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Abstract

In this thesis, we investigate the task of sequence-to-sequence (seq2seq) re-

trieval: given a sequence (of text passages) as the query, retrieve a sequence

(of images) that best describes and aligns with the query. This is a step

beyond the traditional cross-modal retrieval which treats each image-text pair

independently and ignores broader context. Since this is a difficult task, we

break it into steps.

We start with caption generation for images in news articles. Different from

traditional image captioning task where a text description is generated given

an image, here, a caption is generated conditional on both image and the news

articles where it appears. We propose a novel neural-networks based methodo-

logy to take into account both news article content and image semantics to

generate a caption best describing the image and its surrounding text context.

Our results outperform existing approaches to image captioning generation.

We then introduce two new novel datasets, GutenStories and Stepwise

Recipe datasets for the task of story picturing and sequential text illustra-

tion. GutenStories consists of around 90k text paragraphs, each accompanied

with an image, aligned in around 18k visual stories. It consists of a wide

variety of images and story content styles. StepwiseRecipe is a similar data-

set having sequenced image-text pairs, but having only domain-constrained

images, namely food-related. It consists of 67k text paragraphs (cooking in-

structions), each accompanied by an image describing the step, aligned in 10k

recipes. Both datasets are web-scrawled and systematically filtered and cleaned.

We propose a novel variational recurrent seq2seq (VRSS) retrieval model.

xii



The model encodes two streams of information at every step: the contextual

information from both text and images retrieved in previous steps, and the

semantic meaning of the current input (text) as a latent vector. These to-

gether guide the retrieval of a relevant image from the repository to match

the semantics of the given text. The model has been evaluated on both the

Stepwise Recipe and GutenStories datasets. The results on several automatic

evaluation measures show that our model outperforms several competitive and

relevant baselines. We also qualitatively analyse the model both using human

evaluation and by visualizing the representation space to judge the semantical

meaningfulness. We further discuss the challenges faced on the more difficult

GutenStories and outline possible solutions.
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Chapter 1

Introduction

1.1 Motivation

Storytelling is central to human existence. Since time immemorial, humans have

used narration as means for fostering ideas. Recent research, as in Botvin and

Sutton-Smith [16], McKeough and Malcolm [96], Sun and Nippold [129], shows

that storytelling has also been used as evaluation of development of language

skills in children and adolescents. Therefore, it is considered to be an important

task in machine learning methods for natural language processing. It is beyond

simple perceptual tasks, like recognition and understanding of simple objects

and concrete scenes, rather it requires a higher form of cognition. It requires

understanding and interpretation of the underlying causal structure in narration.

For machines, to be able to acquire storytelling, requires moving beyond static

information. It requires to create an artificial intelligence (AI) that also needs

to incorporate and model contextual information [54]. Furthermore, research in

developmental psycholinguistics suggest the importance of visual context with

textual narration in child language acquisition [106]. Therefore, the task of

Story Picturing, or Automatic Text Illustration plays a huge role in automatic

storytelling systems involving multiple modalities of data, for example images

and texts [61].

Also, due to creation of a huge amount of multimedia data on the Internet,

present usually in the form of multimedia files containing images, videos and

natural language texts. Such multimodal content and semantically related data

is also often thematically collocated. The content is usually manifested as news

articles, social media posts, personal or business blog posts. Many online news

sites like CNN, Yahoo and BBC publish images with their stories and even

provide photo feeds related to current events. Some news sites list all news

articles related to a particular topic in a timeline of the events in which they

occurred, creating a news storyline. One good news storyline telling example

is from New York Times, is in Figure 1.1.
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Source: https://www.nytimes.com/interactive/2015/us/

year-in-interactive-storytelling.html

Figure 1.1: An instance from NY Times Journal of a news storyline
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Some of the recent popular news storylines include “Donald Trump winning

US elections” or “Brexit- Britain leaving European Union”. Presence of such

data in multimedia files has provided strong impetus to develop applications like

automatic story summarisation or illustration systems [37]. Such applications

have a huge impact and a lot of usage in personal digital assistants. Internet

is also home to various digital books. For example, Project Gutenberg is an

online library of over 60,000 free digital books. It contains several digitised

versions of children’s stories with illustrations from several renowned authors

like Beatrix Potter, Roald Dahl and many more. It has stories from different

genres including Fairy Tales, Myths, Biographies, Science, History and other

literature. One example is shown in Figure 1.2.

Source: https://www.gutenberg.org/files/14838/14838-h/14838-h.htm

Figure 1.2: An instance from an online digital story ’The Tale of Peter Rabbit’
authored by ’Beatrix Potter’

Figure 1.2 provides an excerpt from an online digital story “The Tale of

Peter Rabbit” authored by “Beatrix Potter”. The backbone of the story is

3

https://www.gutenberg.org/files/14838/14838-h/14838-h.htm


the textual narration. The content creators usually place photos/illustrations

carefully at appropriate places. These images typically represent specific

highlights such as an event in the narration or may serve to depict feelings and

the general emotion in an instance. It can be observed from this example that

illustration of stories requires substantial human judgement and reasoning. A

human would require thinking of an appropriate illustration. Even if the set of

illustrations are provided in advance. A human would require paying attention

to ensure the semantic coherence between the context and the corresponding

illustration. This task is difficult and time-consuming for humans.

In this thesis, we aim to explore the ways in which Machine Learning

and Natural Language processing can be employed to perform this task of

automatic text illustration. Several neural models have been employed for Image

Understanding [1] and Text Understanding [144], and also using joint models

of images and texts. We focus on developing systems that can automatically

illustrate a given sequence of text passages that best describe and align with

a sequence of images. We study and employ various deep neural network

architectures and compare its performance with several previously published

methods. We refer to this problem as “Stepwise Text Illustration”.

1.2 Relevant prior work

There exists rich literature on multi-modal image-text representation, which

can be broadly seen from two different angles, caption generation or retrieval

for images, and natural-language based image retrieval or generation. An early

story picturing system was developed by Joshi et al. [61]. It retrieved images

suiting a very specific description. Their task is to select illustrative images

from a large pool. However, the task is quite different from ours, as they are

making a decision to select one picture at a time disregarding the context. Our

task is rather, to illustrate a given story stepwise, considering prior context,

making most of those approaches inadequate for the setting of this work.

• First, most of the prior work assumes that each image in the set already

has supervised labels in the form of a set of tags, or an informative caption.

We do not augment learning algorithms, and thus do not rely upon any

predefined labels, tags or captions of the image. Therefore, we do not

directly feed any supervised signals, although we use some pre-trained

image classification models for semantic image feature representation,

indirectly incorporating this information.

• Second, we aim to illustrate the given piece of text, by incorporating and

modeling the prior context of the story.
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• Third, we do not limit the length of the given text passages, to one-

sentence descriptions, rather focus on longer pieces of text. While, most

of the existing approaches focused on one-sentence description with an

image.

• Fourth, we focus on retrieving images from a set of images expecting

high semantic coherence with the given text passage.

The Visual Storytelling Dataset (VIST) dataset[56] was built with a mo-

tivation similar to our own, but for generating text descriptions of image

sequences rather than the other way around. Relying on human annotators to

generate captions, VIST contains sequential vision-to-language pairs with a

focus on abstract visual concepts, temporal event relations, and storytelling.

They highlighted the difference between a literal description of an image and

the more figurative language used for an image in a wider story context. In

our work, we focus on producing similar sequenced datasets in an automated

manner by selecting sources such as cooking recipes, children stories or any

form of sequential instructional illustrations. In Chapter 2, we provide with a

comprehensive literature survey of the related work for this research and also

provide a critical account of the some of the closest works to our problem.

1.3 Research Questions and Objectives

The broad research goal is to be able to develop intelligent information pro-

cessing systems that can concisely summarize all the textual content with the

retrieval or generation of visual content. More specifically, In this thesis, we

investigate the new task of sequence-to-sequence (seq2seq2) retrieval : given a

sequence (of text passages) as the query, retrieve a sequence (of images) that

best describes and aligns with the query. This is a step beyond the traditional

cross-modal retrieval which treats each image-text pair independently and

ignores the broader context.

We have previously discussed that an automated system for Automatic

Stepwise Illustration is highly desirable. However, the goal is not easy to

achieve, as such a system would be very complex and multi-faceted. There

are a lot of requirements it would need to satisfy. In this work, we only focus

on a subset of research questions that lead to progress towards the ultimate

goal. Here, we outline the research questions of this thesis with corresponding

objectives required to answer them.

RQ1 How can we develop automatic text illustration systems that illustrate a
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given narrative text passage with a sequence of illustrations, considering

and incorporating prior context?

OBJ 1.1 Investigate existing literature in the field of automated text illustra-

tion to gain understanding of how joint-models of texts and images

are utilised for the task of semantic and coherent image retrieval.

Understand common approaches and identify gaps in the knowledge.

OBJ 1.2 Identify or build relevant datasets.

OBJ 1.3 Build stepwise illustration models using the identified datasets.

OBJ 1.4 Evaluate the models in a realistic scenario to test their ability to be

employed as real-world applications.

RQ2 How can we fuse information from different modalities to summarise the

given content for developing context-based models?

OBJ 2.1 Start with and focus on atomic text passage and image pairs for

summarisation.

OBJ 2.2 Identify relevant, realistic datasets used for studying automatic joint

image-text summarisation.

OBJ 2.3 Build joint-models using the identified datasets that incorporate

semantic features from both the modalities (images and texts) and

thus are able to fuse them as contextual information.

OBJ 2.4 Analyse the performance of different joint-models in order to identify

good context-modeling approaches representing better semantic

features.

RQ3 How can we study the automatic stepwise illustration systems in a

domain-constrained setting, given narrative text passage in a limited

domain with a sequence of illustrations, considering and incorporating

prior context?

OBJ 3.1 Investigate existing literature in the field of automated text illustra-

tion in a limited domain-constrained setting to gain understanding

of the joint-models of texts and images.

OBJ 3.2 Identify or build relevant datasets.

OBJ 3.3 Build stepwise illustration models using the identified datasets.

OBJ 3.4 Evaluate the models in a realistic scenario to test their ability to be

employed as real-world applications.
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1.4 Technical Challenges

TC1 How can we automatically create resources for the task of automatic

stepwise illustration?

• Investigate existing literature to identify any existing joint corpora that

can be utilised for the given task.

• Focus on developing an approach to create an unlabelled dataset of

sequenced image-text pairs from any source.

1.5 Contributions

In this thesis, the following contributions are made:

1.5.1 Neural Caption Generation for News Images

We introduced a novel methodology for caption generation for images appearing

in news articles. This task is different from traditional image captioning where a

text description is generated given an image, in this case a caption is generated

conditional on both image and the news article, where it appears. A novel

neural-networks based methodology is proposed to take into account both news

article content and image semantics to generate a caption that best describes

the image and its surrounding text context. The results outperform existing

approaches to image captioning generation. (see RQ2 and chapter 4)

1.5.2 GutenStories and Stepwise Recipe datasets

We constructed two datasets, GutenStories and Stepwise Recipe datasets,

for the task of story picturing and sequential text illustration. GutenStories

consists of around 90,000 text paragraphs, each accompanied with an image,

aligned in around 18,000 visual stories. It consists of a wide variety of images

and story content styles. Stepwise Recipe is a similar dataset having sequenced

image-text pairs, but having only domain-constrained images, namely food-

related. It consists of around 67,000 text paragraphs (cooking instructions),

each accompanied by an image describing the step, aligned in around 10,000

recipes. Both datasets are web-scrawled and systematically filtered and cleaned.

(see TC1 and chapters 3)

1.5.3 Variational Recurrent Sequence to Sequence Retrieval

for Stepwise Illustration

We also propose a novel variational recurrent seq2seq (VRSS) retrieval model.

We explore ways to guide the retrieval of a relevant image from the repository

7



to match the semantics of the given text. The model has been evaluated

on both the Stepwise Recipe and GutenStories datasets. The results on

several automatic evaluation measures show that our model outperforms several

competitive and relevant baselines. We also qualitatively analyse the model

both using human evaluation and by visualizing the representation space to

judge the semantic meaningfulness. (see RQ3 and chapter 5)

1.5.4 Context-Dependent Text Illustration and Description Re-

trieval

We provide a study of existing as well as some new models for the task of

context-dependent text illustration and description retrieval. We study several

models incorporating different kinds of features to study the relevant importance

of these features in modelling and retrieval of a relevant image from a repository

to match the semantics of the given text. We study and compare performance

of several previously published methodologies on GutenStories dataset. We

also qualitatively analyse the models by visualizing the representation space to

judge the semantic meaningfulness. (see RQ1 and chapter 6)

1.6 Thesis Outline

This PhD thesis follows a traditional outline, starting with background in-

formation, followed by four analysis chapters and closed with a conclusion.

Chapters 1 and 2 provide the motivation and necessary background for the

comprehension of this thesis. Chapter 3 describes the datasets used in the

following analysis. Then, Chapters 4-6 describe the analysis performed on the

task of stepwise illustration. Finally, we conclude in Chapter 7.

In Chapter 2, we provide the necessary background, followed by a compre-

hensive literature review of the existing related work done in the area. We

finish the chapter by picking up literature that most closely relates to our work.

In Chapter 3, we discuss the datasets used in this thesis. We describe

methods used for dataset creation and for systematic filtering and cleaning

techniques.

In Chapter 4, we study existing systems which are employed for the task of

automatic caption generation for news images. We particularly pick an existing

system which uses Latent Dirichlet Allocation (LDA) based methodology to

generate captions for news images but face several challenges. We reproduce

results of their methodology and propose some improvement mechanisms. Sub-
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sequently, we propose a novel deep neural-networks based summarisation model,

which generates relevant captions for news images, and which is inspired by

encoder-decoder architecture of neural translation systems.

In Chapter 5, we address and formalise the task of sequence-to-sequence

(seq2seq) cross-modal retrieval. Given a sequence of text passages as query, the

goal is to retrieve a sequence of images that best describes and aligns with the

query. This new task extends the traditional cross-modal retrieval, where each

image-text pair is treated independently ignoring broader context. Further-

more, we also propose a novel variational recurrent seq2seq (VRSS) retrieval

model for this seq2seq task. We focus specifically on a domain-constrained

dataset, namely Stepwise Recipe Dataset in this chapter.

In Chapter 6, we focus on the task of sequence-to-sequence (seq2seq) cross-

modal retrieval on a broader domain, GutenStories dataset. We study existing

methods in the literature for this task, and also propose some new methods.

In Chapter 7, we provide a conclusion and future research directions
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Chapter 2

Background

Our work is related to a several different lines of research. There is very rich

literature on multi-modal image-text representation and learning. We classify

the work presented here broadly into four sections: Multimodal representation

learning, Missing modality inference, Cross-modal retrieval and other related

multimodal tasks. In the next few sections, we present research from all of

the various related areas, specifically highlighting and emphasising upon those

closest related to our work. However, we begin by providing a section about

general introduction to the concepts in natural language processing. We have

also provided some background about common deep neural-networks based

architectures used in tasks in the sections ahead.

2.1 Prerequisites in Natural Language Processing

In this section, we discuss some of the prerequisites in natural language pro-

cessing. Arthur Samuel coined the term Machine Learning in 1959 as “the

ability for the computers to learn without explicitly being programmed” [119].

At the intersection of Machine Learning, Computational Linguistics and Data

Mining lies Natural Language Processing. It studies the processing of data

from natural languages (English, French etc) by computer programs. In this

thesis we use Machine Learning methods to perform specific Natural Language

Processing tasks related to the problem Stepwise Illustration and Caption

Generation. A typical real-world Machine Learning task consists of a pipeline

of steps or operations. It consists of steps like Data Preparation, Feature

Engineering, Model Learning and Evaluation. Chapter 3 describes the Data

Preparation and Evaluation stages. Data Preparation may include several

steps like Data Collection, Data Preprocessing etc. Data Preprocessing is

considered to be an important step in Machine Learning tasks. In the next

section, we discuss the ways to represent natural languages data for many
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tasks in Machine Learning. We also provide details of two widely accepted

approaches to represent textual data, namely Bag-of-words and word2vec,

which is based on distributed representations.

2.1.1 Representation

Machine Learning models work with numerical data, therefore it is essential to

represent the textual data as numeric vectors to make them a suitable input.

There are multiple ways of representing textual data in numerical format, for

example bag-of-words. A word or a phrase is thus represented as a numeric

vector, or a word embedding. Next, we discuss two most important ways to

represent textual data.

Bag-of-words

Another method for text representations is bag-of-words. It is a special case

of the n-gram model, where n = 1, and hence can be generalised to any n by

creating the vocabulary out of phrases of length n. Although there are few

drawbacks of using this representation. First of all, it ignores the word order

in the sentence. Therefore, it looses this important contextual information.

Secondly, it produces sparse representations, where high dimensional vectors

have very few nonzero elements.

Distributed Representations

Bag-of-words are sparse representations. Distributional hypothesis states that

“a word is characterised by the company it keeps”. There are many ways

of obtaining representations based on the distributional hypothesis. Tomas

Mikolov and Ilya Sutskever and Kai Chen and Greg Corrado and Jeffrey

Dean [134] proposed a model called word2vec based on the distributional

hypothesis. There have been many models proposed in recent literature that

project sentences, paragraphs or even documents to vector space using principle

of compositionality, that simpler constituent expressions’ meaning compose

complex expressions’ meaning [80].

2.1.2 N-gram

An n-gram is a concept in the fields of computational linguistics and probability.

It is a contiguous sequence of n items (phonemes, syllables, letters, words)

from a given sequence of text or speech.
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2.1.3 TF-IDF

TF-IDF or tf-idf is a technique used in text representation. tf-idf consists

of Term Frequency and Inverse Document Frequency. Term frequency is the

proportion of total number of times a given term t appears in the document

against (per) the total number of all words in the document. The inverse

document frequency provides a measure of how much information the word

provides. IDF can be thought of showing how common or rare a given word is

across all documents. As, some words appear more frequently in general, the

value of tf-idf increases in proportion to the number of times a word appears

in the document and is often offset by the frequency of the word in the corpus.

Kim et al. [67] recently proposed many document representation algorithms

for document classification.

2.2 Deep neural-networks based architectures

Deep Learning is a sub-field of Machine Learning that specifically studies

artificial neural networks multiple layers deep. In this section, we provide

literature related to some deep learning algorithms.

2.2.1 Convolutional Neural Networks (CNN)

A Convolutional Neural Network (CNN) is a common deep neural-networks

based algorithm which takes in an image as the input and is able to assign

importance (learnable weights and biases) to different aspects of objects in

the image and be able to differentiate one from the other. Therefore, it has

been commonly used for many classification problems. CNN has the ability

of automatic feature extraction, as it can compute features from a raw image.

Through the application of relevant filters, CNNs successfully capture the

Spatial and Temporal dependencies in an image. Some of the commonly used

CNN architectures are ResNet [50] and VGG [125].

2.2.2 Recurrent Neural Networks (RNN)

We also present research from recurrent neural networks (RNN) based al-

gorithms, as we aim to develop models that can incorporate context, and the

data is sequential in nature. Variational recurrent neural network (VRNN) [21],

which introduces latent random variables into the hidden state of a recurrent

neural network (RNN) by combining it with a variational autoencoder (VAE).

They showed that through the use of high level latent random variables, VRNN

can model the variability observed in structured sequential data such as natural
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Figure 2.1: Encoder Decoder Architecture

speech and handwriting image data. VRNN has recently been extended to

deal with other sequential modelling tasks such as machine translation [128].

Recently, an encoder-decoder architecture inspired from machine transla-

tion has been applied to image captioning and has achieved state-of-the-art

performance. In the next subsection, we describe this architecture.

2.2.3 Encoder-Decoder Architecture

Recently, Deep learning solutions have been employed to address machine

translation systems and have achieved state-of-the-art performance and are

called neural translation systems. In neural translation systems, an encoder-

decoder architecture is used. An encoder is used to read a sentence in the

source language and is transformed into a rich fixed length embedding vector

representation. This embedding vector is in turn fed to a decoder that generates

the sentence in the target language.

Figure 2.7 shows the architecture, here each cell is a Recurrent Neural

Network (RNN), and German words are encoded as sentence embeddings and

are further fed to these RNN cells. hi depicts the hidden vector that represents

the hidden states of the RNN cell at timestep t. A variable length sequence

“Echt”, “dicke” and “Kiste” is fed to the cells at different timesteps and system

encodes all of this information into a fixed-length vector. This fixed length

vector is fed to the decoder, represented with blue cells in this case. The

decoder generates the vector embeddings of the outputs “Awesome”, “Sauce”
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Figure 2.2: Neural Image Captioning Architecture

in target language that is English.

This architecture has been adopted in image captioning and a class of

methods called ‘neural-image captioning ’methods have been developed. The

idea here is to use a Convolutional Neural Network (CNN) as an encoder for

the image and Recurrent Neural Network (RNN) as a decoder. They view

captioning as a translation problem, where image is in the source language

and target language is English. Figure 2.2 shows the neural image caption

generator architecture. Here CNN is used to encode image to a fixed length

embedding vector. The yellow circles represent RNN cells at different timesteps.

xt is the input vector at timestep t. ht is the hidden state and yt the output.

Over the last few years, it has been convincingly shown the CNNs can

produce rich representation of the input image by embedding it to a fixed-

length vector, such that this representation can be used by a variety of vision

tasks [121]. Therefore, it is natural to use CNN as image encoder, by first

pre-training it for classification task. This network is subsequently used as an

off-the-shelf feature extractor, where the last hidden layer of the network is used

as a feature vector. This hidden representation is fed to the decoder to generate

descriptions for the image. [88] provide a model with similar architecture. [65]

developed a deep neural network that infers the latent alignment between

segments of sentences and region of image they describe. They use CNN for

encoder and a bi-directional RNN over sentences.

Some of these models are end-to-end, that is they are fully trainable using

stochastic gradient descent, sub-networks combine language and vision models.

[38] propose a model with similar architecture, they propose several methods

in which the image information can be incorporated into the LSTM, they use
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for language modelling. They use CNN for encoding images.

2.2.4 Neural language methods with attention

Rather than compress an entire image into a static representation, attention

mechanisms have been introduced which allow salient features to dynamically

come to forefront as needed. Using representations from the top layer of

a Convolutional Network that distill information in an image down to the

most salient objects is one effective solution. But it has a potential drawback

of losing information present in the lower layers which could be useful for

generating richer and more descriptive captions. Xu et al. [146] propose a

soft and hard attention mechanism for image captioning tasks. They use a

Convolutional Neural Network to encode the images and a Recurrent Neural

Network with attention mechanism to generate a description. By visualising

attention weights, they switch what the model is looking at while generating

a word. You et al. [153] propose a Convolutional Neural Network with an

attention mechanism that weights the image features and Recurrent Neural

Network to generate captions to describe weighted image features.

The basic problem that the attention mechanism solves is that it allows

the network to refer back to the input sentence, instead of forcing it to encode

all information into one-fixed length vector.

2.3 Multimodal representation learning

In the world around us, humans perceive data originating from different mod-

alities for example auditory, visual or tactile signals. Similarly, computers

process information from various modalities for example, images, audio or texts.

Although, information is spread out in different modalities, many times, the

underlying semantic concept is the same. For example, when somebody men-

tions the word “Apple”, or comes up with an image of an apple, the underlying

semantic concept that is being referred to, is the same. In order to bridge this

semantic gap, various attempts have been made in order to learn joint models

of data from different modalities. For example, Ngiam et al. [98] develops a

speech recognition system where they jointly model audio and visual modality.

They focus on learning representations of speech audio which are coupled

with videos of the lips. Bordes et al. [14], Ma et al. [90], Socher et al. [126]

only learn binary relations between objects of interest from different modalities.

Recently, many interesting applications have been developed by bridging

language and vision modality together, for example automated image cap-

tioning systems. In human perception, visual information is the dominant
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modality for acquiring knowledge, since a big part of brain is dedicated to

visual processing. Whether or not, there are languages involved in the visual

process is still an ongoing argument. However, to develop an intelligent system

that tries to achieve AI, having languages provide a way for human-computer

interaction. Multimedia applications that bridge language and vision mainly

fall into either of two categories, visual description or visual retrieval [143].

Some of the applications in this domain include automatic image captioning

systems, text-query based image retrieval systems. All of these applications

have become possible due to two main reasons.

• emergence of machine learning algorithms, specifically some deep neural-

networks based algorithms, which require a large amount of data

• the availability of this data due to recent growth in amount of digital

information available on the Internet.

2.3.1 Image-Text correspondence

A fundamental problem, in joint-modelling research, is to associate images

with some corresponding relevant, descriptive text. Such associations often

rely on semantic understanding and go beyond traditional similarity search or

image labelling tasks. One challenge is to provide a more human-like visual

understanding, where the text is expected to reflect abstract ideas and events

in an image, rather than simply identifying the objects in it. Related tasks

within this domain include image caption generation [100, 148, 154], visual

question answering [4, 145], and cross-modal image retrieval from text [139].

The aim of cross-modal retrieval is to return outputs of one modality from

a data repository, while a different modality is used as the input query. The

repository is therefore a multimodal one, usually consisting of paired objects

from the two modalities, but may be labelled or unlabelled.

In the case of image retrieval from text queries, the applications are endless.

Popular search engines today make a concerted effort to perform image search,

where a text query is used to retrieve the relevant matching images. A variety

of cross-modal retrieval methods have been explored over the years. Typically,

data from disparate modalities are projected onto a common representation

(feature) space to facilitate direct comparison in the search process. The al-

gorithms for learning such common representation space may be categorised as

supervised, rank-based, pairwise and unsupervised, as per a recent survey [139].

16



Figure 2.3: Semantic Common Embedding Space Learning
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2.3.2 Hinge loss

There are many ways to learn semantic correspondence between data from

two given different modalities, say images and texts. One possible approach

involves using Canonical Correlation Analysis to learn the correspondence

between the representations of both the modalities, thereby trying to preserve

correlation between the text and images in the joint embedding, for example

in Eisenschtat and Wolf [29] and Klein et al. [74].

A common approach uses hinge loss function to reduce pairwise distances

between corresponding data points. The hinge loss usually consists of the sum

of two symmetric terms. The first one, is over all negative text representations,

given the image query. The second one, is the sum over all negative images,

given the text query. Each term is proportional to the expected loss over sets

of negative samples. The hinge loss is zero, if a given image and text data

point are closer to one another in the joint embedding space than to any other

negative sample, by a fixed margin. In practice, for example in Karpathy and

Fei-Fei [63], Kiros et al. [69] and Socher et al. [127], rather than summing over

all negative samples in the training set, it is worth considering summing over

the negatives in a mini-batch of stochastic gradient descent for computational

efficiency.

The time complexity of computing these loss approximations is quadratic in

the number of paired image-text data points in a mini-batch. There are many

possible variants of this loss function. One is a pairwise hinge loss function in

which elements of positive pairs are encouraged to lie within a hypersphere of

a given radius in the joint embedding space, while negative pairs should be no

closer than another fixed margin. This causes and puts too many constraints

on the structure of the latent space, therefore is deemed to be problematic,

and it entails the use of two hyper-parameters which can be very difficult to

determine.

2.3.3 Order-embeddings

Mikolov et al. [97] showed a way to learn effective semantic embeddings for

words, using distributional hypothesis. It is based on idea of quantifying and

categorising semantic similarities between linguistic terms, on their distribu-

tional properties, in large collections of natural language data.

Most of the existing methods model the image-text relationships using

distributional semantics. The general idea, as outlined before, is to map the

objects under interest, texts and images into a very high-dimensional vector
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space, such that semantically similar objects are mapped to nearby points in the

common semantic space. The high-dimensional space is fully-ordered, therefore,

distance-preserving [20, 127]. As the space is distance-preserving, common

similarity functions, like Euclidean or cosine distance are used. Vendrov

et al. [137] argued the visual-semantic hierarchy follows a partially ordered

structure, than fully-ordered. They introduce order-embeddings, because their

embeddings are not distance-preserving, but order-preserving and applied them

to the tasks of hypernymy prediction and cross-modal image-text retrieval.

Athiwaratkun and Wilson [5] introduced probability densities rather than point

vectors in order embeddings.

2.4 Missing modality inference

The aim of missing modality inference is to generate or infer the outputs of

one modality from a data repository, while a different modality is used as the

given input. The repository is therefore a multimodal one, usually consist-

ing of paired objects from the two modalities, but may be labelled or unlabelled.

2.4.1 Image Captioning

Automatic caption generation or description generation for visual data is one of

the central tasks in computer vision and natural language processing research.

Traditionally, there has been significant work in image classification, object

detection and image annotation, but a relatively little focus on generating

descriptions involving a full sentence. So, some of the obvious solutions

consisted of combining the result of these methods with a stage, that arranges

these keywords in the form of a sentence. We list all of these methods under

two-stage architecture methods.

2.4.2 Two-stage architecture

As described above, these methods consist of a pipeline with two stages, namely

content selection and surface realization. The former stage, content selection

consists of an image annotation model that analyses the content of the image

and identifies “what to say” of the image. The latter stage, surface realization

consists of a language model, that analyses the keywords and identifies “how

to say” of the image. Fig 2.4 depicts the overview of the two-stage architecture

based methods in an illustrative diagram. We describe the content selection

and surface realization components in detail ahead.
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Figure 2.4: Two Stage Architecture

Content Selection

Much work within computer vision has focused on image annotation, a task

which is very much related but distinct from image description generation. The

goal in image annotation is to label an image with keywords relating to its

content. When the keywords belong to a fixed set of categories, the problem is

called image classification.

Supervised Image Annotation Methods

Here the problem is similar to image classification, as the keywords are fixed

and pre-defined at training time. The fixed set of categories are identified

usually in the form of classes of vocabulary words. Machine learning algorithms

are applied to learn a one-to-one correspondence between an image and these

classes. The core notion behind is to learn a mapping between visual feature

vectors and semantics of the image. A detailed review of supervised methods

for image annotation can be found in [58].
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Unsupervised Image Annotation Methods

These methods do not have a fixed set of pre-defined classes. Instead, an

attempt is made in order to learn the connections between visual features and

words and automatically cluster them into classes of words, which will finally

denote the semantics of the image. Typical solutions to this involve introducing

latent variables. Standard latent semantic analysis (LSA) and its probabilistic

variant (PLSA) have been applied to this task [101] , [53]. [7] provide a more

sophisticated model, they estimate the joint-distribution of words and regional

image features while treating annotation as a problem of statistical inference in

a graphical model. The final output is clusters of words, which appropriately

describe the content of the image.

Surface Realization

The output of the previous stage is a set of keywords that appropriately describe

the content of the image. The aim of this stage is to go from keywords to

sentence.

Two methods are generally popular for this approach, namely extractive

and abstractive methods:

Extractive methods

The main idea behind these methods is to use a database of sentences and

retrieve a relevant sentence rather than constructing sentences using a language

model. A sentence is retrieved to describe, or the description is generated by

identifying and subsequently concatenating the most important sentences in the

document. Various metrics could be used to calculate relevance of a sentence

with a set of keywords for example, word-overlap based sentence selection score,

vector-space based sentence selection score or topic-based sentence selection

score. [60] provide a comprehensive overview.

Abstractive methods

Although extractive methods yield grammatically correct sentences and require

relatively little linguistic analysis, there are few serious caveats to consider.

Many a times, such is the case that there is no single sentence in the document

that describes the image. These methods try to compose a sentence from

the keywords based on language models learnt. These could be probabilistic

generative models or neural-language based models.

In Farhadi et al. [32], images are parsed into < object, action, scene >

triplets. A more complex graph of detections beyond triplets is used by

Kulkarni et al. [76]. State-of-art object recognition and language generation

techniques are used in their model Babytalk. Feng and Lapata [37] provides

a news article caption generator. They use an LDA-based methodology for

image annotation and used a wide variety of surface realization techniques to

generate the description/caption for the given news image.
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All of these two-stage architecture methods have some serious limitations.

A list of keywords is often ambiguous. A set of keywords “blue, sky, car” could

depict “a blue sky” or a “a blue car”. Therefore, the models should be designed

such that there is strong correlation between phrases and images or sentences

and images that are semantically relevant. In other words, a direct leap should

be taken from image to sentence and vice versa. Moreover, these approaches

are heavily hand-designed and rigid when it comes to text generation. So, their

applicability becomes limited, cannot be generalized for new domains. We

refer to such qualities as “Sentential Integration” and “Generalized Applicabil-

ity”. In our critical analysis, we check on these qualities for existing approaches.

It is important to note, recently many deep neural-networks based archi-

tectures have been employed for the task of automatic caption generation for

images, called neural image caption generation. We further expand on these

methods in the penultimate section.

2.4.3 Image Synthesis

The problem of image synthesis/generation from textual queries has also been

studied in recent literature. Reed et al. [112] proposed usage of some recent

conditional generative models, namely Generative Adversarial Networks (GAN)

[43] for generating images from natural language text.

Zhang et al. [157] aimed to produce high quality photographic images

conditioned on semantic text descriptions using their proposed model HDGAN.

They introduced a hierarchical-nested adversarial objective inside the network

hierarchy, with the intention of regularizing mid-level representations and

assist generator training to capture the complex image statistics. They pushed

generated images up to high resolutions of 500 pixels wide and 500 pixels deep

using an extensible single-stream generator architecture to better adapt the

jointed discriminators.

Zhang et al. [156] argued to decompose the hard problem of high-resolution

image generation into more manageable sub-problems through a sketch-refinement

process. They introduced a stacked GAN architecture, where the first-stage

GAN sketches the primitive shape and colours of the object based on the given

text description, yielding first-stage low-resolution images. The second-stage

GAN takes first stage results and text descriptions as inputs and generates

high-resolution images with photo-realistic details. It is also able to rectify any

defects in results of the first stage and even add compelling details with the
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refinement process. Zhang et al. [155] further improved upon the idea, while

Xu et al. [149] incorporated attention.

2.5 Cross-Modal Retrieval

Methods in cross-modal retrieval can be broadly categorised into:

2.5.1 Atomic Cross-Modal Retrieval

In order to perform retrieval, the multiple modalities are typically represented

in some shared common feature space to facilitate direct comparison. Classical

approaches to compare data across modalities include canonical correlation

analysis (CCA) [46], partial least squares (PLS) regression [113], and their

numerous variants. But these are unsupervised and suffer from the problem

of the “semantic gap” between modalities and their low-level features versus

high-level semantic concepts. Further, Rasiwasia et al. [110] showed that class

information and semantic matching could be leveraged to reduce the semantic

gap.

More recently, various deep learning models have been developed to learn

shared embedding spaces based on paired image-text data, either unsupervised,

or supervised using image class labels. The deep models popularly used for

cross-modal retrieval tasks include deep belief networks [99], correspondence

autoencoders [34], deep metric learning [51], and convolutional neural networks

for very large databases [140].

However, given the high dimensionality of the feature space, generalisability

remains an issue and matching accuracy is also affected. Bokhari and Hasan

[13] differentiate ways of combining information from separate modalities.

Combining the individual classifier scores from different modalities is another

approach, where some rule-based decisions are made.

With most of these models it is expected that by learning how to create

embeddings from such pairwise aligned data, the common representation space

will be capturing semantic similarities across the modalities.

2.5.2 Sequential Cross-Modal Retrieval

Most cross-modal retrieval and similarity search systems, however, do not

consider sequences of related data, in the query and result. In traditional image
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Figure 2.5: Encoder Decoder Architecture

retrieval using text queries, for example, each image-text pair are considered

to be an “atomic” unit, as represented in 2.5. They have been considered in

isolation and any broader ‘context’ has been ignored. The incorporation of

such context is an important step towards semantic knowledge discovery. An

image-from-text retrieval model that is aware of context must look beyond

merely the associated paired text of an image in the repository to retrieve the

appropriate result. It must also consider the sequential relationships between

the entire set of texts and images.

Such context-aware cross-modal retrieval is possible using a model that

takes into account sequence-to-sequence (seq2seq) retrieval, where contextual

information and semantic meaning are both encoded and used to inform the

sequence based retrieval from the data repository.

There are a variety of applications that can benefit from image-text se-

quence retrieval, such as stepwise recipe illustration, or a more generalised story

picturing. In the context of recipe illustration, an effective retrieval system

must produce a set of relevant images corresponding to each step of a given

text sequence of recipe instructions, as represented in 2.6. Similarly, for the

general task of automatic story picturing, a series of suitable images must be

chosen that illustrate the events and abstract concepts found in a sequential

input text taken from a story. Thus, the model must look beyond the single

image-text pair and must also consider associations between the entire sequence

of image-text pairs that together make up a recipe or story.
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Figure 2.6: Encoder Decoder Architecture

Story Picturing

An early story picturing system [61] retrieved images that suit a very specific

description. They used images from the Terragalleria dataset1 and the AMICO

dataset2 to illustrate ten short stories based on key terms in the stories and

image descriptions as well as a similarity linking of images. The idea was

pursued further with a system [41] for helping people with limited literacy to

read more easily. This system split a sentence into three categories and then

retrieved a set of explanatory pictorial icons for each category.

An application [23] for making news articles more interesting by adding

illustrations retrieved from the MIRFlickr-25000 dataset [57] used a sliding

window over previous sentences to condition the retrieval. Another automatic

illustration system [22] performed textual search and visual clustering over the

repository in order to retrieve suitable illustrations. These systems are closer

to text illustration systems than context-dependent story picturing systems.

To our knowledge, an application [68] that ranks and retrieves image se-

quences based on longer paragraphs as text queries was the first to suggest

extending the pairwise image-text relationship to matching image sequences

with longer paragraphs. They employed a structural ranking SVM with latent

variables and used a custom-built Disneyland dataset, comprising of blog posts

along with associated images, as the image-text parallel corpus from which to

learn joint embeddings. Further, they augmented the same latent space with

images from visitors’ photo streams. We follow a similar approach for creating

our image-text parallel corpus from cooking recipes rather than blog posts and

design an entirely new seq2seq model to learn our joint embeddings.

1http://www.terragalleria.com
2http://www.amico.org
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Coherence Neural Story Illustration (CNSI) was built on an encoder-decoder

network, as described in Ravi et al. [111]. CNSI was used to first encode sen-

tences using a hierarchical two-level sentence-story Gated Recurrent Unit

(GRU), and then sequentially decode into a sequence of illustrative images

corresponding to a passage of text. In their model, a previously proposed coher-

ence model [103] was used to explicitly model co-references between sentences.

Visual storytelling

The main aim in visual storytelling is, given a sequence (of images) as the

query, retrieve a sequence (of text descriptions) that best describes and aligns

with the query and are coherent.

The Visual Storytelling Dataset (VIST) dataset 3 [56] was built with a

motivation similar to our own, but for generating text descriptions of image

sequences rather than the other way around. Relying on human annotators to

generate captions, VIST contains sequential vision-to-language pairs with a

focus on abstract visual concepts, temporal event relations, and storytelling.

They highlighted the difference between a literal description of an image and

the more figurative language used for an image in a wider story context. In

our work, we focus on producing similar sequenced datasets in an automated

manner by selecting sources such as cooking recipes.

In [87], a joint sequence-to-sequence model was formulated to learn a

common image-text semantic space. After enforcing coherence of predicted

sentences, they were able to generate paragraphs to describe photo streams.

They performed experiments on both the above datasets for this text generation

task. Recent work [111] has used the VIST dataset for the inverse problem

of retrieving images when given text, similar to the illustration problem that

we are interested in. They focus on sentences that are abstract and have

a sequential aspect. An encoder-decoder network was used to illustrate a

sequence of sentences that form a story. They use the VIST dataset despite

this not being custom-built for such a task.

2.5.3 Common Embedding Space Learning

A number of pairwise-based methods over the years have attempted to address

the cross-modal retrieval problem in different ways, such as metric learning

[108] and deep neural networks [138] to learn a shared feature space. For

3http://visionandlanguage.net/VIST/
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instance, [64] devised an alignment model that learns inter-modal correspond-

ences between images and text using MS-COCO [85] and Flickr-30k [107]

datasets. In [70], they proposed unifying joint image-text embedding models

with multimodal neural language models, making use of an encoder-decoder

pipeline. A later method [31] used hard negatives to improve their ranking loss

function, which yielded significant gains in cross-modal retrieval performance.

Such systems focus only on isolated image retrieval from the repository when

given a text query, and do not address the seq2seq retrieval problem that we

study in this work.

In a slight variation to the cross-modal retrieval problem, in [6] the goal

was to retrieve an image-text multimodal unit when given a text query. For

this, they proposed a gated neural architecture to create an embedding space

from the query texts and query images along with the multimodal units that

form the retrieval results set, and then performed semantic matching in this

space. The architecture consisted of embedding layers and relevance matching

layers, and the training minimized structured hinge loss, but there was no

sequential nature to the data used.

Recently, a stacked cross-attention network was introduced by Lee et al.

[82], to study the problem of discovering the full latent alignments using both

image regions and words in a sentence as context and infer image-text similarity.

It was thus employed for the cross-modal retrieval task, by learning a common

embedding space.

Lu et al. [89] proposed a model for learning task-agnostic joint represent-

ations of image content and natural language. It is an extension over the

popular BERT [27] architecture to a multi-modal two-stream model, processing

both visual and textual inputs in separate streams that interact through

co-attentional transformer layers.

2.6 Other related multimodal tasks

There are various interesting applications at the intersection of natural language

processing and computer vision. In the next subsections, we categorize the

literature based on the applications or the research problem that they tackle.

Starting from image captioning systems, visual storytelling, visual question-

answering to multi-modal summarisation.
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Figure 2.7: Encoder Decoder Architecture

2.6.1 Image-sentence Ranking

A large body of work has addressed the problem of ranking descriptions for a

given image, for example in [42] improving image sentence embeddings using

large weakly annotated photo collections. Such approaches are based on the

idea of co-embedding of images and natural language texts.

2.6.2 Visual Question-Answering

This is form of a renewed experiment in AI, to develop understanding ability of

machines for visual and textual data. Some of the works have focused on visual

question answering interfaces, where given an image and a natural language

question about the image, the task is to provide an accurate natural language

answer [2].

2.6.3 Multimodal Summarisation

In this section, we provide a literature review of both text-only and multi-modal

summarisation of documents. Traditional methods to date involve designed

features such as sentence position and length. Features like words in the title,

the presence of proper nouns, content features such as word frequency and

sometimes event features such as action nouns [30].
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Wang et al. [141] have proposed a low-rank approximation approach,

where they use CNN to encode images and RNNs for sentences to learn

joint-embeddings of news stories and images for timeline summarisation.

Recently, there has been a surge of interest in repurposing sequence trans-

duction neural network architectures for Natural Language Processing [130].

Encoder-Decoder architecture modelled by a Recurrent Neural Networks has

also been used.

Rush et al. [114] propose a neural attention model for abstractive sentence

compression which is trained on pairs of headlines and first sentences in an

article.

Cheng and Lapata [19] use a hierarchical document encoder and attention-

based hierarchical content extractor, but is only for text-only documents. Their

representation framework includes, they first use a single layer Convolutional

Neural Network CNN with max-over pooling operation. The CNN operates at

the word level. They use a Recurrent Neural Network that composes a sequence

of sentence vectors into a document vector, which captures the sentence to

sentence transitions. They propose two sentence extractors as well as word

extractor models to generate summaries.

Recently many models to effectively represent semantics of a sentence were

introduced [72]. Kiros et al. [72] introduced SkipThoughts model, it essentially

attempts to take the skip-gram model [134] for learning representations at the

sentence level. It is trained on the BookCorpus dataset consisting of 11,038

books and 74,004,228 sentences. The SkipThoughts model uses the framework

of neural translation models which consists of an encoder and a decoder to

learn sentence embeddings. That is, an encoder maps words to a sentence

vector and a decoder is used to generate the surrounding sentences. Encoder

is used to map an English sentence into a vector. The decoder then conditions

on this vector to generate a translation for the source English sentence.

The SkipThoughts model uses RNN with Gated Recurrent Unit (GRU)

activations as an encoder and RNN with a conditional GRU as a decoder. In

Kiros et al. [71], two separate models were trained on the BookCorpus dataset.

One is a unidirectional encoder with 2,400 dimensions, and the other is a

bidirectional model with forward and backward encoders of 1,200 dimensions

each which are subsequently concatenated to form a 2,400-dimensional vector.

The SkipThoughts vectors used in our work are a concatenation of the vectors

from both models, resulting in a 4,800-dimensional vector.
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Table 2.1: Relevant Literature as per the Objectives

Model Summary General Sentential Features Topic

Feng and Lapata [37] yes yes no no no
Long et al. [88] no yes yes yes no
Cheng and Lapata [19] yes no yes yes no
Ravi et al. [111] yes yes yes yes no

2.7 Critical Review

In this section, we list down some selected methodologies from various tasks/domains

for the purpose of a critical review, as to what features they do or do not

have. Therefore, the LDA methodology in Feng and Lapata [37], Neural Image

Captioning in Long et al. [88], Neural Summariser in Cheng and Lapata [19],

attention based model in Xu et al. [146] mentioned in the previous sections

and Coherence Neural Story Illustration (CNSI) built on an encoder-decoder

network, as described in Ravi et al. [111].

According to the objectives for the research question identified to be

addressed in chapter 1. Following is the current state in the existing relevant

literature.

Table 2.1 lists down some methodologies mentioned in the previous sections

and provides a critical account on the basis of “Summary”, as in whether their

model focuses on a bigger form of text or not, “General”, whether the model

has generalised applicability to new domains or not, “Sentential”, as in if there

is direct leap taken from the image to text or text to image domain or not,

“Features” to represent if the methods compute the features automatically or

not. The “Topic” represents if a latent topic vector is also generated in the

methodology or not.

It can also be observed from the Table 2.1 that no methodology satisfies all

of our listed objectives. We analyse their methodologies in detail in the next

chapters and also compare results in the experimental set-up sections.
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Chapter 3

Datasets and Evaluation

This chapter addresses TC1, that of “Can we automatically create resources

for the task of automatic stepwise illustration?”. Chapter 2 provides an overall

background and describes the previous works analysing the problem of stepwise

text illustration and some related problems. Those works involve collecting and

annotating datasets from those platforms with respect to the task for which

they are used. In this chapter, we discuss some of the datasets that are relevant

for our task. We also introduce two new novel datasets in the following sections.

We describe the process of dataset construction and systematic cleaning and

filtering carried out. In the next chapter, we utilise the publicly available

BBC News corpus, to address some of our research questions. Additionally,

we have utilised datasets from the cooking domain that are publicly available,

described in the further sections. In the last section, we also provide with some

commonly used evaluation measures for these datasets.

3.1 Cooking Recipe Datasets

In the cooking domain, the first attempt in exploring automatic classification

of food images was the creation of the Food-101 dataset [15] which contained

101K images across 101 categories. Since then, the newer Recipe1M dataset

[118] has gained wide attention. The Recipe1M dataset paired each recipe with

several images, thereby building a large dataset of 13M food images for its 1M

cooking recipes. Recent work [17] proposed a cross-modal retrieval model that

aligns images and recipes in a shared representation space, using the Recipe1M

dataset.

As this dataset does not offer any sequential data, it cannot be utilised for

stepwise text illustration, this association is only between images of the final

dish and its corresponding entire recipe text. We build and release a sequenced

31



recipe dataset, called Stepwise Recipe dataset. It provides, by comparison, an

image for every step of the recipe instructions, resulting in a complete sequence

of image-text pairs for each recipe in the repository.

RecipeQA [150] is another recent popular dataset in the cooking domain.

It is used for multimodal comprehension and reasoning tasks on recipes. The

dataset is primarily used for its 36K questions that pertain to the 20K recipes,

but in addition it contains illustrative images for each step of the recipes. The

RecipeQA dataset has been used in recent work [3] to analyse coherence rela-

tions in multimodal image-text contexts, thereby producing a human-annotated

corpus that labels coherence relations between the image-text pairs. Different

inferential relationships were characterised, and the annotators were asked

questions that helped to identify the relationships in each image-text pair.

These range from cases where the image directly depicts the action described

in the text to cases where the image provides some information about the

process or outcome but may either omit or add details. The RecipeQA dataset

is comparable to our newly created Stepwise Recipe dataset and reveals similar

associations between image-text pairs.

3.2 BBC News Dataset

BBC News [35] is a publicly available dataset consisting of articles trawled

from the BBC News website. It satisfies the following criteria:

• First, it is a representative of real-world data, as it is created from BBC

news web pages.

• Second, it includes images with annotations that will potentially help in

providing visual-textual correspondences

• Third, it also consists of auxiliary information. This auxiliary information,

which provides a context to the news article could allow the mining of

related linguistic information in order to help us create human readable

descriptions.

• Fourth, it also contains gold standard captions for the evaluation of the

output produced by the proposed methodologies.

Previously, many image related datasets have been used in computer vision

and image retrieval, but they are not directly suitable for caption generation,

since they have been created and annotated for different purposes. Yao et al.

[151] provides an example for image parsing. Many other examples include,
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datasets published for the tasks of image annotation, segmentation, object

recognition, scene analysis [94], [84], [44], [24], [8], [115], [120]. It is worth

noting, that most of the existing datasets often contain at the maximum, one or

two prominent objects against a relatively simple background. Also, in terms

of annotation keywords, the range is between 1 and 220. Very few contain full

captions. They are also limited in domain, as most of them belong to a specific

object category or scene types, for example actions.

Table 3.1: BBC News dataset statistics.

Measure Value

Number of documents 3, 361
Image width 200
Image height 150
Average caption length 9.5 words
Average document length 421.5 words
Caption Vocabulary size 6, 180 words
Document Vocabulary size 6, 180 words

For the above following reasons, we decided to work on the publicly available

BBC news dataset and find it the best fit for the tasks, addressing some of our

objectives. It was created by downloading articles from the BBC News website.

Table 3.1 provides detailed statistics of the BBC News dataset. The captions

tend to use half as many words as the document sentences, and more than 50

percent of the time contain words that are not attested in the document (even

though they may be attested in the collection).

The accompanying news article text, as can be seen in figure 3.1, can

have denotative or connotative relations with the given image. Denotative

refers to describing some of the objects the image depicts, while connotative

refers to describing the sociological, political or economic attitudes reflected

in the image. The dataset is weakly-labelled. Therefore, this presents several

interesting challenges to the problem as well. It is also worth noting, the news

images present in this dataset are often cluttered, they display several objects,

not only a few prominent ones and consist of complex scenes, and are rendered

in a low resolution, adding further challenges. The images, accompanied with

collateral text, can be informative and make up for the noise. The presence

of background information for a news article, which the corresponding image

depicts, or supplements is a highly useful feature of this dataset. Furthermore,

rich linguistic information present in the text can be exploited to address the

caption generation process with methods related to text summarisation without
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extensive knowledge engineering.

3.3 GutenStories

For the task of automatic stepwise text illustration, we present the GutenStor-

ies dataset and its mini version and show how they can be used to facilitate

research in language and vision. Our final GutenStories dataset consists of

around 18K visual stories. Each visual story consists of a sequence of text

description and image pairs. We first give details about the construction of the

dataset. The further subsections also provide some statistics of both versions

of the dataset.

In the next section, we first demonstrate the approach to create this unla-

belled dataset of sequenced image-text pairs from any source. We release the

newly created data repository, GutenStories, consisting of 18K visual stories

with a total of 90K associated images, respectively, where each segment of text

is paired with its corresponding image.

3.3.1 Construction

The construction of this type of image-text parallel corpus has several challenges

as highlighted in previous work [68]. The text in a recipe is often unstructured,

and therefore we do not have information about the canonical association

between image-text pairs. Each image in a recipe is semantically associated

with some portion of the text in the same recipe. We assume that the images

chosen by the author of the web content to augment the text segments of

the post are semantically meaningful. Therefore, we must perform some text

segmentation to divide the scraped text into segments that are each expected

to be associated with a single image.

Figure 3.2 provides an illustrative diagram of the process of dataset con-

struction. The above process is carried out in a systematic way as illustrated.

We also release the source code of the crawler. It consists of the following

components:

• Web Crawler Given a set of web pages from any web source that might

be consisting of multimodal information thematically collocated. The

crawler randomly extracts HTTP documents possible consisting of a

multimodal story.
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Figure 3.1: BBC News Corpus shows sample news articles containing text,
image and caption in the bold.
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Figure 3.2: Web Crawler for automatic construction of the dataset.

36



• Image Extraction and Alignment Framework The image extrac-

tion and alignment framework, first of all segments text based on some

existing methods. Then the given images, are allocated to the text

segments based on relative image-text distance in the document.

• Image and Text Based Filtering We then filter out images based on

the encoding format and by discarding images whose either dimension is

less than 200 pixels. Finally, we perform text-based filtering by following

[122] to ensure high text quality:

– First, descriptions should have a high unique word ratio covering

various Part-of-Speech (POS) tags therefore descriptions with high

noun ratio are discarded.

– Second, descriptions with high repetition of tokens are discarded.

– Third, some predefined boiler-plate prefix-suffix sequences are also

removed.

The GutenStories dataset has been programmatically created by crawling

visual story web pages from Project Gutenberg website, following the process

described in dataset construction section. Project Gutenberg, as mentioned

before is an online catalogue containing more than 57,000 digital books. We

also discarded non-English stories and discard stories which contain less than

three images. We then performed image-based and text-based filtering, as

described in the previous section.

To ensure a balance of cleanliness, informativeness, fluency and learnability

of the resulting image, caption pairs, a set of quality control measures are

followed ahead of image-based or text-based filtering. These quality measures

are presented in the dataset construction section.

Originally, we crawled 600k image-text pairs, based on the above filtering

steps, only around 15% of candidates were passed on to the later stages. After

filtering, the GutenStories dataset consists of around 18k visual stories and

90k image/text pairs.

3.3.2 mini-GutenStories

We also introduce a mini-version of the GutenStories dataset, mini-GutenStories,

containing super fine quality control checks and manual human intervention to

remove errors. The mini version was created by hand-picking some key children

storybook authors like Beatrix Potter, Roald Dahl, Rudyard Kipling and the
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Table 3.2: GutenStories dataset statistics.

Measure Value

Number of stories 5,774
Minimum number of words 165
Maximum number of words 2,325
Number of images 97,047

like. This version only consists of artificial images and stories particularly for

an audience under the age of 9. The mini-GutenStories consist of 6K image,

description pairs which can be aligned to 250 visual stories. Example text

passage-image pairs are shown in Figure 6.2.

Table 3.3: mini-GutenStories dataset statistics.

Measure Value

Number of stories 250
Number of authors 25
Minimum number of words 182
Maximum number of words 1,227
Number of images 6,427

Table 3.2 and Table 3.3 provides dataset statistics for the GutenStories

and miniGutenStories dataset respectively.

3.4 StepwiseRecipeDataset

We construct the Stepwise Recipe dataset in a similar way as described before.

It is composed of illustrated, step-by-step recipes from the following three

websites: the Simply Recipes1, Visual Recipes2 and Olga’s Flavor Factory3.

The primary dataset consists of about 2K recipes with 44K associated images

(Table 3.4). After augmenting with RecipeQA [150] recipes, we obtain 10K

recipes in total and 67K images (Table 3.5).

Figure 5.1 shows an example of the stepwise instructions and illustrations

from a cooking recipe taken from our newly-built dataset. A few selected text

recipe instruction steps are shown alongside the full sequence of recipe images.

Note that retrieval of an accurate illustration of Step 4, for example, depends

on the data model being able to encode the context from the previous steps of

1https://www.simplyrecipes.com
2http://www.visualrecipes.com
3http://www.olgasflavorfactory.com
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the recipe, as the current step adds to pre-existing information acquired from

earlier steps.

Table 3.4: (Primary) Stepwise Recipe dataset statistics.

Measure Value

Number of recipes 2,832
Minimum number of words 202
Maximum number of words 7,325
Mean number of words 1,040.5 ±673.2
Number of images 44,341

Table 3.5: (Augmented) Stepwise Recipe dataset statistics.

Measure Value

Number of recipes 10,350
Minimum number of words 202
Maximum number of words 7,325
Mean number of words 1,180.5 ±541.6
Number of images 67,087

The following steps were taken during the dataset preparation:

• Recipes were automatically scraped from the websites and cleaned of

HTML tags.

• The final recipes contain the recipe title, author, publication date (if

available), and the description including ingredients list and comments

uploaded by website users.

• In the recipe body text, images are referenced by image tag of the format

”IMAGE IMGxxxxxx” where ”xxxxxx” indicates the image ID.

• Each recipe is further supplied with metadata which contains the name

of the author, the title, the topic (if available), the date and time of

download, the date and time of publishing (if available), the URL, and a

list of the recipe’s image IDs.

• Each JPEG image is supplied with metadata containing its ID, the time

and date of download, and its URL.

Furthermore, as mentioned before, we have augmented our Stepwise Recipe

dataset with the RecipeQA dataset [150], which contains illustrative images

39



for each step of the recipes in addition to data for visual question answering.

We follow the same filtering pipeline for images and texts on the RecipeQA

dataset, and only augment data points that satisfy the criteria. After merging

these two similar datasets, our final corpus contains 10K recipes and a total of

67K images.

3.5 Evaluation Measures

As also described in Chapter 2, Evaluation is an important stage in a typical

Machine Learning pipeline. Evaluation of a model’s performance and its ability

to generalise to unseen data can done in various ways. This section discusses

various model validation approaches and performance metrics for the tasks

relevant in this thesis. Precision and Recall are two important measures in

Information Retrieval. Precision is defined as the fraction of relevant data

points out of retrieved data points. Recall is fraction of relevant data points

amongst actually retrieved. Both are commonly used in Machine Learning and

Information Retrieval.

Challenges

However, there are a few challenges involved in evaluating the correct re-

trieval of an image sequence with traditional metrics like Precision and Recall.

As, there is no one visually correct sequence of images. There could be multiple

image sequences in storytelling that describe a story without ambiguity. A fair

evaluation metric must take into account not only the gold standard sequence,

but also other visually correct sequences. Recently, in literature, such evalu-

ation metrics were proposed [111]. These evaluation metrics involve checking

for correct salient objects or scenes in the images, rather than checking correct

image matches.

Following are some of evaluation measures commonly used. We also discuss

some recently proposed evaluation measures and challenges that they overcome:

3.5.1 Precision

Precision is defined to be fraction of relevant items retrieved by a model to

the total number of retrieved items. It is assumed that correct items exist

as gold-standard items for unseen data. Here, relevant refers to those cases

where retrieved items are exactly same as gold-standard items. retrieved is
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the set of all retrieved items.

Precision =
|{relevant} ∩ {retrieved}

|retrieved|
(3.1)

3.5.2 Recall

Recall is defined to be fraction of items that are relevant to the query that are

retrieved.

Recall =
|{relevant} ∩ {retrieved}

|relevant|
(3.2)

3.5.3 Recall@K or R@K

The above described retrieval measures can also be studied at a given cut-off

rank, by considering only the topmost retrieved items by the system. Here,

topKretrieved are the set of top K most recommended items by the system.

Recall@K =
|{relevant} ∩ {retrieved}

|topKretrieved|
(3.3)

3.5.4 Story Recall@K or StR@K

We also introduce a new metric called Story Recall @ K to ease down conditions

in stepwise illustration task. One of a challenge associated with metrics like

Recall@K are they only measure the degree of exact matches of the retrieved

images with regards to the gold-standard images. This might not be appropri-

ate for our text illustration task since a given text segment could be illustrated

by multiple images expressing similar semantics. Therefore metrics like Visual

Saliency Recall, Textual Saliency Recall which we define ahead were introduced.

The main concept underlying among saliency based recall measures is to

redefine what constitutes relevant items among the ones that are retrieved. In

Recall@K, only the gold standard entity is considered to be relevant. But in

these measures, if both the images retrieved and gold-standard consist of same

salient objects, they are considered to be relevant. We define Story Recall @ K

measure by marking every image in the same gold-standard image sequence to

be relevant. We refer to an image being storyrelevant, if it belongs to same

sequence as the gold-standard image.

StR@K =
|{storyrelevant} ∩ {retrieved}

|topKretrieved|
(3.4)

3.5.5 Visual Saliency Recall

Ravi et al. [111] introduces Visual Saliency Recall. They train a VGG19
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[125] Network on ImageNet for 20,754 categories. They choose the top 10

most probable categories, as they are mostly interchangeable. Therefore, to

define Visual Saliency Recall, visualrelevant is defined to be cases where the

retrieved image is classified in the same category by the trained CNN network

as gold-standard image.

Visual Saliency Recall @K or VSR@K is defined using the equation below:

V SR@K =
|{visualrelevant} ∩ {retrieved}

|topKretrieved|
(3.5)

3.5.6 Textual Saliency Recall

Textual Saliency Recall is defined following similar concepts. However, instead

of training a Convolutional Neural Network, the corresponding paired text for

the retrieved image has entities that overlap with those entities found in the

text query. It assumes a parallel image-text corpus. We use Latent Dirichlet

Allocation [10] as topic modelling approach to extract topics or entities from

the text. textualrelevant is defined if between the respective corresponding

text segments of retrieved image and the gold-standard image have at least

one common entity.

TSR@K =
|{textualrelevant} ∩ {retrieved}

|topKretrieved|
(3.6)

3.5.7 Inception Score

Salimans et al. [117] introduced Inception Score. It is a metric for automatically

evaluating the quality of image generative models. It was also shown to be

correlating well with human scoring of the realism of generated images from

the CIFAR-10 dataset [75].

3.5.8 BLEU

Bilingual Evaluation Understudy scores or also known as BLEU scores are

basically the averaged percentage of n-gram matches, for each n-gram you

calculate the percentage of matches. The BLEU [102] scores are typically used

to evaluate machine translation models. They are calculated based on number

of n-gram matches.

Meteor

The Meteor [78] score are computed in a similar way as BLEU scores, except

they overcome the limitation of BLEU by also taking synonyms into considera-

tion.
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Chapter 4

Neural Caption Generation

for News Images

This chapter addresses RQ2, “How can we fuse information from different mod-

alities to summarise the given content for developing context-based models?”.

Therefore, in this chapter, we focus on the first step, that of modelling context

information of an atomic text passage and image pair. In this part, we focus

on summarizing a pair of text passage and an image. More specifically, we

focus on the problem of caption generation, in the domain of news images.

4.1 Introduction

There is rich information available on the Internet. Many online news sites

like CNN, Yahoo, BBC etc. publish images with their stories and even provide

photo feeds related to current events. These news sites are a good resource

for multimedia files containing information in the form of videos, images and

natural language texts.

News image caption generation, however, is different from the typical image

captioning task. The input to news image caption generation is both a news art-

icle and its accompanying image, as opposed to the traditional image captioning

task where the input is only an image. Hence, rather than enumerating objects

in a given image and describing their properties or relationships to each other

as in the traditional image captioning task, the output of news image caption

generation is informative text not only describing the key semantics conveyed in

the given image, but also summarising the content of its relating news article [9].

An example is shown in Figure 3.1. The figure shows two sample data

points from the BBC News Corpus. On the right, the text passages are the

given news articles, the caption is provided in the bold text under the image.
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It can be seen that the captions of news images provide more information than

what have been depicted in images only. For example, a reasonable caption for

the second image would be “A building”. But its actual caption conveys much

more information and it is evident that the text content of news articles would

also need to be considered when generating good captions for news images.

News caption generation tools can assist journalists in creating descriptions

for the images associated with their articles or in finding images that appro-

priately illustrate their text. It also helps in increased accessibility of web for

visually impaired individuals (blind or people with partially impaired vision)

users who cannot access the content of many sites in the same way sighted

users can [39].

A wide variety of techniques exist for caption generation ranging from

semantic space learning [63], where both supervised and unsupervised methods

exist to learn associations between features extracted from image and words, to

latent variable models [35]. There are models inspired by information retrieval

and instantiations of noisy-channel model [79]. Semantic space learning models

learn parameters to map an image to a caption, whereas latent variable models

are probabilistic in nature. Recently, there has been a surge of interests in

neural caption generation methods due to ground-breaking results produced

by deep learning. Mainly, they all have a fundamental architecture in common

which is inspired by encoder-decoder architecture from neural machine transla-

tion [152] [66] [18]. More details are provided in chapter 2.

In the encoder-decoder models, caption generation is seen as a translation

problem where image is translated to a natural language. Convolutional Neural

Networks (CNNs) are typically used as an image encoder, whereas Recurrent

Neural Networks (RNNs) are used for decoding sentences, because of their

sequence modeling capability. Although there are other variants proposed, for

example, with attention mechanisms included, the encoder-decoder architecture

is at the heart of these methodologies [147].

As also presented in Chapter 2, existing work in news image captioning

generation is scarce. An early approach tackled the problem with a two-stage

process, content selection and surface realization. The first stage consists

of an image annotation model, where a given image is tagged with a set of

keywords based on topics learned from both news article texts and images

using a variant of Latent Dirichlet Allocation (LDA) [11]. The second stage

uses extractive and abstractive summarisation techniques in forming a sen-

tence from these set of keywords. Word-based models are highly specific in
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nature and may results in ambiguous results. There is need of sentential integ-

ration with the images, as a sentence describes an image without any ambiguity.

In this chapter, we propose a sequence-to-sequence deep neural-networks

(NN) based model to address the news image caption generation problem.

Specifically, we first encode each sentence of a given news article using an

order-embedding vector and extract semantic features from the accompanying

image using a pre-trained CNN Network, which are further projected to same

semantic space, such that both text and image vectors reside in a common

semantic space [136]. We then feed the sentence vectors together with the

image vector to a Long Short-Term Memory (LSTM) network [116] to generate

a vector representation of the image caption. Finally, we use the generated

vector to retrieve the most similar sentence from the original news article based

on cosine similarity measurement as the caption of the given image. We also

explore a number of variants of our proposed architecture and compare them

with the previous work on the news image captioning task.

Our experimental results on the BBC News Corpus show that our proposed

strategies outperform traditional methods according to automatic evaluation

metrics like BLEU scores [102] and are comparable in terms of Meteor Scores

[78]. Since automatic evaluation metrics are currently limited by their capabil-

ity to measure the quality of caption generation models, a human evaluation

experiment has also been conducted, where users were shown the news articles

from our test dataset.

Our evaluation results show that captions generated by our proposed ap-

proach were more favoured than captions generated by an existing model

based on LDA. In what follows, we first discuss related work and then describe

our proposed methodology, followed by experiments and results, and finally

conclude this chapter.

We make following contributions:

• We provide a comprehensive analysis of different ways of modelling

multimodal information.

• We show that incorporating a sentential structure into modelling frame-

work is beneficial as compared to previously published methods.

• We perform exhaustive analysis of features relevant to news image caption

generation or retrieval.

• We propose a novel deep neural-networks based methodology that uses
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LSTM cells to process and caption a given pair of news article and its

accompanying image.

• We compare the proposed methodology with several existing algorithms

in terms of various evaluation measures.

• We also provide human judgement results.

4.2 Problem Formulation

Our problem is formulated as follows: given a news image I, and its associated

article D, create a sentence description S that best describes the image given

D. The training data thus consists of document-image-caption tuples like the

ones shown in Figure 3.1. During testing, we are given a document and an

associated image for which we need to generate a caption.

4.2.1 Dataset

As highlighted in Chapter 3, most of the existing datasets in this domain have

been specifically designed for the problems at hand. For example, the dataset

created by Farhadi et al. [32] and Hodosh [52] contain image descriptions but

they are limited to specific object categories and scene types.

The dataset used in this chapter is the BBC News Corpus that contains

news articles scraped from the BBC website. The details on data collection

process, number of instances, class imbalance and evaluation procedure have

already been provided in Chapter 3. Note, the BBC News Corpus is a weakly-

labelled dataset, which treats the captions and associated news articles as

image labels.

We use the BBC News dataset collected in Feng and Lapata [35], which

contains 3,361 news documents in total. The dataset covers a wide range of

topics. Each news article consists of a text article, an image which are normally

200 pixels wide and 150 pixels high, and a caption of the image which has an

average length of 20.5 words. On an average each news article contains 421.5

words. The caption vocabulary is 6,180 words and the document vocabulary

consist of 26,795 words. The vocabulary shared between captions and docu-

ments is 5,921 words. Some example news articles with their accompanying

images and image captures are shown in Figure 3.1. The original dataset

was split into a training set consisting of 3,115 news articles, and a test set

consisting of 237 remaining news articles.
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Figure 4.1: Our proposed deep Neural Network (NN) architecture for news
image caption generation.

4.2.2 Existing Methods

Most of the relevant literature for this problem falls to image captioning domain.

However, very scarce literature exists for the specific problem of news images.

As discussed in chapter 2, an earlier methodology for this task proposed an

LDA based methodology. Therefore, we consider it to be in our list of baselines

for model benchmarking.

4.3 Proposed Methodology

In this section, we propose a novel deep Neural Networks (NN) based archi-

tecture to automatic caption generation of news images. Figure 4.1 provides

a block diagram of the model architecture. We first convert sentences in a

news article into a sequence of vectors using a pre-trained order-embedding

model. For more details, refer to Vendrov et al. [136]. We then encode the

accompanying image into an image embedding using the pre-trained Oxford

VGG network [123] as an off-the-shelf feature extractor. The VGG features are

further projected to the same order-embedding space. Both sentence and image

vectors are represented in a 1,024-dimensional semantic space. The sequence of

sentences from the news article thus convert to a sequence of vectors, followed

by the encoded image vector.

The sentence vector sequence is then fed to a LSTM network, which is a

specific type of Recurrent Neural Network (RNN). The output of the network is
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Figure 4.2: Text and Image Representation Mechanism

fed into another LSTM cell which also takes the image vector as an additional

input. The final output is considered as a representation which captures the

semantics conveyed in both text and image. The cross entropy between the

output vector and caption order-embedding vector is used as an objective

function to train the LSTM parameters.

4.3.1 Text and Image Representation

For encoding sentences, we use a pre-trained order-embedding model [136] to

encode sentences using distributed representations. Order-embeddings exploit

the partial order structure of the visual-semantic hierarchy by learning a map-

ping between sentences and semantic vector space. This projects each sentence

into a 1024-dimensional embedding space.

For encoding images, we first use a pre-trained Convolutional Neural Net-

work (CNN), which is an important class of learnable representations applicable,

among others, to numerous computer vision problems. Deep CNNs, in par-

ticular, are composed of several layers of processing, each involving linear as

well as non-linear operators. We use pre-trained Oxford VGG network as an

off-the-shelf feature extractor. The whole network consists of 22 layers. We

use the fc7 features, that is the output of the penultimate fully connected

layer, as a representation for the image. The VGG features are projected to

same order-embedding space, where sentence vectors reside. As such, both

image and sentence vectors reside in a common semantic space which enables

direct comparison between them. Figure 4.2 provides an illustrative diagram

explaining the image and text framework.
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4.3.2 LSTM Training

RNNs surely do a great job at modelling sequences. Unfortunately, the short-

coming of such networks is that they are unable to carry forward information

when the length of the chain grows beyond a measure. This is called vanishing

gradient effect. To solve this problem, a forgetting mechanism has been pro-

posed in LSTM. LSTMs have many variations. One cell consists of three gates

i.e. input, output and forget. Gates typically use sigmoid activation, while

input and cell state is often transformed with the hyperbolic tangent function,

tanh.

At timestep t, an LSTM has two inputs, xt the input vector at that timestep

and ht−1, the hidden state vector of previous timestep. All the W are weight

matrices and b are biases, which are learnable model parameters. In the forward

pass, this is how updates are done in the input gate it, forget gate ft, the

output gate ot, the input transform cint is taken and the state ct and ht is

updated in this manner.

it = g (Wxixt +Whiht−1 + bi)

ft = g (Wxfxt +Whfht−1 + bf )

ot = g (Wxoxt +Whoht−1 + bo)

cint = tanh (Wxcxt +Whcht−1 + bcin)

ct = ftct−1 + itcint

ht = ot. tanh (ct)

In encoder-decoder based models, information is encoded to a context

vector which is then fed to the decoder. For example, in Machine Translation,

the encoder is Recurrent Neural Network (RNN), the sentence is the source

language is encoded to a fixed-length context vector which is fed to another

RNN decoder. Also, in image captioning, the image is encoded using CNN

to a fixed-length vector, which is then fed to the decoder RNN. Our model

architecture consists of an RNN decoder as well. For encoding, we use the

representation framework as described above.

At training time, in the forward pass, both sentence vectors and an image

vector are fed to a LSTM network to obtain a context vector, as shown in

Figure 4.1. It is assumed that the context vector summarises the information

conveyed in both textual and visual formats. The decoder uses this information
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to generate a caption for the article. We also encode the image caption with

the order-embedding model. We use the cross-entropy between the output of

the LSTM network and the order-embedding vector of the image caption as

the loss function to backpropagate and update model parameters. We set the

learning rate to 0.6, momentum to 0.9 and train the model with 30 epochs

using stochastic gradient descent.

During testing, given a news article and its accompanied image, we retrieve

the most relevant sentence from the article based on the cosine similarity meas-

urement between the output vector from the LSTM and the order-embedding

vector of each sentence. We consider this as an extractive summarisation

approach, although it could be extended to be an abstractive summarisation

technique as well, in which a caption can be generated, details of which will be

discussed later.

Algorithm 1 provides instructions for the main algorithm for the proposed

LSTM-based methodology. As it could be observed in the algorithm, training

data consists of tuples of the form (I,D,C), where I is the raw image from

the BBC News Corpus, D is the text document i.e. the accompanying news

article in the corpus and C is the given caption in the dataset. Please note

that C is a one-sentence caption, that may or may not be present in the

article. The machine learning pipeline involves representing all the training and

testing corpus to be present in numerical form, as also highlighted in Chapter

3. Therefore, we use a pretrained CNN architecture to convert all raw images

in vector form. We use VGG19 [125] architecture, which is previously trained

on image classification task. β1 represents the semantic features obtained after

passing it through all convolution and transformative layers of the CNN. We

extract the features from the penultimate layer fc7. Therefore β1 represent

semantic features of the image.

Algorithm consists of instructions for converting the text in document to

vector form. News article is first parsed using a sentence parser, we use Stanford

NLP Toolkit [92]. These sentences are further projected to pretrained Order

Embedding Space. Furthermore, the image features β1 are also transformed

to same order embedding space as that of sentences. β3 represents the vector

obtained by feeding the caption text to order embedding space using the same

encoder, as that of sentences. All the sentence vectors are fed as inputs to the

LSTM. At the last time step, image feature vector is also fed to the LSTM.

Then the output of the LSTM at this time step is used to calculate the cross

entropy loss with the β3. This loss function is used to backpropagate over

LSTM parameters.
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Algorithm 1 LSTM training for the proposed methodology

1: for batch in trainData do
2:

3: for (I,D,C) ∈ {(I1, D1, C1), ..., (IN , DN , CN )} do
4: Generate β1 = V GG(I)
5: Generate β2 = OrderEmbeddingImageRepr(β1)
6: SentencesList S = SentenceParser(D)
7:

8: for sentenceS in SentencesList do
9: Generate βs = OrderEmbeddingTextRepr(S)

10: LSTM Input(βs)
11: end for
12: LSTM Input(β2)
13: o = LSTM Output()
14: Generate β3 = OrderEmbeddingTextRepr(C)
15: LSTM backpropagate(CrossEntropyLoss(β3, o))
16: end for
17: end for

Algorithm 2 provides instructions for the main testing procedure for the

proposed methodology. Most of the instructions are similar to the training

procedure and involve feeding forward all the inputs to their respecting compon-

ents to conduct appropriate data transformations. After all required operations

are performed, LSTM outputs the vector o. For extractive summarisation,

we find the sentence nearest to the vector in the order embedding space and

output this as the generated caption vector. This output caption can used to

compute several evaluation metric scores like BLEU, Meteor etc.

The methodology is inspired by encoder-decoder architecture of neural

machine translation. The basic framework consists of RNN-RNN architecture.

Recurrent Neural Networks are used, because of their great ability to model

sequences. In natural language processing, An RNN has been found a great

way to model sentence and to learn the grammatical rules of the language. This

is because of the parameter sharing ability of these models across time index.

A convolutional neural network across different of a sentence has also been

used for modelling and is the basis for time-delay neural networks, introduced

in Lang et al. [77]. This is because the convolution operation also allows the

network to share parameters through time but is shallow. The output of the

convolution is a sequence where each member of the output is a function of a

small number of neighbouring members of the input. Therefore, we use RNNs,

more specifically gated RNNs, as we describe ahead to model sentences of the

news article. Before describing our main methodology, we describe the some of
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Algorithm 2 main testing procedure for the proposed methodology

1: for batch in testData do
2:

3: for (I,D,C) ∈ {(I1, D1, C1), ..., (IN , DN , CN )} do
4: Generate β1 = V GG(I)
5: Generate β2 = OrderEmbeddingImageRepr(β1)
6: SentencesList S = SentenceParser(D)
7:

8: for sentenceS in SentencesList do
9: Generate βs = OrderEmbeddingTextRepr(S)

10: LSTM Input(βs)
11: end for
12: LSTM Input(β2)
13: o = LSTM Output()
14: Generate oc = NearestNeighbour(o)
15: ComputeBLEUScores(C, oc))
16: ComputeMeteorScores(C, oc))
17: end for
18: end for
19: ComputeAverageBLEUScores()
20: ComputeAverageMeteorScores()

the fundamental principles of the encoder-decoder architecture, and how it is

used in machine translation, of which we have drawn inspiration.

4.3.3 Variant Architecture

In this section, we discuss a variant architecture to our model. As, there are

multiple ways, in which sequential information can be propagated through an

LSTM network. Another variant of the proposed architecture is to feed the

image vector at each timestep of the LSTM such that the input to each LSTM

cell is a concatenation of a sentence vector and the image vector. Figure 4.3

shows a variant of our proposed architecture which is called the Deep NN Dual

Architecture.

4.4 Experiments

Experiments are conducted to evaluate the performance of the proposed model

and compare its performance with alternative approaches. We created a similar

train-test split, as in Feng and Lapata [35], of image-text-caption triplets in

the BBC news dataset.

52



Figure 4.3: A Deep NN Dual architecture for news image caption generation.
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4.4.1 Methods

LDA-based (KL)

We reproduced the results from Feng and Lapata [35]. For content selection,

we first synthesized textual and visual dictionaries where a textual dictionary

was created by assigning a unique token id to each word present in any of

the articles and visual dictionary was made by clustering SIFT descriptors

into 2,000 different visual words. We then trained an LDA model with 1,000

topics on the BBC news dataset containing both text and images. For surface

realization, we only used extractive summarisation. It has been shown in

Feng and Lapata [35] that retrieving sentences based on the Kullback-Leibler

(KL) divergence between the topic distribution of a sentence and the topic

distribution of a news article with its accompanying image gives the best results

in terms of human evaluation. Therefore, we picked their best performing

methodology for comparison.

LDA-based (word-based)

For extractive summarisation, word-based overlap strategy was also implemen-

ted, where the sentence with maximum overlap between extracted annotations

and words in the sentence is picked.

Nearest Neighbour

We also implemented a Nearest Neighbour approach in the order-embedding

space. Since both sentences and images are projected to the same semantic

space, we can simply choose the sentence which is nearest to a given image as

its caption. We use cosine similarity measurement to calculate the similarity

score between a sentence vector and an image vector.

Ablation Experiments

We also conduct an ablation study of the proposed method by only feeding text

only input and also conduct experiments with a variant architecture, which

involves fusing information from different modalities in a different way.

Deep NN (text input only)

We explore a variant of our proposed architecture where the input is only text

from news articles. This is similar to news headline generation based on text
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input only except that what we generated here are image captions.

Deep NN (dual)

This is the variant of the architecture shown in Figure 4.3 where the input to

an LSTM cell at each timestep is the concatenation of a sentence vector and

the image vector.

4.4.2 Evaluation Metrics

We compare the generated image captions with the provided gold-standard

captions. We compare the methodologies, both on the basis of automatic as

well as human evaluation methods. For automatic evaluation, we compare

using both BLEU and Meteor scores.

Human Evaluation

Apart from objective evaluation using BLEU and Meteor, we have also invited

human participants to evaluate the generated results by various models. For

human evaluation, we invited 16 human evaluators to choose between the

caption generated by the baseline models and our approach for each pair of

news article and image presented to them. If human evaluators found none of

the captions generated can describe the image well, they can choose the option

by selecting the “none” category.

4.4.3 Results

In this section, we first present the effects of incorporating sentential integration,

by comparing against the proposed the neural-network based methodology and

the given LDA based methodology.

Method BLEU

LDA-based (KL) 0.3002
Nearest Neighbour 0.3237
Deep NN (text only) 0.3315
Deep NN (dual) 0.3303
Deep NN 0.3427

Table 4.1: News image caption generation results in terms of BLEU scores.

We compare our proposed NN approach with the baseline model based on

LDA [37] using both objective evaluations including BLEU and Meteor. We

also experimented with a variant of our model using only text content of news
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Method Meteor

LDA-based (KL) 0.0706
Nearest Neighbour 0.0672
Deep NN (text only) 0.0642
Deep NN (dual) 0.0609
Deep NN 0.0677

Table 4.2: News image caption generation results in terms of Meteor scores.

articles as input to our model.

The BLEU scores are shown in Table 4.1. It can be observed that the simple

Nearest Neighbour approach already outperforms the LDA-based method in

terms of the BLEU score. Deep NN with text input only improves Nearest

Neighbour slightly on BLEU. Deep NN (dual) performs almost the same as

Deep NN (dual). This shows that feeding an image vector at each time step

somehow diffuse the semantic information captured in images. Our model

(deep NN), where the image vector was only fed in the last timestep in the

LSTM network, gives the best overall BLEU score of 0.3427, which outperforms

the LDA approach by 4%.

The Meteor scores are shown in Table 4.2. In terms of Meteor scores,

both Deep NN and Nearest Neighbour give similar results and they slightly

outperform other variants of the deep NN model. Deep NN also performs on

par with LDA since the difference of their Meteor scores is only 0.003.

The Tables 4.3 and 4.4 show results of the proposed methodoly Deep NN

obtained by feeding, different image features. Here, we compare results based

on image classification algorithms as described in He et al. [49].

Features BLEU

VGG 0.3215
ResNet152 0.3310
Order-Embedding 0.3427

Table 4.3: Comparison of BLEU scores over different image features

Features Meteor

VGG 0.0542
ResNet152 0.0613
Order-Embedding 0.0677

Table 4.4: Comparison of Meteor scores over different image features
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For human evaluation, the study as described in the previous section was

conducted by developing a web-based app, it can be observed that 38.3 per-

cent of times, the caption generated by our approach was selected as the

most appropriate image description by the users, whereas only 28.8 percent

of times, the caption generated by the LDA-based model was preferred. We

also notice that a staggering 32.91 percent of times, no caption was picked

by the users, which could be due to the limited capability of extractive sum-

marisation techniques. Figure 4.5 shows qualitative study of generated captions.

When only using text content of news articles as the input to our NN

architecture, the original model reduces to one-sentence summarisation based

purely on text content. As expected, without taking into account the image

information, the model has a difficulty in producing appropriate description of

a given image. As such, the results are worse than the full approach taking

both text and image as input.

Method Human Evaluation

LDA-based (KL) 28.8%
Deep NN 38.3%

Table 4.5: Human Evaluation results.

LDA Methodology gave an average BLEU score of 0.3508 and an average

Meteor score of 0.06524, whereas an average BLEU score of 0.3358 and an

average Meteor score of 0.077409 was observed for the proposed model. This

high BLEU score in LDA methodology is evident because of the fact that

sentence selection algorithm picks word with maximum overlap from the set

of sentences. Although, a manual inspection of the outputs was done, and

captions were of poor performance. A BLEU score of 0.2915 was observed for

only sentence based neural captions.

4.5 Error Analysis

In this section, we present more results from the experiments conducted. Figure

4.5 shows three cases of results. The first case, shows the case, where majority

of users picked “Deep NN” caption as a right caption for the given article. In

this case, Deep NN methodology is clearly able to identify the subject “Chris

Langham” in the picture. It is also able to capture background knowledge

of the article. The second case, is where the majority of users picked “LDA”

caption as a right caption for the given article. In this case, LDA method-
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Figure 4.4: Sample Generated Captions providing comparison between LDA
and NN methodology results
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ology is able to identify the subject. However, the third case shows, where

majority of users picked “No” caption as a suitable description for the given

article. This is an example case, where both “LDA” as well as “Deep NN”

methodologies have failed to capture the content of the articles. It is quite a

challenging case. The gold standard caption is “Parts of Charlie and Chocol-

ate factory were also filmed there.”, which is not clearly evident from the image.

38.3% of times, “Deep NN” caption has been picked as a right choice by

the users. 32.9% of times, “No” caption has been picked as a suitable choice.

28.8% of times “LDA” caption has been picked as a right choice by majority

of users.

We believe, this significant 32.926% of no caption is because of the limited

applicability of extractive generation techniques. As many a times, there is no

caption in the database, that best describes a given case.

4.6 Conclusion

In this chapter, we have proposed a novel deep NN-based architecture for

the task of automatic caption generation for news images. The experimental

evaluation on the BBC News corpus show that proposed methodology gives a

better BLEU score than baseline models and performs similarly compared to

the LDA approach on Meteor scores. Nevertheless, we notice that the captions

generated by our approach were favoured over the captions generated by the

LDA based model most of time by human evaluators. This chapter studied the

problem on an atomic image-text passage, the next chapter provides a more

formal introduction to problem of stepwise illustration.

59



Figure 4.5: Error Analysis
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Chapter 5

Variational Recurrent

Sequence-to-Sequence

Retrieval for Stepwise

Illustration

This chapter addresses the RQ3, that “How can we study the automatic step-

wise illustration systems in a domain-constrained setting, given narrative text

passage in a limited domain with a sequence of illustrations, considering and

incorporating prior context?”. Therefore, in this chapter, we propose the novel

Variational Recurrent Sequence to Sequence Retrieval model and employ it

on the Stepwise Recipe Dataset. We study and compare its performance with

several relevant and competitive baselines.

5.1 Introduction

There is growing interest in cross-modal analytics and search in multimodal data

repositories. In this chapter, we propose a variational recurrent learning model

to enable seq2seq retrieval, called Variational Recurrent Sequence-to-Sequence

(VRSS) model, which produces a joint representation of the image-text reposit-

ory, where the semantic associations are grounded in context by making use of

the sequential nature of the data. Stepwise query results are then generated by

searching this representation space. More concretely, we incorporate the global

context information encoded in the entire text sequence through the attention

mechanism into a Variational Autoencoder (VAE) at each time step which

converts the input text into an image representation in the image embedding

space. In order to capture the semantics of the images retrieved so far (in
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Figure 5.1: Stepwise Recipe illustration example showing a few text recipe
instruction steps alongside one full sequence of recipe images. Note that
retrieval of an accurate illustration of Step 4, for example, depends on the
model being able to use context information that was acquired in earlier steps.
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a story/recipe), we assume the prior of the distribution of the topic given

the text input is no longer a standard Gaussian distribution, but follows the

distribution conditional on the latent topic from the previous time step. By

doing so, our model can naturally capture the sequential semantic structure of

text/image.

The model is further used to search the data repository and generate step-

wise query results in a sequential manner. A benefit of the proposed learned

cross-modal embedding approach is that the repository may be easily extended

without the need for repeatedly indexing the entire data. Once the embedding

model is designed, any number of new inputs may be immediately inserted into

the same existing space of data points. This is a desirable feature that may

be useful in many related domains. For instance, the challenge of searching

and indexing audio streams has been studied [142] where there is a need for

real-time insertions of live audio streams into the index to include them in

query results.

Our main contributions, in this chapter, can be summarised below:

• We formalise the task of sequence-to-sequence (seq2seq) retrieval for step-

wise illustration of text.

• We propose a new variational recurrent seq2seq (VRSS) retrieval model

for seq2seq retrieval, which employs temporally-dependent latent vari-

ables to capture the sequential semantic structure of text-image sequences.

• We study the effectiveness of the proposed methodology by comparing

against several evaluation results on the stepwise recipe dataset.

• We also conduct a human evaluation study to test the effectiveness of

the proposed methodology.

• We conduct an error analysis study of different cases to analyse possible

reasons where the model may or may not work.

• We provide a hubness analysis of the embedding spaces learnt using the

model and make appropriate inferences.
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Our new VRSS model outperforms several cross-modal retrieval alternatives

on this dataset, using a variety of performance metrics. Human evaluation

of the retrieved illustrations also confirms that our model produces joint rep-

resentations that are semantically meaningful. Furthermore, we qualitatively

analyse the representations generated from VRSS and its competing model.

Towards this aim, we analyse the quality of our embeddings and also show

that our model outperforms several retrieval baselines.

5.2 Variational Recurrent Seq2seq (VRSS) Retrieval

Model

In this section, we propose a novel variational recurrent sequence-to-sequence

(VRSS) model. The proposed VRSS model also introduces temporally depend-

ent latent variables to better capture the complex interplay among the text

passages and images. Different from existing approaches, we have taken into

account the global context information encoded in the whole query sequence

and used VAE for cross-modal generation. The Figure 5.2 provides an illus-

trative diagram of latent variables generating the image space. We use the

VAE model to convert the text into a representation in the image embedding

space, instead of using it to reconstruct the text input. Finally, we used the

max-margin hinge loss objective function to enforce that the converted text

embedding must be close to its paired image embedding.

The Variational Recurrent Sequence-to-Sequence Retrieval (VRSS) model

is based on the attentional neural encoder-decoder architecture [128], which is

central to neural machine translation (NMT). Within this framework, semantic

representations of the source and target sequences are learned in an implicit

way. It is motivated by the recent successful applications of variational recur-

rent neural networks (VRNN). In the original paper describing such a VRNN

model, Chung et al. [21] advocate this combination of variational autoencoder

and recurrent network as a way to model both sequential dependencies as well

as complex multimodal distributions. Figure 5.2 demonstrates the hypothesis

behind, that of approximating the image semantic space with a hidden latent

space.

5.2.1 Problem Formulation

The seq2seq retrieval task is formalised as follows: given a sequence of

text passages, x = {x1, x2, ..., xT }, retrieve a sequence of images, where
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Figure 5.2: Latent Variables

each it is the image representation, i = {i1, i2, ..., iT } (from a data repos-

itory) which best describes the semantic meanings of text passages, i.e.,

p(i|x) =
∏T
t=1 p(it|x, i<t). For learning, we consider a training set (e.g., re-

cipes or stories) S = {S1, S2, · · ·SN}, where each Sn consists of a sequence of

images and their associated text. Each such paired sequence is represented

as Sn = {(xn1 , in1 ), (xn2 , i
n
2 ), · · · , (xn|Sn|, i

n
|Sn|)} where (xn1 , i

n
1 ) is the first paired

text and image, Sn, (xn2 , i
n
2 ) is the second pair, and so on. That is, each text

sequence xn = {xn1 , xn2 , ..., xnT } and each image sequence In = {In1 , In2 , ..., InT }
has been paired element-wise.

We address the seq2seq retrieval problem by considering three aspects:

1. encoding the contextual information of text passages

2. capturing the semantics of the images retrieved (in a story/recipe)

3. learning the relatedness between each text passage and its corresponding

image.

It is natural to use recurrent neural networks to encode a sequence of

text passages. Here, we encode a text sequence using a bi-directional gated

recurrent unit (bi-GRU). Given a text passage, we use the attention mechanism

to capture the contextual information of the whole recipe. Because the text

embeddings and image embeddings reside in different semantic spaces, we map

the text embedding into a latent topic zt by using a variational autoencoder

(VAE). In order to capture the semantics of the images retrieved so far (in a

story/recipe), we assume the prior of the distribution of the topic given the

text input follows a distribution conditional on the latent topic zt−1 from the

previous step. We decode the corresponding image vector it conditional on the

latent topic, to learn the relatedness between text and image with a multi-layer

perceptron (MLP) and obtain a synthetic image embedding point generated
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Figure 5.3: Variational Recurrent Sequence-to-Sequence (VRSS) model archi-
tecture.
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from its associated text embedding point.

Our proposed Variational Recurrent Seq2seq (VRSS) model is illustrated in

Figure 5.3. Below, we describe each of the main components of the VRSS model.

5.2.2 Text Encoder

We use a bi-GRU to learn the hidden representations of the text passage (e.g.

one recipe instruction) in the forward and backward directions. The learned

hidden states in the two directions are then concatenated to form the rep-

resentation at the text segment level To encode a sequence of such text passages.

{ht = [−→rt ,←−rt ]}

For example, for a given recipe, a hierarchical bi-GRU is used which first

encodes each text segment and subsequently encodes the whole sequence to

combine the all text segments. Where ht encodes all contextual semantics of

the t-th word with respect to all other surrounding recipe words.

5.2.3 Image Encoder

Let î = g(I) represent the features in the semantic space of the joint model

in [93]. g(I) serves as the vector representation for the raw image I from the

repository. The model generates these feature representations g(I), where To

generate the vector representation of an image, we use the pre-trained modified

ResNet50 deep convolutional model [93]. On experiments with alternative

pre-trained deep convolutional architectures, it was found that most of the em-

beddings were clustered around some specific points. In experiments, this model

produced a well distributed feature space when trained on the limited domain,

namely food related images. This was verified using the PCA and t-SNE visu-

alisations [91], which showed less clustering in the generated embedding space

as compared to embeddings obtained from models pre-trained on ImageNet [26].

5.2.4 Incorporating Context

To capture the global context, we first encode each of the text passages using a

bi-GRU and then feed the bi-GRU encodings into a top level bi-GRU. Assuming

the hidden state output of each text passage xl in the global context is hcl , we

use an attention mechanism to capture its similarity with the hidden state
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output of the tth text passage ht as αl = softmax(htWhcl ). The context vector is

then encoded as the combination of L text passages weighted by the attentions

as ct =
∑L

l=1 αlh
c
l . This ensures that any given text passage (which could be

a recipe instruction or a paragraph from a story) is influenced more by text

passages that are semantically similar.

5.2.5 Latent Topic Modeling

At the tth step text xt of the text sequence (in a recipe/story) , we feed the

corresponding text passage xt to a the bi-GRU. The output ht is combined

with the context ct and fed into a VAE to generate the latent topic zt. We

now define two prior networks fµθ and fΣθ to define the prior distribution of

zt, which is no longer a standard Gaussian distribution, but conditional on the

previous zt−1. We also define two inference networks fµφ and fΣφ which are

functions of ht, ct, and zt−1:

pθ(zt|z<t, x<t) = N (zt|fµθ(zt−1), fΣθ(zt−1)) (5.1)

qφ(zt|z<t, x≤t) = N (zt|fµφ(zt−1, ht, ct), fΣφ(zt−1, ht, ct)) (5.2)

Unlike the typical VAE setup where the text input xt is reconstructed

by generation networks, here we generate the corresponding image vector it.

To generate the image vector conditional on zt, the generation networks are

defined which are also conditional on zt−1:

pϕ(it|z≤t, x≤t) = N (it|fµϕ(zt−1, zt), fΣϕ(zt−1, zt)) (5.3)

The generation loss for image it is then:

Lrecons.(it) = Eq(z≤T |x≤T ) log p(it|z≤t, x<t)

−KL(q(zt|x≤t, z<t)‖p(zt|x<t, z<t)) (5.4)

5.2.6 Image Retrieval

We enable the search process by a timestep-wise hinge loss to model p(it|x, zt, i<t).
The latent semantic variable zt is used to predict the image at the given timestep

t, with a hinge loss max-margin objective:
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LHL(it) =
∑
j

max(0, α− s(it, ît) + s(ij , ît)) (5.5)

Where α is the margin parameter, it is the image vector generated by the

model, ît is the vector representation of the gold-standard image at time step t,

ij is the negative images, and s(·) denotes the similarity measurement function.

In our experiments, we use the cosine distance function.

5.2.7 Overall Objective Function

The overall objective function is the total of the image reconstruction loss and

the image retrieval hinge loss summing over all the time steps for the whole

image sequence, {i1, i2, ..., iT }, where β is the weighting factor:

Loverall =

T∑
t=1

Lrecons.(it) + βLHL(it) (5.6)

5.2.8 Parameter Configuration

As the initial parameter setting of the VRSS architecture, we use bi-GRU with

the hidden dimension of 500 and set the dimension of latent topics to 500. We

also introduce a dropout layer in the RNNs with probability of 0.3. Each word

in the text is represented in the 500 dimensional embedding space. The image

encoder projects images to a 2, 048 dimensional feature space. For training

the objective function, we use AdaDelta optimisation function, with a learning

rate of 1.0. The values of hyperparameters α and β were set to be 0.2 and 1.7

respectively.

Next, we present main algorithm for VRSS procedure. Algorithm 3 provides

the instructions for the main training procedure in the VRSS methdology. As

can be observed in the algorithm, for every batch in the training dataset, each

story consisting of a sequence of image and text pairs are fed to the model.

Please note, the lowercase i represents image features extracted by feeding the

image to a pretrained CNN architecture, whereas the uppercase I represents

the raw image. ît are the semantic features obtained after feeding through

pretrained CNN and extraction from the penultimate layer. rt represents the

intermediate feature representations of the text article at time step t, these are
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features obtained by concatenating the forward and backward hidden features

of the BiGRU architecture. The Bi-GRU is not trained and is randomly ini-

tialised. Also, the attention vector αl is computed at time step t as described

in the algorithm. The final context vector ct is computed as the weighted

summation of hidden states in the attention component. The next instructions

describes the inference process, where the latent topics zt are inferred using

the distributions as represented. Also, the latent topics are further used to

generate image vectors it. The reconstruction loss of the image vector summed

with the hinge loss with the precomputed gold standard image features ît are

used to propagate the parameters of the VRSS model, after summing up over

all time steps.

Algorithm 3 main training procedure for VRSS model

1: for batch in trainData do
2:

3: for Sn ∈ {S1, S2, · · ·SNB} do
4: Sn = {(xn1 , in1 ), (xn2 , i

n
2 ), · · · , (xn|Sn|, i

n
|Sn|)}

5: text sequence xn = {xn1 , xn2 , ..., xnT }
6: image sequence In = {In1 , In2 , ..., InT }
7:

8: for It ∈ {I1, I2 · · · IT } do
9: ît = ResNet50(It)

10: end for
11:

12: for (xnt , i
n
t ) ∈ {(xn1 , in1 ), (xn2 , i

n
2 ), · · · , (xn|Sn|, i

n
|Sn|)} do

13: [−→rt ,←−rt ] = BiGRU(xnt )
14: ht = [−→rt ,←−rt ]
15: Assume αcl is the hidden state output of each text passage xt
16: for for each text passage l do
17: αl = softmax(htWhcl )
18: Here αl represents the attention vector
19: end for
20: ct =

∑L
l=1 αlh

c
l

21: Infer zt using Equations 5.1 and 5.2
22: Generate it using Equation 5.3
23: Compute Reconstruction Loss for image it using Equation 5.4
24: Compute Hinge Loss using Equation 5.4
25: end for
26: Loverall =

∑T
t=1 Lrecons.(it) + βLHL(it)

27: backpropagate(Loverall)
28: end for
29: end for

Algorithm 4 provides instructions for the main testing procedure for VRSS

methdology. Here the function V RSS represents all the forward instructions
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as in the training procedure. on is the image sequence from the output of the

VRSS procedure. Please note that o is obtained by searching for nearest neigh-

bour images in the image embedding space. This output sequence if further fed

to compute various forms of recall measures against the gold-standard features.

Algorithm 4 Testing procedure for VRSS methodology

for each batch in testData do

for Sn ∈ {S1, S2, · · ·SNB} do
Sn = {(xn1 , in1 ), (xn2 , i

n
2 ), · · · , (xn|Sn|, i

n
|Sn|)}

text sequence xn = {xn1 , xn2 , ..., xnT }
image features sequence în = {în1 , în2 , ..., înT }
output sequence on = V RSS(xn)
computeV isualSaliencyRecall(on, în)
computeTextualSaliencyRecall(on, în)

end for
end for
computeAverageV isualSaliencyRecall(on, în)
computeAverageTextualSaliencyRecall(on, în)

5.3 Experimental Setup

Experiments are conducted to evaluate the performance of the VRSS model and

compare its performance with alternative approaches. We create a train-test

split of 60K/6K image-text pairs and 9K/1K recipes in the Stepwise Recipe

dataset. The split is done author-wise to ensure style consistency but having

overlapping authors in train and test splits.

We measure and compare the performances of these models using various

evaluation measures like Recall@k, Story Recall@k, TextualSaliency@k, Visu-

alSaliency@k and also conduct a human evaluation study. The details of these

evaluation metrics have been described in later sections.

5.3.1 Models for Comparison

We compare VRSS with the following models: LDA, VSE++ and RNN. Both

LDA and VSE++ are non-context models as they treat each text passage in

isolation without taking into account the preceding or succeeding text passages.

RNN and VRSS are context models since they capture the contextual informa-

tion for the retrieval of relevant images.
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LDA

We re-implement the topic modelling based approach [36] to jointly generate

words in text and visual words in image assuming each image-text pair share

the same set of topics. For text illustration, we first synthesise textual and

visual dictionaries where a textual dictionary is created by assigning a unique

token id to each word presented in any of the documents and a visual dictionary

is constructed by clustering feature descriptors extracted from images into 750

different visual words. We then train a latent Dirichlet allocation (LDA) model

with 100 topics on the dataset containing both text and images. Retrieval of

images is based on computing the probabilities of visual terms marginalised

over document topics [36]. The retrieved image is the one with maximum

overlap of visual terms.

Visual Semantic Embeddings (VSE++)

Following [31], we implement a deep neural network approach which maps the

text representations and image vectors into the same semantic embedding space.

Since both texts and images are projected to the same semantic space, we

apply the traditional similarity search and choose the image which is nearest to

a given text representation. Cosine similarity measurement is used to calculate

the similarity score between a text vector and an image vector. A hierarchical

bidirectional LSTM (bi-LSTM) with max pooling is employed to represent

sentences in the vector space [132]. A pre-trained ResNet-152 architecture

is used as the image encoder [48]. The image features are extracted from

the penultimate fully-connected layer. The text and image vectors are then

projected using a fully-connected linear layer to the semantic space. Triplet

Ranking Loss function using the hard negatives [31] are used to align the image

and text vectors in the semantic space. End-to-end network training is done

for 50 epochs. The parameters of the pre-trained CNN network are kept fixed

during training. We also introduce a dropout layer in the linear layers with a

dropout value of 0.2.

VSE++(R)

Triplet loss function following the same mechanics of VSE++ but the image

representations are obtained in the same way as the VRSS model.
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Coherence Neural Story Illustration (CNSI)

We use the encoder-decoder CNSI model proposed in [111], with coherence

capturing the co-reference relations among sentences, to retrieve a sequence of

images illustrating a passage of text.

VRSS-VAE

This follows the same encoder-decoder architecture of our VRSS model, using

two bi-GRU architectures as encoders and decoders with the same learning

objective, but without latent variables. Therefore, it is treated as an ablation

study of our VRSS model without the VAE module.

VRSS-globalCon

This is a variant of our VRSS model without the incorporation of the global

context.

In all the neural models evaluated here, the image representation is extrac-

ted using the ResNet50 model [93] pre-trained on food-related images.

For training VSE++, we use both ResNet152 and VGG19 as our image

encoders. Features are extracted from the penultimate fully-connected layer.

The dimensionality of image embeddings is set to 2,048 for ResNet and 4,096

for VGG. We use a Bi-LSTM with max-pooling for representing text, following

the architecture in [132]. we project both text and image vectors onto a 1024-

dimensional common semantic space using two MLPs. End-to-end network

training was done using triplet-ranking loss function for 300 epochs. The

parameters of the pre-trained CNN network were kept fixed during training.

We also introduced a dropout layer in the linear layers with a dropout value of

0.2.

5.3.2 Evaluation methods

The evaluation metric commonly used in similarity search and information

retrieval tasks is Recall@k, which is the ratio of the number of correct images

retrieved to the total number of retrieval queries. Recall@k indicates that the

retrieved image was among the top k best matches out of the set of candidate

images. We also define Story Recall@k, which considers the retrieved image as
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correct if it is from the same data sequence.

Visual Saliency Recall

Further, we provide Visual Saliency Recall@k values. We implement Visual Sa-

liency Recall following [111] and train a VGG-19 network and classify the

images of the story test set using this network. The visual features from

[93] for initialization. V isualSaliencyRecall@k results of the retrieved images

when compared with gold-standard images. We follow the same mechanics

as suggested in [111] to define a ‘visual saliency’ metric that compares the

retrieved images to the gold-standard images using an image classifier.

Textual Saliency Recall

We also provide Textual Saliency Recall@k values. This demonstrates whether

the corresponding paired text for the retrieved image has entities that overlap

with those entities found in the text query.

Visual Feature Similarity

In addition, we report Visual Feature Similarity using the average cosine sim-

ilarity between gold-standard image and retrieved image, considering image

features generated using [93].

Human Evaluation

Previous work [111] highlights that existing quantitative retrieval metrics may

be too harsh for a task of this description. Therefore, it is imperative that we

use human evaluators to judge how appropriate and coherent the retrieved

illustration sequences are. For our human evaluation, we pick a random sample

(164 recipes, 1564 image-text pairs) from the test set (1K recipes, 6K image-

text pairs). We present each evaluator with a sequence of recipe instruction

steps that make up one complete recipe. Alongside each text segment, they

are given three possible illustrations that depict that step, which are randomly

shuffled images of the gold-standard, the non-context model, and the proposed

VRSS model. The evaluator is asked to select all image options that may

be appropriate illustrations for the corresponding text segment. Finally, the

evaluator must also indicate which of the overall illustration sequences are

coherent and flow well together. A total of 5.1K ratings are obtained from 12
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evaluators, ensuring that every sample has received at least 2 ratings.

5.4 Results and Discussion

5.4.1 Automatic Evaluation

Table 5.1: Text illustration performance using Visual Saliency Recall@k
(V SR@k) on the Stepwise Recipe dataset. The best result in each column is
highlighted in bold.

VisualSaliencyRecall@k

Models VSR@1 VSR@5 VSR@10

Non-Context Models

LDA 3.2 6.7 12.5
VSE++ 7.8 21.5 23.5
VSE++(R) 8.1 23.1 26.6

Context Models

CNSI 16.6 31.8 39.8
VRSS-VAE 11.3 29.2 33.2
VRSS-gc 15.1 28.9 32.7
VRSS 18.4 33.4 45.1

Table 5.2: Text illustration performance using Recall@k (R@k) and Story Re-
call@k (StR@k) on the Stepwise Recipe dataset. The best result in each column
is highlighted in bold.

Recall@k Story Recall@k

Models R@1 R@5 R@10 StR@1

Non-Context Models

LDA 1.4 3.4 8.9 4.1
VSE++ 5.2 15.1 19.5 18.1
VSE++(R) 7.7 18.6 24.6 21.3

Context Models

CNSI 3.6 8.9 13.7 18.4
VRSS-VAE 6.4 19.7 23.1
VRSS-gc 5.2 19.9 26.5 21.1
VRSS 8.2 21.3 29.8 24.4

Table 5.2 reports the retrieval performance of different methods using Re-
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call@k and Story Recall@k metrics. It can be observed that LDA gives the worst

results, which shows that using a generative model for capturing the semantic

topics from both text and image does not work well in the seq2seq retrieval

task. By mapping both text and image into the same embedding space, Using

the image encoder pre-trained on recipe images, VSE++ outperforms LDA.

Our VRSS model without the VAE component (VRSS-VAE) gives similar

performance compared to the non-context model VSE++ despite considering

the contextual information. VRSS without the incorporation of global context

(VRSS-GlobalCon.) performs similarly as VRSS-VAE. CNSI gives worse results

compared to both VRSS variants in Recall@k and Story Recall@1. Our new

VRSS model, which maps each hidden state of the RNN into a latent topic

and also further incorporates global context information, gives the best results

across all metrics. This indicates the importance of representing semantics

encoded in both text and images in a more abstract manner and the benefit of

incorporating global context.

Table 5.3: Text illustration performance using Textual Saliency Recall@k
(TSR@k) on the Stepwise Recipe dataset. The best result in each column is
highlighted in bold.

Evaluation TSR@1 TSR@5 TSR@10

Non-Context Models

LDA 6.5 18.7 26.8
VSE++ 15.6 42.3 56.2
VSE++(R) 19.7 48.9 60.0

Context Models

RNN 20.2 41.1 54.2
VRSS 25.5 56.7 68.9

Recall@k and Story Recall@k metrics only measure the degree of exact

matches of the retrieved images with regards to the gold-standard images. This

might not be appropriate for our text illustration task since a given text segment

could be illustrated by multiple images expressing similar semantics. Example

image retrieval results are shown in Figure 5.5 where both the gold-standard

and the VRSS retrieved images are displayed for some recipe instructions.

It can be observed that although VRSS failed to retrieve the gold-standard

images in these examples, its output images are still appropriate illustrations of

the corresponding texts. For this reason, we also report the evaluation results

using more semantics-based and feature-based metric, Visual Saliency Recall@k.

It can be observed from Table 5.1 that VRSS performs significantly better
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Table 5.4: Human Evaluation results. The cell values indicate the number of
images output by the corresponding model(s) that receive x number of votes
(x ∈ {2, 3, 4, 5}) as majority.

# Votes 2 3 4 5

Gold-standard only 0 442 171 47
Gold-standard and VRSS 255 41 0 0
Gold-standard and VSE++ 88 9 0 0
Gold-standard, VRSS and VSE++ 75 0 0 0

than baselines on Visual Saliency Recall@k. These recall scores indicate that

VRSS is able to retrieve images that are described by text segments that are

semantically related to the query text, even if the images themselves do not

match the gold-standard image.

We also calculate the Visual Feature Similarity which measures the average

cosine similarity between the gold-standard image and the retrieved image in

the feature space. For VRSS, this is 0.51 and for VSE++ it is 0.37, and for

CNSI it is 0.45 Hence, VRSS retrieves illustrations that are visually similar to

the gold-standard image.

5.4.2 Human Evaluation

For the human evaluation, we count the number of votes received for the

gold-standard images, the VRSS model output images, and the VSE++ (non-

context based) model output images. We only count a vote if there is majority

consensus among the evaluators. Hence, in Table 5.4, the ‘# Votes’ column

indicates the number that constitutes a majority among voters. We also high-

light the fraction of recipes for which VRSS received equal or higher preference

compared to gold standard.

In Table 5.4, we see the preference results obtained from human evaluation

of the retrieved recipe illustrations. Considering majority agreement as 2 votes,

gold-standard was never preferred in isolation. Rather, in 61% of the cases,

both the gold-standard image and the image retrieved using VRSS were deemed

to be appropriate illustrations for the given text query. In 18% of the cases,

gold standard as well as the retrieved images from both models were considered

appropriate. In the remaining 21% of the cases, the VRSS output was not

judged as being appropriate.

Taking 3 votes as the majority, gold-standard alone was picked in 88% of the
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cases and picked in combination with the VRSS output in 8% of the remaining

cases, with a negligible number of cases for the other combinations. Where the

majority consensus is above 4 votes, evaluators chose gold-standard alone in

every case. Therefore, VRSS outperforms other models particularly in ambigu-

ous cases where the text is likely to contain an indirect description of the image.

The VRSS output is about 3 times more likely to be selected compared to

the VSE++ output. Over 60% of the time, at least 2 human evaluators believe

that the VRSS output is as appropriate as the gold-standard image. These

results indicate that the context based VRSS model significantly outperforms

the non-context-based model.

Figure 5.4: Example images retrieved by the VRSS model.

In Figure 5.4, we manually inspect some result images obtained using the

VRSS model.

5.5 Error Analysis

In this section, we discuss different cases where the VRSS model performs

successfully or not and analyse possible reasons.
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Figure 5.5 shows examples where the VRSS output was preferred by human

evaluators, and Figure 5.6 shows examples where VRSS did not retrieve an ap-

propriate image but the non-context model retrieved a more appropriate image.

In Figure 5.7, neither model was deemed to have produced an appropriate out-

put. Further, Figure 5.5 highlights some cases where metrics other than recall

are beneficial. The first and second rows depict semantically related entities in

both the gold-standard and the VRSS output, and images that have similar

feature representations. The third row depicts a result retrieved due to the

context-aware nature of the model, corresponding to an adjacent text segment

in the sequence, which is counted favourably when using the Story Recall metric.

Figure 5.5: Illustrative comparison of non-context (VSE++) and context
models (VRSS) - VRSS result preferred by human evaluators.

Further, it highlights some cases where metrics other than recall such as

Visual Feature Similarity, and Story Recall are beneficial. The first and second

rows depict semantically related entities in both the gold-standard and the

VRSS output, and images that have similar feature representations. The third

row depicts a result retrieved due to the context-aware nature of the model,

corresponding to an adjacent text segment in the sequence, which is counted

favourably when using the Story Recall metric.

5.6 Embedding Analysis

In order to analyse the limitations and inform future work in similar retrieval

applications, we perform a qualitative analysis of our generated embedding

space. We compare the embeddings produced using the VRSS model with those
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Figure 5.6: Illustrative comparison of non-context and context models -
VSE++(R) result preferred by human evaluators.

Figure 5.7: Illustrative comparison of non-context and context models - Neither
VRSS nor VSE++(R) result preferred by human evaluators.

from the VSE++(R) model, to reveal some characteristics of these embeddings

that might influence the performance on this task.

We first assess the distribution of “popularity” of points in the image-text

shared embedding space which is used for performing retrieval. Consider a set

of points D, with Nk(x) as the nearest neighbourhood of a point x in D. The

number of times a point x occurs among the nearest neighbourhoods Nk(x) of

all other points in D can be thought of as a measure of its hubness, reflecting its

popularity in the space. It has been studied [109] that the distribution of this

Nk(x) becomes considerably skewed when considering higher dimensionality of

points in D, revealing the emergence of “hubs”. Conversely, “anti-hubs” are

points that occur in very few or none of the nearest neighbourhood lists.

We use the Hub Toolbox implementation [33], after modifying it to handle

multimodal data. We compare hubness results for VRSS and VSE++(R),

using the embeddings generated for the test split of the data. Table 5.5 and
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Table 5.6 show the calculated hubness when considering the k-nearest text

neighbours of all image points and vice versa respectively (k = 5, 10), in the

embedding space obtained using VRSS.

Table 5.5: Hubness analysis results. Text points as hubs in neighbourhoods of
image points from Stepwise Recipe embeddings obtained using VRSS.

Hubness (Sk = 5) 0.90
Anti-hubs at k= 5 2.27%
Hubness (Sk = 10) 0.48
Anti-hubs at k=10 0.12%

Table 5.6: Hubness analysis results. Image points as hubs in neighbourhoods
of text points from Stepwise Recipe embeddings obtained using VRSS.

Hubness (Sk = 5) 6.90
Anti-hubs at k= 5 34.79%
Hubness (Sk = 10) 6.23
Anti-hubs at k=10 28.34%

The values in Table 5.6 suggests high hubness. This can be more intuitively

understood by looking at the high fraction of points that behave as anti-hubs.

We see clear indications of hubness in one direction, that is, many image points

are hubs and anti-hubs when we are given the neighbouring image point lists

for all text points. This is likely to have an impact on retrieval accuracy.

This is contrasted against Table 5.7 and Table 5.8 respectively, which report

the calculated hubness in the embedding space obtained using VSE++ in a

similar fashion.

Table 5.7: Hubness analysis results. Text points as hubs in neighbourhoods of
image points from Stepwise Recipe embeddings obtained using VSE++(R).

Hubness (Sk = 5) 1.90
Anti-hubs at k= 5 14.46%
Hubness (Sk = 10) 1.50
Anti-hubs at k=10 6.22%

Hubness in the VSE++(R) embeddings, by comparison, is not perceived

to be as significant. Therefore, hubness analysis suggests that the retrieval

81



Table 5.8: Hubness analysis results. Image points as hubs in neighbourhoods
of text points from Stepwise Recipe embeddings obtained using VSE++(R).

Hubness (Sk = 5) 2.29
Anti-hubs at k= 5 5.71%
Hubness (Sk = 10) 1.81
Anti-hubs at k=10 1.13%

performance in VSE++(R) is less adversely affected compared to that of our

VRSS model and cannot solely account for the difference in the model per-

formances.

In order to determine why VRSS significantly outperforms VSE++(R)

according to both human evaluators and common retrieval accuracy metrics,

we then turn to simple visualisations of the embedding spaces.

The t-SNE technique [91] is popular for efficiently visualising high-dimensional

data in two or three dimensions, retaining local structure while revealing some

global structure. By visualising 2-dimensional maps using t-SNE, we are able

to study clustering and separability across the two modalities in the embedding

space.

Figure 5.8: t-SNE plot for VRSS embeddings.

We examine a random sample of 850 points from each image-text shared

embedding space, as generated by VRSS and VSE++(R) for the test split of

the data. The visualisation in Figure 5.9 reveal that VSE++(R) embeddings

suffer from disparate features in the two modalities, leading to a separation of

the modalities in the shared embedding space. The t-SNE plot in Figure 5.8,

however, demonstrates that VRSS is able to handle this challenge of multimodal

data. The embeddings are better distributed in the shared space, owing to

82



Figure 5.9: t-SNE plot for VSE++(R) embeddings.

the reconstruction of image embeddings from the input text during our latent

topic modelling step. These reconstructed points are more comparable to the

image encodings themselves.

5.7 Conclusion

We presented VRSS model that given a sequence of text passages, retrieves

a sequence of images best describing the semantic content of text and intro-

duced the Stepwise Recipe dataset which will facilitate further research on

this problem. Our results on the Stepwise Recipe dataset show that VRSS

significantly outperforms competitive baselines in terms of both automatic

and human evaluations. This chapter provided a formal introduction to the

problem of stepwise illustration but studied it on a limited domain. The next

chapter studies it on a more general domain.
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Chapter 6

Context-Dependent Text

Illustration and Description

Retrieval

In this chapter we address the RQ1 of “How can we develop automatic text

illustration systems that illustrate a given narrative text passage with a sequence

of illustrations, considering and incorporating prior context?”. Therefore, in

this chapter, we focus on the task of Stepwise Illustration on a more generalised

domain, in this part, we study existing methods, as well as propose new

methods, and employ them on the Gutenstories dataset, which contains images

from variety of domains.

6.1 Introduction

Automatic text illustration, as described by Hartmann and Strothotte [47], is

the task of automatically illustrating a piece of text with relevant images. Joshi

et al. [61], described the task of automatic story picturing slightly differently

from automatic text illustration. The main objective in text illustration is to

provide an illustration to a piece of text, whereas in story picturing, it is to

depict or explain, the events and ideas conveyed by a text in the form of a few

representative pictures.

For example, for a given piece of text, “But Peter Rabbit, who was very

naughty, ran straight away to Mr. McGregor’s garden, and squeezed under the

gate!”, for text Illustration, any picture of Peter Rabbit, would be considered a

relevant illustration. However, for story picturing, the objective is to retrieve a

specific image of a rabbit trying to squeeze under a gate as shown in Figure 6.1.

That is, story picturing should illustrate the text in the context of the story and

should be able to convey the idea depicted in the text. Therefore, specificity is
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Figure 6.1: Example automatic text illustration

the key difference between the two tasks.

Story picturing defined in Joshi et al. [61] aims to illustrate a rather short

piece of text by one or more images. We are instead interested in automat-

ically retrieving images for specific passages from a longer piece of text in a

context-dependent way. In a long text, ideas are usually unfolded sequentially.

Therefore, the retrieval of an image in the sequence should condition not only

on the given text passages, but also on the preceding text passages or images

retrieved in the story sequence. This is also more natural to how human

understanding evolves. There could be lots of redundant information. Models

should have the ability to select relevant information.

Although there are various image resources available on the Web, such as

Flickr5k, Flickr30k [133], ImageNet [25] and COCO [85], which can be used for

training cross-modal retrieval algorithms, they only contain isolated image-text

pairs and cannot be used to develop approaches for story picturing. More

recently, the Visual Storytelling (VIST) dataset [55] was introduced for the task

of generating text descriptions given a sequence of four to five photos collected

from Flickr. In VIST, each photo is only accompanied with one sentence as

its literal caption and one sentence as a description in context. It does not

contain rich contextual information as can be seen in children story books.

To the extent of our knowledge, a suitable dataset does not exist for the

tasks described above. Existing datasets do not have strong links between

text passages and explaining images. Storytelling models can be trained that

actually analyse content of the images and can capture the key semantics of
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the image. Besides search and retrieval, these models can help in clustering

visual stories into various categories. They can also be used in automatic text

illustration.

In this chapter, we focus on the two versions of a dataset, GutenStories

introduced in Chapter 3, for automatic story picturing and description retrieval

for children stories. GutenStories, which has been programmatically construc-

ted by processing web pages retrieved from Project Gutenberg, an online book

catalogue containing more than 57,000 digital stories. Details of the processing

pipeline that extracted, filtered and transformed raw data into a set of stories,

each with a sequence of text passages with their accompanied images, can be

found in the datasets chapter. We also provide evaluation results of various

approaches for cross-modal retrieval on our dataset and highlight the challenges

faced.

Our main contributions are as follows:

• We introduced two versions of a dataset GutenStories in Chapter 3,

which has been programmatically constructed by processing web pages

retrieved from Project Gutenberg, an online book catalogue containing

more than 57,000 digital stories. We provided details of the processing

pipeline that extracted, filtered and transformed raw data into a set of

stories, each with a sequence of text passages with their accompanied

images.

• We formalise the task of story picturing and description retrieval, and

outline challenges faced with these tasks.

• We provide preliminary evaluation results of various approaches for

cross-modal retrieval on our dataset. We compare the performance of

some traditional probabilistic methods with some neural-networks based

approaches for the tasks presented.

The rest of the chapter is organised as follows. In the subsequent sections,

we provide a problem formulation and list down some key challenges involved.

The sections following provide details of the experimental setup and discuss

the results obtained.

6.2 Challenges

One of the main challenges of the dataset is the amount of variety of texts

and images, that are present in the dataset. There are stories from dozens of
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genres. Stories presented can be categorised to History, Science, Technology,

Folklore, Children Fairy Tales. Dataset consists of mostly artificial, but also

natural images. As most of the books are digitised from textbooks. Some of

the images are also book covers.

Some of the key challenges involved in this task are as follows:

• GutenStories mostly consist of artificial images, most of the existing

datasets in the computer vision community are a representative of real-

world data. Therefore, the existing pre-trained models that are trained

on a different domain of images, need to transfer the knowledge from

other domains, to be utilised.

• There could be indirect semantic relationships among segmented image

regions and given text. To infer, the visual-text correspondence, models

would need to look and identify the most important aspects, both within

text and image.

• Rich linguistic information is naturally embedded in the text, as both

the images and texts come from a variety of story and content styles.

• Images, as can also be seen in figure 6.2 are usually cluttered depicting

more complex scenes, contain more and less prominent objects, and are

often rendered in varying resolutions.

• Text passages are also admittedly noisy since these are not written in

order to exhaustively list every object in the image but to describe the

main event or related aspects thereof in the story.

• A concern here is that detecting and recognizing all objects from images

under such noisy conditions is still beyond the capability of current

computer vision and natural language processing research.

It is worth noting, our aim is to employ this dataset to observe the correla-

tion between the visual and textual modalities without explicitly performing

object recognition.

6.3 Problem Formulation

GutenStories dataset consists of a wide variety of images. mini-GutenStories

only consists of children stories. Each story is a sequence of image-text pairs.

We assume, due to the nature in which dataset is constructed, that the corres-

ponding texts describe the content of the image either directly or non-directly.
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Figure 6.2: Example text passage-image pairs in our dataset.
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Given the constraints defined above, our goal is threefold: Automatic story

picturing, description retrieval and story retrieval.

Automatic text illustration

Automatic text illustration or story picturing is the task of retrieving the

image I, that corresponds to text article x, in a story sequence S.

Description Retrieval

Description retrieval is the task of retrieving the text article x, given the

image I, in the story sequence S.

The task of story picturing requires the understanding of text and context

information in preceding text passages and images retrieved so far. Since it is

a difficult task, we start with a relatively simpler task of retrieving an image

given a text passage. Note that our text passage here may contain multiple

sentences. As is common in information retrieval, we measure the performance

by Recall@K, which is the fraction of the number of correct images retrieved

at the top K position out of a total of number of text queries. We also define

another metric, Story@K, which considers the retrieved image as correct if it

is from the same story sequence.

Story Retrieval

We formulate the story retrieval task as follows, given a text article x, and

its accompanying image with image representation i, which belongs to the story

sequence S. The objective is to retrieve any image from story sequence S, given

a text article x. For the task of story retrieval, we measure the performance by

StR@K i.e the fraction of the queries for which the correct story is retrieved,

given K closest points in the embedding space.

6.4 Methods

In this section, we describe several models incorporating different kinds of

features to study the relevant importance of these features in modelling and

retrieval of a relevant image from a repository to match the semantics of the

given text or the task of description retrieval and story picturing. We study

and compare performance of these several previously published methodologies

on GutenStories dataset and its mini version. We also propose some new

methodologies for this task.
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6.4.1 LDA-based

As proposed in Feng and Lapata [36], a mixed-LDA model can be trained on

documents consisting of images and texts. They proposed several extractive

and abstractive summarisation techniques to generate summaries. They also

proposed ways to retrieve images. We re-implemented the topic modelling

based approach in Feng and Lapata [36] to jointly generate words in text and

visual words in image assuming each text-image pair share the same set of

topics. For text illustration, we first synthesised textual and visual dictionaries

where a textual dictionary was created by assigning a unique token id to each

word presented in any of the documents and visual dictionary was constructed

by clustering SIFT descriptors extracted from images into 750 different visual

words. We then trained a LDA model with 100 topics on the dataset containing

both text and images. It has been shown in Feng and Lapata [36] that retriev-

ing images based on the computed probabilities of visual terms marginalising

over document topics. The retrieved image is the one with maximum overlap

of visual terms.

word-overlap based

For extractive summarisation, word-based overlap strategy was also implemen-

ted, where the sentence with maximum overlap between extracted annotations

and words in the sentence is picked.

6.4.2 Joint embedding learning

We also implemented a deep neural-networks based approach which maps the

text representations and image representations into the joint common semantic

embedding space. Since both texts and images are projected to the same

semantic space, we can simply choose the image which is nearest to a given

text representation. Cosine similarity measurement is used to calculate the

similarity score between a text vector and an image vector. A hierarchical

bidirectional LSTM (Bi-LSTM) with max-pooling is employed to represent

sentences in the vector space, following Talman et al. [132]. A pre-trained

ResNet-152 architecture is used as our image encoder [48]. The image features

are extracted from the penultimate fully connected layer. The text and image

vectors are then projected using a fully connected linear layer to the semantic

space. Triplet Ranking Loss function using the hard negatives, as described in

Faghri et al. [31], are used to align the image and text vectors in the semantic
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space. We refer to this model as Deep-NN-res0.2 in the result tables.

Figure 6.3: Deep NN Architecture.

In this section, we also present instructions in the main training procedure

for joint embedding learning model in Algorithm 5. As it can be observed in the

algorithm, the procedure involves transforming passages of text and images to

a space, where they could be directly compared. For each batch in the training

dataset, the text sequences and image sequences are transformed accordingly.

For each image and text pair in a story, the image InT is fed to the pretrained

CNN model to extract semantic features. The image features are represented

by F i. Similarly, for the text passages, a RNN is used, more specifically, in

this case a hierarchical RNN is used to represent the text in vector form. F x

represents features in the text space. Both F x and F i are further transformed

using two linear layers into a common semantic space. Please note, we also use

dropout in this layer to account as regularisation measure. We dropout with a

probability of 0.2. Triplet ranking loss is computed in the semantic space and

model parameters are back propagating over this loss function.

The testing procedure is also fairly similar to training procedure, as presen-

ted in Algorithm 6. The key difference is that the respective computed features

are used to retrieve their key images/texts. Recall measures are used to evalu-

ate the model.

Pre-training with SkipThoughts

We explored a number of variants of the Deep NN architecture presented

above. For text encoder, instead of using the hierarchical Bi-LSTM, we use

the pre-trained SkipThoughts model [73] to extract the representation for each

sentence in the text passage. The sequence of sentence embeddings is then fed

to a Recurrent Neural Network (RNN). The last hidden layer of the RNN is

used as the text passage embedding.
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Algorithm 5 Training procedure for Joint Embedding Learning methodology

for each batch in trainData do

for Sn ∈ {S1, S2, · · ·SNB} do
Sn = {(xn1 , In1 ), (xn2 , I

n
2 ), · · · , (xn|Sn|, I

n
|Sn|)}

text sequence xn = {xn1 , xn2 , ..., xnT }
image sequence In = {In1 , In2 , ..., InT }

for (xnt , I
n
t ) ∈ {(xn1 , In1 ), (xn2 , I

n
2 ), · · · , (xn|Sn|, I

n
|Sn|)} do

F x = RNN(xnt )
F i = CNN(Int )
Sx = LinearLayer(F x)
Si = LinearLayer(F i)
backpropagate(TripletRankingLoss(Sx, Si))

end for
end for

end for

Algorithm 6 Testing procedure for Joint Embedding Learning methodology

for each batch in testData do

for Sn ∈ {S1, S2, · · ·SNB} do
Sn = {(xn1 , In1 ), (xn2 , I

n
2 ), · · · , (xn|Sn|, I

n
|Sn|)}

text sequence xn = {xn1 , xn2 , ..., xnT }
image sequence In = {In1 , In2 , ..., InT }

for (xnt , I
n
t ) ∈ {(xn1 , In1 ), (xn2 , I

n
2 ), · · · , (xn|Sn|, I

n
|Sn|)} do

F x = RNN(xnt )
F i = CNN(Int )
Sx = LinearLayer(F x)
Si = LinearLayer(F i)
Oi = NearestNeighbour(Si)
Ox = NearestNeighbour(Sx)
computeV isualSaliencyRecall(Oi, Ox, Int , x

n
t )

computeTextualSaliencyRecall(Oi, Ox, Int , x
n
t )

computeTextRecall(Oi, Ox, Int , x
n
t )

computeImageRecall(Oi, Ox, Int , x
n
t )

end for
end for

end for
ComputeAverageTextRecall()
ComputeAverageImageRecall()
ComputeAverageV isualSaliencyRecall()
ComputeAverageTextualSaliencyRecall()
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Variant Image Representation Mechanisms

For image encoding, we explored different Convolutional Neural Networks

(CNN) based architectures, the use of VGG [124] instead of ResNet-152 for the

generation of image embeddings.

Dropout-based regularisation

We also study the effects of introducing a dropout layer to tackle the noisy

nature of the dataset, as highlighted in the challenges section. So, we explore

another variant, by introducing a dropout in the baseline architecture. A

dropout layer is introduced at the intermediate linear layer. Several dropout

values were experimented with, and best results were obtained using p=0.2.

Here p is the dropout rate.

6.4.3 Event Representation Embeddings

As there is lot of event related data in the textual stories, we explored another

text representation variant. We implemented a Named-Entity-Recognition

(NER) based strategy. As GutenStories dataset is often cluttered with lots of

objects and scenes, both in the text and images. We aim to extract entities

from different categories, namely person, location, organisation and keywords

from the text. Stanford NLP Toolkit [40] was used for extraction. We represent

the extracted entities using the fastText library [12] (also in [62]).

We concatenated summed representations of all entities, from each category,

to form the text representation vector. Subsequently, we fed these extracted

features into the same Deep NN architecture as described above and project

the data into common semantic space, to reduce corresponding distances, with

a triplet ranking based loss function.

Several other event representation methods have also been explored in

recent research [28, 95].

6.4.4 Stacked Cross Attention Network (SCAN)

To infer the latent semantic alignment between objects in an image or other

salient stuff for example, snow or sky and the corresponding words in a piece

of text, for the problem of image-text matching, Lee et al. [81] presented a

model based on stacked cross-attention network. They argue to look at the

similarity of all possible pairs of regions and words by attending accordingly
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to more or less important words. Therefore, they incorporate attention over

all sub regions of a given image and words in a text. They use a multi-step

attentional process to capture the possible number of semantic alignments to

discover the full latent alignments using both image regions and words in a

sentence as a context to infer the image-text similarity. We use the model

presented in Lee et al. [81].

6.4.5 Context-based Models

In Chapter 5, we saw the importance of incorporating context for the task

of text illustration. Therefore, we also experiment with some context-based

models on the GutenStories dataset.

VRSS

We employ the model presented in Chapter 5 VRSS on this task.

VRSS(order)

We experimented with the presented VRSS model in the same way as described

previously. However, the embeddings pre-trained on the task of image-text

retrieval are used in this case. We used pre-trained embeddings from [137],

both for text and image representation.

6.5 Experimental Setup – mini-GutenStories

In this section the experimental design for evaluating the performance of the

models presented above is discussed. Note, in this section, we only present

results on the mini version of the dataset, as described before. We provide

details of the training procedure and parameter estimation.

Experiments were conducted on the mini-GutenStories dataset. We created

an author-wise train-test split for image-text pairs. Train set consists of 5k

pairs. Test set consists of 1k pairs. We use both ResNet152 [48] and VGG19

[125] as our image encoders. Features are extracted from the penultimate fully

connected layer. The dimensionality of image embeddings is set to 2048 for

ResNet and 4096 for VGG. We use a hierarchical Bi-LSTM with max-pooling

for representing text, following the architecture in [132]. Features were further

projected using two linear layers for images and texts from the feature space to

1024-dimensional semantic space. End-to-end network training was done using
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triplet-ranking loss function for 300 epochs. The parameters of the pre-trained

CNN network were kept fixed during training. We also introduced a dropout

layer in the linear layers with a dropout value of 0.2.

For the text illustration experiments, the proposed dataset was evaluated

with three baselines. The first one is essentially LDA methodology for re-

trieving images. We select the image based on the topic-mixture framework.

The second one is a straightforward implementation of the vector space model

where documents and images are represented by vectors whose components.

We followed common practice in weighting terms by their tf-idf values and used

the cosine similarity measure to find the image whose vector representation is

most similar to the test document vector.

6.5.1 mixed-LDA training

The mixed-LDA model training was done by first extracting SIFT features

from all the images in the dataset. Subsequently, visual words were formed by

clustering all the extracted features into 750 clusters, using standard clustering

algorithm, here we used KMeans. About 12 Million key points were extracted

from around 7,000 images.

The mixed-LDA model was trained using scikit-learn library [105] in Py-

Torch [104], and the model was trained for 1000 topics. KL divergence was

computed among the topic distributions using the SciPy library [59].

6.5.2 Results and Discussion

Table 6.1 report the retrieval performance of different methods on mini-

GutenStories using Recall@K and Story@K metrics, respectively. We compare

the performance of the probabilistic LDA model with some deep neural-networks

based architectures. Table 6.2 provides results of the models on Story@K

evaluation measure.

It can be observed that hierarchical Bi-LSTM gives better results compared

to SkipThoughts in text encoding. Also, using ResNet consistently outperforms

the model with VGG for image feature extraction. We also notice that most

of the baseline methods achieve quite low performance on this dataset, partly

due to the nature of the data used that unlike existing image datasets that

each image is usually aligned with a single sentence (or multiple alternative

captions) all directly describe what is depicted in the image, in our dataset,
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each image is paired with a text passage consisting of multiple sentences. Text

passage provides description of the events in the context of the story and may

not directly describe the image. This can be seen from examples in Figure 6.2.

It depicts the challenging nature of the problem. It shows examples of two

image-text pairs, where Ideally, the model should learn the latent alignment

of the key entities/relations described in text with the objects and layouts

depicted in images.

We have experimented with alternating ways of encoding text and image,

for example using LDA topics, in the hope that more abstract representations

from text and image could help with the cross-modal retrieval. However, our

results show that it performs even worse compared to deep NN approaches.

Also, GutenStories mainly consists of artificial images, whereas image en-

coders VGG19 and Resnet152 were trained on natural images. Future work

could consider training image encoders from large-scale artificial images in

order to extract better image representations.

The above highlights some of the challenges faced with the dataset and

there is a need of developing models that could capture the key semantics

of the text and the contextual information present in a story sequence, and

also better image representations in order to learn associations between the

text-image pairs. We hope our constructed datasets could encourage more work

in tackling the challenging problem of story picturing or context-dependent

text illustration from children’s stories.

6.6 Experimental Setup - GutenStories

In this section, the experimental design for evaluating the performance of the

models presented above is discussed. Note, in this section, we present results

on the full version of the dataset, as described before. We provide details of

the training procedure and parameter estimation.

Experiments were conducted on the GutenStories dataset. We created

an author-wise train-test split for image-text pairs. Train set consists of 62k

pairs. Test set consists of 1k pairs. We use both ResNet152 [48] and VGG19

as our image encoders. Features are extracted from the penultimate fully

connected layer. The dimensionality of image embeddings is set to 2048 for

ResNet and 4096 for VGG. We use a hierarchical Bi-LSTM with max-pooling

for representing text, following the architecture in [132]. Features were further
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Table 6.1: Text illustration and Description Retrieval performance using
Recall@k (R@k) and Story Recall@k (StR@k) and Visual Saliency Recall@k
(V SR@k) on the mini-Gutenstories dataset. The best result in each column is
highlighted in bold.

ImageRecall@k TextRecall@k

Models R@1 R@5 R@10 R@1 R@5 R@10

LDA-based

LDA-based 0.4 1.2 2.7 1.2 1.8 2.0
LDA(word) 0.2 1.1 2.1 1.1 1.6 1.8

Joint embedding learning

Event Repre 0.5 1.1 2.1 1.1 1.8 1.9
Deep-NN-skip 0.9 2.3 4.8 1.4 3.4 5.8
Deep-NN-vgg 0.8 3.2 5.4 0.5 4.2 8.3
Deep-NN-vgg0.2 0.8 3.2 5.4 0.8 4.7 7.2
Deep-NN-res 1.3 3.3 6.2 1.5 3.5 8.5
Deep-NN-res0.2 1.2 3.3 6.4 2.5 6.2 10.5

Table 6.2: Story Retrieval performance using Story Recall@k (StR@k) on the
mini-Gutenstories dataset. The best result in each column is highlighted in
bold.

StoryRecall@k

Models StR@1 StR@5 StR@10

LDA-based

LDA-based 2.3 3.4 5.4
LDA(word) 1.4 4.6 10.1

Joint embedding learning

Deep-NN-skip 1.4 4.6 10.1
Deep-NN-vgg0.2 1.8 5.9 9.1
Deep-NN-res0.2 5.5 14.1 20.8

projected using two linear layers for images and texts from the feature space to

1024-dimensional semantic space. End-to-end network training was done using

triplet-ranking loss function for 300 epochs. The parameters of the pre-trained

CNN network were kept fixed during training. We also introduced a dropout

layer in the linear layers with a dropout value of 0.2.

For the text illustration experiments, the proposed dataset was evaluated
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with three baselines. The first one is essentially LDA methodology for retriev-

ing images. We select the image based on the topic-mixture framework. The

second one is a straightforward implementation of the vector space model where

documents and images are represented by vectors whose components. We used

the cosine similarity measure to find the image whose vector representation is

most similar to the test document vector.

6.6.1 Evaluation Measures

Visual Saliency Recall

We implement Visual Saliency Recall by following [111] and use ResNet152

pretrained on ImageNet dataset and classify the images of the story test set

using this network [131].

Textual Saliency Recall

We also provide Textual Saliency Recall@k values. This demonstrates whether

the corresponding paired text for the retrieved image has entities that overlap

with those entities found in the text query.

6.6.2 Results and Discussion

It can be observed in tables 6.3 and 6.4, SCAN methodology outperforms all

other methods. We believe, it is due to its nature of selectively attending

to sub-constituents of both images and texts. It is able to learn the latent

semantic alignment based on possible subunit matches. It even outperforms

the context-based models that incorporate the preceding and succeeding in-

formation in a given story as well.

Both in terms of textual saliency recall and visual saliency recall, SCAN

outperforms. However, it still reaches the maximum top-1 recall of 4.5%,

which clearly denotes there is a margin to improve. With a manual inspec-

tion of the results obtained, we found sometimes the Visual Saliency Recall

and Textual Saliency Recall measures could also be inefficient at evaluating

this task, which outlines a need for a better automatic evaluation measurement.
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Table 6.3: Text Illustration performance using Visual Saliency Recall@k
(V SR@k) on the Gutenstories dataset. The best result in each column is
highlighted in bold.

VisualSaliencyRecall@k

Models VSR@1 VSR@5 VSR@10

Non-Context

LDA-based 1.1 2.0 3.3
Deep-NN-Res0.2 2.7 3.4 5.2
SCAN 4.5 6.3 12.1
EventRepr 2.1 2.9 4.0

Context

VRSS-VAE 2.5 3.7 5.2
VRSS-gc 2.3 3.3 4.9
VRSS 2.5 3.9 5.6
VRSS(order) 4.3 6.1 9.3

Table 6.4: Text Illustration performance using Textual Saliency Recall@k
(V SR@k) on the Gutenstories dataset. The best result in each column is
highlighted in bold.

TextualSaliencyRecall@k

Models TSR@1 TSR@5 TSR@10

Non-Context

LDA-based 1.3 1.9 3.4
Deep-NN-Res0.2 2.8 3.2 6.1
SCAN 3.3 5.1 6.9
EventRepr 1.1 2.1 2.9

Context

VRSS-VAE 2.1 3.2 4.4
VRSS-gc 1.9 2.3 4.7
VRSS 2.4 3.3 5.0
VRSS(order) 3.1 4.9 6.3

6.7 Error Analysis

In this section, we discuss different cases where the different models perform

successfully or not successfully and analyse possible reasons.

Figure 6.4 shows a manual inspection of the some of the results obtained
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using the best performing Deep-NN methodology on mini-GutenStories. It can

be clearly seen the challenging nature of the task. It also depicts the challenge

in automatic evaluation measures of this task. The figure presents the cases,

where the correct image was not retrieved using the best performing model.

Further, Figure 6.4 highlights some cases where metrics other than recall such

as Textual Saliency Recall, Visual Feature Similarity, and Story Recall are bene-

ficial. An image is retrieved corresponding to an adjacent text segment from the

same sequence, which is counted favourably when using the Story Recall metric.

Figure 6.5 provides another error analysis study of the Deep NN Model.

The figure presents the cases, where the correct image was not retrieved using

the best performing model.

The cases presented in both Figure 6.4 and Figure 6.5 demonstrate the

challenges associated with the problem. We present some points below listing

these challenges and also propose future directions to overcome these.

• Firstly, images in the dataset are artificial images and not natural im-

ages. Most of the methodologies presented here indirectly use semantic

knowledge from these images by using pretrained CNN models. These

models are pretrained on sets of natural images. One possible alternative

is to use a pretrained CNN classifiers specifically trained on the domain

of artifical images or related images to extract semantic features.

• Secondly, we also previously highlighted challenges associated with the

representation of the text. Some of the models depend on the semantic

representation of the text. In recent literature, transformers-based rep-

resentation mechanisms [27] have been proposed and achieved excellent

results on various benchmarks. The inclusion of such mechanisms can

help boost the performance of the some of the methodologies we have

presented in the sections above.

• A methodology presented before showed how attending to different sub-

constituents of images and texts can help improve the performance

previously. There are several possible alternatives in this direction by

experimenting with many attention variants to attend to different parts.

As, it can also be observed from the images, the complexity of scenes can

sometime act like hindrance in obtaining appropriate semantic repres-

entations of these images. This challenge can be overcome by attention

mechanisms.
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Figure 6.4: Illustrative comparison of correct and retrieved output of the Deep
NN model
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Figure 6.5: Illustrative comparison of correct and retrieved output of the Deep
NN model
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• Knowledge-bases constructed based on datasets from the real world can

also be beneficial in this problem context. A formal way to represent

this information can be explored and can provide boost to the various

performance metrics discussed above.

6.8 Conclusion

We present two versions of novel GutenStories dataset and also investigated

the new task of automatic stepwise text illustration. We provide some evalu-

ation results on text illustration using both using approaches based on topic

modelling and deep NN architectures, and highlight the challenges faced with

the constructed dataset.
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Chapter 7

Conclusions and Future Work

7.1 Main findings

In the current section we summarise our main findings with respect to each

of the research questions set up in chapter 1. We have grouped the research

questions introduced there according to the two main tasks we have considered

in this thesis, stepwise illustration and caption generation.

7.1.1 Stepwise Illustration

In the first part of this thesis, we address the research questions concerned

with the task of Stepwise Illustration. We formally introduced the problem in

Chapter 5.

Research Question 3 How can we automate the process of creating

resources for the task of automatic stepwise illustration?

To address this research question. We demonstrated an approach to create

an unlabelled dataset of sequenced image-text pairs from any source. We

also released two new data repositories, Stepwise Recipe and GutenStories,

consisting of 10K recipes with a total of 67K associated images and 18k visual

stories with a total of 90k associated images, respectively, where each segment

of text is paired with its corresponding image. Figure 5.1 shows an example of

the stepwise instructions and illustrations from a cooking recipe taken from

our newly-built dataset. A few selected text recipe instruction steps are shown

alongside the full sequence of recipe images. Note that retrieval of an accurate

illustration of Step 4, for example, depends on the data model being able to

encode the context from the previous steps of the recipe, as the current step

adds to preexisting information acquired from earlier steps. Both datasets are

web-crawled and systematically filtered and cleaned.
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We also highlight the challenges associated with these datasets. We con-

duct several experimental studies involving traditional as well as some recently

published methodologies for evaluating these datasets.

Research Question 4 How can we study the automatic stepwise illustra-

tion systems in a domain-constrained setting, given narrative text passage in a

limited domain with a sequence of illustrations, considering and incorporating

prior context?

We presented VRSS model that given a sequence of text passages, retrieves

a sequence of images best describing the semantic content of text and intro-

duced the Stepwise Recipe dataset which will facilitate further research on

this problem. Our results on the Stepwise Recipe dataset show that VRSS

significantly outperforms competitive baselines in terms of both automatic and

human evaluations.

Research Question 1 How can we develop automatic text illustration

systems that illustrate a given narrative text passage with a sequence of

illustrations, considering and incorporating prior context?

We have studied several approaches to automated text illustration systems

for text passages. We classified the approaches into four main categories:

atomic image retrieval for a given text passage, atomic text retrieval given

an image, sequential image retrieval given a sequence of text passages and

sequential text retrieval given a sequence of images. Following a thorough

investigation of the existing literature in the field of automated text illustration

to gain understanding of how joint-models of texts and images are utilised

for the task of semantic and coherent image retrieval. We highlighted some

common methods used and proposed new methodologies. We also evaluated the

models in a realistic scenario to test their ability to be employed as real-world

applications.

7.1.2 News Image Caption Generation

In this second part, we address the research questions concerned with the

task of caption generation for images appearing in news articles. We formally

introduced the problem in Chapter 4.

Research Question 2 How can we fuse information from different mod-

alities to summarise the given content for developing context-based models?

To address this question, we focused on the atomic image-text passages.

We studied the problem of news image caption generation. We conducted a

thorough investigative literature survey of the existing approaches employed in
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this domain. We identified several datasets that could be utilised and found

BBC News Data to be most suitable for this task. An earlier methodology

used a mixed-LDA to do cross-modal retrieval for this task. They proposed

several abstractive and extractive summarisation based techniques for caption

generation. We treated their best performing methodology, which is an extract-

ive summarisation technique, that retrieves the caption having closest topic

distribution, computed using KL divergence, as a baseline. We investigated

several ways to incorporate semantic features from both the modalities (im-

ages and texts) and thus were able to fuse them as contextual information.

Furthermore, we proposed a novel deep neural-networks based architecture for

the task of automatic caption generation for news images. The experimental

evaluation on the BBC News corpus shows that proposed methodology gives

a better BLEU score than baseline models and performs similarly compared

to the LDA approach on Meteor scores. Nevertheless, we noticed that the

captions generated by our approach were favoured over the captions generated

by the LDA based model most of time by human evaluators. In future, this

model might be extended to a full-fledged encoder-decoder architecture, where

the context vector from the LSTM cell used in our model can be passed to

another LSTM cell, which acts as a decoder for word sequence generation.

7.2 Directions for future research

There are a few directions in which future work can focus. In this final section,

we outline some of the major directions, based on the tasks that were tackled

in this thesis.

7.2.1 Stepwise Illustration

Stepwise illustraion is a challenging task that can be applied and extended to

many domains. While automatic story illustration is a task deemed quite useful

for educational and teaching purposes for children. Our proposed illustration

models achieved reasonable performance, there is a lot of scope for improvement

through addressing the following aspects of the problem.

In our experiments we have highlighted the use of evaluation measures

like Visual Saliency Recall and Textual Saliency Recall, which can help in

realistically evaluating these models. The models can also be extended using

knowledge graphs [45]. In recent literature, knowledge graphs have been incor-

porated into existing text understanding and image understanding systems.
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Also, in recent literature, many innovative methods to extract and represent

events have been discussed. Our models can be extended with better text and

image representation mechanisms to improve performance. Several examples

can be found in Ding et al. [28], Martin et al. [95].

The presented VRSS model can also be extended to perform image syn-

thesis. The synthesised image embedding point associated with every text

embedding point can be employed for either image generation or image retrieval

as desired. For example, Li et al. [83] propose a sequential image generation

model to visualise a sequence of sentences. Turkoglu et al. [135] discuss a

general framework for sequential image generation.

7.2.2 News Caption Generation

The proposed novel deep NN-based architecture for the task of automatic

caption generation for news images can easily be extended in several ways.

The experimental evaluation on the BBC News corpus show that proposed

methodology gives a better BLEU score than baseline models and performs

similarly compared to the LDA approach on Meteor scores. Nevertheless, we

notice that the captions generated by our approach were favoured over the

captions generated by the LDA based model most of time by human evaluators.

In future, this model can be extended to a full-fledged encoder-decoder archi-

tecture, where the context vector from the LSTM cell used in our model can

be passed to another LSTM cell, which acts as a decoder for word sequence

generation.

7.3 Summary

In this thesis, we addressed and formalised the task of sequence-to-sequence

(seq2seq) cross-modal retrieval. Given a sequence of text passages as query, the

goal is to retrieve a sequence of images that best describes and aligns with

the query. This new task extends the traditional cross-modal retrieval, where

each image-text pair is treated independently ignoring broader context. We

proposed a novel variational recurrent seq2seq (VRSS) retrieval model for this

seq2seq task. Unlike most cross-modal methods, we generate an image vector

corresponding to the latent topic obtained from combining the text semantics

and context. This synthetic image embedding point associated with every text

embedding point can then be employed for either image generation or image

retrieval as desired. We evaluate the model for the application of stepwise

107



illustration of recipes, where a sequence of relevant images are retrieved to

best match the steps described in the text. To this end, we built and released

two new multimodal data repositories Stepwise Recipe dataset and GutenStor-

ies dataset. To our knowledge, these are the first publicly available dataset

to offer rich semantic descriptions in a sequenced manner. We also provide

qualitative analysis of how semantically meaningful the results produced by

our model are through human evaluation and comparison with relevant ex-

isting methods. We also proposed new models and studied existing models

for the task of context-dependent text illustration and description retrieval.

We studied several models incorporating different kinds of features to study

the importance of these features in modeling and retrieval of a relevant image

from a repository to match the semantics of the given text. We studied and

compared the performance of several previously published and newly proposed

methodologies on GutenStories dataset.

108



Appendix A

Further Analysis and Results

In the section ahead, we present results by varying dropout levels from the

joint embedding learning methodology in Chapter 6.

A.1 Effects of introducing the dropout layer

In this section, we study the effects of introducing the dropout layer in some of

the discussed models. As most of the data we are dealing with, contains some

amount of noise, as also discussed in the challenges section. We introduce a

dropout layer in our deep NN architecture.

We also conducted experiments over MS-COCO dataset [86] and observed

an improved performance throughout all training iterations by introducing

dropout. Figures A.1, A.2 and A.3 show visualisation of top-1, top5 and

top-10 retrieval scores of images and texts respectively, over training iterations

by varying dropout levels. Here the top graph in each figure represents text

retrieval and bottom one represents image retrieval. The orange, blue, red and

sky blue represents dropout levels of 0, 0.2, 0.4 and 0.8 respectively.

A.2 Effects of varying the CNN architecture

In this section, we study the effects of varying the CNN architecture in the

deep-NN methodology presented in Chapter 6.

Here, the experiments are conducted over mini-GutenStories dataset and

observed an improved performance throughout all training iterations by using

ResNet architecture. Figures A.4 and A.5 show visualisation of top-1, top5 and

top-10 retrieval scores of texts and images respectively, over training iterations

by varying CNN architectures. Here the top graph in each figure represents
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Figure A.1: Visualisation of Top-1 retrieval scores of images and texts, over
training iterations by varying dropout levels

Figure A.2: Visualisation of Top-5 retrieval scores of images and texts, over
training iterations by varying dropout levels
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top-1, middle one top-5 and bottom one top-10 retrieval scores. Orange is the

best performing with ResNet152 and dropout of 0.2.
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Figure A.3: Visualisation of Top-10 retrieval scores of images and texts, over
training iterations by varying dropout levels
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Figure A.4: Visualisation of Top-1, Top-5 and Top-10 retrieval scores of texts,
over training iterations by varying image representation mechanisms

113



Figure A.5: Visualisation of Top-1, Top-5 and Top-10 retrieval scores of images,
over training iterations by varying image representation mechanisms
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