, we can now produce particular solutions to the

coupled mode equations however this still requires an integration to be performed.

One simplification that may be made is to apply the convolution theorem

a1(x, t) = δ(x− VT t) ∗
∫ ∞
−∞

eikx
[
C(k) cosh

(
t
√
γ2

0 − k2V 2
D

)
+ S(k) sinh

(
t
√
γ2

0 − k2V 2
D

)]
dk,

(A.15)

which suggests that the solution is composed of a pulse travelling at the mean group

velocity of the two waves. Furthermore, the hyperbolic functions are both even in

k so, depending on the parity of the functions f̂(k) and ĝ(k) further deductions can
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be made as to the parity of the result of the remaining integral.

A.2 Solution for Delta Function Initial Conditions

To make further progress an initial condition is specified of f(x) = A1δ(x) and

g(x) = −A1V1δ(x) which represents an initial perturbation of the wave mode that

has group velocity V1. This gives C(k) = A1 and S(k) = ikA1VD/
√
γ2

0 − k2V 2
D.

The solution now becomes

a1(x, t) = A1δ(x− VT t) ∗
∫ ∞
−∞

eikx
[
cosh

(
t
√
γ2

0 − k2V 2
D

)

+
ikVD√

γ2
0 − k2V 2

D

sinh

(
t
√
γ2

0 − k2V 2
D

) dk,
(A.16)

We now focus on the integral and write

Ic(x, t) =

∫ ∞
−∞

eikx cosh

(
t
√
γ2

0 − k2V 2
D

)
dk, (A.17)

Is(x, t) =

∫ ∞
−∞

eikx
ikVD√

γ2
0 − k2V 2

D

sinh

(
t
√
γ2

0 − k2V 2
D

)
dk. (A.18)

Normalising lengths to VD/γ0 and times to γ−1
0 these become

ηc(X,T ) =

∫ ∞
−∞

eiKX cosh
(
T
√

1−K2
)
dK, (A.19)

ηs(X,T ) =

∫ ∞
−∞

eiKX
iK√

1−K2
sinh

(
T
√

1−K2
)
dK, (A.20)

where X, K and T are the new dimensionless variables and ηj(X,T ) ≡ IjVd/γ0 new

functions. At this point we note that the function that is being inverse-transformed

in ηs is proportional to the K−derivative of that in ηc. Applying the Fourier trans-

form derivative identity this means that ηs = (X/T )ηc. Turning to ηc we split this

into three separate integrals
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ηc(X,T ) =

∫ −1

−∞
eiKX cos

(
T
√
K2 − 1

)
dK

+

∫ 1

−1
eiKX cosh

(
T
√

1−K2
)
dK

+

∫ ∞
1

eiKX cos
(
T
√
K2 − 1

)
dK.

(A.21)

The first and last of these may be combined by using the substitution K ′ = −K in

the first

ηc(X,T ) =

∫ 1

−1
eiKX cosh

(
T
√

1−K2
)
dK

+2

∫ ∞
1

cos(KX) cos
(
T
√
K2 − 1

)
dK.

(A.22)

Then using the substitutions K = cos θ and K = cosh θ for the first and second

integral we arrive at

ηc(X,T ) =

∫ π

0
eiX cos θ cosh (T sin θ) sin θdθ

+2

∫ ∞
0

cos(X cosh θ) cosh (T sinh θ) sinh θdθ.

(A.23)

The above integrals can be written in terms of Hankel functions. To show

this we start with the following formulae [NIS, Eq. 10.9.13-14]:

(
z + ζ

z − ζ

) 1
2
ν

Jν

(
(z2 − ζ2)

1
2

)
=

1

π

∫ π

0
eζ cos θ cos (z sin θ − νθ) dθ

− sin (νπ)

π

∫ ∞
0

e−ζ cosh θ−z sinh θ−νθdθ,

(A.24)

(
z + ζ

z − ζ

) 1
2
ν

Yν

(
(z2 − ζ2)

1
2

)
=

1

π

∫ π

0
eζ cos θ sin (z sin θ − νθ) dθ

− 1

π

∫ ∞
0

(
eνθ+ζ cosh θ + e−νθ−ζ cosh θ cos (νπ)

)
e−z sinh θdθ.

(A.25)
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Note that for convergence of the integrals with infinite limits <(z± ζ) > 0. Defining

the left or right hand sides of the equations as XJ,ν(ζ, z) and XY,ν(ζ, z), we specialise

to the case of ν = 2µ+ 1;µ ∈ Z and find the quantity Zν(ζ, z) = π(XJ,ν + iXY,ν):

Zν =

∫ π

0
eζ cos θeiz sin θe−iνθdθ

−i
∫ ∞

0
e−z sinh θ

(
eνθ+ζ cosh θ − e−νθ−ζ cosh θ

)
dθ.

(A.26)

Then to construct e.g. the sin θ component of the first integral in eq. A.23 take

(Z−1 − Z1)/2i

Z−1 − Z1

2i
=

∫ π

0
eζ cos θeiz sin θ sin θdθ

+2

∫ ∞
0

cosh(ζ cosh θ)e−z sinh θ sinh θdθ.

(A.27)

Now, choosing ζ = iX, z = ±iT + δ, δ ∈ R and δ > 0, we find that

ηc(X,T ) =
1

4i
lim
δ→0

[(Z−1(iX,−iT + δ)− Z1(iX,−iT + δ))

+ (Z−1(iX, iT + δ)− Z1(iX, iT + δ))] .

(A.28)

The parameter δ in the limit is necessary to ensure that the correct branch of the

Zν(ζ, z) function is taken and that the integral is convergent. We now write this

in terms of Hankel functions by using the LHS of equations A.24 & A.25. Using

the definition of the Hankel function of the first kind H
(1)
ν (ξ) ≡ Jν(ξ) + iYν(ξ), the

function Zν(ζ, z) becomes

Zν(ζ, z) = π

(
z + ζ

z − ζ

) 1
2
ν

H(1)
ν

(
(z2 − ζ2)

1
2

)
. (A.29)

So

Zν(iX,±iT + δ) = π

(
T ± (X − iδ)
T ∓ (X + iδ)

) 1
2
ν

H(1)
ν

(
(X2 − T 2 + δ2 ± 2iδT )

1
2

)
. (A.30)

Then taking the limit of δ → 0+
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lim
δ→0

Zν(iX,±iT + δ) =

iπ sgn(νX)
(
−T±X
T∓X

) 1
2
ν
H

(1)
ν

(
(X2 − T 2)

1
2

)
, |X| > |T |

π
(
T±X
T∓X

) 1
2
ν
H

(1)
ν

(
±i sgn(T )(T 2 −X2)

1
2

)
, |X| < |T |.

(A.31)

Beginning with the case where |X| > |T | and for brevity writing Q± ≡ −T±X
T∓X and

D ≡
√
X2 − T 2 (note that Q± and D are real and positive here), we substitute the

expression into A.28:

ηc(X,T ) = −sgn(X)
π

4

[(
Q
− 1

2
− H

(1)
−1 (D) +Q

1
2
−H

(1)
1 (D)

)
+

(
Q
− 1

2
+ H

(1)
−1 (D) +Q

1
2
+H

(1)
1 (D)

)]
.

Noting that Q
− 1

2
± = Q

1
2
∓ this can then be factorised

ηc(X,T ) = −sgn(X)
π

4

(
Q

1
2
+ +Q

1
2
−

)(
H

(1)
−1 (D) +H

(1)
1 (D)

)
,

and applying the identity H
(1)
ν−1(z) + H

(1)
ν+1(z) = (2ν/z)H

(1)
ν (z) we find, somewhat

anticlimactically, that

ηc(X,T ) = 0, |X| > |T |.

This result is expected from a physical standpoint as if the function were non-zero

in the region where |X| > |T | it would violate causality.

For the case where |X| < |T |, taking P± ≡ −Q± = T±X
T∓X , ∆ ≡ sgn(T )

√
T 2 −X2

and substituting the corresponding expression from A.31 into A.28

ηc(X,T ) =
π

4i

[(
P
− 1

2
− H

(1)
−1 (−i∆)− P

1
2
−H

(1)
1 (−i∆)

)
+

(
P
− 1

2
+ H

(1)
−1 (i∆)− P

1
2

+H
(1)
1 (i∆)

)]
.

This can then be simplified using P
− 1

2
± = P

1
2
∓ and the identity H

(1)
−1 (z) = −H(1)

1 (z)

to give
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ηc(X,T ) = iπ

(
P

1
2

+ + P
1
2
−

)(
H

(1)
1 (−i∆) +H

(1)
1 (i∆)

)
, |X| < |T |. (A.32)

Finally returning to our initial expression (equation A.16) and performing the con-

volution we may write the end result in terms of this function as

a1(x, t) =

0, |X ′| > |T |.
A1

γ0
VD

(
1 + X′

T

)
ηc(X

′, T ), |X ′| < |T |.
(A.33)

where for convenience the various quantities are defined:

X ′(x, t) ≡ γ0

VD
(x− VTt), (A.34)

T (t) ≡γ0t, (A.35)

P±(X,T ) ≡T ±X
T ∓X , (A.36)

∆(X,T ) ≡
√
T 2 −X2. (A.37)
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L. Divol, T. Döppner, D. E. Hinkel, M. Hohenberger, L. F. Berzak Hopkins,

C. Jarrott, A. Kritcher, S. Le Pape, S. Maclaren, L. Masse, A. Pak, J. Ralph,

C. Thomas, P. Volegov, and A. Zylstra. Approaching a burning plasma on the

NIF. Physics of Plasmas, 26(5):052704, 2019. ISSN 1070-664X. doi: 10.1063/1.

5087256. URL http://aip.scitation.org/doi/10.1063/1.5087256.

E. Atlee Jackson. Parametric effects of radiation on a plasma. Physical Review, 153

(1):235–244, 1967. ISSN 0031899X. doi: 10.1103/PhysRev.153.235.

Eric Jones, Travis Oliphant, and Pearu Peterson. SciPy: Open Source Scientific

Tools for Python, 2001. URL http://www.scipy.org/.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and

C. Yamanaka. Random Phasing of High-Power Lasers for Uniform Target Ac-

celeration and Plasma-Instability Suppression. Physical Review Letters, 53(11):

1057–1060, sep 1984. ISSN 0031-9007. doi: 10.1103/PhysRevLett.53.1057. URL

https://link.aps.org/doi/10.1103/PhysRevLett.53.1057.

O Klimo, J Psikal, V T Tikhonchuk, and S Weber. Two-dimensional sim-

ulations of laser–plasma interaction and hot electron generation in the con-

text of shock-ignition research. Plasma Physics and Controlled Fusion,

56(5):055010, may 2014. ISSN 0741-3335. doi: 10.1088/0741-3335/56/

5/055010. URL http://stacks.iop.org/0741-3335/56/i=5/a=055010?key=

crossref.aa51f60b6b1ab2e137f3972039a116da.

A. L. Kritcher, D. E. Hinkel, D. A. Callahan, O. A. Hurricane, D. Clark, D. T.

Casey, E. L. Dewald, T. R. Dittrich, T. Döppner, M. A. Barrios Garcia, S. Haan,
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