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Abstract
Background: Transcription in mammalian cells is a complex stochastic process
involving shuttling of polymerase between genes and phase-separated liquid
condensates. It occurs in bursts, which results in vastly different numbers of an mRNA
species in isogenic cell populations. Several factors contributing to transcriptional
bursting have been identified, usually classified as intrinsic, in other words local to
single genes, or extrinsic, relating to the macroscopic state of the cell. However, some
possible contributors have not been explored yet. Here, we focus on processes at the
3′ and 5′ ends of a gene that enable reinitiation of transcription upon termination.

Results: Using Bayesian methodology, we measure the transcriptional bursting in
inducible transgenes, showing that perturbation of polymerase shuttling typically
reduces burst size, increases burst frequency, and thus limits transcriptional noise.
Analysis based on paired-end tag sequencing (PolII ChIA-PET) suggests that this effect
is genome wide. The observed noise patterns are also reproduced by a generative
model that captures major characteristics of the polymerase flux between the ends of a
gene and a phase-separated compartment.

Conclusions: Interactions between the 3′ and 5′ ends of a gene, which facilitate
polymerase recycling, are major contributors to transcriptional noise.

Keywords: Gene expression, Parameter inference, Mathematical modelling, Gene
looping, Biological noise, Liquid-liquid phase separation

Introduction
In many cellular systems, mRNAs appear to be produced in burst-like fashion. This is
directly observed in real-time experimental studies [1–3] and also agrees with theoretical
analyses of steady-state mRNA distributions among single cells [4, 5]. Such bursty dynam-
ics are thought to be the signature of gene regulation and are often described in terms of
transcriptional “noise” [5, 6]. Due to the central role of transcription in cellular functions,
it is important to understand the mechanisms from which the bursting originates [7].

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-020-02227-5&domain=pdf
mailto: m.cavallaro@warwick.ac.uk
mailto: d.hebenstreit@warwick.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Cavallaro et al. Genome Biology           (2021) 22:56 Page 2 of 20

The microscopic dynamics underlying transcription are not yet well understood.
Various factors have been found to influence transcriptional dynamics, mostly by mod-
ulating bursting parameters such as the size or frequency of bursts [3, 5]. These factors
are often classified as either intrinsic or extrinsic, although this distinction is blurred in
many cases. This classification originally derives from the observation that fluctuations in
expression levels are partially correlated across multiple genes [8], thus suggesting com-
mon, extrinsic causes, while the remaining, independent fluctuations are intrinsic to each
gene. Typical major extrinsic noise sources are the cell cycle [9–11] and cell-size fluctu-
ations [12], the latter partially due to the former. Numerous additional factors such as
neighbouring cells, cell morphology, and others have been found to affect transcription
to varying degrees [13]. Intrinsic factors include non-linear transcription factor interac-
tions [4, 5, 8], changing chromatin status [14, 15], promoter architecture [3], transcription
factor diffusion [16], and several others [17–19].
It is unclear how these phenomena relate to the local environment at transcribing genes.

These are associated to clusters of RNA polymerase II (PolII), which have been inter-
preted as “transcription factories” [20] and suggested to modulate the temporal patterns
of transcription [21, 22]. More recently, it has been found that, in proximity to active
genes, the PolIIs are incorporated in membrane-less droplets, maintained by liquid-liquid
phase separation (LLPS) from the rest of the nucleus, with the net effect of locally increas-
ing the population of factors involved in initiation; when PolII is liberated from this
domain, transcription can be initiated [23–28]. LLPS also provides an explanation for the
hitherto enigmatic action-at-a-distance type of gene regulation by distal enhancers, as the
nuclear condensates are indeed able to restructure the genome, albeit results on LLPS are
relatively preliminary at this stage [29, 30].
While a comprehensive description of the interactions between PolIIs, other factors,

and the chromatin within these niches is missing, several observations suggest that ter-
mination is linked to reinitiation; these include the presence of the same factor species at
both ends of a gene, the reduction of initiation upon perturbation of 3′ processes, and pro-
tein interactions that have been suggested to juxtapose the promoter and the terminator
DNA, forming a structure that has been referred to as a “gene loop” [31, 32]. Impor-
tantly, it has been demonstrated that 3′-end processing favours transcription initiation;
the presence of such 3′-5′ crosstalk in a gene increases its mean expression level [33]. The
concept of LLPS appears highly important in this regard, as PolII undergoes a sequence
of post-translational modifications on its C-terminal domain during transcription, while
integration into phase-separated domains and reinitiation requires it to be unmodified
[24]. In line with this, recent studies suggest that LLPS is also involved in 3′-end transcrip-
tional processes [34]. We generically refer to the shuttling of PolIIs from 5′ to 3′, poten-
tially passing through the LLPS compartment, as the recycling. It has been suggested
that a repetitive cycle of reinitiation and termination due to these mechanisms is likely
to produce a rapid succession of mRNA creation events, thus potentially contributing
to the transcriptional bursts [35], but to the best of our knowledge, an experimental
verification is as yet lacking.
In this paper, we investigate the interplay between bursty expression and 3′-5′ inter-

actions using an interdisciplinary approach. We first consider two integrated genes
that permit studying transcription upon perturbation of their 3′-5′ processes at dif-
ferent induction levels; we demonstrate that these interactions strikingly influence the
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transcription kinetics and typically elicit the transcriptional noise, by decreasing burst
frequency and increasing burst size. We then focus on genome-wide 3′-5′ interactions
involved in transcription by means of PolII ChIA-PET sequencing data, showing that
they are related to the gene-expression parameters similarly to the transgenes’ results.
This scenario is well described by a microscopic stochastic model of gene expression,
where tuning a single parameter—corresponding to the probability of local polymerase
recycling—naturally yields the observed expression patterns, without involving extrinsic-
noise contributors or alternative intrinsic mechanisms.

Results
Cell lines as model systems for PolII recycling

We utilised two HEK293 cell lines which contain on their genomes copies of the genes
β-globin (HBB) [33] and a modified version of HIV-1-env [36], respectively, driven by
inducible CMV promoters (Fig. 1a, b).
This transgene approach allowed us to exploit very well-characterised model systems

for recycling perturbation, which achieve mono-allelic expression and, most importantly,
allow precise control of expression levels with inducers [33]. The first gene, HBB, is an
example for long-range chromosomal interactions in its native genomic neighbourhood.
Its expression involves spatial proximity between the promoter and a locus control region
(LCR) over 50 Kb away [37]. The LCR has been studied extensively in murine and human
cells (see, for example, references [38, 39]) and jointly regulates expression of several
β-globin-like genes at the locus, likely involving LLPS [40]. A recent study demonstrates
burst-like expression of murine HBB and suggests that interactions between the LCR and
the HBB promoter modulate the bursting parameters [9]. Our cell line features an ectopic

Fig. 1 Characteristics of transgenes used in this study. a Schematic gene structure (top) of WT HBB including
CMV promoter, Tet operator, pA signal, and exons (black blocks) as indicated. Total RNA-seq confirms
Tet-inducible expression (bottom). b As a, for env. c, dMutant versions of HBB and env, respectively. Point
mutations in pA sites (“x”) and read-through transcription are indicated. Positions are relative to TSS; blue and
orange shades correspond to WT and mutant versions, respectively; and light and dark shades correspond to
250 and 0 ng mL−1 Tet, respectively. Coverages by sequencing reads are shown. e Kernel density estimates
of the flow-FISH single-cell readings corresponding to the abundances of HBB transcripts, WT (blue), mutant
(orange) variants, and control (grey) cells, from replicate k = 1, at different induction levels (Tet
concentrations in unit of ng mL−1, shades of colours, as indicated on the left). Gene expression increases and
saturates upon increasing Tet concentration, and mutant-cell expression is lower than the WT; a.u., arbitrary
units; y-axes not to scale
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insertion of human HBB under control of a tetracycline (Tet) responsive promoter. A pre-
vious study of this system has provided a substantial number of results suggesting that 3′

mRNA processing contributes to reinitiation of transcription [33]. This notion is based
on several findings relating to the introduction of a single point mutation in the SV40 late
poly-adenylation (pA) site (Fig. 1c). This includes decreased average mRNA expression
levels, while “read-through” transcription downstream of the pA site is increased. Fur-
thermore, the mutation leads to a decrease of PolII, TBP, and TFIIB levels at the promoter
shortly after gene induction, and to an accumulation at the “read-through” region instead.
Reduced transcription initiation compared to wild-type (WT) cells was also supported
by nuclear run on assays and by a changed profile of post-translational modifications of
PolII. Noticeably, TFIIB has been demonstrated to be functionally involved in linking 3′

and 5′ transcriptional activities [41], while post-translational modifications of PolII are in
part carried out by Ssu72, which is associated with gene-loop formation in yeast [42] and
appears to have similar roles in vertebrates [43]. A further recent study that utilised the
ectopic HBB system reports direct detection of gene loops based on a 3C assay in theWT
cell line, but not the mutant [44].
The second cell line, containing a Tet-inducible version of HIV-1-env, was previously

studied in similar fashion to the HBB constructs. Results using a mutated version of the
pA site (Fig. 1d) mirrored those obtained with HBB, suggesting extensive 3′-5′ crosstalk
and recycling of factors including polymerase [33, 45]. The env construct uses a BGH,
not an SV40 pA site, which suggests that the findings are independent of the type of pA
site. Notably, expression of the HIV-1 gene using its native long terminal repeat (LTR)
promoter exhibits bursting dynamics [6].
We used these cell lines and their mutant versions as a model system for mammalian

gene expression in the presence and absence of 3′-5′ crosstalk. We confirmed by total
RNA-seq that HBB and envmRNAs are expressed inducibly in all cell lines (Fig. 1a–d). At
high Tet concentration (250 ngmL−1), the fold changes over the un-induced samples were
≈ 16 and ≈ 26 for HBB and env, respectively. The mutants were expressed at lower levels
and featured read-through transcription as described, with intact transcript sequences,
i.e. not subject to splicing defects (Fig. 1c, d) [46–54]. This indicated specificity of the pA
site mutations.
In order to detect transcripts at the single molecule level, we designed probes for sin-

gle molecule RNA-FISH (smFISH) and confirmed detection of large transcript numbers
upon Tet stimulation of the cells, while the expression of a control gene, AKT1, remained
constant (Additional file 1: Section S1 and Figure S3). Microscopy-based smFISH is not
ideal for HEK293 cells, since they tend to overlap and form aggregates when growing.
We therefore decided to record the smFISH signal by adapting a flow-FISH technique
based on flow cytometry [55]; this also resolves extrinsic-noise contributors such as cell
size, morphology, and cycle, and, thanks to its high throughput, permits recording vast
numbers of cells to analyse overall population structures (Additional file 1: Sections S1
and S7).
While the flow-cytometer fluorescence signal from stained cells serves as a proxy for the

mRNA abundance, it is returned in arbitrary units (a.u.) rather than in absolute counts.
We thus used microscope imaging and nCounter� data to calibrate the flow-FISH flu-
orescence readings of HBB and env cells, respectively. Applying the clustering algorithm
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of [56–58] to the flow-FISH recordings allowed us to select single-cell readings against
those from cell clumps, doublets, and debris (Additional file 1: Section S1 and Figure S1).
Flow-FISH data demonstrate Tet-dose dependent expression of HBB and env, indicating

specific detection of transcripts above background noise. The stationary expression levels
appeared to reach saturation at 80 ng mL−1 Tet (Fig. 1e and Additional file 1: Section S1
and Figure S2). Staining for the DNA content demonstrates a mild increase of HBB and
env expression with increasing cell cycle stage.We found that the contribution to the total
variability, measured as the squared coefficient of variation (CV2) of the mRNA popula-
tion, due to the cell cycle and size was minor (Additional file 1: Section S6) and therefore
focused on local genic mechanisms to investigate the observed noise pattern. The mea-
sured signal includes a background of unspecific staining and auto-fluorescence of the
cells, which is subtracted from the total signal [59]. To gauge this background, we deleted
the env gene from its host cell line with Cas9 [60] and performed the staining procedure as
before. The resulting control cells had low fluorescence intensity that remained virtually
unchanged upon maximal Tet stimulation, thus confirming specificity of our system and
validating the use of this control to estimate the background (Additional file 1: Section S1
Table S1). Nuclear RNA export was largely unaltered by the mutations (Wilcoxon rank
sum test on nuclear/cytoplasmic ratios from 83 HBB cells at 250ng mL−1 Tet, P = 0.85;
for 203 env cells P = 6 · 10−9, but the ratios differed only by 10%). Note that flow-FISH
and its analysis/interpretation are unaffected by nuclear export issues.

Increased transcriptional bursting upon 3′-5′ crosstalk
In order to gain insights into the transcriptional dynamics driving WT and mutant
expression of HBB and env, we employed a Markov chain Monte Carlo (MCMC)
sampling approach to fit statistical models to the flow-FISH data (Fig. 2). Impor-
tantly, Bayesian modelling permitted using microscope and nCounter� data to estimate
informative prior distributions that calibrate the absolute mRNA quantification, while
retaining flexibility in this respect. We further incorporated the background signal in
the Bayesian framework based on the estimates from the Tet-stimulated control cells
(“Materials and methods” section and Additional file 1: Sections S2-S3).
Our strategy requires flexible models to represent the absolute mRNA abundance. We

considered three stochastic models of gene expression to capture the phenomenology of
the transcription process (Fig. 2 and “Materials and methods” section). According to the
first model, the gene can stay in an “on” state, in which transcription occurs at rate α̃, or
in an “off” state, in which no transcription occurs. The gene switches from “off” to “on”
and “on” to “off” at rates k̃on and k̃off, respectively. Assuming that the mRNA degrades at
constant rate d̃, this model corresponds to a Poisson-beta mixture distribution for the sta-
tionary per-cell mRNA population, which can be expressed in terms of the dimensionless
rates α, kon, and koff (Additional file 1: Section S2) [4, 61]. The second model is a sim-
plified version of the former two-state model, where α and koff approach infinity, while
the ratio α/koff, which is referred to as the average burst size [62] and incorporated as
a single parameter, is held finite; this model gives rise to a negative-binomial stationary
mRNA distribution and allows much more efficient MCMC sampling than the Poisson-
beta model (Additional file 1: Sections S3-S4). The third model is the most naïve as it
assumes that transcription events of individual mRNAs occur independently at constant
rate μX · d̃, where μX is the mean mRNA population, thus yielding a Poisson distributed
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Fig. 2 Relations between transcriptional mechanisms, mRNA distributions, model fitting, and parameter
estimates. The timing of transcription events at a gene is important. If a population of isogenic cells is induced
to express a certain gene, then the resulting mRNA numbers in each cell will reflect the dynamic properties
of the process of transcription. While higher frequencies of transcription events unsurprisingly will boost
mRNA numbers, more complex patterns can be identified; if transcription occurs clustered in time, forming
“bursts” of mRNA production, then the variability of mRNA numbers among individual cells will increase. The
precise nature of these relations depends on the mRNA half-life and other dynamical parameters. In fact,
these parameters in general shape the distribution of mRNAs among cells in characteristic ways. We can
exploit this by testing which parameter values and models are compatible with experimentally derived
mRNA distributions and thus infer the dynamics of the underlying transcription process. In combination with
experimental perturbations, this produces mechanistic insights into transcription. We applied this approach
to our datasets and test their agreement with three models of nested complexity, in line with Occam’s razor.
The most complex model corresponds to the transcriptional bursting described above and predicts intricate
mRNA distributions, subject to several parameters. Estimating koff and kon for instance allows us to determine
the average times (as their inverse) the genes spend transcribing and non-transcribing, respectively (Model
1). The second model restricts the duration of the bursts and has fewer parameters (Model 2), while the third
assumes that the transcriptional events are homogeneous over time (Model 3). These models generate
mRNA counts X and, in turn, fluorescence intensity, which also depends on the scaling factor κ and the
measurement noise ε . To determine which models and parameters best explain our data, we used a Bayesian
approach. Broadly speaking, this makes use of the so-called Bayes’ theorem to determine the probability of a
hypothesis conditional to experimental data. The power of this approach is that it allows the construction of
very complex settings from conditional and prior probabilities, which can be computationally explored by
means of Markov chain Monte Carlo (MCMC) sampling and produce results which again are probabilities. In
general, prior probabilities refer to general assumptions that are taken into account independently of the
experimental data, while posterior probabilities result as informed output of the Bayesian inference
procedure. The latter correspond to probability distributions of the model parameters, which thus permit
excellent assessment of the uncertainties associated with the results. For our study, Bayesian inference was
ideal; it allowed us to embed in a single probabilistic framework the data for multiple independent replicates,
the measurement precision of our calibration experiments, and the data transformation introduced by the
flow cytometer. At the same time, it produced posterior distributions that are highly informative

mRNApopulation at equilibriumwhich is thought to characterise genes with unregulated
expression [5]. Noise levels consistent with the Poisson model [63, 64] or higher [4, 13]
have both been reported in the literature. Estimates of the degradation rates d̃ for both
mutant and WT transgenes are listed in Additional file 1: Section S5 [65].
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We obtained better fits for the Poisson-beta and the negative-binomial models than the
Poisson model (Additional file 1: Sections S4 and S6) for all the replicates. In the Poisson-
beta case, the MCMC traces of the rates koff and α had a strong correlation; this revealed
that most of the information about these two parameters is encoded in the ratio α/koff
(Additional file 1: Section S6 and Figure S10), which is more straightforwardly inferred
by means of the negative-binomial model. In fact, for our data, these two models give
consistent results in terms of CV2, average burst size α/koff, and burst frequency k̃on. To
study the transcriptional noise, we obtained the CV2 of the mRNA abundance (which we
refer to as CV2

X) from the estimated parameters (Additional file 1: Sections S2 and S6),
and plotted it against the estimated mean expression levels μX (Fig. 3a–c). These reveal a
trend observed before in other systems [6, 66–68], i.e. the transcriptional noise decreases

Fig. 3 Bayesian parameter estimates. Noise plots of HBB (a) and HIV (b) gene expressions, obtained from the
Poisson-beta model for both WT (blue) and mutant (orange) gene variants. Different colour intensities
correspond to replicates. Mutation changes the balance between noise and average expression level. c
Results from replicates are aggregated into consensus estimates (Additional file 1: Section S4) for HBB and
HIV (inset). Solid lines are orthogonal-distance regression curves CV2X = A/μX + B. d, e Consensus estimates
of Poisson-beta model parameters μX , k̃on, k̃off, and α/koff for HBB (d) and HIV (e). WT (blue) and mutant
(orange) show different patterns, with WT genes having highest average burst size and lower burst frequency
than mutant at intermediate expression levels. Single-replicate estimates, and negative binomial and Poisson
model results are in Additional file 1: Section S6. Points and error bars correspond to medians and 90% HPD
CIs of the posterior distributions
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as μX increases, with the data of each experiment well fitted by a curve of the form
CV2

X = A/μX + B, and seems to approach a lower limit beyond which it does not further
decrease. Such a limit is known as the noise floor [69–73]. Strikingly, the presence of the
mutation alters the noise trends, thus suggesting that PolII recycling indeed contributes
to the noise. The transcriptional noise at intermediate expression levels is significantly
higher in WT than mutant cells. For the HBB gene, this pattern extends throughout the
range of all induction levels. Env shows less pronounced differences between WT and
mutant cells for the highest expression levels but resembles HBB otherwise. In all these
cases, the noise clearly appears higher than postulated by the Poisson prediction curve
CV2

X = 1/μX (solid lines in Fig. 3a–c).
Using the DNA content and the forward scatter signal (FSC-A) as proxies of the

cell cycle progression and the cell size, respectively, we heuristically selected popula-
tions corresponding to G1, S, and G2 phases of three different sizes each from 40 ng
mL−1 Tet-induced cells (Fig. 4a–c); we fitted the negative-binomial model to their
mRNA-expression reads, and estimated kinetic parameters and noise for each population,
separately. Based on this, we found that the cell cycle and size, which typically are major
extrinsic-noise contributors, only account for less than 20% of total mRNA variability for
the transgenes (Fig. 4d–f), in contrast with [9, 10]; for further details, see Additional file
1: Section S7.

Modulation of rates

The overall rate estimates obtained from our fits are largely in agreement with previous
findings from similar systems [3]. In fact, estimated values of k̃off ranged up to ≈ 2.5
events per minute, with k̃on roughly an order of magnitude lower. Increasing the Tet con-
centration boosts transcription by increasing the average burst size and the frequency
k̃on (Fig. 3d), thus shortening the average “off” state duration (1/k̃on). Intriguingly, for the
HBB gene, k̃on is higher in mutant than WT cells in all cases, while the average burst
size is lower in mutant cells in all cases. These patterns are less definite for the env gene
but appear to support the conclusions from the HBB gene (Fig. 3e and Additional file 1:
Section S6). In other words, the 3′-5′ crosstalk imposes a constraint on the transcriptional
dynamics whose removal can cause bursts to be more frequent and smaller than in the
WT gene.

PolII-mediated 3′-5′ interactions by ChIA-PET
To jointly study the expression of a gene and its 3′-5′ interactions, we analysed pub-
licly available datasets for the human cell line K562, obtained from chromatin-interaction
analysis by paired-end tag sequencing (ChIA-PET) [74] and single-cell RNA-seq data
(scRNAseq) [64]. We chose to use ChIA-PET against PolII to target chromatin inter-
actions that are involved in transcription. We generated HiC-style interaction matrices
(whose entries correspond to 2-Kb regions) from the ChIA-PET data using CHIA-PET2
[75]. We filtered the list of genes from the RefGene database with the hg19 refer-
ence genome to only contain those with unique gene symbols on chromosomes 1–22
and X, thus excluding alternatively spliced genes. As a proxy of the 3′-5′ interaction
of a gene, we first aggregated the reads corresponding to the interaction between the
bins that include its transcription start site (TSS) and transcription end site (TES).
The resulting metrics depend on the gene length, which we addressed by dividing the
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number of reads for each gene by the average read number from 104 genomic inter-
vals of the same length as the gene, randomly sampled across the chromosome. We
then applied the arcsinh

√
x + 0.5 transformation to obtain a variance-stable interac-

tion score [76]. Note that 5′ to 3′ interaction scores correlate with those for 5′ to gene
body interactions; this appears unsurprising, given that spatial proximity at one location
will favour interaction signals at neighbouring regions, and is tangential to our anal-
yses. We also discarded genes that are shorter than the resolution of our interaction
matrices.
Fitting a negative-binomial distribution to the scRNA-seq UMI counts data of [64]

allows us to conveniently classify expressed genes (sample UMI mean > 0.05) based
on the estimated noise CV2

X , the burst frequency kon, and the average burst size α/koff
(“Materials and methods” section, see also [7, 77, 78]). These are plotted against the mean
expression μX in Fig. 5a–c. It is worth noting that burst frequency averaged over all the
genes, k̄on, seems to determine the average trends of CV2

X and α/koff. The noise trend

Fig. 4 Extrinsic and intrinsic noise. a–c Scatter plots from flow-FISH signals for the HBB gene, replicate k = 3;
cells from G1, S, and G2 phase highlighted with red-, green-, and blue-scale colours, respectively; each
cell-phase cluster is split into three subsets of different average size with breakpoints at 0.33th and 0.99th
quantiles of their FSC-A signals; cell-phase and size are extrinsic variables. d Extrinsic and intrinsic
contributions to WT HBB and env genes’ expression noise, SE error bars obtained via bootstrap. e, f Cell cycle
analysis; consensus estimates of the negative-binomial model parameters for the same genes; points are
medians, error bars comprise 90% HPD CIs
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Fig. 5 Genome-wide estimates of transcription kinetics and 3′-5′ interactions. a–c Scatter points correspond
to genes, axes are medians of posterior distributions for expression parameters μX and CV2X , kon, and α/koff,
respectively, obtained by Bayesian model fitting. Solid lines correspond to the predictions obtained by
assuming that all genes have burst frequency equal to the sample average kon. Genes are divided into three
groups corresponding to low-, intermediate-, and high-noise levels (yellow, orange, and blue markers,
respectively). Dashed line is obtained by setting ν1 = 4.5 (equation inset in a) to separate intermediate- and
high-noise genes. d, e 3′-5′ interaction scores against expression noise (measured as distance ν from the
solid-line prediction of a) and burst frequency kon. f Partitioning the genes by ν shows that the interaction
score is significantly higher in higher-noise genes than in lower-noise genes (Mann-Whitney U test,
P< 2.2 · 10−16)

appears to be explained by the curve CV2
X = 1/μX + 1/k̄on (derived under the negative-

binomial assumption, see Additional file 1: Section S2), which in fact separates the genes
whose noise levels are higher than the mean predicts (blue and orange markers in Fig. 5)
from those whose noise is lower than the prediction (yellowmarkers). As a measure of the
deviation from this prediction, for each gene, we calculated the vertical distance ν of its
expression noise to the curve CV2

X = 1/μX + 1/k̄on in logarithmic scale, further separat-
ing noisy genes for which ν > ν1 (blue makers in Fig. 5) from those for which 0 < ν < ν1
(orange makers). The interaction score of the high-noise genes is significantly higher than
the score of the intermediate group, which in turn is higher than the low-noise genes’
(Mann-Whitney U test, P< 2.2 · 10−16).
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There is a significant positive correlation between the distance ν and the interaction
score (P< 2.2 ·10−16, lm), thus showing that the noise level of genes with high interaction
score is typically higher than the mean predicts; we also observe a significant negative
correlation between the interaction score and the burst frequency kon (P< 2.2 · 10−16,
lm) and a significant positive correlation between the interaction score and the burst
size (P< 2.2 · 10−16, lm), consistent with the results on the transgenes. Filtering out
zero-count genes, for which there is little statistical information, increases the P values
above to 2.0 · 10−7, 2.0 · 10−3, and 1.68 · 10−5, respectively, due to smaller sample
sizes, and yields the scatter plots of Fig. 5d, e and the boxplot of Fig. 5f for the three
groups. These results agree with those obtained from different ChIA-PET biological
repeats and different bin resolutions (1 Kb and 7 Kb; Additional file 1: Section S8 and
Figure S16).

Microscopic model

To shed further light on the biological mechanisms involved and test whether PolII
shuttling can a priori alter the transcriptional noise as seen in the previous section, we
constructed and simulated a more complex stochastic model that captures the most
important features of our expression system, i.e. induction, polymerase flux between the
LLPS droplet (or, more generically, a cluster of PolII [20]) and the gene, transcription, and
decay, while stripping away non-essential details (Fig. 6a). Its precise formulation, along
with additional details, is illustrated in the “Materials and methods” section and Addi-
tional file 1: Section S9. The model is designed around the idea that each PolII waits in
a compartment until the transcription occurs [22], where the compartment represents
an LLPS droplet (Fig. 6a). This is immersed in its nuclear environment, which adds and
removes PolIIs at rates γ and δ, respectively. In addition to this, by transcribing at rate β ,
the PolIIs leave the compartment with probability 1− l or are re-injected otherwise. This
latter reaction represents the crosstalk between the 3′-end processing and the transcrip-
tion initiation and helps to sustain the compartment population despite the presence of
initiation, which on average contributes to depleting it. Consistently with the two genes
integrated in our cell lines, the model encodes a Tet-repressor binding site downstream
of the TSS which binds to the TetR factor, present at concentration n. Such a binding
event interrupts the transcription; therefore, tuning n allows us to control the blocking
rate λoff. The model parameters l and n are akin to the pA mutation and the Tet con-
centration, respectively, in the experimental settings. We assume that the pA mutation
hinders but does not completely block PolII flux back to the compartment (which can
also be facilitated by diffusion, see for instance [16, 24]); therefore, the parameter l is
assumed to be small but still strictly positive even in the presence of pA mutation. During
a TetR blockade, PolIIs cannot transcribe and accumulate in the compartment. When the
blockade is released, the transcription occurs at a rate directly proportional to the
available PolII (consistently with the law of mass action and experimental observations
[22, 73]); therefore, at the end of the TetR blockade, the compartment is highly popu-
lated and the transcription occurs repeatedly while the PolII population quickly drops. As
the simulation results demonstrate, the model is able to reproduce an increase of tran-
scriptional bursting upon increasing the recycling probability l (Fig. 6). This behaviour is
conserved under a broad range of different parameter settings, demonstrating that this is a
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Fig. 6 Microscopic model of transcription in Tet-inducible genes. a PolIIs (blue) are stored in a compartment
(dashed circle) in the proximity of the TSS. With rate β , each PolII leaves the compartment to transcribe
mRNA and is re-injected with probability l. When TetR (tetracycline repressor) binds to the TetO2 operator
downstream of the TSS (this occurs at rate λoff), transcription is interrupted and PolIIs accumulate in the
compartment. At rate λon, TetR unbinds, thus releasing the large amount of PolIIs accumulated in the
compartment to cause bursts, which can be phenomenologically described in terms of the rates α̃, k̃on, and
k̃off. The compartment also exchanges PolIIs with the nuclear environment (at rates δ and γ ). The
transcription rate is directly proportional to the abundance of PolIIs, which fluctuates in time and in turn
elicits transcriptional noise. Similarly to our experimental system, here, we can simulate different Tet
concentrations and the recycling probability by tuning the “off”-switch rate λoff and l, respectively. b Noise
plots of simulated mRNA abundances. Setting λoff = nKλ and λon = Kλ , we imitate the effect of different
TetR concentration values by tuning n. As Tet presence prevents TetR-TetO2 binding, small values of n
correspond to high Tet-induction levels. For extremely small values of n, the gene can be thought of as being
always in “on” state, CV2 becomes very low, and the limiting value of μX can be analytically obtained (vertical
lines, see also SI Appendix, section S8). n ranges from 0.1 to 100, and values of the other parameters are
(γ ,β , d, δ, Kλ) = (10, 10, 0.01, 1, 0.01). Inset: same scatter plot, axes in linear scale. At intermediate expression
levels, CV2X always increases with l. Dashed lines are orthogonal-distance regression curves CV2X = A/μX + B,
and solid line is Poisson-noise curve CV2X = 1/μX . c Simulated mRNA-population traces; the two parameter
combinations yield almost identical average expressions (sample means 71.3 ± 0.7 and 70.4 ± 0.6 over 104

realisations, respectively, SEs obtained via bootstrap), but different biological noise (sample CV2s 0.78 ± 0.01
and 1.07 ± 0.02, respectively). d Negative-binomial model fit to 500 mRNA abundances simulated from the
microscopic model with λoff = 0.5, 1, 1.5, 2, 2.5, 3, 2.5, 3.5, 4, 4.5, values of other parameters as in b

generic result of our model. Fitting a negative-binomial distribution with vague prior dis-
tributions to an ensemble of mRNA abundances, simulated from this microscopic model,
shows patterns consistent with those obtained from the experimental data (Fig. 6c and
Additional file 1: Section S9).
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While actual transcriptional mechanisms are more complex than our idealised model,
the latter provides a significant step towards a mechanistic explanation of our observa-
tions. In fact, it captures the essential features of the two gene constructs, and naturally
reproduces the observed pattern by tuning only the shuttling probability l and the factor
abundance n. Notably, our results demonstrate a minor role for extrinsic contributions to
noise (Fig. 6b); in fact, intrinsic factors suffice to yield the noise floor for a wide range of
λoff and μX , which contrasts with several other studies [69–73].

Alternative model settings

The pA site mutations in HBB and env transgenes cause termination defects which
in turn affect the mRNA degradation rate (Additional file 1: Section S5, and [33]). To
establish whether the observed noise patterns are ascribable to this, we considered both
single-cell expression data and numerical simulations. We analysed human genes in the
publicly available dataset of [79], which includes scRNA-seq UMI count data from both
influenza-infected and uninfected human A594 cells. Influenza infection causes termina-
tion defects in human genes, where transcription can continue for tens of kilobases after
the pA site [80, 81]. Native elongation transcript sequencing (NET-seq) also shows that
infected cells do not have a difference in initiation of transcription [81]. As suggested in
[79], we assumed that a cell is infected if it has at least 0.02% of transcripts coming from
influenza genes after 6 h from virus inoculation; otherwise, it is assumed to be unin-
fected. We then computed the mean expression levels μX,inf. and μX,uninf. and the noise
levels νinf. and νuninf. for all human genes (where the subscripts “inf.” and “uninf.” indi-
cate infected and uninfected conditions, respectively). The presence of the termination
defect increases the transcript degradation rate, which lowers the UMI counts; we found
indeed that μX,inf. < μX,uninf. for the overwhelming majority of genes. We also found an
overall increase in noise with infection, i.e. νinf. > νuninf. for many genes, as illustrated
in Fig. 7a. A similar scenario is obtained simulating our model with increasing values of
mRNA degradation rate d and with recycling rate l held fixed (Fig. 7b): increasing d low-
ers the average amount of in silico mRNA and increments its CV2. This scenario does not
fit the experimental transgene observations, where pA mutation equally lowers μX but
decreases CV2

X , and therefore, it is not a plausible representation of their true biological
mechanisms.
Further, we considered a variant of our model where PolIIs are not allowed to con-

densate in a compartment before the transcription begins. The importance of particle
condensation to fluctuations in the presence of an on-off switch has been mathematically
described [82]. In the modified in silico model, indeed, increasing the recycling rate does
not increase the noise (Fig. 7c), thus suggesting that a reservoir of PolIIs may be a crucial
component of gene regulation.

Discussion
The wealth of existing results strongly suggests the occurrence of 3′-5′ crosstalk in the
WT variants of our transgene systems, involving physical interaction between factors at
either gene end and recycling of polymerases, which can be disrupted or strongly reduced
upon a point mutation. Similarly, information of the interactions between the ends of
genes involved in transcription can be accessed genomewide bymeans of PolII ChIA-PET
sequencing.
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Fig. 7 Alternative model settings. a Upon influenza infection, termination is altered genome wide, thus
affecting observed mRNA counts; μX ,uninf. (μX ,inf.) and νuninf. (νinf.) are the mean expression and noise levels in
uninfected (infected) cells (measured as the distance from solid-line prediction as in Fig. 5), respectively,
computed from the scRNA-seq data of [79]. The majority of genes (58%) reports an increase in noise and
independently a decrease in mean expression upon infection (upper-left quadrant in scatter plot is the most
populated). b Noise plots of mRNA abundances simulated according to the model of Fig. 6 with same
parameter values except l and d as in legend; incrementing the mRNA degradation rate d suppresses μX for
both values of l, while increasing CV2X . c Noise plots of mRNA abundances in a variant of the looping model;
recycling is allowed but PolIIs cannot pile up before initiation, with noise being virtually unaffected when l is
tuned from 0.95 to 0; other model parameters are as in Fig. 6b except (γ ,β) = (50, 100). The settings of b
and c cannot explain the noise patterns observed in HBB and env transgenes

Based on both an in-depth analysis of the transgene systems (which provide a con-
trolled experimental setting) and an observational study of ChIA-PET sequencing data
(which provide a genome-wide view of chromatin interactions involved in transcription),
we present results to suggest that PolII-mediated 3′-5′ interactions are major contributors
to transcriptional noise.
Building on standard phenomenological models, transcription parameters, such as

average burst size and frequency, are consistently inferred across the different condi-
tions using a Bayesian methodology, to demonstrate the presence of association between
3′-5′ interactions and transcription kinetics. Modelling transcription requires abstrac-
tion and simplification due to the complexity of the molecular processes involved and
the inadequacy of current experimental methodologies to dynamically resolve struc-
tural interactions at individual loci. Furthermore, the Bayesian estimates of the kinetic
parameters reflect the incomplete quantitative information available on the experimental
device. Also note that our transgenes might not exactly represent the average endoge-
nous gene. Nevertheless, our setting is sufficient to resolve specific patterns, which can
be reproduced by an ab initio mechanistic model, thus supporting our conclusions.
The analysis suggests that recycling of the polymerase typically increases noise at a

given expression level, while an alternative symmetric interpretation is possible, viz., that
recycling permits higher expression at a given noise level. These relations either are a
byproduct of the construction of the transcriptional machinery or were selected for. It will
be interesting to further explore our findings from an evolutionary perspective. In partic-
ular, many studies show how selection of noisy expression can be critical by contributing
to cell fate diversity [83, 84] and by favouring their long-term survival in adverse environ-
ments [85]. This could also have implications in synthetic biology, where the optimisation
of gene expression and the control of its noise are desirable features [86, 87]. Our work
provides an important contribution to the field of systems biology by identifying a sin-
gle base, and thus a genetic determinant, that modulates the balance between the average
expression level and its variation.
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Materials andmethods
Measurement equation andMonte Carlo estimation

We assume that the measured fluorescence Yi of cell i is proportional to the true mRNA
abundance Xi and therefore can be expressed as Y (k)

i = ε
(k)
i + κ(k)X(k)

i where (k) indexes
the replicate, κ(k) can be thought of as a scale, and ε

(k)
i is the zero of such a scale, also

corresponding to the background of unspecific staining and auto-fluorescence of the ith
cell [59]. The background noise is measured, for each replicate k, by means of control
cells whose gene of interest has been deleted. These are used to define informative priors
for ε

(k)
i . Our choice is ε

(k)
i ∼ SN

(
a(k),μ(k)

ε , σ (k)
ε

)
, i.e. the control-cell fluorescence y is

supposed to have Azzalini’s skew-normal distribution

fε
(
y|a(k),μ(k)

ε , σ (k)
ε

)
= 2�

((
y − μ(k)

ε

)
σ (k)

ε a(k)
)

φ
(
y|μ(k)

ε , σ (k)
ε

)
,

where � and φ are the standard normal CDF and normal PDF, respectively, while the
mean μ

(k)
ε , the standard deviation σ

(k)
ε , and the skewness parameter a(k) are point esti-

mates from the control datasets. Prior distributions for κ(k) are chosen based on the
regression coefficients of gamma generalised linear model fits with identity link. For the
remaining parameters, we assume vague gamma priors with mean 1 and variance 103.
Adaptive Metropolis-Hastings samplers for model fitting were implemented (Additional
file 1: Section S4) [88].

Phenomenological two-state gene-expression models

The transcriptional bursting is fully characterised by the rates α̃, k̃on, and k̃off in units of
min−1. It is convenient to express the rates in units of the inverse of the mean mRNA life-
time d̃, i.e. k̃off = koff d̃, k̃on = kon d̃, α̃ = α d̃. It can be shown that the stationary mRNA
abundance X for this model is Poisson beta with probability density function (PDF)

fX (x|α, kon, koff) =
∫ 1

0
fPoi(x|αp)fBe(p|kon, koff) dp,

where fPoi(x|α) = αxe−α/x! and fBe(p|kon, koff) = pkon−1(1 − p)koff−1(kon + koff)
((koff)(kon))−1 are PDFs of Poisson and beta random variables (RVs), respectively. This
expresses the hierarchy

X|α,P ∼ Poi(αP), P|kon, koff ∼ Beta(kon, koff).

It is convenient to reparametrise the Poisson-beta PDF in terms of its mean μX =
αkon/(koff + kon), to get

X|μX , kon, koff,P ∼ Poi(μXP (koff + kon)/kon),

fX(x|α, kon, koff) =: f ′
X(x|μX , kon, koff).

In fact, this allows us to exploit knowledge on μX in the form of informative priors and
infer the dimensionless rates α, koff, and kon. These are converted to min−1 by using d̃
estimated from data (Additional file 1: Section S5). In the limit as koff → ∞, α → ∞,
with their ratio α/koff held finite, the population mean satisfies μX = konα/koff, while the
PDF of X approaches the negative-binomial distribution

f ′′
X (x|kon, koff/α) =

∫ ∞

0
fPoi(x|λ)fGamma (λ|kon, koff/α) dλ,
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where fGamma(x|kon, koff/α) is the density of a Gamma RV with mean μX and variance
μXkoff/α; when this RV concentrates near the mean as kon → ∞ and koff/α → 0, X is
Poisson with PDF fPoi(x|μX).

Microscopic model

The microscopic model is defined by means of the following chemical reaction scheme:

DNAon + PolII l β−→ mRNA + DNAon + PolII,

DNAon + PolII (1−l) β−→ mRNA + DNAon,

DNAon
λoff−→ DNAoff, DNAoff

λon−→ DNAon,

mRNA d→ ∅, ∅
γ−→ PolII, PolII δ→ ∅.

By the law of mass action, λoff = nKλ, λon = Kλ, where Kλ and n represent the chemical
affinity and concentration of TetR homodimers that bind to the TetO2 operators down-
stream of the TSS, respectively. When such a binding event occurs, the transcription is
inhibited as elongation is impeded and the resulting locked DNA configuration is rep-
resented by the species DNAoff. The switch to DNAon corresponds to the release of the
lock. A variant of this model that does not allow PolII to accumulate before transcription
is obtained with γ > 0 when the PolII compartment is empty and γ = 0 otherwise.
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