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Abstract

Since spilling over into humans, SARS-CoV-2 has rapidly spread across the globe, 

accumulating significant genetic diversity. The structure of this genetic diversity, and 

whether it reveals epidemiological insights, are fundamental questions for understanding the 

evolutionary trajectory of this virus. Here we use a recently developed phylodynamic 

approach to uncover phylogenetic structures underlying the SARS-CoV-2 pandemic. We find 

support for three SARS-CoV-2 lineages co-circulating, each with significantly different 

demographic dynamics concordant with known epidemiological factors. For example, 

Lineage C emerged in Europe with a high growth rate in late February, just prior to the 

exponential increase in cases in several European countries. Non-synonymous mutations that 

characterize Lineage C occur in functionally important gene regions responsible for viral 

replication and cell entry. Even though Lineages A and B had distinct demographic patterns, 

they were much more difficult to distinguish. Continuous application of phylogenetic 

approaches to track the evolutionary epidemiology of SARS-CoV-2 lineages will be 

increasingly important to validate the efficacy of control efforts and monitor significant 

evolutionary events in the future. 
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Introduction 

The rapid spread of the novel coronavirus SARS-CoV-2 since December 2019 represents an 

unparalleled global health threat1. Within four months of emerging from Wuhan in Central 

China, SARS-CoV-2 has now spread to nearly every country and is a major source of 

mortality (World Health Organization, 2020). The first cases of the virus outside China 

occurred in Thailand on January 13, and by January 30 there were 83 cases in 18 countries. 

As of May 19, there were over 4.5 million cases in 203 countries or territories(World Health 

Organization, 2020). Coronaviruses (order: Nidovirales, family: Coronaviridae) are 

enveloped positive-sense non-segmented RNA viruses that infect a variety of mammals and 

birds. SARS-CoV-2 is the seventh coronavirus to be identified infecting humans. The closest 

relatives (RaTG13 and RmYN02, 96% and 93% nucleotide identity respectively) derive from 

the Intermediate Horseshoe bat (Rhinolophus affinis) and the Malayan Horseshoe bat 

(Rhinolophus malayanus) (Zhou et al., 2020), although the original host is yet to be 

conclusively identified (Andersen, Rambaut, Lipkin, Holmes, & Garry, 2020). Since spilling 

over to humans, the virus has diverged rapidly, but it is unclear whether these mutations have 

resulted in SARS-CoV-2 lineages with different epidemiological and evolutionary 

characteristics (Eden et al., 2020; Korber et al., 2020; Pachetti et al., 2020; Rambaut et al., 

2020; Tang et al., 2020; van Dorp et al., 2020). Several lineages have been highlighted for 

potential significance (Eden et al., 2020; Korber et al., 2020; Tang et al., 2020; van Dorp et 

al., 2020). For consistency, we adopt the nomenclature outlined in (Rambaut et al., 2020) 

which classifies the initial lineages as A and B labelled ‘S’ and ‘L’ (in the GISAID 

nomenclature, Tang et al., 2020). There is some evidence that Lineage A is ancestral to the 

more recent Lineages B (Rambaut et al., 2020), even though the earliest assembled genomes 

from December 2019 belong to Lineage B (Rambaut et al., 2020; Tang et al., 2020). 
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Sequences within Lineage A and the closest known bat virus share two nucleotides in 

ORF1ab and ORF8 genes that are not found in Lineage B (Rambaut et al., 2020). More 

recently, a new lineage ‘G’ (in the GISAID nomenclature) has been documented originating 

in Europe in February (Korber et al., 2020). For consistency we call this Lineage C. It is 

currently unclear if these lineages differ phenotypically, or whether these lineages show 

distinctive demographic signatures (i.e., diversity increasing, plateauing or declining). Any 

further population sub-structure within these three lineages is also unknown at this point.

Pathogen population structure and effective population size can provide key insights into the 

epidemiology of an outbreak, such as whether intervention strategies are working to contain 

spread (i.e. is effective population size declining, Dellicour et al., 2018). Population structure 

may also align with geography, reflecting the contact structure of the host population. 

Understanding these variations is important both for vaccine development and evaluating the 

impact of control efforts across the globe. Detecting structure, particularly in recently 

emerged outbreaks, is a challenge as these patterns within the data can be cryptic (Volz et al., 

2020). For example, some lineages within a population can be rapidly expanding whereas 

others can be stationary (Volz et al., 2020). Utilizing large numbers of sequences provided by 

GISAID (Elbe & Buckland-Merrett, 2017) and recently developed phylodynamic tools, we 

interrogate SARS-CoV-2 population patterns to identify ‘hidden’ structure in the pandemic 

and investigate whether lineages are geographically partitioned and/or are on distinct 

demographic trajectories.

Three distinct lineages

Our analyses show support for three distinct lineages of SARS-CoV-2 actively spreading 

around the world (Fig. 1). These lineages are highly unlikely to have been generated under 
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the same coalescent process (p < 0.0001 for each pairwise treestructure test, see Methods) 

and the same analysis performed on our maximum clade credibility (MCC) Bayesian 

phylogeny yielded very similar results (Fig. 1). However, treestructure tests on a sample of 

Bayesian posterior trees revealed that this result was sensitive to phylogenetic uncertainty 

with, for example, one lineage (Lineage B, see below) only distinguishable in some of the 

posterior trees (see Table S1). Nonetheless, given the balance of evidence presented here and 

in previous work (Eden et al., 2020; Tang et al., 2020), Lineage B is likely distinctive from 

Lineage A and Lineage C. 

Furthermore, we show that these lineages have different demographic trajectories. Based on 

our maximum likelihood and Bayesian MCC time-scaled phylogenies, we estimated that 

Lineage A (and SARS-CoV-2 overall) diverged from its most recent common ancestor 

(MRCA) in November 2019 (95% high posterior density/confidence intervals November – 

December 2019, Fig. 1). Estimates from both approaches are comparable to other studies that 

have analysed greater numbers of sequences (van Dorp et al., 2020). We also found support 

for rate variation across the phylogeny (Coefficient of variation of rates: 0.12), although 

differences in MRCA estimates was minimal with strict and relaxed clock model having 

mostly overlapping distributions. Since emerging in China, our demographic analysis (Volz 

& Didelot, 2018) suggests that the growth rate of the effective population size of Lineage A 

increased in early January (Fig. 2a), then decreasing throughout February before increasing 

once more. This dip coincides with control of the pathogen in China (Leung, Wu, Liu, & 

Leung, 2020) and subsequent uncontrolled spread in Europe and North America. We found a 

similar pattern when we analyzed the complete dataset (Fig. 3a). The majority of sequences 

belonging to Lineage A originated from China in January to early February, whereas 

sequences from the US, and Washington State in particular, make up the majority of the 

sequences collated in March. 
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Our results support other analyses suggesting that Lineage B was derived from Lineage A 

and was not an independent introduction, even though Lineage B contains the earliest 

available genomes (Rambaut et al., 2020; Tang et al., 2020). Linked mutations in ORF1ab 

(8782, synonymous) and ORF8 (28144, non-synonymous) help to separate these lineages (as 

in Rambaut et al., 2020; Tang et al., 2020). Non-synonymous mutations in ORF14 (28881-3) 

also partially define these lineages, yet there is no evidence of phenotypic differences 

between these lineages. Further, there is a high degree of phylogenetic uncertainty about the 

node representing their most recent common ancestor and this lineage may be polyphyletic 

(Fig. 1, Fig. S1). The growth rates of both lineages (Fig. 2) are also similar suggesting that 

the lineages were co-circulating, but more local investigation is needed to determine relative 

fitness differences. Soon after diverging from Lineage A, the growth rate of Lineage B was at 

its highest but then formed a pattern of peaks and troughs with the credible interval including 

zero (representing no growth) from January onwards (Fig. 2b). The peak growth rate 

coincided with that of Lineage A (Fig. 2) indicating that this first wave of SARS-CoV-2 

through China generated a relatively large amount of the genetic diversity. As many 

sequences classified in Lineage B originate from China (Fig. 1) the subsequent decline of this 

lineage may also be linked to control of the virus. There is also evidence for a rapid increase 

in growth rate of both Lineage A and Lineage B when spread increased outside of China and 

this coincides with the divergence date for Lineage C (Fig. 2).While our results on their own 

cannot rule out the possibility that the phylogenetic structure we identified was a result of 

founder effects (Korber et al., 2020) (i.e., the lineages diverged as they were transmitted to 

new locations) we used an eco-phylogenetic approach (Fountain-Jones et al., 2018) to 

quantify the geographic structure. We found that the sequences were not strongly clustered by 

country or continent (phylogenetic signal K < 0.15, Table S2 see Methods). However, for the 
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continent contrast (i.e., modelling continent of origin for each sequence as a trait) this low K 

value was just significant using phylogenetically independent tip randomizations (P = 0.012, 

Z =-1.513, Table S2). This is likely due to the large numbers of sequences from Lineage C 

from Europe. 

Lineage C was predominantly European with no evidence that it circulated in China (Fig. 1). 

This lineage was well supported as monophyletic (node posterior support = 0.99, 91% 

bootstrap support, Fig. 1) and diverged from Lineage B in late January (95% HPD late 

January – early February). Linked non-synonymous mutations differentiated this lineage in 

the S gene (sites 23402-04 or D614G) and ORF1ab (14407-09) regions. There is increasing 

evidence that the mutations in the S gene have resulted in phenotypic change in the virus (and 

the resultant changes to the Spike (S) protein) that has enabled this lineage more readily 

transmissible (Korber et al., 2020; The COVID-19 Genomics UK Consortium, 2020). The 

mutations in the ORF1ab gene alter the RNA-dependent RNA polymerases (RdRp) that are 

crucial for the replication of RNA from the RNA template. There is evidence that this RdRp 

mutation may increase the mutation rate of the virus overall by reducing copy fidelity 

(Pachetti et al., 2020). The growth rate of Lineage C was initially high in late February, prior 

to the rapid increase of cases in Europe, but then declined, with one further peak around 

February 27, although the short duration suggests this may not be significant and could 

represent sampling noise. Accordingly, the effective population size of Lineage C increased 

rapidly during February – March, whereas there was only a small increase estimated for 

Lineage A and a decline in Lineage B (Fig. 2). Real-time phylogenetic reconstruction in 

Nextstrain (Hadfield et al., 2018) as well as results from intensively sampled populations in 

the U.K.(The COVID-19 Genomics UK Consortium, 2020) have subsequently shown that 

this lineage has further expanded and is the most frequently sampled across the globe. 
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The growth and decline of SARS-CoV-2 lineages

We were able to identify three lineages that were not only genetically distinctive but also had 

unique demographic signatures, revealing insights into the underlying epidemiology of this 

pandemic. There is also increasing evidence that Lineage C is more transmissible than the 

other lineages (Korber et al., 2020; The COVID-19 Genomics UK Consortium, 2020), 

revealing that our approach can detect important phenotypic changes to the virus. The 

number of cases increases day-by-day, as does the effective population size of the virus 

overall (Fig. 3b); both to be expected by their linear relationship in the early phase of a 

susceptible-infected-removed (SIR) compartmental model (Volz, 2012). It appears that this 

increase is not distributed evenly across the phylogeny, with all lineages showing some 

evidence of decline at different times. However, there is bias in countries represented in the 

GISAID dataset we accessed, with, for example, no sequences in our dataset from the Middle 

East even though there was a significant (and ongoing) outbreak in this region. Further, our 

approach to identify non-random coalescent patterns does not account for phylogenetic 

uncertainty and future work is needed to address this limitation. Even though the outbreak is 

only months old at the time of writing, there is already sufficient genetic diversity to track the 

demographic trajectories of each lineage. Approaches such as the one presented here, 

combined with workflows quantifying geographical lineage dispersal (Dellicour et al., 2020), 

will be even more useful in the coming months to assess the longer-term impacts on SARS-

CoV-2 control measures across the globe.

Methods
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We downloaded 779 complete “high coverage only” SARS-CoV-2 genome sequences from 

GISAID (Global Initiative on Sharing All Influenza Data; https://www.gisaid.org/, see 

Appendix S1 for the acknowledgment information) (Elbe & Buckland-Merrett, 2017) on the 

24th March 2020. We aligned these sequences with MAFFT (Katoh & Standley, 2013) using 

the CIPRES (Miller, Pfeiffer, & Schwartz, 2010) server and visually checked the results. We 

trimmed the first 130 bp and last 50 bp of the aligned sequences to remove potential 

sequencing artefacts in line with Nextstrain protocol (Hadfield et al., 2018). We tested for 

recombination in our alignment using RDP4 (Martin, Murrell, Golden, Khoosal, & Muhire, 

2015). We removed all duplicate sequences and sequences with more than 10% missing data. 

We then constructed a Maximum Likelihood tree using IQ tree with 1000 ultrafast 

bootstraps(Nguyen, Schmidt, von Haeseler, & Minh, 2014) using the inbuilt model selection 

algorithm (‘ModelFinder’ (Kalyaanamoorthy, Minh, Wong, Von Haeseler, & Jermiin, 

2017)). We confirmed that there was a significant temporal signal in the dataset using root to 

tip regressions in TempEst (Rambaut, et al. 2016) (R2 = 0.19, correlation coefficient = 0.42). 

We removed sequences from Washington State and China that likely had some sequence 

error as they were strong outliers in the TempEst analysis. Removing sequence error, 

identical sequences and sequences with missing data reduced the dataset to 587 complete 

SARS-CoV-2 genomes.

We used both the maximum likelihood-based treedater method (Volz & Frost, 2017) and a 

Bayesian approach to reconstruct the timing and spread of SARS-CoV-2. We employed the 

computationally intensive Bayesian methodology (BEAST version 1.10.4 (Suchard et al., 

2018) with BEAGLE (Ayres et al., 2019) computational enhancement) to validate our 

maximum likelihood MRCA estimates and to provide dating estimates for internal nodes of 

interest.  For the BEAST analysis, as there is strong evidence that the pandemic is growing, 
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we assumed an exponential growth coalescent model. To estimate evolutionary rate, we 

compared runs using a strict and relaxed molecular clock.  While we found some minor rate 

variation and very similar MRCA estimates, our ML results supported a relaxed clock model 

(see below), so subsequently we present results from that model. We performed each BEAST 

analysis in duplicate and ran the MCMC chains for 200 million iterations sampling every 20 

000 steps. We visualized these results using Tracer (Rambaut, Drummond, Xie, Baele, & 

Suchard, 2018) and ensured that all parameter estimates had converged with an effective 

sample size (ESS) > 200. We generated a MCC tree using TreeAnnotator, discarding 20% as 

burn-in. 

Our previously described ML tree was used as input of the treedater method (Volz & Frost, 

2017) to produce a ML time-scaled phylogeny. Treedater is an efficient maximum likelihood 

method that implements both a strict clock model using a Poisson process and a relaxed clock 

model using a Gamma-Poisson mixture. We compared the fit of relaxed and strict clock 

models using a parametric bootstrap test to compare the coefficient of variation of rates (Volz 

& Frost, 2017) and used the best fitting model to construct the phylogeny as well. We 

estimated the confidence intervals for the dates of ancestors in this tree using parametric 

bootstraps. 

We then used this time-stamped ML tree to test for structure within the tree using the non-

parametric treestructure approach (Volz et al., 2020). Briefly, this method partitions the tips 

and internal nodes of a tree into discrete sets characterized by comparable coalescent patterns. 

See (Volz et al., 2020) for analytical details. Given the relatively low levels of genetic 

diversity, we constrained our structure analysis to be able to identify a maximum of four 
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lineages by making the minimum clade size 145 sequences and performed 100,000 tree 

simulations (with a significance threshold of 0.05). We then tested the hypothesis that each 

pair of identified clades within a tree were generated by the same coalescent process using 

the treestructure rank sum test. We also performed the same analysis on the Bayesian MCC 

tree as well as 1000 trees from the posterior. To test if the identified lineages were a product 

of the founder effect, we modelled the geographic origin for each sequence as a trait across 

our phylogeny and measured the phylogenetic signal (the K statistic, Blomberg, Garland, & 

Ives, 2003) of each trait using phylogenetic independent contrasts using the R package 

Picante (Kembel et al., 2010). We calculated K for both country of origin and continent of 

origin, and we tested the significance of K using 9999 randomizations. K = 0 represents little 

phylogenetic clustering by country or continent whereas K = 1 represents strong phylogenetic 

clustering.

For the complete dataset and each lineage subset, we modelled the effective population size 

growth rate through time using the skygrowth package (Volz & Didelot, 2018). Skygrowth is 

a non-parametric Bayesian approach that applies a first-order autoregressive stochastic 

process on the growth rate of the effective population size. We parameterized our skygrowth 

models assuming that SARS-CoV-2 effective population size could change every three days. 

We used an exponential distribution with a mean of 0.1 to estimate the precision parameter 

(Τau). We ran the MCMC for 20 million generations thinning every 1000th sample and 

considered each analysis to be converged if the ESS >200. We compared our skygrowth 

models to Skygrid models using the R package ‘phylodyn’ (Karcher et al. 2017) using the 

default settings. The ML tree and code used to perform these analyses are available here: 

https://github.com/nfj1380/covid19_evolution. BEAST log files are available upon request.
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Fig. 1. Treedater maximum likelihood tree (a) and Bayesian time-scale phylogeny (b) 

revealing the three SARS-CoV-2 lineages we identified with unique demographic signatures 

(Lineages A, B & C).  Branches in both trees are coloured by lineage (see Methods for 

details). Most recent common ancestor (MRCA) estimates from the treedater analysis are 

also provided. Density bars are shown representing the 95% highest posterior density (HPD) 

intervals for the dating of each lineage. Node posterior support values and bootstrap support 

values are shown for internal nodes not leading to leaves with values > 0.8 or 80% posterior 

or bootstrap support respectively. See Fig. S1 for the Bayesian tree with all posterior support 

values. Stacked bar plots show the proportion of sequences from each country classified in 

each lineage.

Fig. 2. Effective population size (left panels) and growth rate of the effective population size 

per year (right panels) estimated through time for the three identified SARS-CoV-2 Lineages 

from our skygrowth models. The coloured 95% high probability density (HPD) intervals 

reflects lineages identified in Fig. 1. Dashed lines in the left panels indicate a growth rate of 

zero. 

Fig. 3. Growth rate (a) and effective population size (b) estimates through time from our 

skygrowth model using the complete dataset (all lineages of SARS-CoV-2). Light blue 

shading represents the 95% HPD of the estimates. 
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Treedater maximum likelihood tree (a) and Bayesian time-scale phylogeny (b) revealing the three SARS-
CoV-2 lineages we identified with unique demographic signatures (Lineages A, B & C).  Branches in both 
trees are coloured by lineage (see Methods for details). Most recent common ancestor (MRCA) estimates 

from the treedater analysis are also provided. Density bars are shown representing the 95% highest 
posterior density (HPD) intervals for the dating of each lineage. Node posterior support values and bootstrap 

support values are shown for internal nodes not leading to leaves with values > 0.8 or 80% posterior or 
bootstrap support respectively. See Fig. S1 for the Bayesian tree with all posterior support values. Stacked 

bar plots show the proportion of sequences from each country classified in each lineage. 
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Effective population size (left panels) and growth rate of the effective population size per year (right panels) 
estimated through time for the three identified SARS-CoV-2 Lineages from our skygrowth models. The 

coloured 95% high probability density (HPD) intervals reflects lineages identified in Fig. 1. Dashed lines in 
the left panels indicate a growth rate of zero. 
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Growth rate (a) and effective population size (b) estimates through time from our skygrowth model using 
the complete dataset (all lineages of SARS-CoV-2). Light blue shading represents the 95% HPD of the 

estimates. 
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