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Abstract

In this thesis we prove the birational non-rigidity of Picard rank 1 Fano 3-folds in

codimension 4 having Fano index 1. This is done by explicitly constructing Sarkisov

links for these varieties to other Mori �bre spaces.

We also consider those Fano 3-folds in codimension 4 and Fano index 1 having

Picard rank 2, and we identify a Mori �bre space in its birational equivalence class. In a

�nal short chapter, we begin this program for Fano 3-folds in codimension 4 having Fano

index 2 by demonstrating a construction of them as quotients of index 1 Fano 3-folds.
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Introduction

General overview

The construction of sequences of birational maps linking algebraic varieties to one another

has been an active research topic since the development of Mori Theory and the Minimal

Model Program, aimed at the birational classi�cation of algebraic varieties, and indeed

long before. This approach goes under the name of Sarkisov Program. In this context,

and for certain algebraic varieties having Picard rank equal to 1, the notions of birational

rigidity and pliability come into play. The pliability measures the number of di�erent

Mori �bre spaces that are birational to a given variety X. If this number is 1, the variety

is said to be birationally rigid.

Di�erent aspects of such birational transformations have been studied for several

kinds of algebraic varieties. For instance, in the work [CPR00] by Corti, Pukhlikov, and

Reid the authors examine the 95 Fano 3-fold weighted hypersurfaces of [Rei80a] and

[IF00], proving their birational rigidity.

Our work, in contrast, focuses on proving the birational non-rigidity of certain

Fano 3-folds in higher codimension.

The spirit of our approach follows the seminal work [CM04] of Corti and Mella for

quartic Fano 3-folds, in which the authors show that quasi-smooth quartic Fano 3-folds

having only one singularity of a certain type are not birationally rigid: in fact, their

pliability is exactly 2. The result is achieved by studying certain sequences of birational

maps called Sarkisov links.

In [BZ10], Brown and Zucconi study Sarkisov links for codimension 3 Fano 3-folds

in index 1, proving the birational non-rigidity of the latter, provided the presence of a

Type I centre. We obtain a similar result in our case. We largely use the techniques

and the language developed in [BZ10], especially regarding the variation of GIT on toric

varieties. The scenario in codimension 3 and index 1 is completed by Ahmadinezhad and

Okada [AO18], where they prove the birational non-rigidity of the �ve remaining Hilbert

series in codimension 3 and index 1 that do not have any Type I centre.

In this thesis we will only focus on codimension 4 Fano 3-folds having at least one

Type I centre.
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Fano 3-folds of Tom type

In the �rst part of this thesis we combine the strategies contained in [CPR00] and [CM04]

together with the unprojection techniques developed in [Pap04] to tackle the birational

geometry of the codimension 4 Fano 3-folds in index 1 having at least one Type I centre

that are listed in the Graded Ring Database [BK+15]. In particular we mainly focus

on those deformation families arising from Type I unprojections of codimension 3 Fano

3-folds Z, and especially on those in the so-called Tom format. We call the outcomes of

these unprojections Fano 3-folds of Tom type.

These varieties of Tom type constitute about a half of the known deformation

families of codimension 4 Fano 3-folds; the other half is of Jerry type (see below).

Our main results proves that these varieties are not birationally rigid, and we give

an explicit description of the Sarkisov links starting from them in terms of their ambient

space and their basket of singularities. We summarise the results in Table 6.4. Along

the way we encounter some interesting phenomena, highlighted explicitly in Chapter 3.

The construction we describe looks like this. In [BK+15] we pick a codimension 4

Fano 3-fold X ⊂ P7(a, b, c, d1, d2, d3, d4, r) with coordinates x1, x2, x3, y1, y2, y3, y4, s, and

we use the data in the Big Table of [BKR12b] to construct X explicitly via unprojection.

Together with X we choose a Type I centre p ∈ X: the Kawamata blow-up of this point

starts the link. In the notation above, we assume p = Ps. We use toric geometry to

perform the blow-up, and we prove that

Proposition. In the notation above, the Kawamata blow-up Y1 of X at the Tom centre

Ps ∈ X is contained in a rank 2 toric variety F1 having weights

F1 :=

 t s x1 x2 x3 y1 y2 y3 y4

0 r a b c d1 d2 d3 d4

1 1 0 0 0 −1 −1 −1 −1


(see Section 1.2.5 or Appendix of [BCZ04] for this notation).

In fact many varieties would ful�ll the role of F1, but this variety in particular unfolds

the birational geometry of X, as we explain below.

The weights of the rank 2 toric variety F1 describes a ray-chamber structure of

its Mori cone. The mobile cone of F1 describes the behaviour of the Sarkisov link. The

mobile cone of F1 and the mobile cone of Y1 do not always coincide (by restriction of

divisors to Y1). For instance, the mobile cone of Y1 can happen to be poorer (in some

index 1 cases): when this occurs, the birational transformation associated to one of the

rays of the mobile cone of F1 is an isomorphism when restricted to the variety Y1. Note

that the rank 2 toric variety F1 is built in such a way that it contains Y1 and it re�ects,

at least partially, the birational geometry of Y1. This is explained in Chapter 2.
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The Sarkisov links for codimension 4 index 1 Fano 3-folds of Tom type proceed

with a sequence of �ops and �ips. The endpoints of these sequences can be either divi-

sorial contractions to a point or a line (a smooth rational curve) in another Fano 3-fold

X ′ (of lower codimension), or del Pezzo �brations, or conic bundles (see Tables 6.1 and

6.2).

For instance, consider X the Tom1-type Fano 3-fold associated to the Hilbert

series #11005, and p ∈ X the Type I centre of type 1
3(1, 1, 2). Its Sarkisov link centred

at p is

Y1

Φ

~~ ��

ψ1

16 �ops // Y2
ψ2

(5,1,1,−1,−3;2)// Y3
ψ3

isomorphism // Y4

Φ′

  
X Z

unprojoo X ′

where ψ1 is constituted by 16 disjoint �opping P1, and ψ2 is a hypersurface �ip having

weights (5, 1, 1,−1,−3; 2). After that, ψ3 is a generalised �ip of the toric ambient space

whose exceptional locus do not intersect Y3; therefore, the restriction of ψ3 to Y3 is an

isomorphism. Lastly, Φ′ is a divisorial contraction to a point on X ′ = X4,4 ⊂ P5(14, 2, 3)

(see Section 1.2.5 for notation, and Section 2.3.1 for link of this type in the proof of the

Main Theorem 2.1.1).

The main result is therefore

Theorem. Picard rank 1 Fano 3-folds of Tom type having index 1, codimension 4, and

at least one Type I centre are not birationally rigid.

This is Part (B) Theorem 2.1.1. The rest of the theorem contains the details of

the geometry of the links including their �ipping types and extremal contractions.

As a corollary of the above theorem, we construct a family with Hilbert series

#5305 and general member having Picard rank 1.

On the Picard rank of Fano 3-folds of Tom type

An important observation is that whenever the Sarkisov link from X of Tom type ter-

minates with another Fano 3-fold X ′, the latter has always lower codimension than X

itself. Hence, since X and X ′ are birational, they ought to have the same Picard rank.

While, except for some computational results ([BF20]), very little is known re-

garding the Picard rank of codimension 4 Fano 3-folds, much more can be said for Fano

3-folds in lower codimension. Fano 3-folds in codimension up to 3 have Picard rank 1

whenever they are quasi-smooth. Therefore, if a Sarkisov link's endpoint is quasi-smooth,

we can deduce straight away that the Picard rank of X must be 1. If there are no hyper-

surface �ips in a link, and if the divisorial contraction Φ′ contracts exactly a weighted
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P2 (and not a surface in a weighted P3) to a point (or a line) in X ′, then X ′ is quasi-

smooth. This situation occurs in 18 instances, in which we can therefore state that the

corresponding Tom-type Fano 3-folds have Picard rank 1.

As it is clear from Table 6.4, the cases in which X ′ happens to be quasi-smooth

are a very small minority. All the other endpoints X ′ have some extra (compound)

singularities inherited either from the hypersurface �ip(s) occurring in the link, or from

the divisorial contraction Φ′. The treatment of this situation in which X ′ is not quasi-

smooth is more delicate and it is not part of this thesis. However, we believe that by

applying an appropriate Lefschetz-type theorem to X ′ we should be able to conclude

that X ′, and therefore X, has Picard rank 1 even in the singular case.

Such result would ideally conclude the in-depth study of the geometry of (Tom-

type) Fano 3-folds started in [BKR12a].

Fano 3-folds of Tom type and Picard rank 2

One of the hypotheses of the above theorem is that X must have Picard rank 1. This is

surely needed to make sense of the notion of birational rigidity. Recall that, associated

to each Hilbert series in [BKR12b], the deformation families corresponding to Tom-type

formats might be either one or two. If there are two, we refer as second Tom format to

the second one. All the second Tom formats of the varieties listed in the Table [BKR12b]

fall into the description of [BKQ18], that is, they are in P2×P2 format. Therefore, their

Picard rank is 2. In this case, even though it is not possible to talk about Sarkisov links

anymore, a construction shaped on the one of Sarkisov links still leads to interesting

conclusions, going beyond quasi-smooth Fano 3-folds.

Firstly, the birational links for these Fano varieties of second-Tom type present

two divisorial contractions, simultaneous or consecutive, or a single divisorial contraction

followed by a del Pezzo �bration, con�rming that the Picard rank of X is 2. Note that

they never give rise to conic bundles.

Theorem. Every Fano 3-fold in codimension 4 in second-Tom format presents a bira-

tional link terminating with either

� two divisorial contractions (when d1 > d2 > d3 > d4 and when d1 > d2 = d3 > d4);

� a divisorial contraction followed by a del Pezzo �bration (when d1 = d2 > d3 = d4).

In particular, they all terminate with a Mori �bre space.

Moreover, examining in detail the second-Tom format of the Hilbert series #10985

we discovered that its endpoint is a hypersurface X ′ = X5 ⊂ P4(14, 2). This does not
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fall into the description of [CPR00] because it has one compound singularity, and is

quasi-smooth elsewhere.

Extracting from the other Type I centre of X leads to a birational link ending

with another hypersurfaceX ′′ = X5 ⊂ P4(14, 2). However, X ′ andX ′′ are not isomorphic

because they have non-isomorphic compound singularities. On the other hand, they have

Picard rank 1, so they are Mori �bre spaces. Therefore,

Proposition. The pliability of X ′ = X5 ⊂ P4(14, 2) with exactly one compound singu-

larity is P(X ′) ≥ 2.

Fano 3-folds of Jerry type

For the majority of this thesis we discuss Fano 3-folds of Tom type. However, for each

Fano 3-fold of Tom type, there is at least one of Jerry type, that is, obtained by a Type I

unprojection of a divisor D ⊂ Z where Z is a codimension 3 Fano 3-fold in Jerry format.

Using an approach similar to the one above, it is possible to study these other

varieties. Even though it is more articulated than for Tom, and although we do not

completely resolve all the links from them, we do partially explain the behaviour of the

Fano 3-folds of Jerry type.

The construction of the blow-up of X at p when X is of Jerry type depends on

whether the following condition is satis�ed or not.

Condition. Let P be the degree of the pivot entry of the Jerry format of Z. Consider

the following statement:

One of the coordinates yj of the weighted projective space wP7 is such that

deg(yj) = P .

Thus, if X is of Jerry type, we prove the following proposition.

Proposition. Let X be a codimension 4 index 1 Fano 3-fold of Jerry type. If the above

condition holds, then, the Kawamata blow-up Y1 of X at p is contained in a rank 2 toric

variety of the form

F1 =

 t s x1 x2 x3 y1 y2 y3 y4

0 r a b c d1 d2 d3 d4

1 1 0 0 0 −1 −1 −1 −2

 .

On the other hand, if the above condition does not hold, F1 has the same weights as in

the Tom case.
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Clearly the aspect of the variety F1 re�ects the di�erent nature of the birational

geometry of Jerry-type Fano 3-folds. A case-by-case analysis shows that the phenomena

occurring for Jerry-type Fano 3-folds range from a Tom-like behaviour to a much more

unpredictable sequence of birational maps.

We included some examples in Chapter 3 and in Section 3.3.

Index 2 Fano 3-folds

While in index 1 the unprojection techniques give a concrete tool to construct Fano 3-

folds in codimension 4, this does not happen in higher index. The last part of this thesis

partially answers the question of explicitly constructing codimension 4 index 2 Fano 3-

folds. The strategy is to combine the usual unprojection in index 1 with a quotient by

Z/2Z to view X as a double cover of another Fano X̃, where X̃ is a quasi-smooth Fano

3-fold having codimension 4 and index 2.

We achieve the following diagram.

codim 4 codim 3

index 1 X

Z/2Z
��

Z
unprojoo

Z/2Z
��

index 2 X̃ Z̃

There are 34 Hilbert series that are candidate to have an index 1 Fano 3-fold with at

least one Type I centre as their double cover. Our method applies to all of them, but

not to all the deformation families in index 1. Here we consider a speci�c group action

ϕ of Z/2Z (see Chapter 5 for details).

We prove the following lemma.

Lemma. If a codimension 3 Fano 3-fold Z in Tom format is such that there exists a

special member invariant under the group action ϕ, then the nodes on the divisor D ⊂ Z
are not �xed by the action.

This implies that we have a hope to construct a codimension 4 index 2 Fano 3-fold

only if the index 1 codimension 3 counterpart has an even number of nodes. This helps

discerning which formats could produce a double cover in codimension 4 by narrowing

the range of possibilities to the only formats having even number of nodes.

This method explicitly constructs at least one deformation family for 32 di�erent

Hilbert series in index 2 in the Graded Ring Database [BK+15].

In the last part of Chapter 5 we exhibit an explicit example of birational link

starting from an index 2 Fano 3-fold of codimension 4. The upshot is that they are not

vi



birationally rigid. The description in this case is more challenging, and it is an ongoing

joint work with Tiago Guerreiro.

Content of the chapters

In Chapter 1 we highlight the �rst de�nition necessary for the construction of Fano 3-folds

in high codimension, together with the basics of the Sarkisov links.

In Chapter 2 we describe the construction of Sarkisov links for index 1 Fano 3-

folds of Tom type in codimension 4 having Picard rank 1. Moreover, we prove a theorem

outlining the behaviour of the links.

In Chapter 3 we provide explicit examples to the constructions explained in Chap-

ter 2, showcasing the most relevant phenomena occurring. Section 3.3 is dedicated to

comparing some of our results to the one of Takagi (cf. [Tak02]).

In Chapter 4.2 we examine birational links for index 1 Fano 3-folds of second-Tom

type in codimension 4 having Picard rank 1. Here we draw conclusions regarding the

pliability of a certain quintic Fano hypersurface having one compound singularity.

In Chapter 5 we construct codimension 4 Fano 3-folds of Tom type having index

2 as quotients of certain Fano 3-folds in index 1.

The Appendix 6 includes all the tables summarising the results of this thesis.
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Chapter 1

Background theory

1.1 Setting and hypotheses

We work over the �eld of complex numbers C.
In this chapter we summarise and make more precise the picture highlighted in

the Introduction, setting the tone and the language for the rest of the chapters.

In this thesis X is a Fano 3-fold in codimension 4 with at most terminal singu-

larities and Fano index 1, that is

De�nition 1.1.1. A Fano 3-fold is aQ-factorial normal complex projective 3-dimensional

variety with terminal singularities whose anticanonical divisor −KX is ample.

In the literature it is also called Q-Fano 3-fold.

The hypotheses Q-factorial means that every Weil divisor on X is Q-Cartier.

De�nition 1.1.2. Consider a projective variety X and any resolution of singularities

φ : X̃ → X; call its exceptional divisors E1, . . . , En. The canonical divisor of X̃ is

KX̃ = φ∗KX +
∑n

i=1 aiEi for some rational coe�cients ai. The variety X is said to have

terminal singularities if for every i ∈ {1, . . . , n} ai ∈ Q>0.

Call Fano index the highest natural number q such that −KX = qA for A ∈
Cl(X).

In this setting the codimension of X is de�ned to be its codimension in its an-

ticanonical embedding. More precisely, since X is Fano, we can de�ne its (total) anti-

canonical ring R(X,−KX) as

R(X,−KX) : =
⊕
m∈N

H0(X,−mKX) .

Any choice of the minimal generating set of the ring R(X,−KX) determines an embed-

ding of X into a projective space P(a0, . . . , an), where n and the weights a0, . . . , an are
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well de�ned by the ring. The codimension of X refers to this embedding.

A list of the possible candidates of codimension 4 Fano 3-folds satisfying the above

de�nitions is contained in [BK+15]. In order to classify them it is important to know

what kind of equations de�ne them.

In [IF00], [Rei80b], and [Alt98] the authors present a classi�cation for codimension

up to 3.

In codimension 1 all Fano 3-folds are hypersurfaces, and there are 95 distinguished

families. In codimension 2 they are complete intersections, and there are 85 distinguished

families. In codimension 3 there are 70 families: 1 family given by complete intersections,

69 given by pfa�ans of 5× 5 skew-symmetric matrices.

Regarding the codimension 4 case there are 145 numerical candidates listed in the

[BK+15], but there is no structure theorem for their equations as the ones above. This

is a problem for our purposes, as we will need to know the equations (or at least some of

the monomials that appear in them) of such codimension 4 varieties. In [BKR12a] the

authors discovered that 115 of those 145 families can be realised as Type I unprojections

of a codimension 3 Fano 3-fold. Their full list is contained in [BKR12b]. In particular

they occur at least in two di�erent ways, that is, one from a pfa�an variety de�ned on a

matrix in Tom format and another one if the matrix is in Jerry format. These unprojec-

tions starting from two di�erent formats lead to two topologically di�erent deformation

families. For a more detailed dissertation about Type I unprojections and Tom and Jerry

formats refer to [Pap04].

This thesis examines the candidates among the 115 families arising from Type I

unprojections. Therefore these Fano 3-folds in codimension 4 have at least one Type I

centre as de�ned in [BZ10]. As explained in the following sections, the Tom and Jerry

cases will present di�erent issues and challenges when it comes to run the Sarkisov links,

and also di�erent geometric interpretations.

1.2 Strategy and notation

A Sarkisov link is a sequence of elementary birational maps, in a very precise sense. Let

us recall �rst the de�nition of the birational maps that are building blocks for Sarkisov

links.

1.2.1 Elementary birational maps

De�nition 1.2.1. Consider ϕ : X → Z a birational map of projective varieties.

� ϕ is a divisorial contraction if it contracts a divisor in X.

� ϕ is a small contraction if it does not contract a divisor in X.
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In the case where ϕ is a small contraction suppose that KX · C < 0 for each curve

C contracted by ϕ. It is possible to de�ne a �ip to be a variety X+ together with a

birational morphism ϕ+ : X+ →W (another small contraction) such that

� X+ is Q-factorial;

� KX+ · C+ > 0;

� KX+ is ϕ+-ample;

� ψ : X r C
∼=−→ X+ r C+;

� the following diagram commutes

KX · C < 0 C ⊂ X ψ //

ϕ
%%

X+ ⊃ C+

ϕ+
xx

KX+ · C+ > 0

Q ∈W

A similar de�nition is for a �op, where both KX ·C and KX+ ·C+ are equal to 0 and ψ

is an isomorphism in codimension 1.

Both �ips and �ops are isomorphisms in codimension 1.

Remark 1.2.1. Since a minimal model is de�ned to have nef canonical divisor, �ips play

a crucial role in the construction of the model itself, as they turn curves having negative

intersection with the canonical divisor of a projective variety X into curves that have

positive intersection. This means that KX+ is actually closer to nefness than KX .

In the 3-fold case it has been proven by Mori in [Mor88] that �ips exist; their

termination is proven by the work of Kawamata, Kollár, Mori, Reid, Shokurov and

others. Thus the following de�nition is well-posed.

The formal de�nition of Sarkisov link stems from the one of 2-ray game, as in

[BZ10].

1.2.2 2-ray game

De�nition 1.2.2. A 2-ray game consists in the following sequence of birational trans-

formations.

Consider a 3-fold X, and assume its Picard rank ρX = 1. De�ne Y as the blow up

of X at a point p ∈ X; call φ : Y → X the blow-up map. The Picard rank of Y is then

ρY = 2, so Y admits at most two possible contractions: one of them is φ itself. In the

case where the second contraction does not exist we say that the 2-ray game �breaks�. If
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the second contraction φ0 exists, with target variety Z, there are the following occurring

cases:

� Z is Q-factorial: the 2-ray game stops, φ0 is a divisorial contraction, and we say

that it was �successful�. We call the resulting sequence Sarkisov link ;

� Z is not Q-factorial: then φ0 is a small contraction. We �ip (or �op) to another

Picard rank 2 variety Y1. Consider Y1 instead of Y and start again until the 2-ray

game stops or breaks;

the �ip from Y does not exist: the 2-ray game breaks;

Y1 does not have the second contraction: the 2-ray game breaks.

The aim is to classify Sarkisov links run over Q-Fano 3-folds as de�ned above.

We �rst start from the easy case of weighted projective spaces. We afterwards move to

the Fano cases.

A consequence of such analysis regards the notions of birational rigidity and pli-

ability.

De�nition 1.2.3. Let X → S be a Mori �bre space. Its pliability is the set of all Mori

�bre spaces that are birational to X, up to a natural equivalence relation ∼ called square

birationality. In symbols,

P(X) = {MfsY → T |X is birational to Y }/ ∼ .

De�nition 1.2.4. A birational map f : X 99K X ′ between two Mori �bre spaces X → S

and X ′ → S′ is said to be square birational if there exists a map g : S 99K S′ such that

the following diagram commutes

X
f //

��

X ′

��
S

g // S′

and the induced map on the generic �bres is biregular.

De�nition 1.2.5. AMori �bre spaceX → S is said to be birationally rigid if its pliability

is 1, that is, P(X) contains only one element (X itself) up to square birationality.

1.2.3 Weighted projective spaces and rank 2 toric varieties

Running a Sarkisov link starting from a weighted projective space wP is straightforward:

it su�ces to choose a singularity of wP to blow up; this makes the Picard rank of wP
increase by one. The blow up is a rank 2 toric variety, i.e. a scroll F, de�ned by certain

weights depending on those of wP. Obviously, F comes with a certain initial polarisation.
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Then, the Sarkisov link is performed by changing the GIT quotient on F, i.e. by changing
the irrelevant ideal in the de�nition of F, that is, by changing its polarisation. Every

step therefore consists in birational maps given by either �ips or �ops. This process

will eventually stop after a �nite number of steps, depending on how many variables the

scroll has, ending with a map that makes the Picard rank of F drop by one. In particular,

this last map is a divisorial contraction to another weighted projective space wP′ or a
�bration to a toric variety of lower dimension, as in Theorem 4.1 of [BZ10].

Remark 1.2.2. Note that changing the GIT quotient on F corresponds to considering

alternatively stable and unstable loci in the Mori cone of the scroll.

As explained in [BZ10], it is possible to associate to any scroll a fan in a Z2-

lattice, having a �nite number of rays. It is the Mori cone of F1. Each ray is generated

by the linear system corresponding to each bidegree in the scroll. They de�ne maps given

explicitly by monomials in those linear systems, that is, each of the maps going from the

top row to the bottom row in (1.1) (in Subsection 1.2.5) is associated to a linear system

of F1, and that each �ip or �op (i.e. horizontal arrows in (1.1)) is based at one or more

points in the Zi. Changing the irrelevant ideal of F1, namely changing the GIT quotient

on F1, performs isomorphisms in codimension 1, which could be either �ips or �ops, on

the top row of 1.1. This produces a rank 2 birational link for F1.

More explicitly, the irrelevant ideal of F1 is (t, s)∩(x1, x2, x3, y1, y2, y3, y4). We de-

�ne F2 as the rank 2 toric variety having the same grading as F1 but having (t, s, x1, x2, x3)∩
(y1, y2, y3, y4) as irrelevant ideal. The de�nition of F3 and F4, if applicable, depends on

which case of Theorem 2.1.1 we look at. For instance, if we consider case (i) of Theorem

2.1.1 we have that the irrelevant ideal of F3 is (t, s, x1, x2, x3, y1) ∩ (y2, y3, y4), and the

one of F4 is (t, s, x1, x2, x3, y1, y2) ∩ (y3, y4). On the other hand, in case (v) of Theorem

2.1.1 the irrelevant ideal of F3 is (t, s, x1, x2, x3, y1, y2)∩ (y3, y4), while F4 is not de�ned:

in this situation, the link is shorter. Explicit examples of these phenomena will be given

in Chapter 3. This process is outlined explicitly in the examples of Section 3.

Remark 1.2.3. Such a link starting from a weighted projective space always exists and

always terminates thanks to the �niteness of the number of rays generating the Mori

cone of F.

Each of such rank 2 toric varieties F is endowed with a 2 × 9 chart of weights,

or bidegrees, representing the action of C× × C× on F. It is possible to perform row

operations on F: this does not change the nature of the action, but only showcases the

same action using a di�erent basis of C× × C×.
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1.2.4 Fano varieties

The question is now how to translate this information from the weighted projective space

case to Fano 3-folds.

Each of these Fano varieties X is embedded in a certain weighted projective space

wP. The ambient spaces of Fano varieties in any codimension are listed in the online

database [BK+15]. In particular, it is always possible to run explicitly a Sarkisov link for

the ambient space of X. In order to see how X behaves along the link we need to �nd

explicit equations for it. As outlined in the Introduction, there is no structure theorem

for codimension 4 Fanos. But there is one for codimension 3 Fanos, that is,

Theorem 1.2.4 ([BE74]). If a codimension 3 Fano 3-fold Z is Gorenstein, then it is

realised as pfa�ans of a 5× 5 skew-symmetric matrix M .

To set the notation, M is a weighted matrix with entries {ak,l}
a1,2 a1,3 a1,4 a1,5

a2,3 a2,4 a2,5

a3,4 a3,5

a4,5


and weights {mk,l}.

The unprojection technique described in [Pap04] allows to retrieve equations for

codimension 4 varieties using the information in codimension 3. Morally, it consists in

contracting to a point a divisorD in a variety and in seeing the said variety in a projective

space having one dimension more. The way to force D to sit inside a variety described

by pfa�ans of a matrix M is to write M in either Tom or Jerry format. Picking a

codimension 3 Fano Z1, whose equations are the 5 pfa�ans ofM , if we unproject D ⊂ Z1

we get a Fano in codimension 4 de�ned by the 5 pfa�an equations and the unprojection

equations. These are the equations that we consider throughout the Sarkisov link just

described. A more detailed notation is set in Section 1.2.5.

Recall the following de�nitions as in [BKR12a].

De�nition 1.2.6. A 5 × 5 skew-symmetric matrix M is in Tomk format if and only if

each entry aij for i, j 6= k is in the ideal ID.

De�nition 1.2.7. A 5× 5 skew-symmetric matrix M is in Jerrykl format if and only if

each entry aij is in the ideal ID whenever either i or j is in {k, l}.

Observe thatM is a graded matrix, that is, each of its entries comes with a degree:

so, each entry must be occupied by a polynomial in the given degree. A precise list of

the grading for M in the case of codimension 3 Fano 3-folds is contained in [BKR12b].
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In addition, if we consider either a Tom or Jerry format, the constraints of the formats

need to be satis�ed.

Remark 1.2.5. By considering Tom or Jerry formats we compromise on the quasi-

smoothness of the codimension 3 Fano 3-folds. Putting M in such formats introduces

some nodal singularities in the variety, which add up to the cyclic quotient singularities

inherited from the ambient space.

Any polynomial in the prescribed degree satisfying the format constraints will

do. However, the [BKR12b] gives an even more detailed information, listing also the

minimum number of nodes of Z. In particular, these nodes can be concentrated only on

the divisor D ⊂ Z: in this way Z is quasi-smooth o� D. In order to gather the nodal

singularities only on D, we need to choose a suitable member of the deformation family

of Z by �lling the entries of M with general polynomials of the right degree keeping

the format unvaried, and twitching them to achieve the desired number of nodes as in

[BKR12b].

More speci�cally, performing row/column operations on M allows to get rid of

some terms in the entries of M .

Note that some variables have the same weight as certain entries of M . It is

possible to place such variables in the compliant entries without loss of generality, as

more extensively in Chapter 2. This eases the row/column operations, pivoting such

modi�cations on the entries occupied by only one variable.

Suppose w is a coordinate of the ambient space wP6 of Z, and that its weight is

the same as the weight of a certain entry of M . Call R the row of such entry. Then,

the row operations we look at replace another row R′ with the vector R′ − ξwζR, where
ξ ∈ C× is a coe�cient and ζ is the suitable power of w to cancel out the term in w in

one entry of R′. To maintain the skew-symmetry of M we need to do the same for the

corresponding columns C and C ′.

Observe that not all row/column operations preserve the format. In the above

notation, such operations are allowed if w is a generator of the ideal; more generally, if

R is multiplied by an element of ID.

The unprojection of the divisor D ⊂ Z produces a quasi-smooth codimension 4

Fano 3-fold X de�ned by nine equations. Five of them are the �ve maximal pfa�ans

de�ning Z. The other four are called unprojection equations.
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1.2.5 Notation

Let us introduce some notation. The �rst diagram is the Sarkisov link on the ambient

spaces.

F1

Φ

~~

α1

  

Ψ1 // F2

β1

~~

α2

  

Ψ2 // F3

β2

~~

α3

  

Ψ3 // F4

β3

~~

Φ′

$$
wP G1 G2 G3 wP′ ⊂ G4

(1.1)

Call

� E the exceptional locus of Φ;

� E′ the exceptional locus of Φ′;

� Ai the exceptional locus of αi;

� Bi the exceptional locus of βi.

Here G1,G2,G3 are toric varieties. In our situation they are weighted projective

spaces. The notation in the varieties setting is

Y1

φ

��

α1

  

ψ1 // Y2

β1

~~

α2

  

ψ2 // Y3

β2

~~

α3

  

ψ3 // Y4

β3

~~

φ′

  
X Z1

unprojoo Z2 Z3 X ′

(1.2)

The reason why the links have at most this number of steps will be clear in the

following sections. We will refer to F as the scroll above when it is not necessary to

specify its polarisation.

Since X is a codimension 4 3-fold, it sits inside a weighted wP7, while Z1 sits

inside a wP6. Therefore, the scroll F1 has 9 variables, called t, s, x1, x2, x3, y1, y2, y3, y4

having respective weights(
r1 r a b c d1 d2 d3 d4

r2 r3 α β γ δ1 δ2 δ3 δ4

)

Note that s is the unprojection variable.

Say that Z1 ⊂ P6(a, b, c, d1, . . . , d4) with coordinates x1, x2, x3, y1, . . . , y4, and

X ⊂ P7(a, b, c, d1, . . . , d4, r) with coordinates respectively x1, x2, x3, y1, . . . , y4, s.

Call y1, . . . , y4 relevant variables, and their weights are d1 ≥ d2 ≥ d3 ≥ d4.
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Chapter 2

Tom and Jerry Sarkisov links

In this chapter we describe Sarkisov links for those index 1 Fano 3-folds X in codimension

4 that are obtained by Type I unprojection of codimension 3 Q-Fano 3-folds Z in Tom

or Jerry format, as explained later. We use the notation in Section 1.2.5 and of 1.2. In

particular, we describe Sarkisov links starting from such varieties X. This is done step by

step discussing the construction of Z, the blow-up Y1 of X at the Type I centre arising

from the unprojection, and studying the consequences that each possible variation of

GIT quotient on the ambient space of the blow-up has on Y1.

The results are summarised in Theorem 2.1.1 and Theorem 2.4.5. Some explicit

examples are given in Chapter 3.

2.1 The Main Theorem

In this section we state the main theorem of the chapter, Theorem 2.1.1, which describes

Sarkisov links starting from Fano 3-folds of Tom type. Its proof is contained in Section

2.3. This is also related to other works in the literature, such as Takagi's [Tak02], and a

comparison with that can be found in Section 3.3.

De�nition 2.1.1. Let X be a codimension 4 index 1 Fano 3-fold X listed in the table

[BKR12b]. We say X is of Tom Type if it is obtained as Type I unprojection of the

codimension 3 pair Z ⊃ D in a Tom family (see Chapter 1 for background, Section 1.2

for notation, and Section 2.2.1 for details). The image of D ⊂ Z in X is called Tom

centre: it is a cyclic quotient singularity p ∈ X. In the unprojection setup D ⊂ Z, D is

a complete intersection of four linear forms of weight d1, . . . , d4: we refer to d1, . . . , d4 as

the ideal weights. Such X of Tom type is said to be general if Z ⊃ D is general in its

Tom family.

Theorem 2.1.1. Let X be a general codimension 4 Fano 3-fold of Tom type and let

p ∈ X be a Tom centre. Suppose in addition that X has Picard rank ρX = 1. Then:
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(A) X admits a Sarkisov link to a Mori �bre space Y → S. The link is initiated by the

Kawamata blow-up of p ∈ X.

(B) The Mori �bre space Y → S of (A) is not isomorphic to X. In particular, X is

not birationally rigid.

(C) The geometry of each Sarkisov link in (A) is as follows. Let d1 ≥ d2 ≥ d3 ≥ d4 be

the four ideal weights for the Tom centre p ∈ X. In each case the Kawamata blow-

up is followed by an algebraically irreducible �op of �nitely many smooth rational

curves, and proceeds as follows according to d1 ≥ d2 ≥ d3 ≥ d4:

(i) d1 > d2 > d3 > d4: a �ip followed by a second �ip, followed by a divisorial

contraction Φ′ of (2, 0)-type to another Fano 3-fold X ′;

(ii) d1 > d2 = d3 > d4: a �ip (missed in cases #1218 and #1413) followed by a

divisorial contraction Φ′ of (2, 1)-type to another Fano 3-fold X ′;

(iii) d1 = d2 > d3 > d4: two simultaneous �ips, followed by a divisorial contraction

Φ′ of (2, 0)-type to another Fano 3-fold X ′;

(iv) d1 > d2 > d3 = d4: a hypersurface �ip, followed by a second hypersurface �ip

to a del Pezzo �bration: Φ′ is of (3, 1)-type;

(v) d1 = d2 > d3 = d4: two simultaneous �ips followed by a del Pezzo �bration:

Φ′ of (3, 1)-type;

(vi) d1 > d2 = d3 = d4: a toric �ip (missed in case #6865) to a conic bundle: Φ′

is of (3, 2)-type;

(vii) d1 = d2 = d3 > d4: a divisorial contraction Φ′ of (2, 1)-type to another Fano

3-fold X ′;

(viii) d1 = d2 = d3 = d4: a conic bundle over a quadric surface in P3: Φ′ is of (3, 2)-

type.

The notation on �brations and divisorial contractions in the above theorem is:

(m,n) where m is the dimension of the exceptional locus of Φ′ in Y4 (where applicable)

and n is the dimension of its image.

Remark 2.1.2. The �ip in case (v) is of course algebraically irreducible (that is, its base

is irreducible as an algebraic set), but it consists of two disjoint tubular neighbourhoods

in the connected component of its exceptional locus. Such neighbourhoods are either

both toric or both hypersurface. This means that the intersection between Y2 and the

contracted locus of the �ip is not irreducible, and it is formed of two distinct connected

components. In this situation, we say that we have two simultaneous �ips of the variety

Y2.
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In contrast, in case (iv) the link consists of two algebraically irreducible �ips, one

after the other.

Remark 2.1.3. In (vii) the exceptional divisor of Φ′ is contracted to an irreducible

(conic) curve Γ ⊂ P2.

Remark 2.1.4. � This analysis does not involve the hypotheses ρX = 1 at all, al-

though it is needed to state that the birational links constructed are Sarkisov links.

See Chapter 4 for birational links that are not Sarkisov links (ρX > 1).

� In a few cases it is hard to determine who X ′ is. In these occasions, we need to

suppose ρX = 1 to a�rm that X ′ is a Fano 3-fold.

� We do not know which ones of these Fano 3-folds have Picard rank 1, but we do

have some examples, provided by Takagi [Tak02] (see Section 3.3) and by [BKQ18]

(computational). There is a belief that the �rst Tom format has Picard rank 1

(except for #12960). In addition, Chapter 4 gives a circumstantial evidence of this

belief.

� In order to determine the Picard rank ofX, it is crucial to observe that the endpoint

X ′ of a link run from X, if it is another Fano 3-fold X ′, it always has codimension

strictly lower than the codimension of X. Therefore, since ρX = ρX′ , we can

deduce the Picard rank of X from the study of the Picard rank of X ′. The latter

is surely 1 if X ′ is quasi-smooth (this happens in 18 cases); however, this should

hold even when X ′ has singularities provided a suitable Lefschetz-type theorem,

although this situation is not studied in this thesis. This would prove that at least

one deformation family of X has ρX = 1 if a Sarkisov link from that deformation

family terminates with another Fano 3-fold.

Remark 2.1.5. This theorem does not consider the Fano 3-folds in P2×P2 format listed

in [BKQ18], as they have Picard rank 2. The Hilbert series #12960 is one of them, thus is

not covered by the description in (viii) of Theorem 2.1.1. In particular, the ones having

the "second Tom" will be examined in Chapter 4.

Theorem 2.1.1 could constitute a tool to prove that the Picard rank of some of

these codimension 4 Fano 3-folds is 1.

Corollary 2.1.6. The Fano 3-fold of Tom type X associated to the Hilbert series #5305

has Picard rank 1.

Proof. Consider the Fano #5305 X of Tom1 type and consider its Type I centre p ∼
1
5(1, 2, 3) in X. The Sarkisov links run on X from the centre p terminate with a divisorial

contraction Φ′ : Y3 → X ′, where X ′ is the Fano #5962 of codimension 3. In particular,
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Φ′ contracts the singular locus E′ to a quasi-smooth point p′ ∈ X ′. Since Y3 is also

quasi-smooth (no hypersurface �ips occur in this link), then X ′ is quasi-smooth as well.

Therefore, by Theorem 3 of [BF20], X ′ has Picard rank 1. Therefore, this implies that

X has Picard rank 1.

2.2 Construction of the birational links

Here and in the following subsections we explain how we construct the birational links

described in Theorem 2.1.1.

2.2.1 The unprojection setup: construction of the pfa�an matrix M

The starting point is the following type of data, coming from [BKR12a] and [BK+15].

� A �xed projective plane D := P2(a, b, c) ⊂ P6(a, b, c, d1, . . . , d4) with coordinates

x1, x2, x3, y1, . . . , y4 respectively and d1 ≥ d2 ≥ d3 ≥ d4. So D is de�ned by the

ideal ID := 〈y1, y2, y3, y4〉.

� A family Z1 of codimension 3 Fano 3-folds Z ⊂ wP6, each de�ned by maximal

pfa�ans of a skew-symmetric 5× 5 syzygy matrix M whose entries have weights
m1,2 m1,3 m1,4 m1,5

m2,3 m2,4 m2,5

m3,4 m3,5

m4,5

 .

The plane is a divisor D ∼= P2
x1,x2,x3(a, b, c) of Z1 ∈ Z1 if the latter is written as pfa�ans

of a matrix M in either Tom or Jerry format. This subsection constructs M in this

general setting by �lling its entries by homogeneous polynomials in the xi and yj subject

to the Tom and Jerry constraints (see Chapter 1).

The Big Table in [BKR12b] records exactly this data of D ⊂ wP6 and the weights

of the syzygy matrix, together with the possible successful Tom and Jerry formats.

It is often possible to place each variable in a matrix position having the same

degree, as long as all the Tom and Jerry format restrictions on M are satis�ed. Since M

has 10 entries and P6 only 7 coordinates, at least 3 entries have to be occupied by more

general homogeneous general polynomials in the given degree.

Lemma 2.2.1. Let Z1 ⊃ D be a general member of a Tomi family appearing in [BKR12b]

where i ∈ {1, . . . , 5}. Then we have the following.

(i) For each ideal generator yj there is an entry ak,l of M with k 6= i, l 6= i such that

dj = mk,l, that is, in which yj appears linearly.

12



(ii) With the exception of the [BKR12b] entry #12960, there is an entry ak,l of M with

k = i or l = i such that mk,l is equal to a, b, or c, that is, it is linear in at least one

of the orbinates xj.

Proof. This is the following observation about the weights mkl of the syzygy matrix M

of [BKR12b] and those of wP6. In each case (except for #12960), for any dj there is an

entry in the ideal part of M having weight dj . Similarly it holds for the xj . The fact

that yj and xj appear linearly in such (suitable) entries is implied by the hypotheses of

generality of Z1.

Later we analyse the entries of general M , and this Lemma guarantees certain

monomials appearing in the pfa�an equations.

Remark 2.2.2. The only Hilbert series in [BK+15] that does not satisfy this condition

is #12960, whose complementary variables xj have weights 1, 1, 1 respectively, while the

weights of M are all 2. The successful Tom format in that Hilbert series results in X of

Picard rank 2: it is in P2 × P2-format, as listed in Table 1 of [BKQ18] although, as we

see later, this is not related.

This phenomenon is probably not due to the fact that the Tom format #12960 has

Picard rank 2: indeed, although the second Tom of #24078 is listed in [BKQ18] among

the Fano 3-folds in codimension 4 having P2×P2-format, the complementary variable of

weight 2 can be placed linearly in one of the complementary entries of M , which all have

weight 2.

Following the notation in Section 1.2, the unprojection techniques described in

[Pap01] give a birational map Z1 → X ⊂ wP7 that contracts D to a quotient singularity

Ps ∈ X. It is this X whose Sarkisov links we study.

2.2.2 The Kawamata blow-up of a Fano: ambient space F1

We aim to make a Sarkisov link centered in Ps. Since Ps ∈ X is a quotient singularity by

construction, the �rst map of the Sarkisov link is a Kawamata blow-up of X at a cyclic

quotient singularity 1
r (a, b, c) at Ps. Following a similar method as in [AZ17], we deduce

the weights of a rank two toric variety F1 that is a blow-up of wP7 at Ps, which results

in the Kawamata blow-up on X.

We consider wP7 as a toric variety with 1-skeleton given by primitive lattice

vectors ρs, ρxi , ρyj , i.e. a weight lattice NP7
∼= Z4. These vectors satisfy the following

relation

rρs + aρx1 + bρx2 + cρx3 +

4∑
j=1

djρyj = 0 .
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To perform a blow-up of wP7 at Ps we add a new ray ρt to the fan inside the

convex cone σs := 〈ρx1 , ρx2 , ρx3 , ρy1 , ρy2 , ρy3 , ρy4〉; that is, an integer multiple of ωρt of ρt

is the integer positive sum of all rays other than ρs: there are many possible choices to

choose the coe�cients for this positive sum, and we will identify a particular one. The

relation involving ρt is

− ωρt +

4∑
i=1

ωiρxi +

4∑
j=1

δjρyj = 0 , (2.1)

where ω, ωi, δj > 0 for i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}.
In the language of the graded Cox rings, the bottom weights of the scroll F1

are the coe�cient for the rays in the de�nition of ρt. Since ρs does not appear in the

expression for ρt, its bottom weight is 0. Thus F1 looks like t s x1 x2 x3 y1 y2 y3 y4

0 r a b c d1 d2 d3 d4

−ω 0 ω1 ω2 ω3 δ1 δ2 δ3 δ4

 . (2.2)

Note that this is not yet well-formed: we connect to this later.

Recall the following theorem by Kawamata, [Kaw96]:

Theorem 2.2.3 (Kawamata). Let X be a 3-fold, and p ∈ X a terminal cyclic quotient

singularity 1
r (a, b, c). Suppose that φ : (E ⊂ Y ) → (Γ ⊂ X) is a divisorial contraction

with p ∈ Γ and Y terminal. Then, Γ = {p} and φ is the weighted blow-up of p with

weights (a, b, c) and therefore the exceptional divisor is E ∼= P(a, b, c).

Note that the Kawamata blow-up of a cyclic quotient singularity is unique, even

though the bottom weights δj could be, in principle, chosen arbitrarily. In the following

we give a recipe about how to choose the δj so that the 2-ray game described by F1 is a

successful link for X.

The blow-up map is de�ned by the linear system
∣∣O(10)∣∣. Explicitly,

Φ : F1 −→ wP7

(t, s, x1, x2, x3, y1, y2, y3, y4) 7−→
(
t
ω1
ω x1, t

ω2
ω x2, t

ω3
ω x3, t

δ1
ω y1, t

δ2
ω y2, t

δ3
ω y3, t

δ4
ω y4, s

)
.

On a local neighbourhood of Ps there is a weighted projective space P6(ω1, ω2, ω3, δ1, δ2, δ3, δ4)

contracted to the point Ps of index ω. Since Ps has index r, then ω must be equal to r.

On the other hand, we could assign many di�erent values to ω1, ω2, ω3. However,

we are interested in exhibiting a Kawamata blow-up, which is described in Theorem

2.2.3. From [BZ10] we know that the exceptional locus E of Φ is given by the vanishing
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of y1, y2, y3, y4. This means that E ∼= P2(ω1, ω2, ω3). Therefore, in order to achieve a

Kawamata blow-up we choose the weights ω1, ω2, ω3 to be a, b, c respectively.

When restricted to its exceptional locus E, the map Φ becomes

Φ : E −→ Γ

(t, x1, x2, x3) 7−→
(
t
a
ω x1, t

b
ω x2, t

c
ω x3

)
.

This achieves the construction of the Kawamata blow-up for X. The last thing that

needs to be set is the value of the δj .

The equations of X come into play to determine the δj 's. When pulling back the

equations of X via Φ, each monomial will pick up extra t factors. Again, the choice of

the δj 's could be free, but we would like to cancel out the highest possible power of t: in

other words, to get the equations of Y1 we must saturate over t the total pullback of the

equations of X. This is because we want the leading terms of the unprojection equations

to be syj , as opposed to syjt
τ , for τ a certain exponent greater than 1.

Localising at Ps allows to study each ideal variable via the unprojection equations.

To �x ideas, suppose we want to �nd δ4, corresponding to y4. We start with y4

because it is the one with lowest weight d4 ≤ d3 ≤ d2 ≤ d1. The unprojection equation of

X involving y4 is of the form sy4 = g4(x1, x2, x3, y1, y2, y3, y4), where g4 is a homogeneous

polynomial of degree r + d4. The pullback of the unprojection equation for y4 is of the

form

t
δ4
r sy4 = g4

(
t
a
r x1, t

b
r x2, t

c
r x3, t

δ1
r y1, t

δ2
r y2, t

δ3
r y3, t

δ4
r y4

)
.

Separate from g4 all its terms containing the variable y4. De�ne h4 the polynomial

constituted by all the monomials of g4 containing y4, except for the term sy4. The

equality above becomes

t
δ4
r

(
sy4 + t

κ
r h4

)
= g′4

(
t
a
r x1, t

b
r x2, t

c
r x3, t

δ1
r y1, t

δ2
r y2, t

δ3
r y3

)
, (2.3)

where g′4 := g4−h4 and κ is the minimum exponent that is possible to factorise from h4.

Lemma 2.2.4. It holds that δ4 ≥ d4.

Proof. Every monomial in g4 picks up a t factor because there is no pure monomial in s

on the right hand side of the unprojection equation for y4: this is by construction.

From the construction of ρt we know that each δj is greater than or equal to

1. We divide this proof in di�erent cases according to the di�erent types of monomials

appearing in g4. We indicate by xl the multiplication of pure powers of x1, x2 and x3, not

necessarily all together, with di�erent multiplicities, summarised by the multi-index l at

the exponent. Similarly, we de�ne yl
′
as the multiplication of pure powers of y1, y2 and
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y3, not necessarily all together, with di�erent multiplicities indicated by the multi-index

l′. In the following description l and l′ will vary from case to case.

� Monomials of the form xl, where l = deg(g4) = r + d4. Since the top weights of

x1, x2 and x3 are the same as their bottom weights in the scroll F1 2.2, then such

monomials pick up a t factor with exponent k = l = r + d4 in the pullback.

� Monomials of the form xlyl
′
, where l + l′ = deg(g4) = r + d4. Since δ1, δ2, δ3 ≥ 1,

the pullback of xlyl
′
picks up a t factor with exponent k a least l + l′. So, k ≥

l + l′ = r + d4.

� Monomials of the form xlyλ4 , where l + λ = deg(g4) = r + d4. They pick up a t

factor with power k ≥ l + λδ4 ≥ r + d4.

� Monomials of the form yl
′
yλ4 , where l

′ + λ = deg(g4) = r + d4. They pick up a t

factor with power k ≥ l′ + λδ4 ≥ r + d4.

� Monomials of the form xlyl
′
yλ4 , where l + l′ + λ = deg(g4) = r + d4. They pick up

a t factor with power k ≥ l + l′ + λδ4 ≥ r + d4.

Therefore the exponent for t relative to this kind of monomials is r+d4, or higher.

We choose δ4 to be one of these values of k.

In conclusion, since every monomial in g4 picks up a t factor with exponent at

least r+d4
r , we deduce that δ4 ≥ d4.

The power of t gained by each yj factor is greater or equal to
dj
ω . This means that

δj ≥ dj . So the pullback of the unprojection equation for y1 is of the form

t
δ4
r

(
sy4 + t

κ
r h4

)
= t

τ1
r m1 + · · ·+ t

τk4
r mk4 ,

for τl positive integers and ml monomials of g′4. So,

De�nition 2.2.1. De�ne δ4 as

δ4 := min
l∈{1,...,k4}

{τl} . (2.4)

Note that since g′4 does not contain y4, δ4 is well-de�ned.

Remark 2.2.5. The scroll just obtained might not be well-formed. For a de�nition of

well-formedness see De�nition 3.1 in [Ahm17], which generalises to scrolls the notion of

well-formedness for weighted projective spaces in [IF00].

The bottom weights of a well-formed scroll can be interpreted as the order of

vanishing of the variables in the divisor D of the unprojection.
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De�nition 2.2.1 makes the distinction between the Tom and Jerry case come into

play. The di�erence lies on detecting which one is the monomial in g that achieves the

minimum of 2.2.1. The analysis in the Jerry case is contained in Section 2.4.

Proposition 2.2.6. Let X be a codimension 4 index 1 Fano 3-fold of Fano type.

Then the Kawamata blow-up of X at the Tom centre Ps is contained in a rank 2

toric variety of the form t s x1 x2 x3 y1 y2 y3 y4

0 r a b c d1 d2 d3 d4

1 1 0 0 0 −1 −1 −1 −1

 . (2.5)

Note that the scroll in Proposition 2.2.6 is well formed. Moreover, the blow-up

map Φ is a morphism from Y1 ⊂ F1 to X ⊂ P7.

Using the same notation introduced at the beginning of this subsection, we can

view F1 as a toric variety whose 1-skeleton is spanned by the lattice vectors ρt, ρs,

ρx1 , ρx2 , ρx3 , ρy1 , ρy2 , ρy3 , ρy4 . Each vector is de�ned by its bidegree in 2.5. The fan they

generate looks like

t s

x1, x2, x3

y1

y2y3y4

(2.6)

where the yj might generate the same rays depending on the value of the dj . Underlying

the above picture there is a ray-chamber structure that describes the 2-ray game for

wP7. Each ray gives raise to a map of toric varieties. Suppose the bidegree of the

chosen ray is
(
ι1
ι2

)
: its relative map is de�ned by the monomials having bidegree

(
ι1
ι2

)
(or

a natural multiple of it). In other words, these are the monomials in the linear system∣∣∣O(ι1ι2)∣∣∣. These are the maps αi, βi, Φ, Φ′ introduced in Section 1.2.5. For instance, the

map relative to ρs is de�ned by the monomials in
∣∣O(r1)∣∣, and it is the blow-up map

Φ: F1 → wP7. On the other hand, the map relative to ρx1 , ρx2 , ρx3 de�ned by the

monomials in
∣∣O(10)∣∣ is α1 : F1 → G1. In conclusion, each ray corresponds to one of the

toric varieties in the bottom row of the 2-ray game in 1.1, while each chamber corresponds

to one of the Fi at the top row of 1.1. Passing from one chamber to another adjacent

chamber means to perform the relative isomorphism in codimension 1 Ψi : Fi → Fi+1,

while approaching to the ray in between the two chambers from one side or another

indicates the two maps αi : Fi → Gi and βi : Fi+1 → Gi.

In the language of Geometric Invariant Theory, we are performing on F1 a vari-
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ation of GIT to obtain the 2-ray game. This description of F1 will be useful in the

examination of the explicit examples.

To prove Proposition 2.2.6 we need the following lemma.

Lemma 2.2.7. Let Z be a codimension 3 Q-Fano 3-fold de�ned by pfa�ans of a 5 × 5

skew-symmetric matrix M in Tom format. Consider the Type I unprojection of Z at a

divisor D. Then each unprojection equation contains at least one monomial purely in

x1, x2, x3.

To prove Lemma 2.2.7 we partially refer to the notation in [Pap04]. We make use

of the author's algorithm to compute unprojection equations, which we brie�y summarise

in the next paragraph.

Papadakis' algorithm for unprojection In [Pap04], Papadakis de�nes and explic-

itly constructs the Type I unprojection equations for Z in Tom format.

Suppose for simplicity that the matrixM is in format Tom1. ForD ∼= Px1,x2,x3(a, b, c)

the divisor in Z, and ID := 〈y1, y2, y3, y4〉, the graded matrix M is of the form

M =


p1 p2 p3 p4

a23 a24 a25

a34 a35

a45

 . (2.7)

Here the aij are polynomials of the form

aij :=

4∑
k=1

αkijyk

for some polynomial coe�cients αkij . The aij are contained in the ideal ID.

On the other hand, the pj have to be polynomials not in ID so that the Tom1

constraints are satis�ed.

For what concerns this speci�c paragraph, we follow Papadakis' notation, in which

Pfi is calculated by excluding the (i + 1)-th row and the (i + 1)-th column for i ∈
{0, 1, 2, 3, 4}.

Note that only Pf1, . . . ,Pf4 are linear in the yi; hence, there exists a unique matrix

Q such that 
Pf1(M)

...

Pf4(M)

 = Q


y1

...

y4

 .
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Explicitly,

Q =


Pf1(N1) Pf1(N2) Pf1(N3) Pf1(N4)

Pf2(N1)
. . .

...

Pf3(N1)
. . .

...

Pf4(N1) · · · · · · Pf4(N4)


where

Ni =


p1 p2 p3 p4

αi23 αi24 αi25

αi34 αi35

αi45

 . (2.8)

and αikl is the coe�cient of yi in akl.

De�ne Hi as the vector of length 4 whose i-th entry is (−1)i+1 times the deter-

minant of the submatrix of Q obtained by removing the i-th column and the i-th row.

The vectors Hi satisfy the property that for all i, j ∈ {1, . . . , 4}

piHj = pjHi (2.9)

(Lemma 5.3 of [Pap04]). Therefore, the quotient Hi
pi

is independent of i.

Papadakis de�nes the polynomials g1, . . . , g4 via the following equality of vectors

of length 4

(g1, g2, g3, g4) =
Hi

pi
.

For instance, g1 is explicitly de�ned as the determinant of the matrix obtained deleting

the �rst column and the �rst row of Q divided by p1, i.e.

g1 =
1

p1
det

 Pf2(N2) Pf2(N3) Pf2(N4)

Pf3(N2) Pf3(N3) Pf3(N4)

Pf4(N2) Pf4(N3) Pf4(N4)

 . (2.10)

The gj are the right hand sides of the unprojection equations, that is, the unprojection

equations de�ning X are syj = gj for j = 1, . . . , 4.

This concludes our brief summary of Papadakis' algorithm to produce the unpro-

jection equations of X. We use his techniques to deduce the statement of Lemmma 2.2.7

in our speci�c case.

Proof of Lemma 2.2.7. Recall that Z has index iZ = 1, so the coordinate x1 has weight

1. Hence, using the above notation, in every case pj contains a monomial of the form

x
deg(pj)
1 .

On the other hand, there are di�erent possibilities to �ll the ideal entries akl. If
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the weight of an ideal entry is the same as the weight of one of the yj , then it contains

such ideal variable linearly, i.e αjkl is constant. Otherwise, it contains multiplications of

yj by the xi, that is α
j
kl is a polynomial containing a term in the xi. We can assume this

without loss of generality.

Therefore, each Nj has at least one entry that is either a constant or a monomial

in the xi.

Recall that the vector of the gj is independent on the choice of i in 2.9. This means

that it is possible to consider only H1
p1
. Therefore, we are excluding all Pf1(Nj), that is,

all Pfi(Nj) involving the top row of the matrices Nj , which are the ones containing pure

terms in x1, x2, x3. Thus, each entry of Q in row 2, 3, and 4 contains a polynomial purely

in x1, x2, x3. The same holds for the gi de�ned in 2.10.

Proof of Proposition 2.2.6. By Lemma 2.2.7, each unprojection equation contains at least

one term depending only on the local coordinates of the Type I singularity at Ps, that is

x1, x2, x3. Therefore we do apply the procedure explained above to �nd δ4. In particular,

by the proof of Lemma 2.2.4, such pure monomial in the xi realises the minimum value

of De�nition 2.2.1. Thus, by Lemma 2.2.7, we choose δ4 = r + d4. Thus, δ4 is equal to

the degree of g4.

In turn, we can apply this same strategy to δ1, δ2, δ3, adapting the above con-

struction, de�nitions and lemmas to the remaining δj . Note that the existence of a

monomial in x1, x2, x3 in each unprojection equation as stated in Lemma 2.2.7 implies

that the order in which we determined the δj is unimportant, because δj = r + dj for

each j ∈ {1, 2, 3, 4}.
The weights in 2.5 follow by simple manipulation of the rows of the scroll we just

de�ned. Summarising the observations made above about the bottom weights of 2.2, we

have that  t s x1 x2 x3 y1 y2 y3 y4

0 r a b c d1 d2 d3 d4

−r 0 a b c d1 + r d2 + r d3 + r d4 + r

 .

If we subtract the second row to the third row of the above scroll we obtain an isomorphic

rank 2 toric variety, whose Cox ring is given by t s x1 x2 x3 y1 y2 y3 y4

0 r a b c d1 d2 d3 d4

−r −r 0 0 0 r r r r

 .

Finally, it only takes to divide the third row by −r to get the �nal form of F1 presented

in 2.5.
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2.2.3 The Kawamata blow-up of a Fano: equations of the blow-up Y1

We have just described a speci�c blow-up F1 of wP7, making choices for the bottom

weights of F1 in order to keep track of the fact that X sits inside wP7. The following

Proposition 2.2.10 and Lemma 2.2.11 are aimed to make sense of the choices made earlier

to assign ωi and δj .

Consider the pull-back Φ∗(X) of the nine equations of X. Referring to the 1-

skeleton of F1 in 2.6, Φ is the map de�ned by the monomials having bidegree
(
r
1

)
.

De�nition 2.2.2. De�ne the ideal of Y1 ⊂ F1 as the saturation over t of the ideal of

Φ∗(X).

However, the following statements will make De�nition 2.2.2 more manoeuvrable

and explicit.

Proposition 2.2.8. The maps Φ and α1 are proportional by a t factor (excluding s). In

particular, t−
1
rΦ = α1.

Proof. Recall that Φ and α1 are de�ned by monomials in the variables of F1 that are in∣∣O(r1)∣∣ and ∣∣O(10)∣∣ respectively.
As shown above, Φ is

Φ : F1 −→ wP7

(t, s, x1, x2, x3, y1, y2, y3, y4) 7−→
(
t
a
r x1, t

b
r x2, t

c
r x3, t

δ1
r y1, t

δ2
r y2, t

δ3
r y3, t

δ4
r y4, s

)
, (2.11)

whereas α1 is

Φ : F1 −→ wP6

(t, s, x1, x2, x3, y1, y2, y3, y4) 7−→ (x1, x2, x3, ty1, ty2, ty3, ty4) .

Consider a variable w of F1 among x1, x2, x3, y1, y2, y3, y4 with bidegree
(
ν1
ν2

)
. Call ζ

the exponent of the t factor that w needs to pick up such that the bidegree of wtζ is

proportional to
(
r
1

)
. In other words, we need to �nd ζ such that

degwtζ =

(
ν1

ν2 + ζ

)
= λ

(
r

1

)
for someλ > 0 .

Since λ = ν2 + ζ, we have that ζ = ν1
r − ν2.

On the other hand, call ζ ′ the exponent of the t factor that w needs to pick up

so that the bidegree of wtζ
′
is proportional to

(
1
0

)
. We need to have

degwtζ
′

=

(
ν1

ν2 + ζ ′

)
= µ

(
1

0

)
for someµ > 0 .

21



Here ζ ′ = −ν2. Thus, ζ − ζ ′ = ν1
r = 1

r degwP7 w. This means that on every variable

x1, x2, x3, y1, y2, y3, y4 of F1 the exponents ζ and ζ ′ di�er only by 1
r .

Proposition 2.2.8 obviously imples the following corollary.

Corollary 2.2.9. The pull-backs Φ∗ (Pf(M)) and α∗1 (Pf(M)) are equal up to a t factor.

More precisely we mean that the evaluation of Pf(M) at the de�ning monomials

of Φ is proportional to the evaluation of Pf(M) at the de�ning monomials of α1.

Proposition 2.2.10. If M is in Tom format, it is possible to cancel out from α∗1(Pf(M))

a t factor with power at least 1.

Proof. The ideal entries of M are occupied by polynomials in ID: thus, they are formed

by monomials either purely in the yj or that are a multiplication of xi and yj .

This is true from what we said before: in other words, if we consider the pfa�an

equation involving only ideal entries, it is divisible by t.

Let IX be the ideal of X,

IX := 〈f1, . . . , f5, f6, . . . , f9〉

generated by polynomials fi := Pfi for i ∈ {1, . . . , 5} and fi := syi−gi for i ∈ {6, . . . , 9}.
Recall that Φ is expressed in 2.11 with fractional exponents for t. Since in the

following we want the pull-back Φ∗(X) to have equation in a polynomial ring, we can

write an equivalent expression for Φ by considering its multiplication by a t
r−a
r factor.

Thus,

t
r−a
r ·

(
t
a
r x1, t

b
r x2, t

c
r x3, t

δ1
r y1, t

δ2
r y2, t

δ3
r y3, t

δ4
r y4, s

)
=
(
tx1, t

b(r−a)
r

+ b
r x2, t

c(r−a)
r

+ c
r x3, t

d1(r−a)
r

+
δ1
r y1, t

d2(r−a)
r

+
δ2
r y2, t

d3(r−a)
r

+
δ3
r y3, t

d4(r−a)
r

+
δ4
r y4, t

r−as
)
.

(2.12)

The expression 2.12 has integer exponents.

Call IΦ∗X := 〈Φ∗f1, . . . ,Φ
∗f5,Φ

∗f6, . . . ,Φ
∗f9〉 using the above expression of Φ.

Proposition 2.2.10 guarantees that, up to a t factor, Φ∗ and α∗1 coincide on the pfa�an

equations. Thus de�ne the following polynomials

h1 :=
α∗1 Pf1(M)

t2
=
α∗1f1

t2
; (2.13)

hi :=
α∗1 Pfi(M)

t
=
α∗1fi
t2

for i ∈ {2, . . . , 5} ; (2.14)

hi :=
Φ∗fi

tδi−5+r−a for i ∈ {6, . . . , 9} . (2.15)
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In addition, de�ne the ideal IY1 := (IΦ∗X : t∞) as the saturation of IΦ∗X over t as in

De�nition 2.2.2.

Lemma 2.2.11. We have that IY1 = 〈h1, . . . , h5, h6, . . . , h9〉.

Proof. For the saturation algorithm we refer to [CLO15]. Introducing a temporary vari-

able z, de�ne the ideal J as

J := 〈IΦ∗X , tz − 1〉 ⊂ S := R[z] ,

where R := C [t, s, x1, x2, x3, y1, y2, y3, y4]. Then, (IΦ∗X : t∞) = J ∩ R (see Chapter 4,

�4 of [CLO15]). To write IY1 explicitly we study the Gröbner basis of J with respect

to a complete monomial ordering �. This monomial ordering has to be such that the

temporary variable z is the largest, and that s is the second largest. Then, we want it

to be such that the monomials having the least number of yj are larger. In other words,

the monomial ordering � is de�ned by the following matrix

z s x1 x2 x3 y1 y2 y3 y4 t

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 a b c d1 − 1 d2 − 1 d3 − 1 d4 − 1 1

0 0 a b c d1 − 1 d2 − 1 d3 − 1 d4 − 1 0

0 0 a b c d1 − 1 d2 − 1 d3 − 1 0 0

0 0 a b c d1 − 1 d2 − 1 0 0 0

0 0 a b c d1 − 1 0 0 0 0


. (2.16)

Consider a polynomial k in which the variable z does not appear. Call k1 := LT (k) the

leading term of k according to the monomial order 2.16: so k = k1 + k2 is the sum of the

monomial k1 and of the polynomial k2 := k − k1. Now compute the S-polynomials for

tdk for some d ≥ 1. The least common multiple between the respective leading terms of

tdk and tz − 1 is lcm
(
LT (tdk), LT (tz − 1)

)
= td+1k1z. Then, following [CLO15],

S
(
tdk, tz − 1

)
=
td+1k1z

tdk1
· tdk − td+1k1z

tz
· (tz − 1)

= td+1kz − td+1k1z + tdk1 (since k = k1 + k2)

= td+1k2z + tdk1 = td (tk2z + k1) (since tz = 1)

= tdk .

Now focus on the polynomials Φ∗fi. If i = 1, the leading term of Φ∗f1 is of the form

LT (Φ∗f1) = yj1yj2t
2. for certain j1, j2 ∈ {1, 2, 3, 4}. Similarly for i ∈ {2, . . . , 5}, the

leading term looks like LT (Φ∗fi) = xjiyjit for certain j
i ∈ {1, 2, 3} and ji ∈ {1, 2, 3, 4}.
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For i ∈ {6, . . . , 9} instead, LT (Φ∗fi) = syi−5t
δi−5+r−a. Note that the monomial ordering

� has been designed to identify as biggest the monomials having the lowest exponent of

t. Therefore, for each i ∈ {1, . . . , 9} there is a suitable d such that Φ∗fi = tdhi. So, from

the calculation shown above, we have that

S (Φ∗fi, tz − 1) + S
(
tdhi, tz − 1

)
= tdh1 .

Therefore, the Gröbner basis of J is

GB�(Φ∗f1, . . . ,Φ
∗f9, tz−1) =

(
th1 , th2, th3, th4, th5, t

δ1+r−ah6, t
δ2+r−ah7, t

δ+r−ah8, t
δ4+r−ah9

)
∪{tz−1} .

On the other hand, the highest common factor hcf (LT (hi), tz) = 1 shows that

LT (hi) and tz are coprime for all i ∈ {1, . . . , 9}. Thus,

GB�(h1, . . . , h9, tz − 1) = GB� (h1, . . . , h9) ∪ {tz − 1} .

In conclusion,

(〈h1, . . . , h9〉 : t∞) = 〈GB�(h1, . . . , h9, tz − 1) ∩R〉

= 〈GB�(h1, . . . , h9)〉 = 〈h1, . . . , h9〉 .

Remark 2.2.12. In conclusion, the choices of exponents of the t factors and the following

elimination of them were made in a way such that the obtained ideal is precisely the

saturation of the ideal of Φ∗(X).

2.3 Description of the link for Tom and proof of the Main

Theorem

In this section we break down every step of the Sarkisov links described in Theorem 2.1.1.

In doing so, we give a proof of Theorem 2.1.1.

Let X ⊂ wP7 be a general codimension 4 Q-Fano 3-fold of Tom type and let

p ∈ X be a Tom centre. We �rst prove part (B) of Theorem 2.1.1.

Proof of Theorem 2.1.1, (B). Consider a Sarkisov link for X that terminates with a

divisorial contraction. Suppose that the endpoint Mori �bre space Y → S is a Fano

3-fold X ′ → S = {pt}.
Let BX be the basket of singularities of X. It is possible to track BX throughout

the link to retrieve the basket BY4 of Y4. The basket BX′ of X ′ is a subset of BY4 ; that
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is, BX′ is BY4 minus the cyclic quotient singularities sitting inside the exceptional locus

E′ := E′ ∩ Y4. Moreover, if the determinant

det

(
d3 d4

−1 −1

)
= −1 (2.17)

then E′ is contracted to a Gorenstein point p′ ∈ X ′, which therefore does not contribute

to the basket of X ′.

If Φ blows up the cyclic quotient singularity of highest degree, neither the �ops

nor the �ips will create a new cyclic quotient singularity of that degree. This means that

the baskets BX and BX′ are di�erent, and therefore, X 6∼= X ′. On the other hand, if Φ

blows up the cyclic quotient singularity of a lower degree, the �ips will get rid of the one

with higher degree, which will not be generated again. Thus, X 6∼= X ′.

If the absolute value of the above determinant is greater or equal than 2, the

divisorial contraction Φ′ might create a new orbifold singularity, but its order will not

be higher than the absolute value of the determinant itself. Also, what we said for the

basket of Y4 still holds, that is, the cyclic quotient singularities of higher order are lost

in the �rst blow-up and in the �ips. Therefore, BX 6= BX′ .
Now suppose that S is either a line or P2: thus, Y is Y4. We conclude that X

cannot be isomorphic to Y because their Picard ranks are di�erent: 1 and 2 respectively.

Remark 2.3.1. As an additional motivation to the proof of (B), whereas we assume X

quasi-smooth, X ′ is never quasi-smooth. Therefore, they cannot be isomorphic.

Moreover, in each case X ′ sits inside a weighted projective space having no more

than seven coordinates. This is because the variable y4 serves as the extra coordinate

of the blow-up Φ′, so it gets set as equal to one in X ′; also, the unprojection equation

sy4 = g4 globally eliminates the variable s.

The rest of this chapter is dedicated to proving part (C) of Theorem 2.1.1. Part

(C) implies part (A) of Theorem 2.1.1.

The �rst step to construct the 2-ray game for X is blowing up the Tom centre

Ps ∈ X: we obtain a Fano 3-fold Y1 ⊂ F1 de�ned in De�nition 2.2.2, where F1 is built as

in Theorem 2.2.6. Then, by performing a variation of the GIT quotient of F1 we get a

rank 2 birational link for F1. In other words, we change the irrelevant ideal of F1. This

procedure is brie�y explained in Section 1.2.3 and in the Appendix of [BCZ04].

We call Yi the push-forward Ψi∗(Yi−1) ⊂ Fi of Yi−1 via Ψi. The Cox rings of the

rank 2 toric varieties Fi can be naturally identi�ed, as they are isomorphic in codimension

1. So similarly holds for the Cox rings of the varieties Yi, for which we may choose the
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same generators of the quotient ideal. Throughout this thesis we identify these rings and

these coordinates, for all Fi and Yi.
We refer to the notation in Section 1.2.5 throughout the following chapters.

The �rst map of the birational link is Ψ1.

Theorem 2.3.2. The �rst step of the Sarkisov link starting with X, i.e. ψ1 : Y1 99K Y2,

consists of n simultaneous �ops. The number n is equal to the number of nodes on

D ⊂ Z1.

Proof. We divide the proof in a few claims.

Claim 1: α1 contracts n lines. Following [BZ10], the locus A1 contracted by α1 is

de�ned by {y1 = y2 = y3 = y4 = 0}. Since Z1 is in Tom format, Lemma 2.2.6 implies

that α1 is

α1 = Φ(10)
: (t, s, x1, x2, x3, y1, y2, y3, y4) 7→ (x1, x2, x3, y1t, y2t, y3t, y4t) .

Thus, Z1 ∩ Im(α1) restricted to A1 depends only on x1, x2, x3, that is, it lies on D.

Hence, over every node on D there is a P1 having coordinates t, s.

Claim 2: β1 extracts n lines. Recall that if M is in Tom format then four of the �ve

pfa�ans are linear in the generators of the ideal ID, whereas one is quadratic in those.

To �x ideas, suppose without loss of generality that M is in Tom1 format: under this

convention, Pf1 is quadratic and Pf2,Pf3,Pf4,Pf5 are linear with respect to ID.

From [BZ10] we know that the locus B1 ∈ F2 extracted by β1 is de�ned by {t = s = 0},
which is isomorphic to a weighted P3. Therefore there is a weighted P3-bundle over the

weighted P2
x1,x2,x3

∼= D.

Since Pf2,Pf3,Pf4,Pf5 are linear on ID, it is true that, restricting to {t = s = 0},
Pf2

Pf3

Pf4

Pf5

 = A ·


y1

y2

y3

y4


where A is a 4× 4 matrix de�ned as

A :=


γ1(Pf2) γ2(Pf2) γ3(Pf2) γ4(Pf2)

γ1(Pf3) γ2(Pf3) γ3(Pf3) γ4(Pf3)

γ1(Pf4) γ2(Pf4) γ3(Pf4) γ4(Pf4)

γ1(Pf5) γ2(Pf5) γ3(Pf5) γ4(Pf5)


and γi(Pfj) ∈ C[x1, x2, x3] is the coe�cient of yi in Pfj .
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Lemma 2.3.3. For each point p ∈ D the rank of Ap := evp(A) is either 2 or 3.

Proof of Lemma 2.3.3. Obviously the rank is at least 1.

Recall that there are six syzygies relating the �ve pfa�ans ofM : referring to the notation

set in 2.7, one of them is

p1 Pf2 +p2 Pf3 +p3 Pf4 +p4 Pf5 = 0 .

which is a relation among Pf2,Pf3,Pf4,Pf5. Therefore, at any point p ∈ D it is possible

to express one of the last four pfa�ans in terms of the other three. This means that we

are left with only three equations that are linear on ID. Thus, rk(Ap) ≤ 3.

On the other hand, rk(Ap) ≥ 2. To prove this note that the entries of A are all polyno-

mials in C[x1, x2, x3]: this is because if we are considering the restriction to D, i.e. we

impose the vanishing of all the yi, we are actually killing all the monomials that come out

from the non-linear (in ID) terms of Pf2,Pf3,Pf4,Pf5. Since each of the Pfj has at least

one of the yi appearing at least once, then there are at least two linearly independent

column vectors in A. This concludes the proof of Lemma 2.3.3.

Remark 2.3.4. As underlined before, the locus B1 is �bred over D with weighted P3

�bres. Therefore, for any point p ∈ D, if rk(Ap) = 2 the image of A is a 2-dimensional

space in P3, which means that β1 contracts a P1 ⊂ B1 ∩ Y2 to p ∈ D.

Analogously, if rk(Ap) = 3 the map β1 is an isomorphism in a neighbourhood of a point

p′ ⊂ P1 ⊂ B1 to p ∈ D.

Remark 2.3.5. So far we used only four of the nine equations of X. This means

that all the information about the �op is contained in the pfa�an equations. The last

thing we need to check is that the unprojection equations do not play any role in the

determination of the �op. Recall that the image of the maps of toric varieties α1 and

β1 is G1, which is a rank 1 toric variety of dimension 10 which contains the weighted

P6 that is the ambient space of Z1. Its coordinates are ξ1 := x1, ξ2 := x2, ξ3 := x3,

υ1 := y1t, υ2 := y2t, υ3 := y3t, υ4 := y4t, σ1 := sy1, σ2 := sy2, σ3 := sy3, σ4 := sy4.

However, the variable s can be globally eliminated onD using the unprojection equations.

So, even though Lemma 2.2.7 ensures that the restriction of the unprojection equations

to B1 is non-trivial, we do not need to take those equations into account when studying

the �op.
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We could also observe that, on D, the Jacobian matrix of Z1 is

J(Z1)|D =


0 0 0 0 0 0 0

0 0 0 γ1(Pf2) γ2(Pf2) γ3(Pf2) γ4(Pf2)

0 0 0 γ1(Pf3) γ2(Pf3) γ3(Pf3) γ4(Pf3)

0 0 0 γ1(Pf4) γ2(Pf4) γ3(Pf4) γ4(Pf4)

0 0 0 γ1(Pf5) γ2(Pf5) γ3(Pf5) γ4(Pf5)


where the bottom right block is A. Therefore we deduce that

Lemma 2.3.6. For each point p ∈ D, then rk(J(Z1)|D)p = rk(Ap).

Claim 3: ψ1 is a �op. From the previous two claims, ψ1 is an isomorphism in codi-

mension 1. We just need to check what is the intersection between −KYi , for i = 1, 2,

and the exceptional loci of α1 and β1 respectively. Both for i equal to 1 or 2, −KYi is of

the form {x1 = 0}. On the other hand, none of the points in Sing(Z1) ⊂ D satis�es the

condition x1 = 0. Therefore, −KYi · P1
t,s = 0 for i = 1, 2.

This completes the proof of 2.3.2.

Remark 2.3.7. Note that this proof is completely independent from the form of the

right-hand-side of the unprojection equations: the information about the �op is all en-

coded in the geometry of Z1, as we would expect.

Now we want to show that, independently on the particular member in the family

of Z1, the nature of the birational maps at the rank 2 level is always the same throughout

the deformation family of Z1. In other words, given a general member of the deformation

family of Z1 in Tom format having only nodes on D prescribed by the [BKR12b], then

the Sarkisov link of the associated X has the same behaviour, no matter the choice of

the particular member, although the variables eliminated in the variables might change.

For example, this is in contrast with the "starred monomials" of [CPR00].

For the purpose of the rest of this chapter, we introduce the following notation

regarding the grading of the matrix M . These con�gurations arise many times. For

simplicity, suppose that M is in Tom1 format: the argument holds independently on the

Tom format. For some suitable positive σ and τ , de�ne

(A) The entries a24, a25, a34, a35 all have weight π. Hence, in order to have homogeneous

pfa�ans and positive weights, the other weights of M are
σ σ π + σ − τ π + σ − τ

τ π π

π π

2π − τ

 . (2.18)
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(B) The entries a25, a34 both have weight d1 = d2, while a24, a35 are free. Hence, the

other weights of M are
σ π + σ − υ π + σ − τ 2π + σ − τ − υ

τ υ π

π 2π − υ
2π − τ

 . (2.19)

2.3.1 Proof of (i)

Here we describe the �ip that occurs when crossing the ray ρy1 . This proof is identical

to the proof of the fact that crossing the ray ρy2 induces a second �ip. The two proofs

hold in case (i).

Theorem 2.3.8. Suppose d1 > d2 and that the point Py1 ∈ Z2. Then, the map ψ2 : Y2 99K

Y3 is a �ip.

Proof. Localise at the point Py1 ∈ Z2. So, after a row operation, F2 becomes t s x1 x2 x3 y1 y2 y3 y4

d1 r + d1 a b c 0 d2 − d1 d3 − d1 d4 − d1

1 1 0 0 0 −1 −1 −1 −1

 .

The exceptional locus of α2 is A2 = {y2 = y3 = y4 = 0} (Lemma 4.5 of [BZ10]), that is,

A2 =

 t s x1 x2 x3 y1

d1 r + d1 a b c 0

1 1 0 0 0 −1

 ∼= P4(d1, r + d1, a, b, c)

with coordinates t, s, x1, x2, x3, y1 respectively: it is such that α2(A2) = Py1 .

In order to show that ψ2 is a �ip for the varieties, we need to look at the inter-

section Y2 ∩A2 and show that it has codimension at least 3 in P4(d1, r+ d1, a, b, c). The

unprojection equation sy1 = g1 allows to discard s locally above Py1 ∈ Z2. Therefore

Y2 ∩ A2 has at least codimension 1. This is because Y2 ∩ A2 ⊂ F ⊂ P4(d1, r + d1, a, b, c)

where F is a hypersurface isomorphic to the weighted P3(d1, a, b, c) de�ned by the un-

projection equation relative to y1 in which y1 has been set at 1.

From part (i) and (ii) of Lemma 2.2.1 we deduce that in one of the pfa�an

equations there is a monomial of the form xiy1, which means that, locally at Py1 , it

is possible to discard xi, i.e. xi can be expressed as a function of the other variables:

suppose that x1 gets eliminated. Therefore, Y2 ∩ A2 has at least codimension 2 inside

P4(d1, r + d1, a, b, c).
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From Lemma 2.2.7 we deduce that there is another unprojection equation that

contains monomials in the xi and t. Therefore, Y2 ∩ A2 ⊂ S ⊂ F ⊂ P4(d1, r + d1, a, b, c)

where S ∼= P4(d1, b, c): Y2 ∩ A2 has at least codimension 3 in P4(d1, r + d1, a, b, c). To

prove that the codimension is exactly 3 we need to show that the remaining equations

de�ne a curve in S, so we need to exclude the case in which they de�ne a single point

or the empty set. The vanishing locus of the remaining equations cannot be the empty

set because Py1 ∈ Z2, so there must be an intersection between Y2 and A2. In addition,

Y2 ∩A2 cannot be a single point either for the following reason. Since X is quasi-smooth

and Q-factorial, the same holds for Y1. Also Y2 is quasi-smooth, but it is not isomorphic

to Y1 because β2 : Y3 → Z2 contracts the curve de�ned by the quadratic pfa�an equation

(which is Pf1 if M is in Tom1 format). Thus, by Q-factoriality, Y2 must also contract a

curve.

The last thing we need to check is that the intersection of −KY2 with the ex-

ceptional locus of α2 is positive and that the intersection of −KY3 with β2 is negative.

This is true because {x1 = 0} ∈ |O(−aKY2)| is relatively ample, so it meets every curve

positively.

On the other hand,

Theorem 2.3.9. If the point Py1 6∈ Z2, the toric varieties �ip Ψ2 : F2 99K F3 restricted

to Y2 is an isomorphism Y2
∼= Y3.

Proof. Recall that the equations of Z2 are the same as Z1. The fact that Py1 6∈ Z2

means that there exists at least one pfa�an equation that is non-zero when evaluated

at Py1 . Moreover, α2(A2) = Py1 ; on the other hand, α2(Y2) = Z2. This means that the

exceptional locus of the �ip at the toric level does not intersect with Y2, i.e. A2 ∩ Y2 =

∅.

The next Proposition is aimed at showing when the hypotheses of either Theorem

2.3.8 or Theorem 2.3.9 are veri�ed. Everything depends on the nature of the weights of

the matrix M .

Proposition 2.3.10. LetM be in Tom format. If the weights ofM fall in case (B), then

either the �ip with base at Py1 ∈ Z2 or the �ip with base at Py2 ∈ Z3 is an isomorphism.

Proof. In case (B) two ideal entries with the same weight are positioned diagonally

such that they get multiplied when considering Pf1(M). Suppose that π = d1. Thus,

y1 occupies both the entries a25 and a34. From Theorem 2.2.11 and since y1 appears

linearly in those entries, we deduce that there is the monomial y2
1 in the equations of

Y1. Therefore, repeating the proof of Theorem 2.3.9, we have that Ψ2 is an isomorphism

when restricted to Y2. Analogously happens for π = d2.

The weight π is never equal to d3 or d4.
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Remark 2.3.11. There is only one Hilbert series lying in case (i), #5870, whose matrix

M is in the con�guration (A). The codimension 4 Fano 3-fold of Tom type X corre-

sponding to #5870 lies in the weighted projective space P7(12, 22, 32, 4, 5). The Tom

centre considered is 1
3(1, 1, 2), therefore the generators y1, y2, y3, y4 of ID have weight 5,

4, 3, 2 respectively. Here the second �ip is skipped, namely the restriction of Ψ3 to Y3 is

an isomorphism. In this case the weights of M (in Tom format) are
2 2 3 3

3 4 4

4 4

5

 .

In general, it is possible to �ll the four entries with weight 4 with four di�erent polyno-

mials of degree 4 in ID all containing y2. However, performing row/column operations

on M as described in 1.2.4 allows to get rid of the two copies of y2 lying on the same

diagonal: in this way, we can end up having y2 appearing in either entries a24, a35 or

entries a25, a34 only. Thus, Pf1(M) contains the monomial y2
2, which implies that the

restriction of Ψ3 to Y3 is an isomorphism.

In conclusion, in this argument it is crucial that there is only one ideal generator

having weight 4. The concurrent presence of con�guration (A) and of two distinguished

ideal generators having the same weight will lead to di�erent consequences in (iii) and

(v).

Although the majority of the Hilbert series of case (i) falls in con�guration (B),

it also happens that the weights of M are in con�guration neither (A) nor (B). In this

situation, both ψ1 and ψ2 are �ips. In particular, this means that the mobile cone of F1

coincides with the mobile cone of Y1. In contrast, the skipping of a �ip shows that the

mobile cone of F1 is richer than the mobile cone of Y1.

Theorem 2.3.8 and Proposition 2.3.10 can be also applied to the crossing of the

wall adjacent to d2 > d3: in particular, this wall crossing is either a �ip or an isomorphism.

Consider the rank 2 toric variety F4: in case (i), d3 > d4. The end of the link is

a divisorial contraction.

Lemma 2.3.12. Suppose that ρX = 1. If d3 > d4, the map Φ′ : F4 → G4 is a divisorial

contraction of Y4 to a Fano 3-fold X ′ ⊂ P′ ⊂ G4.

Proof. Since ρX = 1, the exceptional divisor E′ of Φ′ is irreducible. Thus, ρX′ = 1 as

well. Moreover, X ′ is projective. In addition, −KX′ is ample. Consider a curve Γ in X ′

that is not in the image of E′ via Φ′ and that is not in the image of the union of the

right-hand-side contracted loci Bi of the �ips. Such curve can be always found because
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the set of curves of X ′ lying in Φ′(E′) and the union of the proper transform of the Bi
has codimension 2.

The curve Γ can be tracked back down to Y1. The divisor −KY1 is nef and big

(that is, Y1 is a so-called weak Fano): this is because −KY1 = α1(−KZ1), and the every

curve in Y1 is either strictly positive against −KY1 and contracted to Z1; or is a �opping

curve. Therefore we have that −KX′Γ = −KY1Γ̃ > 0, where Γ̃ is the proper transform

of Γ, and is isomorphic to Γ.

2.3.1.1 Identifying the end of the link

Lemma 2.3.12 shows that Φ′ is a divisorial contraction to another Fano. When the

determinant of the bidegrees of the right-hand-side irrelevant ideal of F4 is 1, it is possible

to �nd the Hilbert series associated to the Fano X ′.

Analogously to Section 2.2.2, the map Φ′ : F4 → G4 is de�ned by all the monomials

in the linear system
∣∣O(d3−1

)∣∣. The variable y4 will play the same role played by t for Φ.

The restriction of Φ′ to Y4 shows that the equations of Y4 constitute relations among the

new coordinates of G4. This means that some of the equations of Y4 eliminate (globally)

some of the new coordinates of G4. The number, and the name, of such eliminated

coordinates varies case by case. The global elimination of the variable s′ = syς4 of G4,

for some exponent ς, always happens: this is due to the fourth unprojection equation

sy4 = g4, that provides an expression of s′ in terms of the other coordinates of G4.

This phenomenon might occur for other coordinates too, depending on each spe-

ci�c case. However, this shows that the weighted projective space P′ that is the ambient
space of X ′ is always strictly contained in G4. This calculates the ambient space of X

′.

On the other hand, it is possible to track down the evolution of the basket of

singularities of X along the link, in order to deduce the one for X ′. Speci�cally, the

basket BX′ is equal to BY4 minus the cyclic quotient singularities of BY4 contained in the

exceptional locus E′ of Φ′. Its basket and its ambient space determine the Hilbert series

of X ′ univocally.

Remark 2.3.13. Studying the basket of singularities at each step of the link implies the

investigation of which singularities get contracted and extracted each time. This is not

always straightforward: we give the example of the Hilbert series #511 in Section 3.1.5,

in which the basket BX′ is more complicated to �nd.

The equations of X ′ can be found by rewriting the equations of Y4 in terms of the

new coordinates of G4, and by excluding the ones used to perform the global elimination.

Usually, the equations of X ′ retrieved in this way do not give the general member of the

Hilbert series of X ′, but just a special member of the family.

This calculation is shown explicitly in the examples of Chapters 3 and 4.
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Remark 2.3.14. Here we assumed that

det

∣∣∣∣∣ d3 d4

−1 −1

∣∣∣∣∣ = 1 .

In this case, we can still say that X ′ is a Fano 3-fold, because Lemma 2.3.12 still holds.

In addition, by computing the exact evoultion of the basket of singularities along the

link, we can identify X ′.

2.3.2 Proof of (ii)

This case splits in two situations according to the weights of the matrix M .

The �rst is when M has weights as in (B). Only two Hilbert series fall in this

instance, namely #1218 and #1413. For both, the equations of Y2 have a pure monomial

in y1 (similarly to the phenomenon described in 2.3.9). Therefore the following holds.

Theorem 2.3.15. Consider the Hilbert series #1218, #1413 and the Fano 3-fold de�ned

by Tom1 for both. Then, their respective Sarkisov links evolve as follows: ψ1 is a �op,

Ψ2 restricts to an isomorphism ψ2 on Y2, φ
′ is a divisorial contraction over P1

y2,y3 ⊂ X
′.

Proof. By Theorem 2.3.2 we have that ψ1 is a �op.

The weights of the matrix M of the two Hilbert series are as in (B). Therefore,

y1, which is the only variable having degree d1, occupies both the entries a25 and a34,

possibly added to a polynomial in ID in degree d1 involving the other variables: so

Pf1(M) is a polynomial containing y2
1. Using the same proof strategy of 2.3.9 we see

that ψ2 is an isomorphism.

The last map is a divisorial contraction to another Fano 3-fold X ′, as shown in

Lemma 2.3.12.

Note that P1
y2,y3 ⊂ X

′ in any case. So there aren't two distinct divisorial contrac-

tions, but only one polarised at P1
y2,y3 .

On the other hand, none of the other Hilbert series falling in d1 > d2 = d3 > d4

come from M with (B) weights. In this instance, the �rst �ip ψ2 is performed by the

variety Y2 too, and it is followed by a divisorial contraction to X ′.

Theorem 2.3.16. Let Z1 be de�ned by a graded matrix M in Tom format having weights

as in (B). Then the Sarkisov link for X (except the Hilbert series #1218 and #1413) is

constituted by: a �op, a �ip, and a divisorial contraction to P1
y2:y3 ⊂ X

′.

Proof. We connect this proof to the one for Theorem 2.3.15. As before, ψ1 is a �op due

to Theorem 2.3.2. Since the weights of M are not as in (B), then the point Py1 belongs

to Z2, which means that Y2 is subject to the �ip transformation ψ2 that occurs on F2.
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Lastly, the same proof for Theorem 2.3.15 holds with regards to the divisorial contraction

Φ′.

2.3.3 Proof of (iii) and (v)

Now we need to study the behaviour of the link in the case where d1 = d2. Both (iii)

and (v) share the same behaviour regarding the crossing of the ray ρy1,y2 generated by

y1 and y2.

Theorem 2.3.17. Suppose d1 = d2. Then, there are two simultaneous �ips based at two

points in Z2.

Suppose that Z1 is in Tomi format: the i-th pfa�an depends only on the six ideal

entries of M . To �x ideas, let M be in Tom1 format. Here we distinguish two di�erent

situations that are the specialisation to (iii) and (v) of (A) and (B). We repeat the

shape of the grading of M to stress the fact that in this case we have two di�erent

variables that �t the entries with weight d1 = d2.

(a) The entries a24, a25, a34, a35 all have the weight d1 = d2. So the weights of M are

M =


σ σ d1 + σ − τ d1 + σ − τ

τ d1 d1

d1 d1

2d1 − τ

 . (2.20)

(b) The entries a25, a34 both have the weight d1 = d2, while a24, a35 are free. So the

weights of M are

M =


σ d1 + σ − υ d1 + σ − τ 2d1 + σ − τ − υ

τ υ d1

d1 2d1 − υ
2d1 − τ

 . (2.21)

Geometrically, α2 contracts the locus A2 to a line P1
y1:y2 ⊂ G2. So, the intersection

A2 ∩ Y2 is mapped to P1
y1:y2 ∩ Z2. In Lemma 2.3.19 and in Lemma 2.3.20 we discuss the

nature of the intersection P1
y1:y2 ∩ Z2 in cases (a) and (b) respectively. The idea is that

P1
y1:y2 cuts out a rank 2 quadratic form in y1, y2, which determines two points in Z2.

Therefore, the variety Y2 is subjected to two simultaneous �ips.

Proposition 2.3.18. There exists a rank 2 quadratic form in y1, y2 de�ned on G2 that

determines two distinct points P1, P2 in Z2.
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Proof. To �x ideas, let M be in Tom1 format. Independently on (a) and (b), without

loss of generality we can assume that y1 occupies the a25 entry and that y2 occupies the

a34 entry of M . Note that the equations of Z2 are in terms of t as well, being the image

of Y2 via α2. If any of y1 or y2 is in one of the entries in the top row of the matrix, it will

surely pick up a t factor in the blow up of X, so it will vanish when restricted to P1
y1:y2 .

Moreover, if y1 and y2 appear in other entries of M they will need to be multiplied by

some other variable.

Therefore, the quadratic form has to be found in the �rst pfa�an of M , i.e. it is

the restriction of Pf1(M) to P1
y1:y2 . In particular, it is of the form y2

1 − y1y2 + y2
2 in case

(a), whereas it is y2
1−y1y2 in case (b). Note that no other monomials, also coming from

other equations, survive the restrictions for the reasons explained above. For both (a)

and (b) the two quadratic forms describe two distinct points on Z2.

Lemma 2.3.19. Let Z1 be de�ned by a graded matrix M in Tom format having weights

as in (a). Then, the following statements hold.

� If one of the two �ips is toroidal, then the other one is also toroidal. Analogously, if

one of the two �ips is an hypersurface �ip, then the other one is also an hypersurface

�ip.

� The two �ips have exactly the same weights.

Proof of Lemma 2.3.19. Let M have weights as in (a). As in the proof of Proposition

2.3.18, it is possible to place y1 and y2 in the entries a25 and a34 respectively. Thus by

looking at the pfa�ans of M , locally at Py1 we can eliminate a potential linear term in

the entries a12 and a15. Likewise, locally at Py2 we can eliminate a potential linear term

in the entries a13 and a14. Since a12 and a13 have the same weights, y1 and y2 eliminate

the same variable when localising at their respective coordinate points; or otherwise they

do not eliminate any variable in those entries at all. The same happens for the entries

a14 and a15.

Note that the variables y3 and y4 cannot be eliminated, as they are always mul-

tiplied by a t factor on the top row, so they are not linear. Therefore, the birational

transformations at P1 and P2 can only be �ips.

This proves that α2 contracts two loci of the same dimension: in fact, those loci

are isomorphic. In conclusion, the �ip phenomenon is completely symmetrical over y1

and y2 and the two points P1 and P2 in Z2.

Remark 2.3.20. Let Z1 be de�ned by a graded matrixM in Tom format having weights

as in (b). Then, if one of the �ip is toroidal does not imply that the other one is toroidal.

Analogously, if one of the �ips is an hypersurface �ip, then the other one is not necessarily

an hypersurface �ip.
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In particular, the weights of each of the two �ips could be di�erent.

Proof of Remark 2.3.20. Let M have weights as in (b): again, put y1 and y2 in the

entries a25 and a34 respectively without loss of generality. Note that the weights in the

top row of M are all di�erent. This implies that y1 and y2 cannot eliminate the same

variables, so the two �ips at P1 and P2 cannot have the same weights.

Moreover, suppose that a certain linear variable w occupies the entry a14. On the

other hand, w can appear in the a15 entry only if multiplied by a polynomial fd1−υ of

degree d1 − υ. Thus, there is no hope for y2 to eliminate w, and therefore the two �ips

can have di�erent numbers of weights. In short, it is allowed to have a toric �ip and an

hypersurface �ip simultaneously.

The above statements prove Theorem 2.3.17.

Proof of Theorem 2.3.17. Proposition 2.3.18 shows that the image of α2 determines two

distinct points P1, P2 in Z2. In a similar fashion to the proof of Theorem 2.3.8 it is

possible to prove that Ψ2 : F2 → F3 is an algebraically irreducible �ip. However, its

restriction to the variety Y2 ⊂ F2 is constituted of two distinct components, each one

contracted to one of the two points P1, P2 ∈ Z2.

Lemmas 2.3.19 and 2.3.20 clarify the nature of such components.

Remark 2.3.21. Note that Theorem 2.3.17 holds both if d1 = d2 > d3 = d4 and

d1 = d2 > d3 > d4. Essentially, it holds independently on how the link continues after

crossing the ray ρy1,y2 .

The continuation of the link is di�erent for case d1 = d2 > d3 = d4 and d1 = d2 >

d3 > d4. For the latter, item (i) holds by Lemma 2.3.12. For the former, we have that

Theorem 2.3.22. If d2 > d3 = d4, then Φ′ is a del Pezzo �bration over P1
y3,y4 .

Proof. Consider the map of toric varieties Φ′ : F4 → P1
y3,y4 . In particular, F4 can be

written as  t s x1 x2 x3 y1 y2 y3 y4

d3 r + d3 a b c d2 − d3 d2 − d3 0 0

−1 −1 0 0 0 1 1 1 1

 .

By de�nition, this is a weighted P6-bundle over P1. The intersection of Y4 with the

general �bre of this bundle clearly has dimension 2, given that the variables y3 and y4

now act as parameters. Moreover, the restriction of KY4 to such intersection is still

ample. Therefore, Φ′ is a del Pezzo �bration of Y4 over P1
y3,y4 .
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Lemma 2.3.23. The intersection between Y4 and the general �bre of the bundle de�ned

by Φ′ is smooth.

Proof. Consider the generic �bre S of Φ′: it is a surface in Y4. Suppose S is singular. In

particular, its closure inside the 3-fold Y4 is a line. Therefore, Y4 would contain a whole

singular line, which is a contradiction with Y4 being terminal.

In Table 6.1 we compute the degree of the general �bre of the del Pezzo �bration

in each case.

2.3.4 Proof of (iv)

Similarly to what happens in case (ii), the weights of the matrix M in�uence the be-

haviour of the link. Again, the distinction made in (a) and (b) plays a crucial role.

Proposition 2.3.24. Suppose M has weights in con�guration (b). Then, either y1

appears as a square in the equations of Y2, or y2 appears as a square in the equations of

Y3.

Proof. Consider the con�guration (b) of weights of M , assuming the format of M to

be Tom1 for the sake of simplicity. We have that Pf1(M) involves the multiplication

of two entries, a25 and a34, having the same weight. In this instance, the entries a25

and a34 have weight either d1 or d2, depending on the speci�c Hilbert series considered.

This time, in contrast to the proof of Proposition 2.3.18, by hypothesis we have only one

variable for each d1, d2, namely, y1 and y2 respectively. Therefore, the quadratic form

de�ned on G2 (or G3 respectively) is y2
1 (or y2

2 in turn).

The majority of Hilbert series that fall into case (iv) of Theorem 2.1.1 are such

that the weights of M are in con�guration (b). Therefore,

Lemma 2.3.25. If M has weights in con�guration (b), then either Ψ2 or Ψ3 is an

isomorphism when restricted to Y2 and Y3 respectively.

Proof. From the above Proposition we have that either y2
1 appears in the equations of

Y2, or y
2
2 appears in the equations of Y3. Therefore, analogously to the proof of case

(i), the point Py1 does not belong to Z2, or Py2 6∈ Z3. So, the locus contracted by the

ambient space �ip does not intersect Y2 (or Y3). In conclusion, either Ψ2 or Ψ3 is an

isomorphism.

Remark 2.3.26. Only the Hilbert series #20544 falling in case (iv) has a weight con�g-

uration of type (a). Since the only variable with weight d2 is y2, it is possible to cancel

out y2 from the entries a25 and a34 via row/column operations. Therefore the equations

of X have the monomial y2
2. Nonetheless, no �ip is missed. This is because, performing

the blow-up of X and then saturating over t, we have that the term y2
2 picks up a t factor.
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Remark 2.3.27. The weights of the matrixM relative to the three Hilbert series #5516,

#5867, #11437 are neither in con�guration (a) nor (b). Therefore, both Ψ2 and Ψ3 are

�ips for the varieties Y2 and Y3 respectively.

The last map Φ′ of the link in case (iv) is a del Pezzo �bration, as proved in

Theorem 2.3.22.

2.3.5 Proof of (vi)

There are six Hilbert series having ideal variables with weights d1 > d2 = d3 = d4.

Proposition 2.3.28. The Sarkisov link starting from the Hilbert series #6865 is such

that the restriction to Y2 of the birational map Ψ2 is an isomorphism.

Proof. In the case of #6865, the weights of the matrix M are in con�guration (b).

Therefore, in the same fashion as in the proof of (iv), we deduce that the monomial y2
1

appears in the equations of Y2. This implies that Ψ2 is an isomorphism on the variety

Y2.

The other �ve Hilbert series falling in this case behave as expected.

Proposition 2.3.29. Consider the Sarkisov link starting from X as in one of the �ve

Hilbert series left in case (vi). Then, the restriction to the variety Y2 of the birational

map Ψ2 is a �ip for Y2.

Proof. From [BKR12b] we see that the weights of M are neither in case (a) nor (b).

Thus, none of the ideal variables appears as a pure power in the equations of Y2. The

statement follows from the same reasoning contained in the proof of Theorem 2.3.8.

The end of the link in this case is constituted by a conic bundle over a projective

plane P2 de�ned by the coordinates y2, y3, y4.

Proposition 2.3.30. The map Φ′ is a conic bundle over the projective plane P2
y2,y3,y4 .

Proof. Localise F3 to the projective plane P2(d2, d2, d2)y2,y3,y4 . Recall that the variable

s can be globally eliminated; this discards the four unprojection equations. We exclude

s from the following expression of F3. t x1 x2 x3 y1 y2 y3 y4

d2 a b c d1 − d2 0 0 0

−1 0 0 0 1 1 1 1

 .

At the level of ambient spaces, F3 is a weighted P4-bundle over P2. Above each point of

P2(d2, d2, d2)y2,y3,y4 it is possible to locally eliminate two variables among t, x1, x2, x3, y1
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via two of the pfa�an equations. The remaining three equations lie in the same principal

ideal generated by one of them. Such equation is a conic in the three surviving variables

of the �bre. The conic has coe�cient in the base variables y2, y3, y4.

2.3.6 Proof of (vii)

In this case there are no �ips occurring in these Sarkisov links. They evolve as follows: ψ1

is n simultaneous �ops by Theorem 2.3.2, and it is followed by a divisorial contraction Φ′

to a Fano 3-fold X ′ (as in Lemma 2.3.12). Localising F2 at P3(d3
1, d4) having coordinates

y1, y2, y3, y4 we have t s x1 x2 x3 y1 y2 y3 y4

d1 r + d1 a b c 0 0 0 d4 − d1

−1 −1 0 0 0 1 1 1 1

 .

In particular, d4 − d1 is strictly negative. Practically speaking, this is the detail that

makes Φ′ a divisorial contraction and not a �bration.

2.3.7 Proof of (viii)

In case (viii) the �rst n �ops are followed by a conic bundle over P3(d1, d1, d1, d1)y1,y2,y3,y4 .

In this situation, a similar statement to the one of Proposition 2.3.30 holds, with an anal-

ogous proof.

All the links ending with conic bundles are summarised in Table 6.2.

2.4 Towards the analysis of Sarkisov links for Jerry

In this section we show how the techniques showed above for Tom change when M is in

Jerry format. In particular, we discuss the shape of the toric variety F1 (see Proposition

2.4.1), and the behaviour of their Sarkisov links (see Theorem 2.4.5).

2.4.1 The blow-up for Jerry

The case in which the matrix M is in Jerry format does not always present the same

phenomenon described in Proposition 2.2.6: this is because the unprojection equations

do not always have a monomial only in the variables x1, x2, x3.

Recall that a matrix in Jerry format, say Ji,j to �x ideas, has a special entry µij

called pivot. Therefore we have a distinction into two sub-cases depending on whether

the following condition is satis�ed or not.

Condition 2.4.1. Let P be the degree of the pivot entry µij . Consider the following

statement:
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There exists an ideal variable w of F such that deg(w) = P .

Hence we have the following Proposition.

Proposition 2.4.1. In the same hypothesis of Proposition 2.2.6, suppose the matrix M

de�ning Z is in Jerry format.

If Condition 2.4.1 holds, the bidegree of w is
(
P
−2

)
. Without loss of generality

suppose w is y4; then, the blow-up of X at Ps is contained in a scroll of the form t s x1 x2 x3 y1 y2 y3 y4

0 r a b c d1 d2 d3 d4

1 1 0 0 0 −1 −1 −1 −2

 . (2.22)

Note that the relevant weights are not necessarily in that order.

On the other hand, if Condition 2.4.1 does not hold, the scroll is of the form 2.5.

Analogously to the Tom case, to prove Proposition 2.4.1 we need the following

lemma.

Lemma 2.4.2. Let Z be a codimension 3 Q-Fano 3-fold de�ned by pfa�ans of a 5 × 5

skew-symmetric matrix M in Jerry format. Consider the Type I unprojection of Z at a

divisor D. If Condition 2.4.1 holds, then there exists one unprojection equation that does

not contain any monomial purely in x1, x2, x3.

On the other hand, if Condition 2.4.1 does not hold, then each unprojection equa-

tion has at least one monomial purely in x1, x2, x3.

Proof. As in Section 3.8 of [Pap01], assume without loss of generality that M is of the

form

M =


e1 e2 b3 a3

e2 b2 a2

b1 a1

c


where ei 6∈ ID, ai, bi, c ∈ ID are polynomials of degrees matching the gradings of M , and

c occupies the pivot entry. Following Papadakis [Pap01], there exists a 3 × 4 matrix Q

such that  Pf3(M)

Pf4(M)

Pf5(M)

 = Q


y1

...

y4
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where the yi are the generators of the ideal ID and Q is de�ned as

Q1k := ϑyk(c)e1 − ϑyk(b3)a2 + ϑyk(b2)a3

Q2k := ϑyk(Pf4(M)) = Pf4(Nk)

Q3k := ϑyk(Pf5(M)) = Pf5(Nk)

(2.23)

where with ϑyk(·) we denote the coe�cient of yk in the polynomial in the argument and

Nk are de�ned as in 2.8.

For i = 1, . . . , 4 call hi := det Q̂i the four determinants of the 3 × 3 matrices

obtained after deleting the i-th column of Q. Lemma 3.8.1 in [Pap01] shows that there

exist polynomials Ki, Li such that

hi = e1Ki + (a2e2 − e3a3)Li i = 1, . . . , 4 . (2.24)

De�ne

gi := Ki + a1Li i = 1, . . . , 4 . (2.25)

These are the right hand sides of the unprojection equations, that is syi = gi.

We want to see in which cases the gi have or not a monomial in the variables

x1, x2, x3. De�nition 2.25 clearly shows that it is not possible to �nd it in the term a1Li

for all i, since ai ∈ ID. On the other hand, there are hopes to �nd it in Ki. In order to

do this, we need to look closer at the matrix Q.

Look �rst at the two bottom rows of Q.

From how we constructed M in Subsection 2.2.1, every ideal variable yk occupies

alone at least one entry of M . Hence, at least one entry of Nk is 1. Then, when

computing the pfa�ans de�ning the entries of the bottom rows of Q, we have that at

least one monomial in each entry is in terms of x1, x2, x3.

We now distinguish two cases, depending on whether condition 2.4.1 holds or not.

Suppose Condition 2.4.1 is satis�ed. Therefore, the pivot entry is occupied by

one of the ideal variables only; call it w to distinguish it. Explicitly, c = w. Thus, the

last column of Q is the vector (e1, 0, 0)T . This implies that h1, h2, h3 are divisible by e1,

so Ki = hi
e1

and Li = 0 for i = 1, 2, 3.

Look now at the top row of Q. As already discussed, Q14 = e1 6∈ ID. For

k = 1, 2, 3, ϑyk(c) = 0, and at least one between ϑyk(b3) and ϑyk(b2) is equal to 1,

because at least one entry of Nk is 1. Therefore, from the de�nition of Q1k we deduce

that Q11, Q12, Q13 ∈ ID, so h4 does not contain any monomial only in therms of x1, x2, x3,

thus neither does K4.

Now suppose Condition 2.4.1 does not hold. The polynomial c in the pivot entry

is now a general polynomial of degree P on which we perform row/column operations
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in order to simplify it by getting rid of some terms. Such operations must not break

the Jerry format, namely, make monomials not in ID appear in the ideal entries; in

particular, this happens when using monomials not in ID as coe�cients of the row/column

operations. This means it is not possible to get rid of the terms in c of the form µ · ν
with µ 6∈ ID, ν ∈ ID. Therefore, when calculating the entries of the top row of Q, we

have that they have at least one term in x1, x2, x3, coming from the coe�cients of c.

Proof of Proposition 2.4.1. Suppose that Condition 2.4.1 holds. Lemma 2.4.2 shows that

the unprojection equation sy4 = g4 fails to have a monomial only in terms of x1, x2, x3.

Thus, the minimum in De�nition 2.2.1 has to be achieved at a monomial containing at

least one ideal variable, as g4 only contains monomials of such sort. This means that the

degree of g4 is strictly less than δ4, i.e. there exists an integer coe�cient ν ∈ Z such that

δ4 = deg(g4) + νr .

In fact, ν measures the least number of ideal variables (with multiplicity) appearing in

the monomials of g4. In order to prove that the bidegree of y4 is
(
d4
−2

)
we need to show

that ν = 1. We need to look at the matrix Q. As in the proof of Lemma 2.4.2, the

bottom rows of Q all contain at least one monomial in terms of x1, x2, x3.

We want to show that there is one entry of the top row of Q having at least one

monomial linear in the yk. Surely, θyk(c) = 0 for k = 1, 2, 3. Moreover, for each k = 1, 2, 3

there exists j ∈ {1, 2, 3} such that θyk(bj) = 1. Each term of aj contains at least one

relevant variable. As proved before, the two bottom rows of the matrix Q contain at

least one monomial in x1, x2, x3 in each entry. Therefore, we want to show that there

exists at least one term in one of the �rst three entries of the top row of Q having exactly

one ideal variable with multiplicity 1. Such monomial certainly does not appear in the

term ϑyk(c)e1 of 2.23 since e1 /∈ ID and ϑyk(c) is 1 if k = 4 and is 0 otherwise. On the

other hand, there exist k ∈ {1, 2, 3} and z ∈ {1, 2} such that ϑyk(bj) = 1. Moreover,

up to a change of coordinates a2 and a3 contain a term that is exactly one of the ideal

variables.

Remark 2.4.3. The pivot entry always vanishes twice on the divisor D. This means

that whichever polynomial is in the pivot entry it has to vanish on D with order two.

Thus, the −2 in the bidegree of w can be interpreted as the order of vanishing of w on

D.

Remark 2.4.4. We can reformulate Proposition 2.4.1 stating the following.

The unprojection equation correspondent to w is

sw = g(x1, x2, x3, y1, y2, y3, y4) .
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If g|{yj=0}41 = 0, then the bottom degree of w is −2.

If g|{yj=0}41 6= 0, then the bottom degree of w is −1.

2.4.2 Description of the link for Jerry

The classi�cation of Sarkisov links in the Jerry case is determined also by the condition

2.4.1.

Theorem 2.4.5. In the same hypotheses and notation of Theorem 2.1.1, suppose the

matrix M is in Jerry format. Let X be a codimension 4 Q-Fano 3-fold obtained as Type

I unprojection of Z at a divisor D. Suppose X has Fano index 1 and Picard rank ρX = 1.

The �rst step of the Sarkisov link run on X is a �op as in Lemma 2.3.2. Moreover,

if condition 2.4.1 holds, the �rst �ip of the link on wP7 does not a�ect the variety. In

other words, the link for the Fano has an empty step.

Lastly, the Sarkisov link run on X does not break.

In the Tom case the shape of the scroll F suggests at �rst glance whether either

�brations or simultaneous �ips could occur or not by looking at the relevant top weights.

On the other hand in the Jerry case, if there exists a variable of F such that it generates

the same linear system as w this could lead to �brations or simultaneous �ips even when

the relevant top weights of F are all di�erent. This makes the treatment of the Jerry case

very di�cult to systematise, as every speci�c example looks di�erent from the others.

Theorems 2.1.1 and 2.4.5 both imply the following:

Theorem 2.4.6. Let X be a Fano 3-fold in codimension 4 in either the hypotheses of

theorem 2.1.1 or of Theorem 2.4.5. Then, X is not birationally rigid.
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Chapter 3

Examples of Tom and Jerry links

In this section we present several explicit examples of Sarkisov links for codimension 4

Fano 3-folds of Tom type, highlighting the main phenomena described in Theorem 2.1.1.

3.1 Tom examples

3.1.1 Example for (i): #10985, Tom1

In this subsection we examine the Sarkisov link constructed from the pair (X, p) where

X is the Tom type Fano 3-fold associated to the Hilbert series #10985 and p ∈ X is the

Tom centre 1
2(1, 1, 1). The Tom centre is chosen among the basket of singularities of X

shown in the [BK+15], which is BX = {1
2(1, 1, 1), 1

6(1, 1, 5)}. The ambient space of X is

P7(13, 2, 3, 4, 5, 6), with coordinates x1, x2, x3, s, y4, y3, y2, y1 respectively. The divisor D

is D ∼= Px1,x2,x3(1, 1, 1), de�ned by the ideal ID = 〈y1, y2, y3, y4〉. If the matrix M is in

Tom1 format, then D ⊂ Z1.

In [BKR12b] we see that the nodes on D are 24, and that the weights of M are
1 2 3 4

3 4 5

5 6

7

 . (3.1)

To summarise, we are looking at the following varieties:

#10985 X ⊂ P7(13, 2, 3, 4, 5, 6) codimension 4 {1
2(1, 1, 1), 1

6(1, 1, 5)}
#10962 Z1 ⊂ P6(13, 3, 4, 5, 6) codimension 3 24 nodes on D

We �ll the entries of M with linear terms as much as possible: the more detailed

explanation of this process is in Subsection 2.2.1. This means that we aim to put ideal
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variables in an ideal entry having their same weight, and do analogously for the orbinates.

The rest of the entries can be occupied by general polynomials in the given degrees,

accordingly to the Tom1 constraints. These polynomials can be eventually slimmed up

by performing row/column operations as explained in 1.2.4. In this speci�c case, we end

up with the following explicit matrix

M =


x1 −x2x3 −x3

2 + y4 −x4
3 + y3

y4 y3 y2

x2
2y4 − y2 y1

x4
1y4

 . (3.2)

In particular, Z1 has 24 nodes. The matrix M is built following what we explained

in Section 2.2.1. The unprojection algorithm produces nine equations, de�ning X, as

outlined in 1.2.4. Explicitly, the equations of X are

x1x
2
2y4 − x3

2y4 + x2x3y3 + y2
4 − x1y2 = 0

x4
3y4 − x2x3y2 − y4y3 − x1y1 = 0

x5
1y4 − x4

3y3 + x3
2y2 + y2

3 − y4y2 = 0

x4
1x2x3y4 + x3

2x3y2 − x4
3y2 + x1x

2
2y1 − x3

2y1 + y3y2 + y4y1 = 0

x4
1y

2
4 + x2

2y4y2 − y2
2 − y3y1 = 0

−x4
2x3 + x1x

4
3 − x1y3 + y4s = 0

−x6
1 − x1x

5
2 + x6

2 − x3
2y4 + x1y2 − y3s = 0

x5
1x2x3 + x1x

2
2x

4
3 − x3

2x
4
3 − x1x

2
2y3 + x3

2y3 + x1y1 + y2s = 0

x4
1x

2
2x

2
3 + x3

2x
5
3 − x8

3 + x5
1y4 − x3

2x3y3 + x4
3y3 + x3

2y2 + x2x3y1 − y4y2 − y1s = 0

(3.3)

Proposition 2.2.6 shows that the blow-up Y1 of X at the Tom centre p = Ps is

contained in the rank 2 toric variety F1 with weights t s x1 x2 x3 y1 y2 y3 y4

0 2 1 1 1 6 5 4 3

1 1 0 0 0 −1 −1 −1 −1

 . (3.4)

The Mori cone of F1 is given by the linear systems de�ned by the variables t, s, x1, x2, x3,

y4, y3, y2, y1, that is, F1 is associated to a fan generated by the lattice vectors ρt, ρs,

ρx1 , ρx2 , ρx3 , ρy1 , ρy2 , ρy3 , ρy4 respectively. This de�nes a ray-chamber structure that will

describe the link at the level of the rank 2 toric varieties Fi.
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t s

x1, x2, x3

y1

y2y3y4

The Kawamata blow-up of the Tom centre Ps is induced by the map Φ

Φ: F1 −→ P7(13, 2, 3, 4, 5, 6)

(t, s, x1, x2, x3, y1, y2, y3, y4) 7−→ (x1t
1
2 , x2t

1
2 , x3t

1
2 , y4t

5
2 , y3t

6
2 , y2t

7
2 , y1t

8
2 , s)

. (3.5)

Consider the pull-back of the equations 3.3 of X. The ideal of Y1 is de�ned as

the saturation over t of the ideal of Φ∗(X), as in De�nition 2.2.2.

Explicitly, after saturation we have the equations for Y1

−tx1y3 + sy4 + x1x
4
3 − x4

2x3 = 0

ty2
4 + x1x

2
2y4 − x1y2 − x3

2y4 + x2x3y3 = 0

tx1y2 − tx3
2y4 − sy3 − x6

1 − x1x
5
2 + x6

2 = 0

−ty4y3 − x1y1 − x2x3y2 + x4
3y4 = 0

−tx1x
2
2y3 + tx1y1 + tx3

2y3 + sy2 + x5
1x2x3 + x1x

2
2x

4
3 − x3

2x
4
3 = 0

−ty4y2 + ty2
3 + x5

1y4 + x3
2y2 − tx4

3y3 = 0

−t2y4y2 + tx5
1y4 − tx3

2x3y3 + tx3
2y2 + tx2x3y1 + tx4

3y3 − sy1 + x4
1x

2
2x

2
3 + x3

2x
5
3 − x8

3 = 0

ty4y1 + ty3y2 + x4
1x2x3y4 + x1x

2
2y1 + x3

2x3y2 − x3
2y1 − x4

3y2 = 0

x4
1y

2
4 + x2

2y4y2 − y3y1 − y2
2 = 0

(3.6)

The birational link for wP7 is obtained performing a variation of the GIT quotient

on F1, as outlined in Chapter 2.

From Theorem 2.3.2 we have that the map Ψ1 is given by 24 simultaneous �ops

based at the 24 nodes of Z1. Such �ops arise when crossing the wall associated to the

variables x1, x2, x3, that is, they arise from transitioning from a chamber adjacent to

the lattice vector ρxi to the other adjacent chamber. This is obtained by changing the

irrelevant ideal of F1.

Note that since the weights (3.1) of M are in con�guration (B), then either ψ2 or

ψ3 is an isomorphism by Proposition 2.3.10. In particular, by looking at the equations 3.6

of Y1 we notice that y2 appears as a pure power: this implies that ψ3 is an isomorphism.

In order to study ψ2 we need to localise at Py1 ∈ Z2. This means that we look at

the equations 3.6 locally analytically in a neighbourhood of the point Py1 ∈ Z2.

46



Practically, we treat y1 as a local coordinate, so we perform row operations on F2

in order to write the weight of y1 as either
(±1

0

)
or
(

0
±1

)
. To do so, we add six times the

second row to the �rst row of 3.4: the grading of F2 becomes t s x1 x2 x3 y1 y2 y3 y4

6 8 1 1 1 0 −1 −2 −3

1 1 0 0 0 −1 −1 −1 −1

 .

Recall from [BZ10] that the weights of the �ip at the level of the rank 2 toric va-

riety is (6, 8, 1, 1, 1,−1,−2,−3). This notation stands for the contraction by α2 of

P4
t,s,x1,x2,x3(6, 8, 1, 1, 1) to the point Py1 ∈ Z2, and the extraction by β2 of P2

y2,y3,y4(1, 2, 3)

from Py1 . However, the intersection P4
t,s,x2,x3(6, 8, 1, 1, 1) ∩ Y2 can be a much smaller

projective space than P4. Analogously, this might hold for P1
y2,y4(1, 2, 3) ∩ Y3. We can

understand those intersections, and deduce the weights of the �ip for Y2, by using the

following argument.

Every isomorphism in codimension 1 Ψi is based at a point (or a projective line)

in Gi. Localising at such a point (or at the points constituting the intersection of the

projective line with Zi), and using the equations of Yi it is possible to write some of the

variables as function of the others.

Examining the equations of Y2 locally analytically at a neighbourhood of Py1 ∈ Z2

and considering y1 as a local coordinate, we can set y1 = 1 in the equations 3.6. Some

linear monomials will emerge in the equations of Y2 evaluated at y1 = 1: those variables

appearing linearly in Y2

∣∣
y1=1

can be expressed in terms of the other variables locally

analytically. Thus, we can locally eliminate them. In this speci�c case, the evaluation of

3.6 at y1 = 1 shows that s, x1, y3 appear linearly. Therefore, the weights of the �ip for

Y2 are (6, 1, 1,−1,−3), associated to the variables t, x2, x3, y2, y4 respectively.

Observe that it looks like that α2 contracts a 2-dimensional locus inside Y2 to the

point Py1 , thus α2 does not seem like a small contraction, as required in �ips. However,

among the equations left after the local elimination process there is one involving t and

y4: that is Pf2 = 0. This means that there is an equation cutting out the contracted

locus by one dimension.

In conclusion, ψ2 is a �ip having weights (6, 1, 1,−1,−3; 3), where the last 3 in this

notation tracks the degree of the equation involving the monomial ty4. In other words,

a weighted projective space Pt,x2,x3(6, 1, 1) containing a hypersurface of degree 3 with

coe�cients in Py2,y4(1, 3) is �ipped to Py2,y4(1, 3). In particular, a 1
6(1, 1, 5) singularity

in Y2 is contracted to Py1 via α2, and a 1
3(1, 1, 2) is extracted in Y3 from Py1 via β2.

This is a hypersurface �ip. Despite the fact that there are three surviving equa-

tions after the elimination process, the equation cutting out Pt,x2,x3(6, 1, 1) is only one:

the other two are multiples of it. This means that Pf2 is the generator of the principal
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ideal of Y2 on Pt,x2,x3(6, 1, 1).

As already mentioned, the map Ψ3 based at Py2 certainly de�nes a �ip from F3

to F4, but one of the equations of Y3 contains the monomial y2
2, that is, Py2 does not

belong to Z3. Thus, Y3 is not a�ected by this �ip. We call this phenomenon an empty

step of the Sarkisov link.

The last map of the link is Φ′ : F4 → G4. This is the map constituted by the basis

of the linear system
(

4
−1

)
, which contracts the exceptional locus E′ = {y4 = 0} to the

point Py3 ∈ G4. Explicitly, it is

Φ′ : F4 −→ G4 = P7(1, 1, 1, 1, 2, 3, 3, 5)

(t, s, x1, x2, x3, y1, y2, y3, y4) 7−→ (x1y4, x2y4, x3y4, y3, y2y4, y1y
2
4, ty

3
4, sy

6
4) .

(3.7)

The exceptional locus E′ is isomorphic to P7(4, 6, 1, 1, 1, 2, 1) with coordinates

t, s, x1, x2, x3, y1, y2 respectively: their weights are retrieved performing a localisation at

Py3 , in the same fashion as above. However, the intersection E′ ∩ Y4 is P3(1, 1, 1, 1), as

we can eliminate the variables t, s, y1 locally analytically in a neighbourhood of Py3 .

We call X ′ the push-forward Φ′∗(Y4) of Y4 via Φ′. Practically, y4 plays the role for

Φ′ that t played for Φ, being the extra variable needed to perform a blow-up: in this case,

Φ′ blows up the point Py3 ∈ X ′. The equations of X ′ are therefore given by evaluating

the equations of Y4 at y4 = 1. Observe that this shows that the variables t and s can be

algebraically expressed as functions of the other variables: two equations of Y4

∣∣
y4=1

are

removed in order to perform this global elimination.

Call ςi for i ∈ {1, . . . , 8} the coordinates of G4: the equations of X
′ are expressed

in these coordinates. Since we globally eliminated two variables thanks to the equations

of X ′, we deduce that X ′ ⊂ wP′ ⊂ G4, where wP′ := P5(1, 1, 1, 1, 2, 3) with coordinates

ς1, . . . , ς6. So, Φ′ restricts to φ′ : Y4 → X ′ ⊂ P5(1, 1, 1, 1, 2, 3).

If we consider the minimal basis of the ideal generated by the surviving equations

of Y4

∣∣
y4=1

we have that the explicit equations of X ′ areς1ς2
2 ς4 − ς1ς4ς5 − ς1ς6 − ς3

2 ς4 + ς2ς3ς
2
4 − ς2ς3ς5 + ς4

3 = 0

ς4
1 + ς2

2 ς5 − ς4ς6 − ς2
5 = 0

(3.8)

Note that the above equations both have degree 4 in wP′.
In addition, it is possible to keep track of the singularities throughout the link.

That is: X has 1
2(1, 1, 1) and 1

6(1, 1, 5) singularities. After the blowup Φ, Y1 has only a

singularity of type 1
6 : this holds for Y2 too, as the basket does not change after the �ops.

The hypersurface �ip Ψ2 replaces 1
6(1, 1, 5) with 1

3(1, 1, 2), so Y3 has one singularity of

type 1
3 ; same for Y4, given that Y3 and Y4 are actually isomorphic. Lastly, φ′ contracts

a smooth locus, so the 1
3 singularity of Y4 is maintained in X ′.
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Now that we know the equations of X ′ and their degrees, the basket of X and its

ambient space we deduce that X ′ is a representative of the family #16204 in [BK+15],

which is a Fano 3-fold in codimension 2.

Remark 3.1.1. Note that the Sarkisov link described above is of Type IV according to

the notation in [HM13].

3.1.2 Example for (v): #20652, Tom1, case (a)

Consider the pair (X, p) where X is the Tom type Fano 3-fold associated to the Hilbert

series #20652 and p ∈ X is the Tom centre 1
2(1, 1, 1).

The Tom centre is chosen among the basket of singularities of X shown in the

[BK+15], which is BX = {3 × 1
2(1, 1, 1)}. The ambient space of X is P7(15, 23), with

coordinates y1, y2, x1, x2, x3, y3, y4, s respectively. The divisor D is D ∼= Px1,x2,x3(1, 1, 1),

de�ned by the ideal ID = 〈y1, y2, y3, y4〉. The matrix M is in Tom1 format, and D ⊂ Z1.

The nodes on D are 7, and the weights of M are
1 1 1 1

2 2 2

2 2

2

 . (3.9)

Concisely, we are looking at the following varieties:

#20652 X ⊂ P7(15, 23) codimension 4 {3× 1
2(1, 1, 1)}

#20543 Z1 ⊂ P6(15, 22) codimension 3 7 nodes on D

In a similar fashion to the previous example, we can construct the matrix M in

Tom1 format. For #20543 it is

M =


x1 x2 x3 y3

y1 y2 x2y4 − x3y3 + y1

x1y3 − y2 y2
4 − y2

x1y3 + y1

 . (3.10)
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The nine unprojection equations de�ning X are

x2
3y3 − x2x3y4 + x1y1 − 2x3y1 + x1y2 + x2y2 + y3y2 = 0

x2x3y3 − x2
2y4 + x1y

2
4 − x2y1 + y3y1 − x1y2 = 0

x1x2y3 + x1y
2
3 − x3y

2
4 + x2y1 + x3y2 − y3y2 = 0

x2
1y3 + x3y1 − x1y2 − x2y2 = 0

−x1x
2
2 − x3

2 − x2x
2
3 + x2

1y4 + x1x2y4 − x1x3y4 − x2x3y4 + y3s = 0

−x3
1 + x2

1x2 + x1x
2
2 + 2x2

1x3 + x1x2x3 + x2
2x3

+x3
3 + x2

1y3 + x1x2y3 + x1y1 + x2y1 − x1y2 − x2y2 + x3y2 − y4s = 0

x1x
2
2y4 − x1y

2
3y4 − x2

1y
2
4 − x2

3y
2
4 + x3y

3
4 + x1x2y1 + x2x3y1 + x1y3y1

−x2y4y1 + x2
1y2 + x2

3y2− x2y4y2 − x3y4y2 + y3y4y2 − y2
4y2 + y2

1 − y1y2 + y2
2 = 0

x2
1x

2
2 − x1x

2
2x3 + x2

1x2y3 − x1x2x3y3 − x3
1y4 + 2x2

1x3y4 + x3
3y4

+x2x3y1 − x1x2y2 − x2
2y2 + x2x3y2 + x3y4y2 − y2s = 0

x2
1x

2
2 + x1x

3
2 + x2

1x2x3 + x2
1x2y3 + x1x

2
2y3 + x2

1x3y3 − x3
1y4 − x2

1x2y4 − x1x
2
3y4

−x2x
2
3y4 + x2

3y1 − x1x2y2 − x2
2y2 − x1x3y2 − x2x3y2 − x1y4y2 − x2y4y2 + y1s = 0

(3.11)

From Proposition 2.2.6 we have that Y1 sits inside a rank 2 toric variety F1 having

weights  t s x1 x2 x3 y1 y2 y3 y4

0 2 1 1 1 2 2 1 1

1 1 0 0 0 −1 −1 −1 −1

 . (3.12)

This time, the Mori cone of F1 is given by the following fan

t s

x1, x2, x3

y1, y2

y3, y4

The Kawamata blow-up of the Tom centre Ps is the map Φ

Φ: F1 −→ P7(15, 23)

(t, s, x1, x2, x3, y1, y2, y3, y4) 7−→ (x1t
1
2 , x2t

1
2 , x3t

1
2 , y4t

3
2 , y3t

3
2 , y2t

4
2 , y1t

4
2 , s)

. (3.13)
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The expression of Φ having integer exponents of t is

Φ: F1 −→ P7(15, 23)

(t, s, x1, x2, x3, y1, y2, y3, y4) 7−→ (x1t, x2t, x3t, y4t
2, y3t

2, y2t
3, y1t

3, st)
. (3.14)

Therefore, the equations of Y1 are

x2
3y3 − x2x3y4 + x1y1 − 2x3y1 + x1y2 + x2y2 + ty3y2 = 0

x2x3y3 − x2
2y4 + tx1y

2
4 − x2y1 + ty3y1 − x1y2 = 0

x1x2y3 + tx1y
2
3 − tx3y

2
4 + x2y1 + x3y2 − ty3y2 = 0

x2
1y3 + x3y1 − x1y2 − x2y2 = 0

−x1x
2
2 − x3

2 − x2x
2
3 + tx2

1y4 + tx1x2y4 − tx1x3y4 − tx2x3y4 + y3s = 0

−x3
1 + x2

1x2 + x1x
2
2 + 2x2

1x3 + x1x2x3 + x2
2x3+

x3
3 + tx2

1y3 + tx1x2y3 + tx1y1 + tx2y1 − tx1y2 − tx2y2 + tx3y2 − y4s = 0

x1x
2
2y4 − t2x1y

2
3y4 − tx2

1y
2
4 − tx2

3y
2
4 + t2x3y

3
4 + x1x2y1 + x2x3y1 + tx1y3y1

−tx2y4y1 + x2
1y2 + x2

3y2 − tx2y4y2 − tx3y4y2 + t2y3y4y2 − t2y2
4y2 + ty2

1 − ty1y2 + ty2
2 = 0

x2
1x

2
2 − x1x

2
2x3 + tx2

1x2y3 − tx1x2x3y3 − tx3
1y4 + 2tx2

1x3y4 + tx3
3y4+

tx2x3y1 − tx1x2y2 − tx2
2y2 + tx2x3y2 + t2x3y4y2 − y2s = 0

x2
1x

2
2 + x1x

3
2 + x2

1x2x3 + tx2
1x2y3 + tx1x

2
2y3 + tx2

1x3y3 − tx3
1y4 − tx2

1x2y4 − tx1x
2
3y4

−tx2x
2
3y4 + tx2

3y1 − tx1x2y2 − tx2
2y2 − tx1x3y2 − tx2x3y2 − tx1y4y2 − tx2y4y2 + y1s = 0

(3.15)

The variation of GIT on F1 will give the 2-ray game.

Theorem 2.3.2 guarantees that Ψ1 is given by 7 simultaneous �ops based at the 7

nodes of Z1. In terms of the ray-chamber structure of the fan of F1, we are crossing the

�rst ray ρxi for i ∈ {1, 2, 3}.
Observe that the weights 3.9 of M are in con�guration (a): from Proposition

2.3.18 we know that there is a quadratic form determining two points P1, P2 ∈ Z2,

constituting the intersection Z2 ∩ P1
y1,y2 . Thus, Lemma 2.3.19 shows that the pencil of

�ips along the line P1
y1,y2 ⊂ G2 restricts to two �ips with base P1 and P2 respectively. So

we look locally analytically in a neighbourhood of P1, P2 ∈ Z2. Carrying out the same

manipulation of F2 done in the previous example, we have that the grading of F2 is t s x1 x2 x3 y1 y2 y3 y4

2 4 1 1 1 0 0 −1 −1

1 1 0 0 0 −1 −1 −1 −1

 .

The weights of the �ip of rank 2 toric varieties based at P1
y1,y2 are (2, 4, 1, 1, 1,−1,−1),
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where α2 contracts P4
t,s,x1,x2,x3(2, 4, 1, 1, 1) to P1

y1,y2 , and β2 extracts P1
y3,y4 .

Now we look at the equations 3.15 of Y1 locally analytically at a neighbourhood of

P1 and P2 respectively, in order to understand the intersections P4
t,s,x1,x2,x3(2, 4, 1, 1, 1)∩

Y2 and P1
y3,y4 ∩ Y2.

We see that equation #9 and equation #8 of 3.15 make the variable s to be

expressed in terms of the other variables at P1 and P2 respectively: therefore we say that

s is eliminated algebraically at P1 and P2. Similarly happens for x1 using equation #1 of

3.15. On the other hand, we can use either equation #2 to eliminate x2 at P1, or equation

#3 to eliminate x3 at P2. We see that the intersection P4
t,s,x1,x2,x3(2, 4, 1, 1, 1) ∩ Y2

is formed by two disjoint loci, generated by t, x2 and t, x3 at P1 and P2 respectively.

Nonetheless, they determine two projective lines P1(2, 1). The fact that this elimination

process has not excluded y3 nor y4 shows that P1
y3,y4 ⊂ Y2.

Note that the variable t does not get eliminated. This is because in equation #7

of 3.15 the polynomial t
(
y2

1 − y1y2 + y2
2

)
appears: the variable t could be eliminated only

if y2
1 − y1y2 + y2

2 6= 0, but P1 and P2 are exactly the two solutions of y2
1 − y1y2 + y2

2 = 0.

In conclusion, Ψ2 restricts to two simultaneous Francia �ips (2, 1,−1,−1) based

at P1, P2 ∈ Z2, as anticipated in Remark 2.1.2. In particular, two cyclic quotient singu-

larities of type 1
2(1, 1, 1) in Y2 are contracted to P1 and P2 respectively via α2, and β2

extracts a smooth locus in Y3. Therefore, Y3 is a manifold having Picard rank 2.

The last map of the link is the �bration Φ′ : F4 → P1
y3,y4 . Recall that −KY3 ∼

O
((

1
0

))
. If F is a general �bre of Φ′, then by adjunction we have thatKF = (KY3 + F )

∣∣
F

=

KY3

∣∣
F
. Thus, KF is ample, F a del Pezzo and, as a consequence, Φ′ a del Pezzo �bration.

Note that the unprojection variable s can be globally eliminated over each general

point of P1
y3,y4 . There is no other elimination that can be made. Therefore, the �bre F of

the del Pezzo �bration sits inside a projective space P6 with coordinates t, x1, x2, x3, y1, y2.

The matrix M has become a matrix of linear forms in these variables. The equations of

F are the �ve (quadratic) maximal pfa�ans of M . Therefore, the degree of F , and of

the del Pezzo �bration, is 5.

3.1.3 Example for (iv): #574, Tom1, case (b)

Consider the pair (X, p) where X is the Tom type Fano 3-fold associated to the Hilbert

series #574 and p ∈ X is the Tom centre 1
7(1, 3, 4).

The basket of singularities ofX shown in the [BK+15] is BX = {1
3(1, 1, 2), 1

5(1, 1, 4),
1
5(1, 2, 3), 1

7(1, 3, 4)}. The ambient space of X is P7(1, 3, 4, 52, 6, 72), with coordinates

x1, x2, x3, y4, y3, y2, y1, s respectively. The divisor D is D ∼= Px1,x2,x3(1, 3, 4), and the
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matrix M is in Tom1 format, whose weights are
3 4 5 6

5 6 7

7 8

9

 . (3.16)

There are 8 nodes on D. In short, we are looking at:

#574 X ⊂ P7(1, 3, 4, 52, 6, 72) codimension 4 {1
3(1, 1, 2), 1

5(1, 1, 4), 1
5(1, 2, 3), 1

7(1, 3, 4)}
#568 Z1 ⊂ P6(1, 3, 4, 52, 6, 7) codimension 3 8 nodes on D.

Construct the matrix M in Tom1 format as follows

M =


x2 x3 −x5

1 + y4 −x5
2 − x1y4 + y2

y3 y2 y1

−x1y2 − y1 −x2y3 − x2y4

−x3
1y2 + x3y3 + x3y4 − x2y2

 . (3.17)

Thus, the nine unprojection equations de�ning X are

x5
1y3 + x1x2y2 − y3y4 + x3y2 + x2y1 = 0

x2
2y3 + 1

2x
2
2y4 + 1

2x1y3y4 − 1
2y3y2 + 1

2x3y1 = 0

x5
1y1 − x3

1x2y2 + x2x3y3 + x2x3y4 − 2x2
2y2 − x1y4y2 + y2

2 − y4y1 = 0

−x6
1x

2
2 − x5

1x2x3 − x3
1x

3
2 − 2x4

2 + x1x2x
2
3 + x3

3 + x2x3y4 + x2
2y2 + y3s = 0

x8
1x3 − 2x6

1x
2
2 − x7

1y4 + x6
1y2 − 2x3

1x
3
2 − x4

1x2y4 + x5
1y1

−x3
1x3y4 − 4x4

2 + x1x2x
2
3 − 2x1x

2
2y4 + x3

3 + x2x3y3 + x2x3y4 + 2x2
2y2 − y4y1 − y4s = 0

x5
1x2y4 + x3

1x3y2 − 2x1x
2
2y2 − x2

1y4y2 − x2
3y3 − x2

3y4 − x2y
2
4 + x1y

2
2 − 2x2

2y1 − x1y4y1 + y2y1 = 0

x10
1 x2 − x5

1x
2
3 − x5

1x2y4 − x6
1y1 + x4

1x2y2 + x3
1x3y2 + x3

2x3

−x1x2x3y3 − x2
3y3 − x2x3y2 − 2x2

2y1 + y2y1 + y2s = 0

x3
1y3y2 − x3y

2
3 − x3y3y4 − x2y4y2 + x1y2y1 + y2

1 = 0

−x8
1x

2
2 − 2x5

1x
3
2 − x7

1y1 + 2x5
1x2y2 + x3

1x
2
2y4 + x4

1x3y2 + x1x
3
2x3 − x2

1x2x3y3 + x2
2x

2
3

−x1x
2
3y3 + 2x3

2y4 − x1x2x3y2 − 2x1x
2
2y1 − x2

3y2 − x2y4y2 + x1y2y1 − y1s = 0

(3.18)

The rank 2 toric variety F1 has weights t s x1 x2 x3 y1 y2 y3 y4

0 2 1 3 4 7 6 5 5

1 1 0 0 0 −1 −1 −1 −1

 . (3.19)
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The Kawamata blow-up of the Tom centre Ps is the map Φ

Φ: F1 −→ P7(15, 23)

(t, s, x1, x2, x3, y1, y2, y3, y4) 7−→ (x1t
1
7 , x2t

3
7 , x3t

4
7 , y4t

12
7 , y3t

12
7 , y2t

13
7 , y1t

14
7 , s)

, (3.20)

which is equivalent to

Φ: F1 −→ P7(15, 23)

(t, s, x1, x2, x3, y1, y2, y3, y4) 7−→ (x1t, x2t
3, x3t

4, y4t
6, y3t

6, y2t
7, y1t

8, st6)
. (3.21)

The equations of Y1 are

x5
1y3 + x1x2y2 − ty3y4 + x3y2 + x2y1 = 0

x2
2y3 + 1

2x
2
2y4 + 1

2 tx1y3y4 − 1
2 ty3y2 + 1

2x3y1 = 0

x5
1y1 − x3

1x2y2 + x2x3y3 + x2x3y4 − 2x2
2y2 − tx1y4y2 + ty2

2 − ty4y1 = 0

−x6
1x

2
2 − x5

1x2x3 − x3
1x

3
2 − 2x4

2 + x1x2x
2
3 + x3

3 + tx2x3y4 + tx2
2y2 + y3s = 0

x8
1x3 − 2x6

1x
2
2 − tx7

1y4 + tx6
1y2 − 2x3

1x
3
2 − tx4

1x2y4 + tx5
1y1 − tx3

1x3y4

−4x4
2 + x1x2x

2
3 − 2tx1x

2
2y4 + x3

3 + tx2x3y3 + tx2x3y4 + 2tx2
2y2 − t2y4y1 − y4s = 0

x5
1x2y4 + x3

1x3y2 − 2x1x
2
2y2 − tx2

1y4y2 − x2
3y3 − x2

3y4 − tx2y
2
4 + tx1y

2
2 − 2x2

2y1 − tx1y4y1 + ty2y1 = 0

x10
1 x2 − x5

1x
2
3 − tx5

1x2y4 − tx6
1y1 + tx4

1x2y2 + tx3
1x3y2 + x3

2x3 − tx1x2x3y3

−tx2
3y3 − tx2x3y2 − 2tx2

2y1 + t2y2y1 + y2s = 0

x3
1y3y2 − x3y

2
3 − x3y3y4 − x2y4y2 + x1y2y1 + y2

1 = 0

−x8
1x

2
2 − 2x5

1x
3
2 − tx7

1y1 + 2tx5
1x2y2 + tx3

1x
2
2y4 + tx4

1x3y2 + x1x
3
2x3 − tx2

1x2x3y3 + x2
2x

2
3

−tx1x
2
3y3 + 2tx3

2y4 − x1x2x3y2 − 2tx1x
2
2y1 − tx2

3y2 − t2x2y4y2 + tx1y2y1 − y1s = 0

(3.22)

From Theorem 2.3.2 we have that Ψ1 is given by 7 simultaneous �ops based at

the 7 nodes of Z1.

The restriction of the map Ψ2 to Y2 is an isomorphism, by Theorem 2.3.9. The

map Ψ3 is instead an hypersurface �ip, having weights (1, 3, 1,−1,−1; 5). Here a hyper-

surface (a curve) of degree 5 in P2
x1,x2,y1 with coe�cients in the variables y3 and y4 is

�ipped to P1
y3,y4 ; it has degree 5 because it contains the monomial x2

2y3 coming from Pf3.

The �nal map Φ′ is a del Pezzo �bration over P1
y3,y4 (Theorem 2.3.22).

The scroll F4 localised at P1
y3,y4 is

 t s x1 x2 x3 y1 y2 y3 y4

5 7 1 3 4 2 1 0 0

1 1 0 0 0 −1 −1 −1 −1

 . (3.23)
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Remark 3.1.2. Note that x3 appears only in the entries m13 and m45 of M . Moreover,

by Proposition 2.2.10 we have that t does not appear in the entries m12,m13, and mij of

α∗1(M) for i, j > 1.

As a consequence, Pf1 eliminates x3, and Pf5 eliminates t over the function �eld

k(y), for y := y3
y4
. These two variables are both eliminated globally. In addition, s is also

eliminated globally thanks to the unprojection equations.

Therefore, the general �bre of Φ′ sits inside the P3(1, 3, 2, 1) having coordinates

respectively x1, x2, y1, y2. In particular, the eliminated variables t and x3 have weight 5

and 4 respectively in the general �bre of Φ′.

In this weighted projective space, the surviving pfa�an equations Pf2, Pf3, and

Pf4 have degree 8, 6, and 8. Since, from Theorem 2.3.22, the �bre of Φ′ intersected with

Y4 is a smooth surface S, then S is de�ned by the degree 6 Pf3: so S = V6 ⊂ P3(1, 3, 2, 1).

Therefore, it is a del Pezzo surface of degree 1 (cf [Isk77]).

3.1.4 Example for (vi): #16227, Tom2

Let X be the Tom type Fano 3-fold associated to the Hilbert series #16227 and p ∈ X
be the Tom centre 1

5(1, 2, 3).

The basket of singularities of X shown in the [BK+15] is BX = {1
5(1, 2, 3)}. The

ambient space of X is P7(14, 22, 3, 5), with coordinates x1, y4, y3, y2, y1, x2, x3, s respec-

tively. The divisor D is D ∼= Px1,x2,x3(1, 2, 3), and the matrix M is in Tom2 format, with

weights 
1 1 1 2

2 2 3

2 3

3

 . (3.24)

There are 4 nodes on D. We focus on the following varieties.

#16227 X ⊂ P7(14, 22, 3, 5) codimension 4 {1
5(1, 2, 3)}

#16226 Z1 ⊂ P6(14, 22, 3) codimension 3 4 nodes on D

The matrix M in Tom2 format is

M =


x1 y2 y3 y1

yx2 y2
3 + x2 x3

y1 −x2
1y3 − y3

4 − x2y4

−x2
1y2 − y3

2 + y3
3 + y3

4

 . (3.25)

After performing the unprojection at D ∼= P2(1, 2, 3), we blow up X at the Type
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I centre Ps ∈ X of type 1
5(1, 2, 3). The equations for Y1 are therefore

t2y2y
2
3 − x1y1 + x2y2 − x2y3 = 0

x3
1y3 + t2x1y

3
4 + x1x2y4 − x2y1 + x3y2 = 0

x2
1y

2
2 + t2y4

2 − x2
1y

2
3 − t2y2y

3
4 − t2y3y

3
4 − x1y1y3 + x2y2y3 − x2y

2
3 − x2y3y4 − y2

1 = 0

x3
1y2 + t2x1y

3
2 − t2x1y

3
3 − t2x1y

3
4 − t2y1y

2
3 − x2y1 + x3y3 = 0

t2x2
1y

3
3 + t4y2

3y
3
4 − x2

1x2y2 − t2x2y
3
2 + x2

1x2y3 + t2x2y
3
3 + t2x2y

2
3y4 + t22x2y

3
4 + x2

2y4 + x3y1 = 0

−tx4
1y

2
4 + t3x2

1y
2
3y

2
4 + tx2

1x2y
2
3 + t3x1y1y3y

2
4 + tx1x2y1y3

−2tx2
2y

2
4 − tx1x3y

2
4 − x3

2 − x1x2x3 − y2s = 0

−tx4
1y

2
4 − t3x2

1y
2
2y

2
4 − x4

1x2 − tx2
1x2y

2
2 + 2t3x2y

2
3y

2
4 + tx2

2y
2
3

+2tx2
2y

2
4 − tx1x3y

2
4 + x3

2 + y3s = 0

−x6
1 − x4

1y
2
2 + x2

1y
4
3 + y3

3y
3
4 + 2x2

1x2y
2
3 + x2y

4
3 + x2y

3
3y4 + x2y3y

3
4

−x2
2y

2
2 + x2

2y
2
3 − x1x3y

2
3 + x2

2y3y4 + x2
3 − y4s = 0

−x3
1y2y3y

2
4 − x1y

3
2y3y

2
4 + x3

1y
2
3y

2
4 + x1y3y

5
4 − x3

1x2y2y3 − x1x2y
3
2y3 + 2x3

1x2y
2
4

+x1x2y
2
2y

2
4 − x1x2y

2
3y

2
4 + x1x2y3y

3
4 + x3

1x
2
2 + x1x

2
2y

2
2 − x1x

2
2y

2
3 + 2x2x3y

2
4 + x2

2x3 + y1s = 0

in the rank 2 toric variety F1 having weights t s x1 x2 x3 y1 y2 y3 y4

0 5 1 2 3 2 1 1 1

1 1 0 0 0 −1 −1 −1 −1

 .

The map ψ1 is formed of four simultaneous �ops, whereas the map ψ2 is an isomorphism

on Y2, as in Theorem 2.3.9.

At the level of toric varieties, the map ψ3 is a �bre bundle ψ3 : F3 → P2(1, 1, 1)y2,y3,y4 .

We are interested in studying the �bres of such bundle.

We see that, locally at general points in P2(1, 1, 1)y2,y3,y4 , it is possible to globally

eliminate the following variables: s from the unprojection equations, x2 from Pf5, x3

from Pf3.

Over the general point in P2(1, 1, 1)y2,y3,y4 there is a conic in the remaining vari-

ables t, x1, y1 given by Pf2. This is a quadratic form de�ned by the 3 × 3 matrix A in

y2, y3, y4 y4
2 − y2y

3
4 − y3y

3
4 + y2

2y
3
3 − y2y

4
3 − y2y

3
3y4 0 0

0 y2
2 − y2

3 −1
2(y3 + y2y3 + y2

3 + y3y4)

0 −1
2(y3 + y2y3 + y2

3 + y3y4) −1
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and the explicit quadratic form is given by

(
t x1 y1

)
·A ·

 t

x1

y1

 = 0 .

The conic bundle we obtain sits inside the P2-bundle over P2(1, 1, 1)y2,y3,y4 t x1 y1 y2 y3 y4

1 1 1 0 0 0

−2 −1 0 1 1 1

 .

We want to compute the discriminant ∆ of this conic bundle. The �bre at a general

point of P2(1, 1, 1)y2,y3,y4 contributes 6 to the discriminant. This is because the degree of

the determinant of A is 6. Therefore, ∆ ≥ 6.

The behaviour of the special �bres of ψ3 determines the exact discriminant. Sub-

divide the base of the conic bundle in two a�ne patches: {y2 = 0} and {y2 6= 0}. At

{y2 6= 0} the contribution to the discriminant is 6, as we explained above. At {y2 = 0} in-
stead, the �bre is singular, therefore this contributes by 1 to the discriminant. Therefore,

∆ = 7.

3.1.5 Example for (i): #511, Tom4. The basket of X
′

Consider the Tom type Fano 3-fold X associated to the Hilbert series #511 and p ∈ X
is the Tom centre 1

14(1, 3, 11).

The basket of singularities ofX shown in the [BK+15] is BX = {1
6(1, 1, 5), 1

14(1, 3, 11)}.
The ambient space of X is P7(1, 3, 5, 6, 7, 8, 11, 14), with coordinates x1, x2, y4, y3, y2, y1,

x3, s respectively. The divisor D is D ∼= Px1,x2,x3(1, 3, 11), and the matrix M is in Tom4

format, with weights 
5 6 7 8

7 8 9

9 10

11

 .

There are 7 nodes on D. We focus on the following varieties.

#511 X ⊂ P7(1, 3, 5, 6, 7, 8, 11, 14) codimension 4 {1
6(1, 1, 5), 1

14(1, 3, 11)}
#510 Z1 ⊂ P6(1, 3, 5, 6, 7, 8, 11) codimension 3 7 nodes on D

The �rst 7 �ops of ψ1 are followed by the hypersurface �ip with weights (1, 3, 11,−2,−3; 9)

of ψ2. Then, ψ3 is the �ip (1, 3,−1,−2), and Φ′ : Y4 → X ′ is a divisorial contraction
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to a point in X ′. In a similar fashion to the example for case (i) in Section 3.1.1, the

ambient space of X ′ is P′ = P4(12, 2, 32). Therefore, X ′ = X9 ⊂ P′ = P4(12, 2, 32) is the

Fano hypersurface corresponding to the Graded Ring Database ID #5257. The basket

of #5257 is {1
2(1, 1, 1), 3× 1

3(1, 1, 2)}.
Let us now track how the basket of X changes along the link. The blow-up Φ gets

rid of the 1
14 singularity, and produces two new singularities, of index 3 and 11. Hence,

the basket of Y1 is BY1 = {1
3(1, 1, 2), 1

6(1, 1, 5), 1
11(1, 3, 8)}. The basket of Y2 is identical

to the one of Y1, because the �ops do not modify the basket.

The coordinates of the (1, 3, 11,−2,−3; 9) hypersurface �ip are x1, x2, x3, y3, y4

respectively, and there is an equation f9 = 0 of degree 9 relating them to one another. A

closer look to such equation reveals the behaviour of the singularities at this step. The

polynomial f9 we are after is Pf2(M), which surely contains monomials such as x3y3 and

x3
2. In particular, the equation f9 = 0 is of the form x3y3 = x3

2 + x9
1.

The presence of the x3
2 monomial implies that the 1

3(1, 1, 2) at the point Px2 of

the locus contracted by α2 is not being contracted in the variety, because Px2 does not

satisfy the equation f9 = 0. Moreover, a qG-deformation of the 1
3(1, 1, 2) singularity

at the point Py4 shows that there are three 1
3(1, 1, 2) singularities instead of one, again

because of the x3
2 monomial in f9.

By qG-deformation we mean a �at 1-parameter deformation X → ∆ such that

the total space X is Q-Gorenstein.
In conclusion, while the 1

3(1, 1, 2) singularity at Px2 remains untouched in the ψ2

�ip, the 1
11(1, 3, 8) singularity at Px3 is traded for a 1

2(1, 1, 1) singularity and 3× 1
3(1, 1, 2)

singularities. Therefore, the basket of Y3 is BY3 = {1
2(1, 1, 1), (1+3)× 1

3(1, 1, 2), 1
6(1, 1, 5)}.

The �ip given by ψ3 is a toric �ip (1, 3,−1,−2), so the singularities indicated in

the right-hand side of the �ip are the actual contracted singularities, and same for the

left-hand side. Hence, BY4 = {2× 1
2(1, 1, 1), 3× 1

3(1, 1, 2), 1
6(1, 1, 5)}.

Finally, Φ′ contracts the divisor E′ = P3(6, 1, 2, 1) to a point in X ′ ⊂ P4(12, 2, 32).

Therefore, the basket of X ′ is BX′ = {1
2(1, 1, 1), 3× 1

3(1, 1, 2)}. This corresponds to the

basket of singularities of #5257.

3.2 A Jerry example

We give here one detailed example of a Jerry construction. For more on this, we refer to

the following Section 3.3.

In the same fashion as in the previous examples, consider the two Fanos

#10985 X ⊂ P7(13, 2, 3, 4, 5, 6) codimension 4 1
2(1, 1, 1), 1

6(1, 1, 5)

#10986 Z1 ⊂ P6(13, 3, 4, 5, 6) codimension 3 26 nodes
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where, as before, X is obtained by unprojecting Z1 from a divisor D ∼= Px1,x2,x3(1, 1, 1).

Call the variables of wP7 as x1, x2, x3, y, z, u, v, and the ideal ID = 〈y, z, u, v〉.
This time Z1 is de�ned by the pfa�ans of a matrix M in Jerry45 of weights

1 2 3 4

3 4 5

5 6

7

 .

The explicit matrix is

M =


x1 −x3

3 y z

−x3
2 + y x3y + z u

x2
3y + u v

x4
3y + x3

1z − x2
2u− x3v

 (3.26)

whose pivot entry is m45 and has degree 7. Therefore X is given by the �ve pfa�an

equations of Z1 and four unprojection equations, that is

tx1z + sy + x5
1 − x1x

3
2x3 + x1x

2
2x

2
3 − x5

3 = 0

−ty2 + x1x
2
3y − x1u+ x3

2y − x3
3y − x2

3z = 0

tx1x
2
2y + 2tx1x3z − tx1u− tx3

3y − sz − x2
1x

2
2x

2
3 + x2

1x
4
3 − x1x

5
2 + x1x

2
2x

3
3 + x1x

5
3 + x3

2x
3
3 − x6

3 = 0

−tyz − x1v + x3
2z − x2

3u = 0

−tx4
1y + tx1x

2
3z + tx1v + tx3

2x3y + tx3
3z + su+ x5

1x
2
3 + x4

1x
3
2 − x4

1x
3
3 − x1x

3
2x

3
3 + x1x

6
3 − x6

2x3 + x3
2x

4
3 = 0

tx3yz − tyu+ tz2 + x4
1z − x1x

2
2u+ x1x

4
3y − x1x3v = 0

t2yu− tx3
1x

2
3y + tx1x

2
2u− tx1x

4
3y + 2tx1x3v + tx5

2y − tx3
2u+ tx2

2x
2
3z + tx4

3z + tx3
3u+ tx2

3v − sv + x4
1x

4
3

+x3
1x

3
2x

2
3 − x3

1x
5
3 − x1x

5
2x

2
3 + x1x

3
2x

4
3 − x8

2 + x5
2x

3
3 + x8

3 = 0

tx2
3yz + tyv − tzu+ x3

1x
2
3z − x2

2x
2
3u+ x6

3y − x3
3v = 0

tx2
2yu+ tx2

3z
2 + tx3yv + tx3zu+ tzv − tu2 + x4

1x
2
3z + x4

1v − x3
1x

3
3z + x3

1x
2
3u− x1x

2
2x

2
3u+ x1x

4
3u

−x1x
3
3v − x5

2u− x3
2x3v + x2

2x
3
3u+ x6

3z + x4
3v = 0

(3.27)
Note that the condition 2.4.1 is not ful�lled in this case. Thus, by Theorem 2.4.1 we

have that the blowup of X sits inside a toric variety of rank two having weights as in

2.5. Analogously to the Tom examples above, perform the variation of GIT quotient on

F1 and the localisation process.

Again, Theorem 2.3.2 ensures that Ψ1 is 26 �ops.

The map Ψ1 having base at Pv ∈ Z2 is a (6, 1, 1,−1) divisorial contraction,

contracting a weighted Pt,x2,x3(6, 1, 1) to Pv. Localising �rst at Pu and then at Pz show
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that both Ψ2 and Ψ3 do not a�ect the varieties Y2 and Y3 respectively; this is because

both u and z appear as pure squares in the equations, i.e. they do not belong to Z2 and

Z3 respectively.

The map Φ′ is

Φ′ : F4 −→ P7(14, 2, 3) =: P′

(t, s, x1, x2, x3, v, u, z, y) 7−→ (x1y, x2y, x3y, z, uy, vy
2)

(3.28)

Therefore the equation for X ′ are
x3

2z − x2
3u− x1v − z(x3

2 + x1x
2
3 − x3

3 − x2
3z − x1u) = 0

x1x
4
3 + x4

1z − x1x
2
2u− x1x3v + (x3z + z2 − u)(x3

2 + x1x
2
3 − x3

3 − x2
3z − x1u) = 0

x6
3 + x3

1x
2
3z − x2

2x
2
3u− x3

3v + (x2
3z − zu+ v)(x3

2 + x1x
2
3 − x3

3 − x2
3z − x1u) = 0

(3.29)

Note that they have degrees 4,5,6 in P′.
Moreover, the blow up Y1 of X at 1

2(1, 1, 1) has only a singularity of type 1
6(1, 1, 5);

the same holds for Y2. Therefore Φ′ contracts 1
6(1, 1, 5) to a smooth point.

Hence, this proves that the endpoint of the link is X ′ #16204 sitting inside

P5(14, 2, 3).

3.3 Comparison with Takagi

In [Tak02], the author classi�es all the possible extremal contractions Φ′ appearing in

sequences of �ops and �ips on Q-factorial terminal Fano 3-folds Y of Picard rank ρY = 2.

We refer to the set-up in �3 of [Tak02]: what Takagi is explaining is a Sarkisov link starting

from certain Q-Fano 3-folds X with Picard rank 1 enjoying some additional properties

(cf. "Main Assumption 0.1" of [Tak02]). In particular, these varieties are asked to have

a singularity of type 1
2(1, 1, 1), that is blown up to initiate the sequence of birational

transformations.

Six of the varieties falling in Takagi's assumption are in codimension 4 and have

a Type I centre. In particular, three of them are of Tom-type, and follow the description

of Theorem 2.1.1. They are: #24097 Tom1 (number 4.4 in Takagi's paper) falling in case

d1 = d2 = d3 < d4, #20652 Tom1 (number 5.4) in case d1 = d2 < d3 = d4, and #16645

Tom1 (number 2.2) in case d1 < d2 = d3 = d4.

We examine them here with our method, and show that the outcomes predicted

by Theorem 2.1.1 match his results.

The remaining three Hilbert series indicated by Takagi are of Jerry type. We

study them separately and compare them with Takagi's results.
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#16645, Tom1 Consider X ⊂ P(14, 24) with coordinates x1, x2, x3, y4, y1, y2, y3, s ob-

tained unprojecting Z1 #16338 in Tom1 format at D ∼= Px1,x2,x3(1, 1, 1). The basket of

X is BX = {4× 1
2(1, 1, 1)}. The matrix M de�ning Z1 is

M =


x1 x2 y2 + y3 y2 + x2

3 + x1x2

y4 y1 y2 + y3

y3 y1 + y3

x1y1 + x2y3 + x3y2 + y3
4

 .

Start the Sarkisov link by blowing up one 1
2 singularity; after 8 simultaneous �ops we have

a divisorial contraction Φ′ : F2 → G2 = P7(17, 3) with exceptional divisor E′ := {y4 = 0}.
On the other hand, wP′ = P6 is a smooth projective space. The intersection E′ ∩ Y2 is

a conic Γ := {y2
1 + y1y3 + y2y3 = 0}. In particular, Φ′ contracts all the cyclic quotient

singularities in the basket of Y2. Therefore, Y2 is contracted to a smooth X ′ ⊂ P6 #26988

in codimension 3.

This matches with what summarised by Takagi in Table 2 of [Tak02], No. 2.2

because the variety A8 pinpointed by Takagi is exactly #26988.

#20652, Tom1 As showed in Example 3.1.2, the end of the link is a del Pezzo �bration

of degree 5. This complies with Table 5 of [Tak02], No. 5.4.

#24097, Tom1 Consider the pair (X, p) where X ⊂ P7(16, 22) is the Tom type Fano

3-fold associated to the Hilbert series #24097, and p ∈ X is the Tom centre 1
2(1, 1, 1).

The coordinates of P7(16, 22) are x1, x2, x3, y2, y3, y4, y1, s respectively. The un-

projection of the divisor D ∼= Px1,x2,x3(1, 1, 1) ⊂ Z1 in Tom1 format produces X. Here

Z1 is #24077, and is de�ned by the �ve pfa�ans of the matrix M

M =


x1 x2 x3 −y2

2 − x3y3

y2 y3 y1

y4 x1y3 − y2
4

−x2y4 − x3y4 + y1

 .

There are 8 nodes on D.

The blow-up of P7(16, 22) at Ps is the rank 2 toric variety F1 having weights t s x1 x2 x3 y1 y2 y3 y4

0 2 1 1 1 2 1 1 1

1 1 0 0 0 −1 −1 −1 −1

 . (3.30)

After the 8 simultaneous �ops given by Ψ1, the map Ψ2 is a Francia �ip (2, 1,−1,−1).
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The map Φ′ is a weighted P5-bundle over the projective space P2
y2,y3,y4(1, 1, 1). We

show that Y3 is actually a conic bundle over that base. Note that Y3 is smooth: therefore,

referring to Section 3.1.4, we just need to compute the degree of the determinant of the

matrix A in order to �nd the discriminant ∆.

We record here the �ve equations of Y3 that originated from the pfa�ans equations

of Z1. They are

x1y
2
3 + x2y2y4 + x2y3y4 − x1y

2
4 − ty3y

2
4 − y2y1 − y4y1 = 0

x1x3y3 + x2
2y4 + x2x3y4 + t2y2

2y4 + tx3y3y4 − tx3y
2
4 − x2y1 = 0

t2y2
2y3 + tx3y

2
3 + x1x2y4 + x1x3y4 − x1y1 + x3y1 = 0

t2y3
2 − x2

1y3 + tx2y
2
3 − tx1y3y4 + tx1y

2
4 + x2y1 = 0

x3y2 − x2y3 + x1y4 = 0

At a general point in P2
y2,y3,y4(1, 1, 1), it is possible to globally eliminate the vari-

ables s thanks to the unprojection equations.

Now consider the line {y4 = 0} in the base P2
y2,y3,y4(1, 1, 1), and let us look at its

two a�ne patches {y2 6= 0} and {y3 6= 0}. We want to study the conic equations above

each of these patches: in fact, they both contribute to the discriminant ∆.

Over the patch {y2 6= 0}, Pf5 and Pf1 globally eliminate the variables x3 and y1

respectively: hence they are x3 = x2y3 and y1 = x1y
2
3. Replace their expressions in the

remaining three pfa�an equations, obtaining
t2y3 + tx2y

3
3 − x2

1y
2
3 + x2x1y

3
3 = 0

x1x2y
2
3 − x2x1y

2
3 = 0

t2 − x2
1y3 + tx2y

2
3 + x2x1y

2
3 = 0

where Pf2 is identically zero, and Pf3 (above) is a multiple of Pf4 by a y3 factor. There-

fore, the conic that Pf4 describes is de�ned by the matrix

Ay2 =

 1 0 1
2y

2
3

0 −y3
1
2y

2
3

1
2y

2
3

1
2y

2
3 0


as (

t x1 x2

)
·Ay2 ·

 t

x1

x2

 = 0 .

The determinant det(Ay2) = −1
4y

4
3(1 + y3).
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On the other hand, over the patch {y3 6= 0}, Pf1 and Pf5 globally eliminate the

variables x1 and x2 respectively: hence they are x1 = y2y1 and x2 = x3y2. Replace their

expressions in the remaining three pfa�an equations: in a similar fashion to the other

patch, the equation of the conic is t2y2
2 + tx3−y2y

2
1 +x3y1 = 0 given by Pf3. It is de�ned

by the matrix Ay3

Ay3 =

 y2
2

1
2 0

1
2 0 1

2

0 1
2 −y2


and by the equation (

t x3 y1

)
·Ay3 ·

 t

x3

y1

 = 0 .

The determinant det(Ay3) = −1
4y2(1 + y2).

Even though the contribution of det(Ay2) and det(Ay3) to the discriminant might

look like 5 + 2 = 7, the solutions to det(Ay2) = 0 and det(Ay3) = 0 overlap at the point

(−1,−1, 0) which is counted twice. Therefore, ∆ = 5 + 7− 1 = 6.

The map φ′ is a conic bundle over the projective space P2
y2,y3,y4(1, 1, 1) discrimi-

nant ∆ = 6. This agrees with Table 4, No. 4.4 of [Tak02].

#16645, Jerry45 Let (X, p) be the pair in which X ⊂ P7(14, 24) is the Jerry type Fano

3-fold modelled on the Hilbert series #16645, and p ∈ X is the Jerry centre 1
2(1, 1, 1).

Name the coordinates of P7(14, 24) x1, x2, x3, y4, y1, y2, y3, s respectively. The Fano 3-fold

X is obtained via unprojection of the divisor D ∼= P2(1, 1, 1)x1,x2,x3 ⊂ Z1 in Jerry45. Here

Z1 is #16338, and is de�ned by the �ve pfa�ans of the matrix M

M =


x1 x2 y1 x3y4 − y3

x3 y2 x3y4 + y1 + y2

y3 y2 + y3

−y3
4 + x1y1 + x3y2 − x2y3


and there are 9 nodes on D.

The blow-up of X at the centre p = Ps is contained in the rank 2 toric variety F1 t s x1 x2 x3 y1 y2 y3 y4

0 2 1 1 1 2 2 2 1

1 1 0 0 0 −1 −1 −1 −1

 .

In this case, the condition 2.4.1 is not satis�ed, so F1 has the same shape that it has in

the Tom case. After the 9 simultaneous �ops given by ψ1, the Sarkisov link presents a

63



divisorial contraction Φ′ to a point in the smooth projective space P5. In particular, Y2 is

contracted to the codimension 2 Fano 3-fold X ′ = X2,3 ⊂ P5 with Hilbert series #24076.

Following Takagi's notation at the beginning of [Tak02], we have that X ′ is the smooth

Fano 3-fold of type A10.

This shows that X is No. 3.3 of Table 3, in [Tak02].

#20652, Jerry23 Let X ⊂ P7(15, 23) be the Jerry type Fano 3-fold associated to

the Hilbert series #20652, and p ∈ X be the centre 1
2(1, 1, 1). The coordinates of

P7(15, 23) are x1, x2, x3, y3, y4, y1, y2, s respectively. The unprojection of the divisor

D ∼= Px1,x2,x3(1, 1, 1) ⊂ Z1 in Jerry2,3 format produces X. Here Z1 is #20543, and is

de�ned by the �ve pfa�ans of the matrix M

M =


y3 y4 x1 x2

y2 y1 x1y4

y2
3 − x1y4 − y1 y1 + y2

−x2
1 − x2

2 + x2
3 + y2

4

 .

There are 8 nodes on D.

Note that the condition 2.4.1 is satis�ed: without loss of generality, we assumed

that the variable y2 occupies the pivot entry m23 of M . Therefore, by Theorem 2.4.1, we

have that the blow-up of P7(15, 23) at Ps is the rank 2 toric variety F1 having weights t s x1 x2 x3 y1 y2 y3 y4

0 2 1 1 1 2 2 1 1

1 1 0 0 0 −1 −2 −1 −1

 .

The �rst map Ψ1 of the birational link for X is given by 8 simultaneous �ops. Since the

hypotheses of Theorem 2.3.9 hold, then ψ2 is an isomorphism of the variety Y2.

The map Φ′ is a conic bundle over the projective space P2
y2,y3,y4(2, 1, 1). We are

interested in calculating its discriminant ∆.

Analogously to previous examples, we consider the line {y3 = 0} in the base space

P2
y2,y3,y4(2, 1, 1) with coordinates y2, y4, and we look at its two a�ne patches {y2 6= 0},
{y4 6= 0}. On these a�ne patches we study the behaviour of the equations of Y2

∼= Y3.

We report here only the �ve equations originated from the pfa�ans equations of X. They
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are 

−tx1y
2
3y4 + x2

1y
2
4 + x1y4y1 − x2

1y2 − x2
2y2 + x2

3y2 + t2y2
4y2 − y2

1 − ty1y2 = 0

tx2y
2
3 − x2

1y4 − x1x2y4 − x2
2y4 + x2

3y4 + ty3
4 − x1y1 − x2y1 − tx1y2 = 0

−x2
1y3 − x2

2y3 + x2
3y3 + x2

1y4 + t2y3y
2
4 + x2y1 = 0

x1y
2
4 + y3y1 + x2y2 + ty3y2 = 0

ty3
3 − x1y3y4 − y3y1 − y4y1 + x1y2 = 0

.

We start looking at the a�ne patch {y2 6= 0} of {y3 = 0}. After the global elimination

of the variables x1 = y1y4 and x2 = −x1y
2
4 = −y1y

3
4 (due to Pf5 and Pf4 respectively),

and after the consequent substitution, the above equations become
y2

1y
4
4 + y2

1y
2
4 − y2

1y
2
4 − y2

1y
6
4 + x2

3 + t2y2
4 − y2

1 − ty1 = 0

y2
1y

3
4 + y2

1y
5
4 + y2

1y
7
4 + x2

3y4 + ty3
4 − y2

1y4 + y2
1y

3
4 − ty1y4 = 0

y2
1y

3
4 − y2

1y
3
4 = 0

Note that, after the substitution, Pf3 is identically zero, and that Pf2 = y4 Pf1. There-

fore, the only surviving equation is Pf1. It is a conic in the variables t, y1, x3 de�ned by

the matrix

A =

 y2
4 0 −1

2

0 1 0

−1
2 0 −1 + y2

4 − y6
4

 .

Its determinant has degree 8, therefore the discriminant ∆ ≥ 8.

A similar calculation on the other patch {y4 6= 0} shows that the �bre is not a

conic. Therefore, the patch {y4 6= 0} does not contribute to ∆.

This agrees with Table 4, No. 4.1 of [Tak02].

#24097, Jerry15 Let X ⊂ P7(16, 22) be the Jerry type Fano 3-fold relative to the

Hilbert series #24097, where p ∈ X is the centre 1
2(1, 1, 1). The coordinates of P7(16, 22)

are x1, x2, x3, y4, y3, y2, y1, s respectively. The unprojection of the divisorD ∼= Px1,x2,x3(1, 1, 1) ⊂
Z1 in Jerry1,5 format gives X. Here Z1 is #24077: it is de�ned by the �ve pfa�ans of

the matrix M

M =


y4 y3 y2 y1

x1 x2 x3y3 + x2y4

x3 y2
2 − x2y3 − y2

4

−x1y2 − 2y3y4

 .
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There are 7 nodes on D. The �ve pfa�an equations of Y1 are

−x2
1y2 − tx2y

2
2 + x2

2y3 + x2
3y3 + x2x3y4 − 2tx1y3y4 + tx2y

2
4 = 0

−ty3
2 − x1y2y3 + x2y2y3 − 2ty2

3y4 + ty2y
2
4 + x3y1 = 0

−x3y2y3 − x1y2y4 − x2y2y4 − 2ty3y
2
4 + x2y1 = 0

−x3y
2
3 + ty2

2y4 − 2x2y3y4 − ty3
4 + x1y1 = 0

x1y2 − x2y3 + x3y4 = 0

.

After 7 �ops given by ψ1, we have a divisorial contraction Φ′ : Y2 → P3(2, 1, 1, 1) of (2, 1)-

type, where the coordinates of P3(2, 1, 1, 1) are y1, y2, y3, y4 respectively. Recall that the

variable s can be eliminated from each �bre of Φ′. Therefore, we just need to study the

�ve pfa�an equations of Y1.

Looking at the syzygies relating the �ve maximal pfa�ans of M to one another,

we see that, for each point in the base of Φ′, Pf1 can be written in terms of the other four

pfa�ans. We are left with four pfa�an equations, that are linear in the variables of the

�bre t, x1, x2, x3. Call L the 4 × 4 matrix recording the coe�cients of Pf2, . . . ,Pf5: the

entries of L are in terms of the variables of the base only, i.e. y1, y2, y3, y4. In symbols,
Pf2

Pf3

Pf4

Pf5

 = L ·


t

x1

x2

x3

 .

Note also that the �rst syzygy relates such four linear pfa�ans all together: therefore

there are only three linearly independent pfa�ans. Therefore, the determinant of L

restricted on Y2 is identically zero.

The map Φ′ contracts its exceptional divisor E′ to a curve C ⊂ P3(2, 1, 1, 1). The

equations of C are given by the 3×3 minors of L. A simple computer algebra calculation

on Magma shows that the degree of C is 7, and that its genus is g(C) = 8.

This coincides with what Takagi concluded in [Tak02]. Therefore, #24097, Jerry15

is No. 1.1 of Table 1 in [Tak02].
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Chapter 4

Higher Picard rank Tom links

Looking at the table [BKR12b] we notice the presence, in 46 cases, of other deformation

families in Tom format; following the common terminology also used in [BKQ18], we call

these families second Tom. As shown in [BKQ18], these families contain quasi-smooth

members whose equations are modelled on those of the Segre embedding of P2 × P2 (cf

Section 5 in [BKQ18]): they are in the so-called P2×P2-format. More precisely, the nine

equations of X of second-Tom type can be retrieved from a 3× 3 matrix as its nine 2× 2

minors. The pfa�an matrix M in second Tom format is characterised by having a 0 in

one or two of its entries. This can happen for instance when the polynomial occupying

such an entry can be made 0 after row/column operations, or when the degree of that

entry cannot be achieved by any polynomial in the variables xi, yj in the ideal ID.

The most important feature of these Fano varieties X of second-Tom type is that

they have Picard rank ρX = 2: see Proposition 2.1 of [BKQ18]. Other than the examples

of Takagi [Tak02] and some computational cases, we know the Picard numbers of very

few of the codimension 4 Fano 3-folds.

In this chapter we focus on birational links run on codimension 4 Fano 3-folds of

second-Tom type. We will see that, even though we do not obtain Sarkisov links (because

the starting variety X is not a Mori �bre space), a birational link construction is still

licit, and can give interesting insights on the birational geometry of these higher Picard

rank Fano varieties. In particular, we can �nd links to identify a Mori �bre space in the

birational class of X, even though we do not know how to explicitly run the Minimal

Model Program on X itself.

4.1 Mori �bre spaces arising from second Tom

De�nition 4.1.1. From [BKR12a] we know that each codimension 3 Fano 3-fold Z

admitting a Type I unprojection has at least two deformation families, one Tom and one

Jerry. However, it could happen that it has one or two more Tom and Jerry families (one
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each at most). If this occurs, call second Tom the second Tom deformation family of Z,

characterised by having a smaller number of nodes.

Remark 4.1.1. The Fano 3-folds of second-Tom type are in P2 × P2 format (see the

ones denoted by "subfamily of Tom" in Table 1 of [BKQ18]). We stress the fact that in

this chapter we only consider the Fano 3-folds appearing in the table [BKR12b] that are

of second-Tom type, together with the Hilbert series #12960. The latter does not have a

second Tom, but its only Tom format is still in P2 × P2 format, and our method applies

to this as well.

We can summarise the result of this chapter with the following theorem.

Theorem 4.1.2. Every Fano 3-fold in codimension 4 in second-Tom format and the

unique Tom format of Fano #12960 present a birational link terminating with either

� two divisorial contractions (when d1 > d2 > d3 > d4 and when d1 > d2 = d3 > d4);

� a divisorial contraction followed by a del Pezzo �bration (when d1 = d2 > d3 = d4).

Proof. We omit the detailed proof of this theorem because it is similar to the one con-

tained in Chapter 2. We work out an in-depth example below.

The ones above are the only three con�gurations of the dj in which Fano 3-folds

of second-Tom type occur.

Theorem 4.1.2 exhibits a Mori �bre space in the birational class of each X of

second-Tom type. But in fact, more is true for #10985. The endpoints of its two links

are not birationally rigid, even though we do not know a Sarkisov link that connects

them.

We expect a similar behaviour for the other Fano 3-folds of second Tom type, as

expressed in the following conjecture. If X is of second-Tom type and it has two Type

I centres as in #10985, we expect it to be true. In addition, if X has only one Type I

centre and X ′ has codimension 2, it is possible to run another extraction from X ′ in a

similar fashion to [CM04]. Lastly, except for #4860 and #20652, if X has only one Type

I centre whose endpoint X ′ has codimension 1, X does also have a Type II centre. Even

though we do not know yet how to run this calculation from a Type II centre, we expect

it would still lead to a new Mori �bre space.

Conjecture 4.1.1. The birational-equivalence class of every Fano 3-fold in codimension

4 in second-Tom format contains at least two distinct Mori �bre spaces.

We give an explicit example of the above construction in the following Section.

In particular, we perform it from the two Type I centres of #10985. The endpoints X ′

and X ′′ of the two birational links are the hypersurface X5 ⊂ P4(14, 2). However, a more
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careful analysis shows that X ′ and X ′′ are not isomorphic, therefore the hypersurface

X5 ⊂ P4(14, 2) has pliability at least 2.

Remark 4.1.3. Even though the varieties X of second-Tom type are not Mori �bre

spaces, the birational links we obtain with this construction terminate with a Mori �bre

space.

4.2 Hypersurface with high pliability: Fano #10985

Look again at the Hilbert series #10985, but this time let us analyse the second Tom,

which is, in the notation of [BKR12b], a Tom2 •13,45 format. This means that the entries

m13 and m45 of M are 0.

The basket of singularities ofX is again {1
2(1, 1, 1), 1

6(1, 1, 5)}, but the deformation

family of Z1 is di�erent from Example 3.1.1: this time M is in Tom2 •13,45 format.

In short, we are looking at the following Fano varieties,

#10985 X ⊂ P7(13, 2, 3, 4, 5, 6) codimension 4 {1
2(1, 1, 1), 1

6(1, 1, 5)}
#10962 Z1 ⊂ P6(13, 3, 4, 5, 6) codimension 3 23 nodes

with the variables of wP7 being respectively x1, x2, x3, s, y4, y3, y2, y1 and the divisor

being D ∼= P2(1, 1, 1)x1,x2,x3 , on which Z1 has 23 nodes.

The weights of the matrix M are the following
1 2 3 4

3 4 5

5 6

7

 .

We constructed explicitly the matrix M , that is
x1 0 y4 y3

−x3
2 − x3

3 + y4 x4
1 − x4

3 + y3 x5
1 − x5

2 − y2

y2 y1

0

 . (4.1)
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Moreover, the equations of X are

x5
1 − x1x

4
3 + x1y3 + y4s = 0

x3
2y4 + x3

3y4 − y2
4 − x1y2 = 0

−x6
1 + x1x

5
2 + x1y2 − y3s = 0

x3
2y3 + x3

3y3 − y4y3 − x1y1 = 0

x4
1x

3
2 + x4

1x
3
3 − x3

2x
4
3 − x7

3 − x4
1y4 + x4

3y4 + x1y1 + y2s = 0

x5
1y4 + x2

2x
3
3y4 − x4

1y3 + x4
3y3 − x2

2y
2
4 − x1x

2
2y2 − y2

3 − y4y2 = 0

−x5
1x

3
2 + x8

2 − x5
1x

3
3 + x5

2x
3
3 + x5

1y4 − x5
2y4 + x3

2y2 + x3
3y2 − y4y2 − y1s = 0

y3y2 − y4y1 = 0

x5
1y2 − x5

2y2 − x4
1y1 + x4

3y1 − y2
2 − y3y1 = 0

(4.2)

According to Proposition 2.5, the blow up at Ps of wP7 is the scroll F1 given by t s x1 x2 x3 y1 y2 y3 y4

0 2 1 1 1 6 5 4 3

1 1 0 0 0 −1 −1 −1 −1

 . (4.3)

The Mori cone of F1 is identical to the one in Example 3.1.1.

The Kawamata blow-up of the Tom centre Ps is the map Φ

Φ: F1 −→ P7(13, 2, 3, 4, 5, 6)

(t, s, x1, x2, x3, y1, y2, y3, y4) 7−→ (x1t
1
2 , x2t

1
2 , x3t

1
2 , y4t

5
2 , y3t

6
2 , y2t

7
2 , y1t

8
2 , s)

, (4.4)

while the expression of Φ having integer exponents of t is

Φ: F1 −→ P7(13, 2, 3, 4, 5, 6)

(t, s, x1, x2, x3, y1, y2, y3, y4) 7−→ (x1t, x2t, x3t, y4t
4, y3t

5, y2t
6, y1t

7, st)
. (4.5)
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Therefore, the equations of Y1 are

x5
1 − x1x

4
3 + tx1y3 + y4s = 0

x3
2y4 + x3

3y4 − ty2
4 − x1y2 = 0

−x6
1 + x1x

5
2 + tx1y2 − y3s = 0

x3
2y3 + x3

3y3 − ty4y3 − x1y1 = 0

x4
1x

3
2 + x4

1x
3
3 − x3

2x
4
3 − x7

3 − tx4
1y4 + tx4

3y4 + tx1y1 + y2s = 0

x5
1y4 + x2

2x
3
3y4 − x4

1y3 + x4
3y3 − tx2

2y
2
4 − x1x

2
2y2 − ty2

3 − ty4y2 = 0

−x5
1x

3
2 + x8

2 − x5
1x

3
3 + x5

2x
3
3 + tx5

1y4 − tx5
2y4 + tx3

2y2 + tx3
3y2 − t2y4y2 − y1s = 0

y3y2 − y4y1 = 0

x5
1y2 − x5

2y2 − x4
1y1 + x4

3y1 − ty2
2 − ty3y1 = 0

(4.6)

Theorem 2.3.2 shows the �rst step of the link are 23 simultaneous �ops.

Crossing the wall corresponding to the variable y1, we localise at the point Py1 ∈
G2. Writing y1 as a local coordinate we have that F2 becomes t s x1 x2 x3 y1 y2 y3 y4

6 8 1 1 1 0 −1 −2 −3

1 1 0 0 0 −1 −1 −1 −1

 .

Note that in the equations 4.6 of Y2 there is no pure power of y1, so the hypotheses of

Theorem 2.3.9 are not satis�ed and the �ip is taking place. The variables that appear

linearly locally analytically at a neighbourhood of Py1 ⊂ Z2 are s, y4, and either x1 or x2;

in particular, s and y4 are globally eliminated. Therefore, Ψ2 restricts to a hypersurface

�ip ψ2 with weights (6, 1, 1,−1,−2; 4), where α2 contracts a hypersurface of degree 4 in

Pt,x2,x3(6, 1, 1) and coe�cients in Py2,y3(1, 2) to Py1 , and β2 extracts Py2,y3(1, 2) ⊂ Y3.

Analogously, we restrict the equations of Y3 locally analytically at a neighbour-

hood of the point Py2 ∈ G3. The weights of the rank 2 toric variety F3 become t s x1 x2 x3 y1 y2 y3 y4

5 7 1 1 1 1 0 −1 −2

1 1 0 0 0 −1 −1 −1 −1

 .

This time around, the variables that are locally eliminated are t, x1, and the ones

globally eliminated are s, y3. Therefore, the exceptional locus A3 restricted to Y3 is

Px2,x3,y1(1, 1, 1). On the other hand, the restriction of B3 to Y4 is the 1
2 quotient singu-

larity at Py4 . This shows that Y4
∼= Z3 via the map β3 (which is actually a morphism),

and that α3 is the blow-up of the singularity Py4 ∈ Y4 of type 1
2(1, 1, 1).
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Therefore, the Picard rank of Y3 drops by one in the birational transformation

determined by ψ3. This happens when there is still another ray left to cross in the mobile

cone of F3.

Performing again the elimination process at a neighbourhood of the point Py3 ∈ Y4

we have another divisorial contraction, the one we have usually called Φ′. The variables

eliminated are s, y2 (globally), and t (locally). Here, a surface S3 ⊂ Px1,x2,x3,y1(1, 1, 1, 2)

of degree 3 is contracted to the point Py4 ∈ X ′. In particular, the divisorial contraction

Φ′ is de�ned by the monomials in the linear system
∣∣∣O( 4

−1

)∣∣∣, that is,
Φ′ : F4 −→ P7(14, 2, 32, 5) =: G4

(t, s, x1, x2, x3, y1, y2, y3, y4) 7−→ (x1y4, x2y4, x3y4, y3, y2y4, y1y
2
4, ty

4
4, sy

6
4) . (4.7)

Call x′1, x
′
2, x
′
3, y
′
4, y
′
3, y
′
2, y
′
1, t
′, s′ the coordinates of G4. Looking at the equations 4.6 we

notice that it is possible to ignore the coordinates y′1, t
′, s′ because the terms sy4, ty

2
4,

and y1y4 appear in equations #1, #2, and #8 respectively (globally eliminated in this

order). Hence, X ′ ⊂ wP′ ⊂ G4 where wP′ = P4(14, 2).

The remaining equations after the elimination are (4.8). In order to �nd the

explicit equations of X ′, let us write them in terms of the coordinates of P4(14, 2) by

multiplying them by a suitable power of y4, which is t3 for equation #4, t4 for equation

#6, and t6 for equation #9. They become
x′32 y

′
3 + x′33 y

′
3 − t′y′3 − x′1y′1 = 0

x′51 + x′22 x
′3
3 − x′41 y′3 + x′43 y

′
3 − t′x′22 − x′1x′22 y′2 − t′y′23 − t′y′2 = 0

x′51 y
′
2 − x′52 y′2 − x′41 y′1 + x′43 y

′
1 − t′y′22 − t′y′3y′1 = 0

. (4.8)

On the other hand, equations #1, #2, #8 express the variables s, t, y1 in terms of the

others, becoming

y′1 = y′2y
′
3

t′ = x′32 + x′33 − x′1y′2 (4.9)

s′ = −x′51 + x′1x
′4
3 − t′x′1y′3 .
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Replacing the above identities (4.9) in (4.8) we have the three equations

x′32 y
′
3 + x′33 y

′
3 − (x′32 + x′33 − x′1y′2)y′3 − x′1y′2y′3 = 0

x′51 + x′22 x
′3
3 − x′41 y′3 + x′43 y

′
3 − (x′32 + x′33 − x′1y′2)x′22 − x′1x′22 y′2

−(x′32 + x′33 − x′1y′2)y′23 − (x′32 + x′33 − x′1y′2)y′2 = 0

x′51 y
′
2 − x′52 y′2 − x′41 y′2y′3 + x′43 y

′
2y
′
3 − (x′32 + x′33 − x′1y′2)y′22 − (x′32 + x′33 − x′1y′2)y′3y

′
2y
′
3 = 0 .

(4.10)

We see that the third equation in 4.10 is a multiple of the second one by a y′2 factor, and

the �rst equation is identically zero. Therefore it remains only the second equation:

x′51 − x′41 y′3 + x′43 y
′
3 − x′52 − (x′32 + x′33 − x′1y′2)(y′23 + y′2) = 0 . (4.11)

The one above is the equation of X ′, and it has degree 5 in the coordinates of wP′. Thus,
X ′5 ⊂ P4(14, 2). In addition, the basket of singularities of Y1 is BY1 = {1

6(1, 1, 5)}, which
remains unvaried for Y2. Then, the hypersurface �ip ψ2 replaces the 1

6 singularity with

one of type 1
2 . After that, ψ3 contracts a singular locus to a

1
2 singularity. Therefore, the

basket of Y4
∼= Z3 is BY4 = {2× 1

2(1, 1, 1)}. Lastly, Φ′ contracts a P(1, 1, 2) to a smooth

point in X ′; thus, BX′ = {1
2(1, 1, 1)}.

The Fano 3-fold in codimension 1 sitting inside P4(14, 2) de�ned by a degree 5

equation and having basket {1
2(1, 1, 1)} is #16203: X ′ is a special member associated to

that Hilbert series. Note that X ′ has a singularity at the point Py′3 like the ones described

in [CM04].

Remark 4.2.1. According to [CPR00], X ′ should birationally rigid. Nonetheless, since

X ′ has a singularity as in [CM04], actually it is birationally non-rigid.

For this calculation we could have also used the P2 × P2 description of X, whose

equations are given by the nine 2× 2 minors of a 3× 3 matrix N having weights 1 3 4

3 5 6

2 4 5

 , (4.12)

where the entry of degree 2 is occupied by the variable s only. The matrix N is therefore

N =

 x1 y4 y3

−x3
2 − x3

3 + y4 y2 y1

s x4
1 − x4

3 + y3 x5
1 − x5

2 − y2

 , (4.13)

Remark 4.2.2. What we have just constructed is not a Sarkisov link, as the Picard

rank drops by 2 because of the two consecutive divisorial contractions.
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Therefore, the above proves the following theorem.

Theorem 4.2.3. De�ne X as #10985 realised as a Tom2 •13,45 unprojection. Then the

Picard rank of X is ρX ≥ 2.

This shows that Sarkisov links are an e�ective tool to produce lower bounds for the

Picard rank of a Fano 3-folds. In particular it means that X has a Mori cone of dimension

at least 3. This observation lead to the idea that the Sarkisov link just computed could

have been part of a larger link involving Fano 3-folds sitting inside rank 3 toric varieties.

4.2.1 Blow-up of #10985 from 1
6
(1, 1, 5)

The Fano 3-foldX associated to the Hilbert series #10985 also has another Type I centre,

which is a 1
6(1, 1, 5) at the point Py1 ∈ X. In particular, it also has a second-Tom format,

that is a matrix M ′ in Tom5, •14 format. The latter describes the same deformation

family coming from the unprojection of the 1
2(1, 1, 1) centre at Ps, only obtained via a

di�erent unprojection.

This calculation retrieves the result of [CM04] because the endpoint of the 2-ray

game starting with the blow-up of the 1
6(1, 1, 5) singularity of X is isomorphic to X ′.

Using the matrix N in P2 × P2 format in (4.13) it is possible to retrieve M ′ from

M . The 3× 3 matrix N ′ indicating the P2 × P2 structure of the pair (X,Py1) is x1 y4 y3

s x4
1 − x4

3 + y3 x5
1 − x5

2 − y2

−x3
2 − x3

3 + y4 y2 y1

 , (4.14)

having weights  1 3 4

2 4 5

3 5 6

 .

We can reconstruct the 5× 5 matrix M ′ from N ′: so, M ′ is
x1 s 0 −x3

2 − x3
3 + y4

0 y4 y3

x4
1 − x4

3 + y3 x5
1 − x5

2 − y2

y2

 ,

which is equal to the following matrix by performing a simple change of coordinates
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ȳ3 := x4
1 − x4

3 + y3. 
x1 s 0 −x3

2 − x3
3 + y4

0 y4 ȳ3 − x4
1 + x4

3+

ȳ3 x5
1 − x5

2 − y2

y2

 .

Note that the unprojection variable relative to 1
6(1, 1, 5) is y1, and that the unprojected

divisor is D′ ⊂ Z ′1 := {Pfi(M
′) = 0}i∈{1,...,5} de�ned by the ideal ID′ := 〈y3, y4, s, x1〉.

Therefore, the matrix (4.2.1) is in Tom5, •14 format.

The blow-up of X ⊂ P7(13, 2, 3, 4, 5, 6), having variables x1, x2, x3, s, y4, ȳ3, y2, y1

respectively, at the point Py1 is contained in the rank 2 toric variety F′1 having weights r y1 x2 x3 y2 ȳ3 y4 s x1

0 6 1 1 5 4 3 2 1

1 1 0 0 0 −1 −1 −1 −1

 .

Here we have an hypersurface �ip with weights (1, 1, 5,−1,−2; 3) based at Pȳ3 ∈ Z ′2,

followed by one divisorial contraction to the 1
2(1, 1, 1) point Px1 of weights (1, 1, 1,−2),

based at Py4 ∈ Z ′3. The last divisorial contraction Φ′′ has weights (2, 1, 1, 2,−1; 4) con-

tracting a degree 4 surface S4 ⊂ P(2, 1, 1, 2) to a point.

More explicitly, Φ′′ is of the form

Φ′′ : F′4 −→ P7(14, 2, 3, 5, 7) =: G′4
(r, y1, x2, x3, y2, ȳ3, y4, s, x1) 7−→ (x1r

2, s, x1x2, x1x3, x1y4, x
2
1ȳ3, x

5
1y2, x

8
1y1) .

De�ne the coordinates of P7(14, 2, 3, 5, 7) as r′, s′, x′2, x
′
3, y
′
4, ȳ
′
3, y
′
2, y
′
1 respectively.

Analogously to the previous analysis of the 1
2 weighted blow-up of X, we see

that some of the equations of Y ′4 ⊂ F′4 help expressing some of the coordinates of

P7(14, 2, 3, 5, 7) in terms of the others: this is the case of y′1, y
′
2, and ȳ′3. The explicit

expression of the two latter arey′2 = y′4
(
x′32 + x′33 − y′4r′

)
ȳ′3 = s′y′4

, (4.15)

and the three surviving pfa�ans of M ′ are Pf1, Pf2, and Pf4, that is
Pf1 = −y′4

(
r′5 − x′52 − y′2

)
+ ȳ′3

(
ȳ′3r
′ − r′4 + x′43

)
Pf2 = s′y′2 + ȳ′3

(
−x′32 − x′33 + y′4r

′)
Pf4 =

(
r′5 − x′52 − y′2

)
− s′

(
ȳ′3r
′ − r′4 + x′43

) .
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After replacing equations (4.15) in the above equations, we have
Pf1 = −y′4

(
r′5 − x′52 − y′4

(
x′32 + x′33 − y′4r′

))
+ s′y′4

(
s′y′4r

′ − r′4 + x′43
)

Pf2 = s′y′4
(
x′32 + x′33 − y′4r′

)
+ s′y′4

(
−x′32 − x′33 + y′4r

′) ≡ 0

Pf4 =
(
r′5 − x′52 − y′4

(
x′32 + x′33 − y′4r′

))
− s′

(
s′y′4r

′ − r′4 + x′43
) , (4.16)

where Pf1 is a multiple of Pf4. In conclusion, the equation of X ′′ = X5 ⊂ P4(14, 2) is

(
r′5 − x′52 − y′4

(
x′32 + x′33 − y′4r′

))
− s′

(
s′y′4r

′ − r′4 + x′43
)

= 0 . (4.17)

Proposition 4.2.4. The pliability of X ′ is P(X ′) ≥ 2.

Proof. Both X ′ and X ′′ sit inside the weighted projective space P4(14, 2) and have Picard

rank 1, so it makes sense to talk about their pliablity. Moreover, they each have a

non-orbifold point inherited by the hypersurface �ip happening in their respective 2-ray

games. More explicitly, X ′ has a cA2 singularity at the point Py3 locally described by

the equation x3
2 + x3

3 = x1y2.

On the other hand, X ′′ has a cA3 singularity at Ps which is, locally, r4−x4
3 = sy4.

This means that their generic sections are not isomorphic. Therefore, X ′ 6∼= X ′′, so

P(X ′) ≥ 2.

Remark 4.2.5. Note that the sequence of birational transformations connecting X ′ and

X ′′ is not a Sarkisov link.
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Chapter 5

First steps towards Fano index 2

5.1 The existence of index 2 Fano varieties

The lack of a structure theorem for Fano 3-folds in codimension 4 forces to search for

other ways to produce their equations. The (Type I) unprojection construction has

supplied an e�cient tool to deduce such equations from the ones of codimension 3 Fanos

in either Tom or Jerry format. This works if these Fanos have Fano index 1.

If we look at the Fano index 2 case we see that the unprojection techniques are

not applicable, as none of the 37 candidates Fano 3-folds in codimension 4 having index

2 admits a Type I centre, as in [BK+15].

Despite this, it is still possible to use the unprojection to retrieve an explicit

description for index 2 Fano 3-folds in codimension 4 from suitable families in index

1. The idea is to �nd an appropriate index 1 Fano X to be a double cover of each

corresponding index 2 Fano X̃. This is suggested by an observation of the ambient

spaces of these index 2 varieties, say X̃ ⊂ wP̃, that is, replacing a 2 with a 1 in the

weights of the ambient space of X̃, there exists another candidate X ⊂ wP in the same

codimension sitting inside such a manipulated weighted projective space.

We illustrate our approach by looking at a baby case in codimension 2, and

describing explicitly the diagram 5.2. Although simpler than the examples we produce,

it encodes some crucial phenomena encountered in the development of this chapter.

Example 5.1.1. Consider the codimension 2 index 1 Fano 3-foldX = X4,4 ⊂ P5(14, 2, 3),

#16204. Only in the span of this example we call the coordinates of wP5 according to

their weight, that is, x1, . . . , x4 for the ones of weight one, y, z for the ones having weight

2 and 3 respectively. A projection from the Type I centre Pz ∈ X of type 1
3(1, 1, 2) (with

orbinates x3, x4, y) targets the index 1 codimension 1 Fano 3-fold Z ⊂ P4(14, 2), #16203.

We consider the action γ of the cyclic group Z/2Z on P5(14, 2, 3) de�ned as the

change of sign to the coordinate x4. Suppose that we write the equations of X such that

77



the coordinate x4 appears only with even powers. They are of the formzx1 = A4(x1, x2, x3, x
2
4, y)

zx2 = B4(x1, x2, x3, x
2
4, y)

,

where A4, B4 are general homogeneous polynomials of degree 4. Therefore, the equation

of Z is

x2A4(x1, x2, x3, x
2
4, y) = x1B4(x1, x2, x3, x

2
4, y) .

De�ne x̄4 := x2
4 and consider the quotient X̃ of X by the group action that changes the

sign of x4. Thus, X̃ = X̃4,4 sits inside a new weighted projective space P5(13, 22, 3). We

can easily see that −KX̃ ∼ O(−2). Therefore the index of X̃ is 2.

The �xed locus of the group action we considered is Fix(γ) = {x4 = 0} ∪
P1(1, 2)x4,y. Note that the cyclic quotient singularity at Pz ∈ X is �xed because it

lies in the {x4 = 0} locus; it becomes of type 1
3(1, 2, 2) in X̃. This shows that the quo-

tient does not produce new additional singularities: so X̃ is quasismooth. On the other

hand, the intersection of the other component of the �xed locus of γ with X is empty:

this is because the general polynomials A4 and B4 must contain monomials such as x4
4

and y2. Therefore X̃ is also terminal. We have just explicitly constructed equations for

the index 2 Fano 3-fold with Hilbert series #40662, showing that the index 1 Fano 3-fold

#16204 is its double cover.

Conversely, the same does not hold for Z. Here the intersection Z ∩P1(1, 2)x4,y is

non-empty: actually, the whole line P1(1, 2)x4,y is contained in Z. Therefore, the quotient

Z̃ of Z by the group action γ contains an entire line of cyclic quotient singularities of

type 1
2(1, 1, 1). This shows that Z̃ is not terminal, so does not appear in the Graded

Ring Database [BK+15].

This speci�c construction can be summarised with the following diagram.

#16204 P5(14, 2, 3) ⊃ X

γ
��

Z ⊂ P4(14, 2)
unprojoo

γ
��

#16203

#40662 P5(13, 22, 3) ⊃ X̃ Z̃ ⊂ P4(13, 22)

This diagram is analogous to the one at 5.2.

The above example shows in a nutshell the achievements of the double-cover

construction, and also the consequences it has at the codimension 3 level.

Here we resume the standard notation �xed in Section 1.2.5. Let us de�ne the

action γ of Z/2Z on a weighted P7 as

wP7 3 (t, s, x1, x2, x3, y1, y2, y3, y4) 7−→ (t, s,−x1, x2, x3, y1, y2, y3, y4) (5.1)
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that is, we change sign to the variable x1. Recall that X has index 1, so we can assume

the weight of x1 to be 1.

The main goal of this section is to prove the following theorem.

Theorem 5.1.1. There exist 32 Hilbert series of index 1 Fano 3-folds X in codimension

4 having at least a Type I centre such that the quotient X̃ := X/Z/2Z via the group action

γ (5.1) is an index 2 Fano 3-fold in codimension 4.

We will later explain the reason for the number 32, and how this relates to what

has been achieved so far in terms of explicit construction of index 2 Fano 3-folds. Theorem

5.1.1 implies the following corollary.

Corollary 5.1.2. The index 1 Fano 3-fold X of Theorem 5.1.1 is a double cover for X̃.

Here we describe our construction in the codimension 4 case, mimicking the one

explained in the baby case of Example 5.1.1.

First we want to take X in codimension 4 and index 1 such that it is invariant

under the action γ. To do so, we need to look at Z, the projection of X from a Type I

centre, and write down a special member of Z that is invariant under γ. After that, we

perform the unprojection to obtain a Z/2Z-invariant X. The last step is quotienting X

by the group action γ and studying the quotient.

In the Graded Ring Database [BK+15] there are 37 Hilbert series for Fano 3-folds

in codimension 4 and index 2. The ones that our method does not construct are 5.

One of them, #41028, lies in a non-weighted projective space, and was therefore already

constructed by Iskovskih in [Isk77] and [Isk78].

Other two Hilbert series, #39569 and #39607, do have a double-cover candidate,

but it does not have any Type I centre. Since in this thesis we consider only Type I

unprojections, we will not examine these two examples.

Lastly, the two Hilbert series #40367 and #40378 do not have any index 1 double-

cover candidate, so our method does not apply to them.

For the remaining 32 we therefore achieve the following diagram.

codim 4 codim 3

index 1 X

Z/2Z γ
��

Z
unprojoo

Z/2Zγ
��

index 2 X̃ Z̃

(5.2)

Table 6.3 summarises the pairs (X̃,X) for each Hilbert series in index 2.

We break down the proof of Theorem 5.1.1 in some separated lemmas.

79



Practically speaking, the next lemma shows that, to perform the quotient and

obtain X̃, we just need to replace x2
1 with x̄ in the equations of X, and that the ambient

space of X̃ is the ambient space of X where a 1 has been replaced by a 2.

Lemma 5.1.3. The Fano 3-fold X̃ sits inside the weighted projective space P7(2, b, c,

d1, . . . , d4, r), with coordinates x̄, x2, x3, y1, y2, y3, y4, s respectively, and x̄ := x2
1.

Proof. Let us divide P7(1, b, c, d1, . . . , d4, r) in a�ne patches. Pick, for instance, Ux2 :=

{x2 6= 0}. In particular, Ux2 is given by the Spec of the degree-invariant fractions as

SpecC

xb1
x2
,
x
b
c
3

x2
,
y
b
d1
1

x2
, . . . ,

y
b
d4
4

x2
,
s
b
r

x2
, . . .

 .

Similarly we can explicitly write all the other a�ne patches. Let the group action γ act

on each patch. They are invariant if and only if the coordinate x1 has even power. Such

a�ne patches are de�ned by the ring of the invariants under the action, in which x1

appears only with even powers. These same a�ne patches are exactly the a�ne patches

of the weighted projective space P7(2, b, c, d1, . . . , d4, r).

This also proves that the quotient of X has the same equations as X, where x2
1

has been replaced with the new coordinate x̄.

Lemma 5.1.4. The Fano 3-fold X̃ has index 2.

Proof. Consider the quotient map f : X → X̃. The relation between the anticanonical

bundles of X and X̃ is −KX = −f∗KX̃ −R where R is the rami�cation divisor. In our

case, −KX = {x1 = 0} ∼ O(1). Moreover, the rami�cation divisor is R = {x1 = 0}.
Therefore, −f∗KX̃ = 2{x1 = 0}. This implies that −KX̃ = {x̄ = 0} ∼ O(2): thus, X̃

has index 2.

Lemma 5.1.5. If X is quasi-smooth, then X̃ is quasi-smooth.

Proof. De�ne the variety V as

V := {p ∈ wP7 : rank (J |p) < codim(X)} .

The condition de�ning V is equivalent to looking at the vanishing locus of all 4×4 minors

of the Jacobian matrix JX of X (see [Har77]). By de�nition, if V is empty, then X is

quasi-smooth. Suppose X quasi-smooth and compare JX with JX̃ . The only di�erence

between the two Jacobian matrices lies in the column relative to the derivative by x1.

Suppose x1 6= 0; then, the rank of JX is equal to the rank of JX̃ .

On the other hand, if x1 = 0 certain entries of the ∂
∂x1

column in JX might vanish,

while they would be just a constant in JX̃ . This is because, for each equation fi of X,
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∂f
∂x1

= ∂f
∂x̄

∂x̄
∂x1

, and ∂x̄
∂x1

= 2x1. So for x1 = 0 we have that rk JX ≤ rk JX̃ . Therefore, X̃

is quasi-smooth if X is.

The last lemma is the last missing step to prove that X̃ can be found in the

Graded Ring Database [BK+15].

Lemma 5.1.6. The Fano 3-fold X̃ has terminal singularities.

Proof. The �xed locus of the group action γ is Fix(γ) = {x1 = 0} ∪ Peven, where Peven

is the weighted projective space de�ned by the vanishing of all the coordinates with odd

weight, except for x1. We want to study the intersection X ∩ Fix(γ). Recall that the

Type I centre of X is Ps ∈ X, having orbinates x1, x2, x3; thus, it is (pointwise) �xed

by γ, so X ∩ {x1 = 0} 6= ∅. In particular, all cyclic quotient singularities of X are �xed

pointwise by γ.

On the other hand, X does not intersect the rest of the �xed locus, that is, Peven.

The reason for this lies in the shape of the unprojection equations of X. In Remark 5.1.7

we show that the order of the cyclic quotient singularities of an index 2 Fano 3-fold must

be odd, and that therefore its orbinates must have weights (2, b, c) where either b is odd

and c even, or vice versa. Thus, in order for X to be a double-cover candidate for an

index 2 Fano 3-fold X̃, the cyclic quotient singularities of X must have orbinates with

weights (1, b, c) and b, c as above. To �x ideas, suppose b odd and c even.

We want to prove that at least two unprojection equations of X contain a mono-

mial of the form xµ1x
ν
3 for some µ, ν positive integers (µ and ν not the same for each of

the unprojection equations). This is enough to prove that X ∩ Peven = ∅.
We study the unprojection equations of X via their algorithmic construction

outlined in Section 2.2.2 (cf [Pap04]). Without loss of generality we can assume that the

variable x3 occupies one of the entries of M that are not in the ideal ID. In addition,

there are at least two entries not in ID having even degree: therefore, we can always

place a suitable even power of x1 in the entry not occupied by x3. Thus, all the matrices

de�ned in (2.10) contain x3 and even powers of x1. They are eventually multiplied in

the determinant of (2.10).

In conclusion, the only points of X �xed by the action γ are its orbifold points,

and therefore X̃ has terminal singularities.

Looking more closely to the double covers created using diagram 5.2 we notice

that they are drastically di�erent depending on the codimension.

Remark 5.1.7. Note that our double-cover method does not produce index 2 Fano 3-

folds in codimension 3 in the Graded Ring Database, that is, the quotient Z̃ := Z/Z/2Z

does not have terminal singularities. The reason lies in the proof of Lemma 5.1.6. While

the intersection of X with the �xed locus of γ is just a �nite number of points, the
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intersection Z ∩Fix(γ) contains much more. More precisely, Z and Peven intersect along

D ⊂ Z. This is because D ∼= P2(1, b, c) where either b or c is even, i.e. there is no

con�guration of (1, b, c) such as (1, 1, 1), (1, 1, 3), (1, 1, 5), (1, 3, 5), etc. The reason for

this is that terminal singularities on index 2 Fano 3-folds are of type 1
3(a, b, r − b) with

(a, r) = 1 and (b, r) = 1. Since a is always 2 for index 2, this implies that r must be

odd, and same for either one between b and r − b. From Lemma 5.1.3 we have that

D̃ ∼= P2(2, b, c). Therefore, the Z/2Z-quotient Z̃ of Z contains a line of 1
2 singularities,

sitting inside the divisor D̃ ⊂ Z̃. Suppose b is even: such line is P1(2, b).

This shows that Z̃ does not have terminal singularities, and thus is not listed in

the Graded Ring Database [BK+15]. Recall that there are only two Hilbert series corre-

sponding to terminal index 2 codimension 3 Fano 3-folds: one is smooth, so constructed

by Iskovskih in [Isk77] and [Isk78]. The other one was constructed by Ducat in [Duc18].

The double-cover method described in this thesis does not construct them.

Proof of Theorem 5.1.1. The statement follows from the combination of Lemmas 5.1.3,

5.1.4, 5.1.5, and 5.1.6.

5.1.1 Conjectural non-existence by computer algebra

Since the divisor D gets "folded in two" by the Z/2Z action γ, it is interesting to study

what happens to the nodes on D ⊂ Z.

Lemma 5.1.8. Suppose there exists a special member of the deformation family of Z

that is invariant under the Z/2Z action γ.

Then, the nodes on the divisor D ⊂ Z are not �xed by γ. Moreover, they are

pairwise-identi�ed in the quotient Z̃.

Proof. From [BKR12a] we can assume that the nodes of Z only lie on the divisor D.

Therefore, from Remark 5.1.7 we have that the nodes are not �xed by γ.

The equations of the nodes on Z̃ can be found by computing the 3× 3 minors of

the Jacobian matrix J̃ of Z̃ and then restricting it to D̃, i.e.
∧3 J̃ |D̃ = 0. Such equations

obviously depend on x̄. These equations describe a �nite number of points on D̃, that is,

its nodes. Lifting these equations to Z, x̄ is replaced by the new variable x2
1. Therefore,

the nodes found at the index 2 level are doubled in the index 1 level.

Therefore, the nodes on D ⊂ Z are pairwise identi�ed by γ in the quotient.

We can therefore deduce the following corollary.

Corollary 5.1.9. Consider Z as in Lemma 5.1.8. Then the number of nodes of Z is

even.
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Now consider the codimension 4 candidates in index 1 to be double cover for one

of the 32 Hilbert series in index 2. Such candidates have between two and four di�erent

deformation families, depending on the format of Z (cf [BKR12a]). Each of these formats

has a certain number of nodes on D ⊂ Z. Corollary 5.1.9 show that, in order to be a

double cover for X̃, the index 1 candidate X must be obtained from Z having even

number of nodes. This excludes some of the deformation families of X, that is, dismisses

the ones whose format has odd number of nodes.

Remark 5.1.10. Only the Hilbert series #24078 presents two possible Tom formats.

Corollary 5.1.9 constitutes a criterion to exclude the �rst Tom format in the family

#24078, which has 5 nodes. Therefore, the second Tom of the family #24078 cannot be

invariant under the Z/2Z-action in 5.1.

We summarise in Table 6.3 the Tom formats that give rise to a double cover,

together with the Jerry formats that could produce other deformation families for the

same Hilbert series in index 2.

Although we have not investigated it thoroughly as the case of Fano 3-folds of

Tom type, we do have some conjecture explaining the expected behaviour of the index

1 Fano 3-folds of Jerry type under the double-cover method. Through these conjectures

we systematise the data collected via computer algebra.

Using the tj package for Magma that can be found in the Graded Ring Database

website [BK+15] it is possible to produce a code checking whether the Z/2Z-invariance
can be achieved with a certain Tom or Jerry format. The code shows that the formats

giving rise to a Z/2Z-invariant Fano all share the features related to the number of nodes

we explained and that, concerning the Jerry case, the condition 2.4.1 is involved.

For the Jerry case it has shown that there are 18 Z/2Z-invariant Jerry formats; 8

of them have some zero entries, the other 10 do not. In particular, it is possible to draw

the following conclusions:

Conjecture 5.1.1. If Z is de�ned by pfa�ans of a Z/2Z-invariant matrix in Jerry

format, then the numbers of nodes of Z is even.

Conjecture 5.1.2. If Z is de�ned by pfa�ans of a Z/2Z-invariant matrix in Jerry

format, then the condition 2.4.1 is satis�ed, except for the format Jerry12 of #11123.

Note that the opposite implication in both Theorem 5.1.1 and 5.1.2 is false, al-

though it seems true that

Conjecture 5.1.3. Suppose Z is in Jerry format and has even number of nodes. If the

condition 2.4.1 holds, then the deformation family of Z has a special member which is

invariant under the Z/2Z-action 5.1.
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Remark 5.1.11. In [Duc18], Ducat constructs Fano 3-folds corresponding to the two

Hilbert series #40663 and #40933. He constructs two deformation families for #40663,

one in Tom4 format and one in Jerry23 format. Regarding #40933, in [PR16] Prokhorov

and Reid construct a deformation family in Jerry12 format. Here we construct the Tom5

format of #40933.

In conclusion,

Theorem 5.1.12. The double-cover method constructs at least one deformation family

for 32 Hilbert series of index 2 Fano 3-folds in codimension 4.

5.2 A birational link for an index 2 codimension 4 Fano 3-

fold: the case of #39898

In the previous part of this chapter we constructed explicitly most of the codimension 4

index 2 Fano 3-folds. In this section we show a birational link starting from one of such

Fano varieties, using similar techniques to the ones outlined in Chapter 2. In this case,

the behaviour of the link is substantially di�erent.

This is a work in progress joint with Tiago Guerreiro. This section is aimed to

give a glimpse at this new development.

Consider the following Fanos:

#4896 X ⊂ P7(12, 3, 5, 6, 7, 8, 9) codimension 4 2× 1
3(1, 1, 2), 1

9(1, 1, 8)

#4895 Z ⊂ P6(12, 3, 5, 6, 7, 8) codimension 3 14 nodes

The projection from the point Ps ∈ X of type 1
9(1, 1, 8) gives the codimension 3 Fano

3-fold Z, containing the divisor D ∼= P2(1, 1, 8)x1,x2,x3 with ideal ID := 〈y1, y2, y3, y4〉.
Here y1, y2, y3, y4 have weights 7,6,5,3 respectively. In addition, Z is realised as pfa�ans

of a matrix M in Tom3 format.

The Tom-type Fano 3-fold X obtained by a Type I unprojection of such D ⊂ Z

is a candidate to be a double cover of the codimension 4 Fano 3-fold in index 2 having

Hilbert series #39898. This is because the general member of #39898 sits inside the

weighted projective space P7(1, 2, 3, 5, 6, 7, 8, 9): Lemma 5.1.3 suggests that #39898 could

be obtained as a Z/2Z-quotient of X #4896 via the group action γ de�ned in (5.1).

Moreover, Z has even number of nodes, as in Corollary 5.1.9.

It is actually possible to write equations for X that are invariant (and not just

equivariant) under the action γ, that is, in which the variable x1 appears only with even
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powers. Therefore, the explicit equations for the Z/2Z-quotient X̃ are

x7
2y4 + x4

2y2 + x2
2y4y3 + x̄2y2 + y2

3 + y4y1 = 0

x2
2y

3
4 + x4

2y1 + x2
2y4y2 + y2

4y3 + x̄2y1 + y3y2 + y4x3 = 0

x̄2y4y3 − y2
4y2 + x̄y4y1 − y2

2 + y3y1 = 0

x8
2x̄

2 + 2x4
2x̄

4 − x7
2y3 + x̄6 − x4

2x̄y2 − x4
2x3 − x̄3y2 − x̄2x3 − y3y1 + y4s = 0

x7
2y2 + x4

2x̄
2y3 − x4

2y4y2 + x4
2x̄y1 + x̄4y3 − x2

2y
2
4y3

−x̄2y4y2 + x̄3y1 − y4y
2
3 + y2y1 − y3x3 = 0

x7
2y1 − x2

2y
2
4y2 − x̄2y2

3 − x2
2y

2
2 + x2

2y3y1 − x̄y3y1 + y2
1 − y2x3 = 0

−x14
2 − x9

2y3 − x6
2x̄y

2
4 − x8

2y2 − x6
2y4y3 − x6

2x̄y2 − 2x7
2y1 − x2

2x̄
3y2

4 − x4
2x̄y4y3

−2x4
2x̄

2y2 − x2
2x̄

2y4y3 − x4
2y

2
3 − x2

2x̄
3y2 − x4

2x̄x3

−x̄3y4y3 − x̄4y2 − x̄2y2
3 − x2

2y3y1 − x̄3x3 − y2
1 − y3s = 0

−x11
2 x̄

2 − x7
2x̄

4 + x9
2y

2
4 + x9

2y2 + x7
2y4y3 − x4

2x̄
3y3 + x6

2x̄y1 + x7
2x3 + x4

2x̄y4y2 − 2x4
2x̄

2y1

−x̄5y3 + x2
2x̄

3y1 + x̄3y4y2 − 2x̄4y1 + x2
2y

2
4y1 + x2

2y2y1 + y4y3y1 + y1x3 + y2s = 0

x6
2x̄

2y2
4 − x7

2x̄
2y3 + x6

2x̄
2y2 + x7

2y4y2 − x7
2x̄y1 + x2

2x̄
4y2

4

+x4
2x̄

2y4y3 + x2
2x̄

4y2 + x4
2x̄

2x3 + x̄4y4y3 + x4
2y

2
2 + x2

2y4y3y2 + x̄4x3

−x2
2y

2
4x3 + x̄2y2

2 − x̄2y3y1 − x2
2y2x3 + y2

3y2 + y4y2y1 − x̄y2
1 − y4y3x3 − x2

3 − y1s = 0

.

(5.3)

Recall that the �xed locus of γ is Fix(γ) = {x1 = 0} ∪ P2(1, 8, 6)x1,x3,y2 . The

projective space P2(1, 8, 6)x1,x3,y2 := 〈x2, y1, y3, y4, 〉 is the component of the �xed locus

that we called Peven in Lemma 5.1.6. It is easy to see that D and Peven intersect along

the projective line P2(1, 8)x1,x3 .

The nodes on D can be found computing the 3× 3 minors of the Jacobian matrix

J of Z and then restricting it to D, i.e.
∧3 J |D = 0. Their equations in the quotient Z̃

are 

x12
2 x̄

2 + 3x8
2x̄

4 + 3x4
2x̄

6 − x8
2x3 + x̄8 − 2x4

2x̄
2x3 − x̄4x3 = 0

−x18
2 − x1

24x̄2 − x8
2x̄x3 − 2x4

2x̄
3x3 − x̄5x3 = 0

−x15
2 x̄

2 − 2x1
21x̄4 − x7

2x̄
6 + x1

21x3 + x7
2x̄

2x3 = 0

x8
2x̄

2x3 + 2x4
2x̄

4x3 + x̄6x3 − x4
2x

2
3 − x̄2x2

3 = 0

−x21
2 − x1

21x̄x3 − x7
2x̄

3x3 = 0

−x14
2 x3 − x4

2x̄x
2
3 − x̄3x2

3 = 0

−x11
2 x̄

2x3 − x7
2x̄

4x3 + x7
2x

2
3 = 0

x4
2x̄

2x2
3 + x̄4x2

3 − x3
3 = 0

The above equations describe the 7 nodes on D̃ ⊂ Z̃. Obviously they double in number
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when replacing x2
1 back instead of x̄.

Now that we explicitly constructed the index 2 Fano 3-fold #39898 we can use

the techniques used in Chapter 2 to run a birational link starting from the pair (X̃, Ps),

where Ps ∈ X̃ is the cyclic quotient singularity of type 1
9(2, 1, 8), with orbinates x̄, x2, x3

respectively. We use the same notation used for Sarkisov links introduced in Section

1.2.5. In Chapter 2 we started the link by performing a Kawamata blow up of the Type

I centre at Ps; this step relied on the fact that Kawamata's theorem 2.2.3 held in our

setting. This is no longer true in the index 2 context. In fact, Kawamata's theorem holds

if the centre is of type 1
r (1, a, r− a), with a and r coprime. This condition on the centre

is not ful�lled by 1
9(2, 1, 8). Therefore, a manipulation of the weight of the orbinates is

needed. This means that we let Z/9Z act on the orbinates until we get weights satisfying

the hypotheses of Kawamata's theorem. What we get is an equivalent cyclic quotient

singularity: in our case we have 1
9(2, 1, 8) ∼ 1

9(1, 5, 4).

Applying Kawamata's theorem 2.2.3 and the same strategy to assign the bottom

weights δ1, . . . , δ4 explained in Section 2.2.2, we obtain the following rank 2 toric variety. t s x̄ x2 x3 y1 y2 y3 y4

0 9 2 1 8 7 6 5 3

−9 0 1 5 4 8 3 7 6

 .

Note that it is not well-formed, and that the lattice vectors ρt, . . . , ρy4 are not in clockwise

order as they were in the index 1 construction. After well-forming and reordering the

above rank 2 toric variety we get

F1 :=

 t s x̄ x3 y1 y3 y4 y2 x2

0 9 2 8 7 5 3 6 1

1 5 1 4 3 2 1 2 0

 .

The toric variety F1 is associated to its Mori cone:

t

s

x̄, x3

y1

y3

y2, y4

x2
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The reader can immediately notice that the �rst wall of the mobile cone of F1 is generated

by the rays of only two of the orbinates. This plays an important role in determining the

behaviour of Y1 when crossing the (x̄, x3)-wall.

Fact 1. The �rst wall of the mobile cone is always generated by the following two vectors:

ρx̄, ρxi for i equal to either 2 or 3, where the weight of xi is even.

In contrast to the birational links in the index 1 case, here we have the following

fact regarding the �rst step of the birational link.

Fact 2. If X is quasi-smooth, then the birational map ψ1 : Y1 → Y2 of the birational

link for X̃ is an isomorphism.

The second and third maps in the birational link are both isomorphisms for the

varieties Y2 and Y3 respectively.

The last map Φ′ is a divisorial contraction to a Fano 3-fold X ′ in the weighted

projective space P7(13, 22, 3, 4, 5) correspondent to the Hilbert series #11106.

Note that X ′ has codimension 4. In fact, in the case of birational links for codi-

mension 4 index 2 Fano 3-folds, the link does not always simplify the structure of X as

it was happening in the index 1 context.
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Chapter 6

Appendix: Tables

This table summarises the results for the Sarkisov links for index 1 codimension 4 Fano

3-folds X of Tom type having Picard rank 1 terminating with del Pezzo �brations.

Table 6.1: Sarkisov links ending with del Pezzo �brations

ID of codim 4 Centre Format Degree of dP

574 7 T1 1

644 10 T2 1

1395 9 T5 1

1401 7 T4 1

2421 8 T5 1

5516 3 T1 2

5519 3 T1 2

5530 3 T1 2

5845 6 T4 2

5867 4 T2 2

5870 5 T2 3

5914 4 T2 2

5970 4 T1 3

6878 3 T1 3

11004 7 T2 2

11104 7 T5 2

11123 5 T4 2

11437 2 T1 3

11437 5 T3 3

11440 2 T1 3
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11455 2 T1 4

16206 5 T4 3

16228 4 T2 3

16246 3 T2 3

16339 3 T1 4

20544 2 T1 4

20652 2 T1 5

This table summarises the results for the Sarkisov links terminating with conic

bundles for index 1 Fano 3-folds X of Tom type in codimension 1 having Picard rank 1.

Table 6.2: Sarkisov links ending with conic bundles

ID of codim 4 Centre Format

6865 4 T1

12063 2 T1

12960 2 T1

16227 5 T2

20524 4 T4

20544 3 T2

24078 3 T1

24097 2 T1

The following table collects all the 37 Q-Fano 3-folds of index 2 in the Graded

Ring Database [BK+15] together with their index 1 double cover, and the formats in

codimension 3 index 1 that allow the construction described in Section 5.

Table 6.3: Index 2 Fano 3-folds in codimension 4

Index 2 Index 1 T&J

39557 327 T3, J24

39569 512 none

39576 569 T1

39578 574 T1, J24•12

39605 869 T4, J13

39607 872 none

39660 1158 T5, J12

39675 1395 T5

39676 1401 1
5 : T2;

1
7 : T4
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39678 1405 T1

39890 4810 T3, J24

39898 4896 T3, J24

39906 4925 1
7(1, 1, 6) : T2;

1
7(1, 3, 4) : T1

39912 4938 T2

39913 4939 1
5 : T1, J25•24;

1
7 : T2, J14•13

39928 4987 T5

39929 5000 1
5 : T2;

1
9 : T4

39934 5052 T1, J23•13

39961 5176 1
5 : T2;

1
7 : T3

39968 5260 T5, J13

39969 5266 1
5 : T3, J24•25;

1
7 : T4, J13•15

39970 5279 1
3 : T1;

1
5(1, 1, 4) : T2;

1
5(1, 2, 3) : T1

39991 5516 1
3 : T1;

1
7 : T3

39993 5519 1
3 : T1, J34;

1
5 : T2, J12

40360 10963 T3, J24

40367 none none

40370 11004 T2

40371 11005 1
3 : T1, J25•24;

1
5 : T2, J14•13

40378 none none

40399 11104 T5

40400 11123 1
3 : T3;

1
5 : T4

40407 11222 T1, J23•13

40663 16206 T4, J23

40671 16227 T2

40672 16246 T2, J15•14

40933 24078 T5, J12

41028 none none
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