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Abstract

In this thesis we prove the birational non-rigidity of Picard rank 1 Fano 3-folds in
codimension 4 having Fano index 1. This is done by explicitly constructing Sarkisov
links for these varieties to other Mori fibre spaces.

We also consider those Fano 3-folds in codimension 4 and Fano index 1 having
Picard rank 2, and we identify a Mori fibre space in its birational equivalence class. In a
final short chapter, we begin this program for Fano 3-folds in codimension 4 having Fano

index 2 by demonstrating a construction of them as quotients of index 1 Fano 3-folds.
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Introduction

General overview

The construction of sequences of birational maps linking algebraic varieties to one another
has been an active research topic since the development of Mori Theory and the Minimal
Model Program, aimed at the birational classification of algebraic varieties, and indeed
long before. This approach goes under the name of Sarkisov Program. In this context,
and for certain algebraic varieties having Picard rank equal to 1, the notions of birational
rigidity and pliability come into play. The pliability measures the number of different
Mori fibre spaces that are birational to a given variety X . If this number is 1, the variety
is said to be birationally rigid.

Different aspects of such birational transformations have been studied for several
kinds of algebraic varieties. For instance, in the work [CPR00] by Corti, Pukhlikov, and
Reid the authors examine the 95 Fano 3-fold weighted hypersurfaces of [Rei80a] and
[IE00], proving their birational rigidity.

Our work, in contrast, focuses on proving the birational non-rigidity of certain
Fano 3-folds in higher codimension.

The spirit of our approach follows the seminal work of Corti and Mella for
quartic Fano 3-folds, in which the authors show that quasi-smooth quartic Fano 3-folds
having only one singularity of a certain type are not birationally rigid: in fact, their
pliability is exactly 2. The result is achieved by studying certain sequences of birational
maps called Sarkisov links.

In [BZ10], Brown and Zucconi study Sarkisov links for codimension 3 Fano 3-folds
in index 1, proving the birational non-rigidity of the latter, provided the presence of a
Type I centre. We obtain a similar result in our case. We largely use the techniques
and the language developed in [BZ10|, especially regarding the variation of GIT on toric
varieties. The scenario in codimension 3 and index 1 is completed by Ahmadinezhad and
Okada [AO18|, where they prove the birational non-rigidity of the five remaining Hilbert
series in codimension 3 and index 1 that do not have any Type I centre.

In this thesis we will only focus on codimension 4 Fano 3-folds having at least one

Type I centre.



Fano 3-folds of Tom type

In the first part of this thesis we combine the strategies contained in and
together with the unprojection techniques developed in to tackle the birational
geometry of the codimension 4 Fano 3-folds in index 1 having at least one Type I centre
that are listed in the Graded Ring Database [BK*15|. In particular we mainly focus
on those deformation families arising from Type I unprojections of codimension 3 Fano
3-folds Z, and especially on those in the so-called Tom format. We call the outcomes of
these unprojections Fano 3-folds of Tom type.

These varieties of Tom type constitute about a half of the known deformation
families of codimension 4 Fano 3-folds; the other half is of Jerry type (see below).

Our main results proves that these varieties are not birationally rigid, and we give
an explicit description of the Sarkisov links starting from them in terms of their ambient
space and their basket of singularities. We summarise the results in Table Along
the way we encounter some interesting phenomena, highlighted explicitly in Chapter [3]

The construction we describe looks like this. In we pick a codimension 4
Fano 3-fold X C P"(a, b, c,dy,da,ds, ds, ) with coordinates x1, z2, £3, Y1, Y2, ¥3, ¥4, S, and
we use the data in the Big Table of to construct X explicitly via unprojection.
Together with X we choose a Type I centre p € X: the Kawamata blow-up of this point
starts the link. In the notation above, we assume p = P;. We use toric geometry to

perform the blow-up, and we prove that

Proposition. In the notation above, the Kawamata blow-up Y7 of X at the Tom centre

P, € X is contained in a rank 2 toric variety 1 having weights

S| Ty T2 T3 Y1 Y2 Ys Ya
b C dl dg d3 d4

t
Fi = 0 r| a
110 0 O -1 -1 -1 -1

(see Section or Appendix of [BCZ04] for this notation).

In fact many varieties would fulfill the role of F1, but this variety in particular unfolds
the birational geometry of X, as we explain below.

The weights of the rank 2 toric variety F; describes a ray-chamber structure of
its Mori cone. The mobile cone of F; describes the behaviour of the Sarkisov link. The
mobile cone of F; and the mobile cone of Y7 do not always coincide (by restriction of
divisors to Y7). For instance, the mobile cone of Y7 can happen to be poorer (in some
index 1 cases): when this occurs, the birational transformation associated to one of the
rays of the mobile cone of [F; is an isomorphism when restricted to the variety Y;. Note
that the rank 2 toric variety Iy is built in such a way that it contains Y7 and it reflects,

at least partially, the birational geometry of Y;. This is explained in Chapter
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The Sarkisov links for codimension 4 index 1 Fano 3-folds of Tom type proceed
with a sequence of flops and flips. The endpoints of these sequences can be either divi-
sorial contractions to a point or a line (a smooth rational curve) in another Fano 3-fold
X' (of lower codimension), or del Pezzo fibrations, or conic bundles (see Tables and
6.2).

For instance, consider X the Tom;i-type Fano 3-fold associated to the Hilbert
series #11005, and p € X the Type I centre of type %(17 1,2). Its Sarkisov link centred
at pis

16 flops (5,1,1,—1,-3;2) isomorphism
) R T 2vs Y
1 2 3
unproj
X<l o Z X'

where 41 is constituted by 16 disjoint flopping P!, and 1)y is a hypersurface flip having
weights (5,1,1, —1,—3;2). After that, 13 is a generalised flip of the toric ambient space
whose exceptional locus do not intersect Y3; therefore, the restriction of i3 to Y3 is an
isomorphism. Lastly, ® is a divisorial contraction to a point on X’ = X4 C P5(1%,2,3)
(see Section for notation, and Section for link of this type in the proof of the
Main Theorem .

The main result is therefore

Theorem. Picard rank 1 Fano 3-folds of Tom type having index 1, codimension 4, and

at least one Type I centre are not birationally rigid.

This is Part Theorem The rest of the theorem contains the details of
the geometry of the links including their flipping types and extremal contractions.
As a corollary of the above theorem, we construct a family with Hilbert series

#5305 and general member having Picard rank 1.

On the Picard rank of Fano 3-folds of Tom type

An important observation is that whenever the Sarkisov link from X of Tom type ter-
minates with another Fano 3-fold X', the latter has always lower codimension than X
itself. Hence, since X and X’ are birational, they ought to have the same Picard rank.
While, except for some computational results ([BE20]), very little is known re-
garding the Picard rank of codimension 4 Fano 3-folds, much more can be said for Fano
3-folds in lower codimension. Fano 3-folds in codimension up to 3 have Picard rank 1
whenever they are quasi-smooth. Therefore, if a Sarkisov link’s endpoint is quasi-smooth,
we can deduce straight away that the Picard rank of X must be 1. If there are no hyper-

surface flips in a link, and if the divisorial contraction ®' contracts exactly a weighted
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P2 (and not a surface in a weighted P3) to a point (or a line) in X', then X' is quasi-
smooth. This situation occurs in 18 instances, in which we can therefore state that the
corresponding Tom-type Fano 3-folds have Picard rank 1.

As it is clear from Table the cases in which X’ happens to be quasi-smooth
are a very small minority. All the other endpoints X’ have some extra (compound)
singularities inherited either from the hypersurface flip(s) occurring in the link, or from
the divisorial contraction ®'. The treatment of this situation in which X’ is not quasi-
smooth is more delicate and it is not part of this thesis. However, we believe that by
applying an appropriate Lefschetz-type theorem to X’ we should be able to conclude
that X', and therefore X, has Picard rank 1 even in the singular case.

Such result would ideally conclude the in-depth study of the geometry of (Tom-
type) Fano 3-folds started in [BKR12a].

Fano 3-folds of Tom type and Picard rank 2

One of the hypotheses of the above theorem is that X must have Picard rank 1. This is
surely needed to make sense of the notion of birational rigidity. Recall that, associated
to each Hilbert series in [BKR12b|, the deformation families corresponding to Tom-type
formats might be either one or two. If there are two, we refer as second Tom format to
the second one. All the second Tom formats of the varieties listed in the Table [BKR12D]
fall into the description of [BKQIS|, that is, they are in P? x P? format. Therefore, their
Picard rank is 2. In this case, even though it is not possible to talk about Sarkisov links
anymore, a construction shaped on the one of Sarkisov links still leads to interesting
conclusions, going beyond quasi-smooth Fano 3-folds.

Firstly, the birational links for these Fano varieties of second-Tom type present
two divisorial contractions, simultaneous or consecutive, or a single divisorial contraction
followed by a del Pezzo fibration, confirming that the Picard rank of X is 2. Note that

they never give rise to conic bundles.

Theorem. Every Fano 3-fold in codimension 4 in second-Tom format presents a bira-

tional link terminating with either
e two divisorial contractions (when dy > do > d3 > d4 and when dy > dy = ds > dy);
e a divisorial contraction followed by a del Pezzo fibration (when dy = dy > ds = dy).
In particular, they all terminate with a Mori fibre space.

Moreover, examining in detail the second-Tom format of the Hilbert series #10985

we discovered that its endpoint is a hypersurface X' = X5 C ]P’4(14, 2). This does not
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fall into the description of [CPR00] because it has one compound singularity, and is
quasi-smooth elsewhere.

Extracting from the other Type I centre of X leads to a birational link ending
with another hypersurface X” = X5 C P4(1%,2). However, X’ and X” are not isomorphic
because they have non-isomorphic compound singularities. On the other hand, they have

Picard rank 1, so they are Mori fibre spaces. Therefore,

Proposition. The pliability of X’ = X5 C P*(1%,2) with exactly one compound singu-
larity is P(X') > 2.

Fano 3-folds of Jerry type

For the majority of this thesis we discuss Fano 3-folds of Tom type. However, for each
Fano 3-fold of Tom type, there is at least one of Jerry type, that is, obtained by a Type I
unprojection of a divisor D C Z where Z is a codimension 3 Fano 3-fold in Jerry format.

Using an approach similar to the one above, it is possible to study these other
varieties. Even though it is more articulated than for Tom, and although we do not
completely resolve all the links from them, we do partially explain the behaviour of the
Fano 3-folds of Jerry type.

The construction of the blow-up of X at p when X is of Jerry type depends on

whether the following condition is satisfied or not.

Condition. Let P be the degree of the pivot entry of the Jerry format of Z. Consider

the following statement:

One of the coordinates y; of the weighted projective space wP7 is such that
deg(y;) = P-

Thus, if X is of Jerry type, we prove the following proposition.

Proposition. Let X be a codimension 4 index 1 Fano 3-fold of Jerry type. If the above
condition holds, then, the Kawamata blow-up Y7 of X at p is contained in a rank 2 toric

variety of the form

S|x1 X2 X3 Y1 Y2 Y3 Y4
r a b C dl d2 d3 d4
110 0o 0 -1 -1 -1 =2

On the other hand, if the above condition does not hold, F; has the same weights as in

the Tom case.



Clearly the aspect of the variety [y reflects the different nature of the birational
geometry of Jerry-type Fano 3-folds. A case-by-case analysis shows that the phenomena
occurring for Jerry-type Fano 3-folds range from a Tom-like behaviour to a much more
unpredictable sequence of birational maps.

We included some examples in Chapter [3] and in Section [B.3]

Index 2 Fano 3-folds

While in index 1 the unprojection techniques give a concrete tool to construct Fano 3-
folds in codimension 4, this does not happen in higher index. The last part of this thesis
partially answers the question of explicitly constructing codimension 4 index 2 Fano 3-
folds. The strategy is to combine the usual unprojection in index 1 with a quotient by
Z./27 to view X as a double cover of another Fano X, where X is a quasi-smooth Fano
3-fold having codimension 4 and index 2.

We achieve the following diagram.

codim 4 codim 3
index 1 X unproj 7z
lZ/2Z lZ/2Z

N

index 2 X

There are 34 Hilbert series that are candidate to have an index 1 Fano 3-fold with at
least one Type I centre as their double cover. Our method applies to all of them, but
not to all the deformation families in index 1. Here we consider a specific group action
o of Z/27 (see Chapter [5|for details).

We prove the following lemma.

Lemma. If a codimension 3 Fano 3-fold Z in Tom format is such that there exists a
special member invariant under the group action ¢, then the nodes on the divisor D C Z

are not fixed by the action.

This implies that we have a hope to construct a codimension 4 index 2 Fano 3-fold
only if the index 1 codimension 3 counterpart has an even number of nodes. This helps
discerning which formats could produce a double cover in codimension 4 by narrowing
the range of possibilities to the only formats having even number of nodes.

This method explicitly constructs at least one deformation family for 32 different
Hilbert series in index 2 in the Graded Ring Database [BKT15].

In the last part of Chapter [5] we exhibit an explicit example of birational link

starting from an index 2 Fano 3-fold of codimension 4. The upshot is that they are not
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birationally rigid. The description in this case is more challenging, and it is an ongoing

joint work with Tiago Guerreiro.

Content of the chapters

In Chapter[I]we highlight the first definition necessary for the construction of Fano 3-folds
in high codimension, together with the basics of the Sarkisov links.

In Chapter [2] we describe the construction of Sarkisov links for index 1 Fano 3-
folds of Tom type in codimension 4 having Picard rank 1. Moreover, we prove a theorem
outlining the behaviour of the links.

In Chapter [3|we provide explicit examples to the constructions explained in Chap-
ter [2] showcasing the most relevant phenomena occurring. Section [3.3]is dedicated to
comparing some of our results to the one of Takagi (cf. [Tak02]).

In Chapter .2 we examine birational links for index 1 Fano 3-folds of second-Tom
type in codimension 4 having Picard rank 1. Here we draw conclusions regarding the
pliability of a certain quintic Fano hypersurface having one compound singularity.

In Chapter [5] we construct codimension 4 Fano 3-folds of Tom type having index
2 as quotients of certain Fano 3-folds in index 1.

The Appendix [6] includes all the tables summarising the results of this thesis.
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Chapter 1

Background theory

1.1 Setting and hypotheses

We work over the field of complex numbers C.

In this chapter we summarise and make more precise the picture highlighted in
the Introduction, setting the tone and the language for the rest of the chapters.

In this thesis X is a Fano 3-fold in codimension 4 with at most terminal singu-

larities and Fano index 1, that is

Definition 1.1.1. A Fano 3-fold is a Q-factorial normal complex projective 3-dimensional

variety with terminal singularities whose anticanonical divisor —Kx is ample.

In the literature it is also called Q-Fano 3-fold.
The hypotheses Q-factorial means that every Weil divisor on X is Q-Cartier.

Definition 1.1.2. Consider a projective variety X and any resolution of singularities
¢: X - X; call its exceptional divisors Fi,..., F,. The canonical divisor of X is
K =¢"Kx + Z?:l a; F; for some rational coefficients a;. The variety X is said to have

terminal singularities if for every i € {1,...,n} a; € Q.

Call Fano inder the highest natural number ¢ such that —Kyxy = qA for A €
Cl(X).

In this setting the codimension of X is defined to be its codimension in its an-
ticanonical embedding. More precisely, since X is Fano, we can define its (total) anti-

canonical ring R(X,—Kx) as

R(X,~-Kx): = @H"(X,-mKx) .
meN

Any choice of the minimal generating set of the ring R(X, —Kx) determines an embed-

ding of X into a projective space P(aq,...,ay), where n and the weights ay, ..., a, are



well defined by the ring. The codimension of X refers to this embedding.

A list of the possible candidates of codimension 4 Fano 3-folds satisfying the above
definitions is contained in [BK¥15]. In order to classify them it is important to know
what kind of equations define them.

In [IF00], [Rei80b], and [AIt98| the authors present a classification for codimension
up to 3.

In codimension 1 all Fano 3-folds are hypersurfaces, and there are 95 distinguished
families. In codimension 2 they are complete intersections, and there are 85 distinguished
families. In codimension 3 there are 70 families: 1 family given by complete intersections,
69 given by pfaffians of 5 x 5 skew-symmetric matrices.

Regarding the codimension 4 case there are 145 numerical candidates listed in the
[BK*15], but there is no structure theorem for their equations as the ones above. This
is a problem for our purposes, as we will need to know the equations (or at least some of
the monomials that appear in them) of such codimension 4 varieties. In [BKR12a] the
authors discovered that 115 of those 145 families can be realised as Type I unprojections
of a codimension 3 Fano 3-fold. Their full list is contained in [BKR12b|. In particular
they occur at least in two different ways, that is, one from a pfaffian variety defined on a
matrix in Tom format and another one if the matrix is in Jerry format. These unprojec-
tions starting from two different formats lead to two topologically different deformation
families. For a more detailed dissertation about Type I unprojections and Tom and Jerry
formats refer to [Pap04].

This thesis examines the candidates among the 115 families arising from Type I
unprojections. Therefore these Fano 3-folds in codimension 4 have at least one Type I
centre as defined in [BZ10]. As explained in the following sections, the Tom and Jerry
cases will present different issues and challenges when it comes to run the Sarkisov links,

and also different geometric interpretations.

1.2 Strategy and notation

A Sarkisov link is a sequence of elementary birational maps, in a very precise sense. Let
us recall first the definition of the birational maps that are building blocks for Sarkisov
links.

1.2.1 Elementary birational maps

Definition 1.2.1. Consider ¢: X — Z a birational map of projective varieties.
e  is a divisorial contraction if it contracts a divisor in X.

e  is a small contraction if it does not contract a divisor in X.



In the case where ¢ is a small contraction suppose that Kx - C' < 0 for each curve
C contracted by ¢. It is possible to define a flip to be a variety X' together with a
birational morphism ¢*: X — W (another small contraction) such that

e X7 is Q-factorial;

Kx+‘0+>0;

K+ is ¢ -ample;

1/11X\Ci>X+\C+;

the following diagram commutes

Kx-C<0 CcX-—-—--~- Y _LXxtoot Kx+-CT>0
X\ %
QeWw

A similar definition is for a flop, where both Kx - C and K y+ - CT are equal to 0 and v

is an isomorphism in codimension 1.
Both flips and flops are isomorphisms in codimension 1.

Remark 1.2.1. Since a minimal model is defined to have nef canonical divisor, flips play
a crucial role in the construction of the model itself, as they turn curves having negative
intersection with the canonical divisor of a projective variety X into curves that have

positive intersection. This means that K x+ is actually closer to nefness than Kx.

In the 3-fold case it has been proven by Mori in [Mor88| that flips exist; their
termination is proven by the work of Kawamata, Kollar, Mori, Reid, Shokurov and
others. Thus the following definition is well-posed.

The formal definition of Sarkisov link stems from the one of 2-ray game, as in
[BZ10].

1.2.2 2-ray game

Definition 1.2.2. A 2-ray game consists in the following sequence of birational trans-
formations.

Consider a 3-fold X, and assume its Picard rank px = 1. Define Y as the blow up
of X at a point p € X; call ¢: Y — X the blow-up map. The Picard rank of Y is then
py = 2, so Y admits at most two possible contractions: one of them is ¢ itself. In the

case where the second contraction does not exist we say that the 2-ray game “breaks”. If



the second contraction ¢q exists, with target variety Z, there are the following occurring

cases:

e 7 is Q-factorial: the 2-ray game stops, ¢g is a divisorial contraction, and we say

that it was “successful”. We call the resulting sequence Sarkisov link;

e 7 is not Q-factorial: then ¢q is a small contraction. We flip (or flop) to another
Picard rank 2 variety Y;. Consider Y; instead of Y and start again until the 2-ray

game stops or breaks;
the flip from Y does not exist: the 2-ray game breaks;

Y1 does not have the second contraction: the 2-ray game breaks.

The aim is to classify Sarkisov links run over Q-Fano 3-folds as defined above.
We first start from the easy case of weighted projective spaces. We afterwards move to
the Fano cases.

A consequence of such analysis regards the notions of birational rigidity and pli-

ability.

Definition 1.2.3. Let X — S be a Mori fibre space. Its pliability is the set of all Mori
fibre spaces that are birational to X, up to a natural equivalence relation ~ called square

birationality. In symbols,
P(X) ={MfsY — T|X is birational to Y}/ ~ .

Definition 1.2.4. A birational map f: X --+ X’ between two Mori fibre spaces X — S
and X' — S’ is said to be square birational if there exists a map g: S --» S’ such that

the following diagram commutes

x-I.x
£g>5i"

and the induced map on the generic fibres is biregular.

Definition 1.2.5. A Mori fibre space X — S is said to be birationally rigid if its pliability

is 1, that is, P(X) contains only one element (X itself) up to square birationality.

1.2.3 Weighted projective spaces and rank 2 toric varieties

Running a Sarkisov link starting from a weighted projective space wP is straightforward:
it suffices to choose a singularity of wlP to blow up; this makes the Picard rank of wP
increase by one. The blow up is a rank 2 toric variety, i.e. a scroll F, defined by certain

weights depending on those of wP. Obviously, FF comes with a certain initial polarisation.



Then, the Sarkisov link is performed by changing the GIT quotient on F, i.e. by changing
the irrelevant ideal in the definition of F, that is, by changing its polarisation. Every
step therefore consists in birational maps given by either flips or flops. This process
will eventually stop after a finite number of steps, depending on how many variables the
scroll has, ending with a map that makes the Picard rank of IF drop by one. In particular,
this last map is a divisorial contraction to another weighted projective space wlP’ or a

fibration to a toric variety of lower dimension, as in Theorem 4.1 of [BZ10)].

Remark 1.2.2. Note that changing the GIT quotient on F corresponds to considering

alternatively stable and unstable loci in the Mori cone of the scroll.

As explained in [BZI0], it is possible to associate to any scroll a fan in a Z2-
lattice, having a finite number of rays. It is the Mori cone of F;. Each ray is generated
by the linear system corresponding to each bidegree in the scroll. They define maps given
explicitly by monomials in those linear systems, that is, each of the maps going from the
top row to the bottom row in (in Subsection is associated to a linear system
of Fy, and that each flip or flop (i.e. horizontal arrows in ([1.1))) is based at one or more
points in the Z;. Changing the irrelevant ideal of IF1, namely changing the GIT quotient
on [y, performs isomorphisms in codimension 1, which could be either flips or flops, on
the top row of [[.I] This produces a rank 2 birational link for ;.

More explicitly, the irrelevant ideal of Fy is (¢, s)N(x1, x2, T3, Y1, Y2, Y3, y4). We de-
fine Fy as the rank 2 toric variety having the same grading as F; but having (¢, s, z1, 2, 23)N
(y1,Y2,y3,y4) as irrelevant ideal. The definition of F3 and Fy, if applicable, depends on
which case of Theorem we look at. For instance, if we consider case @ of Theorem
we have that the irrelevant ideal of F3 is (¢, s, x1,x2, x3,91) N (Y2, Y3, y4), and the
one of Fy is (¢, s, x1, 2, 23,y1,¥2) N (y3,y4). On the other hand, in case of Theorem
the irrelevant ideal of Fg is (t, s, x1, 2, 3, Y1, y2) N (Y3, y4), while Fy is not defined:
in this situation, the link is shorter. Explicit examples of these phenomena will be given

in Chapter [3] This process is outlined explicitly in the examples of Section [3

Remark 1.2.3. Such a link starting from a weighted projective space always exists and
always terminates thanks to the finiteness of the number of rays generating the Mori

cone of F.

Each of such rank 2 toric varieties F is endowed with a 2 x 9 chart of weights,
or bidegrees, representing the action of C* x C* on F. It is possible to perform row
operations on F: this does not change the nature of the action, but only showcases the

same action using a different basis of C* x C*.



1.2.4 Fano varieties

The question is now how to translate this information from the weighted projective space
case to Fano 3-folds.

Each of these Fano varieties X is embedded in a certain weighted projective space
wlP. The ambient spaces of Fano varieties in any codimension are listed in the online
database [BK™15]. In particular, it is always possible to run explicitly a Sarkisov link for
the ambient space of X. In order to see how X behaves along the link we need to find
explicit equations for it. As outlined in the Introduction, there is no structure theorem

for codimension 4 Fanos. But there is one for codimension 3 Fanos, that is,

Theorem 1.2.4 (|[BET4]). If a codimension 8 Fano 3-fold Z is Gorenstein, then it is

realised as pfaffians of a 5 x b skew-symmetric matric M.

To set the notation, M is a weighted matrix with entries {aj;}

a2 Q13 Aai14 G15
a3 G224 Q25
az4 aszs

a4,5

and weights {my,;}.

The unprojection technique described in [Pap04] allows to retrieve equations for
codimension 4 varieties using the information in codimension 3. Morally, it consists in
contracting to a point a divisor D in a variety and in seeing the said variety in a projective
space having one dimension more. The way to force D to sit inside a variety described
by pfaffians of a matrix M is to write M in either Tom or Jerry format. Picking a
codimension 3 Fano Z;, whose equations are the 5 pfaffians of M, if we unproject D C 23
we get a Fano in codimension 4 defined by the 5 pfaffian equations and the unprojection
equations. These are the equations that we consider throughout the Sarkisov link just
described. A more detailed notation is set in Section [.2.5

Recall the following definitions as in [BKR12a].

Definition 1.2.6. A 5 x 5 skew-symmetric matrix M is in Tomy, format if and only if

each entry a;; for 4,j # k is in the ideal Ip.

Definition 1.2.7. A 5 x 5 skew-symmetric matrix M is in Jerryy; format if and only if

each entry a;; is in the ideal Ip whenever either i or j is in {k,[}.

Observe that M is a graded matriz, that is, each of its entries comes with a degree:
so, each entry must be occupied by a polynomial in the given degree. A precise list of

the grading for M in the case of codimension 3 Fano 3-folds is contained in [BKRI12b].



In addition, if we consider either a Tom or Jerry format, the constraints of the formats
need to be satisfied.

Remark 1.2.5. By considering Tom or Jerry formats we compromise on the quasi-
smoothness of the codimension 3 Fano 3-folds. Putting M in such formats introduces
some nodal singularities in the variety, which add up to the cyclic quotient singularities

inherited from the ambient space.

Any polynomial in the prescribed degree satisfying the format constraints will
do. However, the [BKR12b| gives an even more detailed information, listing also the
minimum number of nodes of Z. In particular, these nodes can be concentrated only on
the divisor D C Z: in this way Z is quasi-smooth off D. In order to gather the nodal
singularities only on D, we need to choose a suitable member of the deformation family
of Z by filling the entries of M with general polynomials of the right degree keeping
the format unvaried, and twitching them to achieve the desired number of nodes as in
[BKRI2E].

More specifically, performing row/column operations on M allows to get rid of
some terms in the entries of M.

Note that some variables have the same weight as certain entries of M. It is
possible to place such variables in the compliant entries without loss of generality, as
more extensively in Chapter This eases the row/column operations, pivoting such
modifications on the entries occupied by only one variable.

Suppose w is a coordinate of the ambient space wP® of Z, and that its weight is
the same as the weight of a certain entry of M. Call R the row of such entry. Then,
the row operations we look at replace another row R’ with the vector R’ — éwCR, where
£ € C* is a coefficient and ( is the suitable power of w to cancel out the term in w in
one entry of R’. To maintain the skew-symmetry of M we need to do the same for the
corresponding columns C and C’.

Observe that not all row/column operations preserve the format. In the above
notation, such operations are allowed if w is a generator of the ideal; more generally, if
R is multiplied by an element of Ip.

The unprojection of the divisor D C Z produces a quasi-smooth codimension 4
Fano 3-fold X defined by nine equations. Five of them are the five maximal pfaffians

defining Z. The other four are called unprojection equations.



1.2.5 Notation

Let us introduce some notation. The first diagram is the Sarkisov link on the ambient

spaces.
) L e "
NN N
wlP Gq Go Gs wlP’ C Gy
(1.1)
Call

E the exceptional locus of ®;

E’ the exceptional locus of @;

A,; the exceptional locus of «;;

B; the exceptional locus of ;.

Here G1, G, G3 are toric varieties. In our situation they are weighted projective

spaces. The notation in the varieties setting is

Yl***w*l**>Y27771£277>Y3777%77>Y4 (12)
N AN N
x o werol 2 Z Zs X’

The reason why the links have at most this number of steps will be clear in the
following sections. We will refer to F as the scroll above when it is not necessary to
specify its polarisation.

Since X is a codimension 4 3-fold, it sits inside a weighted wP”, while Z; sits
inside a wP%. Therefore, the scroll F; has 9 variables, called ¢, s, z1, 2, 3, Y1, Y2, Y3, Y4

having respective weights

rlrabcd1d2d3d4
ro T3 a [y 01 b2 O3 04
Note that s is the unprojection variable.
Say that Z; C P%(a,b,c,dy,...,ds) with coordinates x1,xs, 23, y1,...,%s, and

X c P"(a,b,c,dy,...,ds,r) with coordinates respectively z1,x2, 23, y1,. .., Y4, 5.
Call yq, ..., yq relevant variables, and their weights are di > dy > d3 > dy.



Chapter 2

Tom and Jerry Sarkisov links

In this chapter we describe Sarkisov links for those index 1 Fano 3-folds X in codimension
4 that are obtained by Type I unprojection of codimension 3 Q-Fano 3-folds Z in Tom
or Jerry format, as explained later. We use the notation in Section [[.2.5] and of [.2] In
particular, we describe Sarkisov links starting from such varieties X. This is done step by
step discussing the construction of Z, the blow-up Y7 of X at the Type I centre arising
from the unprojection, and studying the consequences that each possible variation of
GIT quotient on the ambient space of the blow-up has on Y;.

The results are summarised in Theorem and Theorem [2.4.5] Some explicit

examples are given in Chapter [3

2.1 The Main Theorem

In this section we state the main theorem of the chapter, Theorem 2.1.1] which describes
Sarkisov links starting from Fano 3-folds of Tom type. Its proof is contained in Section
. This is also related to other works in the literature, such as Takagi’s [Tak02], and a

comparison with that can be found in Section [3.3]

Definition 2.1.1. Let X be a codimension 4 index 1 Fano 3-fold X listed in the table
[BKRI2b]. We say X is of Tom Type if it is obtained as Type I unprojection of the
codimension 3 pair Z D D in a Tom family (see Chapter 1| for background, Section
for notation, and Section for details). The image of D C Z in X is called Tom
centre: it is a cyclic quotient singularity p € X. In the unprojection setup D C Z, D is
a complete intersection of four linear forms of weight dy, ..., ds: we refer to dy,...,d4 as
the ideal weights. Such X of Tom type is said to be general if Z D D is general in its

Tom family.

Theorem 2.1.1. Let X be a general codimension 4 Fano 3-fold of Tom type and let
p € X be a Tom centre. Suppose in addition that X has Picard rank px = 1. Then:



(A) X admits a Sarkisov link to a Mori fibre space Y — S. The link is initiated by the
Kawamata blow-up of p € X.

(B) The Mori fibre space Y — S of |(A)| is not isomorphic to X. In particular, X is

not birationally rigid.

(C) The geometry of each Sarkisov link in s as follows. Let di > do > d3 > dy be
the four ideal weights for the Tom centre p € X. In each case the Kawamata blow-
up s followed by an algebraically irreducible flop of finitely many smooth rational

curves, and proceeds as follows according to di > do > dg > dy:
(1) di > do > ds > dy: a flip followed by a second flip, followed by a divisorial
contraction ® of (2,0)-type to another Fano 3-fold X';

(1i) di > do = d3 > dy: a flip (missed in cases #1218 and #1413) followed by a
divisorial contraction ® of (2,1)-type to another Fano 3-fold X';

(1i1) dy = dy > d3 > dy: two simultaneous flips, followed by a divisorial contraction
®' of (2,0)-type to another Fano 3-fold X';

(tv) di > do > ds = dy: a hypersurface flip, followed by a second hypersurface flip
to a del Pezzo fibration: ® is of (3,1)-type;

(v) diy =ds > d3 = dy: two simultaneous flips followed by a del Pezzo fibration:
D' of (3,1)-type;
(vi) di > dy = ds = dy: a toric flip (missed in case #6865) to a conic bundle: @'
is of (3,2)-type;
(vii) dy = do = ds > dy: a divisorial contraction O of (2,1)-type to another Fano
3-fold X';

(viii) di = dy = d3 = dy: a conic bundle over a quadric surface in P3: ®' is of (3,2)-

type.

The notation on fibrations and divisorial contractions in the above theorem is:
(m,n) where m is the dimension of the exceptional locus of ®' in Yy (where applicable)

and n is the dimension of its image.

Remark 2.1.2. The flip in caseis of course algebraically irreducible (that is, its base
is irreducible as an algebraic set), but it consists of two disjoint tubular neighbourhoods
in the connected component of its exceptional locus. Such neighbourhoods are either
both toric or both hypersurface. This means that the intersection between Y5 and the
contracted locus of the flip is not irreducible, and it is formed of two distinct connected
components. In this situation, we say that we have two simultaneous flips of the variety
Ys.
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In contrast, in case the link consists of two algebraically irreducible flips, one
after the other.

Remark 2.1.3. In the exceptional divisor of ®' is contracted to an irreducible

(conic) curve I' C P2

Remark 2.1.4. e This analysis does not involve the hypotheses px = 1 at all, al-
though it is needed to state that the birational links constructed are Sarkisov links.
See Chapter 4] for birational links that are not Sarkisov links (px > 1).

e In a few cases it is hard to determine who X’ is. In these occasions, we need to

suppose px = 1 to affirm that X’ is a Fano 3-fold.

e We do not know which ones of these Fano 3-folds have Picard rank 1, but we do
have some examples, provided by Takagi [Tak02] (see Section and by
(computational). There is a belief that the first Tom format has Picard rank 1
(except for #12960). In addition, Chapter [4] gives a circumstantial evidence of this
belief.

e In order to determine the Picard rank of X, it is crucial to observe that the endpoint
X' of a link run from X, if it is another Fano 3-fold X', it always has codimension
strictly lower than the codimension of X. Therefore, since px = pxs, we can
deduce the Picard rank of X from the study of the Picard rank of X’. The latter
is surely 1 if X’ is quasi-smooth (this happens in 18 cases); however, this should
hold even when X’ has singularities provided a suitable Lefschetz-type theorem,
although this situation is not studied in this thesis. This would prove that at least
one deformation family of X has px = 1 if a Sarkisov link from that deformation

family terminates with another Fano 3-fold.

Remark 2.1.5. This theorem does not consider the Fano 3-folds in P2 x P? format listed
in [BKQ18], as they have Picard rank 2. The Hilbert series #12960 is one of them, thus is
not covered by the description in |(viii)| of Theorem [2.1.1| In particular, the ones having

the "second Tom" will be examined in Chapter [d

Theorem could constitute a tool to prove that the Picard rank of some of

these codimension 4 Fano 3-folds is 1.

Corollary 2.1.6. The Fano 3-fold of Tom type X associated to the Hilbert series #5305

has Picard rank 1.

Proof. Consider the Fano #5305 X of Tom; type and consider its Type I centre p ~
£(1,2,3) in X. The Sarkisov links run on X from the centre p terminate with a divisorial

contraction ®": Y3 — X', where X’ is the Fano #5962 of codimension 3. In particular,
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®’ contracts the singular locus E’ to a quasi-smooth point p’ € X’. Since Y3 is also
quasi-smooth (no hypersurface flips occur in this link), then X’ is quasi-smooth as well.
Therefore, by Theorem 3 of [BEF20|, X’ has Picard rank 1. Therefore, this implies that
X has Picard rank 1. ]

2.2 Construction of the birational links

Here and in the following subsections we explain how we construct the birational links
described in Theorem R.1.11

2.2.1 The unprojection setup: construction of the pfaffian matrix M
The starting point is the following type of data, coming from [BKRI12a] and [BK™15].

e A fixed projective plane D := P?(a,b,c) C P5(a,b,c,dy,...,ds) with coordinates
r1,T2,T3, Y1,-..,Ys respectively and dy > do > d3 > d4. So D is defined by the
ideal Ip = (y1, Y2, Y3, Ya)-

e A family Z; of codimension 3 Fano 3-folds Z C wP®, each defined by maximal

pfaffians of a skew-symmetric 5 x 5 syzygy matrix M whose entries have weights

mio M3 Mi4 Mij

ma23 M24 M2s

) )

m34 M35
mas
The plane is a divisor D = P2 (a,b,c) of Z1 € Z; if the latter is written as pfaffians

of a matrix M in either Tom or Jerry format. This subsection constructs M in this
general setting by filling its entries by homogeneous polynomials in the z; and y; subject
to the Tom and Jerry constraints (see Chapter [1)).

The Big Table in [BKRI12b| records exactly this data of D C wP% and the weights
of the syzygy matrix, together with the possible successful Tom and Jerry formats.

It is often possible to place each variable in a matrix position having the same
degree, as long as all the Tom and Jerry format restrictions on M are satisfied. Since M
has 10 entries and P only 7 coordinates, at least 3 entries have to be occupied by more

general homogeneous general polynomials in the given degree.

Lemma 2.2.1. Let Z; D D be a general member of a Tom; family appearing in [BKR12b|]
where i € {1,...,5}. Then we have the following.

(i) For each ideal generator y; there is an entry ap; of M with k # i, | # i such that

dj = myy, that is, in which y; appears linearly.
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(i3) With the exception of the [BKR12b] entry #12960, there is an entry ay; of M with
k =1 orl =1 such that my is equal to a,b, or c, that is, it is linear in at least one

of the orbinates x;.

Proof. This is the following observation about the weights myg; of the syzygy matrix M
of [BKRI2b] and those of wPS. In each case (except for #12960), for any d; there is an
entry in the ideal part of M having weight d;. Similarly it holds for the x;. The fact
that y; and x; appear linearly in such (suitable) entries is implied by the hypotheses of
generality of Z;. O

Later we analyse the entries of general M, and this Lemma guarantees certain

monomials appearing in the pfaffian equations.

Remark 2.2.2. The only Hilbert series in that does not satisfy this condition
is #12960, whose complementary variables z; have weights 1, 1,1 respectively, while the
weights of M are all 2. The successful Tom format in that Hilbert series results in X of
Picard rank 2: it is in P? x P2-format, as listed in Table 1 of although, as we
see later, this is not related.

This phenomenon is probably not due to the fact that the Tom format #12960 has
Picard rank 2: indeed, although the second Tom of #24078 is listed in [BKQI18] among
the Fano 3-folds in codimension 4 having P? x P?-format, the complementary variable of
weight 2 can be placed linearly in one of the complementary entries of M, which all have

weight 2.

Following the notation in Section [I.2] the unprojection techniques described in
[Pap01] give a birational map Z; — X C wP” that contracts D to a quotient singularity
P, € X. It is this X whose Sarkisov links we study.

2.2.2 The Kawamata blow-up of a Fano: ambient space [

We aim to make a Sarkisov link centered in Ps;. Since Ps € X is a quotient singularity by
construction, the first map of the Sarkisov link is a Kawamata blow-up of X at a cyclic
quotient singularity %(a, b,c) at Ps. Following a similar method as in [AZ17], we deduce
the weights of a rank two toric variety F; that is a blow-up of wP” at P,, which results
in the Kawamata blow-up on X.

We consider wP” as a toric variety with l-skeleton given by primitive lattice
vectors ps, pu;, Py;, 1-6. a weight lattice Npr = Z*. These vectors satisfy the following

relation
4

TPs + apg; + bpm + CPzxs + Z djpyj =0.
j=1
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To perform a blow-up of wP” at P, we add a new ray p; to the fan inside the
CONVEX CONe T4 := (Du1,s Paos Pas» Pyis Pyzs Pyss Pya); that is, an integer multiple of wp; of py
is the integer positive sum of all rays other than ps: there are many possible choices to
choose the coefficients for this positive sum, and we will identify a particular one. The

relation involving py is

4 4
_Wpt‘f‘zwipxi‘i‘zéjﬂyj :Ov (21)
i=1 j=1

where w, w;, 6; > 0 for ¢ € {1,2,3} and j € {1,2,3,4}.
In the language of the graded Cox rings, the bottom weights of the scroll Fy
are the coefficient for the rays in the definition of p;. Since ps does not appear in the

expression for p, its bottom weight is 0. Thus F; looks like

t s|x1 22 23 Y1 Y2 Y3 Ya
0 T a b C d1 d2 d3 d4 . (2.2)

—w 0 w1 W2 Wws (51 52 (53 (54

Note that this is not yet well-formed: we connect to this later.

Recall the following theorem by Kawamata, [Kaw96]:

Theorem 2.2.3 (Kawamata). Let X be a 3-fold, and p € X a terminal cyclic quotient
singularity 1(a,b,c). Suppose that ¢: (E C Y) — (I C X) is a divisorial contraction
with p € T and Y terminal. Then, I' = {p} and ¢ is the weighted blow-up of p with
weights (a,b,c) and therefore the exceptional divisor is E = P(a,b,c).

Note that the Kawamata blow-up of a cyclic quotient singularity is unique, even
though the bottom weights d; could be, in principle, chosen arbitrarily. In the following
we give a recipe about how to choose the d; so that the 2-ray game described by Iy is a
successful link for X.

The blow-up map is defined by the linear system ‘(’)((1)) ‘ Explicitly,

d: Fy — wP’

w1 wg w3 0 92 93 94
(taSaw17x27$37y17y27y37y4) — (t w $1,t w $27t w .'L‘g,tw yhtw y27tw y37tw y473> .

On alocal neighbourhood of Py there is a weighted projective space P9 (w1, wa, ws, 61, d2, 63, 84)
contracted to the point P; of index w. Since P has index r, then w must be equal to r.

On the other hand, we could assign many different values to wy,ws, w3. However,
we are interested in exhibiting a Kawamata blow-up, which is described in Theorem
From [BZ10] we know that the exceptional locus E of ® is given by the vanishing
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of y1,v2,v3,y4. This means that F = P?(wy,ws,ws). Therefore, in order to achieve a
Kawamata blow-up we choose the weights w1, w2, ws to be a, b, ¢ respectively.

When restricted to its exceptional locus E, the map ® becomes

. F—T

a b <
(t,z1,z2,23) —> (thl,thg,tw:vg) .

This achieves the construction of the Kawamata blow-up for X. The last thing that
needs to be set is the value of the J;.

The equations of X come into play to determine the §;’s. When pulling back the
equations of X via ®, each monomial will pick up extra ¢ factors. Again, the choice of
the 0;’s could be free, but we would like to cancel out the highest possible power of ¢: in
other words, to get the equations of Y; we must saturate over ¢ the total pullback of the
equations of X. This is because we want the leading terms of the unprojection equations
to be sy;, as opposed to sy;t7, for 7 a certain exponent greater than 1.

Localising at Ps allows to study each ideal variable via the unprojection equations.

To fix ideas, suppose we want to find d4, corresponding to y4. We start with yy
because it is the one with lowest weight dy < ds < d2 < d;. The unprojection equation of
X involving yy is of the form sys = g4(x1, 2, T3, Y1, Y2, Y3, Y1), where g4 is a homogeneous
polynomial of degree r 4+ ds. The pullback of the unprojection equation for y4 is of the
form

L2% a b c L Sz 83 8q

t7r SsYys = g4 (tr:cl,trwg,trxg,t Ty, b yo, tr ys, tr y4> .
Separate from g4 all its terms containing the variable y4. Define hy the polynomial
constituted by all the monomials of g4 containing y4, except for the term sys. The

equality above becomes
S K a c 5 5 S
tr <3y4 +t?h4> =g (t?xl,tfa:g,t?:cg,t%yl,t%yg,t%yg) : (2.3)
where ¢} := g4 — hq and & is the minimum exponent that is possible to factorise from hy.

Lemma 2.2.4. It holds that 04 > dg4.

Proof. Every monomial in g4 picks up a t factor because there is no pure monomial in s
on the right hand side of the unprojection equation for y4: this is by construction.
From the construction of p; we know that each ¢; is greater than or equal to
1. We divide this proof in different cases according to the different types of monomials
appearing in g4. We indicate by 2! the multiplication of pure powers of =1, o and 3, not
necessarily all together, with different multiplicities, summarised by the multi-index [ at

the exponent. Similarly, we define gl' as the multiplication of pure powers of y1, y2 and
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ys, not necessarily all together, with different multiplicities indicated by the multi-index

I'. In the following description [ and I’ will vary from case to case.

e Monomials of the form z!, where | = deg(g4) = r + d4. Since the top weights of
x1, 2 and xz3 are the same as their bottom weights in the scroll Fy 2.2] then such

monomials pick up a t factor with exponent kK =1 = r + d4 in the pullback.

e Monomials of the form QZQZ,, where | + 1" = deg(g4) = r + d4. Since 01,02,d3 > 1,
the pullback of @lgl/ picks up a t factor with exponent %k a least [ +1'. So, k >
I+ I'=r + d4.

e Monomials of the form z'y}, where [ + A\ = deg(gs) = r + ds. They pick up a t
factor with power k > [ + A\64 > 7 + dy.

e Monomials of the form gl/yi‘, where I’ + X\ = deg(g4) = r + dy. They pick up a t
factor with power k > I + \dy > r + dy.

e Monomials of the form @lgl/yi‘, where [ +1I' + A = deg(g4) = r + dy. They pick up
a t factor with power k > [ +1' + \oy > r + d4.

Therefore the exponent for ¢ relative to this kind of monomials is r+dy, or higher.
We choose 4 to be one of these values of k.

In conclusion, since every monomial in g4 picks up a t factor with exponent at
least %, we deduce that &4 > dy. O]

The power of ¢ gained by each y; factor is greater or equal to %. This means that

0; > dj;. So the pullback of the unprojection equation for y; is of the form

Tk4

Oq 3 L Thq
tr <8y4+t7'h4>:t7'm1+“'+trmk4,
for 7; positive integers and m; monomials of g). So,

Definition 2.2.1. Define §4 as

0y = le{rll,l.l..l,lk4}{7—l} . (2.4)

Note that since ¢) does not contain ya, d4 is well-defined.

Remark 2.2.5. The scroll just obtained might not be well-formed. For a definition of
well-formedness see Definition 3.1 in [Ahm17|, which generalises to scrolls the notion of
well-formedness for weighted projective spaces in [IE00].

The bottom weights of a well-formed scroll can be interpreted as the order of

vanishing of the variables in the divisor D of the unprojection.
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Definition 2.2.1] makes the distinction between the Tom and Jerry case come into
play. The difference lies on detecting which one is the monomial in g that achieves the

minimum of [2.:2.I] The analysis in the Jerry case is contained in Section [2.4]

Proposition 2.2.6. Let X be a codimension 4 index 1 Fano 3-fold of Fano type.
Then the Kawamata blow-up of X at the Tom centre Ps is contained in a rank 2

toric variety of the form

S| X1 X2 T3 Y1 Y2 Y3 Y4
T a b C d1 d2 d3 d4 . (25)
i1/,0 0 0 -1 -1 -1 -1

Note that the scroll in Proposition [2.2.6] is well formed. Moreover, the blow-up
map ® is a morphism from Y; C Fy to X C P”.

Using the same notation introduced at the beginning of this subsection, we can
view F; as a toric variety whose 1-skeleton is spanned by the lattice vectors p;, ps,
P> Pras Prss Pyis Pyss Pyss Pys- Bach vector is defined by its bidegree in @ The fan they

generate looks like

€1,T2,T3 (26)

Y1
Y4 Y3 Y2
where the y; might generate the same rays depending on the value of the d;. Underlying
the above picture there is a ray-chamber structure that describes the 2-ray game for
wP”. Each ray gives raise to a map of toric varieties. Suppose the bidegree of the
chosen ray is (g) its relative map is defined by the monomials having bidegree (g) (or
a natural multiple of it). In other words, these are the monomials in the linear system
o)

map relative to ps is defined by the monomials in ‘(9(’1") ‘, and it is the blow-up map

. These are the maps «;, 3;, ®, ® introduced in Section |1.2.5, For instance, the

®: F; — wP’. On the other hand, the map relative to pg,, pu,, pPzs defined by the
monomials in ‘O(é)‘ is a1: F; — Gy. In conclusion, each ray corresponds to one of the
toric varieties in the bottom row of the 2-ray game in[1.I] while each chamber corresponds
to one of the F; at the top row of [[.I] Passing from one chamber to another adjacent
chamber means to perform the relative isomorphism in codimension 1 ¥;: F; — F;yq,
while approaching to the ray in between the two chambers from one side or another
indicates the two maps «;: F; — G; and B;: F;o1 — Gy.

In the language of Geometric Invariant Theory, we are performing on F; a vari-
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ation of GIT to obtain the 2-ray game. This description of F; will be useful in the
examination of the explicit examples.

To prove Proposition 2.2.6] we need the following lemma.

Lemma 2.2.7. Let Z be a codimension 3 Q-Fano 3-fold defined by pfaffians of a 5 X 5
skew-symmetric matrix M in Tom format. Consider the Type I unprojection of Z at a
divisor D. Then each unprojection equation contains at least one monomial purely in

X1,T2,T3.

To prove Lemma we partially refer to the notation in [Pap04]. We make use
of the author’s algorithm to compute unprojection equations, which we briefly summarise

in the next paragraph.

Papadakis’ algorithm for unprojection In [Pap04], Papadakis defines and explic-
itly constructs the Type I unprojection equations for Z in Tom format.

Suppose for simplicity that the matrix M is in format T'omy. For D = Py, 4, +.(a,b, c)
the divisor in Z, and Ip := (y1, Y2, y3, y4), the graded matrix M is of the form

b1 pP2 DP3 P4
a3 Qa4 Q25
as4 ass

45

Here the a;; are polynomials of the form

4
o k
Qjj = E &Yk
k=1

for some polynomial coefficients af‘j. The a;; are contained in the ideal Ip.

On the other hand, the p; have to be polynomials not in Ip so that the Tom;
constraints are satisfied.

For what concerns this specific paragraph, we follow Papadakis’ notation, in which
Pf; is calculated by excluding the (i 4+ 1)-th row and the (i + 1)-th column for ¢ €

{0,1,2,3,4}.
Note that only Pfy, ..., Pf are linear in the y;; hence, there exists a unique matrix
@ such that
Pty (M) Y1
: =Q| :
Pfy(M) Ya
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Explicitly,

Pfi(Ny) Pfi(No) Pfi(N3) Pfi(Vy)
Q= Pfa(Ny) ' :
Pf3(Ny) -
Pf4(N1) Pf4(N4)
where
b1 P2 DP3 P4
N; = o3 O‘z?“ O‘:?f’ . (2.8)
Qgy O3p
Qs

and a};l is the coefficient of y; in ag;.

Define H; as the vector of length 4 whose i-th entry is (—1)"*! times the deter-
minant of the submatrix of @) obtained by removing the i-th column and the i-th row.
The vectors H; satisfy the property that for all 7,5 € {1,...,4}

pilj =p;H; (2.9)

(Lemma 5.3 of [Pap04]). Therefore, the quotient % is independent of i.
Papadakis defines the polynomials g1, ..., g4 via the following equality of vectors
of length 4
(91,92, 93, 94) = — .
(2

For instance, g7 is explicitly defined as the determinant of the matrix obtained deleting

the first column and the first row of @) divided by py, i.e.

1 Pfo(Ny) Pfy(N3) Pfa(Vy)
g1 = Edet Pfg(Ng) Pfg(Ng) Pfg(N4) . (210)
Pfy(Ny) Pfy(N3) Pfa(Ny)

The g; are the right hand sides of the unprojection equations, that is, the unprojection
equations defining X are sy; = g; for j =1,...,4.

This concludes our brief summary of Papadakis’ algorithm to produce the unpro-
jection equations of X. We use his techniques to deduce the statement of Lemmma [2.2.

in our specific case.

Proof of Lemma[2.2.7]. Recall that Z has index iz = 1, so the coordinate x; has weight

1. Hence, using the above notation, in every case p; contains a monomial of the form
de i
o 8(p)

On the other hand, there are different possibilities to fill the ideal entries ay;. If
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the weight of an ideal entry is the same as the weight of one of the y;, then it contains
such ideal variable linearly, i.e a{;l is constant. Otherwise, it contains multiplications of
y; by the x;, that is ail is a polynomial containing a term in the x;. We can assume this
without loss of generality.

Therefore, each N; has at least one entry that is either a constant or a monomial
in the z;.

Recall that the vector of the g; is independent on the choice of ¢ in@ This means
that it is possible to consider only %. Therefore, we are excluding all Pf;(XV;), that is,
all Pf;(IN;) involving the top row of the matrices N;, which are the ones containing pure
terms in x1, xa, x3. Thus, each entry of @) in row 2, 3, and 4 contains a polynomial purely
in 21, z9, x3. The same holds for the g; defined in 2.10] O

Proof of Proposition [2.2.6, By Lemmal[2.2.7] each unprojection equation contains at least
one term depending only on the local coordinates of the Type I singularity at Ps, that is
x1,x2,x3. Therefore we do apply the procedure explained above to find d4. In particular,
by the proof of Lemma [2.2.4] such pure monomial in the z; realises the minimum value
of Definition Thus, by Lemma [2.2.7] we choose 4 = r + d4. Thus, d4 is equal to
the degree of g4.

In turn, we can apply this same strategy to d1, do2, d3, adapting the above con-
struction, definitions and lemmas to the remaining J;. Note that the existence of a
monomial in z1,z2, 23 in each unprojection equation as stated in Lemma [2.:2.7) implies
that the order in which we determined the ¢; is unimportant, because §; = r + d; for
each j € {1,2,3,4}.

The weights in [2.5] follow by simple manipulation of the rows of the scroll we just
defined. Summarising the observations made above about the bottom weights of [2.2] we
have that

S| x1 X2 T3 Y1 Y2 Y3 Ya
0 rla b ¢ dy do ds dy
—r Ol a b ¢ di+7r do+r ds+r dg+r

If we subtract the second row to the third row of the above scroll we obtain an isomorphic

rank 2 toric variety, whose Cox ring is given by

t S |1 T2 X3 Y1 Y2 Y3 Y4
0 rla b ¢ d dy d3s da

-r —-r|{0 0 O r r r r

Finally, it only takes to divide the third row by —r to get the final form of [F; presented
in 230 ]
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2.2.3 The Kawamata blow-up of a Fano: equations of the blow-up Y;

We have just described a specific blow-up F; of wP’, making choices for the bottom
weights of F; in order to keep track of the fact that X sits inside wP7. The following
Proposition 2.:2.10|and Lemma[2.2.TT] are aimed to make sense of the choices made earlier
to assign w; and ;.

Consider the pull-back ®*(X) of the nine equations of X. Referring to the 1-
skeleton of F; in , ® is the map defined by the monomials having bidegree (71")

Definition 2.2.2. Define the ideal of Y7 C F; as the saturation over t of the ideal of
P*(X).

However, the following statements will make Definition [2.2.2] more manoeuvrable

and explicit.

Proposition 2.2.8. The maps ® and oy are proportional by a t factor (excluding s). In

particular, P = Q.

Proof. Recall that ® and «; are defined by monomials in the variables of F; that are in
|O(})| and !(’)((1))| respectively.
As shown above, ® is
d: F; — wP’
a b c 51 52 S3 S4
(tv $,T1,X2,T3,Y1,Y2,Y3, y4) — (tTl'l, tTCCQ, tT:ES)t ™Y1, tr Y2, tr Y3, tr Y4, S) ) (211)
whereas o is
P : F; — wP
(t,s, 21,22, 23, Y1, Y2, Y3, y4) — (T1, T2, 23, ty1, ty2, tys, tya) -

Consider a variable w of F1 among x1,x2,x3, y1,Y2, Y3, y4 with bidegree (Z;) Call ¢
the exponent of the ¢ factor that w needs to pick up such that the bidegree of wt¢ is
proportional to (;) In other words, we need to find ¢ such that

degwt® = (u;j— C) = A(:) for some A > 0 .

Since A = 1o + ¢, we have that ¢ = 22 — vy,
On the other hand, call ¢’ the exponent of the ¢ factor that w needs to pick up
so that the bidegree of wt¢ is proportional to ((1)) We need to have

/ 1
degwt® = <u Iig') :,u<0> for somep > 0.
2
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Here (' = —vp. Thus, ( - (' = 2 = %degw]}w w. This means that on every variable

T1,T2, T3, Y1, Y2, Y3, ys of F1 the exponents ¢ and ¢’ differ only by % O
Proposition [2.2.8 obviously imples the following corollary.
Corollary 2.2.9. The pull-backs ®* (Pf(M)) and of (Pf(M)) are equal up to at factor.

More precisely we mean that the evaluation of Pf(M) at the defining monomials

of @ is proportional to the evaluation of Pf(M) at the defining monomials of a;.

Proposition 2.2.10. If M is in Tom format, it is possible to cancel out from o (Pf(M))

a t factor with power at least 1.

Proof. The ideal entries of M are occupied by polynomials in Ip: thus, they are formed
by monomials either purely in the y; or that are a multiplication of x; and y;.
This is true from what we said before: in other words, if we consider the pfaffian

equation involving only ideal entries, it is divisible by t. O

Let Ix be the ideal of X,

Ix = {f1,.- -, f5, fo,-- -+ fo)

generated by polynomials f; := Pf; for i € {1,...,5} and f; := sy; —g; for i € {6,...,9}.

Recall that ® is expressed in [2.11] with fractional exponents for ¢. Since in the
following we want the pull-back ®*(X) to have equation in a polynomial ring, we can
write an equivalent expression for ® by considering its multiplication by a t+ factor.
Thus,

r—a a b c S1 S2 S3 84
[ (thlyteratr$37t Ty, tr oy, trys,tr y475)

b(r—a) | b c(r—a) | ¢ di(r—a) 671 do(r—a) 6l dgz(r—a) 673 dy(r—a) 574 _
= (tiUl, r Tl‘27t r T1:37t T +Ty17t r +T?/27t r +T?/3,t r JrTy47tT (LS)
(2.12)

The expression [2.12] has integer exponents.
Call Ip=x := (P*f1,..., D" f5,D*f6,..., D" fy) using the above expression of ®.
Proposition [2.2.10 guarantees that, up to a t factor, ®* and aj coincide on the pfaffian

equations. Thus define the following polynomials

ai Pt (M)  aoifi ]

hy = S = S (2.13)
1P (M 1fi .

hy = A t< ):at12f fori€{2,...,5): (2.14)
" fi ‘

hz = m fOI‘ S {6,,9} . (215)
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In addition, define the ideal Iy, := (Ig+x: t*°) as the saturation of Ig+«x over ¢ as in

Definition 2.2.2
Lemma 2.2.11. We have that Iy, = (h1,...,hs, he, ..., hg).

Proof. For the saturation algorithm we refer to [CLO15|. Introducing a temporary vari-
able z, define the ideal J as

J = (Ip=x,tz — 1) C S := R[7],

where R := C|[t, s, x1, T2, T3,Y1,Y2,Y3,Y4]. Then, (Ig=x :t>°) = J N R (see Chapter 4,
§4 of [CLO15]). To write Iy, explicitly we study the Grobner basis of J with respect
to a complete monomial ordering >. This monomial ordering has to be such that the
temporary variable z is the largest, and that s is the second largest. Then, we want it
to be such that the monomials having the least number of y; are larger. In other words,

the monomial ordering > is defined by the following matrix

zZ s x T2 T3 Y Y2 Y3 Y4 13
10 0 0 O 0 0 0 0 0
01 0 0 O 0 0 0 0 0
00 a b ¢ di—1 do—1 dg—1 dy—1 1 (2.16)
00 a b ¢ di—1 do—1 d3s—1 dy—1 0
00 a b ¢ di—1 do—1 d3—1 0 0
00 a b ¢ di—1 dy—1 0 0 0
00 a b ¢ d-—1 0 0 0 0

Consider a polynomial k in which the variable z does not appear. Call k; := LT (k) the
leading term of k£ according to the monomial order s0 k = k1 + ko is the sum of the
monomial k1 and of the polynomial k3 := k — k1. Now compute the S-polynomials for
tek for some d > 1. The least common multiple between the respective leading terms of
t’k and tz — 1 is lem (LT (t%k), LT (tz — 1)) = t**'ky z. Then, following [CLOT5],

d+1 d+1
S(tdk,tz—l) _ ttd/fllz’ a7 ke
= ¢ oy — 49 ey o 4 0y (since k = k1 + ko)
=t oz + 1%y = 19 (thoz + k1) (since tz = 1)
=17k .

(tz —1)

Now focus on the polynomials ®*f;. If ¢ = 1, the leading term of ®*f; is of the form
LT(®* f1) = yj,yj,t2. for certain ji,j2 € {1,2,3,4}. Similarly for i € {2,...,5}, the
leading term looks like LT(®* f;) = w,iy;,t for certain 4t €{1,2,3} and j; € {1,2,3,4}.
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For i € {6,...,9} instead, LT(®* f;) = sy;_5t%57"~% Note that the monomial ordering
> has been designed to identify as biggest the monomials having the lowest exponent of
t. Therefore, for each i € {1,...,9} there is a suitable d such that ®* f; = th;. So, from

the calculation shown above, we have that
S(®* fi,tz — 1)+ S (tdhi,tz - 1) — th, .
Therefore, the Grobner basis of J is
GB, (9 fy,..., " fg,tz—1) = (t?, tho, ths, tha, thy, 7 Ohg, 02170, 0FT=ap t54+"’“h9) U{tz—1} .

On the other hand, the highest common factor hcf (LT'(h;),tz) = 1 shows that
LT (h;) and tz are coprime for all i € {1,...,9}. Thus,

GB>(h1,...,h9,tZ* 1) = GB. (hl,...,hg) U{tZ* 1} .
In conclusion,

(<h1,... ,h9> : too) = <GB>(h1,... yho,tz — 1) ﬁR)
— (GBo(hn,. .. ho)) = (h1, ..., ho) .

O]

Remark 2.2.12. In conclusion, the choices of exponents of the ¢ factors and the following
elimination of them were made in a way such that the obtained ideal is precisely the
saturation of the ideal of ®*(X).

2.3 Description of the link for Tom and proof of the Main

Theorem

In this section we break down every step of the Sarkisov links described in Theorem [2.1.1]
In doing so, we give a proof of Theorem [2.1.7]
Let X C wP” be a general codimension 4 Q-Fano 3-fold of Tom type and let

p € X be a Tom centre. We first prove part of Theorem

Proof of T heorem . Consider a Sarkisov link for X that terminates with a
divisorial contraction. Suppose that the endpoint Mori fibre space ¥ — S is a Fano
3-fold X' — S = {pt}.

Let Bx be the basket of singularities of X. It is possible to track Bx throughout
the link to retrieve the basket By, of Y. The basket Bx/ of X’ is a subset of By,; that
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is, Bx is By, minus the cyclic quotient singularities sitting inside the exceptional locus
E' .= E'NY},. Moreover, if the determinant

det( a3 > =1 (2.17)

-1 -1

then E’ is contracted to a Gorenstein point p’ € X'/, which therefore does not contribute
to the basket of X'.

If ® blows up the cyclic quotient singularity of highest degree, neither the flops
nor the flips will create a new cyclic quotient singularity of that degree. This means that
the baskets By and By are different, and therefore, X 2 X’. On the other hand, if ®
blows up the cyclic quotient singularity of a lower degree, the flips will get rid of the one
with higher degree, which will not be generated again. Thus, X % X'.

If the absolute value of the above determinant is greater or equal than 2, the
divisorial contraction ® might create a new orbifold singularity, but its order will not
be higher than the absolute value of the determinant itself. Also, what we said for the
basket of Yy still holds, that is, the cyclic quotient singularities of higher order are lost
in the first blow-up and in the flips. Therefore, Bx # Bx.

Now suppose that S is either a line or P2: thus, Y is Y;. We conclude that X
cannot be isomorphic to Y because their Picard ranks are different: 1 and 2 respectively.

O

Remark 2.3.1. As an additional motivation to the proof of whereas we assume X
quasi-smooth, X’ is never quasi-smooth. Therefore, they cannot be isomorphic.
Moreover, in each case X' sits inside a weighted projective space having no more
than seven coordinates. This is because the variable y4 serves as the extra coordinate
of the blow-up @, so it gets set as equal to one in X’; also, the unprojection equation

sys = g4 globally eliminates the variable s.

The rest of this chapter is dedicated to proving part of Theorem Part
implies part of Theorem m

The first step to construct the 2-ray game for X is blowing up the Tom centre
P, € X: we obtain a Fano 3-fold Y; C F; defined in Definition where Fy is built as
in Theorem [2.2.6] Then, by performing a variation of the GIT quotient of F; we get a
rank 2 birational link for FF;. In other words, we change the irrelevant ideal of FF;. This
procedure is briefly explained in Section and in the Appendix of [BCZ04].

We call Y; the push-forward ¥;,(Y;—1) C F; of Y;_; via ¥;. The Cox rings of the
rank 2 toric varieties IF; can be naturally identified, as they are isomorphic in codimension

1. So similarly holds for the Cox rings of the varieties Y;, for which we may choose the
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same generators of the quotient ideal. Throughout this thesis we identify these rings and
these coordinates, for all F; and Y;.

We refer to the notation in Section [[.2.5] throughout the following chapters.

The first map of the birational link is Wy.

Theorem 2.3.2. The first step of the Sarkisov link starting with X, i.e. 11 : Y] --» Yo,
consists of n simultaneous flops. The number n is equal to the number of nodes on
D C 7.

Proof. We divide the proof in a few claims.

Claim 1: a; contracts n lines. Following [BZ10], the locus A; contracted by «a; is
defined by {y1 = y2 = y3 = y4 = 0}. Since Z; is in Tom format, Lemma implies
that a7 is

a1 = (I)(l): (t7871"171"27x37y17y27y3)y4) = (xl)x27x3ay1t7y2t)y3ta y4t) .

0

Thus, Z; N Im(ay) restricted to A; depends only on z1, 9,3, that is, it lies on D.

Hence, over every node on D there is a P! having coordinates t, s.

Claim 2: ) extracts n lines. Recall that if M is in Tom format then four of the five
pfaffians are linear in the generators of the ideal Ip, whereas one is quadratic in those.
To fix ideas, suppose without loss of generality that M is in Tom; format: under this
convention, Pfy is quadratic and Pfy, Pfg, Pfy, Pf5 are linear with respect to Ip.

From [BZ10| we know that the locus By € Fy extracted by f; is defined by {t = s = 0},
which is isomorphic to a weighted P3. Therefore there is a weighted P3-bundle over the
weighted ]P%l,mg,a:g = D.

Since Pfq, Pf3, Pfy, Pf5 are linear on Ip, it is true that, restricting to {t = s = 0},

Pfs Y1
Pf3 4|
Pfy Y3
Pf5 Y4

where A is a 4 x 4 matrix defined as

71 (Pf2) 72(Pf2) 73(Pf2) 7a(Pf2)
4. | n(Pfs) 72(Pfs) 43(Pfs)  7a(Pfs)
1 (Pfa) 72(Pfs) ~v3(Pfs) a(Pfa)
11 (Pfs) ~2(Pfs) ~3(Pfs) ~a(Pfs)

and ;(Pf;) € Clzy, x2, 23] is the coefficient of y; in Pf;.
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Lemma 2.3.3. For each point p € D the rank of A, := ev,(A) is either 2 or 3.

Proof of Lemma[2.3.3. Obviously the rank is at least 1.
Recall that there are six syzygies relating the five pfaffians of M: referring to the notation
set in [2.7] one of them is

p1 Pfo +po Pf3 +p3 Pfy +ps Pfs = 0.

which is a relation among Pfy, Pf3, Pfy, Pf5. Therefore, at any point p € D it is possible
to express one of the last four pfaffians in terms of the other three. This means that we
are left with only three equations that are linear on Ip. Thus, rk(A4,) < 3.

On the other hand, rk(A,) > 2. To prove this note that the entries of A are all polyno-
mials in C[x1,xe, x3): this is because if we are considering the restriction to D, i.e. we
impose the vanishing of all the y;, we are actually killing all the monomials that come out
from the non-linear (in Ip) terms of Pfy, Pf3, Pfy, Pfs. Since each of the Pf; has at least
one of the y; appearing at least once, then there are at least two linearly independent
column vectors in A. This concludes the proof of Lemma [2.3.3] O

Remark 2.3.4. As underlined before, the locus By is fibred over D with weighted P3
fibres. Therefore, for any point p € D, if rk(Ap) = 2 the image of A is a 2-dimensional
space in P3, which means that 3; contracts a P! C By NY5 to p € D.

Analogously, if rk(Ap) = 3 the map S, is an isomorphism in a neighbourhood of a point
p CP'CB;topeD.

Remark 2.3.5. So far we used only four of the nine equations of X. This means
that all the information about the flop is contained in the pfaffian equations. The last
thing we need to check is that the unprojection equations do not play any role in the
determination of the flop. Recall that the image of the maps of toric varieties o and
B1 is G1, which is a rank 1 toric variety of dimension 10 which contains the weighted
PS that is the ambient space of Z;. Its coordinates are & := x1,& = x9,&3 1= w3,
U1 = Y1t, v = Yat,v3 = y3t,vq = yql, 01 = SY1,09 = SY2,03 = SY3,04 = SY4.
However, the variable s can be globally eliminated on D using the unprojection equations.
So, even though Lemma [2.2.7 ensures that the restriction of the unprojection equations
to B; is non-trivial, we do not need to take those equations into account when studying
the flop.
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We could also observe that, on D, the Jacobian matrix of Z; is

000 0 0 0 0

0 0 0 7 (Pfa) ~2(Pfa) ~3(Pfa) ~4(Pfa)
JZ)p=1 0 0 0 (Pf3) ~(Pfs) ~3(Pf3) ~a(Pf3)

0 0 0 v (Pfy) ~2(Pfs) ~3(Pfy) ~u(Pfy)

0 0 0 4 (Pfs) ~2(Pfs) ~3(Pfs) ~u(Pf5)

where the bottom right block is A. Therefore we deduce that

Lemma 2.3.6. For each point p € D, then rk(J(Z1)|p)p = 7k(4,).

Claim 3: 17 is a flop. From the previous two claims, ¢ is an isomorphism in codi-
mension 1. We just need to check what is the intersection between —Ky;, for i = 1,2,
and the exceptional loci of oy and 31 respectively. Both for i equal to 1 or 2, —Ky; is of
the form {x; = 0}. On the other hand, none of the points in Sing(Z;) C D satisfies the
condition x; = 0. Therefore, —Ky;, -IP%S =0fori=1,2.

This completes the proof of 2.3.2] O

Remark 2.3.7. Note that this proof is completely independent from the form of the
right-hand-side of the unprojection equations: the information about the flop is all en-

coded in the geometry of Z;, as we would expect.

Now we want to show that, independently on the particular member in the family
of Z1, the nature of the birational maps at the rank 2 level is always the same throughout
the deformation family of Z;. In other words, given a general member of the deformation
family of Z; in Tom format having only nodes on D prescribed by the [BKRI12b|, then
the Sarkisov link of the associated X has the same behaviour, no matter the choice of
the particular member, although the variables eliminated in the variables might change.
For example, this is in contrast with the "starred monomials" of [CPR00].

For the purpose of the rest of this chapter, we introduce the following notation
regarding the grading of the matrix M. These configurations arise many times. For
simplicity, suppose that M is in Tom; format: the argument holds independently on the

Tom format. For some suitable positive o and 7, define

(A) The entries asy, ass, asq, ass all have weight . Hence, in order to have homogeneous

pfaffians and positive weights, the other weights of M are

o o n+o0o—7T WwH+o—T

4 m T (2.18)

s ™

2r — T
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(B) The entries ags, agq both have weight d; = dg, while ag4, ass are free. Hence, the

other weights of M are

o n+0o—v wn+o—7T 2n4+0—T—v

T v i (2.19)
T 2r —wv

2r — T

2.3.1 Proof of@

Here we describe the flip that occurs when crossing the ray p,,. This proof is identical
to the proof of the fact that crossing the ray p,, induces a second flip. The two proofs
hold in case @

Theorem 2.3.8. Suppose di > da and that the point Py, € Z>. Then, the map 12: Yo -—»
Y3 is a flip.

Proof. Localise at the point Py, € Z>. So, after a row operation, Fo becomes

t s T1 T2 T3 | Y1 Y2 Y3 Ya
di r+di a b c 0 do—dy d3—dy dy—dy
1 1 0O 0 0]-1 -1 -1 -1

The exceptional locus of awg is Ag = {y2 = y3 = y4a = 0} (Lemma 4.5 of [BZ10]), that is,

t S Tl T2 T3 | N
Ao=|dy r+d a b c| 0 |=2Pd,r+di,abc)
1 1 0 0 0]-1

with coordinates t, s, 1, x2, x3,y1 respectively: it is such that as(Ag) = P,.

In order to show that 9 is a flip for the varieties, we need to look at the inter-
section Y» M Ay and show that it has codimension at least 3 in P4(dy,r + dy,a,b,c). The
unprojection equation sy; = g1 allows to discard s locally above P, € Z,. Therefore
Y5 N Ay has at least codimension 1. This is because Yo N Ay C F C P4(d1, r+di,a,b,c)
where F is a hypersurface isomorphic to the weighted P3(dy, a, b, c) defined by the un-
projection equation relative to y; in which y; has been set at 1.

From part @ and of Lemma we deduce that in one of the pfaffian
equations there is a monomial of the form w;y;, which means that, locally at P, it
is possible to discard x;, i.e. x; can be expressed as a function of the other variables:
suppose that x; gets eliminated. Therefore, Yo N Ay has at least codimension 2 inside
P*(dy,r +dy,a,b,c).
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From Lemma [2.:2.7] we deduce that there is another unprojection equation that
contains monomials in the z; and ¢. Therefore, Yo N Ay C S C F C P*(dy,r + d1,a,b, c)
where S = P*(dy,b,¢): Y2 N Ag has at least codimension 3 in P*(dy,r + dy,a,b,¢). To
prove that the codimension is exactly 3 we need to show that the remaining equations
define a curve in S, so we need to exclude the case in which they define a single point
or the empty set. The vanishing locus of the remaining equations cannot be the empty
set because P, € Z2, so there must be an intersection between Y5 and A,. In addition,
Y5 N Ay cannot be a single point either for the following reason. Since X is quasi-smooth
and Q-factorial, the same holds for Y7. Also Y5 is quasi-smooth, but it is not isomorphic
to Y71 because By: Y3 — Z5 contracts the curve defined by the quadratic pfaffian equation
(which is Pfy if M is in Tom; format). Thus, by Q-factoriality, Y2 must also contract a
curve.

The last thing we need to check is that the intersection of —Ky, with the ex-
ceptional locus of oy is positive and that the intersection of — Ky, with [ is negative.
This is true because {z1 = 0} € |O(—aKy,)| is relatively ample, so it meets every curve

positively. O
On the other hand,

Theorem 2.3.9. If the point P, € Z3, the toric varieties flip Uo: Fo ——» F3 restricted

to Y5 is an isomorphism Yo =2 Y3,

Proof. Recall that the equations of Z3 are the same as Z;. The fact that P, ¢ Z»
means that there exists at least one pfaffian equation that is non-zero when evaluated
at Py,. Moreover, as(As) = P, ; on the other hand, as(Y2) = Zo. This means that the

exceptional locus of the flip at the toric level does not intersect with Y5, i.e. Ao NYy =
0. O

The next Proposition is aimed at showing when the hypotheses of either Theorem
or Theorem [2.3.9] are verified. Everything depends on the nature of the weights of
the matrix M.

Proposition 2.3.10. Let M be in Tom format. If the weights of M fall in case then
esther the flip with base at Py, € Zo or the flip with base at Py, € Z3 is an isomorphism.

Proof. In case two ideal entries with the same weight are positioned diagonally
such that they get multiplied when considering Pf;(M). Suppose that 7 = d;. Thus,
y1 occupies both the entries ags and as4. From Theorem [2.2.11| and since y; appears
linearly in those entries, we deduce that there is the monomial y7 in the equations of
Y1. Therefore, repeating the proof of Theorem [2.3.9] we have that W is an isomorphism
when restricted to Ys. Analogously happens for m = ds.

The weight 7 is never equal to ds or dy. O
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Remark 2.3.11. There is only one Hilbert series lying in case @ #5870, whose matrix
M is in the configuration |(A)l The codimension 4 Fano 3-fold of Tom type X corre-
sponding to #5870 lies in the weighted projective space P7(12,223%2 4,5). The Tom
centre considered is %(1, 1,2), therefore the generators yi,y2,y3, y4 of Ip have weight 5,
4, 3, 2 respectively. Here the second flip is skipped, namely the restriction of ¥3 to Y3 is

an isomorphism. In this case the weights of M (in Tom format) are

w | o
S| w
U | w

In general, it is possible to fill the four entries with weight 4 with four different polyno-
mials of degree 4 in Ip all containing y2. However, performing row/column operations
on M as described in allows to get rid of the two copies of y2 lying on the same
diagonal: in this way, we can end up having yo appearing in either entries a4, ass or
entries ags, agq only. Thus, Pf;(M) contains the monomial y%, which implies that the
restriction of W3 to Y3 is an isomorphism.

In conclusion, in this argument it is crucial that there is only one ideal generator
having weight 4. The concurrent presence of configuration and of two distinguished
ideal generators having the same weight will lead to different consequences in and

V)l

Although the majority of the Hilbert series of case @ falls in configuration ,
it also happens that the weights of M are in configuration neither nor In this
situation, both ¢ and 9 are flips. In particular, this means that the mobile cone of F;
coincides with the mobile cone of Y;. In contrast, the skipping of a flip shows that the
mobile cone of [y is richer than the mobile cone of Y7.

Theorem [2.3.8 and Proposition 2.3.10] can be also applied to the crossing of the
wall adjacent to de > ds: in particular, this wall crossing is either a flip or an isomorphism.

Consider the rank 2 toric variety F4: in case @ d3 > d4. The end of the link is

a divisorial contraction.

Lemma 2.3.12. Suppose that px = 1. If d3 > d4, the map ®': Fy — Gy is a divisorial
contraction of Yy to a Fano 3-fold X' C P’ C Gy.

Proof. Since px = 1, the exceptional divisor E/ of ®’ is irreducible. Thus, pxs = 1 as
well. Moreover, X’ is projective. In addition, — Ky is ample. Consider a curve I" in X’
that is not in the image of E' via ®' and that is not in the image of the union of the

right-hand-side contracted loci B; of the flips. Such curve can be always found because
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the set of curves of X’ lying in ®'(E’) and the union of the proper transform of the B;
has codimension 2.

The curve I' can be tracked back down to Y;. The divisor — Ky, is nef and big
(that is, Y] is a so-called weak Fano): this is because —Ky, = a1(—Kz, ), and the every
curve in Y] is either strictly positive against —Ky, and contracted to Z;; or is a flopping
curve. Therefore we have that —Kx/I' = —Kylf > 0, where T is the proper transform
of I', and is isomorphic to I'. O

2.3.1.1 Identifying the end of the link

Lemma [2.3.12] shows that ® is a divisorial contraction to another Fano. When the
determinant of the bidegrees of the right-hand-side irrelevant ideal of Fy is 1, it is possible
to find the Hilbert series associated to the Fano X’.

Analogously to Section the map ®': Fy — Gy is defined by all the monomials
in the linear system ‘(’)(f*’l)‘ The variable y4 will play the same role played by t for ®.
The restriction of ®' to Y, shows that the equations of Y constitute relations among the
new coordinates of G4. This means that some of the equations of Y, eliminate (globally)
some of the new coordinates of G4. The number, and the name, of such eliminated
coordinates varies case by case. The global elimination of the variable s’ = sy; of Gy,
for some exponent ¢, always happens: this is due to the fourth unprojection equation
sy4 = g4, that provides an expression of s’ in terms of the other coordinates of Gy.

This phenomenon might occur for other coordinates too, depending on each spe-
cific case. However, this shows that the weighted projective space I’ that is the ambient
space of X' is always strictly contained in G4. This calculates the ambient space of X”.

On the other hand, it is possible to track down the evolution of the basket of
singularities of X along the link, in order to deduce the one for X’. Specifically, the
basket Bx is equal to By, minus the cyclic quotient singularities of By, contained in the
exceptional locus E/ of ®'. Its basket and its ambient space determine the Hilbert series

of X’ univocally.

Remark 2.3.13. Studying the basket of singularities at each step of the link implies the
investigation of which singularities get contracted and extracted each time. This is not
always straightforward: we give the example of the Hilbert series #511 in Section [3.1.5]
in which the basket By is more complicated to find.

The equations of X’ can be found by rewriting the equations of Y} in terms of the
new coordinates of G4, and by excluding the ones used to perform the global elimination.
Usually, the equations of X’ retrieved in this way do not give the general member of the
Hilbert series of X', but just a special member of the family.

This calculation is shown explicitly in the examples of Chapters [3] and [4]
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Remark 2.3.14. Here we assumed that

ds da
-1 -1

det

In this case, we can still say that X’ is a Fano 3-fold, because Lemma [2.3.12]still holds.
In addition, by computing the exact evoultion of the basket of singularities along the

link, we can identify X’.

2.3.2 Proof of

This case splits in two situations according to the weights of the matrix M.

The first is when M has weights as in . Only two Hilbert series fall in this
instance, namely #1218 and #1413. For both, the equations of Y5 have a pure monomial
in y; (similarly to the phenomenon described in . Therefore the following holds.

Theorem 2.3.15. Consider the Hilbert series #1218, #1418 and the Fano 3-fold defined
by Tomy for both. Then, their respective Sarkisov links evolve as follows: 1 is a flop,

Uy restricts to an isomorphism 1y on Ys, ¢ is a divisorial contraction over Pgln’y?) c X',

Proof. By Theorem we have that 1 is a flop.

The weights of the matrix M of the two Hilbert series are as in Therefore,
y1, which is the only variable having degree d;, occupies both the entries ass and asy,
possibly added to a polynomial in Ip in degree d; involving the other variables: so
Pf1(M) is a polynomial containing y?. Using the same proof strategy of we see
that 19 is an isomorphism.

The last map is a divisorial contraction to another Fano 3-fold X', as shown in
Lemma 2.3.12]

Note that P! C X’ in any case. So there aren’t two distinct divisorial contrac-

Y2,Y3

tions, but only one polarised at IP’Zl/Q,y?). O

On the other hand, none of the other Hilbert series falling in d; > do = d3 > d4
come from M with weights. In this instance, the first flip 19 is performed by the

variety Y5 too, and it is followed by a divisorial contraction to X'.

Theorem 2.3.16. Let Zy be defined by a graded matric M in Tom format having weights

as in . Then the Sarkisov link for X (except the Hilbert series #1218 and #1413) is

constituted by: a flop, a flip, and a divisorial contraction to IP’ZI/Q:y3 c X'

Proof. We connect this proof to the one for Theorem [2.3.15] As before, 11 is a flop due
to Theorem [2.3.2, Since the weights of M are not as in , then the point P, belongs

to Zo, which means that Y5 is subject to the flip transformation o that occurs on Fs.
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Lastly, the same proof for Theorem [2.3.15 holds with regards to the divisorial contraction
o' O

2.3.3 Proof of [(iii)| and

Now we need to study the behaviour of the link in the case where d; = do. Both
and share the same behaviour regarding the crossing of the ray py, 4, generated by

y1 and y.

Theorem 2.3.17. Suppose di = dy. Then, there are two simultaneous flips based at two

points i Zs.

Suppose that Z; is in Tom; format: the i-th pfaffian depends only on the six ideal
entries of M. To fix ideas, let M be in Tom; format. Here we distinguish two different
situations that are the specialisation to |(iii)| and |(v)| of [(A)| and [(B)| We repeat the
shape of the grading of M to stress the fact that in this case we have two different
variables that fit the entries with weight d; = ds.

(a) The entries agq, ags, asq, ass all have the weight d; = do. So the weights of M are

o o di+o—17 di+o—T

d d
M= T ! ! : (2.20)
d dy
2d1 — T

(b) The entries ags,ass both have the weight di = da, while ag4, ags are free. So the
weights of M are

c dit+to—-v di+o—7 2di+o—T—v

d
M = ’ v ! . (2.21)
dl 2d1 — v
2d1 — T

Geometrically, ag contracts the locus As to a line IP’zl/l:y2 C Ga. So, the intersection

Ao NYs is mapped to ]P’?lhzy2 N Zs. In Lemma [2.3.19|and in Lemma [2.3.20| we discuss the
nature of the intersection Pélzyz N Z in cases and respectively. The idea is that
]P’él:y2 cuts out a rank 2 quadratic form in y1,y2, which determines two points in Zs.
Therefore, the variety Y3 is subjected to two simultaneous flips.

Proposition 2.3.18. There exists a rank 2 quadratic form in y1,y2 defined on Go that

determines two distinct points Py, Py in Zs.
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Proof. To fix ideas, let M be in T'om; format. Independently on @ and @, without
loss of generality we can assume that y; occupies the aos entry and that y» occupies the
asq entry of M. Note that the equations of Zs are in terms of ¢ as well, being the image

of Y5 via ao. If any of y; or ys is in one of the entries in the top row of the matrix, it will

1
Y1:y2*

Moreover, if y; and y» appear in other entries of M they will need to be multiplied by

surely pick up a t factor in the blow up of X, so it will vanish when restricted to P

some other variable.

Therefore, the quadratic form has to be found in the first pfaffian of M, i.e. it is
the restriction of Pf1(M) to P;}uyz' In particular, it is of the form y3 — y1y2 + y3 in case
(a)], whereas it is y? — y1y2 in case . Note that no other monomials, also coming from
other equations, survive the restrictions for the reasons explained above. For both @

and @ the two quadratic forms describe two distinct points on Zs. O

Lemma 2.3.19. Let Zy be defined by a graded matriz M in Tom format having weights
as in . Then, the following statements hold.

e If one of the two flips is toroidal, then the other one is also toroidal. Analogously, if

one of the two flips is an hypersurface flip, then the other one is also an hypersurface
Jtip.
e The two flips have exactly the same weights.

Proof of Lemma [2-3.19. Let M have weights as in [(a)] As in the proof of Proposition
2.3.18] it is possible to place y; and y» in the entries ags and as4 respectively. Thus by
looking at the pfaffians of M, locally at P, we can eliminate a potential linear term in
the entries a1z and ay5. Likewise, locally at P, we can eliminate a potential linear term
in the entries a13 and a14. Since a1s and a13 have the same weights, y; and y, eliminate
the same variable when localising at their respective coordinate points; or otherwise they
do not eliminate any variable in those entries at all. The same happens for the entries
a14 and aqs.

Note that the variables y3 and y4 cannot be eliminated, as they are always mul-
tiplied by a t factor on the top row, so they are not linear. Therefore, the birational
transformations at P; and P, can only be flips.

This proves that as contracts two loci of the same dimension: in fact, those loci
are isomorphic. In conclusion, the flip phenomenon is completely symmetrical over y;

and yo and the two points P; and P» in Zs. O

Remark 2.3.20. Let Z; be defined by a graded matrix M in Tom format having weights
as in @ Then, if one of the flip is toroidal does not imply that the other one is toroidal.
Analogously, if one of the flips is an hypersurface flip, then the other one is not necessarily

an hypersurface flip.
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In particular, the weights of each of the two flips could be different.

Proof of Remark[2.3.20} Let M have weights as in @ again, put y; and ys in the
entries ags and as4 respectively without loss of generality. Note that the weights in the
top row of M are all different. This implies that y; and yo cannot eliminate the same
variables, so the two flips at P and P» cannot have the same weights.

Moreover, suppose that a certain linear variable w occupies the entry a14. On the
other hand, w can appear in the a5 entry only if multiplied by a polynomial fg,_, of
degree d; — v. Thus, there is no hope for g to eliminate w, and therefore the two flips
can have different numbers of weights. In short, it is allowed to have a toric flip and an

hypersurface flip simultaneously. ]
The above statements prove Theorem

Proof of Theorem [2.3.17, Proposition 2.3.18| shows that the image of oy determines two
distinct points P, P> in Zs. In a similar fashion to the proof of Theorem @ it is
possible to prove that Ws: Fo — F3 is an algebraically irreducible flip. However, its
restriction to the variety Yo C o is constituted of two distinct components, each one

contracted to one of the two points Py, P € Z>.

Lemmas [2.3.19] and [2.3.20] clarify the nature of such components. O

Remark 2.3.21. Note that Theorem holds both if d1 = dy > d3 = d4 and
dy = dy > ds > dy. Essentially, it holds independently on how the link continues after

crossing the ray py, y,-

The continuation of the link is different for case di = do > d3 = d4 and dy = dy >
ds > dy. For the latter, item @ holds by Lemma, [2.3.12] For the former, we have that

Theorem 2.3.22. If dy > d3 = dy, then ® is a del Pezzo fibration over le/s,y4'

1

Proof. Consider the map of toric varieties ®': Fy — P In particular, F4 can be

Y3,Ya
written as
t S r1 T2 I3 Y1 Y2 Y3 Y4
d3 r+ds a b c do—ds do—d3| 0 0
-1 -1 0O 0 O 1 1 1 1

By definition, this is a weighted PS-bundle over P'. The intersection of Y; with the
general fibre of this bundle clearly has dimension 2, given that the variables y3 and yy
now act as parameters. Moreover, the restriction of Ky, to such intersection is still

ample. Therefore, ® is a del Pezzo fibration of Y over ]P)zlzg,y4' O

36



Lemma 2.3.23. The intersection between Yy and the general fibre of the bundle defined
by ®' is smooth.

Proof. Consider the generic fibre S of ®': it is a surface in Y;. Suppose S is singular. In
particular, its closure inside the 3-fold Yy is a line. Therefore, Yy would contain a whole

singular line, which is a contradiction with Y; being terminal. O

In Table we compute the degree of the general fibre of the del Pezzo fibration

in each case.

2.3.4 Proof of

Similarly to what happens in case , the weights of the matrix M influence the be-
haviour of the link. Again, the distinction made in @ and @ plays a crucial role.

Proposition 2.3.24. Suppose M has weights in configuration . Then, either 1
appears as a square in the equations of Ya, or ya appears as a square in the equations of
Ys.

Proof. Consider the configuration @ of weights of M, assuming the format of M to
be Tom; for the sake of simplicity. We have that Pf;(M) involves the multiplication
of two entries, ags and asq, having the same weight. In this instance, the entries ags
and asq have weight either dy or do, depending on the specific Hilbert series considered.
This time, in contrast to the proof of Proposition [2.3.18] by hypothesis we have only one
variable for each dy, do, namely, y; and ys respectively. Therefore, the quadratic form

defined on Gy (or Gj respectively) is y? (or y3 in turn). O

The majority of Hilbert series that fall into case of Theorem are such
that the weights of M are in configuration @ Therefore,

Lemma 2.3.25. If M has weights in configuration then either Wo or W3 s an

isomorphism when restricted to Yo and Y3 respectively.

Proof. From the above Proposition we have that either y? appears in the equations of
Ya, or y5 appears in the equations of Y3. Therefore, analogously to the proof of case
@l, the point P, does not belong to Z», or P, € Z3. So, the locus contracted by the
ambient space flip does not intersect Y5 (or Y3). In conclusion, either Wy or W3 is an

isomorphism. O

Remark 2.3.26. Only the Hilbert series #20544 falling in case [(iv)| has a weight config-
uration of type @ Since the only variable with weight do is yo, it is possible to cancel
out ys from the entries ags and agy4 via row/column operations. Therefore the equations
of X have the monomial y3. Nonetheless, no flip is missed. This is because, performing

the blow-up of X and then saturating over ¢, we have that the term y2 picks up a ¢ factor.
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Remark 2.3.27. The weights of the matrix M relative to the three Hilbert series #5516,
#5867, #11437 are neither in configuration @nor @ Therefore, both W9 and W3 are
flips for the varieties Y> and Y3 respectively.

The last map ®' of the link in case is a del Pezzo fibration, as proved in
Theorem [2.3.22)

2.3.5 Proof of |(vi)|

There are six Hilbert series having ideal variables with weights d; > do = d3 = dg4.

Proposition 2.3.28. The Sarkisov link starting from the Hilbert series #6865 is such

that the restriction to Yo of the birational map Vo is an isomorphism.

Proof. In the case of #6865, the weights of the matrix M are in configuration @
Therefore, in the same fashion as in the proof of , we deduce that the monomial y?
appears in the equations of Y5. This implies that Wy is an isomorphism on the variety
Ys. O

The other five Hilbert series falling in this case behave as expected.

Proposition 2.3.29. Consider the Sarkisov link starting from X as in one of the five
Hilbert series left in case . Then, the restriction to the variety Ys of the birational
map Vo is a flip for Ys.

Proof. From we see that the weights of M are neither in case [(a)] nor [(b)]
Thus, none of the ideal variables appears as a pure power in the equations of Ys. The
statement follows from the same reasoning contained in the proof of Theorem O

The end of the link in this case is constituted by a conic bundle over a projective

plane P? defined by the coordinates s, y3, y4.

2

Proposition 2.3.30. The map @' is a conic bundle over the projective plane Py ysua

Proof. Localise F3 to the projective plane P?(ds, d2,d2)y, ys.ys- Recall that the variable
s can be globally eliminated; this discards the four unprojection equations. We exclude

s from the following expression of Fs.

t 1 X9 I3 Y1 Y2 Ys Ya
d2 a b C d1 — d2 0 0 0
-1 0 0 O 1 1 1 1

At the level of ambient spaces, F3 is a weighted P*-bundle over P?. Above each point of

P2(dy, d2, d2)y, 5.4 it is possible to locally eliminate two variables among ¢, z1, x2, T3, y1
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via two of the pfaffian equations. The remaining three equations lie in the same principal
ideal generated by one of them. Such equation is a conic in the three surviving variables

of the fibre. The conic has coefficient in the base variables 2, y3, 4. O

2.3.6 Proof of [(vii)]

In this case there are no flips occurring in these Sarkisov links. They evolve as follows:
is n simultaneous flops by Theorem and it is followed by a divisorial contraction &’
to a Fano 3-fold X’ (as in Lemma[2.3.12). Localising Fy at P3(d}, d4) having coordinates

Y1, Y2, Y3, Y4 we have

t S r1 T2 T3 | Y1t Y2 Y3 Ya
d1 r—+ dl a b C 0 0 0 d4 — d1
—1 —1 O 0 o1 1 1 1

In particular, d4 — dy is strictly negative. Practically speaking, this is the detail that

makes @ a divisorial contraction and not a fibration.

2.3.7 Proof of

In casethe first n flops are followed by a conic bundle over P3(dy, d1, d1, 1)y, o ys.u4-
In this situation, a similar statement to the one of Proposition [2.3.30/holds, with an anal-
ogous proof.

All the links ending with conic bundles are summarised in Table [6.2]

2.4 Towards the analysis of Sarkisov links for Jerry

In this section we show how the techniques showed above for Tom change when M is in
Jerry format. In particular, we discuss the shape of the toric variety Fy (see Proposition
2.4.1)), and the behaviour of their Sarkisov links (see Theorem [2.4.5]).

2.4.1 The blow-up for Jerry

The case in which the matrix M is in Jerry format does not always present the same
phenomenon described in Proposition [2.2.6} this is because the unprojection equations
do not always have a monomial only in the variables z1, zs, x3.

Recall that a matrix in Jerry format, say J; ; to fix ideas, has a special entry u;;
called pivot. Therefore we have a distinction into two sub-cases depending on whether

the following condition is satisfied or not.

Condition 2.4.1. Let P be the degree of the pivot entry p;;. Consider the following

statement:
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There exists an ideal variable w of F such that deg(w) = P.
Hence we have the following Proposition.

Proposition 2.4.1. In the same hypothesis of Proposition[2.2.6], suppose the matriz M
defining Z 1is in Jerry format.
If Condition holds, the bidegree of w 1is (i). Without loss of generality

suppose w s yyq; then, the blow-up of X at Ps is contained in a scroll of the form

r1 X2 T3 Y1 Y2 Yz Y4
a b Cc d1 dg d3 d4 . (2.22)
o o o0 -1 -1 -1 -2

Note that the relevant weights are not necessarily in that order.
On the other hand, if Condition [2.4.1] does not hold, the scroll is of the form[2.5]

Analogously to the Tom case, to prove Proposition [2.4.1] we need the following

lemma.

Lemma 2.4.2. Let Z be a codimension 8 Q-Fano 3-fold defined by pfaffians of a 5 x 5
skew-symmetric matriz M in Jerry format. Consider the Type I unprojection of Z at a
divisor D. If Condition[2.].1] holds, then there exists one unprojection equation that does
not contain any monomial purely in x1, T, x3.

On the other hand, if Condition[2.4.1) does not hold, then each unprojection equa-

tion has at least one monomial purely in x1, T2, 3.

Proof. As in Section 3.8 of [Pap01], assume without loss of generality that M is of the

form
el ey bz as

e2 by as

M =
br ax
c

where e; & Ip, a;,b;,c € Ip are polynomials of degrees matching the gradings of M, and
¢ occupies the pivot entry. Following Papadakis [Pap01], there exists a 3 x 4 matrix @
such that

Pfg(M) Y1
Pfy(M) | =Q|
Pfs(M) Ya

40



where the y; are the generators of the ideal I'p and @ is defined as

Qi = Uy, (c)er — Vy, (b3)az + Jy, (b2)as
Qak = Uy, (Pf4(M)) = Pf4(Ny) (2.23)
Qsk := Uy, (Pf5(M)) = Pf5(Ny)

where with ¥, (-) we denote the coefficient of y;, in the polynomial in the argument and
Ny, are defined as in 2.8

For i = 1,...,4 call h; := det QZ the four determinants of the 3 x 3 matrices
obtained after deleting the i-th column of ). Lemma 3.8.1 in shows that there
exist polynomials K, L; such that

h; =e1 K; + (ageg — 63@3) L; 1=1,...,4. (2.24)

Define
gi = K; +a1L; 1=1,...,4. (225)

These are the right hand sides of the unprojection equations, that is sy; = g;.

We want to see in which cases the g; have or not a monomial in the variables
x1,Z2,x3. Definition [2.25] clearly shows that it is not possible to find it in the term a;L;
for all ¢, since a; € Ip. On the other hand, there are hopes to find it in K;. In order to
do this, we need to look closer at the matrix Q.

Look first at the two bottom rows of Q.

From how we constructed M in Subsection [2.2.1] every ideal variable y; occupies
alone at least one entry of M. Hence, at least one entry of N is 1. Then, when
computing the pfaffians defining the entries of the bottom rows of @, we have that at
least one monomial in each entry is in terms of x1, 2, x3.

We now distinguish two cases, depending on whether condition holds or not.

Suppose Condition [2.4.1] is satisfied. Therefore, the pivot entry is occupied by
one of the ideal variables only; call it w to distinguish it. Explicitly, ¢ = w. Thus, the
last column of @ is the vector (eq, 0, O)T. This implies that hq, he, hs are divisible by e,
so Kj =% and L; =0 for i =1,2,3.

Look now at the top row of Q). As already discussed, Q14 = e; € Ip. For
k= 1,2,3, ¥y, (c) = 0, and at least one between ¥, (b3) and 3, (b2) is equal to 1,
because at least one entry of Ny is 1. Therefore, from the definition of ()1 we deduce
that Q11, @12, Q13 € Ip, so hy does not contain any monomial only in therms of x1, xo, 3,
thus neither does K.

Now suppose Condition [2.4.1] does not hold. The polynomial ¢ in the pivot entry

is now a general polynomial of degree P on which we perform row/column operations
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in order to simplify it by getting rid of some terms. Such operations must not break
the Jerry format, namely, make monomials not in Ip appear in the ideal entries; in
particular, this happens when using monomials not in I as coefficients of the row /column
operations. This means it is not possible to get rid of the terms in ¢ of the form p - v
with u & Ip, v € Ip. Therefore, when calculating the entries of the top row of @, we

have that they have at least one term in x1, x2, x3, coming from the coefficients of ¢. [

Proof of Proposition[2.].1l Suppose that Condition [2.:4.1]holds. Lemma [2.4.2]shows that
the unprojection equation sys = g4 fails to have a monomial only in terms of 1, 2, x3.
Thus, the minimum in Definition 2.2.1] has to be achieved at a monomial containing at
least one ideal variable, as g4 only contains monomials of such sort. This means that the

degree of g4 is strictly less than dy4, i.e. there exists an integer coefficient v € Z such that
0y = deg(gs) +vr .

In fact, ¥ measures the least number of ideal variables (with multiplicity) appearing in

dy
-2

that v = 1. We need to look at the matrix Q). As in the proof of Lemma [2.42] the

bottom rows of () all contain at least one monomial in terms of x1, x2, x3.

the monomials of g4. In order to prove that the bidegree of y4 is ( ) we need to show

We want to show that there is one entry of the top row of Q) having at least one
monomial linear in the y. Surely, 6,, (c) = 0 for k = 1,2, 3. Moreover, for each k = 1,2,3
there exists j € {1,2,3} such that 6,, (b;) = 1. Each term of a; contains at least one
relevant variable. As proved before, the two bottom rows of the matrix ) contain at
least one monomial in x1,x2,x3 in each entry. Therefore, we want to show that there
exists at least one term in one of the first three entries of the top row of () having exactly
one ideal variable with multiplicity 1. Such monomial certainly does not appear in the
term oy, (c)er of 2.23]since ey ¢ Ip and ¥y, (c) is 1 if k = 4 and is 0 otherwise. On the
other hand, there exist k € {1,2,3} and z € {1,2} such that 9J,,(b;) = 1. Moreover,
up to a change of coordinates a2 and as contain a term that is exactly one of the ideal

variables. 0

Remark 2.4.3. The pivot entry always vanishes twice on the divisor D. This means
that whichever polynomial is in the pivot entry it has to vanish on D with order two.

Thus, the —2 in the bidegree of w can be interpreted as the order of vanishing of w on
D.

Remark 2.4.4. We can reformulate Proposition stating the following.

The unprojection equation correspondent to w is

SW = g(x17$27$3)y17y27y37y4) .
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If g|{yj:0}41; = 0, then the bottom degree of w is —2.
If g|{yj:0}41; = 0, then the bottom degree of w is —1.

2.4.2 Description of the link for Jerry

The classification of Sarkisov links in the Jerry case is determined also by the condition
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Theorem 2.4.5. In the same hypotheses and notation of Theorem suppose the
matriz M is in Jerry format. Let X be a codimension 4 Q-Fano 3-fold obtained as Type
I unprojection of Z at a divisor D. Suppose X has Fano index 1 and Picard rank px = 1.

The first step of the Sarkisov link run on X is a flop as in Lemma[2.3.2, Moreover,
if condition holds, the first flip of the link on wP” does not affect the variety. In
other words, the link for the Fano has an empty step.

Lastly, the Sarkisov link run on X does not break.

In the Tom case the shape of the scroll F suggests at first glance whether either
fibrations or simultaneous flips could occur or not by looking at the relevant top weights.
On the other hand in the Jerry case, if there exists a variable of F such that it generates
the same linear system as w this could lead to fibrations or simultaneous flips even when
the relevant top weights of IF are all different. This makes the treatment of the Jerry case
very difficult to systematise, as every specific example looks different from the others.

Theorems 2.1.1] and 2.4.5] both imply the following:

Theorem 2.4.6. Let X be a Fano 3-fold in codimension 4 in either the hypotheses of
theorem [2.1.1] or of Theorem [2.4.5. Then, X is not birationally rigid.
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Chapter 3

Examples of Tom and Jerry links

In this section we present several explicit examples of Sarkisov links for codimension 4

Fano 3-folds of Tom type, highlighting the main phenomena described in Theorem [2.1.1

3.1 Tom examples

3.1.1 Example for @ #10985, Tom;

In this subsection we examine the Sarkisov link constructed from the pair (X, p) where
X is the Tom type Fano 3-fold associated to the Hilbert series #10985 and p € X is the
Tom centre %(1, 1,1). The Tom centre is chosen among the basket of singularities of X
shown in the [BKT15], which is Bx = {(1,1,1), 2(1,1,5)}. The ambient space of X is
IP’7(13, 2,3,4,5,6), with coordinates x1, x2, x3, S, y4, Y3, y2, y1 respectively. The divisor D
is D = Py, 4,.25(1,1,1), defined by the ideal Ip = (y1,y2,y3,y4). If the matrix M is in
Tom; format, then D C Z;.
In [BKRI12b| we see that the nodes on D are 24, and that the weights of M are

12 3
3 4

3.1
i (3.1)

N o ot e

To summarise, we are looking at the following varieties:

#10985 X CP"(1%,2,3,4,5,6) codimension 4 {3(1,1,1),4(1,1,5)}
#10962 Z; CP%(13,3,4,5,6) codimension 3 24 nodes on D

We fill the entries of M with linear terms as much as possible: the more detailed

explanation of this process is in Subsection 2.2.1] This means that we aim to put ideal
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variables in an ideal entry having their same weight, and do analogously for the orbinates.
The rest of the entries can be occupied by general polynomials in the given degrees,
accordingly to the Tom; constraints. These polynomials can be eventually slimmed up
by performing row/column operations as explained in In this specific case, we end

up with the following explicit matrix

3 4
T1 —X2T3 —XTH+Ys —T3+ Y3

M= e b2 (3.2)
ToYs — Y2 Y1
53%2/4

In particular, Z; has 24 nodes. The matrix M is built following what we explained
in Section 2:2.I] The unprojection algorithm produces nine equations, defining X, as
outlined in [I.2.4] Explicitly, the equations of X are

T1T3Ys — T3Ys + Tox3ys +yi — w1y2 = 0

T3Ys — Tax3y2 — Yays — T1y1 = 0

T3ys — T3y3 + T3y2 + Y5 — yay2 = 0

36%902373:94 + x%ﬂﬁgyz - w%yg + xlxgyl — x§y1 +y3y2 +yay1 =0
o1yf + 23yay2 — Y3 — ysy1 = 0

—x%xg + x1m§ —x1ys +yas =0

6 5 6 3 _
—T] — T1Ty + To — ToYs + T1Y2 — Y35 =0
5 2.4 3,4 2 3 _
TIToT3 + T1T5T3 — THT3 — T1T5Y3 + ToY3 + T1y1 + Y25 =0
4,22 3,.5 8 5 3 4 3 _
Tirowy + wHx3 — X3 + X7Ys — Tow3Y3 + T3Y3 + roy2 + T2x3y1 — Yay2 — y15 =0

(3.3)
Proposition [2.2.6] shows that the blow-up Y7 of X at the Tom centre p = Ps is

contained in the rank 2 toric variety 1 with weights

t s|x ®2 X3 Y1 Y2 Y3 Y4
021 1 1 6 5 4 3 . (3.4)
11,0 0 0 -1 -1 -1 -1
The Mori cone of [y is given by the linear systems defined by the variables ¢, s, x1, 2, x3,
Y4, Y3, Y2, y1, that is, F; is associated to a fan generated by the lattice vectors p:, ps,
Pr1s P> Prss Pyis Pyzs Pyss Pya Tespectively. This defines a ray-chamber structure that will

describe the link at the level of the rank 2 toric varieties F;.
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€1,T2,T3

Y1
Y4 Y3 Y2

The Kawamata blow-up of the Tom centre P; is induced by the map ¢

®:F, — P7(1,2,3,4,5,6)
1 1 1 5 6 7 8 (35)
(t, 8,21, @2, 23, Y1, Y2, Y3, Ya) —> (2112, 2012, 2382, yat2, yst2, yot2, yit2, s)

Consider the pull-back of the equations [3.3] of X. The ideal of Y is defined as
the saturation over ¢ of the ideal of ®*(X), as in Definition [2.2.2]

Explicitly, after saturation we have the equations for Y

—tw1y3 + sys + 1175 — Tars =0
ty; + x123ys — 1y2 — T3Ys + Tow3y3 =0
twrys — tedys — sys — af —x123 + 2§ =0
—tyays — T1Y1 — T2T3Y2 + x5ys = 0
B 2 3 5 2.4 3.4 _
tr1xsys + tr1yr + tryys + sy + xiwexs3 + T1X573 — THT3 =0
—tyayz + ty3 + x3ys + x3ys — tagys = 0
—t2yays + talys — triways + tadys + twewsyr + tadys — sy1 + xirdad + 2323 — 2§ =0

tyayr + tysys + TiTeTays + 1123Y1 + T3X3Y2 — THY1 — ThYy2 = 0

| 2193 + 23yaye — ysy1 — 95 = 0
(3.6)
The birational link for wP7 is obtained performing a variation of the GIT quotient

on Fy, as outlined in Chapter [2}

From Theorem we have that the map ¥y is given by 24 simultaneous flops
based at the 24 nodes of Z;. Such flops arise when crossing the wall associated to the
variables x1,xo,x3, that is, they arise from transitioning from a chamber adjacent to
the lattice vector p,, to the other adjacent chamber. This is obtained by changing the
irrelevant ideal of Fy.

Note that since the weights of M are in configuration , then either v or
1)3 is an isomorphism by Proposition In particular, by looking at the equations
of Y7 we notice that y» appears as a pure power: this implies that 13 is an isomorphism.
In order to study 2 we need to localise at P,, € Z3. This means that we look at

the equations [3.6]locally analytically in a neighbourhood of the point P,, € Zs.
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Practically, we treat y; as a local coordinate, so we perform row operations on [Fy
in order to write the weight of y; as either (iol) or (fl). To do so, we add six times the
second row to the first row of 3.4} the grading of Fo becomes

t s x1 x2 3| Y1 Y2 Y3 Y4

6 8 1.1 1|0 -1 -2 -3

110 0 O|-1 -1 -1 -1

Recall from that the weights of the flip at the level of the rank 2 toric va-
riety is (6,8,1,1,1,—1,—2,—3). This notation stands for the contraction by as of
P§787$17$2@3 (6,8,1,1,1) to the point Py, € Zy, and the extraction by 2 of P§2,y3,y4(1’ 2,3)
from P, . However, the intersection P§’87x2713(6,8, 1,1,1) N Y3 can be a much smaller
projective space than P*. Analogously, this might hold for IP;%M(L 2,3) N Y3. We can
understand those intersections, and deduce the weights of the flip for Y5, by using the
following argument.

Every isomorphism in codimension 1 ¥, is based at a point (or a projective line)
in G;. Localising at such a point (or at the points constituting the intersection of the
projective line with Z;), and using the equations of Y; it is possible to write some of the
variables as function of the others.

Examining the equations of Y5 locally analytically at a neighbourhood of P, € Z3
and considering y; as a local coordinate, we can set y; = 1 in the equations [3.6] Some
linear monomials will emerge in the equations of Ys evaluated at y; = 1: those variables

appearing linearly in YQ‘ can be expressed in terms of the other variables locally

analytically. Thus, we carllﬂlolcally eliminate them. In this specific case, the evaluation of
[B:6] at y; = 1 shows that s,z1,y3 appear linearly. Therefore, the weights of the flip for
Y5 are (6,1,1,—1,—3), associated to the variables t, x2, x3, y2, y4 respectively.

Observe that it looks like that as contracts a 2-dimensional locus inside Y5 to the
point P, thus ap does not seem like a small contraction, as required in flips. However,
among the equations left after the local elimination process there is one involving ¢ and
yq: that is Pfo = 0. This means that there is an equation cutting out the contracted
locus by one dimension.

In conclusion, 9, is a flip having weights (6, 1,1, —1, —3; 3), where the last 3 in this
notation tracks the degree of the equation involving the monomial ty4. In other words,
a weighted projective space Pt 4, 4,(6,1,1) containing a hypersurface of degree 3 with
coefficients in Py, 4, (1,3) is flipped to Py, ,,(1,3). In particular, a £(1,1,5) singularity
in Y is contracted to Py, via as, and a 1(1,1,2) is extracted in Y3 from Py, via 3.

This is a hypersurface flip. Despite the fact that there are three surviving equa-
tions after the elimination process, the equation cutting out P4, »,(6,1,1) is only one:

the other two are multiples of it. This means that Pfs is the generator of the principal
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ideal of Y on Pt 4, 44(6,1,1).

As already mentioned, the map ¥3 based at P, certainly defines a flip from F3
to Fy, but one of the equations of Y3 contains the monomial y3, that is, P,, does not
belong to Zs. Thus, Y3 is not affected by this flip. We call this phenomenon an empty
step of the Sarkisov link.

The last map of the link is ®': F4 — G4. This is the map constituted by the basis
of the linear system (_41), which contracts the exceptional locus E' = {y4 = 0} to the
point Py, € Gy4. Explicitly, it is

' Fy — Gy, =P(1,1,1,1,2,3,3,5) (57)
(t75>$17$27$37y1792,y37y4) — (xly4,$2y47$3y4793,92947%?/2,@2:3%?) .

The exceptional locus E’ is isomorphic to P7(4,6,1,1,1,2,1) with coordinates
t,s,x1, X2, T3, Y1, Y2 respectively: their weights are retrieved performing a localisation at
P,,, in the same fashion as above. However, the intersection E' NYj is P3(1,1,1,1), as
we can eliminate the variables ¢, s, y1 locally analytically in a neighbourhood of P,.

We call X’ the push-forward ®/,(Yy) of Yy via ®'. Practically, y4 plays the role for
®’ that ¢ played for @, being the extra variable needed to perform a blow-up: in this case,
@’ blows up the point Py, € X’. The equations of X’ are therefore given by evaluating
the equations of Yj at y4 = 1. Observe that this shows that the variables ¢ and s can be

algebraically expressed as functions of the other variables: two equations of Y4| are

removed in order to perform this global elimination. o
Call g; for i € {1,...,8} the coordinates of G4: the equations of X' are expressed
in these coordinates. Since we globally eliminated two variables thanks to the equations
of X', we deduce that X' C wP' C Gy, where wP' := P5(1,1,1,1,2,3) with coordinates
S1y-..,56. So, ® restricts to ¢': Yy — X' C P5(1,1,1,1,2,3).
If we consider the minimal basis of the ideal generated by the surviving equations

of Y4‘ we have that the explicit equations of X’ are

ya=1

16364 — S164S5 — 166 — S954 + $26357 — S26365 + 65 = 0 (3.5

S+ 6365 —qus6 — 2 =0
Note that the above equations both have degree 4 in wlP’.
In addition, it is possible to keep track of the singularities throughout the link.
That is: X has $(1,1,1) and £(1,1,5) singularities. After the blowup @, Y7 has only a
singularity of type %: this holds for Y3 too, as the basket does not change after the flops.
The hypersurface flip ¥y replaces %(1, 1,5) with %(1, 1,2), so Y3 has one singularity of
type %; same for Yy, given that Y3 and Yj are actually isomorphic. Lastly, ¢’ contracts

a smooth locus, so the % singularity of Yy is maintained in X",
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Now that we know the equations of X’ and their degrees, the basket of X and its
ambient space we deduce that X' is a representative of the family #16204 in [BK™15],

which is a Fano 3-fold in codimension 2.

Remark 3.1.1. Note that the Sarkisov link described above is of Type IV according to
the notation in [HM13].

3.1.2 Example for #20652, Tom;, case @

Consider the pair (X, p) where X is the Tom type Fano 3-fold associated to the Hilbert
series #20652 and p € X is the Tom centre %(1, 1,1).

The Tom centre is chosen among the basket of singularities of X shown in the
[BKT15], which is By = {3 x 1(1,1,1)}. The ambient space of X is P7(1%,23), with
coordinates y1, y2, 1, T2, 3, Y3, Y4, s respectively. The divisor D is D = Py, 4, ,(1,1,1),
defined by the ideal Ip = (y1, Y2, y3,y4). The matrix M is in Tom; format, and D C Z;.

The nodes on D are 7, and the weights of M are

1 1
2 (3.9)

N N
N NN

Concisely, we are looking at the following varieties:

#20652 X CP7(15,2%) codimension 4 {3 x $(1,1,1)}
#20543 71 C P(1°,22) codimension 3 7 nodes on D

In a similar fashion to the previous example, we can construct the matrix M in
Tomy format. For #20543 it is

Tl T2 T3 Y3
T — X
M= Y1 Y2 2Y4 ) 3Ys + U1 (3.10)
T1Y3s — Y2 Ygs — Y2
r1Ys + Y1
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The nine unprojection equations defining X are

($§y3 — XTow3ys + T1y1 — 223Yy1 + T1Y2 + T2y2 + y3y2 = 0
Ta3Y3 — T3Ys + T1Y] — Tay1 + Yay1 — L1y2 = 0
T1T9y3 + T1Y35 — T3y + Tay1 + T3y2 — y3y2 = 0
x3ys + T3y1 — T1Y2 — Tay2 = 0
—z12% — 23 — 273 + viys + X172y — T1X3Ys — T2T3Ys + Y35 = 0
—23 + 2279 + 1173 + 22373 + T1T273 + TIT3
+x3 + 2ys + 2122y3 + T1Y1 + ToY1 — T1y2 — Tay2 + T3Y2 — yas =0
T1T3Ys — T1YRYs — TIYT — T3YT + T3 + T122y1 4 Tax3y1 + T1y3
—Tayay1 + T1Y2 + T3Y2 — Tayays — T3yay2 + Y3yay2 — Yiya + Ui — Y1y2 + 3 =0
aixy — xiawsey + xiroys — v122w3y3 — wYs + 207034 + T3y
+Tox3Y1 — T1T2Y2 — T3Y2 + TaT3Y2 + T3Yay2 — Y25 =0

2.2 2 2 2 2 2 2
atas 4 2125 + wirws + 23 Toys + 212035y3 + 2Tw3Ys — TYs — TiToys — 123U

—x2$§y4 + w§y1 — X1T2Y2 — l‘%yQ — T1T3Y2 — T2T3Y2 — T1YaY2 — Toyay2 + Y18 =0
(3.11)
From Proposition 2.2.6] we have that Y} sits inside a rank 2 toric variety F; having
weights
t s|x ®2 X3 Y1 Y2 Y3 Y4
o211 1 1 2 2 1 1 . (3.12)
11,0 0 0 -1 -1 -1 -1
This time, the Mori cone of F; is given by the following fan

t S

x1, X2, T3

Y1, Y2
Y3, Y4

The Kawamata blow-up of the Tom centre Ps is the map ®

: F; — PT(1°,2%) (313
3.13
(t757x173327$37?/17927y3794) = ('rlt%7x2t%7x3téay4t%7y3t%)y?t%7y1t%7 S)
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The expression of ® having integer exponents of ¢ is

o: F, — P7(1°,23) (514)
(ta S, L1,X2,23,Y1,Y2,Y3, y4) — (:L‘lta $2t7 l’gt, y4t25 3/3752» y2t37 yltga St)

Therefore, the equations of Y7 are

23y3 — Tax3ys + T1Y1 — 203Y1 + T1y2 + Taya + tysyz = 0

Tox3ys — T3Ya + tr1y; — Toy1 + tysyr — 212 = 0

T172y3 + tr1ys — tesyi + Tayr + T3y2 — tysyz = 0

23y + T3y — T1y2 — Tays =0

—2123 — a3 — 2223 + tays + tr130ys — tx173Ys — tT2T3Ys + Y35 = 0
—2} + 2220 + 1122 + 22303 + 217003 + 203+

o3 + todys + tr1woys + triyr + troyr — tr1ys — troys + trsys — yas =0
T125ys — riy3ys — tely; — tedy] + Pasyd + 2100y1 + Toa3y1 + tr1y3y
—txoyayr + T3y2 + 232 — troyays — trsyays + 2ysyaye — 2Yiye + ty7 — tyr1ye + tys =0
x%x% — xla:%xg + tCC%:IZng — txr1T223Y3 — t$z1)’y4 + 2t$%x3y4 + tx§y4+
traxsyl — tr122y2 — tT3ys + traxsys + t2x3yays — y2s = 0

2,2 3 2 2 2 2 3 2 2
175 + 1175 + r7Tox3 + tr{xoys + tx1x3y3 + trxir3ys — triys — triToys — tX1T3Y4

—txoa3ys + twiyr — tr1ways — trdys — tr1x3Y2 — tT2T3Y2 — tT1Yay2 — tToyays + y15 =0
(3.15)

The variation of GIT on F; will give the 2-ray game.

Theorem [2.3.2] guarantees that Wy is given by 7 simultaneous flops based at the 7
nodes of Z;. In terms of the ray-chamber structure of the fan of Iy, we are crossing the
first ray p,, for i € {1,2,3}.

Observe that the weights of M are in configuration @: from Proposition
we know that there is a quadratic form determining two points Py, P € Zs,
constituting the intersection Zs N IP’%/LyQ. Thus, Lemma shows that the pencil of
@1/17y2 C Go restricts to two flips with base P; and P» respectively. So
we look locally analytically in a neighbourhood of Py, P» € Z5. Carrying out the same

flips along the line P

manipulation of Fo done in the previous example, we have that the grading of Fs is
r1 T2 X3 | Yr Y2 Yz Y4
11 1/0 0 -1 -1
0O 0 0|-1 -1 -1 -1

The weights of the flip of rank 2 toric varieties based at IP’;NJ2 are (2,4,1,1,1,—1,-1),
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where ay contracts Py, , .. .. (2,4,1,1,1) to ]P’él,yy and fo extracts Pi}/37y4'

Now we look at the equations of Y] locally analytically at a neighbourhood of
Py and P; respectively, in order to understand the intersections ]P’fis’xh 2,4,1,1,1)N
Y5 and ]P’;?”y4 NYs.

We see that equation #9 and equation #8 of [3.15] make the variable s to be

expressed in terms of the other variables at P; and P> respectively: therefore we say that

2,23 (

s is eliminated algebraically at P; and P». Similarly happens for x1 using equation #1 of
[B.15] On the other hand, we can use either equation #2 to eliminate z9 at Py, or equation
(2,4,1,1,1) N Yo

is formed by two disjoint loci, generated by t,z2 and t,x3 at P, and P respectively.

#3 to eliminate x3 at P». We see that the intersection IP’;{S’IIMM

Nonetheless, they determine two projective lines P*(2,1). The fact that this elimination

process has not excluded y3 nor y4 shows that Pz}fs,y . C Ys.

Note that the variable ¢ does not get eliminated. This is because in equation #7
of the polynomial ¢ (y% —y1y2 + yg) appears: the variable ¢ could be eliminated only
if y? — y1y2 +y3 # 0, but Py and P are exactly the two solutions of y3 — y1y2 + y3 = 0.

In conclusion, Wq restricts to two simultaneous Francia flips (2,1, —1,—1) based
at Pp, Py € Zs, as anticipated in Remark [2.1.2] In particular, two cyclic quotient singu-
larities of type %(1, 1,1) in Y5 are contracted to P; and P, respectively via g, and [
extracts a smooth locus in Y3. Therefore, Y3 is a manifold having Picard rank 2.

The last map of the link is the fibration ®': Fy — P;S’y‘l. Recall that —Ky; ~

(@) (((1))) If F is a general fibre of ', then by adjunction we have that Kp = (Ky, + F) ‘F =

Ky, Thus, K is ample, I a del Pezzo and, as a consequence, ®’ a del Pezzo fibration.

I
Note that the unprojection variable s can be globally eliminated over each general

1
Y3,ya®

the del Pezzo fibration sits inside a projective space PS with coordinates t, z1, 2, 3, y1, ya.

point of P There is no other elimination that can be made. Therefore, the fibre F' of
The matrix M has become a matrix of linear forms in these variables. The equations of
F are the five (quadratic) maximal pfaffians of M. Therefore, the degree of F, and of
the del Pezzo fibration, is 5.

3.1.3 Example for : #574, Tom,, case @

Consider the pair (X, p) where X is the Tom type Fano 3-fold associated to the Hilbert
series #574 and p € X is the Tom centre %(1, 3,4).

The basket of singularities of X shown in the is Bx = {3(1,1,2), £(1,1,4),
1(1,2,3),2(1,3,4)}. The ambient space of X is P7(1,3,4,5%6,7%), with coordinates

x1,%2, %3, Y4,Y3,Y2, Y1, S respectively. The divisor D is D = Py, 4, 2,(1,3,4), and the
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matrix M is in Tom; format, whose weights are
3 4
5

(3.16)

N O | Ot
© 00 3|

There are 8 nodes on D. In short, we are looking at:

#574 X CP7(1,3,4,5%,6,7%) codimension 4 {£(1,1,2),+(1,1,4),%(1,2,3),2(1,3,4)}
#568 Z; CP5(1,3,4,5%,6,7) codimension 3 8 nodes on D.

Construct the matrix M in Tom; format as follows

T2 T3 —x]+ s —x3 — 21Ys + Yo
M — Y3 Y2 n (3.17)
—T1Y2 — Y1 —X2Y3 — X2Y4

—ﬁ’yQ + X3Y3 + T3Ys — T2Yy2

Thus, the nine unprojection equations defining X are

T3Y3 + T1T2Y2 — Y3ya + T3y2 + T2y1 = 0

23ys + 323ys + ST1y3ys — Sysye + Sw3y1 =0

23y1 — wiwoys + Tox3ys + Toways — 23y — T1YaY2 + Y3 — Yayr =0

—ax3 — afwoxs — 2l — 205 + x1w0x3 + x5 + Towsys + 23Y2 + Y35 =0

afwy — 20803 — xlys + 2fys — 20803 — wlwoys + 2y

—awsys — 4] + 212003 — 2123ys + 23 + Tow3ys + Towsys + 203ys — Yays — yas =0

36*?562?;4 + $?$3y2 - 2961903242 - x%y4y2 - $§y3 - x§y4 - 902yz + wly% - 21‘%,@1 —Z1yay1 + y2y1 =0
w102y — xfa3 — 2fwoys — 2¥y1 + alwoys + wixsys + 23as

—1T9T3Y3 — T3Y3 — T3y — 205Y1 + Yay1 + yas =0

T3Ysys — T3Y3 — T3Y3ys — Tayay2 + T1y2y1 + Y3 = 0

8,.2 5.3 _ .7 5 3,2 4 3 2 2,.2
—x7x5 — 2x7x5 — T1Y1 + 207T2y2 + TITY4 + TIT3Y2 + T1X5X3 — T{T2X3Y3 + THT3

| —z123ys + 203ys — 212223y — 20123Y1 — 23Y2 — Tayaye + T1y2y1 — Y15 =0
(3.18)

The rank 2 toric variety 'y has weights

3 4 7 6 5 5 |. (3.19)



The Kawamata blow-up of the Tom centre Ps is the map ®

d: F, — P7(1°,2%) (3.20)
, , . (320
(t,s,01, 2,23, Y1, Y2, Y3, Y4) —> (:clt%,xgt%,mgt%,y4t172,y3t172,y2t%,y1t%,3)

which is equivalent to

®: F; — P7(15,2%) (321)
(t7 S, %1,22,%3,Y1,Y2,Y3, y4) — (l‘lt, l‘2t3, l’3t4, y4t67 y3t6a y2t7> y1t87 Stﬁ)

The equations of Y; are

23ys + T122y2 — tysys + x3y2 + Toys =0
23ys + 323ys + Stwrysys — Stysye + Sxsyr =0

25y — 23Tys + Tow3Y3 + Tox3Ys — 223Y2 — tr1yay2 + ty3 — tysyr =0

—x?$% — .’E?Cﬂgl’g — m‘%az% — 2%‘% + 1‘1122.%% + xg + txoxsys + tx%yg +1y3s =0

x§x3 — 2:6?:1:% — tx{y4 =+ t:n?yz — 21“;’33‘% — tw%mzyzl + tw‘i’yl - tx§m3y4

—4al + zywow} — 2tw1a3ys + T + twowsys + twawsys + 2tadys — tPyays — yas = 0

23 Toys + xT3Ys — 201052 — triyaye — T3y — T3Ya — tway; + tr1ys — 223y1 — tr1yays + tyays = 0
x%oxg — x?x% — ta;i’a:gy4 — tx?y1 + tx‘lla:gyg + tx?x3y2 + x%xg — tr1T223Ys3

—ta3ys — twaxsys — 2ta3yr + Yoy + yas =0

T}ysy2 — T3Y3 — T3Ysys — Tayayz + T1y2y1 + Y5 =0

—a¥2d — 22323 — talyr + 2tadways + trdadys + tairsys + v1adws — trdvezsys + v373

\ —t:clx?;,yg. + 2t:1:%y4 — X1T2X3Ys — thlxgyl — tw%yg — t2$2y4y2 + tr1yoyr —y15s =10
(3.22)
From Theorem [2.3.2] we have that Wy is given by 7 simultaneous flops based at
the 7 nodes of Z;.
The restriction of the map W9 to Y3 is an isomorphism, by Theorem [2.3.9] The
map V3 is instead an hypersurface flip, having weights (1,3,1,—1, —1;5). Here a hyper-

surface (a curve) of degree 5 in P%hxz&l with coefficients in the variables y3 and ys is
flipped to Pll/?”y .; 1t has degree 5 because it contains the monomial m%yg coming from Pfs.

The final map @' is a del Pezzo fibration over P! .~ (Theorem [2.3.22)).

Y3,Y4
The scroll Fy localised at Pé&y , 18

34 2 1 0 0 |. (3.23)
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Remark 3.1.2. Note that x3 appears only in the entries mi3 and mys of M. Moreover,
by Proposition [2.2.10| we have that ¢ does not appear in the entries mi2,m13, and m;; of
af (M) for 4,5 > 1.

As a consequence, Pf; eliminates x3, and Pf5 eliminates ¢ over the function field
k(y), for y := Z—i. These two variables are both eliminated globally. In addition, s is also
eliminated globally thanks to the unprojection equations.

Therefore, the general fibre of @' sits inside the P3(1,3,2,1) having coordinates
respectively x1, x2,y1,y2. In particular, the eliminated variables ¢ and x3 have weight 5
and 4 respectively in the general fibre of @',

In this weighted projective space, the surviving pfaffian equations Pfy, Pfs, and
Pf4 have degree 8, 6, and 8. Since, from Theorem , the fibre of @’ intersected with
Y} is a smooth surface S, then S is defined by the degree 6 Pfs: so S = Vg C P3(1,3,2,1).

Therefore, it is a del Pezzo surface of degree 1 (cf [Isk77]).

3.1.4 Example for : #16227, Tom,

Let X be the Tom type Fano 3-fold associated to the Hilbert series #16227 and p € X
be the Tom centre %(1, 2,3).

The basket of singularities of X shown in the [BKT15| is By = {1(1,2,3)}. The
ambient space of X is P7(14,22,3,5), with coordinates x1,y4,y3, y2, Y1, T2, T3, § Tespec-
tively. The divisor D is D = Py, 4, +4(1,2,3), and the matrix M is in Tomy format, with
weights

111 2
2 2 3
(3.24)
2 3
3
There are 4 nodes on D. We focus on the following varieties.
#16227 X CP7(14,2%,3,5) codimension 4  {}(1,2,3)}
#16226 Z; C P%(1%,22,3) codimension 3 4 nodes on D
The matrix M in Tomsy format is
1 Y2 Y3 U
2
M= yre gsTE (3.25)
Y1 —T1Y3 —Yg — L2Y4

—23ys — U3 + y3 + i

After performing the unprojection at D = P2(1,2,3), we blow up X at the Type
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I centre P; € X of type %(1, 2,3). The equations for Y] are therefore

t*y2y3 — T1y1 + T2y2 — T2y3 =0

aYys + 2a1yd + 2122ys — 2oy1 + T3y2 =0

2ty + tys — x7y3 — oyl — Yyl — T1y1y3 + Tayays — v2y3 — Taysys — yi =0
w3y + Prrys — tPriys — oyl — Py1y3 — zoy1 +a3yz =0

t2atys + try3ys — pizays — moyd + wwoys + 2oyl + xoyiys + 122x0yF + 23ys + w31 = 0
—tzty? + 322y2y? + traoy? + Briyiysys + trizeyiys

—2tx%yi — txlxgyi — a:% — 217923 — Yo2s =0

—tx‘llyz — t%%y%yz — 37‘11:52 — tx%xgyg + 2t3x2y§yz + tm%yg

+2tagy] — twrwsyi + a3+ yzs =0

—2f — xlys + 23y3 + Y3yl + 20wy + Tays + Tayiys + Taysyd

—23Y5 + x5y3 — w1203Y3 + T3Y3ys + 23 — yas =0

—:c:{’ygygyi - $1y§’y3yz + xi’y%yi + 361?/392 - $?$2y2y3 - x1w2y§’y3 + 23:*;’562%%

+2122Y5Y3 — T1T2Y3Y7 + T1T2Y3Ys + T3x3 + 2123Y3 — 1123Y3 + 2x073Y5 + 2373 + Y15 =0

in the rank 2 toric variety [F; having weights

t s|x1 x2 X3 Y1 Y2 Y3 Y4

051 2 3 2 1 1 1

11,0 O O -1 -1 -1 -1

The map 1 is formed of four simultaneous flops, whereas the map 1o is an isomorphism
on Y3, as in Theorem [2.3.9

At the level of toric varieties, the map 13 is a fibre bundle ¥3: F3 — P2(1,1, 1)y, ys.44-
We are interested in studying the fibres of such bundle.

We see that, locally at general points in P2(1, 1, 1)y, 444, it is possible to globally
eliminate the following variables: s from the unprojection equations, xo from Pfs, x3
from Pf3.

Over the general point in P?(1,1,1),, 4, 4, there is a conic in the remaining vari-

ables t,x1,y1 given by Pfy. This is a quadratic form defined by the 3 x 3 matrix A in
Y2, Y3, Ya

Y3 — Y2ys — YsYi + Y33 — y2u3 — Yausua 0 0
0 Y3 — U3 —2(y3 + y2ys + Y3 + y3ya)
0 —%(Z/:s + yoys + y§ + Y3ya) -1
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and the explicit quadratic form is given by

Y1

The conic bundle we obtain sits inside the P2-bundle over P?(1,1, 1)y, 45 4

t x oy | Y2 Y3 Y4
1 1 110 0 O

-2 -1 0|1 1 1

We want to compute the discriminant A of this conic bundle. The fibre at a general
point of P2(1,1,1),, 4, 4, contributes 6 to the discriminant. This is because the degree of
the determinant of A is 6. Therefore, A > 6.

The behaviour of the special fibres of 13 determines the exact discriminant. Sub-
divide the base of the conic bundle in two affine patches: {yo = 0} and {y, # 0}. At
{ya # 0} the contribution to the discriminant is 6, as we explained above. At {ys = 0} in-
stead, the fibre is singular, therefore this contributes by 1 to the discriminant. Therefore,
A=T.

3.1.5 Example for (i)t #511, Tom,. The basket of X’

Consider the Tom type Fano 3-fold X associated to the Hilbert series #511 and p € X
is the Tom centre (1,3, 11).

The basket of singularities of X shown in the [BK™15| is Bx = {%(1, 1,5), ﬁ(l, 3,11)}.
The ambient space of X is P7(1,3,5,6,7,8,11,14), with coordinates 1, z2, Y41, Y3, Y2, Y1,
x3, s respectively. The divisor D is D = Py, 4, 2.(1,3,11), and the matrix M is in Tomy

format, with weights

~N O

8
9

© o0

10
11

There are 7 nodes on D. We focus on the following varieties.

#511 X CP7(1,3,5,6,7,8,11,14) codimension 4 {%(1,1,5), ;(1,3,11)}
#510 7Z; CP%1,3,5,6,7,8,11)  codimension 3 7 nodes on D

The first 7 flops of 11 are followed by the hypersurface flip with weights (1, 3,11, —2, —3;9)
of 19. Then, 15 is the flip (1,3,—1,—2), and ®': Y, — X' is a divisorial contraction
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to a point in X’. In a similar fashion to the example for case @ in Section , the
ambient space of X’ is P’ = P4(12,2,32). Therefore, X’ = X9 C P/ = P4(12,2,3?) is the
Fano hypersurface corresponding to the Graded Ring Database ID #5257. The basket
of #5257 is {3(1,1,1),3 x £(1,1,2)}.

Let us now track how the basket of X changes along the link. The blow-up ® gets
rid of the ﬁ singularity, and produces two new singularities, of index 3 and 11. Hence,
the basket of Y7 is By, = {3(1,1,2), £(1,1,5), £x(1,3,8)}. The basket of Y5 is identical
to the one of Y7, because the flops do not modify the basket.

The coordinates of the (1,3,11,—2,—3;9) hypersurface flip are x1,z2, z3,ys3, ys
respectively, and there is an equation fg = 0 of degree 9 relating them to one another. A
closer look to such equation reveals the behaviour of the singularities at this step. The
polynomial fy we are after is Pfo(M), which surely contains monomials such as x3ys and
x3. In particular, the equation fg = 0 is of the form z3ys3 = 23 + 3.

The presence of the 23 monomial implies that the 1(1,1,2) at the point Py, of
the locus contracted by ag is not being contracted in the variety, because P, does not
satisfy the equation f9 = 0. Moreover, a gG-deformation of the %(1,1,2) singularity
at the point P, shows that there are three %(1, 1,2) singularities instead of one, again
because of the x3 monomial in fo.

By qG-deformation we mean a flat 1-parameter deformation X — A such that
the total space X is Q-Gorenstein.

In conclusion, while the %(1, 1,2) singularity at P, remains untouched in the )9
flip, the 5 (1, 3, 8) singularity at P, is traded for a £(1,1,1) singularity and 3 x $(1,1,2)
singularities. Therefore, the basket of Y3 is By, = {%(1, 1,1), (143)x %(1, 1,2), %(1, 1,5)}.

The flip given by 3 is a toric flip (1,3, —1, —2), so the singularities indicated in
the right-hand side of the flip are the actual contracted singularities, and same for the
left-hand side. Hence, By, = {2 x 3(1,1,1),3 x 1(1,1,2), (1,1,5)}.

Finally, ® contracts the divisor E' = P3(6,1,2,1) to a point in X’ C P*4(12,2, 32).
Therefore, the basket of X' is Bxs = {3(1,1,1),3 x 3(1,1,2)}. This corresponds to the
basket of singularities of #5257.

3.2 A Jerry example

We give here one detailed example of a Jerry construction. For more on this, we refer to
the following Section 3.3}

In the same fashion as in the previous examples, consider the two Fanos

#10985 X CP7(13,2,3,4,5,6) codimension 4 3(1,1,1),2(1,1,5)
#10986 7Z; CP%(13,3,4,5,6) codimension 3 26 nodes
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where, as before, X is obtained by unprojecting Z; from a divisor D = Py, 4, +.(1,1,1).
Call the variables of wP7 as x1, 2, 23,y, 2,u,v, and the ideal Ip = (y, z,u,v).

This time Z; is defined by the pfaffians of a matrix M in Jerryss of weights

1 2 3 4
3 4 5
5 6
7
The explicit matrix is
1 —x% Y
_..3
M= x5ty x;,y +z U (3.26)
3y +u v

T3y + 232 — 2du — 230
whose pivot entry is mys and has degree 7. Therefore X is given by the five pfaffian

equations of Z; and four unprojection equations, that is

tr1z + sy + a7 — viwiws + x1a375 — 23 =0

—ty? + 1123y — vu+ 23y — 2y — 232 =0

tr1xdy + a3z — tryu — tady — sz — wivdad + 23ad — xad + vadad + vl + adad — 25 =0
—tyz — 210 + 732 — 23U =0

—taly + tr 23z + togv + tadzsy + tadz + su+ 232 + afad — atad — vadad + v2f — 2Sas + 2323 =0

trsyz — tyu + 22 + 2tz — m23u + 2128y — T1730 =0

t2yu — talrdy + trizdu — trwly 4 2t wsv + ey — todu + tedadz + tw%z + tadu + trdv — sv + xizs
—i—x?x%x% - m?:cg - xlxga% + xlat%xg - l’g + a:gazg + a:g =0

tx%yz + tyv — tzu + xi’x%z — x%az%u + :cgy — x%v =0

trayu + tm%zz + tegyv + twzzu + tzv — tu? + x%x%z +zfv — :v?:ngz + z?m%u - xlm%xgu + :legu

—x173v — 23u — 2irav + piziu 4+ 252 + 2fv =0
(3.27)
Note that the condition [2.4.1] is not fulfilled in this case. Thus, by Theorem 2.4.1] we

have that the blowup of X sits inside a toric variety of rank two having weights as in
2.5l Analogously to the Tom examples above, perform the variation of GIT quotient on
IF1 and the localisation process.

Again, Theorem [2:3.2] ensures that ¥y is 26 flops.

The map ¥; having base at P, € Zy is a (6,1,1,—1) divisorial contraction,
contracting a weighted P 4, 2,(6,1,1) to P,. Localising first at P, and then at P, show
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that both ¥y and W3 do not affect the varieties Y5 and Y3 respectively; this is because
both v and z appear as pure squares in the equations, i.e. they do not belong to Z; and
Z3 respectively.
The map @' is
' Fy — P7(1%,2,3) =: P

(3.28)
(tv S,21,22,x3,V,U,Z, y) — (xlya 2y, x3Yy, z,uy, UyQ)

Therefore the equation for X’ are

23z — 2du — xv — 2(23 + 212% — 23 — 232 — 2u) =0

r175 + 2tz — 123U — 1w3v + (232 + 22 — w) (@3 + 2122 — 23 — 222 — pu) =0
2§ + airdz — 2323u — 23v + (232 — zu+0) (@3 + 123 — 23 — 2k —2u) =0

(3.29)
Note that they have degrees 4,5,6 in P’.
Moreover, the blow up Y7 of X at %(1, 1,1) has only a singularity of type %(1, 1,5);
the same holds for Y5. Therefore ® contracts %(1, 1,5) to a smooth point.
Hence, this proves that the endpoint of the link is X’ #16204 sitting inside
P?(14,2,3).

3.3 Comparison with Takagi

In [Tak02], the author classifies all the possible extremal contractions ®' appearing in
sequences of flops and flips on Q-factorial terminal Fano 3-folds Y of Picard rank py = 2.
We refer to the set-up in §3 of [Tak02]: what Takagi is explaining is a Sarkisov link starting
from certain Q-Fano 3-folds X with Picard rank 1 enjoying some additional properties
(cf. "Main Assumption 0.1" of [Tak02]). In particular, these varieties are asked to have
a singularity of type %(1, 1,1), that is blown up to initiate the sequence of birational
transformations.

Six of the varieties falling in Takagi’s assumption are in codimension 4 and have
a Type I centre. In particular, three of them are of Tom-type, and follow the description
of Theorem [2.1.1] They are: #24097 Tom; (number 4.4 in Takagi’s paper) falling in case
dy = dy = dg < dy, #20652 Tom; (number 5.4) in case di = ds < d3 = dy4, and #16645
Tom; (number 2.2) in case d; < dy = d3 = d4.

We examine them here with our method, and show that the outcomes predicted
by Theorem [2.1.1] match his results.

The remaining three Hilbert series indicated by Takagi are of Jerry type. We

study them separately and compare them with Takagi’s results.
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#16645, Tom; Consider X C P(1%,2%) with coordinates x1, 2, ¥3, Y4, Y1, Y2, ¥3, § Ob-
tained unprojecting Z; #16338 in Tom; format at D = Py, 4, »,(1,1,1). The basket of
X is Bx = {4 x (1,1,1)}. The matrix M defining Z; is

1 T2 Y2+ Y3 Y2 + w% + 2122
M — Ya Y1 Y2 + Y3
Y3 Y1+ Y3

T1Y1 + x2y3 + x3y2 + yi

Start the Sarkisov link by blowing up one % singularity; after 8 simultaneous flops we have
a divisorial contraction ®': Fy — Go = P7(17, 3) with exceptional divisor E’ := {y4 = 0}.
On the other hand, wP’ = PY is a smooth projective space. The intersection E' N Y5 is
a conic ' := {y? + y1y3 + y2y3 = 0}. In particular, ® contracts all the cyclic quotient
singularities in the basket of Y5. Therefore, Y5 is contracted to a smooth X’ C P #26988
in codimension 3.

This matches with what summarised by Takagi in Table 2 of [Tak02], No. 2.2
because the variety Ag pinpointed by Takagi is exactly #26988.

#20652, Tom; As showed in Example[3.1.2] the end of the link is a del Pezzo fibration
of degree 5. This complies with Table 5 of [Tak02], No. 5.4.

#24097, Tom; Consider the pair (X, p) where X C P7(15,22) is the Tom type Fano
3-fold associated to the Hilbert series #24097, and p € X is the Tom centre %(1, 1,1).

The coordinates of IP’7(16, 22) are x1, 72,73, Y2, Y3, Y4, Y1, S respectively. The un-
projection of the divisor D = Py, 4, 2,(1,1,1) C Z; in Tom; format produces X. Here
Z1 is #24077, and is defined by the five pfaffians of the matrix M

r1 T2 I3 —y% — I3Y3
M = Y2 Y3 1 )
Ya T1Y3 — Yx

—T2Y4 — T3Y4 + Y1

There are 8 nodes on D.
The blow-up of P7(1°,22) at P; is the rank 2 toric variety F; having weights

r1 T2 T3 Y Y2 Ys Y4
1 1 2 1 1 1 . (3.30)

t s
0 2|1
110 0 O -1 -1 -1 -1

After the 8 simultaneous flops given by W1, the map W9 is a Francia flip (2,1, -1, —1).
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The map @' is a weighted P°-bundle over the projective space ]P’f,%y&m(l, 1,1). We
show that Y3 is actually a conic bundle over that base. Note that Y3 is smooth: therefore,
referring to Section [3.1.4] we just need to compute the degree of the determinant of the
matrix A in order to find the discriminant A.

We record here the five equations of Y3 that originated from the pfaffians equations

of Z;. They are

(

T1Y3 + T2yays + Toysys — T1Y3 — tYsyi — yoy1 — yayr =0
T1T3Y3 + T3Ys + Tox3ys + 2Y3ys + trsysys — trsyi — zoy =0
2y5ys + trays + w122ys + T123ys — 211 + 2331 = 0

t2y8 — aiys + tways — twrysys +tr1yf + oy =0

x3y2 — x2y3 + r1ys =0

2
Y2,Y3,Y4

ables s thanks to the unprojection equations.

Now consider the line {y4 = 0} in the base P§2’y3,y4(1, 1,1), and let us look at its

two affine patches {y2 # 0} and {y3 # 0}. We want to study the conic equations above

At a general point in P (1,1,1), it is possible to globally eliminate the vari-

each of these patches: in fact, they both contribute to the discriminant A.
Over the patch {y2 # 0}, Pf5s and Pf; globally eliminate the variables z3 and y;
respectively: hence they are r3 = z9y3 and y; = x1y3. Replace their expressions in the

remaining three pfaffian equations, obtaining

t2y3 + txgyg’ — x%y% + $2x1y§’ =0
T1T2Y3 — Tox1y3 =0

t2 — 23ys + taays + zew1y3 =0

where Pf5 is identically zero, and Pfs (above) is a multiple of Pf; by a ys factor. There-
fore, the conic that Pfy describes is defined by the matrix

U
Ay2: 0 —ys %y

5Y3 %yz% 0

as
t
(t I .'EQ)'Ay2' I =0
T2
The determinant det(Ay,) = —1yi(1 + y3).
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On the other hand, over the patch {ys3 # 0}, Pf; and Pf; globally eliminate the
variables x; and x2 respectively: hence they are x1 = yoy; and x2 = x3ys. Replace their
expressions in the remaining three pfaffian equations: in a similar fashion to the other
patch, the equation of the conic is t?2y2 +tz3 — y2y? +x3y1 = 0 given by Pfs. It is defined
by the matrix A,

vi 3 0
Ay = % 0 %
0 5 —u
and by the equation
t
(t T3 yl)'Ay3' z3 | =0.
Y1

The determinant det(Ay,) = —1ya(1 + yo).

Even though the contribution of det(A,,) and det(A,,) to the discriminant might
look like 5 + 2 = 7, the solutions to det(A,,) = 0 and det(A,,) = 0 overlap at the point
(—=1,—1,0) which is counted twice. Therefore, A=5+7—1=6.

The map ¢’ is a conic bundle over the projective space Pz%y&m(l, 1,1) discrimi-
nant A = 6. This agrees with Table 4, No. 4.4 of [Tak02].

#16645, Jerryy; Let (X, p) be the pair in which X C P7(1%4,2%) is the Jerry type Fano
3-fold modelled on the Hilbert series #16645, and p € X is the Jerry centre %(1, 1,1).
Name the coordinates of P7(1%,2%) x1, z2, 23, Y4, Y1, Y2, ¥3, 5 respectively. The Fano 3-fold
X is obtained via unprojection of the divisor D = P2(1, 1, 1)ay 20,25 C Z1 in Jerryys. Here
Zy is #16338, and is defined by the five pfaffians of the matrix M

r1r T2 Y T3Y4 — Y3
T T
M= 3 Y2 3Ya + Y1 + Y2
Y3 Y2 + Y3

—y3 + T1Y1 + T3Y2 — T2Y3

and there are 9 nodes on D.

The blow-up of X at the centre p = P; is contained in the rank 2 toric variety [y

r1 T2 T3 Y Y2 Ys Ya
1 1 1 2 2 2 1
o o o -1 -1 -1 -1

In this case, the condition [2.4.1]is not satisfied, so Fy has the same shape that it has in

the Tom case. After the 9 simultaneous flops given by %1, the Sarkisov link presents a
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divisorial contraction ®’ to a point in the smooth projective space P5. In particular, Y5 is
contracted to the codimension 2 Fano 3-fold X’ = X3 C P° with Hilbert series #24076.
Following Takagi’s notation at the beginning of [Tak02], we have that X’ is the smooth
Fano 3-fold of type Aqg.

This shows that X is No. 3.3 of Table 3, in [Tak02].

#20652, Jerryss Let X C P7(1°,23) be the Jerry type Fano 3-fold associated to
the Hilbert series #20652, and p € X be the centre %(1,1,1). The coordinates of
P7(15,23) are x1,2,23, ¥3,V4,Y1,Y2, s respectively. The unprojection of the divisor
D = Py 4025(1,1,1) C Z; in Jerrys s format produces X. Here Z; is #20543, and is
defined by the five pfaffians of the matrix M

Ys Ya z1 )
xr
M= Y2 , Y1 1Y4
Y3 — T1Ys — 1 Y1+ Y2

—23 — 23+ 23 +y3

There are 8 nodes on D.

Note that the condition is satisfied: without loss of generality, we assumed
that the variable yo occupies the pivot entry mag of M. Therefore, by Theorem [2.4.1] we
have that the blow-up of P7(1%,23) at Py is the rank 2 toric variety F; having weights

t sz 2 T3 Y1 Y2 Y3 U4
o 2(1 1 1 2 2 1 1
1170 0 O -1 -2 -1 -1
The first map ¥y of the birational link for X is given by 8 simultaneous flops. Since the
hypotheses of Theorem [2.3.9 hold, then )9 is an isomorphism of the variety Y.

The map @’ is a conic bundle over the projective space P§27y37y4(2, 1,1). We are
interested in calculating its discriminant A.

Analogously to previous examples, we consider the line {y3 = 0} in the base space
sz,ys,m (2,1,1) with coordinates ¥y, y4, and we look at its two affine patches {ys # 0},
{ys # 0}. On these affine patches we study the behaviour of the equations of Y5 = V3.

We report here only the five equations originated from the pfaffians equations of X. They
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are

—tz1y3ys + Ty + T1yayr — TTy2 — 23y2 + 23Y2 + PYTys — y7 — tyry2 =0
troys — xTys — T122ys — T3Y4 + T3Ys + tY§ — T1y1 — 2oy1 — tr1ys =0
—iys — x3ys + 23y3 + xTys + 2y3yi + zoy1 = 0

T1Y3 + ysy1 + ways + tysyz = 0

| ty3 — 219390 — Ysyn — yayr + 212 = 0

We start looking at the affine patch {ys # 0} of {y3 = 0}. After the global elimination
of the variables 71 = y1y4 and 1o = —x1y3 = —y19; (due to Pfs and Pfy respectively),

and after the consequent substitution, the above equations become

yiys +yiyi —vivi —viuS a3+l —yi —tyr =0
y2y3 + v2ys + vyl + 23ys + tyd — yiya + vyl — tyiya =0
Yy — yivi =0

Note that, after the substitution, Pf3 is identically zero, and that Pfy = y, Pf;. There-
fore, the only surviving equation is Pfy. It is a conic in the variables ¢, y1, z3 defined by
the matrix
vi 0 -3
A= 0 1 0
—3 0 14wl
Its determinant has degree 8, therefore the discriminant A > 8.
A similar calculation on the other patch {ys # 0} shows that the fibre is not a
conic. Therefore, the patch {ys # 0} does not contribute to A.
This agrees with Table 4, No. 4.1 of [Tak02].

#24097, Jerry;s Let X C P7(1%,22) be the Jerry type Fano 3-fold relative to the
Hilbert series #24097, where p € X is the centre %(1, 1,1). The coordinates of P7(16,22)
are x1, T2, 3, Y4,Y3, Y2, Y1, s respectively. The unprojection of the divisor D = Py, 4, 2,(1,1,1) C
Zy in Jerryy 5 format gives X. Here Z; is #24077: it is defined by the five pfaffians of
the matrix M
Y4 Y3z Y2 Y1
T1 T2 X3Y3 + T2Ya
3 y% - 2Y3 — yi
—Z1Y2 — 2Y3ya
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There are 7 nodes on D. The five pfaffian equations of Y] are

(

—23ys — twoys + ¥3ys + T3Ys + Toxrsys — 2tT1y3ya + txayl =0
—tys — T1y2y3 + Tayoys — 2tY3ya + ty2yi + x3y1 =0

—L3Y2y3 — T1Y2ys — TaYyays — 2tysy; + xay1 =0

—3y3 + tysys — 2Toy3ys — tyi + x1y1 = 0

T1Yy2 — T2y3 + x3ys = 0

After 7 flops given by 1)1, we have a divisorial contraction ®: Y3 — P3(2,1,1,1) of (2, 1)-
type, where the coordinates of P3(2,1,1,1) are y1, 92, y3, y4 respectively. Recall that the
variable s can be eliminated from each fibre of ®'. Therefore, we just need to study the
five pfaffian equations of Y7.

Looking at the syzygies relating the five maximal pfaffians of M to one another,
we see that, for each point in the base of ®', Pf; can be written in terms of the other four
pfaffians. We are left with four pfaffian equations, that are linear in the variables of the
fibre ¢, 21,2, x3. Call L the 4 x 4 matrix recording the coefficients of Pfs, ..., Pf5: the

entries of L are in terms of the variables of the base only, i.e. y1,v2,y3,y4. In symbols,

Pty t
Pfg —7. I
Pf4 xI9
Pf5 I3

Note also that the first syzygy relates such four linear pfaffians all together: therefore
there are only three linearly independent pfaffians. Therefore, the determinant of L
restricted on Y5 is identically zero.

The map @' contracts its exceptional divisor E’ to a curve C C P3(2,1,1,1). The
equations of C are given by the 3 x 3 minors of L. A simple computer algebra calculation
on Magma shows that the degree of C'is 7, and that its genus is g(C) = 8.

This coincides with what Takagi concluded in [Tak02]. Therefore, #24097, Jerryis
is No. 1.1 of Table 1 in [Tak02].
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Chapter 4
Higher Picard rank Tom links

Looking at the table [BKR12b| we notice the presence, in 46 cases, of other deformation
families in Tom format; following the common terminology also used in [BKQ18], we call
these families second Tom. As shown in [BKQI1§|, these families contain quasi-smooth
members whose equations are modelled on those of the Segre embedding of P2 x P? (cf
Section 5 in [BKQIS|): they are in the so-called P? x P2-format. More precisely, the nine
equations of X of second-Tom type can be retrieved from a 3 x 3 matrix as its nine 2 x 2
minors. The pfaffian matrix M in second Tom format is characterised by having a 0 in
one or two of its entries. This can happen for instance when the polynomial occupying
such an entry can be made 0 after row/column operations, or when the degree of that
entry cannot be achieved by any polynomial in the variables x;,y; in the ideal Ip.

The most important feature of these Fano varieties X of second-Tom type is that
they have Picard rank px = 2: see Proposition 2.1 of [BKQ18]. Other than the examples
of Takagi [Tak02] and some computational cases, we know the Picard numbers of very
few of the codimension 4 Fano 3-folds.

In this chapter we focus on birational links run on codimension 4 Fano 3-folds of
second-Tom type. We will see that, even though we do not obtain Sarkisov links (because
the starting variety X is not a Mori fibre space), a birational link construction is still
licit, and can give interesting insights on the birational geometry of these higher Picard
rank Fano varieties. In particular, we can find links to identify a Mori fibre space in the
birational class of X, even though we do not know how to explicitly run the Minimal
Model Program on X itself.

4.1 DMori fibre spaces arising from second Tom

Definition 4.1.1. From [BKRI12a|] we know that each codimension 3 Fano 3-fold Z
admitting a Type I unprojection has at least two deformation families, one Tom and one

Jerry. However, it could happen that it has one or two more Tom and Jerry families (one
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each at most). If this occurs, call second Tom the second Tom deformation family of Z,

characterised by having a smaller number of nodes.

Remark 4.1.1. The Fano 3-folds of second-Tom type are in P? x P? format (see the
ones denoted by "subfamily of Tom" in Table 1 of [BKQ1I8]). We stress the fact that in
this chapter we only consider the Fano 3-folds appearing in the table [BKRI2b] that are
of second-Tom type, together with the Hilbert series #12960. The latter does not have a
second Tom, but its only Tom format is still in P? x P? format, and our method applies

to this as well.
We can summarise the result of this chapter with the following theorem.

Theorem 4.1.2. Every Fano 3-fold in codimension 4 in second-Tom format and the

unique Tom format of Fano #12960 present a birational link terminating with either
e two divisorial contractions (when dy > da > d3 > dy and when dy > dy = d3 > dy);
e a divisorial contraction followed by a del Pezzo fibration (when dy = do > ds = dy).

Proof. We omit the detailed proof of this theorem because it is similar to the one con-
tained in Chapter 2] We work out an in-depth example below.
The ones above are the only three configurations of the d; in which Fano 3-folds

of second-Tom type occur. O

Theorem [.1.2] exhibits a Mori fibre space in the birational class of each X of
second-Tom type. But in fact, more is true for #10985. The endpoints of its two links
are not birationally rigid, even though we do not know a Sarkisov link that connects
them.

We expect a similar behaviour for the other Fano 3-folds of second Tom type, as
expressed in the following conjecture. If X is of second-Tom type and it has two Type
I centres as in #10985, we expect it to be true. In addition, if X has only one Type I
centre and X’ has codimension 2, it is possible to run another extraction from X’ in a
similar fashion to [CMO04]. Lastly, except for #4860 and #20652, if X has only one Type
I centre whose endpoint X’ has codimension 1, X does also have a Type II centre. Even
though we do not know yet how to run this calculation from a Type II centre, we expect

it would still lead to a new Mori fibre space.

Conjecture 4.1.1. The birational-equivalence class of every Fano 3-fold in codimension

4 in second-Tom format contains at least two distinct Mori fibre spaces.

We give an explicit example of the above construction in the following Section.
In particular, we perform it from the two Type I centres of #10985. The endpoints X’

and X" of the two birational links are the hypersurface X5 C P*(14,2). However, a more
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careful analysis shows that X’ and X” are not isomorphic, therefore the hypersurface
X5 C P4(1%,2) has pliability at least 2.

Remark 4.1.3. Even though the varieties X of second-Tom type are not Mori fibre
spaces, the birational links we obtain with this construction terminate with a Mori fibre

space.

4.2 Hypersurface with high pliability: Fano #10985

Look again at the Hilbert series #10985, but this time let us analyse the second Tom,
which is, in the notation of [BKR12b|, a Tom; 13 45 format. This means that the entries
mq3 and mys of M are 0.

The basket of singularities of X is again {3(1,1,1), £(1,1,5)}, but the deformation
family of Z; is different from Example [3.1.T} this time M is in Tomy @33 45 format.

In short, we are looking at the following Fano varieties,

#10985 X CP7(13,2,3,4,5,6) codimension 4 {3(1,1,1),%(1,1,5)}
#10962 Z; CP%(13,3,4,5,6) codimension 3 23 nodes

with the variables of wP’ being respectively x1, 2, 3,5, y4,¥3,y2,y1 and the divisor
being D = P?(1,1,1)4, .49 25, 0n which Z; has 23 nodes.
The weights of the matrix M are the following

1 2 3
3 4
)

=SS

We constructed explicitly the matrix M, that is

x1 0 Ya Y3
3 —aitys o —aitys @) — 23—y (4.1)

Y2 n

0
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Moreover, the equations of X are

T} — 1125 4+ 21y3 + yas = 0

z3ys + w3ys — v — 212 =0

—35(15 + :clxg + z1y2 —y3s =0

z3ys + 23ys — yay3 — x1y1 =0

vl + vl — 23 — 2 — Tys + 23ys + 1191 + Y25 = 0 (4.2)
2ys + T323ys — 7Y + T3Y3 — T3YF — T1205Y2 — y5 — Yaya =0

—aia} + af — afad + 2323 + 2ys — 23ys + 23y2 + 23y2 — yay2 — y1s =0

y3y2 — yYay1 =0

|27y — 232 — aiyr + 2351 — Y3 — y3y1 =0
According to Proposition the blow up at P, of wP” is the scroll Fy given by

t s|x1 @2 T3 Y1 Y2 Y3 Y4
021 1 1 6 5 4 3 . (4.3)
11,0 0 0 -1 -1 -1 -1
The Mori cone of Fy is identical to the one in Example [3.1.1]
The Kawamata blow-up of the Tom centre P is the map ®

d: F; — P7(13,2,3,4,5,6)

1 1 1 5 6 7 8 (4.4)
(t,s, 21,02, 23,1, Y2, Y3, Ya) > (0112, 2082, w312, yat 2, yst2, yot 2, Y112, s)
while the expression of ® having integer exponents of t is
o:F; — P(13,2,3,4,5,6)
(4.5)

(t) S, T1,X2,T3,Y1,Y2,Y3, 94) — (x1t7 I’Qt, x3t7 y4t47 y3t57 y2t67 y1t77 St)
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Therefore, the equations of Y] are

29 — 2124 + tzys + yas =0

23ys + T3ys — ty; — 2192 =0

—a§ + z125 + tr1yr —yss =0

w3ys + 23ys — tyays — x1y1 = 0

rixd + xtad — adad — 2l — tajys + trdys +triys +yes =0

wfys + 2323ys — T1Ys + T3y — tr5YF — T1x5Yy2 — Y3 — tyays = 0

—x37s + 28 — 223 + 232} + talys — tadys + tadys + tadys — tPysys — 115 =0

Y3y2 — Yay1 =0

kx??/Q — z3y2 — xy1 + 25y — tys — tysyr = 0
(4.6)

Theorem shows the first step of the link are 23 simultaneous flops.

Crossing the wall corresponding to the variable y;, we localise at the point P, €

Go. Writing y1 as a local coordinate we have that Fy becomes

t sz w2 X3 Y1 Y2 Y3 WU

6 841 1 1 0 -1 -2 -3

11,0 0 0 -1 -1 -1 -1

Note that in the equations [.6] of Y5 there is no pure power of y;, so the hypotheses of

Theorem [2:3.9] are not satisfied and the flip is taking place. The variables that appear

linearly locally analytically at a neighbourhood of P, C Z3 are s,y4, and either x; or xa;

in particular, s and y4 are globally eliminated. Therefore, Wq restricts to a hypersurface

flip ¥ with weights (6,1,1, —1, —2;4), where ay contracts a hypersurface of degree 4 in

Pt 29,25 (6,1,1) and coefficients in Py, 4, (1,2) to P, and 2 extracts Py, 4,(1,2) C V3.
Analogously, we restrict the equations of Y3 locally analytically at a neighbour-

hood of the point P,, € G3. The weights of the rank 2 toric variety 3 become

t s|x1 r2 3 Y1 Y2 Y3 Y4
5 71 1 1 1 0 -1 =2
1P 170 O O -1 -1 -1 -1
This time around, the variables that are locally eliminated are ¢,z;, and the ones
globally eliminated are s,y3. Therefore, the exceptional locus Aj restricted to Y3 is
Pys 25,1 (1,1,1). On the other hand, the restriction of B3 to Y, is the % quotient singu-
larity at P,,. This shows that Y; = Z3 via the map 3 (which is actually a morphism),

and that a3 is the blow-up of the singularity P,, € Y} of type %(1, 1,1).
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Therefore, the Picard rank of Y3 drops by one in the birational transformation
determined by 3. This happens when there is still another ray left to cross in the mobile
cone of Fg.

Performing again the elimination process at a neighbourhood of the point P, € Yy
we have another divisorial contraction, the one we have usually called ®'. The variables
eliminated are s,y (globally), and ¢ (locally). Here, a surface S C Py, 25 254, (1,1,1,2)
of degree 3 is contracted to the point P, € X’. In particular, the divisorial contraction

®’ is defined by the monomials in the linear system ‘(’)(fl) ‘, that is,

' Fy — P7(1%,2,3%,5) =: Gy

(ta‘S?xlaanxSaylay27y3vy4) — (9313/4,3323/473032!4,yS,y2y4ay1yZ7tyiasyg) . (47)

Call 2, x5, 25, Y}, Y4, Y5, Yy, t', s the coordinates of G4. Looking at the equations we
notice that it is possible to ignore the coordinates /,#', s’ because the terms syy, ty3,
and y1y4 appear in equations #1, #2, and #8 respectively (globally eliminated in this
order). Hence, X' C wlP’ C G4 where wlP’ = P*(1%,2).

The remaining equations after the elimination are (4.8)). In order to find the
explicit equations of X', let us write them in terms of the coordinates of P*(14,2) by
multiplying them by a suitable power of 34, which is ¢3 for equation #4, t* for equation

#6, and t% for equation #9. They become
13,/ 13,/ 1.0 /Y
$2y3+$3y3_ty3—1:1y1 =0
o+ afay — ity agtyy — Vaf - ahafyy —tyf —ty, =0 . (48)
w0y — w5y — wYL + wyyh — yF — 'yt =0
On the other hand, equations #1, #2, #8 express the variables s,%,y; in terms of the

others, becoming

/ /!
Y1 = Y2Y3

/13 13 !

t=xy +x3 — 7Y (4.9)
s = + ahal — b
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Replacing the above identities (4.9) in (4.8) we have the three equations

(
13,/ 13,/ 13 13 AW Pl o
r5ys + 25 ys — (25 + 25 — 21y5)ys — 2iysys; =0
15 12,13 14,1 4,1 13 /3 !o a2 ! 2,0
P + a5y — 2y + 2y — (73 + 25 — 21Y5) 75 — 215 Y,

— (a5 + 28 — ) yf — (af + 25 — 2hyh)yy =0

TPy — oYy — T yays + a5 yays — (2 + 28 — 2yh)yF — (25 + 2F — 2huh)ysyays = 0.
(4.10)
We see that the third equation in is a multiple of the second one by a vj factor, and

the first equation is identically zero. Therefore it remains only the second equation:

o — aftyy +aglyh — 2 — (aF +af — 2hyh) (YE +yh) = 0. (4.11)
The one above is the equation of X', and it has degree 5 in the coordinates of wlP’. Thus,
X, c P4(1,2). In addition, the basket of singularities of V7 is By, = {#(1,1,5)}, which
remains unvaried for Yo. Then, the hypersurface flip 1o replaces the % singularity with
% singularity. Therefore, the
basket of Y3 & Z3 is By, = {2 x 1(1,1,1)}. Lastly, ®’ contracts a P(1,1,2) to a smooth
point in X'; thus, Bx: = {3(1,1,1)}.
The Fano 3-fold in codimension 1 sitting inside P4(14,2) defined by a degree 5
equation and having basket {%(1, 1,1)} is #16203: X' is a special member associated to
that Hilbert series. Note that X’ has a singularity at the point Pyé like the ones described

in [CMO04].

Remark 4.2.1. According to [CPR0O0], X’ should birationally rigid. Nonetheless, since
X' has a singularity as in [CM04], actually it is birationally non-rigid.

one of type % After that, 13 contracts a singular locus to a

For this calculation we could have also used the P? x P? description of X, whose

equations are given by the nine 2 x 2 minors of a 3 x 3 matrix N having weights

(4.12)

N W
= Ot W
(G2 SN @) RINTEN

where the entry of degree 2 is occupied by the variable s only. The matrix NN is therefore

X1 Y4 Y3
N=| -a3-ad+wu Yo Y1 ; (4.13)
S xt—xt 4 .
1 3TY3s X1 — Ty — Y2

Remark 4.2.2. What we have just constructed is not a Sarkisov link, as the Picard

rank drops by 2 because of the two consecutive divisorial contractions.

73



Therefore, the above proves the following theorem.

Theorem 4.2.3. Define X as 7#10985 realised as a Tomy @13 45 unprojection. Then the
Picard rank of X is px > 2.

This shows that Sarkisov links are an effective tool to produce lower bounds for the
Picard rank of a Fano 3-folds. In particular it means that X has a Mori cone of dimension
at least 3. This observation lead to the idea that the Sarkisov link just computed could

have been part of a larger link involving Fano 3-folds sitting inside rank 3 toric varieties.

4.2.1 Blow-up of #10985 from £(1,1,5)

The Fano 3-fold X associated to the Hilbert series #10985 also has another Type I centre,
which is a %(1, 1,5) at the point P, € X. In particular, it also has a second-Tom format,
that is a matrix M’ in Toms, 14 format. The latter describes the same deformation
family coming from the unprojection of the %(1, 1,1) centre at Ps, only obtained via a
different unprojection.

This calculation retrieves the result of [CMO04] because the endpoint of the 2-ray
game starting with the blow-up of the é(l, 1,5) singularity of X is isomorphic to X'

Using the matrix N in P? x P? format in it is possible to retrieve M’ from
M. The 3 x 3 matrix N’ indicating the P? x P? structure of the pair (X, P,,) is

T Y4 Y3
s i —af+ys af—a5 -y |, (4.14)
—a3 — 23+ ya Y2 Y1
having weights
1 3 4
2 45
3 56

We can reconstruct the 5 x 5 matrix M’ from N’: so, M’ is

TS 0 —z3 — 23 + s
0 Ya Y3
4 _ .4 5_ .5 ’
T — T3+ Y3 T]— Ty —Y2

Y2

which is equal to the following matrix by performing a simple change of coordinates
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Y3 1= T — x§ + 3.
z1 s O fasgf:v§+y4
0 wya yg—a:‘ll—i-x%—l-
g3 x}— a3 — o
Y2
Note that the unprojection variable relative to %(1, 1,5) is y1, and that the unprojected
divisor is D" C Z] := {Pf;(M’) = 0},cq1,.. 5 defined by the ideal Ip/ := (y3,y4, s, 21).
Therefore, the matrix (4.2.1)) is in Toms, e14 format.
The blow-up of X C IP’7(13,2,3,4,5,6), having variables x1, x2, x3, s, Y4, ¥3, Y2, Y1

respectively, at the point P, is contained in the rank 2 toric variety F} having weights

T oYL | T2 T3 Y2 Y3 Y4 S T1
0 6|1 1 5 4 3 2 1
1 1,0 O O -1 -1 -1 -1

Here we have an hypersurface flip with weights (1, 1,5, —1,—2;3) based at Py, € Z,
followed by one divisorial contraction to the %(1, 1,1) point Py, of weights (1,1,1,—2),
based at Py, € Z5. The last divisorial contraction ®” has weights (2,1,1,2, —1;4) con-
tracting a degree 4 surface Sy C P(2,1,1,2) to a point.

More explicitly, ®” is of the form

" F) — P7(11,2,3,5,7) =: G}

= 2 2 5 8
(T7 Y1,22,T3,Y2,Y3,Y4, S, 1’1) (xlr 3 S, X1X2,T1T3, T1Y4, T1Y3, T1Y2, xlyl) .

Define the coordinates of P7(14,2,3,5,7) as 1, s, 25, 25, v}, U5, Y5, ¥} respectively.
Analogously to the previous analysis of the % weighted blow-up of X, we see
that some of the equations of Y,/ C F) help expressing some of the coordinates of
P7(14,2,3,5,7) in terms of the others: this is the case of ¥}, y5, and g4. The explicit
expression of the two latter are
v = (@F +af ') (4.15)

—/ N SN )
Ys =SYy

and the three surviving pfaffians of M’ are Pf{, Pfy, and Pfy, that is

Pl = —y) (7" — 2§ —yp) + 5 (For" — 1" + )
Pfy =5y + 45 (—x’23 -+ yﬁlr’)
Pf4 — (7”'5 _ x’25 _ yé) _4 (géT/ o T/4 4 wg)’4)
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After replacing equations (4.15]) in the above equations, we have

Pfl — —Z/ﬁ (7“/5 _ 1./25 _ yﬁl (:U/23 + 1333 _ yﬁﬂ‘/)) + SIyﬁl (S/yﬁﬂ‘/ _ 7,/4 + IE?)
Pfy = s'yy (a5 + 28 — ') + 'y (—25 — 2§ +yjr’) =0 ,  (4.16)
Pfy, = (r’5 -z -y (m’23 + 3 — yﬁlr’)) — s (s’yﬁlr’ — 4 $g4)

where Pfy is a multiple of Pf,. In conclusion, the equation of X” = X5 C P*(1%,2) is
(r® — 2 — gy (a8 + 25 —yhr’)) — &' (s'yhr’ =" +24) =0. (4.17)
Proposition 4.2.4. The pliability of X' is P(X') > 2.

Proof. Both X’ and X" sit inside the weighted projective space P4(1%,2) and have Picard
rank 1, so it makes sense to talk about their pliablity. Moreover, they each have a
non-orbifold point inherited by the hypersurface flip happening in their respective 2-ray
games. More explicitly, X’ has a cAy singularity at the point Py, locally described by
the equation x3 + :L'§ = T1Y2.

On the other hand, X" has a cAjg singularity at Ps which is, locally, r* — x4 = sy,.
This means that their generic sections are not isomorphic. Therefore, X’ % X" so
P(X') > 2. O

Remark 4.2.5. Note that the sequence of birational transformations connecting X’ and

X" is not a Sarkisov link.
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Chapter 5

First steps towards Fano index 2

5.1 The existence of index 2 Fano varieties

The lack of a structure theorem for Fano 3-folds in codimension 4 forces to search for
other ways to produce their equations. The (Type I) unprojection construction has
supplied an efficient tool to deduce such equations from the ones of codimension 3 Fanos
in either Tom or Jerry format. This works if these Fanos have Fano index 1.

If we look at the Fano index 2 case we see that the unprojection techniques are
not applicable, as none of the 37 candidates Fano 3-folds in codimension 4 having index
2 admits a Type I centre, as in [BKT15].

Despite this, it is still possible to use the unprojection to retrieve an explicit
description for index 2 Fano 3-folds in codimension 4 from suitable families in index
1. The idea is to find an appropriate index 1 Fano X to be a double cover of each
corresponding index 2 Fano X. This is suggested by an observation of the ambient
spaces of these index 2 varieties, say X C fw]f”, that is, replacing a 2 with a 1 in the
weights of the ambient space of X , there exists another candidate X C wP in the same
codimension sitting inside such a manipulated weighted projective space.

We illustrate our approach by looking at a baby case in codimension 2, and
describing explicitly the diagram [5.2] Although simpler than the examples we produce,

it encodes some crucial phenomena encountered in the development of this chapter.

Example 5.1.1. Consider the codimension 2 index 1 Fano 3-fold X = X, 4 C P?(14,2,3),
#16204. Only in the span of this example we call the coordinates of wP® according to
their weight, that is, x1, ..., z4 for the ones of weight one, y, z for the ones having weight
2 and 3 respectively. A projection from the Type I centre P, € X of type %(1, 1,2) (with
orbinates 3, z4,y) targets the index 1 codimension 1 Fano 3-fold Z C P*(14,2), #16203.

We consider the action 7 of the cyclic group Z/27Z on P5(14,2,3) defined as the

change of sign to the coordinate x4. Suppose that we write the equations of X such that
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the coordinate x4 appears only with even powers. They are of the form

2
zx1 = Ay(x1, 22, 3, 25, Y)

2
2r2 = B4(.’1§'1, X2, X3, Ty, y)

where Ay, By are general homogeneous polynomials of degree 4. Therefore, the equation
of 7 is

2 9
o Ay(1, 22, 23, 23, y) = 1 B4(21, 22, 3, 27, Y) -

Define 74 := 23 and consider the quotient X of X by the group action that changes the
sign of z4. Thus, X = X474 sits inside a new weighted projective space P5(13,22 3). We
can easily see that —K ¢ ~ O(—2). Therefore the index of X is 2.

The fixed locus of the group action we considered is Fiz(y) = {z4 = 0} U
P!(1,2),,,- Note that the cyclic quotient singularity at P, € X is fixed because it
lies in the {z4 = 0} locus; it becomes of type %(1,2,2) in X. This shows that the quo-
tient does not produce new additional singularities: so X is quasismooth. On the other
hand, the intersection of the other component of the fixed locus of v with X is empty:
this is because the general polynomials A, and B, must contain monomials such as 7}
and y2. Therefore X is also terminal. We have just explicitly constructed equations for
the index 2 Fano 3-fold with Hilbert series #40662, showing that the index 1 Fano 3-fold
#16204 is its double cover.

Conversely, the same does not hold for Z. Here the intersection Z NP (1,2),, , is
non-empty: actually, the whole line P1(1,2),, , is contained in Z. Therefore, the quotient
Zof Z by the group action « contains an entire line of cyclic quotient singularities of
type %(1, 1,1). This shows that Z is not terminal, so does not appear in the Graded
Ring Database [BK*15].

This specific construction can be summarised with the following diagram.

#16204 P5(14,2,3) 5 X <P 7~ pi(14,9) #16203
vi iv
#40662 P5(13,22,3) > X Z C P4(13,2%)

This diagram is analogous to the one at

The above example shows in a nutshell the achievements of the double-cover
construction, and also the consequences it has at the codimension 3 level.

Here we resume the standard notation fixed in Section Let us define the
action v of Z/2Z on a weighted P7 as

’U)]Pﬁ = (t,5,931,9327333a3/1,y27y37y4) — (t,S, _x1a$2a$3ay1ay2ay37y4) (5].)
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that is, we change sign to the variable 1. Recall that X has index 1, so we can assume
the weight of x; to be 1.

The main goal of this section is to prove the following theorem.

Theorem 5.1.1. There exist 32 Hilbert series of index 1 Fano 3-folds X in codimension
4 having at least a Type I centre such that the quotient X := X/z,/27, via the group action
v (5.1) is an index 2 Fano 3-fold in codimension 4.

We will later explain the reason for the number 32, and how this relates to what
has been achieved so far in terms of explicit construction of index 2 Fano 3-folds. Theorem
implies the following corollary.

Corollary 5.1.2. The index 1 Fano 3-fold X of Theorem is a double cover for X.

Here we describe our construction in the codimension 4 case, mimicking the one
explained in the baby case of Example [5.1.1

First we want to take X in codimension 4 and index 1 such that it is invariant
under the action 7. To do so, we need to look at Z, the projection of X from a Type I
centre, and write down a special member of Z that is invariant under ~. After that, we
perform the unprojection to obtain a Z/2Z-invariant X. The last step is quotienting X
by the group action v and studying the quotient.

In the Graded Ring Database there are 37 Hilbert series for Fano 3-folds
in codimension 4 and index 2. The ones that our method does not construct are 5.
One of them, #41028, lies in a non-weighted projective space, and was therefore already
constructed by Iskovskih in [Isk77] and [Isk78|.

Other two Hilbert series, #39569 and #39607, do have a double-cover candidate,
but it does not have any Type I centre. Since in this thesis we consider only Type I
unprojections, we will not examine these two examples.

Lastly, the two Hilbert series #40367 and #40378 do not have any index 1 double-
cover candidate, so our method does not apply to them.

For the remaining 32 we therefore achieve the following diagram.

codim 4 codim 3 (5.2)
index 1 P z
Z/QZ\LW wlZ/zz

\\l

index 2 X

Table summarises the pairs (f( , X) for each Hilbert series in index 2.
We break down the proof of Theorem [5.1.1] in some separated lemmas.
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Practically speaking, the next lemma shows that, to perform the quotient and
obtain X , we just need to replace a:% with Z in the equations of X, and that the ambient

space of X is the ambient space of X where a 1 has been replaced by a 2.

Lemma 5.1.3. The Fano 3-fold X sits inside the weighted projective space P7(2,b,c,

di,...,dyg,7), with coordinates T, 2,73, Y1,Y2, Y3, Y4, $ Tespectively, and T = x7.

Proof. Let us divide P7(1,b,¢,d1,...,ds,r) in affine patches. Pick, for instance, U,, :=

{x9 # 0}. In particular, U,, is given by the Spec of the degree-invariant fractions as

b

b c dq dy b
) sy yit s
1 %3 Y1 4
SpecC , ==, ey R
To Ty X Ty To

Similarly we can explicitly write all the other affine patches. Let the group action ~ act
on each patch. They are invariant if and only if the coordinate x; has even power. Such
affine patches are defined by the ring of the invariants under the action, in which x;
appears only with even powers. These same affine patches are exactly the affine patches
of the weighted projective space P7(2,b,c,dy,...,dy,7).

This also proves that the quotient of X has the same equations as X, where 23

has been replaced with the new coordinate . O
Lemma 5.1.4. The Fano 3-fold X has indez 2.

Proof. Consider the quotient map f: X — X. The relation between the anticanonical
bundles of X and X is —Ky = —f*K s — R where R is the ramification divisor. In our
case, —Kx = {1 = 0} ~ O(1). Moreover, the ramification divisor is R = {z; = 0}.
Therefore, — f*K ¢ = 2{x; = 0}. This implies that —K; = {Z = 0} ~ O(2): thus, X
has index 2. O

Lemma 5.1.5. If X is quasi-smooth, then X s quasi-smooth.

Proof. Define the variety V as
V= {p € wP” : rank (J|,) < codim(X)} .

The condition defining V' is equivalent to looking at the vanishing locus of all 4 x 4 minors
of the Jacobian matrix Jx of X (see [Har77|). By definition, if V' is empty, then X is
quasi-smooth. Suppose X quasi-smooth and compare Jx with Jg. The only difference
between the two Jacobian matrices lies in the column relative to the derivative by x;.
Suppose x1 # 0; then, the rank of Jx is equal to the rank of Jg.

On the other hand, if z1 = 0 certain entries of the 8%1 column in Jx might vanish,

while they would be just a constant in Jg. This is because, for each equation f; of X,
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% = %g—i, and % = 2x1. So for w1 = 0 we have that rk Jx < rkJg. Therefore, X

is quasi-smooth if X is. ]

The last lemma is the last missing step to prove that X can be found in the

Graded Ring Database .
Lemma 5.1.6. The Fano 3-fold X has terminal singularities.

Proof. The fixed locus of the group action 7 is Fix(y) = {x1 = 0} U Peyen, where Peyen
is the weighted projective space defined by the vanishing of all the coordinates with odd
weight, except for x;. We want to study the intersection X N Fix(y). Recall that the
Type I centre of X is Py € X, having orbinates 1, z2, z3; thus, it is (pointwise) fixed
by 7, so X N{x1 = 0} # (). In particular, all cyclic quotient singularities of X are fixed
pointwise by ~.

On the other hand, X does not intersect the rest of the fixed locus, that is, Peyen-
The reason for this lies in the shape of the unprojection equations of X. In Remark [5.1.7]
we show that the order of the cyclic quotient singularities of an index 2 Fano 3-fold must
be odd, and that therefore its orbinates must have weights (2, b, ¢) where either b is odd
and c¢ even, or vice versa. Thus, in order for X to be a double-cover candidate for an
index 2 Fano 3-fold X, the cyclic quotient singularities of X must have orbinates with
weights (1,b,¢) and b, ¢ as above. To fix ideas, suppose b odd and ¢ even.

We want to prove that at least two unprojection equations of X contain a mono-
mial of the form z/'z¥ for some p, v positive integers (1 and v not the same for each of
the unprojection equations). This is enough to prove that X N Peyen = 0.

We study the unprojection equations of X via their algorithmic construction
outlined in Section [2.2.2] (cf [Pap04]). Without loss of generality we can assume that the

variable x3 occupies one of the entries of M that are not in the ideal Ip. In addition,

there are at least two entries not in Ip having even degree: therefore, we can always
place a suitable even power of x1 in the entry not occupied by x3. Thus, all the matrices
defined in contain z3 and even powers of x1. They are eventually multiplied in
the determinant of .

In conclusion, the only points of X fixed by the action  are its orbifold points,

and therefore X has terminal singularities. O

Looking more closely to the double covers created using diagram [5.2] we notice

that they are drastically different depending on the codimension.

Remark 5.1.7. Note that our double-cover method does not produce index 2 Fano 3-
folds in codimension 3 in the Graded Ring Database, that is, the quotient Z = Z/Z/QZ
does not have terminal singularities. The reason lies in the proof of Lemma[5.1.6] While

the intersection of X with the fixed locus of v is just a finite number of points, the
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intersection Z N Fix(v) contains much more. More precisely, Z and Peyen intersect along
D c Z. This is because D = P?(1,b,c) where either b or ¢ is even, i.e. there is no
configuration of (1,b,¢) such as (1,1,1), (1,1,3), (1,1,5), (1,3,5), etc. The reason for
this is that terminal singularities on index 2 Fano 3-folds are of type %(a, b,r — b) with
(a,7) = 1 and (b,r) = 1. Since a is always 2 for index 2, this implies that r must be
odd, and same for either one between b and r — b. From Lemma [5.1.3] we have that
D P2(2,b,c). Therefore, the Z/2Z-quotient Z of Z contains a line of % singularities,
sitting inside the divisor D C Z. Suppose b is even: such line is P'(2,b).

This shows that Z does not have terminal singularities, and thus is not listed in
the Graded Ring Database [BKT15|. Recall that there are only two Hilbert series corre-
sponding to terminal index 2 codimension 3 Fano 3-folds: one is smooth, so constructed
by Iskovskih in [Isk77] and [Isk78]. The other one was constructed by Ducat in [Ducl§].

The double-cover method described in this thesis does not construct them.

Proof of Theorem [5.1.1]. The statement follows from the combination of Lemmas [5.1.3]
5.1.4] [5.1.5] and [5.1.6] O

5.1.1 Conjectural non-existence by computer algebra

Since the divisor D gets "folded in two" by the Z/27Z action v, it is interesting to study
what happens to the nodes on D C Z.

Lemma 5.1.8. Suppose there exists a special member of the deformation family of Z
that is invariant under the 7/27 action 7.
Then, the nodes on the divisor D C Z are not fized by v. Moreover, they are

pairwise-identified in the quotient Z.

Proof. From we can assume that the nodes of Z only lie on the divisor D.
Therefore, from Remark [5.1.7] we have that the nodes are not fixed by ~.

The equations of the nodes on Z can be found by computing the 3 x 3 minors of
the Jacobian matrix J of Z and then restricting it to D, i.e. A j|D = 0. Such equations
obviously depend on Z. These equations describe a finite number of points on D, that is,
its nodes. Lifting these equations to Z, Z is replaced by the new variable x2. Therefore,
the nodes found at the index 2 level are doubled in the index 1 level.

Therefore, the nodes on D C Z are pairwise identified by ~ in the quotient. [
We can therefore deduce the following corollary.

Corollary 5.1.9. Consider Z as in Lemma[5.1.8 Then the number of nodes of Z is

even.
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Now consider the codimension 4 candidates in index 1 to be double cover for one
of the 32 Hilbert series in index 2. Such candidates have between two and four different
deformation families, depending on the format of Z (cf [BKR12al). Each of these formats
has a certain number of nodes on D C Z. Corollary show that, in order to be a
double cover for X, the index 1 candidate X must be obtained from Z having even
number of nodes. This excludes some of the deformation families of X, that is, dismisses

the ones whose format has odd number of nodes.

Remark 5.1.10. Only the Hilbert series #24078 presents two possible Tom formats.
Corollary [5.1.9] constitutes a criterion to exclude the first Tom format in the family
#24078, which has 5 nodes. Therefore, the second Tom of the family #24078 cannot be
invariant under the Z/2Z-action in 5.1}

We summarise in Table [6.3] the Tom formats that give rise to a double cover,
together with the Jerry formats that could produce other deformation families for the
same Hilbert series in index 2.

Although we have not investigated it thoroughly as the case of Fano 3-folds of
Tom type, we do have some conjecture explaining the expected behaviour of the index
1 Fano 3-folds of Jerry type under the double-cover method. Through these conjectures
we systematise the data collected via computer algebra.

Using the tj package for Magma that can be found in the Graded Ring Database
website it is possible to produce a code checking whether the Z/2Z-invariance
can be achieved with a certain Tom or Jerry format. The code shows that the formats
giving rise to a Z/2Z-invariant Fano all share the features related to the number of nodes
we explained and that, concerning the Jerry case, the condition [2.4.1]is involved.

For the Jerry case it has shown that there are 18 Z/2Z-invariant Jerry formats; 8
of them have some zero entries, the other 10 do not. In particular, it is possible to draw

the following conclusions:

Conjecture 5.1.1. If Z is defined by pfaffians of a Z/2Z-invariant matriz in Jerry

format, then the numbers of nodes of Z is even.

Conjecture 5.1.2. If Z is defined by pfaffians of a 7/2Z-invariant matriz in Jerry
format, then the condition [2.].1) is satisfied, except for the format Jerryio of #11123.

Note that the opposite implication in both Theorem [5.1.1] and [5.1.2] is false, al-

though it seems true that

Conjecture 5.1.3. Suppose Z is in Jerry format and has even number of nodes. If the
condition [2.7.1] holds, then the deformation family of Z has a special member which is
invariant under the Z/2Z-action .
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Remark 5.1.11. In [Ducl8|, Ducat constructs Fano 3-folds corresponding to the two
Hilbert series #40663 and #40933. He constructs two deformation families for #40663,
one in Tomy format and one in Jerryss format. Regarding #40933, in [PR16] Prokhorov
and Reid construct a deformation family in Jerryjo format. Here we construct the Toms
format of #40933.

In conclusion,

Theorem 5.1.12. The double-cover method constructs at least one deformation family
for 32 Hilbert series of index 2 Fano 3-folds in codimension 4.

5.2 A birational link for an index 2 codimension 4 Fano 3-
fold: the case of #39898

In the previous part of this chapter we constructed explicitly most of the codimension 4
index 2 Fano 3-folds. In this section we show a birational link starting from one of such
Fano varieties, using similar techniques to the ones outlined in Chapter 2} In this case,
the behaviour of the link is substantially different.

This is a work in progress joint with Tiago Guerreiro. This section is aimed to
give a glimpse at this new development.

Consider the following Fanos:

#4896 X CP7(12,3,5,6,7,8,9) codimension 4 2 x £(1,1,2),4(1,1,8)
#4895 Z  CP5(12,3,5,6,7,8) codimension 3 14 nodes

The projection from the point P, € X of type %(1, 1,8) gives the codimension 3 Fano
3-fold Z, containing the divisor D = P2(1,1,8)s, 4p.2s With ideal Ip = (y1,Y2, Y3, ya)-
Here y1,y2, ys3, y4 have weights 7,6,5,3 respectively. In addition, Z is realised as pfaffians
of a matrix M in Tomgs format.

The Tom-type Fano 3-fold X obtained by a Type I unprojection of such D C Z
is a candidate to be a double cover of the codimension 4 Fano 3-fold in index 2 having
Hilbert series #39898. This is because the general member of #39898 sits inside the
weighted projective space P7(1,2,3,5,6,7,8, 9): Lemmasuggests that #39898 could
be obtained as a Z/2Z-quotient of X #4896 via the group action v defined in .
Moreover, Z has even number of nodes, as in Corollary

It is actually possible to write equations for X that are invariant (and not just

equivariant) under the action +, that is, in which the variable x1 appears only with even
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powers. Therefore, the explicit equations for the Z/2Z-quotient X are

(2Tys + 28yo + 2yays + 292 + 42 + vy = 0
T3y + oY1 + T3Yay2 + Y1ys + T2Y1 + ysy2 + yaxz =0
T yays — y3yo + Tyayr — Y3 +ysy1 =0
x%a’:Q + 2:1:‘215:4 — :L’gyg + 75 — x%a’;yg — x%xg — By — T3 — y3y1 + Y45 =0
x5ys + T3T2Ys — T3yay2 + 23Ty + Tlys — 23yiys
~Z%ysys + Ty — yay3 + y2y1 — yaz3 =0
LIy — T3YTYe — T2Y3 — 23Y3 + T3YsyL — Tysy1 + ¥ — yox3 =0
—ayt — afys — 257y — 2Sys — 2Gyays — 25Tys — 2251 — 23T0YF — w3TYays

452 272 4,2 25 45

=3 —4 =22 2 =3 2 _
—T°Ysys — T Y2 — T7Y5 — w5y3y1 — T°x3 — Y7 — y3s =0
11 2 T4 9,2 9 7 4 -3 6~ 7 4~ 4 =2
Ty T7 — THT" + THYL + THY2 + Toyays — TT Y3 + TTY1 + ToT3 + ToTY4y2 — 2X5T7Y1

—2ys + 2373y1 + Tyayo — 22%y1 + 23yiyn + 23yeys + yaysyr + y1xs + y2s =0
257%y2 — 213%y3 + 257%ys + 2lysye — 25 TY) + 2iTtY?

+2572yays + 23Ty + 237723 4+ Tlysys + v3Y3 + 23yaysye + Tl

—a3yiTs + T2Y5 — T2Y3y1 — T3Ya3 + Y3Y2 + Yayayr — Ty — yaysez — 23 — y1s = 0
(5.3)
Recall that the fixed locus of v is Fix(y) = {z1 = 0} UP?(1,8,6)s, 25.4,- The
projective space P2(1,8,6)z, zs.ys = (T2,Y1,Y3, Y4, ) is the component of the fixed locus
that we called Peyen in Lemma m It is easy to see that D and Pgyen intersect along
the projective line P?(1,8), -
The nodes on D can be found computing the 3 x 3 minors of the Jacobian matrix
J of Z and then restricting it to D, i.e. /\3 J|p = 0. Their equations in the quotient Z
are
23222 + 3287* + 32375 — afws + 28 — 2237%25 — T2y =0
—m%s 43: — a;g:m:g — 2:1:4x3a:3 — 723 =0

—2852? — 22312* — 2225 + 2dlas + 277%25 =0

237273 + 27374y + 2023 — 2323 — 7222 =0

—z3 — pilzrs — 23303 =0

—aliry — 23722 — 2322 =0

11m2x3 - argx‘lxg + 2323 =0

4~

The above equations describe the 7 nodes on D C Z. Obviously they double in number
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when replacing 2 back instead of Z.

Now that we explicitly constructed the index 2 Fano 3-fold #39898 we can use
the techniques used in Chapter [2|to run a birational link starting from the pair (X, P;),
where P, € X is the cyclic quotient singularity of type 5(2, 1,8), with orbinates Z, x2, x3
respectively. We use the same notation used for Sarkisov links introduced in Section
In Chapter [2] we started the link by performing a Kawamata blow up of the Type
I centre at Ps; this step relied on the fact that Kawamata’s theorem 2.2.3] held in our
setting. This is no longer true in the index 2 context. In fact, Kawamata’s theorem holds
if the centre is of type %(1, a,r — a), with a and r coprime. This condition on the centre
is not fulfilled by %(2, 1,8). Therefore, a manipulation of the weight of the orbinates is
needed. This means that we let Z/97Z act on the orbinates until we get weights satisfying
the hypotheses of Kawamata’s theorem. What we get is an equivalent cyclic quotient
singularity: in our case we have %(2, 1,8) ~ %(1, 5,4).

Applying Kawamata’s theorem [2.2.3] and the same strategy to assign the bottom
weights 01, ..., d4 explained in Section [2.2.2] we obtain the following rank 2 toric variety.

t s|ZT x2 T3 Y1 Y2 Y3 Y4
0 92 1 8 7 6 5 3
-9 011 5 4 8 3 7 6
Note that it is not well-formed, and that the lattice vectors py, ..., py, are not in clockwise

order as they were in the index 1 construction. After well-forming and reordering the

above rank 2 toric variety we get

T X3 Y1 Y3 Y4 Y2 X2
2 8 7 5 3 6 1
1 4 3 2 1 2 0

Fl =

_ O
Tt © »

The toric variety [F; is associated to its Mori cone:
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The reader can immediately notice that the first wall of the mobile cone of [F; is generated
by the rays of only two of the orbinates. This plays an important role in determining the

behaviour of Y7 when crossing the (Z, z3)-wall.

Fact 1. The first wall of the mobile cone is always generated by the following two vectors:

Pz, Pz, for v equal to either 2 or 3, where the weight of z; is even.

In contrast to the birational links in the index 1 case, here we have the following

fact regarding the first step of the birational link.

Fact 2. If X is quasi-smooth, then the birational map 7: Y7 — Y5 of the birational

link for X is an isomorphism.

The second and third maps in the birational link are both isomorphisms for the
varieties Y2 and Y3 respectively.

The last map @' is a divisorial contraction to a Fano 3-fold X’ in the weighted
projective space P7(13,22, 3,4, 5) correspondent to the Hilbert series #11106.

Note that X’ has codimension 4. In fact, in the case of birational links for codi-
mension 4 index 2 Fano 3-folds, the link does not always simplify the structure of X as

it was happening in the index 1 context.
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Chapter 6
Appendix: Tables

This table summarises the results for the Sarkisov links for index 1 codimension 4 Fano

3-folds X of Tom type having Picard rank 1 terminating with del Pezzo fibrations.

Table 6.1: Sarkisov links ending with del Pezzo fibrations

ID of codim 4 H Centre ‘ Format H Degree of dP

574 7 T 1
644 10 T 1
1395 9 Ts 1
1401 7 T, 1
2421 8 Ts 1
5516 3 T 2
5519 3 T 2
5530 3 T 2
5845 6 Ty 2
5867 4 T 2
5870 5 T 3
5914 4 T 2
5970 4 T 3
6378 3 T, 3
11004 7 T 2
11104 7 Ts 2
11123 5 Ty 2
11437 2 T 3
11437 5 Ts 3
11440 2 T 3
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11455 2 11 4
16206 5 Ty 3
16228 4 Ty 3
16246 3 T 3
16339 3 Ty 4
20544 2 T 4
20652 2 Ty 5

This table summarises the results for the Sarkisov links terminating with conic

bundles for index 1 Fano 3-folds X of Tom type in codimension 1 having Picard rank 1.

Table 6.2: Sarkisov links ending with conic bundles

ID of codim 4 H Centre ‘ Format ‘

6865 4 Ty
12063 2 Ty
12960 2 Ty
16227 5 T
20524 4 Ty
20544 3 Ty
24078 3 Ty
24097 2 Ty

The following table collects all the 37 Q-Fano 3-folds of index 2 in the Graded
Ring Database [BKF15] together with their index 1 double cover, and the formats in

codimension 3 index 1 that allow the construction described in Section [Bl

Table 6.3: Index 2 Fano 3-folds in codimension 4

’ Index 2 ‘ Index 1 ‘ T&J ‘
39557 327 T3, Jog
39569 512 none
39576 269 Ty
39578 074 Ty, Jose12
39605 869 Ty, J13
39607 872 none
39660 1158 Ts, Ji2
39675 1395 Ts
39676 | 1401 1Ty 1Ty
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39678 | 1405 Ty
39890 | 4810 Ts, Jos

39898 | 4896 Ts, Jos

39906 4925 1(1,1,6): Tv; 2(1,3,4): Ty
39912 | 4938 Ty

39913 | 4939 11Ty, Joseas; 11 Th, Jiaes
39928 | 4987 Ts

39929 | 5000 Ty 50Ty

39934 | 5052 Ty, Jaze13

39961 | 5176 Ly lomy

39968 | 5260 T5, Jis

39969 | 5266 £ T, Joseos; 3: Ty, Jizers
39970 5279 | 3: Ty £(1,1,4): Ty; £(1,2,3): Ty
39991 | 5516 2T LT

39993 5519 STy, Jaus 20 Ty, Jio
40360 | 10963 T3, Jos

40367 none none

40370 | 11004 Ty

40371 | 11005 3:Th, Joseos; £: To, Juseis
40378 none none

40399 | 11104 Ts

40400 | 11123 2Ty Ty

40407 | 11222 Ti, Joge13

40663 | 16206 Ty, J23

40671 | 16227 Ty

40672 | 16246 Ty, Ji5®14

40933 | 24078 Ts, Ji2

41028 none none
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