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Abstract

The classification of singular Fano 3-folds remains an open problem in

algebraic geometry. The purpose of this thesis is to prove the existence of new

families of singular Fano 3-folds, specifically those whose anticanonical embedding

is in codimension 4. This is achieved using unprojections. The projection of a

scheme Y with coordinate ring k[Y ] := C[x0, . . . , xn]/IY is a scheme X defined by

the coordinate ring k[X] := C[x0, . . . , xm]/(IY ∩ C[x0, . . . , xm]) where m < n.

Unprojection is a method of adjoining variables and equations to the ring of X to

recover Y .

In Chapter 2, we define a new unprojection format allowing us to construct

Gorenstein rings of codimension n + 2 from Gorenstein rings of codimension n.

Following the naming conventions in the literature, these unprojections are type II

and should be considered as type II1 unprojections. We focus on the case where

n = 2. This constructs codimension 4 Gorenstein rings which we define explicitly in

Chapter 3.

In Chapter 4, we use codimension 4 Gorenstein rings to construct and prove

the existence of 16 new families of codimension 4 Fano 3-folds. Demonstrably, each

family corresponds to a distinct Hilbert series. By using type II1 unprojections as

in [33], we construct a second topologically distinct family of codimension 4 Fano

3-folds for these Hilbert series. The Hilbert scheme of these Fano 3-folds, therefore,

contains at least 2 components that parametrize distinct Fano 3-folds.

In Chapter 5, we consider pre-existing families of codimension 4 Fano 3-folds

which are described by [10] but also constructible using our methods.

vi



Chapter 1

Introduction

Broadly speaking, a Fano 3-fold is a projective 3-dimensional variety defined over C
with an ample anticanonical divisor. Fano 3-folds have classically been considered

as smooth varieties, although we will not limit ourselves to this case in this thesis.

Smooth Fano 3-folds are well understood and they are known to exist in exactly

105 families (see Chapter 12, [42]); Iskovskikh classified the cases where the second

Betti number is 1 (see [22] and [23]) and Mori and Mukai, the second Betti number

is greater than 1 (see [27]).

Fano 3-folds with singularities are significantly less well understood by

comparison. In this thesis, we study Fano 3-folds with singularities. Our definition

throughout will be:

Definition 1.0.1. A Fano 3-fold X is a complex normal projective 3-fold whose

anticanonical divisor −KX is Q-Cartier and ample; and whose singularities are

Q-factorial and terminal. If additionally the Picard rank of X is 1, we call X a

Mori-Fano 3-fold.

In particular, we study index 1 Fano 3-folds: a Fano 3-fold X has (Fano)

index r if r is the greatest integer such that −KX = rA for some ample Weil divisor

A. Our choice of index is for narrative rather than mathematical purposes.

The classification of these Fano 3-folds remains an open problem and

estimates suggest the existence of tens of thousands of families (see [8]). At

present only a few hundred families are known explicitly. Many of the known

families are of Fano 3-folds with codimension at most 3, where by codimension we

refer to the standard anticanonical embedding (see Section 1.1). We are interested

in codimension 4 Fano 3-folds.
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1.1 The Graded Ring Database Project

Following the analysis of [2], we are able to predict Fano 3-folds. More accurately, we

are able to predict their Hilbert series. There are several important ingredients: the

relationships between Fano 3-folds, graded rings and Hilbert series; the sufficiency

of weighted projective spaces; and the finiteness of singularities and genus.

The anticanonical ring of a Fano 3-fold X is the graded ring

R :=
⊕
m∈N

H0(X,−mKX)

and it is equal to the homogeneous coordinate ring defining X. Immediately, we

notice that it is sufficient to study only Fano 3-folds in weighted projective space:

the generators of the anticanonical ring, say x0, . . . , xn, describe an embedding of

X as a projectively normal subvariety in P(a0, . . . , an) where ai := wt(xi) for

i = 0, . . . , n and n ∈ N+. Therefore, in this thesis we consider only Fano 3-folds

X ⊂ P(a0, . . . , an) which we denote by X ⊂ wPn when the weights ai are unknown.

Remark 1.1.1. In cases where the anticanonical divisor of a Fano 3-fold X is of the

form −KX = rA for some ample Weil divisor A and some integer r, it can be useful

to study rings such as
⊕

m∈NH
0(X,mA). We do not consider such rings because

the Fano 3-folds in this thesis are index 1.

The Hilbert series of a Fano 3-fold X is the series

PX(t) :=
∑
m∈N

h0(X,−mKX)tm.

By Riemann-Roch, the Hilbert series of X is known to be a rational function

determined by the genus of X, g := h0(X,−KX) − 2, and a collection of

singularities called a basket (see Section 4.1.3 or [37] for a more detailed discussion

on baskets). The following theorem is commonly known as the plurigenus formula:

Theorem 1.1.1. (Theorem-Definition 4.6, [4]) Let X be a Fano 3-fold with genus

g and denote A := −KX . Then, the Hilbert series of X is such that

PX(t) =
1 + t

(1− t)2
+
t(1 + t)A3

2(1− t)4
−

∑
1
r
(1,a,r−a)∈B

1

(1− t)(1− tr)

r−1∑
i=1

bi(r − bi)ti

2r

where

1. the sum takes place over a basket B of finitely many terminal quotient

singularities of the form 1
r (1, a, r − a) with r, a ∈ N+, r > 1 and hcf(r, a) = 1;
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2. b is an integer such that ab = 1 modulo r; and

3. bi denotes the minimal non-negative residue of bi modulo r.

Furthermore,

A3 = 2g − 2 +
∑
B

b(r − b)
r

.

It is clear that defining the Hilbert series of a Fano 3-fold X is equivalent

to defining the genus g of X and a basket B. We call (g,B) the numerical data of

X. A famous result is that the baskets and genera of Fano 3-folds are bounded (see

Theorem 1.2 (3), [25]). For instance:

Theorem 1.1.2. (Theorem 5.1, [25]) Let X be a Mori-Fano 3-fold with genus g.

Then,

2g − 2 ≤ (−KX)3 ≤ 63(24!)2.

Theorem 1.1.3. (Proposition 1, [24]) Let X be a Mori-Fano 3-fold and B the

associated basket of terminal cyclic quotient singularities. Then,

0 <
∑

1
r
(1,a,r−a)B

(
r − 1

r

)
< 24.

The bounds imposed by these theorems result in a a finite set of data

(g,B). By substituting every possible pair (g,B) into the formula for PX(t), we

construct a finite list of rational functions inside which lies the Hilbert series of

every existing Mori-Fano 3-fold. The rational functions obtained by this process

are called numerical candidates. At this stage we do not know whether these

numerical candidates are indeed the Hilbert series of a Fano 3-fold. Our task is to

realise them in real life by constructing the appropriate Fano 3-fold. We would

also like to make comments about the Hilbert scheme of a numerical candidate

such as the number of Fano components.

The Graded Ring Database (shortened to GRDB) is an online resource which

provides systematic predictions about polarised algebraic varieties, in particular

Fano 3-folds, via their graded rings (see [8]). The GRDB is essentially a list of

52646 numerical candidates; however, each candidate is presented as a Fano 3-fold

X ⊂ P(a0, . . . , an) with a Hilbert series equal to a particular numerical candidate.

The process of obtaining a predicted Fano 3-fold from a numerical candidate r(t) is

subtle, but loosely speaking it involves presenting r(t) in the form

r(t) =
p(t)∏n

i=0(1− tai)

3



where the right hand side is the Hilbert series of some X ⊂ P(a0, . . . , an) with

Hilbert numerator p(t) ∈ Z[t]. This process is completed systematically:

Example 1.1.1. Suppose X is some Fano 3-fold with numerical data

g := −1 and B :=

{
1

2
(1, 1, 1),

1

8
(1, 3, 5),

1

11
(1, 5, 6)

}
.

Then, by Theorem 1.1.1,

PX(t) = 1 + t+ t2 + t3 + t4 + 2t5 + 3t6 + 3t7 + 4t8 + 4t9 + . . . .

To write PX in a suitable format, we consecutively multiply PX by (1 − tn) where

n is the lowest non-zero power of t visible, i.e.

PX(t)(1− t) = 1 + t5 + t6 + t8 + . . .

followed by

PX(t)(1− t)(1− t5) = 1 + t6 + t8 + . . . .

Continuing in this manner, we eventually obtain

PX(t)(1− t)(1− t5)(1− t6)(1− t8)(1− t11) = 1− t30

or equivalently

PX(t) =
1− t30

(1− t)(1− t5)(1− t6)(1− t8)(1− t11)
.

Our guess for X would be a hypersurface in P(1, 5, 6, 8, 11) defined by a degree 30

polynomial.

It is possible for a numerical candidate to be realised as several Fano 3-folds

X ⊂ wPn in different codimensions, codim(X) := n− 3. For example:

Example 1.1.2. Let X ⊂ P(1, 1, 1, 1, 3) be a hypersurface defined by a degree 6

equation. Let Y ⊂ P(1, 1, 1, 1, 2, 3) be a complete intersection defined by a degree 2

and a degree 6 equation. Then, the Hilbert series of X and Y are equal:

PX(t) =
1− t6

(1− t)4(1− t3)
=

1− t2 − t6 + t8

(1− t)4(1− t2)(1− t3)
= PY (t).

When Y ⊂ P(1, 1, 1, 1, 2, 3)〈x,y,z,u,v,w〉 is defined by f2 ∈ C[x, y, z, u] and
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g6 ∈ C[x, y, z, u, v, w] of degree 2 and 6 respectively, Y has small deformations

Yλ = {f2 − λv = g6 = 0}

which allow us to eliminate v when λ ∈ C−{0}. Thus Yλ is isomorphic to a degree

6 hypersurface in P(1, 1, 1, 1, 3) when λ 6= 0 and Y = Y0 lies on the boundary of the

codimension 1 family X ⊂ P(1, 1, 1, 1, 3).

Another such example can be found in Section 4.1 of [9] where the Hilbert

series
1− 4t3 + 4t5 − t8

(1− t)5(1− t2)2

has a natural interpretation as a codimension 3 and a codimension 4 Fano 3-fold.

If a numerical candidate could be realised as several Fano 3-folds in different

codimensions, the GRDB will report a predicted Fano 3-fold X ⊂ wPn where n is

the least positive integer possible. We follow this convention.

Without confusion, the term numerical candidate will refer to rational

functions and the predicted Fano 3-folds.

1.2 Realising Codimension 4 Candidates

The classification of Fano 3-folds X ⊂ wPn in codimension codim(X) := n − 3 at

most 3 is well known. We have 95 families of weighted hypersurfaces, 85 families of

codimension 2 complete intersections, 1 family of codimension 3 complete

intersections and 69 families defined by the maximal Pfaffians of a 5 × 5

antisymmetric matrix (see [35], [2] and in particular Section 16 of [21]). In other

words, we have realised the numerical candidates X ⊂ wPn with n ≤ 6.

In this thesis we are concerned with codimension 4 Fano 3-folds. There are

145 numerical candidates in codimension 4; that is, there are 145 pairs (g,B) which

produce rational functions that cannot be presented as the Hilbert series of a Fano

3-fold X ⊂ wPn+3 with n < 4.

Remark 1.2.1. There may be other codimension 4 Fano 3-folds which are not

realised by these 145 numerical candidates; for example, the GRDB ignores

degenerations (see Example 1.1.2). However, unlike the 145 numerical candidates

we are concerned with, their Hilbert series have already been realised as lower

codimension Fano 3-folds.

We do not expect the 145 codimension 4 numerical candidates to be realised

as 145 topologically distinct codimension 4 Fano 3-folds. That is, we do not expect

5



a fixed numerical candidate to build a unique family of Fano 3-folds. We expect

more. A Hilbert series has finitely many families of associated Fano 3-folds and

there may be multiple families for the same numerical candidate. In fact, many

of the numerical candidates already realised have multiple families. For 116 of the

codimension 4 candidates, Brown, Kerber and Reid successfully construct and prove

the existence of at least 2 families of Fano 3-folds (see [10]). The candidates they

work with are those which possess a particular cyclic quotient singularity:

Theorem 1.2.1. (Theorem 3.2, [10]) Let X ⊂ P(a0, . . . , a7) be a numerical

candidate for a codimension 4 Fano 3-fold. Up to reordering of ai, there exist 116

numerical candidates such that the basket of X contains the cyclic quotient

singularity p = 1
a7

(a0, a1, a2). In these cases, the Hilbert scheme has at least 2

components containing quasismooth Fano 3-folds.

The techniques of Brown, Kerber and Reid cannot be extended to the

remaining numerical candidates since a cyclic quotient singularity of the

appropriate form does not exist. In this thesis we study a number of the remaining

codimension 4 numerical candidates. We will construct and prove the existence of

at least 2 families of Fano 3-folds for 16 numerical candidates containing a cyclic

quotient singularity of a different shape. We prove the following result:

Theorem 1.2.2. Let X ⊂ P(2a0, a1, . . . , a7) be a numerical candidate for a

codimension 4 Fano 3-fold and suppose that X is not covered by Theorem 1.2.1.

Up to relabelling of a1, . . . , a7, there exist 16 numerical candidates such that the

basket of X contains the cyclic quotient singularity p = 1
a7

(a0, a1, a2). It is possible

to realise these 16 numerical candidates as Fano 3-folds and for each candidate

there exist 2 distinct families.

In other words, the Hilbert scheme for these 16 numerical candidates has at

least 2 components containing Fano 3-folds.

Together Theorems 1.2.1 and 1.2.2 realise 132 of the 145 numerical

candidates, i.e. 132 of the predicted Hilbert series occur as the Hilbert series of

actual Fano 3-folds. For each of these 132 Hilbert series there exists at least 2

distinct families of Fano 3-folds. By counting distinct topological families of Fano

3-folds rather than distinct Hilbert series, we count over 500 families of

codimension 4 Fano 3-folds X ⊂ P(a0, . . . , a7).

Unprojections are used to prove Theorems 1.2.1 and 1.2.2 (see Section 1.3).

For the 16 numerical candidates of Theorem 1.2.2, the first family will be constructed

using a new unprojection method developed in Chapter 2, and the second family will

6



be constructed using the unprojection method of [33]. Of the Fano 3-folds families in

Theorem 1.2.2, 30 are newly realised as unprojections: Papadakis provides sketches

for the constructions which realise 2 families of codimension 4 Fano 3-folds (see

Sections 5.1 and 5.2 of [33]). Similarly, at least 10 families are new to the literature:

using cluster algebras, [16] finds 1 family of Fano 3-folds for 10 candidates and 2 for

the remaining 6. It is unknown whether the families of this thesis correspond to the

families of [16].

1.3 Unprojections

Unprojections act as a substitute for the Gorenstein ring structure theory in high

codimension. They provide a method of constructing and analysing high

codimension Gorenstein rings in terms of lower codimension Gorenstein rings.

Using unprojections to construct Fano 3-folds makes sense since their anticanonical

rings are Gorenstein (see 5.1.9, [18]). There is a well established history of using

unprojections to prove the existence of codimension 4 numerical candidates: the

methods of [10] and [33] are in fact two distinct types of unprojection.

As previously mentioned, unprojections are intuitively the inverse of

projection: the projection of the coordinate ring k[Y ] = C[x0, . . . , xn]/IY is a

subring of the form k[X] = C[x0, . . . , xm]/(IY ∩ C[x0, . . . , xm]) where n,m ∈ N+

are such that n < m, so the unprojection is a method of recreating k[Y ] by adding

variables and equations to k[X].

Geometrically speaking, we wish to construct a birational map π : X 99K Y

from a pair of schemes D ⊂ X with D codimension 1 in X such that π contracts

D and π is an isomorphism off D. There are many cases where this construction is

possible. For example:

Example 1.3.1. Consider a codimension 2 complete intersection Y2,2 ⊂ P4
〈x,y,z,u,v〉

defined by two degree 2 equations. Suppose that Y2,2 contains the point

pv := (0, 0, 0, 0, 1). Without loss of generality, Y2,2 is defined by

vu+A2 = vz +B2 = 0

for some polynomials A2, B2 ∈ C[x, y, z, u] of degree 2. Define the hypersurface

X3 ⊂ P3
〈x,y,z,u〉 by A2z −B2u = 0. The birational map

π : X3 99K Y2,2

7



π(x, y, z, u) =

(
x, y, z, u,−A2

u
= −B2

z

)
is intuitively the inverse of a projection from pv on Y3,3. We have that π is a

contraction of D := {z = u = 0} ⊂ X3 and an isomorphism off D. In particular, π

is the Kawamata blow up of pv and a contraction of finitely many lines

The crux is this: the homogeneous coordinate ring of Y is related to the

ideals of X and D by some systematic calculation.

As far as this thesis is concerned, unprojections may be assumed to be a

systematic method of constructing a Gorenstein ring OY from two smaller rings OD
and OX . We describe Example 1.3.1 in terms of rings as follows:

Example 1.3.2. Define D,X = X3 and Y = Y2,2 as in Example 1.3.1, and let OX
be the coordinate ring of X and ID the ideal of D. Consider the OX -morphism

s : ID → OX where s(z) = −B2 and s(u) = −A2. The coordinate ring of Y is

OX [s] ∼=
OX [v]

〈vu+A2, vz +B2〉
.

That is, Y is the graph of s.

Unprojections were first used by Kustin and Miller in [26] as a method of

describing codimension 4 Gorenstein ideals. Their systematic calculation was as

follows:

Kustin-Miller Unprojection: Let IX ⊂ ID, be Gorenstein ideals of codimension

g − 1 and g inside the Gorenstein local ring R. Using the complex

0 R/IX M0 · · · Mg−1 0

0 R/ID N0 . . . Ng−1 Ng 0

(α1,···,αg)T

(β1,...,βg)T

obtained by the minimal resolutions of IX and ID, the ideal

IX + 〈βiv + αi : i = 1, . . . , g〉

is a codimension g Gorenstein ideal in R[v] for some indeterminate v. This ideal is

the result of our unprojection. Note that Ng
∼= Mg−1 ∼= R.

Since Kustin and Miller, the notion of unprojections has been expanded

upon by Reid and Papadakis. There now exist many different types of
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unprojections where the Gorenstein assumptions are softened and multiple

“unprojection indeterminates” are introduced (see [30], [40] and in particular

Section 9 of [39],).

In Section 2.2, we describe a new unprojection method which we will later

use to realise many codimension 4 numerical candidates.

1.4 Main Results and Structure of Thesis

We have two main results in this thesis. The first is the definition of a new

unprojection; this result is more precisely stated as Theorem 2.2.1 and the proof is

spread out across Chapters 2 and 3. We write a rough version of this result here:

Theorem 1.4.1. Define ideals IX ⊂ ID in some positively graded ring Oamb

where ID is as in Section 2.2, and IX is codimension 1 inside ID and such that

OX := Oamb/IX is a normal Gorenstein integral domain. Then:

1. The OX -module HomOX
(ID,OX) is generated by 1, s0 and s1 where 1 is the

inclusion map and s0 and s1 are injective maps. We view s0 and s1 as rational

functions having ID as the ideal of denominators; that is, s0(f) = g ↔ s0 = g
f

(See Remark 2.2.3).

2. For some indeterminates T0 and T1, and ideal I ⊂ OX [T0, T1], we have that

OX [s0, s1] is isomorphic to OX [T0, T1]/I, a Gorenstein ring with the same field

of fractions as OX (see Section 2.3).

3. The codimension of Spec(OX [T0, T1]/I) ⊂ Spec(Oamb[T0, T1]) is codim(IX)+2

(see Section 2.5).

4. The ring OX [s0, s1] admits a presentation described in general terms.

Moreover, we can describe this presentation precisely in the case where

codim(IX) = 2 and codimension 4 rings are constructed (see Section 3.1.2).

Our new unprojection uses the rings OX := Oamb/IX and OD := Oamb/ID

to create a new ring OX [T0, T1]/I. The associated projection is the elimination of

T0 and T1 from OX [T0, T1]/I.

The second main result of this thesis is Theorem 1.2.2 which is more

accurately stated as Theorem 4.2.1. That is, we prove the existence of 16 new

codimension 4 Fano 3-folds in weighted projective space. For each Fano 3-fold, we

build one family by applying Theorem 2.2.1 and a second distinct family using the

type II1 unprojection of [33]. Loosely speaking, we define two varieties
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D ⊂ X ⊂ P(a0, . . . , a5)〈x,y,z,u,v,w〉 by the ideals IX ⊂ ID given in Theorem 1.4.1 (or

Section 2.2). The ring created via the unprojection, OX [T0, T1]/I, will define a

Fano 3-fold Y ⊂ P(a0, . . . , a5,wt(T0),wt(T1))〈x,y,z,u,v,w,T0,T1〉. The projection in

this case is the projection from the line x = y = z = u = v = w = 0. We have a

weighted blow up followed by a flopping contraction (see Chapters 3 and 4).

In Chapter 2 we define our new unprojection. We argue that it is a type II

unprojection and, moreover, is strongly related to type II1 unprojections. To this

end, we will expand the concept of type II1 unprojections from the literature to

include our format.

In Chapter 3, we explicitly calculate the rings defined by type II1

unprojections. We also study various birational properties which will be helpful in

proving Theorem 4.2.1.

In Chapter 4, we provide an extended example proving Theorem 4.2.1 for a

single numerical candidate. In particular, we prove that there exist two distinct

families of codimension 4 Fano 3-folds Y ⊂ P(2, 3, 4, 5, 6, 7, 8, 9) with genus

gY := −2. The remaining numerical candidates are realised analogously;

nevertheless, we sketch the proof.

The final chapter, Chapter 5, concerns several of the missing codimension

4 numerical candidates, the expansion of the type II unprojection definition and

previously excluded codimension 4 numerical candidates. Recall that Theorem 4.2.1

considers numerical candidates of codimension 4 Fano 3-folds X ⊂ P(2a0, a1, . . . , a7)

with a singularity of the form 1
a7

(a0, a1, a2) but excludes those already constructed by

[10]. In this chapter we construct these excluded cases using type II1 unprojections

and predict a correspondence between the families of this thesis and the families

of [10]. Although not the focus of this thesis, we also prove the existence of 7

codimension 4 Fano 3-fold families which cannot be constructed using the previously

established methods of [10] or Chapter 4.
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Chapter 2

A New Unprojection

Our first task is to construct Gorenstein rings.

2.1 Preliminaries

In the literature, there is some variation in the nomenclature used. We therefore

provide the standard definitions used throughout this thesis.

Definition 2.1.1. (Definition 1.2.7 and Theorem 1.2.8, [12]) Let R be a Noetherian

local ring with residue field k := R/m. The depth of a finite non-zero R-module M

is

depth(M) := min{i ≥ 0 : ExtiR(k,M) 6= 0}.

Definition 2.1.2. (Definition 1.2.11, [12]) Let R be a Noetherian ring. The grade

of a finite non-zero R-module M is

grade(M) := min{i ≥ 0 : ExtiR(M,R) 6= 0}.

For systematic reasons, the grade of M = 0 is infinity.

Definition 2.1.3. (Definition 1.4.15, [12]) Let R be a Noetherian ring and M a

finite non-zero R-module. We say that M is perfect if

proj dim(M) = grade(M).

An ideal I of R is perfect if the R-module R/I is perfect.

Definition 2.1.4. (Definition 2.1.1, [12]) Let R be a Noetherian local ring. A finite

non-zero R-module M is Cohen-Macaulay if depth(M) = dim(M). The ring R is a

Cohen-Macaulay ring if it is a Cohen-Macaulay R-module.
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Definition 2.1.5. (Definition 2.1.1, [12]) Let R be an arbitrary Noetherian ring.

A finite non-zero R-module M is said to be Cohen-Macaulay if Mm is a

Cohen-Macaulay Rm-module for all maximal ideals m ⊂ R in the sense of

Definition 2.1.4. Similarly, R is said to be a Cohen-Macaulay ring if Rm is a

Cohen-Macaulay Rm-module for all maximal ideals m ⊂ R.

Definition 2.1.6. (Chapter 9, [17]) Let R be a commutative ring with unity and

let P ⊂ R be a prime ideal. The codimension of P , codim(P ), is the maximal n ∈ N
such that

P0 ⊂ P1 ⊂ · · · ⊂ Pn ⊂ P

is a chain of strictly increasing prime ideals. That is, codim(P ) = dim(RP ). For I,

a proper ideal of R, we define

codim(I) := min{codim(P ) : I ⊂ P and P is a prime ideal of R}.

Definition 2.1.7. (Theorem 3.3.7, [12]) A local Noetherian ring R is Gorenstein if

R is Cohen-Macaulay and the dualizing module of R, ωR, exists and is such that

ωR ∼= R. If R is an arbitrary Noetherian ring, we say that R is Gorenstein if Rm is

Gorenstein for every maximal ideal m ⊂ R.

2.2 Format and Main Result

Unprojections provide a method of defining a large Gorenstein ring in terms of two

smaller rings. Our first step towards constructing new Gorenstein rings will be to

define the initial data of a new unprojection.

Fix n,m, p ∈ N+ such that n ≥ 2. Define

Oamb := Z[xj , yj , wi, z, vl]

with 1 ≤ j ≤ n, 1 ≤ i ≤ m and 1 ≤ l ≤ p. Let Oamb be a positively graded ring

such that the weight of z is even and

wt(yj) = wt(xj) +
1

2
wt(z)

for all 1 ≤ j ≤ n. Note that we have defined some number of extra indeterminates

vl to provide extra flexibility during the later sections (see Section 3.1.2); however,

these indeterminates can be ignored for now.

Let ID ⊂ Oamb be the ideal generated by w1 = · · · = wm = 0 together with
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the 2× 2 minors of the 2× 2n matrix

M :=

(
y1 · · · yn zx1 · · · zxn

x1 · · · xn y1 · · · yn

)
.

The ideal defined by only the 2 × 2 minors of M is prime and of codimension n in

Oamb (see the comment after Remark 2.1 in [31]); hence, the ideal ID is prime and

of codimension n+m.

Let IX ⊂ ID be a homogeneous prime ideal of Oamb such that

OX := Oamb/IX is a normal Gorenstein integral domain and IX is codimension

n+m− 1 in Oamb.

Remark 2.2.1. Without loss of generality, we assume that wi /∈ IX for i = 1, . . . ,m.

If IX = 〈wm〉+I ′X for some ideal IX′ , we work with Oamb/〈wm〉, the ideal I ′D defined

by the 2× 2 minors of M together with w1 = · · · = wm−1 = 0, and the ideal I ′X .

Our initial data for the unprojection consists of the rings OX and

OD := Oamb/ID, where the latter is viewed as a quotient of OX . The initial data

is equivalently the triple (IX , ID,Oamb).

The systematic method to construct a new Gorenstein ring is as follows:

Definition 2.2.1. Define K(X) as the field of fractions of OX . The unprojection

ring of (IX , ID,Oamb) is the OX -subalgebra

OX [I−1D ] ⊂ K(X)

where I−1D ⊂ K(X) is the OX -module

I−1D := {f ∈ K(X) : fID ⊂ OX}.

Remark 2.2.2. Note that I−1D ⊂ K(X) is an OX -submodule and OX [I−1D ] is a ring:

if s ∈ I−1D −OX , then s2 /∈ I−1D but s2 ∈ OX [I−1D ]. In other words, I−1D and OX [I−1D ]

are distinct as sets. This remark will be useful in Section 2.3 where we define a

valuation on OX [I−1D ].

Remark 2.2.3. The modules I−1D and HomOX
(ID,OX) are isomorphic. For each

x ∈ ID and f ∈ I−1D , we may define f̃ ∈ HomOX
(ID,OX) by f̃(x) := fx. Conversely,

for x ∈ ID and f̃ ∈ HomOX
(ID,OX), we may define f := f̃(x)

x ∈ I−1D which is well

defined since yf̃(x) = xf̃(y) for x, y ∈ ID. Without confusion, we may use the

notation of I−1D and HomOX
(ID,OX) interchangeably.
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It is not yet clear that the unprojection ring of (IX , ID,Oamb) is Gorenstein.

In the next few Sections we will prove the following theorem:

Theorem 2.2.1. There exists an isomorphism

OX [I−1D ] ∼=
OX [T0, T1]

〈l1, . . . , l2(n+m), q〉

where for 1 ≤ j ≤ n and some cj , dj ∈ OX we have

lj := yjT1 + zxjT0 − cj ,

ln+m+j := yjT0 + xjT1 − dj ;

for 1 ≤ i ≤ m and some cn+i, dn+i ∈ OX we have

ln+i := wiT1 − cn+i,

l2n+m+i := wiT0 − dn+i;

and for some α0, α1, α2 ∈ OX

q := T 2
1 − zT 2

0 + α0T0 + α1T1 + α2.

Furthermore, OX [I−1D ] is a Gorenstein ring, perfect as an Oamb[T0, T1]-module and

such that

codimOamb[T0,T1](IX + 〈l1, . . . , l2(n+m), q〉) = n+m+ 1.

Remark 2.2.4. We call T0 and T1 the unprojection indeterminates. We also refer

to li as the linear equations of the unprojection ring and q the quadratic: this is a

reference to their total degree with respect to T0 and T1.

Remark 2.2.5. In cases where IX and ID are not defined as specified, it is still

possible for OX [I−1D ] to construct Gorenstein rings. We refer to the special way in

which the data (IX , ID,Oamb) is defined as an unprojection format.

2.3 Isomorphism

In this section, we prove the first statement of Theorem 2.2.1. We will prove that

OX [I−1D ] ∼=
OX [T0, T1]

〈l1, . . . , l2(n+m), q〉
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where li has total degree 1 and q has total degree 2 with respect to T0 and T1. The

approach taken follows [31].

We start by noting some of the key properties of OD and ωD.

Remark 2.3.1. We use the standard notation of D ⊂ X where

D := V (ID) ⊂ Spec(Oamb),

and

X := Spec(OX) ⊂ Spec(Oamb).

Lemma 2.3.1. The ring OD and the variety D are non-normal. As varieties, the

normalisation is defined by the morphism

π : D̃ := Spec(Z[a1, . . . , an, t, v1, . . . , vp]) −→ D

where the corresponding morphism of rings

π∗ : OD −→ OD̃ := Z[a1, . . . , an, t, v1, . . . , vp]

is defined by

yj 7→ ajt, xj 7→ aj , wi 7→ 0, vj 7→ vj , z 7→ t2.

Remark 2.3.2. The ring O
D̃

is Gorenstein.

Remark 2.3.3. As π is an isomorphism in codimension 1, ωD ∼= π∗ωD̃
∼= π∗OD̃.

We note that ωD is Cohen-Macaulay.

Remark 2.3.4. As ID is codimension 1 in OX and OX is a Gorenstein ring, we

have that ωD = Ext1OX
(OD,OX) by the adjunction formula (see [38] Theorem 2.12

or [12] Theorem 3.3.7).

It is clear from Remark 2.3.3 and Lemma 2.3.1 that ωD needs 2 generators

as an OD-module. However:

Lemma 2.3.2. The dualizing module ωD needs two generators as an OX -module,

e0 and e1, which may be chosen so that

(e0, e1)M = 0

and e0wi = e1wi = 0 for all i = 1, . . . ,m.
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Lemma 2.3.2 follows from Section 2.1 of [31] and Section 9.5 of [39]:

Proof. Let I ′D be defined by the 2 × 2 minors of M and let

O′amb := Oamb/〈w1, . . . , wm〉. It is clear that OD and O′amb/I
′
D are isomorphic as

Oamb-modules and as OX -modules. Consequently, ωD and the dualizing module of

O′amb/I
′
D are isomorphic. By [31] and [39], the dualizing module of O′amb/I

′
D has

exactly two generators as an OD-module and the generators, say e′0 and e′1, may be

chosen to ensure that (e′0, e
′
1)M = 0. We may therefore choose generators e0 and

e1 for ωD such that (e0, e1)M = 0 by virtue of our isomorphism. Furthermore, e0

and e1 are generators of ωD as an OX -module since OD is a quotient ring of OX .

All that remains to show is that e0wi = e1wi = 0 for all i = 1, . . . ,m.

However, this is clear from Remark 2.3.3 and Lemma 2.3.1.

We are interested in ωD since we wish to calculate the generators of I−1D .

This can be done using the following short exact sequence and recalling that I−1D is

isomorphic to HomOX
(ID,OX) (see Remark 2.2.3):

Lemma 2.3.3. There exists a short exact sequence

0→ OX → HomOX
(ID,OX)→ ωD → 0. (2.1)

Proof. This is standard. From the initial set up, we have the short exact sequence

0→ ID → OX → OD → 0

and the long exact sequence

0→ HomOX
(OD, ωX)→ HomOX

(OX , ωX)→ HomOX
(ID, ωX)

→ Ext1OX
(OD, ωX)→ Ext1OX

(OX , ωX)→ · · · .

By Remark 2.3.4 we know that ωD ∼= ExtOX
(OD,OX). As OX is Gorenstein,

ωX ∼= OX and we may replace all instances of ωX with OX in the long exact

sequence. As IX ⊂ ID is a strict inclusion, we have that HomOX
(OD,OX) = 0.

Since OX is projective as a module over itself, Ext1OX
(OX ,OX) = 0. Simplifying

the long exact sequence accordingly provides our desired result.

Remark 2.3.5. The map HomOX
(ID,OX)→ ωD in sequence (2.1) is known as the

Poincaré residue map and denoted by resD.
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Fix generators of ωD, e0 and e1, as in Lemma 2.3.2 and let s0 and s1 be

any lifting under resD of e0 and e1 respectively. We may assume that s0 and s1 are

injective (see Lemma 1.1 of [34]). Then:

Proposition 2.3.1. The OX -module HomOX
(ID,OX), equivalently I−1D , is

generated by 1, s0 and s1.

Proof. Let x ∈ HomOX
(ID,OX). The OX -module ωD is generated by e0 and e1 and

therefore resD(x) = αe0 +βe1 for some α, β ∈ OX . Hence, resD(x−αs0−βs1) = 0.

By the exact sequence (2.1), we have that ker(resD) ∼= OX and x = αs0 + βs1 + γ

with γ ∈ OX .

In particular:

Lemma 2.3.4. There exist cl, dl ∈ OX where l = 1, . . . , n+m such that

yjs1 + zxjs0 − cj = 0,

wis1 − cn+i = 0

and

yjs0 + xjs1 − dj = 0,

wis0 − dn+i = 0

for 1 ≤ j ≤ n and 1 ≤ i ≤ m.

Proof. The OX -module ωD is such that its module of linear relations is generated

by

(e0, e1)

(
y1 . . . yn zx1 . . . zxn 0 . . . 0 w1 . . . wm

x1 . . . xn y1 . . . yn w1 . . . wm 0 . . . 0

)
= 0.

We have, for example, that

resD(y1s0 + x1s1) = y1e0 + x1e1 = 0

and y1s0 + x1s1 ∈ ker(resD). Since ker(resD) ∼= OX by sequence (2.1), we have

y1s0 + x1s1 = d1 for some d1 ∈ OX . The other relations are analogous.

Recall that X is normal and D is irreducible; hence, there exists a natural

valuation

valD : K(X)∗ → Z ∪ {∞}

17



(see [20], Chapter II, Section 6, Subsection Weil Divisors). The valuation is the

order of vanishing along D and we have valD(f) ≥ −1 for f ∈ I−1D .

Remark 2.3.6. As in Remark 2.4 of [31], any f ∈ OX [I−1D ] such that valD(f) ≥ 0

is in fact an element of OX .

Remark 2.3.7. If f ∈ K(X) is such that valD(f) = −1, then f ∈ I−1D : for any

g ∈ ID we have valD(fg) ≥ 0 and hence fg ∈ OX .

Let OX [T0, T1] be the polynomial ring over OX with indeterminates T0 and

T1. Define

φ : OX [T0, T1]→ OX [I−1D ]

as the natural OX -algebra homomorphism extending φ(T0) := s0 and φ(T1) := s1.

Define

lj := yjT1 + zxjT0 − cj ,

ln+i := wiT1 − cn+i,

ln+m+j := yjT0 + xjT1 − dj

and

l2n+m+i := wiT0 − dn+i,

for 1 ≤ j ≤ n and 1 ≤ i ≤ m. It is useful to restate Lemma 2.3.4 as follows:

Lemma 2.3.5. The homomorphism φ is surjective and such that

〈
l1, . . . , l2(n+m)

〉
⊂ ker(φ).

In addition to 〈l1, . . . , l2(n+m)〉, the kernel of φ contains an equation of total

degree 2 in T0 and T1:

Lemma 2.3.6. There exists

q := T 2
1 − zT 2

0 + α0T0 + α1T1 + α2 ∈ ker(φ)

where α0, α1, α2 ∈ OX .

The general form of the quadratic and the proof of its existence follows as in

Lemma 2.5, [31]. Namely, we calculate that

T1ln+m+1 − T0l1 + d1T1 − c1T0 = x1(T
2
1 − zT 2

0 ),
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and that

valD(x1(s
2
1 − zs20)) ≥ min {valD(s1φ(ln+m+1)), valD(s0φ(l1)), valD(d1s1 − c1s0)}

≥ −1.

As valD(x1) = 0, we have that valD(s21 − zs20) ≥ −1. Hence, by definition of I−1D
and valD, we have s21 − zs20 ∈ I−1D and s21 − zs20 = −α0s0 − α1s1 − α2 for some

α0, α1, α2 ∈ OX .

In fact l1, . . . , l2(n+m) and q completely generate ker(φ). We have that:

Proposition 2.3.2. ker(φ) = 〈l1, . . . , l2(n+m), q〉.

The proof follows that of Proposition 2.6, [31]. It is sufficient to consider

h ∈ ker(φ) which are linear in T1 since q allows us to eliminate all even powers of

T1 from any element of ker(φ). The result is then proven for h using induction on

k, the total degree of h with respect to T0 and T1.

Suppose h = αT0 + βT1 + γ for some α, β, γ ∈ OX and h ∈ ker(φ). The

module of linear relations for ωD is generated by

yie1 + zxie0 = yie0 + xie1 = wje0 = wje1 = 0

for i = 1, . . . , n and j = 1, . . . ,m. For simplicity of notation, we write these relations

as

yie1 + zxie0 = yie0 + xie1 = 0

for i = 1, . . . , n + m where we define yj+n := wj and xj+n := 0 for j = 1, . . . ,m.

Since

αe0 + βe1 = resD(αs0 + βs1 + γ) = resD(φ(h)) = 0

is a linear relation in ωD, we have that

αe0 + βe1 =
n+m∑
i=1

ηi(yie1 + zxie0) + ζi(yie0 + xie1)

for some ηi, ζi ∈ OX . Consequently,

(αs0 + βs1)−
n+m∑
i=1

ηi(xizs0 + yis1) + ζi(yis0 + xis1) ∈ ker(resD) = OX

and

h−
n+m∑
i=1

ηili + ζiln+m+i ∈ OX ∩ ker(φ) = {0}.
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For k ≥ 1, we may write

h = β0T
k+1
0 + β1T1T

k
0 + L

for some β0, β1 ∈ OX and L ∈ OX [T0, T1] of total degree at most k with respect to

T0 and T1. It must be the case that β0s0 + β1s1 ∈ OX , otherwise

valD(φ(h)) = valD(β0s
k+1
0 + β1s1s

k
0 + φ(L))

= valD(β0s
k+1
0 + β1s1s

k
0)

≤ −k − 1

and valD(φ(h)) = valD(0) =∞. That is, β0s0 + β1s1 = γ ∈ OX and

h = (β0T0 + β1T1 − γ)T k0 + γT k0 + L.

Clearly, β0T0 + β1T1 − γ ∈ ker(φ) and hence γT k0 + L ∈ ker(φ); therefore by our

induction assumption, β0T0 + β1T1 − γ and γT k0 + L lie in 〈l1, . . . , l2(n+m), q〉. Our

desired result follows immediately.

We can now prove the long awaited result of this section: by applying the

isomorphism theorem to φ, we obtain

OX [I−1D ] ∼=
OX [T0, T1]

〈l1, . . . , l2(n+m), q〉
.

2.4 Gorenstein

In this section, we prove that the unprojection ring is Gorenstein. For ease of

notation, we define

IY := 〈l1, . . . , l2(m+n), q〉 ⊂ OX [T0, T1]

and write

OY := OX [T0, T1]/IY

where l1, . . . , l2(n+m) and q are defined as in Section 2.3.

We follow [31] (compare Lemmas 2.4.1, 2.4.2, 2.4.4 and 2.4.3 to Corollary

2.9, Proposition 2.10 and Theorem 2.15 of [31]). To show that OY is Gorenstein,

we will instead show that OY /〈T0〉 is Gorenstein. This is sufficient since a local ring

R is Gorenstein if and only if R/〈x1, . . . , xn〉 is a Gorenstein ring for an R-regular

sequence 〈x1, . . . , xn〉 (see Proposition 3.1.19, [12]). Note that T0 is not a zero divisor
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since OX [I−1D ] ∼= OY is an integral domain.

Remark 2.4.1. Recall that for a positively graded ring R :=
⊕

i∈NRi over Z, an

ideal m ⊂ R is maximal if and only if m = 〈p〉 ⊕ R1 ⊕ R2 ⊕ . . . for some prime

p ∈ N. Throughout this section we work locally at a specific prime p but suppress

the localisation notation.

Let IN := im(s0) ⊂ OX and define the ring ON := OX/IN . By Proposition

2.8 of [31]:

Lemma 2.4.1. The codimension of IN in OX is 1.

Lemma 2.4.2. We have the following isomorphisms of OX -modules:

OY /〈T0〉 ∼= HomOX
(ID,OX)/〈s0〉 ∼= HomOX

(IN ,OX)/〈iN 〉 ∼= ωN (2.2)

where iN : IN → OX is the natural inclusion.

Proof. The result follows immediately from the proof of Proposition 2.10 of [31].

The first isomorphism of (2.2) follows by applying the fundamental theorem of

homomorphisms to the OX -homomorphism σ : HomOX
(ID,OX) → OY /〈T0〉

extending σ(s0) := T0 = 0 and σ(s1) := T1. Since s0 : ID → IN is itself an

isomorphism, the second isomorphism of (2.2) is constructed by defining the

induced morphism s∗0 : HomOX
(IN ,OX) → HomOX

(ID,OX) where s∗0(iN ) = s0.

The codimension of IN and the exact sequence

0→ OX → HomOX
(IN ,OX)→ ωN → 0

provide the final isomorphism of (2.2).

To prove that OY /〈T0〉 is Gorenstein, we work with ωN and will show that

depth(ωN ) = OX − 1 and ωN ∼= Ext1OX
(ωN ,OX).

Lemma 2.4.3. We have that depth(ωN ) = OX − 1.

Proof. Let m be a maximal ideal of OX and k := OX/m the residue field. The long

exact sequence of

0→ OX → HomOX
(ID,OX)→ ωD → 0

with respect to HomOX
(k,−) is

· · · → ExtiOX
(k,OX)→ ExtiOX

(k,HomOX
(ID,OX))→ ExtiOX

(k, ωD)→

Exti+1
OX

(k,OX)→ Exti+1
OX

(k,HomOX
(ID,OX))→ Exti+1

OX
(k, ωD)→ · · · .
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As OX and ωD are Cohen-Macaulay, ExtiOX
(k,OX) and ExtjOX

(k, ωD) are 0 for

i = 0, . . . ,dim(OX) − 1 and j = 0, . . . ,dim(OX) − 2. Note that the depth of ωD is

such that depth(ωD) = dim(OX)− 1 (see the start of Section 2.3 for the properties

of ID). Hence, by our long exact sequence ExtiOX
(k,HomOX

(ID,OX)) = 0 for

i = 0, . . . ,dim(OX)− 2.

Define

h2 : OX → HomOX
(ID,OX) where (h2(a))(b) = s0(ab).

Note that ker(h2) = 0 by the injectivity of s0 and coker(h2) = ωN by Lemma 2.4.2.

The associated long exact sequence of

0 OX HomOX
(ID,OX) ωN 0

h2

with respect to HomOX
(k,−) is

· · · → ExtiOX
(k,HomOX

(ID,OX))→ ExtiOX
(k, ωN )→ Exti+1

OX
(k,OX)→

Exti+1
OX

(k,HomOX
(ID,OX))→ Exti+1

OX
(k, ωN )→ Exti+2

OX
(k,OX)→ · · · .

We know that ExtiOX
(k,HomOX

(ID,OX)) = 0 for i = 0, . . . ,dim(OX) − 2 and

ExtjOX
(k,OX) = 0 for j = 0, . . . ,dim(OX) − 1. Hence, ExtiOX

(k, ωN ) = 0 for

i = 0, . . . ,dim(OX)− 2 and our desired result follows.

That is, the ring ωN is Cohen-Macaulay.

Lemma 2.4.4. We have that ωN ∼= ExtOX
(ωN ,OX).

Proof. As IN is codimension 1 in OX and OX is a Gorenstein ring, we have that

ωN = Ext1OX
(ON ,OX) by the adjunction formula (see [38] Theorem 2.12). To prove

our desired result, we will show that Ext1OX
(ON ,OX) ∼= Ext1OX

(ωN ,OX).

Define the following injective maps

h1 : ID → OX where h1(a) = s0(a),

h2 : OX → HomOX
(ID,OX) where (h2(a))(b) = s0(ab),

and

h3 : OD → ωD where h3(a) = a resD(s0) ∈ ωD.

Applying the snake lemma to the complex
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ID OX OD 0

0 OX HomOX
(ID,OX) ωD

h1 h2 h3

resD

gives the exact sequence

ker(h1)→ ker(h2)→ ker(h3)→ coker(h1)→ coker(h2)→ coker(h3).

As h1, h2 and h3 are injective, we have that ker(h1) = ker(h2) = ker(h3) = {0}.
Furthermore,

coker(h1) = OX/IN = ON

by definition and coker(h2) = HomOX
(ID,OX)/〈s0〉 ∼= ωN by Lemma 2.4.2.

Therefore, the exact sequence simplifies to

0→ ON → ωN → coker(h3)→ 0. (2.3)

The associated long exact sequence of (2.3) with respect to HomOX
(−,OX) is

· · · → Ext1OX
(coker(h3),OX)→ Ext1OX

(ωN ,OX)

→ Ext1OX
(ON ,OX)→ Ext2OX

(coker(h3),OX)→ · · · .

We claim that ExtlOX
(coker(h3),OX) = 0 for l = 1, 2 in which case we obtain the

exact sequence

0→ Ext1OX
(ωN ,OX)→ Ext1OX

(ON ,OX)→ 0

and the isomorphism Ext1OX
(ωN ,OX) ∼= Ext1OX

(ON ,OX) ∼= ωN . To prove this

claim, we will show that

coker(h3) ∼= OX/〈yj , xj , wi : 1 ≤ j ≤ n and 1 ≤ i ≤ m〉

and hence ExtlOX
(coker(h3),OX) = 0 for all l < dim(OX) − dim(coker(h3)) where

2 < dim(OX)− dim(coker(h3)) (see Corollary 3.5.11, [12]).

Let u = v + im(h3) ∈ coker(h3) where v ∈ ωD. By Lemma 2.3.2, the

OX -module ωD is generated by e0 and e1 and v = v0e0 + v1e1 for some v0, v1 ∈ OX .
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In particular, we have that u = v1e1 + im(h3) where

v1 ∈ OX − 〈xj , yj , wi : 1 ≤ j ≤ n and 1 ≤ i ≤ m〉.

This is because

yje0 + xje1 = zxje0 + yje1 = wie1 = wie0 = 0

for 1 ≤ i ≤ m and 1 ≤ j ≤ n by our choice of generators and the fact that im(h3) =

OXe0. It is clear that coker(h3) ∼= OX/〈xj , yj , wi : 1 ≤ j ≤ n and 1 ≤ i ≤ m〉.

This proves that the unprojection ring is indeed Gorenstein.

2.5 Codimension

The proofs of Propositions 2.5.1 and 2.5.2 generalise that of Proposition 2.16, [31].

Proposition 2.5.1. As an Oamb[T0, T1]-module, OY is perfect.

Proposition 2.5.2. codimOamb[T0,T1](IX + IY ) = codimOamb
(IX) + 2 = n+m+ 1.

A finite Z[x1, . . . , xn]-module is Cohen-Macaulay if and only if it is perfect

(see comment after Proposition 16.19 of [13]). Therefore, the perfectness of OY as

an Oamb[T0, T1]-module is immediate from OY being a finitely generated Cohen-

Macaulay Oamb-module .

To calculate the codimension of IX + IY , we show that for

J := 〈l1, . . . , l2(n+m), q〉 ∩ OX [T0]

dim(OX [I−1D ]) = dim(OX [T0]/J) = dim(OX),

in which case

codimOamb[T0,T1](IX + IY ) = dim(Oamb[T0, T1])− dim(OX [I−1D ])

= dim(Oamb[T0, T1])− dim(OX)

= codimOamb
(IX) + 2.

As OX [I−1D ] is a finitely generated (OX [T0]/J)-module and OX [T0]/J ⊂ OX [I−1D ] is

an integral extension, dim(OX [I−1D ]) = dim(OX [T0]/J) is clear. The equality

dim(OX) = dim(OX [T0]/J)
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follows from T0 being a regular element and (OX [T0]/J)/〈T0〉 ∼= OX/IN .

2.6 Remark on Gorensteinness

Recall that in Section 2.2 we defined ID using the minors of(
y1 ... yn zx1 ... zxn

x1 ... xn y1 ... yn

)

where the entries xj and yj are indeterminates. It is desirable to perform

unprojections in cases where the entries are polynomials (see Chapter 4 for many

such examples). In this scenario, the unprojection ring is more delicate and the

ring OX [I−1D ] may not Gorenstein. We recall the following example from [31] (see

Remark 3.3, [31]):

Example 2.6.1. Define Oamb := Z[x, y, z], ID := 〈z, y〉 and IX := 〈z2x− y3〉. The

OX -module I−1D is generated by OX and

s :=
y2

z
=
xz

y
.

The unprojection ring of (IX , ID,Oamb) is

OX [I−1D ] ∼=
Z[x, y, z, s]

〈sz − y2, sy − xz, s2 − xy〉

(compare with Example 1.3.2). The unprojection ring is the homogeneous

coordinate ring of the twisted cubic and the projection is geometrically a blow up

of its singular point; it is not Gorenstein.

In Example 2.6.1, the unprojection format used is not that of Section 2.2;

however, the moral of this example remains. To achieve a Gorenstein ring in such a

case, we can define the unprojection ring by tensoring over the standard unprojection

as in Section 3 of [31].

Remark 2.6.1. For the most part, that is for the specific cases we study in this

thesis, tensoring is not necessary and we simply replace indeterminates with

polynomials in the setup of Section 2.2. Nevertheless, we record this extra

definition for completeness.

“General Unprojection”. Fix m,n ∈ N+ with n ≥ 2. Let Ôamb be an

equidimensional Gorenstein ring. Let ÎD ⊂ Ôamb be a codimension n + m ideal
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generated by the 2× 2 minors of

M̂ :=

(
ŷ1 ... ŷn ẑx̂1 ... ẑx̂n

x̂1 ... x̂n ŷ1 ... ŷn

)

together with ŵ1 = · · · = ŵm = 0 for ŷi, x̂i, ẑ, ŵk ∈ Ôamb. Let ÎX = 〈f̂1, ..., f̂r〉 ⊂ ÎD
be a codimension n+m−1 ideal with f̂1, . . . , f̂r forming a regular sequence in Ôamb.

We write

f̂j =

n2+m∑
k=1

v̂jkuk

where uk is a minimal basis of ÎD and v̂jk ∈ ÔX . Let (ID, IX ,Oamb) be defined

as in Section 2.2 with p = r(n2 + m). Let OY be defined as in Section 2.4. The

unprojection ring of (ÎX , ÎD, ÔX) is the ÔX -algebra

OY ⊗ Ôamb[T0, T1]

where the tensor product is over Oamb[T0, T1]. Note that there is a ring

homomorphism φ : Oamb[T0, T1]→ Ôamb[T0, T1].

2.7 Relations to Other Unprojections

2.7.1 Type II Unprojections

At present, the main unprojections in the literature are type I, type II, type III and

type IV (see [34], [31], [30] and [40] respectively). We focus on type II unprojections.

The initial data for an unprojection consists of two ideals IX ⊂ ID in some

ring Oamb. The codimensions of IX and ID are such that

codimOamb
(ID) = codimOamb

(IX) + 1.

By fixing IX such that OX := Oamb/IX is a normal Gorenstein integral domain, the

type I, II, III and IV conditions are conditions on ID (see Section 9 of [39] for a nice

description of these conditions). The conditions for ID to be type II are as follows:

Reid’s Type II Conditions. Let ID ⊂ Oamb be a homogeneous prime ideal

such that codimOamb
(ID) = codimOamb

(IX) + 1. Suppose IX ⊂ ID. Then, ID is

type II if OD is not normal but its normalisation O
D̃

is Gorenstein and needs two

generators as an OD module.
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By Lemmas 2.3.1 and 2.3.2, it is clear that the unprojection format of Section

2.2 satisfies these conditions: it is therefore a type II unprojection.

2.7.2 Type IIk Unprojections

There are many different unprojection formats (IX , ID,Oamb) which fall under the

umbrella of type II. A hint on how to construct some of these unprojections is

provided in Section 9 of [39]:

“Slightly Non-normal Embeddings”. Type II unprojections are a phenomena

encountered when ID is defined as the image of some map

φ : P(a0, a1, a2)→ P(ka0, a1, a2, a3, . . . , an)

where k ∈ N and k > 1.

Example 2.7.1. Define

φ : P(1, 3, 5)→ P(2, 3, 4, 5, 6, 7)

φ(a, b, c) := (x := a2, y := b, z := 0, u := c, v := ac, w := a7 + ab2).

We claim that the image of φ is defined by the ideal ID generated by the 2 × 2

minors of (
v w xu x4 + xy2

u x3 + y2 v w

)
together with z = 0. Let D ⊂ P(2, 3, 4, 5, 6, 7) be defined by the equations of ID.

By evaluating the generating polynomials of ID on φ(a, b, c), we see immediately

that im(φ) ⊂ D. To prove that D ⊂ im(φ), we note that any point

p := (x, y, z, u, v, w) ∈ D may be written as

p =

(
w2

(x3 + y2)2
, y, 0, u,

wu

x3 + y2
,
w(w6 + y2(x3 + y2)6)

(x3 + y2)7

)
= φ

(
w

x3 + y2
, y, u

)
if x3 + y2 6= 0,

p =

(
v2

u2
, y, 0, u, v,

v(v6 + y2u6)

u7

)
= φ

(v
u
, y, u

)
if u 6= 0 and

p = φ(1, i, 0) = φ(1,−i, 0)
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if x3 + y2 = u = 0.

Example 2.7.2. Define

φ : P(1, 3, 5)→ P(2, 3, 4, 5, 6, 7)

φ(a, b, c) := (x := a2, y := b, z := ab, u := c, v := ac, w := a7 + ab2).

The image of φ is defined by the ideal ID generated by the 2× 2 minors of(
z v w xy xu x4 + xy2

y u x3 + y2 z v w

)
.

Remark 2.7.1. We briefly return to our ultimate goal of constructing Fano 3-folds.

The aim is that D defined by ID will define an exceptional divisor of a blow-up in

the general picture

Z

X Y

In Examples 2.7.1 and 2.7.2 we will have X ⊂ P(2, 3, 4, 5, 6, 7) defined by a

codimension 2 ideal IX ⊂ ID and Y ⊂ P(2, 3, 4, 5, 6, 7,wt(T0),wt(T1)) a Fano 3-fold

defined by the ring

OX [I−1D ] ∼= OX [T0, T1]/〈l1, . . . , l6, q〉.

We perform the P(1, 3, 5) weighted blow up of Y at a point and D will play the role

of the exceptional divisor lying in X. (See Section 3.3 for a more detailed discussion

of this diagram).

By viewing type II unprojections in terms of

φ : P(a0, a1, a2) 7→ P(ka0, a1, . . . , an), we obtain a natural concept of type IIk

unprojections. Confusingly, the existing nomenclature dictates that φ defines a

type IIk−1 unprojection.

The ideal ID defined in Example 2.7.1 is obviously a case of the unprojection

format of Section 2.2. By Lemma 2.3.1, the ideal ID of Section 2.2 can always be

expressed as some map φ : P(a0, a1, a2)→ P(2a0, a1, a2, a3, . . . , an). It is therefore a

type II1 unprojection.

The ideal ID generated in Example 2.7.2 is another case of type II1

unprojections. The format of this ideal is generalised and expanded upon in [31] to

define many type IIk unprojections:
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The 2× (kn + n) Format Fix k, n, p ∈ N+ such that k, p ≥ 1 and n ≥ 2. Define

Oamb := Z[ai,j , z, vl]

with 1 ≤ i ≤ k + 1, 1 ≤ j ≤ n and 1 ≤ l ≤ p. Let Oamb be a positively graded ring.

Define ID ⊂ Oamb as the homogeneous ideal generated by the 2 × 2 minors of the

2× (kn+ n) matrix(
a2,1 . . . a2,n a3,1 . . . a3,n . . . ak+1,1 . . . ak+1,n za1,1 . . . za1,n

a1,1 . . . a1,n a2,1 . . . a2,n . . . ak,1 . . . ak,n ak+1,1 . . . ak+1,n

)
.

Let IX ⊂ ID be a homogeneous ideal of Oamb such that codimOamb
(IX) = nk − 1

and OX := Oamb/IX is a normal Gorenstein integral domain. The unprojection of

(IX , ID,Oamb) is the OX -subalgebra OX [I−1D ] ⊂ K(X) with I−1D and K(X) defined

as expected by Definition 2.2.1.

It is clear that such an unprojection is type II according to Reid’s

properties and type IIk according to the embedding definition. Information about

the unprojection ring using the 2× (kn+ n) format is discussed in [31]:

Theorem 2.7.1. There exists an isomorphism

OX [I−1D ] ∼=
OX [T0, T1, . . . , Tk]

I

where I is the ideal defined by

li,j,l := ai+1,jTl + ai,jTl+1 − ci,j,l

and

lj,l := za1,jTl + ak+1,jTl+1 − dj,l

for 1 ≤ i ≤ k, 1 ≤ j ≤ n and 0 ≤ l ≤ k − 1 and some ci,j,l, dj,l ∈ OX ;

qi,j := TiTj − T0Ti+j + linear terms in T0, . . . , Tk

for i+ j ≤ k; and

ri,j := TiTj − (−1)k+1zT0Ti+j−k−1 + linear terms in T0, . . . , Tk

for i+ j ≥ k + 1. Moreover, OX [I−1D ] is a Gorenstein ring and codimension nk + k

as an Oamb[T0, . . . , Tk]-module.
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The key point is that type IIk unprojections introduce k + 1 indeterminates

and define an ideal of codimension codim(IX) + k + 1.

2.7.3 Breaking the Type II1 Definition

The unprojection format of Section 2.2 can be viewed as a close relative of the type

2×(kn+n) unprojection format when k = 1, although distinct from it. Both produce

Gorenstein rings of codimension n+1 from Gorestein rings of codimension n−1, use

matrices of a similar shape, and have presentations described by n equations of total

degree 1 and a single equation of total degree 2 with respect to 2 new unprojection

indeterminates (compare Sections 2.2 – 2.6 with [31]).

Moreover, the formats are also related isomorphically. Let (IX , ID,Oamb) be

defined in the format of Section 2.2 and let I ′D ⊂ ID be the ideal defined by only

minors. Then,

OD := Oamb/ID ∼=
Oamb

I ′D + 〈wi : 1 ≤ i ≤ m〉

where I ′D ⊂ Oamb/〈wi : 1 ≤ i ≤ m〉 is in 2× (kn+ n) format.

In the literature, type IIk unprojections are “officially” defined as

unprojections using the 2 × (kn + n) format (see [31] and [33]). We believe that

this definition should be extended and therefore expand the definition of type II1

unprojections to include the unprojection format of Section 2.2.

Fix n,m, p ∈ N such that n ≥ 2, m ≥ 0 and p ≥ 1. If m ≥ 1, let

Oamb := Z[xj , yj , wi, z, vl]

be a positively graded ring such that 1 ≤ j ≤ n, 1 ≤ i ≤ m and 1 ≤ l ≤ p. If m = 0,

let

Oamb := Z[xj , yj , z, vl]

be a positively graded ring such that 1 ≤ j ≤ n and 1 ≤ l ≤ p. In both cases, we

suppose that the weight of z is even and

wt(yj) = wt(xj) +
1

2
wt(z)

for 1 ≤ j ≤ n. As before, we additionally define indeterminates vl for extra flexibility.

Define the 2× 2n matrix,

M :=

(
y1 · · · yn zx1 · · · zxn

x1 · · · xn y1 · · · yn

)
.
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If m = 0, let ID ⊂ Oamb be the ideal generated by the 2×2 minors of M . Otherwise,

let ID be defined by the 2 × 2 minors of M together with the linear equations

w1 = · · · = wm = 0. Let IX ⊂ ID be a homogeneous prime ideal of Oamb such that

OX := Oamb/IX is a normal Gorenstein integral domain and IX is codimension

n+m− 1. Then:

Definition 2.7.1. The type II1
(n,m) unprojection ring of (IX , ID,Oamb) is the

OX -subalgebra

OX [I−1D ] ⊂ K(X)

where I−1D ⊂ K(X) is the OX -module I−1D := {f ∈ K(X) : fID ⊂ OX}. When the

values of n and m are clear from context, we may refer to the unprojection ring as

a type II1 unprojection ring.

Remark 2.7.2. Note that we have naturally extended the unprojection format of

Section 2.2 to include m = 0.

Remark 2.7.3. To reiterate: we think of type II1 unprojections as in Section 2.7.2

and note that Definition 2.7.1 is unlikely to cover all type II1 unprojections. We

leave room for future extensions if and when new formats are discovered.

A corollary of Theorem 2.2.1 and Proposition 2.16 of [31] is then:

Corollary 2.7.1. Let (IX , ID,Oamb) be in type II1
(n,m) unprojection format. If

m 6= 0 define yi+n := wi and xi+n := 0 for 1 ≤ i ≤ m. Then, there exists an

isomorphism

OX [I−1D ] ∼=
OX [T0, T1]

〈l1, . . . , l2(n+m), q〉

where

lj := yjT1 + zxjT0 − cj

and

ln+m+j := yjT0 + xjT1 − dj

for j = 1, . . . , n+m, and

q := T 2
1 − zT 2

0 + α0T0 + α1T1 + α2

for some cj , dj , α0, α1, α2 ∈ OX . Furthermore, OX [I−1D ] is a Gorenstein ring, perfect

as an Oamb[T0, T1]-module and such that

codimOamb[T0,T1](IX + 〈l1, . . . , l2(n+m), q〉) = n+m+ 1.
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Chapter 3

Type II1 Unprojection

3.1 Explicit Equations

Thus far we have described the general shape of the equations which define the type

II1
(n,m) unprojection ring. Recall that in Theorem 2.2.1 and Corollary 2.7.1 the

type II1
(n,m) unprojection ring of (IX , ID,Oamb) is described by equations such as

l1 := y1T1 + zx1T0 − c1

and

q := T 2
1 − zT 2

0 + α0T0 + α1T1 + α2

where c1, α0, α1, α2 are some unknowns in OX := Oamb/IX . To define the equations

of the unprojection ring completely, the unknowns must be known explicitly.

In the literature, only the explicit equations for the type II1
(2,0) and type

II1
(3,0) unprojection ring are known (see Section 7.4, [15]; and Sections 3 and 4 of

[33]).

In Section 3.1.2, we will define the explicit equations for the type II1
(2,1)

unprojection ring. This is done in the spirit of [26] and [39]. To calculate the linear

equations of the unprojection ring, we construct a complex resolving

OX := Oamb/IX and O
D̃
∼= Z[x1, . . . , xn, t, v1, . . . , vp]. Recall that that D̃ is the

normalisation of D (see Lemma 2.3.1).

Remark 3.1.1. Note that this method does not calculate the quadratic equation,

q, of the unprojection ring. A combination of luck and observation are required to

find it (see Section 7.4, [15]; Section 4, [33]; and Theorem 3.1.1).

Remark 3.1.2. The method we use to define the linear equations of the

unprojection ring can be expanded to type II1
(n,m) unprojection rings. However, if
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IX were not a complete intersection, constructing the desired complex would be

challenging.

Remark 3.1.3. An alternative method of obtaining the equations of the

unprojection ring is to calculate the generators of HomOX
(ID,OX). Complexes are

once again used and the equations of the unprojection can be calculated thanks to

their known general form (see Appendix B.1).

3.1.1 Type II
(2,0)
1 Unprojections

As a warm up, we discuss the type II1
(2,0) unprojection ring. The results in this

section can be found in Section 4.4 of [33], Example 9.8 of [39] and 4.10 – 4.12 and

7.3 of [15].

Let

Oamb := Z[x1, x2, y1, y2, z, A12, B11, B12, B22]

be a positively graded ring such that the weight of z is even and

wt(yj) = wt(xj) + 1
2 wt(z) for j = 1, 2.

Let ID ⊂ Oamb be the ideal generated by the 2× 2 minors of

M :=

(
y1 y2 zx1 zx2

x1 x2 y1 y2

)
.

Let IX ⊂ ID be the homogeneous prime ideal of Oamb defined by

f := A12(x2y1 − x1y2) +B11(y
2
1 − zx21) + 2B12(y1y2 − zx1x2) +B22(y

2
2 − zx22).

We assume that OX := Oamb/IX is a normal and Gorenstein integral domain.

Theorem 3.1.1. The unprojection ring of (IX , ID,Oamb) is

OX [T0, T1]

〈l1, l2, l3, l4, q〉

where

l1 := y1T1 + zx1T0 − y2B22 + x1A12,

l2 := y2T1 + zx2T0 + y1B11 + 2y2B12 + x2A12,

l3 := y1T0 + x1T1 + 2x1B12 + x2B22,

l4 := y2T0 + x2T1 − x1B11
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and

q := T 2
1 − zT 2

0 −A12T0 + 2B12T1 +B11B22.

Remark 3.1.4. Note that the type II1
(2,0) unprojection rings provided in the

literature differ slightly from the one given in Theorem 3.1.1. Nevertheless, they

are equal up to a change of coordinates.

We first construct the Koszul complex of OX and the resolution of O
D̃

. These

complexes combine to form the complex

0 OX Oamb Oamb 0

0 O
D̃

2Oamb 4Oamb 2Oamb 0

(1,0)T

−f

α

M N

where

N :=


y2 zx2

−y1 −zx1
x2 y2

−x1 −y1


and

α :=


−y1B11 − 2y2B12 − x2A12

−y2B22 + x1A12

x1B11

2x1B12 + x2B22

 .

The linear equations of the unprojection come from joining up the ends of

the complexes:

(l2,−l1, l4,−l3)T = N(T1, T0)
T − α = 0.

That is, l1, . . . , l4 are 4 of the maximal Pfaffians of the 5× 5 antisymmetric matrix
0 x2 x1 y2 y1

0 T0 B11 −T1 − 2B12

0 T1 B22

−Sym 0 zT0 +A12

0

 .

The final Pfaffian,

T 2
1 − zT 2

0 −A12T0 + 2B12T1 +B11B22,
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is our quadratic.

Remark 3.1.5. We can verify that the fifth Pfaffian is the quadratic equation of

the unprojection by replicating Lemma 3.1.1.

Remark 3.1.6. The polynomial f is often dropped when defining the unprojection

ring since f ∈ 〈l1, . . . , l4〉.

Remark 3.1.7. By viewing li as equations linear in T0 and T1, we can solve the

linear system of equations to find s0, s1 ∈ HomOX
(ID,OX). For example,

l1x1 − l3y1 = n1 − (y21 − zx21)T0

and

zx1l3 − l1y1 = N1 − (y21 − zx21)T1

where n1, N1 ∈ OX . The rational functions

s0 :=
n1

y21 − zx21
and s1 :=

N1

y21 − zx21

can be shown to lie in I−1D and together with OX generate I−1D . Every pair of linear

equations gives a different definition for the rational functions s0 and s1; however,

each definition is equal in the fraction field of OX .

3.1.2 Type II
(2,1)
1 Unprojections

We now calculate the explicit equations of the type II1
(2,1) unprojection ring.

Let

Oamb := Z[x1, x2, y1, y2, w, z, A12, B11, B12, B22, C,A12, B11, B12, B22, C]

be a positively graded ring with the weight of z even and wt(yj) = wt(xj) + 1
2 wt(z)

for j = 1, 2. Let ID ⊂ Oamb be the homogeneous prime ideal defined by the 2 × 2

minors of

M :=

(
y1 y2 zx1 zx2

x1 x2 y1 y2

)

together with the linear equation w = 0. Let IX := 〈f, f〉 be a homogeneous

codimension 2 ideal in Oamb defined by

f := A12(y1x2 − x1y2) +B11(y
2
1 − zx21) + 2B12(y1y2 − zx1x2) +B22(y

2
2 − zx22) +Cw
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and

f := A12(y1x2− x1y2) +B11(y
2
1 − zx21) + 2B12(y1y2− zx1x2) +B22(y

2
2 − zx22) +Cw.

We assume that OX := Oamb/IX is a normal Gorenstein integral domain.

By Theorem 2.2.1 and Corollary 2.7.1, we know that there exists an

isomorphism

OX [I−1D ] ∼=
OX [T0, T1]

IY

where IY is an ideal of OX [T0, T1] defined by

l1 := y1T1 + zx1T0 − c1, l2 := y2T1 + zx2T0 − c2, l3 := wT1 − c3,

l4 := y1T0 + x1T1 − d1, l5 := y2T0 + x2T1 − d2, l6 := wT0 − d3

and

q := T 2
1 − zT 2

0 + α0T0 + α1T1 + α2

for some c1, c2, c3, d1, d2, d3, α0, α1, α2 ∈ OX . In particular:

Theorem 3.1.2. Define vij as the ij-th minor of

v :=

(
C A12 B11 2B12 B22

C A12 B11 2B12 B22

)

for 1 ≤ i < j ≤ 5. Then,

l1 := y1T1 + zx1T0 + x1v12 − y1v14 − y2v15,

l2 := y2T1 + zx2T0 + x2v12 + y1v13,

l3 := wT1 + y21v34 + zx22v45 + zx1x2v35 + x2y2v25 + x2y1v24 + x1y1v23 + y2y1v35,

l4 := y1T0 + x1T1 + x2v15,

l5 := y2T0 + x2T1 − x1v13 − x2v14,

l6 := wT0 − x22v25 − x1x2v24 − x2y2v45 − x2y1v35 − x21v23 − x1y2v35 − x1y1v34

and

q := T 2
1 − zT 2

0 − T0v12 − T1v14 + v15v13.

To calculate the linear equations of the unprojection we construct the Koszul

complex of OX and the minimal resolution of O
D̃

. We join the complexes to obtain
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0 OX Oamb 2Oamb Oamb 0

0 O
D̃

2Oamb 6Oamb 6Oamb 2Oamb 0

(1,0)T

(f,f)

β

(f,−f)T

α

M ′ A N

where

M ′ :=

(
y1 y2 w zx1 zx2 0

−x1 −x2 0 −y1 −y2 −w

)
,

A :=



y2 zx2 w 0 0 0

−y1 −zx1 0 0 w 0

0 0 −y1 −zx1 −y2 −zx2
x2 y2 0 w 0 0

−x1 −y1 0 0 0 w

0 0 −x1 −y1 −x2 −y2


,

N :=



0 −w
−w 0

zx2 y2

y2 x2

−zx1 −y1
−y1 −x1


,

β :=



x2A12 + y1B11 x2A12 + y1B11

−x1A12 + 2y1B12 + y2B22 −x1A12 + 2y1B12 + y2B22

C C

−x1B11 − 2x2B12 −x1B11 − 2x2B12

−x2B22 −x2B22

0 0


and

α := (α1, . . . , α6)
T

with

α1 = y1(y1v34 + x1v23 + y2v35 + x2v24) + x2(zx2v45 + zx1v35 + y2v25),

α2 = −x2(x2v25 + x1v24 + y2v45 + y1v35)− x1(x1v23 + y2v35 + y1v34),

α3 = −x2v12 − y1v13,
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α4 = x1v13 + x2v14,

α5 = x1v12 − y1v14 − y2v15,

and

α6 = x2v15.

The equations l1, . . . , l6 come from joining up the ends of the complexes, i.e.

they are obtained by

(−l3,−l6, l2, l5,−l1,−l4)T = N(T0, T1)
T − α = 0.

With the linear equations of the unprojection defined as above, we may define

the quadratic equation of the unprojection ring.

Lemma 3.1.1. Define

q′ := T 2
1 − zT 2

0 − T0v12 − T1v14 + v15v13.

Then, q′ ∈ IY and IY = 〈l1, . . . , l6, q′〉.

Proof. We follow Lemma 4.2 of [33], but identify a different candidate for q. By

Theorem 2.2.1 and Corollary 2.7.1, we know that there exists an equation

q := T 2
1 − zT 2

0 + α0T0 + α1T1 + α2 ∈ IY

where α0, α1, α2 ∈ OX . Define

q′ := T 2
1 − zT 2

0 − T0v12 − T1v14 + v15v13.

Then,

q′(x1 + x2) = T0(l1 − l2) + T1(l5 − l4) + l4(v14 − v13)− v15l5 ∈ IY .

By the primality of IY and the fact that (x1 + x2) /∈ IY , we must have q′ ∈ IY . The

term q − q′ has total degree at most 1 in T0 and T1, that is q − q′ ∈ 〈f, f , l1, ..., l6〉.
Therefore, IY = 〈l1, ..., l6, q′〉.

3.1.3 Remark on Type II
(2,1)
1 and Type I Correspondence

Although for now we remain largely disinterested in type I unprojections, the explicit

equations of Section 3.1.2 reveal that there exists a correspondence between type

II1
(2,1) unprojections and type I unprojections.
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Despite already meeting type I unprojections (see Examples 1.3.1 and 1.3.2),

we have yet to define them. A definition of type I unprojections can be achieved by

modifying the type II1 unprojection setup:

Definition 3.1.1. (See Section 1, [34]; Section 5, [32]; Lemma 2.1.1 and Definition

2.1.3 [29]) Let IX ⊂ ID be ideals in some positively graded ring Oamb such that

OX := Oamb/IX and OD := Oamb/ID are Gorenstein rings with

codimOamb
(ID) = codimOamb

(IX) + 1. The OX -module HomOX
(ID,OX) is

generated by two elements, i and s where i is a basis of OX and

s ∈ HomOX
(ID,OX) is injective. The type I unprojection ring of (IX , ID,Oamb) is

the ring

OX [I−1D ] = OX [s] ∼=
OX [S]

〈Sf − g : f ∈ ID〉

where S is some indeterminate and s(f) = g.

We are interested in type I unprojection rings which use the generic Tom

ideal. We recall the following definition from [10] and [29]:

Definition 3.1.2. (Definition 2.2, [10]; Section 3.1.1, [29]) Let R := Z[xk, zk, b
k
ij , ]

with 2 ≤ i < j ≤ 5 and k = 1, 2, 3, 4. The generic Tom ideal is generated by the

maximal Pfaffians of the 5× 5 antisymmetric matrix
0 x1 x2 x3 x4

0 b23 b24 b25

0 b34 b35

−Sym 0 b45

0


with bij :=

∑
k=1 b

k
ijzk.

The generic Tom ideal I is a prime ideal of codimension 3, contained in

〈z1, . . . , z4〉 and such that the ring R/I is Gorenstein (see Theorem 3.1.1, [29]).

Similarly, the ideal 〈z1, . . . , zk〉 is a prime ideal of codimension 4 and such that

R/〈z1, . . . , zk〉 is Gorenstein. We are in the perfect situation to apply type I

unprojections.

The explicit equations of type I unprojections using the generic Tom ideal are

known (see Section 3.3 of [29]). With these equations, it is straightforward to realise

the explicit equations of the type II1
(2,1) unprojection as a type I unprojection. We

state this more concretely:
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Proposition 3.1.1. Let

Oamb = Z[x1, x2, y1, y2, z, A12, B11, B12, B22, C,A12, B11, B12, B22, C]

be a positively graded ring with the weight of z even and wt(yj) = wt(xj) + 1
2 wt(z)

for j = 1, 2. We define pairs of ideals IY ⊂ ID and IZ ⊂ IE as follows:

• Let w be an indeterminate with positive weight. Let ID ⊂ Oamb[w] be the

homogeneous ideal generated by the 2× 2 minors of

M :=

(
y1 y2 zx1 zx2

x1 x2 y1 y2

)

together with the linear equation w = 0. Let IY = 〈f, f〉 ⊂ Oamb[w] be a

codimension 2 homogeneous prime ideal defined by the polynomials

f := A12(y1x2−x1y2)+B11(y
2
1−zx21)+2B12(y1y2−zx1x2)+B22(y

2
2−zx22)+Cw

and

f := A12(y1x2−x1y2)+B11(y
2
1−zx21)+2B12(y1y2−zx1x2)+B22(y

2
2−zx22)+Cw.

• Let T0 and T1 be indeterminates of positive weight and define

IE = 〈C,C, T0, T1〉 ⊂ Oamb[T0, T1]. We define the homogeneous prime ideal

IZ ⊂ Oamb[T0, T1] by the 4× 4 Pfaffians of the antisymmetric 5× 5 matrix
0 x1 x2 y1 y2

0 T0 B22C − CB22 −T1 − 2B12C + 2CB12

0 T1 B11C −B11C

−Sym 0 zT0 −A12C + CA12

0

 .

We assume that Oamb[T0, T1]/IZ and Oamb[w]/IY are normal Gorenstein integral

domains. Then, the type II1
(2,1) unprojection of (IY , ID,Oamb[w]) is equal to the

type I unprojection of (IZ , IE ,Oamb[T0, T1]).

The ideal IZ in the statement of Proposition 3.1.1 is defined as

IZ = 〈q, l1, l2, l4, l5〉 where the type II1
(2,1) unprojection of (IY , ID,Oamb[w]) is

defined by 〈f, f , l1, . . . , l6, q〉 ⊂ Oamb[w, T0, T1] as in Section 3.1.2.

With some relabelling, we can see that the ideal IZ in the statement of
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Proposition 3.1.1 is a case of the generic Tom format where IZ ⊂ 〈T0, T1, C, C〉.
Using the results of Section 3.3 [29] and setting w as the type I unprojection

indeterminate, we verify that the type I unprojection of (IZ , IE ,Oamb[T0, T1]) is

equal to the type II1
(2,1) unprojection of (IY , ID,Oamb[w]).

For complete correctness, we should check that IZ is codimension 3 and

OZ := Oamb[T0, T1]/IZ is a Gorenstein ring. If IZ were a codimension 3 ideal in

Oamb[T0, T1], the ring OZ is a Gorenstein ring since it is defined by the 2n × 2n

Pfaffians of an antisymmetric (2n+ 1)× (2n+ 1) matrix, (see Buchsbaum-Eisenbud

[14]). It is, therefore, sufficient to show that IZ is codimension 3. The desired result

follows immediately by Corollary 3.2.6 of [29].

Remark 3.1.8. Proposition 3.1.1 is a comment on the “general case” and cannot be

applied immediately to every explicit example. Consider the case where C is not an

indeterminate but a polynomial containing w. The ideal IZ lies in Oamb[T0, T1, w]

not Oamb[T0, T1] and hence w cannot be the type I unprojection indeterminate.

Nevertheless Proposition 3.1.1 has many applications (see Section 5.1.2).

3.2 Free Resolutions

As an alternative method to proving that the type II
(2,1)
1 unprojection ring is

Gorenstein, we could construct a free resolution.

Define (IX , ID,Oamb) as in Section 3.1.2. Let R := Oamb[T0, T1] and define

IY as the ideal defining the type II1 unprojection ring in R. That is,

IY := IX + 〈l1, . . . , l6, q〉 where l1, . . . , l6, q are defined in Section 3.1.2. The

resolution of IY is

0 R R9 R16 R9 R 0α β γ σ

with

α := (l2,−l1,−l5, l4, q, l6,−f,−f,−l3)

and

σT := (l3 +B12f −B12f, f ,−f, l6,−q,−l4, l5, l1,−l2).

The matrices β and γ are very large and we present them as the block matrices

β :=
(
β1 β2 β3 β4 β5 β6

)
and γ :=

(
γ1 γ2 γ3

)
where
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β1 :=



C CB12 −B12C − T1 0 −B22x2

−x2 T1 −CB11 +B11C −T0
y1 0 −A12C +A12C − zT0 −CB22 +B22C

y2 A12C −A12C + zT0 0 CB12 −B12C − T1
0 y1 y2 x1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,

β2 :=



T0 −B12x1 −B22x2 y1 −B12B12x1 −B22B12x2

B11x1 +B12x2 0 B11x1 y2

−B12y1 −B22y2 +A12x1 T1 −B22y2 +A12x1 −x1z
B11y1 +A12x2 −CB11 +B11C B11y1 +B12y2 +A12x2 −x2z

0 x2 0 0

C 0 C 0

T0 0 0 −C
0 0 T0 C

0 0 0 0


,

42



β3 :=



0

B12B11x1 +B22B11x2 −B11B22x2

−B12B22y2 +A12B12x1 +A12B22x2 −A12B22x2

B11B12y1 −B22B11y2 +B12B12y2 +B11B22y2 −A12B11x1 +A12B11x1 +A12B12x2

0

B12C + T1

0

B12T0

T0


,

β4 :=



−B12y1 −B22y2 +A12x1 −B12y1 −B22y2 +A12x1 w

−w B11y1 +A12x2 B11y1 +A12x2

0 −B22x2z −B22x2z

0 B11x1z +B12x2z B11x1z +B12x2z

0 0 0

−x1z 0 0

−B12y1 −B22y2 +A12x1 −T1 0

B12y1 +B22y2 −A12x1 0 −T1
y1 C C


,
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β5 :=



0 0 B12B12y1 +B22B12y2 −A12B12x1 −A12B12x1 −A12B22x2

0 0 0

0 w 0

0 0 w

0 0 0

−x2z y2 −y1
B11y1 +A12x2 B11x1 +B12x2 B22x2

−B11y1 −A12x2 −B11x1 −B12x2 −B22x2

y2 −x2 x1


,

β6 :=



−B12B11y1 −B22B11y2 +B11B22y2 +A12B11x1 −A12B12x2

B12B22x2z −A12B22y2 +A12A12x1

−B11B12x1z +B22B11x2z −B12B12x2z −B11B22x2z +A12B11y1 +A12B12y2 +A12A12x2

−w
A12C − zT0

−CB11B22 +B22B11C +A12T0 +B12T1

B11CB22 −B11B22C

−B12C − T1


,
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γ1 :=



−B12C − T1 B11CB22 +B2
12C −B11B22C +B12T1 CB11B22 −B22B11C +B12B12C A12C −A12C + zT0 −w

−x2 −B11x1 −B11x1 −y2 0

x1 −B12x1 −B22x2 −B12x1 −B22x2 y1 0

−y2 B11y1 +B12y2 +A12x2 B11y1 +B12y2 +A12x2 −x2z 0

−C B12C + T1 B12C 0 0

y1 B22y2 −A12x1 B22y2 −A12x1 x1z 0

C 0 −CB12 +B12C + T1 0 0

−T0 B12T0 B12T0 T1 0

0 −C −C 0 0

0 0 0 0 x2

0 T0 0 −C 0

0 0 T0 C 0

0 0 0 0 −x1
0 0 0 0 y1

0 0 0 0 y2

0 0 0 0 0



,
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γ2 :=



−B11B12x1z +B22B11x2z −B12B12x2z −B11B22x2z −A12B12y2 B12B22x2z −A12B12y1

0 w

w 0

0 0

−B11x1z −B12x2z −A12y2 B22x2z −A12y1

0 0

B11x1z −B12x1z −B22x2z

B12B11y1 −B11B12y1 +B22B11y2 −B11B22y2 +A12B11x1 −A12B11x1 +A12B12x2 −A12B12x2 −A12B22x2 +A12B22x2

x2z x1z

−CB11 +B11C T1

B11y1 +B12y2 +A12x2 −B22y2 +A12x1

−B11y1 −A12x2 B12y1 +B22y2 −A12x1

−CB12 +B12C + T1 CB22 −B22C

A12C −A12C + zT0 0

0 −A12C +A12C − zT0
y2 y1


and
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γ3 :=



B12B11y1 +B22B11y2 −B11B22y2 +A12B11x1 −A12B11x1 B12B12y1 +B22B12y2 +A12B12x1 −A12B12x1 +A12B22x2 −A12B22x2

0 0

0 0

0 −w
B11y1 B12y1 +B22y2

w 0

−B11y1 −B12y2 −A12x2 −B22y2 +A12x1

B22B11x2 −B11B22x2 B22B12x2 −B12B22x2

y2 −y1
0 T0

−B11x1 −B12x1 −B22x2

B11x1 +B12x2 B22x2

−T0 0

−T1 −CB22 +B22C

CB11 −B11C CB12 −B12C − T1
x2 −x1



.
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Remark 3.2.1. A free resolution is easy to construct using computer algebra

software (we used Macaulay2 [19]).

To show that R is Gorenstein, we essentially need to check that R is Cohen-

Macaulay and that the last entry of the resolution of R, equivalently the resolution

of IY , is rank 1 (see [41]). In Section 2.4 we proved that R is Cohen-Macaulay and

hence R is also Gorenstein using our free resolution.

The resolution of R that we have computed is in fact the minimal free

resolution. The ring R is known to be a codimension 4 Gorenstein ring and it must

therefore have a minimal free resolution of the form

0← R← Rk+1 ← R2k ← Rk+1 ← R← 0

(see [41]). The minimal number of generators for IY is 9; hence

0← R← R9 ← ...

is minimal and our full free resolution is minimal also.

To compute the graded free resolution, we “twist” R so that homogeneous

elements of degree i are mapped to homogeneous elements of degree i. For simplicity,

we write

deg(f) = n, deg(f) = n, wt(z) = 2a,

wt(y1) = b, wt(y2) = c, wt(w) = d,

wt(T0) = r and wt(T1) = r + a

for some n, n, a, b, c, d, r ∈ N and write(
R(1)

R(2)

)
↔ R(1)⊕R(2).

Then, the graded free resolution is
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0← R←



R(−r − a− c)
R(−r − a− b)
R(−r − c)
R(−r − b)
R(−2r − 2a)

R(−r − d)

R(−n)

R(−n)

R(−r − a− d)


←



R(−r − a− c− d+ n)

R(−2r − 2a− c)
R(−2r − 2a− c)
R(−2r − a− c)
R(−2r − a− c)
R(−2r − a− c)
R(−r − a− c− b)
R(−r − a− b− c)
R(−2r − a− d)

R(−r − a− d− b)
R(−r − a− 2d+ n)

R(−r − a− 2d− n)

R(−r − a− d− c)
R(−r − d− c)
R(−r − d− b)
R(−2r − 2a− d)



←



R(−2r − 2a− c+ n− d)

R(−3r − 2a− c)
R(−2r − 2a− c− b)
R(−2r − 2a− 2c)

R(−r − a− c− 2d+ n)

R(−2r − 2a− d− c)
R(−2r − 2a− d− b)
R(−2r − a− d− c)
R(−2r − 2a− d− b)


← R(−3r − 2a− c− b− d)← 0.
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3.3 Projective Geometry

Definition 3.3.1. Let C[x0, . . . , xk] be a positively graded polynomial ring with

ai := wt(xi) for all i = 0, . . . , k. A subscheme X ⊂ P(a0, . . . , ak)〈x0,...,xk〉 is

projectively Gorenstein if the homogeneous coordinate ring of X, C[x0, . . . , xk]/IX ,

is itself Gorenstein.

From now on, Oamb will be a polynomial ring over C. Suppose that

(IX , ID,Oamb) is defined in the usual type II1
(n,m) unprojection format. Then, the

type II1
(n,m) unprojection ring of (IX , ID,Oamb) is a Gorenstein ring (see Theorem

2.2.1 and Corollary 2.7.1) of codimension n + m + 1, (see Section 2.5). It is clear

that we may define unprojections in the context of projective schemes:

Definition 3.3.2. Suppose that X := Proj(Oamb/IX), D := Proj(V (ID)) ⊂ X

and wP := Proj(Oamb) are such that (IX , ID,Oamb) is in the usual type II1
(n,m)

unprojection format. Then, the type II1
(n,m) unprojection of (X,D,wP), or

D ⊂ X ⊂ wP, is

Y := Proj(R) ⊂ Proj(Oamb[T0, T1])

where R = OX [T0, T1]/I is the type II1
(n,m) unprojection ring of (IX , ID,Oamb)

as defined in Definitions 2.2.1 and 2.7.1. When the ambient space or unprojection

format is clear from context, we call Y the unprojection of (X,D).

Example 3.3.1. Let D ⊂ X ⊂ P(1, 3, 4, 5, 6)〈x,y,z,u,v〉 be such that D is defined by

the 2× 2 minors of (
u v yz z2 + zx4

y z + x4 u v

)
and X is defined by

f := (y3 + zu)(u(z + x4)− vy) + (z2 + yu)(u2 − zy2)

+ 2x7(uv − zy(z + x4)) + v(v2 − z(z + x4)2).

Then, the type II1 unprojection of (X,D) is the variety

Y ⊂ P(1, 3, 4, 5, 5, 6, 7)〈x,y,z,u,T0,v,T1〉 defined by the maximal Pfaffians of the 5 × 5

antisymmetric matrix
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
0 z + x4 y v u

0 T0 z2 + yu −T1 − 2x7

0 T1 v

−Sym 0 zT0 + y3 + zu

0

 .

Remark 3.3.1. The explicit equations of the unprojection provided earlier in

Chapter 3 hold even though we are working over C.

Remark 3.3.2. In the cases we encounter, the unprojection coordinates have

positive degree and the unprojection ring is positively graded.

Proposition 3.3.1. Define X := Proj(Oamb/IX), D := Proj(V (ID)) ⊂ X and

wP := Proj(Oamb) where (IX , ID,Oamb) is in the usual type II1
(n,m) unprojection

format. Then the type II1
(n,m) unprojection of (X,D,wP) is birational to X.

Proof. Suppose that X ⊂ P(a0, . . . ak)〈x0,...,xk〉. Let Y be the type II1
(n,m)

unprojection of (X,D,wP) and suppose without loss of generality that

Y ⊂ P(a0, . . . , ak, b0, b1)〈x0,...,xk,T0,T1〉. Define

ψ : X 99K Y

ψ(x0, . . . , xk) :=

(
x0, . . . , xk,

s0(di)

di
,
s1(di)

di

)
with di varying over a minimal basis for ID and s0, s1 ∈ HomOX

(ID,OX) defined

as in Section 2.3. Then, ψ is a birational map with inverse defined by the natural

projection map, (x0, . . . , xk, T0, T1) 7→ (x0, . . . , xk).

The map ψ is known as the unprojection map of X to Y . For type II1
(n,m)

unprojections where n+m ≤ 3, we can explicitly factorise the unprojection map as

two blow-ups

X̃

X Y

π
σ

ψ

where σ is the blow-up along E := {s1(d1) = s0(d1) = d1 = 0} ⊂ X and π is the

blow down of σ−1(D). In particular, the fibers σ−1(p) is a unique point whenever

p /∈ {s0(di) = 0} and rational curves whenever p ∈ {s0(di) = 0}. We will prove this

in the case of type II
(2,0)
1 unprojections. The type II

(2,1)
1 and II

(3,0)
1 unprojections

behave similarly.
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Remark 3.3.3. We do not comment on type II1
(n,m) unprojections with n+m > 3

since we do not know the explicit equations of the unprojection.

Remark 3.3.4. This factorisation is often used when X is a Fano 3-fold or a

Calabi-Yau 3-fold. It will be very important for us in Sections 4.3.1 and 4.3.2.

3.3.1 Type II
(2,0)
1 Unprojections

Let D ⊂ wP4
〈x,y,z,u,v〉 be defined by the 2× 2 minors of

M :=

(
u v zp1 zp2

p1 p2 u v

)

where p1, p2 ∈ C[x, y, z]− {0} and define

d1 := up2 − vp1, d2 := u2 − zp21, d3 := uv − zp1p2 and d4 := v2 − zp22

to form a basis of ID. We will assume that D is codimension 2 in wP4.

Let X ⊂ wP4 be a hypersurface containing D and Y ⊂ wP6
〈x,y,z,u,v,T0,T1〉 the

type II1 unprojection of (X,D) (see Section 3.1.1). By Proposition 3.3.1, we know

that there exists a rational map

ψ : X 99K Y

ψ(x, y, z, u, v) :=

(
x, y, z, u, v,

s0(dk)

dk
,
s1(dk)

dk

)
where s0, s1 ∈ HomOX

(ID,OX) and {1, s0, s1} is the set of generators for

HomOX
(ID,OX) as an OX -module (see Section 2.3 for the definitions of s0 and

s1). In particular, for X defined by

f := A12d1 +B11d2 + 2B12d3 +B22d4
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where A12, B11, B12, B22 ∈ C[x, y, z, u, v] we have that

s0(dk)

dk
=
−p21B11 − 2p1p2B12 − p22B22

d1

=
−2p1uB12 − p2uB22 − p1vB22 + p21A12

d2

=
p1p2A12 + p1uB11 − p2vB22

d3

=
p1vB11 + p2uB11 + 2p2vB12 + p22A12

d4

and

s1(dk)

dk
=

2p1vB12 + p2vB22 + p1uB11

d1

=
vuB22 − p1uA12 + 2p21zB12 + p2p1zB22

d2

=
−p21zB11 − p1vA12 + v2B22

d3

=
−uvB11 − 2v2B12 − p2vA12 − p1p2zB11

d4
.

Remark 3.3.5. Recall Remark 3.1.7: these fractions could be obtained by viewing

the linear equations of the unprojection as a linear system in T0 and T1. For example,

T1d1 − 2vp1B12 − up1B11 − vp2B22 = l1p2 − l2p1 = 0.

We will now prove our claim that the unprojection map ψ factorises as

Z

X Y

π
σ

ψ

where σ : Z → X is the blow up of X along E := {s0(d1) = s1(d1) = d1 = 0} and

π : Z → Y is the blow down of σ−1(D).

Remark 3.3.6. The idea is that the D and E are divisors of X such that D + E

is a Cartier divisor.

Let I be the ideal of E in X and define e1 := s0(d1), e2 := s1(d1) and
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e3 := d1. The blow up of X along E, Z, is defined by the algebra

BlI(OX) :=
3⋃
i=1

Spec

(
OX

[
I

ei

])
=

3⋃
i=1

Spec

(
OX

[
ei
ej

: 1 ≤ j ≤ 3

])
.

We calculate one patch of the blow up Z:

Lemma 3.3.1. We have that

OX
[
s0(d1)

d1
,
s1(d1)

d1

]
∼= OX [t0, t1]/J

where t0 and t1 are indeterminates and

J := 〈f, dit0 − s0(di), dit1 − s1(di) : i = 1, 2, 3, 4〉.

Proof. The algebra OX [I/d1] has generators

x, y, z, u, v, t0 :=
s0(d1)

d1
, t1 :=

s1(d1)

d1

and it is clear that d1t0 − s0(d1) = d1t1 − s1(d1) = 0 on OX and OX [I/d1]. The

other equations of J are obtained by realising that s0(di)dj = s0(dj)di on OX for

all i, j = 1, 2, 3, 4. A similar result holds for s1.

With this in mind, we calculate the blow up Z:

Theorem 3.3.1. The blow up Z ⊂ wP4 × wP2
〈t0,t1,t2〉 is defined by

ut1 + zp1t0 − vB22t2 + p1A12t2 = 0,

vt1 + zp2t0 + uB11t2 + 2vB12t2 + p2A12t2 = 0,

ut0 + p1t1 + 2p1B12t2 + p2B22t2 = 0,

vt0 + p2t1 − p1B11t2 = 0

and

t21 − zt20 −A12t0t2 + 2B12t1t2 +B11B22t
2
2 = 0

together with f and the 2× 2 minors of

mk :=

(
t0 t1 t2

s0(dk) s1(dk) dk

)

for k = 1, 2, 3, 4.
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It is clear from the definition of the blow-up of X along E that the minors

of mk must vanish on Z.

The remaining equations in t0, t1 and t2 are obtained using the known

relations of s0 and s1. For example,

di(vt0 + p2t1 − p1B11t2) = vt0di + p2t1di − p1B11t2di

= vt2s0(di) + p2t2s1(di)− p1B11t2di

= (vs0(di) + p2s1(di)− p1B11di)t2

= 0.

The final equality occurs since vs0 + p2s1 − p1B11 is a linear relation on

HomOX
(ID,OX).

Remark 3.3.7. Compare the equations of Z and the equations of Y . The equations

of Z which are linear in t0, t1 and t2 are

N(t1, t0)
T − αt2 = 0

and the linear equations of the unprojection are

N(T1, T0)
T − α = 0

where N and α are defined as in Section 3.1.1.

Proposition 3.3.2. Let S0 := {s0(d1) = · · · = s0(d4) = 0} ⊂ X. If p /∈ D ∩ S0, the

fiber σ−1(p) consists of a unique point. Otherwise, σ−1(p) is a rational curve.

Proof. Suppose that p /∈ D. Then, as dk 6= 0 for some fixed k, the 2 × 2 minors of

mk set

t0 = s0(dk)
dk

t2 and t1 = s1(dk)
dk

t2

and hence

σ−1(p) =

{
p×

(
s0(dk)

dk
,
s1(dk)

dk
, 1

)}
.

Suppose that p ∈ D − S0. As p /∈ S0, we have s0(dk) 6= 0 for some fixed k.

However dk = 0 since p ∈ D and the minors of mk therefore imply that t2 = 0 and

t0s1(dk) = t1s0(dk). We note that since D = im(φ) for

φ : wP2 → wP4

φ(a, b, c) := (a, b, c2, cp1(a, b, c
2), cp2(a, b, c

2)),
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we may work with p = (a, b, c2, cp1(a, b, c
2), cp2(a, b, c

2)). Considered as polynomials

on wP2, we have that s1(dk) = −cs0(dk). Hence,

σ−1(p) = {p× (1,−c, 0)} .

Suppose p ∈ D ∩ S0. If p1 = p2 = 0 on p, then u = v = 0 and the equations

of Z which are linear in t0, t1 and t2 all vanish on p. The fiber of p is therefore

σ−1(p) = {p× (t0, t1, t2) : t21 − zt20 −A12t0t2 + 2B12t1t2 +B11B22t
2
2 = 0}.

Suppose instead that p2 6= 0 on p and let p× (t0, t1, t2) ∈ σ−1(p). By rearranging

vt0 + p2t1 − p1B11t2 = 0

we obtain the equality

t1 =
p1B11t2 − vt0

p2
.

By substituting this value for t1 into the remaining equations of Z, we obtain

ut1 + zp1t0 − vB22t2 + p1A12t2 =
−d3t0 + t2s0(d3)

p2
,

vt1 + zp2t0 + uB11t2 + 2vB12t2 + p2A12t2 =
−d4t0 + t2s0(d4)

p2
,

ut0 + p1t1 + 2p1B12t2 + p2B22t2 =
d1t0 − t2s0(d1)

p2

and

t21−zt20−A12t0t2+2B12t1t2+B11B22t
2
2 =

B11t2(d1t0 − t2s0(d1)) + t0(t0d4 − t2s0(d4))
p22

.

It is clear from the minors of mj that on p the remaining equations are identically

zero. Hence,

φ−1(p) =

{
p×

(
t0,

p1B11t2 − vt0
p2

, t2

)}
.

An analogous result holds when p1 6= 0.

The blow down of the strict transform of D is defined by

π : Z 99K Y

π((x, y, z, u, v)× (t0, t1, t2)) =

(
x, y, z, u, v, T0 :=

t0
t2
, T1 :=

t1
t2

)
.
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In many cases D∩S0 consists of finitely many points. We have that σ blows

up these points into rational curves and π maps these curves into a bouquet on pT0 .

We recall Example 3.3.1:

Example 3.3.2. Let D ⊂ X ⊂ P(1, 3, 4, 5, 6)〈x,y,z,u,v〉 be such that D is defined by

the 2× 2 minors of (
u v yz z2 + zx4

y z + x4 u v

)
and X is defined by

f := (y3 + zu)(u(z + x4)− vy) + (z2 + yu)(u2 − zy2)+

2x7(uv − zy(z + x4)) + v(v2 − z(z + x4)2).

Define the standard basis of ID {d1, . . . , d4} where

d1 := u(z + x4)− vy,

d2 := u2 − zy2,

d3 := uv − zy(z + x4)

and

d4 := v2 − z(z + x4)2.

We have that

s0(d2) = −2x7yu− uv(z + x4)− yv2 + y2(y3 + vu)

and

s0(d3) = y(y3 + zu)(z + x4) + yu(z2 + yu)− v2(z + x4).

If p = (x, y, 0, u, v) ∈ D ∩ S0, then it is clear from the equations of D, s0(d2) and

s0(d3) that p = (1, 0, 0, 0, 0). If p = (x, y, 1, u, v) ∈ D ∩ S0, then we must have

p ∈ {(x, y, 1, y, 1 + x4), (x, y, 1,−y,−1 − x4)} by definition of D. On such points

s0(d2) and s0(d3) simplify to the polynomials

−2x8y − 2x7y2 + x4y3 − 4x4y + y5 + y3 − 2y

and

−x12 − 3x8 + x4y4 + x4y2 − 3x4 + 2y4 + 2y2 − 1
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which have finitely many shared solutions. Hence, D ∩ S0 is a finite set of points.

3.3.2 Type II
(2,1)
1 Unprojections

To convince ourselves that the birational geometry of the type II1
(2,0) unprojection

is typical, we now study the type II
(2,1)
1 case.

Let D ⊂ wP5
〈x,y,z,u,v,w〉 be a codimension 3 scheme defined by the 2×2 minors

of the matrix

M :=

(
u v zp1 zp2

p1 p2 u v

)
together with w = 0 where p1, p2 ∈ C[x, y, z]− {0}. We fix a basis of ID

d1 := w, d2 := up2 − vp1, d3 := u2 − zp21, d4 := uv − zp1p2, d5 := v2 − zp22.

Let X be a codimension 2 complete intersection which contains D. Without

loss of generality we write IX = 〈f, f〉 where

f := A12(up2 − p1v) +B11(u
2 − zp21) + 2B12(uv − zp1p2) +B22(v

2 − zp22) + Cw

and

f := A12(up2 − p1v) +B11(u
2 − zp21) + 2B12(uv − zp1p2) +B22(v

2 − zp22) + Cw

where A12, A12, B11, B11, B12, B12, B22, B22, C, C ∈ C[x, y, z, u, v, w].

Let Y ⊂ wP7
〈x,y,z,u,v,w,T0,T1〉 be the unprojection of (X,D). The unprojection

map is

ψ : X 99K Y

ψ(x, y, z, u, v, w) :=

(
x, y, z, u, v, w,

s0(dk)

dk
,
s1(dk)

dk

)
where s0, s1 ∈ HomOX

(ID,OX) and {1, s0, s1} is the set of generators for

HomOX
(ID,OX) as an OX -module. In particular, if we define vij as the ij-th

minor of (
C A12 B11 2B12 B22

C A12 B11 2B12 B22

)
for 1 ≤ i < j ≤ 5, the unprojection map can be described using
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s0(di)

di
=
p22v25 + p2p1v24 + p2vv45 + p2uv35 + p21v23 + p1vv35 + p1uv34

d1

=
−p21v13 − p1p2v14 − p22v15

d2

=
p21v12 − p1uv14 − p1vv15 − p2uv15

d3

=
p1p2v12 − p2vv15 + p1uv13

d4

=
p22v12 + p2uv13 + p1vv13 + p2vv14

d5

and

s1(di)

di
=
−u2v34 − p22zv45 − p2p1zv35 − p2vv25 − p2uv24 − p1uv23 − vuv35

d1

=
p1uv13 + p2uv14 + p2vv15

d2

=
p1p2zv15 − p1uv12 + u2v14 + uvv15

d3

=
−p21zv13 − p1p2zv14 − p1vv12 + uvv14 + v2v15

d4

=
−p1p2zv13 − p22zv14 − p2vv12 − uvv13

d5
.

We claim that the unprojection map ψ can be factorised as

Z

X Y

π
σ

ψ

where σ is the blow up of X along E = {s0(d1) = s1(d1) = d1 = 0} ⊂ X and

π : Z → Y is the blow down of σ−1(D). As in the type II1
(2,0) case, the blow up of

X along E is essentially defined by the equations of Y :

Theorem 3.3.2. The blow up Z ⊂ wP5 × wP2
〈t0,t1,t2〉 is defined by f, f together

with the 2× 2 minors of the matrices

mk =

(
t0 t1 t2

s0(dk) s1(dk) dk

)
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for k = 1, . . . , 5 and the relations

ut1 + zp1t0 + (p1v12 − uv14 − vv15)t2 = 0,

vt1 + zp2t0 + (p2v12 + uv13)t2 = 0,

wt1 + (u2v34 + zp22v45 + zp2p1v35 + p2vv25 + p2uv24 + p1uv23 + vuv35)t2 = 0,

ut0 + p1t1 + p2v15t2 = 0,

vt0 + p2t1 − (p1v13 + p2v14)t2 = 0,

wt0 − (p22v25 + p2p1v24 + p2vv45 + p2uv35 + p21v23 + p1vv35 + p1uv34)t2 = 0

and

t21 − zt20 − t0t2v12 − t1t2v14 + t22v15v13 = 0.

Remark 3.3.8. Compare the equations of Z with the equations of Y defined in

Section 3.1.2.

Proposition 3.3.3. Let S0 := {s0(d1) = · · · = s0(d5) = 0} ⊂ X. If p /∈ D ∩ S0,
the fiber σ−1(p) consists of a unique point. If p ∈ D ∩ S0, then σ−1(p) is a rational

curve.

The proof follows that of Proposition 3.3.2. For p /∈ D, the minors mk

provide definitions of t0 and t1 in terms of t2; therefore, the fiber of p /∈ D is

a point. When p ∈ D, we use D = im(φ) where φ : wP2 → wP5 is defined

by φ(a, b, c) = (a, b, c2, cp1(a, b, c
2), cp2(a, b, c

2), 0). If p ∈ D − S0, we have that

s0(dk) = −cs1(dk) for k = 1, . . . , 5 and the fiber of p is the point p × (1,−c, 0).

Otherwise, a case by case analysis provides the rational curves we desire.

The blow down of the strict transform of D is defined by

π : Z 99K Y

π((x, y, z, u, v, w)× (t0, t1, t2)) =

(
x, y, z, u, v, w, T0 :=

t0
t2
, T1 :=

t1
t2

)
.
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Chapter 4

Application to Fano 3-folds

It is now the time to construct Fano 3-folds via type II1 unprojections.

4.1 Preliminaries

We elaborate on Chapter 1 and recall the definitions of Fano 3-folds and numerical

candidates. Many of the definitions and concepts are standard (we largely follow

[4]).

4.1.1 Fano 3-folds

A Fano 3-fold X is a complex normal projective 3-fold whose anticanonical divisor

−KX is Q-Cartier and ample, and whose singularities are Q-factorial and terminal

(See Definition 1.0.1). We explain these terms below:

Definition 4.1.1. A variety X has terminal singularities if it is normal, rKX is a

Cartier divisor for some r ∈ N+, and any resolution of singularities f : Y → X with

divisorial exceptional locus ∪Ei satisfies KY = f∗KX +
∑
aiEi with all ai > 0.

Definition 4.1.2. A variety X is Q-factorial if for every Weil divisor D on X there

exists r ∈ N+ with rD a Cartier divisor.

For narrative purposes we focus on index 1 Fano 3-folds; however our methods

can easily be extended to those with a higher index (see [11]):

Definition 4.1.3. Let X be a Fano 3-fold. The (Fano) index of X is the greatest

integer r such that −KX = rA for some ample Weil divisor A.

Many of the Fano 3-folds we encounter will be quasismooth:
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Definition 4.1.4. Let X be a closed subvariety of weighted projective space wPn.

The affine cone CX over X is the Spec of the homogeneous coordinate ring of X.

We say that X is quasismooth if its affine cone CX is smooth outside its vertex 0.

In essence, X ⊂ wPn is quasismooth if its singularities come from the ambient

space in which the variety lives rather than the equations of the variety itself. In

practise, we check that a Fano 3-fold X ⊂ wPn is quasismooth by checking that the

Jacobian matrix of X at p is rank n− dim(X) for every p ∈ X.

4.1.2 Hilbert Series and Graded Rings

We recall the definition of the anticanonical ring of a variety X (see Section 1.1):

Definition 4.1.5. Let X be an irreducible projective variety over C and A an ample

divisor on X. The Riemann-Roch space of mA for m ∈ N, is

H0(X,mA) := {f ∈ C(X)|div(f) +mA ≥ 0}.

It is the finite dimensional vector space of rational functions f ∈ C(X) with divisor

of poles ≤ mA.

Definition 4.1.6. The anticanonical ring of a variety X is the graded ring

R(X,−KX) :=
⊕
m≥0

H0(X,−mKX).

We will construct Fano 3-folds as X = Proj(R(X,−KX)). Recall that by

using this description of Fano 3-folds it is sufficient to consider only varieties in

weighted projective space: a choice of generators of R(X,−KX), say x0, . . . , xn,

allows us to embed X as a projectively normal variety in P(a0, . . . , an) with

ai := wt(xi).

Remark 4.1.1. Since we are studying X ⊂ wPn, the anticanonical ring of X equals

the homogeneous coordinate ring of X.

Definition 4.1.7. Let X ⊂ wPn be a variety. The Hilbert series of X with respect

to the ample divisor A ⊂ X is

PX,A(t) :=
∑
m∈N

dim(H0(X,mA))tm.

Unless otherwise specified, we will define the Hilbert series of X with respect

to A := −KX and simplify our notation to PX(t).
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4.1.3 Numerical Candidates

Theorem 1.1.1 states that the Hilbert series of a Fano 3-fold X can be defined as

a rational function in terms of its genus, gX := h0(X,−KX) − 2, and a basket of

terminal cyclic quotient singularities, BX = {1r (1, a, r − a)}.

Definition 4.1.8. (Definition 5.13, [21]) Let r > 0 and let a1, . . . , an be integers.

Suppose that Zr acts on An〈x1,...,xn〉 with action

(x1, . . . , xn) 7→ (εa1x1, . . . , ε
anxn)

for ε a fixed primitive r-th root of unity. A singularity Q ∈ X is a quotient

singularity of type 1
r (a1, . . . , an) if (X,Q) is isomorphic to an analytic

neighbourhood of (An, 0)/Zr.

Definition 4.1.9. ((6.4), [37]) Let X be a Fano 3-fold and p ∈ X a terminal

singularity. There is a deformation {Xλ} of p ∈ X such that the general fibre has

as its only singularities a number of terminal quotient singularities 1
r (a,−a, 1). The

basket of p ∈ X is this collection of terminal quotient singularities.

To obtain the basket of a Fano 3-fold X, we combine the baskets of p for all

terminal singularities p ∈ X. For example,{
1
r1

(a1,−a1, 1)
}

and
{

1
r1

(a1,−a1, 1), { 1
r2

(a2,−a2, 1)
}

combine to form {
2× 1

r1
(a1,−a1, 1),

1

r2
(a2,−a2, 1)

}
.

Remark 4.1.2. The singularities of a Fano 3-fold X may not exactly be the

singularities of BX . However, the contribution of the actual singularities of X

towards the Riemann-Roch formula is the same as the contribution of those in the

basket (see Theorem 10.2, [37]). In practice, the Fano 3-folds constructed in this

thesis have cyclic terminal quotient singularities, and in that case the basket is

equal to the set of singularities of X.

For a Fano 3-fold X with genus gX and basket BX , we call the pair (gX ,BX)

numerical data of X and note that it is equivalent to the Hilbert series of X by

Theorem 1.1.1. As a result of the bounds imposed by Theorems 1.1.2 and 1.1.3, we

create a finite set of numerical data for Fano 3-folds. Let S be the bounded set of

pairs {g,B} defined by Theorems 1.1.2 and 1.1.3. We may predict the Hilbert series

of Fano 3-folds by substituting {g,B} ∈ S into the Hilbert series definition provided

by Theorem 1.1.1. We call such a rational function a numerical candidate.

63



Using the analysis of [8], [2], [3] and [4], it is possible to represent a numerical

candidate as the Hilbert series of some projective variety Y ⊂ wPn. This can be

done systematically (see Example 1.1.1). The predicted Fano 3-fold Y ⊂ wPn for a

numerical candidate is chosen such that the numerical candidate cannot be realised

as a simpler Fano 3-fold where n is smaller (see Example 1.1.2). Without confusion,

the term numerical candidate will refer to both rational functions and the predicted

Fano 3-folds.

We are interested in the codimension 4 numerical candidates; that is, the

numerical candidates PY which when analysed suggest codimension 4 Fano 3-folds

Y ⊂ P(a0, . . . , a7). There are 145 codimension 4 candidates.

Remark 4.1.3. For simplicity, one could read “numerical candidate” as “Fano

3-fold and Hilbert series predicted by the GRDB [8]”. Alternatively, one could read

“numerical candidate” as “a pair {g,B} ∈ S” and the predicted Fano 3-fold as a

suggestion on how to realise the candidate; a suggestion which always turns out to

be correct.

4.2 Main Theorem

4.2.1 Statement of Result

Of the 145 codimension 4 numerical candidates, we are interested in those that are

marked with a particular cyclic quotient singularity. We wish to identify those with

a type II1 centre:

Definition 4.2.1. (Definition 3.4, [6]) Let X ⊂ P(a0, . . . , am) be a Fano 3-fold with

p = 1
r (b0, b1, b2) ∈ X a cyclic quotient singularity such that r ∈ N+, r > 1 and bi is

a minimal non-negative residue modulo r for i = 0, 1, 2. We call p a type IIn centre

if, up to relabelling, we have r = am, bi = ai for i = 0, 1 and n + 1 is the smallest

positive integer such that (n+ 1)b2 ∈ {ai : 2 ≤ i < m}.

There are 50 codimension 4 numerical candidates marked with type II1

centres. That is, there are 50 codimension 4 numerical candidates which lie in the

correct ambient space and have a basket containing a suitable cyclic quotient

singularity to satisfy Definition 4.2.1. By observation, we note that the ambient

spaces and the type II1 centres occur with a particular shape:

Proposition 4.2.1. If Y ⊂ P(a0, a1, . . . , a7) is a codimension 4 numerical candidate

which is marked with a type II1 centre p = 1
r (b0, b1, b2), then up to relabelling we

have Y ⊂ P(2b0, b1, b2, b3, b4, b5, r, r+b0) and p = 1
r (b0, b1, b2) for some b3, b4, b5 ∈ N+.
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Arguably, a number of the numerical candidates marked with type II1 centres

are not true candidates since they have already been realised as codimension 4 Fano

3-folds. Of these 50 numerical candidates, 34 possess a type I centre and are studied

in [10].

Definition 4.2.2. (Section 3.2, [10]) Let X be a Fano 3-fold and r ∈ N+. A

quotient singularity p = 1
r (1, a, r − a) of X with 1 < r is a type I centre if its

orbinates are restrictions of global forms x ∈ H0(X,−KX), y ∈ H0(X,−aKX) and

z ∈ H0(X,−(r − a)KX) of the same weight.

Remark 4.2.1. Let X ⊂ P(a0, . . . , am) be a Fano 3-fold with p = 1
r (b0, b1, b2) ∈ X a

cyclic quotient singularity such that r ∈ N+, r > 1 and bi is a minimal non-negative

residue modulo r for i = 0, 1, 2. In this thesis, p is a type I centre if r = am and

ai = bi for i = 0, 1, 2 up to reordering.

The codimension 4 numerical candidates marked with type I centres are

identified in [10] and have been realised as Fano 3-folds. This includes the 34

numerical candidates marked with type I and type II1 centres. In the hopes of

constructing completely new Fano 3-folds, we ignore these cases until Chapter 5.

We are now left with 16 numerical candidates which we list by their GRDB ID in

Table 4.1.

Now we can state the main theorem of this thesis: each of these 16 numerical

candidates can be realised as a quasismooth Fano 3-fold and moreover these Fano

3-folds occur in 2 distinct families.

Theorem 4.2.1. Let Y ⊂ P(2a0, a1, . . . , a7) be a codimension 4 numerical candidate

marked with a type II1 centre but no type I centre. The numerical candidate Y can

be realised as a quasismooth codimension 4 Fano 3-fold and constructed as the type

II1 unprojection of (X,D) where X ⊂ P(2a0, a1, . . . , a5) is a codimension 2 complete

intersection. In particular, there exists a successful construction using type II1
(2,1)

unprojections and a second using type II1
(3,0).

For a given codimension 4 candidate marked with a type II1 and no type I

centre, the type II1
(3,0) and type II1

(2,1) unprojections construct members of

topologically distinct families. That is:

Corollary 4.2.1. Let Y ⊂ wP7 be a codimension 4 numerical candidate marked

with a type II1 centre but no type I centre. The Hilbert scheme of Y has at least 2

components containing quasismooth Fano 3-folds.
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Table 4.1: Codimension 4 Candidates with a Type II1 and No Type I Centre

ID Numerical Candidate Y gY BY
38 Y ⊂ P(2, 3, 4, 5, 6, 7, 8, 9) −2

{
7× 1

2(1, 1, 1), 13(1, 1, 2), 18(1, 3, 5)
}

342 Y ⊂ P(1, 4, 6, 7, 7, 8, 9, 10) −1
{

2× 1
2(1, 1, 1), 14(1, 1, 3), 17(1, 1, 6), 17(1, 3, 4)

}
360 Y ⊂ P(1, 4, 5, 6, 7, 7, 8, 9) −1

{
2× 1

4(1, 1, 3), 16(1, 1, 5), 17(1, 2, 5)
}

648 Y ⊂ P(1, 3, 4, 4, 5, 5, 6, 7) −1
{
1
3(1, 1, 2), 3× 1

4(1, 1, 3), 15(1, 2, 3)
}

1069 Y ⊂ P(1, 2, 6, 7, 8, 9, 9, 10) −1
{

5× 1
2(1, 1, 1), 13(1, 1, 2), 19(1, 1, 8)

}
1084 Y ⊂ P(1, 2, 5, 6, 7, 8, 8, 9) −1

{
4× 1

2(1, 1, 1), 15(1, 2, 3), 18(1, 1, 7)
}

1115 Y ⊂ P(1, 2, 4, 5, 6, 7, 7, 8) −1
{

5× 1
2(1, 1, 1), 14(1, 1, 3), 17(1, 1, 6)

}
1122 Y ⊂ P(1, 2, 4, 5, 5, 6, 6, 7) −1

{
5× 1

2(1, 1, 1), 15(1, 1, 4), 16(1, 1, 5)
}

1172 Y ⊂ P(1, 2, 3, 4, 5, 6, 6, 7) −1
{

4× 1
2(1, 1, 1), 2× 1

3(1, 1, 2), 16(1, 1, 5)
}

1256 Y ⊂ P(1, 2, 3, 4, 4, 5, 5, 6) −1
{

4× 1
2(1, 1, 1), 13(1, 1, 2), 14(1, 1, 3), 15(1, 1, 4)

}
1350 Y ⊂ P(1, 2, 3, 4, 4, 4, 5, 5) −1

{
4× 1

2(1, 1, 1), 3× 1
4(1, 1, 3)

}
2410 Y ⊂ P(1, 2, 2, 3, 4, 5, 5, 6) −1

{
7× 1

2(1, 1, 1), 15(1, 1, 4)
}

2438 Y ⊂ P(1, 2, 2, 3, 3, 4, 4, 5) −1
{

6× 1
2(1, 1, 1), 13(1, 1, 2), 14(1, 1, 3)

}
2511 Y ⊂ P(1, 2, 2, 3, 3, 3, 4, 4) −1

{
5× 1

2(1, 1, 1), 3× 1
3(1, 1, 2)

}
3509 Y ⊂ P(1, 2, 2, 2, 3, 3, 3, 4) −1

{
8× 1

2(1, 1, 1), 13(1, 1, 2)
}

8051 Y ⊂ P(1, 1, 2, 2, 2, 2, 3, 3) 0
{

7× 1
2(1, 1, 1)

}
Remark 4.2.2. In the statement of Theorem 4.2.1, X ⊂ P(2a0, a1, . . . , a5) is not a

Fano 3-fold. The variety X is not Q-factorial since Y 99K X will be a projective

morphism contracting finitely many rational curves (see Section 3.3). Nevertheless,

it is a special member of a family whose general member is a Fano 3-fold in

P(2a0, a1, . . . , a5).

In Section 4.3, we will provide the proof of Theorem 4.2.1 and Corollary 4.2.1

for a single numerical candidate. The method used is indicative of all remaining

numerical candidates but we elaborate in Section 4.2.2.

4.2.2 Strategy

Let Y ⊂ P(2a0, . . . , a5, r, r+a0) be a codimension 4 numerical candidate marked with

a type II1 centre 1
r (a0, a1, a2). We prove Theorem 4.2.1 by providing the appropriate

and successful type II1 unprojection constructions; we take our cue from the proof

of Theorem 3.2 [10].

For each numerical candidate, Table A.1 provides two pairs of unprojection

data (X,D) which realise Y . The initial data is chosen so that

66



Xi,j ⊂ P(2a0, a1, . . . , a5)〈x,y,z,u,v,w〉 is a codimension 2 complete intersection where

i+ j + 1 = 2a0 + a1 + · · ·+ a5 and the Hilbert series of X and Y are related by

PY (t) = PX(t) +
tr + tr+a0

(1− t2a0)(1− ta1)(1− ta2)(1− tr)
.

Moreover, D ⊂ X is chosen so that D is defined by

• either the 2× 2 minors of(
u v w xp1 xp2 xp3

p1 p2 p3 u v w

)

where pi ∈ C[x, y, z]; or

• by w = 0 together with the 2× 2 minors of(
u v xp1 xp2

p1 p2 u v

)

where pi ∈ C[x, y, z].

Remark 4.2.3. The key idea is that P(a0, a1, a2) maps to D (see Examples 2.7.1

and 2.7.2).

Let Y ′ ⊂ P(2a0, a1, . . . , a5, deg(T0),deg(T1))〈x,y,z,u,v,w,T0,T1〉 be the type II1

unprojection of (X,D). We have that Y ′ lies in our desired ambient space by

construction. We wish for 1
r (a0, a1, a2) to be an isolated terminal cyclic quotient

singularity in a Fano 3-fold. Hence, we wish for a0 + a1 + a2 − 1 = r. The explicit

equations of the unprojections give us the following Lemma:

Lemma 4.2.1. The unprojection indeterminates T0 and T1 are such that

deg(T0) = a0 + a1 + a2 − 1 = r and deg(T1) = 2a0 + a1 + a2 − 1 = r + a0.

It is also the case that the Hilbert series of Y ′ equals our desired numerical

candidate:

Lemma 4.2.2. The Hilbert series of X and Y ′ are related by the equality

PY ′,OY ′ (1)(t) = PX,OX(1)(t) +
tr + tr+a0

(1− t2a0)(1− ta1)(1− ta2)(1− tr)
.

Proof. We follow the proof of Theorem 3.1 from [6]. Let R :=
⊕

k∈NRk be the

homogeneous coordinate ring of X where Rk is the additive group generated by
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degree k elements in C[x, y, z, u, v, w]. Define S :=
⊕

k∈N Sk to be the

homogeneous coordinate ring of Y ′ where Sk is the additive group generated by

degree k elements in C[x, y, z, u, v, w, T0, T1]. The generators of Sk which occur in

Rk contribute PX,OX(1)(t) to the Hilbert series of Y ′.

Outside of R, we may ignore any monomials lying in

〈T0u, T0v, T0w, T1u, T1v, T1w, T 2
1 〉 since the equations of Y ′ are of the form

T0u+ . . . , T0v + . . . , T0w + . . . , T1u + . . . , T1v + . . . , T1w + . . . and T 2
1 + . . . .

That is, the remaining generators of Sk are of the form T0h1 or T0T1h2 where

h1, h2 ∈ C[x, y, z, T0]. The generators of the form T0h1 contribute

tr

(1− t2a0)(1− ta1)(1− ta2)(1− tr)

to the Hilbert series of Y ′ and the generators of the form T0T1h2 contribute

tr+a0

(1− t2a0)(1− ta1)(1− ta2)(1− tr)
.

By choice of X and D, we also have:

Lemma 4.2.3. ωY ′ = OY ′(−1).

This statement is proven by calculating the adjunction number using the

minimal free resolution of Y ′ or the Hilbert series PY ′,OY ′ (1). As

Y ′ ⊂ P(2a0, a1, . . . , a5, r, r + a0) is well formed, we have

ωY ′ ∼= OY ′

(
kY ′ − 3a0 − 2r −

5∑
i=1

ai

)

for kY ′ the adjunction number. Given our choice of X and D, we know that

kY ′ = deg(T0)− deg(y)− deg(z) +
1

2
deg(x) = r − a0 − a1 − a2 = −1

(see Section 3.2 or Lemma 4.2.2).

To prove Theorem 4.2.1, we would choose a specific X with at worst terminal

singularities which is quasismooth off D and such that the singular locus is a set of

finitely many nodes. In this case, the unprojection map is a morphism between X

and its type II1 unprojection.

Let {1, s0, s1} be the set of generators of HomOX
(ID,OX) as in Section 2.3

or Section 2.3 of [31] (depending on whether we’re performing a type II1
(2,1) or type
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II1
(3,0) unprojection). Let dk be the standard minimal basis defining D. Then, the

unprojection map

ψ : X 99K Y ′

(x, y, z, u, v, w) 7→
(
x, y, z, u, v, w,

s0(dk)

dk
,
s1(dk)

dk

)
factorises as

Z

X Y ′

π
σ

ψ

where σ : Z → X is the blow up of X along E := {d1 = s0(d1) = s1(d1) = 0} ⊂ X

and π : Z → Y ′ is the blow down of σ−1(D). In our constructions it will always be

the case that σ blows up the singular locus of X to rational curves. As the singular

locus consists of finitely many nodes, the nodes are blown up to finitely many rational

curves. These curves are then mapped to a bouquet of rational curves on pT0 by π.

Under the unprojection map, X and Y ′ are isomorphic away from D and a

bouquet of rational curves through pT0 . The existence of this isomorphism will allow

us to prove that Y ′ is quasismooth and has only terminal Q-factorial singularities

by checking X (see Proposition 4.3.4, Corollary 4.3.2, Lemma 4.3.6 and Proposition

4.3.5 for an example). This completes our realisation of a numerical candidate as a

Fano 3-fold.

Remark 4.2.4. Since Y ′ is now known to be a Fano 3-fold, the Hilbert series

PY ′,OY ′ (1) is the Hilbert series PY ′,−KY ′ . Although perhaps unnecessary at this

point, the genus gY ′ and basket BY ′ can be read from the Hilbert series (see proof

of Theorem 3.1, [6]).

Remark 4.2.5. Note that Table A.1 does not provide the specific defining equations

of X since the general X containing D is sufficient. Theorem 4.2.1 and Corollary

4.2.1 can be stated in general terms. Let Y ⊂ P(2a0, a1, . . . , a5, r, r + a0) be a

numerical candidate for a codimension 4 Fano 3-fold marked with a type II1 but no

type I centre. Then:

1. The numerical candidate Y may be realised as a Fano 3-fold. This Fano 3-

fold is constructed as the type II1 unprojection of a codimension 2 complete

intersection X ⊂ P(2a0, a1, . . . , a5) containing D defined in the usual type II1

manner.

2. There are at least 2 formats of (X,D) for which the general X containing D

is quasismooth off D, the singular locus of X consists of finitely many nodes
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and the unprojection is a quasismooth Fano 3-fold.

3. In different formats of (X,D) the initial X have different numbers of nodes

on D; therefore, the unprojected varieties have different Betti numbers.

(Compare with statement of Theorem 3.2 [10]). Although this result is stated in

general terms, it is most quickly proven using computer algebra. In Appendices

B.2 and B.3, we provide the Magma code necessary to construct the general X

containing D and the resulting unprojections.

To prove Corollary 4.2.1, we note that in different unprojection formats the

initial X have different numbers of nodes on D (again, this follows the proof of

Theorem 3.2 [10]). Following Section 2.3 of [7], the diagram which factorises the

unprojection can be extended with a degeneration, X̂  X, from a Fano 3-fold X̂.

We have the following arrangement of varieties

Z

X̂ X Y ′

π
σ

ψ

with the conifold transition X̂ to Z shrinking the vanishing cycles of X̂ to nodes and

then resolving the nodes as rational curves. In this scenario, the Euler characteristic

of Y ′ can be calculated as

e(Y ′) = e(X̂) + 2N − 2

where N is the number of nodes on X (see Section 5 of [36] and Section 2.3 of

[7]). If X is defined by a degree i and a degree j equation, X̂ is a Fano 3-fold in

the same ambient space defined by equations of the same degree. Hence, for fixed

numerical candidate the Euler characteristic of X̂ will be the same in the type II1
(2,1)

unprojection case as it will be in the type II1
(3,0) unprojection case. The proof of

Corollary 4.2.1 reduces to checking that the initial data for the type II1
(2,1) and type

II1
(3,0) unprojections have different numbers of nodes.

4.3 Numerical Candidate # 38

Consider the numerical candidate

PY (t) :=
NY∏9

i=2(1− ti)
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where

NY := 1− 2t12 − t13 − 2t14 − 2t15 − t16 + 2t19 + 2t20 + 3t21

+ 3t22 + 2t23 + 2t24 − t27 − 2t28 − 2t29 − t30 − 2t31 + t43.

This candidate is obtained from the data

gY := −2 and BY :=

{
7× 1

2
(1, 1, 1),

1

3
(1, 1, 2),

1

8
(1, 3, 5)

}
(see numerical candidate # 38 on the GRDB [8]) Using the standard analysis, we

expect to construct this numerical candidate as a codimension 4 Fano 3-fold

Y ⊂ P(2, 3, 4, 5, 6, 7, 8, 9) with numerical data {gY ,BY }. The singularity 1
8(1, 3, 5)

is a type II1 centre.

We prove Theorem 4.2.1 for this numerical candidate and, as a consequence,

we prove the following corollary:

Corollary 4.3.1. There are at least 2 families of codimension 4 Fano 3-folds

Y ⊂ P(2, 3, 4, 5, 6, 7, 8, 9)

with | −KY | = ∅, equivalently with genus −2.

We indulge in proving Theorem 4.2.1 for this special numerical candidate

rather than another candidate due to its empty anticanonical linear system; Y has

no elephant. An elephant of a Fano 3-fold Y is a K3 surface S ∈ | − KY | with

at worst Du Val singularities. Many properties of Y are shared by S since the

elephant is defined by the graded ring R(Y,−KY )/〈f〉 where f ∈ H0(Y,−KY ) is

such that S = {f = 0} ⊂ Y . It is often easier to study the elephant than the

Fano 3-fold itself and hence Fano 3-folds with empty anticanonical linear systems

are in practice very hard to construct. They are also very rare: out of around 50000

numerical candidates, approximately 250 have empty anticanonical linear systems

and very few cases are known explicitly (see Example 16.1, [21]; and Section 5.1,

[33]).

4.3.1 Type II
(2,1)
1 Construction

The first family of Y ⊂ P(2, 3, 4, 5, 6, 7, 8, 9) we construct will be via type II1
(2,1)

unprojections.

Define X12,14 ⊂ P(2, 3, 4, 5, 6, 7)〈x,y,z,u,v,w〉 by the degree 12 and degree 14
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polynomials

f12 := (v(x3 + y2)− uw) + (v2 − xu2) + z3

and

f14 := x(v(x3 + y2)− uw) + x(v2 − xu2) + (w2 − x(x3 + y2)2) + z(x5 + u2 + zv).

Define D ⊂ P(2, 3, 4, 5, 6, 7) by z = 0 together with the 2× 2 minors of(
v w xu x4 + xy2

u x3 + y2 v w

)
.

It is clear that D ⊂ X and (X,D) is in type II1
(2,1) format. We claim that:

Proposition 4.3.1. The type II1 unprojection of (X,D) is a quasismooth

codimension 4 Fano 3-fold in P(2, 3, 4, 5, 6, 7, 8, 9) with numerical data

g = −2 and B =

{
7× 1

2
(1, 1, 1),

1

3
(1, 1, 2),

1

8
(1, 3, 5)

}
.

Before performing our type II1 unprojection, we pointedly study X and D.

Lemma 4.3.1. The basket of X is

BX :=

{
1

5
(1, 2, 3), 2× 1

3
(1, 1, 2), 7× 1

2
(1, 1, 1)

}
.

The quotient singularities of X are calculated as in Section 10.3 of [21]. In

particular, the points pu, py and (0, i, 0, 0, 1, 0) together with

{(1, 0, z, 0, v, 0) : z3 + v2 + v = z2v + v2 + z + v − 1 = 0}

are the cyclic quotient singularities and the variety X has at worst terminal

singularities.

Lemma 4.3.2. We have that Sing(X) ⊂ {z = 0}, or equivalently 〈z〉 ⊂
√
ISing(X).

In particular, we have z10 ∈ ISing(X).

Lemma 4.3.3. We have that Sing(X) ⊂ D.

Proof. We will study p ∈ Sing(X) through a series of case by case analyses and

conclude that p ∈ D.
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Suppose p := (x, y, z, u, v, w) ∈ Sing(X). By Lemma 4.3.2, we may assume

that p ∈ {z = 0}. Let JX(p) be the Jacobian matrix of X evaluated at p. Then,

JX(p)T =



3x2v − u2 −(7x3 + y2)(x3 + y2) + 4x3v − 2xu2 + y2v + v2 − uw
2yv −4x4y − 4xy3 + 2xyv

0 x5 + u2

−2xu− w −2x2u− xw
x3 + y2 + 2v x4 + xy2 + 2xv

−u −xu+ 2w


.

A singularity of X is defined by the 2×2 minors of JX(p). Equivalently, a singularity

is defined by the 2× 2 minors of

M :=



3x2v − u2 −7x6 − 8x3y2 − y4 + x3v − xu2 + y2v + v2 − uw
2yv −4x4y − 4xy3

0 x5 + u2

−2xu− w 0

x3 + y2 + 2v 0

−u 2w


where we have subtracted x copies of column 1 from column 2 in JX(p)T . Let Mij

be the ij-th 2×2 minor of M . Every 2×2 minor of M must vanish on p by definition

of p being a singular point. In particular, we must have that the 2× 2 minor

M36 = u(u2 + x5)

vanishes on p; hence u = 0 or ±u = −x = 1.

• Suppose that u = 0. Then, w = 0 by the vanishing of M46 = −2w2 on p.

Additionally, M23 = 2x5yv must vanish on p and so x = 0, y = 0 or v = 0.

– Suppose that x = 0. Then, on p = (0, y, 0, 0, v, 0) we have that

2y5v = −2vy(−y4 + f12(p)) = −2vy(−y4 + y2v + v2) = M12 = 0

and either v = 0 or y = 0. When combined with the fact that M15 = 0

on p, we obtain the contradiction that p = 0.

– Suppose that x 6= 0 and y = 0. Without loss of generality, let x = 1.

Then, M35 evaluated at p implies that v = −1
2 whilst f12 evaluated at p

implies that v = 0 or v = −1. We have a contradiction.
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– Suppose that x, y 6= 0 and v = 0. Without loss of generality, let x = −1.

Then, on p = (−1, y, 0, 0, 0, 0) we have that M35 = y2 − 1 = 0. Hence,

y = ±1 and p ∈ D.

• Suppose that u = −x = 1. Evaluated on p, the minor M46 = 2w(2− w) must

vanish and hence w = 0 or w = 2.

– Suppose w = 0. Then, M26 = 4y(y2 − 1) = 0 on p.

∗ Suppose y = 0. Then, on p we have that f12 = v2 − v + 1 = 0 and

M16 = v2 − v − 6 = 0. This system of polynomials is insoluble.

∗ Suppose y = ±1. Then, f12 = v2 + 1 on p and hence

p ∈ {(−1, 1, 0, 1,±i, 0), (−1,−1, 0, 1,±i, 0)} ⊂ D.

– Suppose w = 2. Then, on p we have M56 = 4(2v − 1 + y2) = 0 and

hence v = 1−y2
2 . We obtain y4 − 2y2 + 5 = −4f12(p) = 0 and

p ∈ {(−1,±
√

1 + 2i, 0, 1,−i, 2), (−1,±
√

1− 2i, 0, 1, i, 2)} ⊂ D.

• Suppose that u = x = −1. Evaluated on p, the minor M46 = −2w(2 + w)

must vanish and hence w = 0 or w = −2.

– Suppose w = 0. Then, M26 = −4y(y2 − 1) = 0 on p.

∗ Suppose y = 0. Then, on p we have that f12 = v2 − v + 1 = 0 and

M16 = −(v2 − v − 6) = 0. This system of polynomials is insoluble.

∗ Suppose y = ±1. Then, f12 = v2 + 1 on p and hence

p ∈ {(−1, 1, 0,−1,±i, 0), (−1,−1, 0,−1,±i, 0)} ⊂ D.

– Suppose w = −2. Then, on p we have M56 = −4(2v − 1 + y2) = 0

and hence v = 1−y2
2 . We obtain y4 − 2y2 + 5 = −4f12(p) = 0 and

p ∈ {(−1,±
√

1 + 2i, 0,−1,−i,−2), (−1,±
√

1− 2i, 0,−1, i,−2)} ⊂ D.

That is, X is quasismooth off D. The fact that X is quasismooth off D is not

surprising. When applying Bertini’s theorem, we see that the general X containing

D is quasismooth off

D ∪ {pz} ∪ {v = u = z = 0} ∪ {z = x = w = 0}.

By specifying that f12 and f14 contain certain terms, we maintain the generality of

X containing D whilst adjusting quasismoothness to occur off D only. For example,

the general X is quasismooth on pz since we may choose f12 = z3 + . . . and we

specify that f12 contains a z3 term.
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Many of the points highlighted in the proof of Lemma 4.3.3 are equal when

we take into account the group action defining P(2, 3, 4, 5, 6, 7). The singular locus

of X is

{(−1, 1, 0, 0, 0, 0), (−1,−1, 0, 1,±i, 0), (−1, 1, 0, 1,±i, 0),

(−1,±
√

1 + 2i, 0, 1,−i, 2), (−1,±
√

1− 2i, 0, 1, i, 2)}

which consists of exactly 9 distinct points. Moreover:

Lemma 4.3.4. The singular locus of X consists of 9 nodes.

To prove this result we note that it is sufficient to work on D when studying

Sing(X) since X is quasismooth off D. In particular, we will work on im(φ) where

φ : P(1, 3, 5)→ P(2, 3, 4, 5, 6, 7)

φ(a, b, c) := (a2, b, 0, c, ac, a(a6 + b2)).

Recall that in Example 2.7.1, we proved D = im(φ).

Proof. Let J be the Jacobian ideal of X and I ⊂ C[a, b, c] its pullback using φ. By

Lemma 4.3.3, there are exactly 9 singularities of X and Sing(X) ⊂ {x 6= 0}.
Therefore, the dimension of (C[x, y, z, u, v, w]/J)〈x〉 as a C-algebra is at least 9

with equality if and only if each singularity is a node. Since X is quasismooth off

D = im(φ), the singularities of X are nodes if and only if

(C[a, b, c]/I)〈a〉

is 10-dimensional as a C-algebra. The increase in dimension from 9 to 10 is because

the fiber φ−1(p) is a unique point everywhere except p = (−1, 1, 0, 0, 0, 0) ∈ Sing(X)

where p has two pre-images under φ.

The equations of I〈a〉 will be the 2 × 2 minors of the Jacobian matrix of X

evaluated at p := φ(1, b, c), JX(p). We have that

JX(p)T =



−c2 + 3c −b4 − 8b2 − c2 + 3c− 7

2bc −4b3 + 2bc− 4b

0 c2 + 1

−b2 − 2c− 1 −b2 − 2c− 1

b2 + 2c+ 1 b2 + 2c+ 1

−c 2b2 − c+ 2


.
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The 2× 2 minors of this matrix are clearly the 2× 2 minors of
−c2 + 3c −b4 − 8b2 − c2 + 3c− 7

0 c2 + 1

b2 + 2c+ 1 b2 + 2c+ 1

−c 2b2 − c+ 2


and hence I〈a〉 is defined by

2b4 + 4b2c+ 4b2 + 4c+ 2, c3 + c,−b2c2 − 2c3 − b2 − c2

− 2c− 1,−b4c− 2b2c2 − 2b2c− 2c2 − c, b6 + 2b4c+

9b4 + 16b2c+ 15b2 + 14c+ 7,−c4 + 3c3 − c2 + 3c.

After eliminating unnecessary equations, I〈a〉 is defined by

b4 + 2b2c+ 2b2 + 2c+ 1, c3 + c, b2c2 + c2 + b2 + 1.

Hence

(C[a, b, c]/I)〈a〉 ∼= R :=
C[b, c]

〈b4 + 2b2c+ 2b2 + 2c+ 1, c3 + c, b2c2 + c2 + b2 + 1〉
.

We claim thatR is 10-dimensional since S := {1, b, b2, b3, c, bc, b2c, b3c, c2, bc2}
is a basis of R as a C-algebra. As linear independence is clear, we need only show

that S generates R.

It is sufficient to check that S generates bm, bmc and bmc2 for m ∈ N since

we have that c3 = −c on R and thus ck ∈ {±c,±c2} for all k ∈ N+. The set S

generates bm, bmc and bmc2 for m = 1, 2, 3, 4 because

b2c2 = −(c2 + b2 + 1), b3c2 = b(b2c2) = −(bc2 + b3 + b),

b4 = −(2b2c+ 2b2 + 2c+ 1), b4c = −(2b2c2 + 2b2c+ 2c2 + c),

b4c2 = b2(b2c2) = −b2c2 − b4 − b2

and in the remaining cases the monomial is itself an element of S.

Suppose that bm, bmc and bmc2 can be generated by S for a fixed m ∈ N≥4.
Then, bm+1, bm+1c, bm+1c2 can be also be generated by S since

bm+1 = bm−3b4 = −(2bm−1c+ 2bm−1 + 2bm−3c+ bm−3),

bm+1c = bm−3b4c = −(2bm−1c2 + 2bm−1c+ 2bm−3c2 + bm−3c)
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and

bm+1c2 = bm−3b4c2 = bm−3(−b2c2 − b4 − b2) = −bm−1c2 − bm+1 − bm−2.

By induction on m ≥ 4, we have that bm, bmc and bmc2 are generated by S for all

m ∈ N+. Hence, the dimension of R is 10 as required.

We now study the unprojection. Let Y ′ be the type II1
(2,1) unprojection of

(X,D) as defined using the explicit equations of Section 3.1.2. We have that:

Proposition 4.3.2. Y ′ ⊂ P(2, 3, 4, 5, 6, 7, 8, 9)〈x,y,z,u,v,w,T0,T1〉.

Furthermore, Section 4.2.2 tells us that:

Proposition 4.3.3. The Hilbert series of Y ′, PY ′,OY ′ (1)(t), is equal to the numerical

candidate.

It remains to check that Y ′ is a quasismooth Fano 3-fold; however, we may

work on X instead of Y ′. The unprojection map ψ : X 99K Y ′ is a birational map

defined by

ψ : X 99K Y ′

ψ(x, y, z, u, v, w) =

(
x, y, z, u, v, w,

s0(dk)

dk
,
s1(dk)

dk

)
for k = 1, . . . , 5 where {1, s0, s1} are generators of HomOX

(ID,OX) (see Section 2.3)

and

d1 := z, d2 := v(x3 + y2)− uw, d3 := v2 − xu2,

d4 := vw − xu(x3 + y2), d5 := w2 − x(x3 + y2)2

is a basis for ID. In Section 3.2.2 the map ψ was shown to factorise as two blow ups

Z

X Y ′

π
σ

ψ

where σ : Z → X is the blow up of X along E = {z = s0(z) = s1(z) = 0} ⊂ X

and π : Z → Y ′ is the contraction of σ−1(D). Recall that σ blows up the points in

D ∩ {s0(d1) = · · · = s0(d5) = 0} to rational curves (see Proposition 3.3.3). In our

scenario, only the nodes are blown up to rational curves and hence the map σ is a

projective small resolution of nodes which resolves the nodes as rational curves.

Lemma 4.3.5. Let S0 := {s0(d1) = · · · = s0(d5) = 0} ⊂ X. Then, we have that

Sing(X) = D ∩ S0.
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Proof. Using the expressions for s0(dk) given in Section 3.3.2, we have that

s0(d1) = (x3 + y2)2 + (x3 + y2)v + wu

s0(d2) = −u2(z2x− x5 − u2 − zv)− (x3 + y2)2z2

s0(d3) = u2(z2x− x5 − u2 − zv)− z2(uw + v(x3 + y2))

s0(d4) = (u(x3 + y2) + vu)(z2x− x5 − u2 − zv)− z2w(x3 + y2)

s0(d5) = ((x3 + y2)2 + (x3 + y2)v + uw)(z2x− x5 − u2 − zv).

Since D = im(φ) and Sing(X) ⊂ D, we work on p := φ(a, b, c) with

(a, b, c) ∈ P(1, 3, 5). Suppose p is such that c = 0. Then, s0(d2), s0(d3) and s0(d4)

vanish on p and s0(d1) and s0(d5) become

a12 + 2a6b2 + b4 and −a10(a12 + 2a6b2 + b4)

on p respectively. By the explicit singular locus calculated in Lemma 4.3.3, it is

clear that p ∈ S0 ∩D if and only if p ∈ Sing(X).

Suppose p is such that c 6= 0. To check that p ∈ D ∩ S0, it is sufficient to

check that p vanishes on s0(d1) and s0(d2) because

s0(d2) = s0(d3),

cs0(d4) = −(ac+ (a6 + b2))s0(d2)

and

s0(d5) = s0(d1)(−a10 − c2).

If p vanishes on s0(d1) and s0(d2) we must have

(a6 + b2)(a6 + b2 + 2ac) = 0

and

c2(a10 + c2) = 0.

Clearly,

φ({c 6= 0}) ∩D ∩ S0 = {φ(i,±1, 1), φ(i,±1,−1),

φ(i,±
√

(1− 2i), 1), φ(i,±
√

(1 + 2i),−1)} = Sing(X) ∩ φ({c 6= 0}).
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Quasismoothness of Y ′ can then be shown by the quasismoothness of X off

D:

Proposition 4.3.4. The variety Y ′ is quasismooth.

Proof. Let Γ :=
⋃
p∈Sing(X) σ

−1(p). Then, since

Y ′ − {pT0} ∼= Z − σ−1(D) ⊂ Z − Γ ∼= X − Sing(X),

Y ′ is quasismooth off pT0 . The variety Y ′ is also quasismooth at pT0 since the

Jacobian matrix of Y ′ at pT0 has the non-zero 4× 4 minor∣∣∣∣∣∣∣∣∣∣

∂l4
∂v

∂l4
∂w

∂l4
∂z

∂l4
∂x

∂l5
∂v

∂l5
∂w

∂l5
∂z

∂l5
∂x

∂l6
∂v

∂l6
∂w

∂l6
∂z

∂l6
∂x

∂q
∂v

∂q
∂w

∂q
∂z

∂q
∂x

∣∣∣∣∣∣∣∣∣∣
.

Since Y ′ is quasismooth it immediately follows that:

Corollary 4.3.2. The singularities of Y ′ are Q-factorial.

Similarly, Y ′ can be shown to have at worst terminal singularities because X

has at worst terminal singularities:

Lemma 4.3.6. The variety Y ′ consists of only terminal singularities.

Proof. We have that Z consists of only terminal singularities since Γ is smooth and

X − Sing(X) ∼= Z − Γ has only terminal singularities. Therefore, Y ′ − {pT0} ∼=
Z − σ−1(D) has only terminal singularities. All that remains to check is that pT0 is

terminal, but this is clear since

(pT0 ∈ Y ′) ∼=
(

0 ∈ 1

8
(1, 3, 5)

)
.

We can now prove that Y ′ is a Fano 3-fold and hence Y ′ realises our desired

numerical candidate.

Proposition 4.3.5. The variety Y ′ is a Fano 3-fold.
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Proof. As Y ′ has terminal Q-factorial singularities, we need only show that the

dualizing sheaf of Y ′ is such that ωY ′ = OY ′(−1). As Y ′ is well formed, the dualizing

sheaf of Y ′ is

ωY ′ = ωP7 ⊗OY ′(k) = OY ′

(
k −

9∑
i=2

i

)
where k is the adjunction number. By Section 3.2, k = 43 and we have our desired

result.

Remark 4.3.1. The numerical data of Y ′ matches the data of our numerical

candidate. The Hilbert series PY ′,OY ′ (1) is also equal to PY ′,−KY ′ since Y ′ is a Fano

3-fold.

4.3.2 Type II
(3,0)
1 Construction

The second family of Fano 3-folds Y ⊂ P(2, 3, 4, 5, 6, 7, 8, 9) is constructed using type

II1
(3,0) unprojections. A construction of this kind which uses different initial data

can be found in Section 5.1 of [33] and Example 9.14 of [39]; however, we complete

the unprojection and check that it is a Fano 3-fold.

Define X12,14 ⊂ P(2, 3, 4, 5, 6, 7)〈x,y,z,u,v,w〉 by the degree 12 and 14

polynomials

f12 := y(yv − zu) + x(yw − z(x3 + y2)) + z(z2 − xy2) + (v2 − xu2)

and

f14 := u(yv − zu) + z(yw − z(x3 + y2))

+ (v + y2)(z2 − xy2) + (w2 − x(x3 + y2)2) + x(uw − v(x3 + y2)).

Define D ⊂ X by the 2× 2 minors of

M :=

(
z v w xy xu x4 + xy2

y u x3 + y2 z v w

)
.

For ease of notation later on in this section, we define {d1, . . . , d9}, a basis of ID,

where

d1 := zu− yv, d2 := z(x3 + y2)− yw, d3 := v(x3 + y2)− uw,
d4 := z2 − xy2, d5 := zv − xyu, d6 := zw − xy(x3 + y2),

d7 := v2 − xu2, d8 := vw − xu(x3 + y2), d9 := w2 − x(x3 + y2)2.
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We claim that:

Proposition 4.3.6. The type II1 unprojection of (X,D) is a quasismooth

codimension 4 Fano 3-fold in P(2, 3, 4, 5, 6, 7, 8, 9) with numerical data g = −2 and

B = {7× 1
2(1, 1, 1), 13(1, 1, 2), 18(1, 3, 5)}.

As in Section 4.3.1:

Lemma 4.3.7. The variety X has genus gX = −2 and basket of terminal cyclic

quotient singularities BX = {15(1, 2, 3), 2× 1
3(1, 1, 2), 7× 1

2(1, 1, 1)}.

Lemma 4.3.8. We have that X is quasismooth off D

However:

Lemma 4.3.9. The singular locus of X consists of exactly 10 points.

To prove this result, we recall Example 2.7.2 where we showed that

D = im(φ) for

φ : P(1, 3, 5)→ P(2, 3, 4, 5, 6, 7)

φ(a, b, c) := (x := a2, y := b, z := ab, u := c, v := ac, w := a7 + ab2).

Proof. Since X is quasismooth off D = im(φ), it is sufficient to work on

(a, b, c) ∈ P(1, 3, 5) when investigating the singular locus of X.

Let p = φ(a, b, c) be a singularity of X. The Jacobian matrix of X evaluated

at p, JX(p), is such that

JX(p)T =



−3a7b− ab3 − c2 −7a12 − 11a6b2 − 2b4 − 3a7c− ab2c
a9 − 3a3b2 + abc −3a8b− 7a2b3 − 4a3bc+ ac2

−a8 + a2b2 − bc −a7b+ ab3 + 2a2bc− c2

−ab2 − 2a2c a9 + a3b2 − abc
b2 + 2ac −a8 − a2b2 + bc

a2b 2a7 + 3ab2 + a2c


.

If p = φ(0, b, c), we have that

JX(p) =

(
−c2 0 −bc 0 b2 0

−2b4 0 −c2 0 bc 0

)
.

It is clear from the 2 × 2 minors of JX(p) that p is a singularity of X if and only

if (0, b, c) = (0, 1, ε) for some ε3 = 2. Note that even though there are 3 distinct
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choices for ε, the group action of P(1, 3, 5) is such {(0, 1, ε) : ε3 = 2} is a single point.

That is, X has a single singularity on φ({a = 0}).
Let a 6= 0 and without loss of generality set a = 1. Then, p is defined by the

2× 2 minors of

JX(p)T =



−b3 − c2 − 3b −2b4 − b2c− 11b2 − 3c− 7

−3b2 + bc+ 1 −7b3 − 4bc+ c2 − 3b

b2 − bc− 1 b3 + 2bc− c2 − b
−b2 − 2c b2 − bc+ 1

b2 + 2c −b2 + bc− 1

b 3b2 + c+ 2


.

Equivalently p is defined by the 2× 2 minors of

−c2 b4 − 1

1 2b3 − 3b2c− bc+ 3b− 2c

−1 −2b3 + 3b2c+ bc− 3b+ 2c

−2c 3b3 + b2 + 2b+ 1

2c −3b3 − b2 − 2b− 1

b 3b2 + c+ 2


where, in the previous matrix, we have used row 6 to eliminate all b terms in column

1. Using row 2 to eliminate as many terms as possible from column 1, we have that

p is defined by the 2× 2 minors of

0 2b3c2 − 3b2c3 + b4 − bc3 + 3bc2 − 2c3 − 1

1 2b3 − 3b2c− bc+ 3b− 2c

0 0

0 4b3c− 6b2c2 + 3b3 − 2bc2 + b2 + 6bc− 4c2 + 2b+ 1

0 −4b3c+ 6b2c2 − 3b3 + 2bc2 − b2 − 6bc+ 4c2 − 2b− 1

0 −2b4 + 3b3c+ b2c+ 2bc+ c+ 2


.

That is, the singular locus of X on {a 6= 0} is defined by

g1 := −4b3c+ 6b2c2 − 3b3 + 2bc2 − b2 − 6bc+ 4c2 − 2b− 1

and

g2 := 2b4 − 3b3c− b2c− 2bc− c− 2;

we ignore the minor 2b3c2− 3b2c3 + b4− bc3 + 3bc2− 2c3− 1 since it is generated by
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g1 and g2.

As g1 = g2 = bc = 0 is insoluble, it is clear that p is a singularity if and

only if b 6= 0 and c 6= 0. It is less clear that p is a singularity if and only if

(1 + 2b+ b2 + 3b3) 6= 0; however, 1 + 2b+ b2 + 3b3 = g2 = 0 is an insoluble system

of polynomials in C[b]. By rearranging g2 we have that

c =
2b4 − 2

1 + 2b+ b2 + 3b3

and by substituting this value of c into g1 we have that

−27b9 − 63b8 − 83b7 − 112b6 − 80b5 − 31b4 − 9b3 + 33b2 + 14b+ 15 = 0. (4.1)

As (4.1) has 9 distinct solutions, we count 9 distinct singularities on φ({a 6= 0}).

We claim that these 10 singularities are in fact 10 nodes. The singularity

p = (0, 1, 0, ε, 0, 0) where ε3 = 2 can easily be seen to be a node since it is locally

the intersection of 2 lines: working locally on U , the neighbourhood of p where

y 6= 0, the lines L1, L2 ⊂ U defined by x = z = 0 and v = u − ε = 0 are such that

{p} = L1 ∩ L2.

The remaining singularities can be shown to be nodes in one fell swoop:

Lemma 4.3.10. The singular locus of X consists of 10 nodes.

Proof. By Lemma 4.3.9, there are exactly 10 singularities in X: a singularity on

{x = 0} and 9 singularities on {x 6= 0}. The singularity of X on {x = 0} is already

known to be a node and therefore it is sufficient to check the remaining 9 singularities

of X.

Let J be the Jacobian ideal of X and I its pullback using φ. Then, the

dimension of (C[x, y, z, u, v, w]/J)〈x〉 as a C-algebra is at least 9 with equality if and

only if the singularities are all nodes. Let

g1 := −4b3c+ 6b2c2 − 3b3 + 2bc2 − b2 − 6bc+ 4c2 − 2b− 1

and

g2 := 2b4 − 3b3c− b2c− 2bc− c− 2.

Then, equivalently the singularities of X are nodes if and only

R := (C[a, b, c]/I)〈a〉 ∼=
C[b, c]

〈g1, g2〉
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is 9-dimensional (see the proof of Lemma 4.3.9).

We claim that S := {1, b, c, b2, bc, c2, b3, b2c, bc2} generates R and hence R is

9-dimensional. Since it is clear that S is linearly independent, we need only check

that S is a generating set. We claim that any monomial bmcn where m,n ∈ N and

m+ n ≤ 4 is generated by S. The set S contains all elements bmcn with m+ n ≤ 3

except c3; however, c3 is generated by S as

18c3 = −17b3 − 12b2c+ 30bc2 − 7b2 − 30bc− 4c2 − 2b− 8c− 9+

(6b2 − 9bc− 2b− 9)g1 + (12bc− 18c2 + 9b− 4c)g2.

Similarly, we have bncm generated by S for m+ n = 4 since

54b2c2 = 19b3 − 60b2c− 18bc2 − 7b2 + 30bc− 52c2+

10b− 44c− 15− (8b− 9)g1 − (16c+ 12)g2,

9b3c = −2b3 − 15b2c − 4b2 − 6bc − 4c2 − 2b − 11c − 6 − 2bg1 − (4c + 3)g2,

3b4 = −b3 − 6b2c− 2b2 − 2c2 − b− 4c− bg1 − 2cg2,

162bc3 = 107b3 − 84b2c− 126bc2 + 97b2 + 150bc− 110c2+

44b+ 116c− 3 + (54b3 − 81b2c− 18b2 − 46b+ 45)g1+

(108b2c− 162bc2 + 81b2 − 36bc+ 70c− 24)g2

and

486c4 = 523b3 + 516b2c− 1332bc2 − 108c3 + 731b2+

822bc− 250c2 + 262b+ 1162c+ 381 + (270b3 − 243b2c−

243bc2 − 90b2 − 54bc− 80b− 243c+ 171)g1 + (540b2c−

486bc2 − 486c3 + 405b2 + 63bc− 108c2 + 650c+ 105)g2;

we used the computer algebra software Magma to obtain these expressions (see [5]).

Fix k ∈ N such that k ≥ 4 and suppose that S generates bmcn for all m + n < k.

Then, as
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486ck = 486ck−4c4 = (523b3ck−4 + 516b2ck−3 − 1332bck−2 − 108ck−1+

731b2ck−4 + 822bck−3 − 250ck−2 + 262bck−4 + 1162ck−3 + 381ck−4),

9bk−1c = 9bk−4b3c = −2bk−1 − 15bk−2c− 4bk−2

− 6bk−3c− 4bk−4c2 − 2bk−3 − 11bk−4c− 6bk−4,

54bk−2c2 = 54bk−4b2c2 = 19bk−1 − 60bk−2c− 18bk−3c2

− 7bk−2 + 30bk−3c− 52bk−4c2 + 10bk−3 − 44bk−4c− 15bk−4

and

162bk−3c3 = 162bk−4bc3 = 107bk−1 − 84bk−2c− 126bk−3c2 + 97bk−2+

150bk−3c− 110bk−4c2 + 44bk−3 + 116bk−4c− 3bk−4.

If m ≥ 4, then

3bmck−m = 3bm−4ck−mb4 = −bm−1ck−m − 6bm−2ck−m+1−

2bm−2ck−m − 2bm−4ck−m+2 − bm−3ck−m − 4bm−4ck−m+1.

Hence, we have that S generates bmcn for m+ n = k. Our desired result follows by

induction.

Let Y ′ be the type II1
(3,0) unprojection of (X,D) defined by the explicit

equations of [33]. Then:

Proposition 4.3.7. The unprojection Y ′ is such that

Y ′ ⊂ P(2, 3, 4, 5, 6, 7, 8, 9)〈x,y,z,u,v,w,T0,T1〉.

Proposition 4.3.8. Let PY ′,OY ′ (1)(t) be the Hilbert series of Y ′ with respect to

OY ′(1). Then, PY ′(t) is equal to our numerical candidate.

Proposition 4.3.7 is proven immediately by definition of the type II1
(3,0)

unprojection; Proposition 4.3.8 is proven immediately by applying Lemma 4.2.2.
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Let {1, s0, s1} be the generators of HomOX
(ID,OX) as in Section 2.2 of [31]

or equivalently as in Remark 3.3.5. The unprojection map

ψ : X 99K Y

(x, y, z, u, v, w) 7→
(
x, y, z, u, v, w,

s0(dk)

dk
,
s1(dk)

dk

)
factorises as

Z

X Y

π
σ

ψ

where σ : Z → X is the blow up of X along E := {d1 = s0(d1) = s1(d1) = 0} ⊂ X

and π : Z → Y is the blow down of σ−1(D) (see Section 3.3). Define the subvariety

S0 := {s0(d1) = · · · = s0(d9) = 0} ⊂ X. Under σ, the fibers of p ∈ D∩S0 are rational

curves and the fibers of p /∈ D ∩ S0 are a point. We claim that D ∩ S0 = Sing(X),

i.e. σ blows up only the nodes of X.

We start with the more palatable inclusion:

Lemma 4.3.11. We have that D ∩ S0 ⊂ Sing(X).

Proof. As X is quasismooth off D = im(φ), it is sufficient to only consider points

p := φ(a, b, c) ∈ D ∩ S0.
Let a = 0. It is straightforward to show that the equations s0(dk) vanish

identically on p for k = 1, 4, 5, 6, 7, 8, 9. For s0(d2) and s0(d3) to vanish on p, we

must have

2b6 − bc3 = 0

and

2b5c− c4 = 0.

That is, p = (0, 1, 0, ε, 0, 0) where ε3 = 0 and p is a known singular point of X.

Let a 6= 0 and without loss of generality set a = 1. If b = 0, then the

vanishing of s0(d2) and s0(d3) at p means that c2 + 2c = −c4 + 1 = 0. This is

insoluble so no such p exists. Similarly if c = 0, then the vanishing of s0(d2) and

s0(d3) at p means that 2b6 + b5 + 2b4 + b3 + b2 = −b6 − b4 + b2 + 1 = 0. This

is another insoluble set of polynomials so no such p exists. Hence, p is such that

b, c 6= 0. Recall that p is a singular point of X if and only if

g1 := −4b3c+ 6b2c2 − 3b3 + 2bc2 − b2 − 6bc+ 4c2 − 2b− 1,
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g2 := 2b4 − 3b3c− b2c− 2bc− c− 2

vanish on p (see Lemma 4.3.9). As

b2g1 + 2bcg2 = −s0(d4)(p)

and

cg2 = −s0(d7)(p),

we must have p ∈ Sing(X).

The proof that every singularity of X lies in D ∩ S0 follows similarly:

Lemma 4.3.12. We have that Sing(X) ⊂ D ∩ S0.

Proof. As X is quasismooth off D = im(φ), it is sufficient to only consider points

p := φ(a, b, c) ∈ Sing(X). Suppose that a = 0. Then,

D ∩ S0 ∩ φ({a = 0}) = Sing(X) ∩ φ({a = 0})

(see proof of Lemma 4.3.11). Suppose that a 6= 0 and without loss of generality set

a = 1. The singularities of X are points φ(1, b, c) which satisfy

g1 := −4b3c+ 6b2c2 − 3b3 + 2bc2 − b2 − 6bc+ 4c2 − 2b− 1

and

g2 := 2b4 − 3b3c− b2c− 2bc− c− 2.

When evaluated on p, s0(dk) for k = 1, . . . , 9 simplify to

−1

2
bcg1 −

(
c2 − 1

2
b

)
g2,

b

(
−b2 +

1

2
bc

)
g1 +

(
−2b2c+ bc2 − 1

2
b2 − c

)
g2,

1

2

(
c(−b2 + bc+ 1)g1 + (−2bc2 + 2c3 − b2 − bc− 1)g2

)
,

−b2g1 − 2bcg2,

−1

2
bcg1 −

(
c2 +

1

2
b

)
g2,

−1

2

(
b(bc+ 2)g1 + (2bc2 − b2 + 2c)g2

)
,
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−cg2,
1

2

(
c(b2 − bc− 1)g1 + (2bc2 − 2c3 − b2 + bc− 1)g2

)
and

−1

2

(
(b3c+ b2c+ c)g1 + (2b2c2 − b3 + 2bc2 − b2 − 2bc− 1)g2

)
respectively. Hence Sing(X) ⊂ D ∩ S0.

The following results about the singularities of Y ′ now follow immediately

(see their counterparts in Section 4.3.1 for a proof).

Proposition 4.3.9. The variety Y ′ is quasismooth.

Lemma 4.3.13. The singularities of Y ′ are Q-factorial.

Lemma 4.3.14. The singularities of Y ′ are terminal cyclic quotient singularities.

Proposition 4.3.10. The variety Y ′ is a Fano 3-fold.

4.4 Proof of Corollary 4.2.1

Corollary 4.2.1 claims that the codimension 4 Fano 3-folds constructed in Sections

4.3.1 and 4.3.2 belong to topologically distinct families. To prove this, we recall our

the sketch proof provided in Section 4.2.2.

Let Y ′ ⊂ P(2, 3, 4, 5, 6, 7, 8, 9) be the type II1 unprojection of (X,D) as in

Section 4.3.1 or Section 4.3.2. In both cases, X has only ordinary nodes as

singularities and it is possible to extend the diagram displaying the factorisation of

the unprojection map to

Z

X̂ X Y ′

π
σ

ψ

where X̂  X is a degeneration from a Fano 3-fold to X. The Euler characteristic

of Y ′ is such that

e(Y ′) = e(X̂) + 2N − 2

where N is the number of nodes on X (see Section 5 of [36] and Section 2.3 of [7]).

Regardless of whether Y ′ is defined as in Section 4.3.1 or Section 4.3.2, we

have e(X̂) = −32: X̂ ⊂ P(2, 3, 4, 5, 6, 7) is a Fano 3-fold defined by a degree 12 and a
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degree 14 polynomial. The Euler characteristic of X̂ is then provided by Appendix

A.3 of [7].

To show that Sections 4.3.1 and 4.3.2 construct 2 distinct topological families

of Fano 3-folds amounts to showing that our 2 sets of initial data have different

numbers of nodes. This is immediate by Lemmas 4.3.4 and 4.3.10:

Proposition 4.4.1. The Euler characteristic of Y ′ defined as in Section 4.3.1 is -16.

When Y ′ is defined as in Section 4.3.2, the Euler characteristic of Y ′ is -14.
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Chapter 5

The Future

In this chapter we discuss topics of future research inspired by the content of this

thesis. At present, the topics presented are at differing levels of completion.

5.1 Candidates with Type I Centres

There exist 34 codimension 4 numerical candidates marked with both a type I and a

type II1 centre. Thus far, and for the sake of realising new families of Fano 3-folds,

we have ignored these candidates since they have already been realised using type

I unprojections (see [10], Theorem 3.2). However, we may still desire to construct

these Fano 3-folds by type II1 unprojections. We have the following result:

Theorem 5.1.1. Let Y ⊂ P(2a0, a1, . . . , a7) be a codimension 4 numerical

candidate marked with a type II1 centre. The numerical candidate Y can be

realised as a quasismooth codimension 4 Fano 3-fold and constructed as the type

II1
(2,1) unprojection of (X,D) where X ⊂ P(2a0, a1, . . . , a5) is a codimension 2

variety.

The proof of this Theorem follows that of Theorem 4.2.1 and uses the

constructions provided in Table A.1 of Appendix A. We elaborate on some of the

subtleties hidden in this result.

5.1.1 Failure of Standard Type II1
(3,0)

Recall Theorem 4.2.1: if a codimension 4 numerical candidate Y is marked with a

type II1 centre but no type I centre, Y can be realised as a Fano 3-fold using type

II1
(2,1) and type II1

(3,0) unprojections. Given the statement of Theorem 5.1.1, it is

natural to wonder why we make no comment on the type II1
(3,0) unprojection
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construction. For each codimension 4 numerical candidate marked with a type II1

centre, it is always possible to construct a family using type II1
(2,1) unprojections.

We are currently unable to extend this statement to construct a family using type

II1
(3,0) unprojections. Indeed, a number of numerical candidates fail to be

constructed using our standard type II1
(3,0) unprojection model.

Consider a codimension 4 numerical candidate marked with both a type I

and a type II1 centre, Y ⊂ P(2a0, a1, . . . , a7). The standard model for constructing

Y via a type II1
(3,0) unprojection uses the initial data (X,D) with

X ⊂ P(2a0, a1, . . . , a5)〈x,y,z,u,v,w〉, a codimension 2 complete intersection,

containing D where D is defined by the 2× 2 minors of

M :=

(
u v w xp1 xp2 xp3

p1 p2 p3 u v w

)

with p1, p2, p3 ∈ C[x, y, z] (see Section 4.2.2). Under this model, there exist 14

codimension 4 numerical candidates which fail to construct a quasismooth Fano

3-fold unprojection. In each case, X is not quasismooth off D and thus the

unprojection is singular.

Table 5.1: Standard Type II1
(3,0) Unprojection Model Failures

GRDB ID Numerical Candidate Centre Standard X

1082 Y ⊂ P(1, 2, 5, 6, 7, 9, 11, 13) 1
6(1, 1, 5) X18,22 ⊂ P(1, 2, 5, 9, 11, 13)

1167 Y ⊂ P(1, 2, 3, 4, 5, 7, 9, 11) 1
4(1, 1, 3) X14,18 ⊂ P(1, 2, 3, 7, 9, 11)

1181 Y ⊂ P(1, 2, 3, 4, 5, 5, 7, 12) 1
4(1, 1, 3) X14,15 ⊂ P(1, 2, 3, 5, 7, 12)

1182 Y ⊂ P(1, 2, 3, 4, 5, 5, 7, 9) 1
4(1, 1, 3) X12,14 ⊂ P(1, 2, 3, 5, 7, 9)

1183 Y ⊂ P(1, 2, 3, 4, 5, 5, 7, 7) 1
4(1, 1, 3) X10,14 ⊂ P(1, 2, 3, 5, 7, 7)

4938 Y ⊂ P(1, 1, 3, 4, 5, 5, 6, 11) 1
3(1, 1, 2) X12,15 ⊂ P(1, 1, 4, 5, 6, 11)

5841 Y ⊂ P(1, 1, 2, 2, 3, 5, 7, 9) 1
2(1, 1, 1) X10,14 ⊂ P(1, 1, 2, 5, 7, 9)

5845 Y ⊂ P(1, 1, 2, 2, 3, 4, 5, 6) 1
2(1, 1, 1) X8,10 ⊂ P(1, 1, 2, 4, 5, 6)

5859 Y ⊂ P(1, 1, 2, 2, 3, 3, 5, 8) 1
2(1, 1, 1) X9,10 ⊂ P(1, 1, 2, 3, 5, 8)

5860 Y ⊂ P(1, 1, 2, 2, 3, 3, 5, 7) 1
2(1, 1, 1) X8,10 ⊂ P(1, 1, 2, 3, 5, 7)

5862 Y ⊂ P(1, 1, 2, 2, 3, 3, 5, 5) 1
2(1, 1, 1) X6,10 ⊂ P(1, 1, 2, 3, 5, 5)

5866 Y ⊂ P(1, 1, 2, 2, 3, 3, 4, 7) 1
2(1, 1, 1) X8,9 ⊂ P(1, 1, 2, 3, 4, 7)

5867 Y ⊂ P(1, 1, 2, 2, 3, 3, 4, 5) 1
2(1, 1, 1) X6,9 ⊂ P(1, 1, 2, 3, 4, 5)

5963 Y ⊂ P(1, 1, 2, 2, 3, 3, 3, 5) 1
2(1, 1, 1) X6,8 ⊂ P(1, 1, 2, 3, 3, 5)
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Example 5.1.1. The numerical candidate Y ⊂ P(1, 2, 5, 6, 7, 9, 11, 13) is produced

by the data

gY := −1 and BY :=

{
1

6
(1, 1, 5),

1

13
(1, 2, 11)

}
.

The singularities 1
13(1, 2, 11) and 1

6(1, 1, 5) are the type I and type II1 centres

respectively. To construct Y using the standard type II1
(3,0) unprojection model,

our initial data (X,D) would be a codimension 2 complete intersection

X18,22 ⊂ P(1, 2, 5, 9, 11, 13) and an irreducible surface D where D is defined by the

2× 2 minors of

M :=

(
u v w yp1 yp2 yp3

p1 p2 p3 u v w

)
with p1, p2, p3 ∈ C[x, y, z] (see Section 4.2.2. We claim that the point pw is a

singularity off D for all X containing D. As w is degree 13 and w2 − yp23 ∈ ID, it is

clear that pw ∈ X −D. Furthermore,

f18,
∂f18
∂x

, ...,
∂f18
∂w

∈ C[x, y, z, u, v]

and therefore the rank of the Jacobian matrix of X evaluated at pw is at most 1.

That is, pw lies in Sing(X). The unprojection

Y ′ ⊂ P(1, 2, 5, 6, 7, 9, 11, 13)〈x,y,z,u,T0,T1,v,w〉 of (X,D) is singular since X is

isomorphic to Y ′ away from D and a bouquet of rational curves (see Section 3.3).

In particular, we can check that (0, 0, 0, 0, 0, 0, 0, 1) ∈ Sing(Y ′) by calculating the

Jacobian matrix of Y ′.

Example 5.1.1 only proves that Y cannot be constructed by the standard type

II1
(3,0) unprojection. It is possible that “non-standard” type II1

(3,0) unprojections or

undiscovered type II1 unprojections are successful in constructing a second family.

We ask:

Question. For the 14 numerical candidates of Table 5.1, is there a constructible

family of Fano 3-folds using type II1
(3,0) unprojections?

Question. For the 14 numerical candidates of Table 5.1, is there a second family

of Fano 3-folds constructible by type II1 unprojections?

5.1.2 Tom and Jerry Correspondence

Let Y be a codimension 4 numerical candidate marked with both a type I and

type II1 centre. It is known that Y can be realised as a Fano 3-fold using type I
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unprojections and type II1 unprojections (see [10] and Theorem 5.1.1). However,

type I and type II1 unprojections provide two distinct methods of constructing Y

as a Fano 3-fold. We ask the following question:

Question. Is there a correspondence between the Fano 3-folds constructed by

type II1 and the type I unprojections?

More generally, we could ask the related question:

Question. Is there a correspondence between the rings constructed by type II1

and the type I unprojections?

Proposition 3.1.1 showed that, broadly speaking, type II1
(2,1) unprojections

correspond to type I unprojections in Tom format. That is, for

Oamb = Z[x1, x2, y1, y2, z, A12, B11, B12, B22, C,A12, B11, B12, B22, C, w],

ID ⊂ Oamb the ideal generated by the 2× 2 minors of

M :=

(
y1 y2 zx1 zx2

x1 x2 y1 y2

)

together with w = 0, and IX = 〈f, f〉 ⊂ Oamb the codimension 2 ideal defined by

f := A12(y1x2 − x1y2) +B11(y
2
1 − zx21) + 2B12(y1y2 − zx1x2) +B22(y

2
2 − zx22) +Cw

and

f := A12(y1x2− x1y2) +B11(y
2
1 − zx21) + 2B12(y1y2− zx1x2) +B22(y

2
2 − zx22) +Cw,

the type II1
(2,1) unprojection ring OX [I−1D ] is a generic type I unprojection ring.

Remark 5.1.1. Note that we need various primality, homogeneity and positively

graded properties but have dropped them here for simplicity of expression.

Unfortunately, we do not possess a similar statement for type II1
(3,0)

unprojection rings. Furthermore, Proposition 3.1.1 relies on everything in sight

being an indeterminate and hence does not always translate directly to specific

cases involving Fano 3-folds (see Section 3.1.3, Remark 3.1.8).

Nevertheless, a correspondence between Fano 3-folds constructed by type I

and type II1 unprojections can often be found in practice.
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Consider the data

gY := −1 and BY :=

{
2× 1

2
(1, 1, 1), 2× 1

4
(1, 1, 3),

1

7
(1, 2, 5)

}
and the codimension 4 numerical candidate Y ⊂ P(1, 2, 3, 4, 4, 5, 5, 7) (see GRDB

ID # 1253). Since Y is marked with a type II1 centre 1
4(1, 1, 3), Theorem 5.1.1 tells

us that we are able realise the candidate as a quasismooth codimension 4 Fano

3-fold via type II1 unprojections. In fact, we can construct three topologically

distinct families as type II1 unprojections from X10,11 ⊂ P(1, 2, 3, 4, 5, 7) (see Table

A.1). We will show that these families can also be constructed as type I

unprojections of (Z,E) where Z8,9,9,10,10 ⊂ P(1, 2, 3, 4, 4, 5, 5) is defined by the

Pfaffians of a 5× 5 antisymmetric matrix in Tom1, Tom5 and Jer13 format matrix

with respect to E ∼= P(1, 2, 5). These are the families constructed by [10].

Remark 5.1.2. (Definition 2.2, [10]) Tomi and Jerij are matrix formats that specify

type I unprojection data, that is a codimension 3 ideal IZ defined by the maximal

Pfaffians of a 5×5 antisymmetric matrix and a codimension 4 complete intersection

ideal IE ⊃ IZ . We have that Tomi is defined by a matrix P = (pjk) where pjk ∈ IE
for all j, k 6= i. A matrix P = (pjk) is in Jerij format if pkl ∈ IE whenever k or l

equals i or j. The equations of the unprojection in these cases are described in [29].

Remark 5.1.3. Note that in the following examples we work with the general X

containing D. However, for each example there exists a specific case with our desired

properties:

1. X10,11 ⊂ P(1, 2, 3, 4, 5, 7) is a codimension 2 complete intersection which is

quasismooth off D ⊂ X and such that Sing(X) is a set of finitely many nodes;

2. Z8,9,9,10,10 ⊂ P(1, 2, 3, 4, 4, 5, 5) is a codimension 3 variety which is quasismooth

off some E := P(1, 2, 5) ⊂ Z and such that Sing(Z) is a set of finitely many

nodes; and

3. in both cases the unprojection is a quasismooth Fano 3-fold that realises our

desired numerical candidate.

Remark 5.1.4. We provide unprojection data (X,D) and (Z,E). It is

straightforward to prove that the unprojections are equal by using the explicit

equations of the unprojections.

The First “Tom” Family. This construction is one of many cases where we are

able to apply Proposition 3.1.1 directly. Suppose that
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X10,11 ⊂ P(1, 2, 3, 4, 5, 7)〈x,y,z,u,v,w〉 is a codimension 2 complete intersection

containing the irreducible surface D where D is defined by w = 0 together with the

2× 2 minors of (
u v yz y3 + yx4

z y2 + x4 u v

)
.

Since D ⊂ X, we write IX = 〈f, f〉 with

f := B11(u
2 − yz2) + 2B12(uv − yz(y2 + x4))

+B22(v
2 − y(y2 + x4)2) +A12(u(y2 + x4)− vz) + Cw,

of degree 10 and

f := B11(u
2 − yz2) + 2B12(uv − yz(y2 + x4))

+B22(v
2 − y(y2 + x4)2) +A12(u(y2 + x4)− vz) + Cw,

of degree 11, where A12, A12, Bij , Bij , C, C ∈ C[x, y, z, u, v] are some polynomials of

the appropriate degree. Let Y ′ ⊂ P(1, 2, 3, 4, 4, 5, 5, 7) be the type II1
(2,1)

unprojection of (X,D) defined as in Section 3.1.2. We may apply Proposition 3.1.1

since A12, A12, Bij , Bij , C, C do not contain any terms in 〈w〉; therefore, the

equations q, l1, l2, l4, l5 are the Pfaffians of the 5 × 5 matrix in Proposition 3.1.1

which defines a variety Z ⊂ P(1, 2, 3, 4, 4, 5, 5)〈x,y,z,u,T0,v,T1〉 containing

E := {T0 = T1 = C = C = 0} in Tom1 format. We verify that the unprojection of

(X,D) equals the unprojection of (Z,E) by constructing the latter and comparing

equations.

Remark 5.1.5. Proposition 3.1.1 can be applied to a number of the type II1
(2,1)

unprojection constructions of Table A.1. In these cases, the Fano 3-folds constructed

by the type II1
(2,1) unprojection can easily be written as “Tom” type I unprojections.

The Second “Tom” Family. In this construction we are unable to apply

Proposition 3.1.1 since the linear equation of the type II1 divisor cannot be the

indeterminate introduced via the type I unprojection. Suppose that

X10,11 ⊂ P(1, 2, 3, 4, 5, 7)〈x,y,z,u,v,w〉 is a codimension 2 complete intersection

containing the irreducible surface D defined by v = 0 together with the 2 × 2

minors of the matrix(
u w yz y(x6 + y3 + z2)

z y3 + x6 + z2 u w

)
.
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Then, without loss of generality, we may assume thatX is defined by the polynomials

f := B11(u
2 − yz2) +A12(u(y3 + z2 + x6)− wz) + Cv

of degree 10 and

f := B11(u
2−yz2)+2B12(uw−(y3+x6+z2)yz)+A12(u(y3+z2+x6)−wz)+Cv

of degree 11, where A12, A12, B11, B11, B12, C, C ∈ C[x, y, z, u, v] are some

polynomials of the appropriate degree. Let Y ′ be the type II1
(2,1) unprojection of

(X,D) defined by 〈f, f , l1, . . . , l6, q〉 as in Section 3.1.2. Since

A12, A12, B11, B11, B12, C, C ∈ C[x, y, z, u, v],

we may check that l1, l3, l4, l6, q ∈ C[x, y, z, u, v, T0, T1]∩〈z, u, T0, T1〉. Hence, we may

define a codimension 3 variety Z ⊂ P(1, 2, 3, 4, 4, 5, 5)〈x,y,z,u,T0,v,T1〉 by l1, l3, l4, l6, q

which contains E := {z = u = T0 = T1 = 0}. More visually, Z is defined by the

maximal Pfaffians of the 5× 5 antisymmetric matrix
0 z 0 u v

0 T0 0 T1

0 T1 −zB11

−Sym 0 −yT0 +A12C

0

 ;

note that we have scaled f and f so that 2B12 = A12 = 1. This matrix is in Tom5

format with respect to 〈z, u, T0, T1〉. We verify that the unprojection of (X,D) equals

the unprojection of (Z,E) by constructing the latter and comparing equations.

The “Jerry” Family. Let X10,11 ⊂ P(1, 2, 3, 4, 5, 7)〈x,y,z,u,v,w〉 be a codimension 2

complete intersection which contains D, the irreducible surface defined by the 2× 2

minors of (
u v w yz y3 yx6

z y2 x6 u v w

)
.

Without loss of generality, we write IX = 〈f, f〉 where

f := B11(u
2−yz2)+2B12(uv−y3z)+B22(v

2−y5)+A12(vz−uy2)+A13(wz−ux6)
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is a polynomial of degree 10,

f := B11(u
2 − yz2) + 2B12(uv − y3z) +B22(v

2 − y5) + 2B13(uw − yzx6)

+A12(vz − uy2) +A13(wz − ux6) +A23(y
2w − x6v)

is a polynomial of degree 11 and Aij , Bij , Aij , Bij ∈ C[x, y, z, u, v, w] are some

polynomials of the appropriate degree. Note that for X to be quasismooth off D

we require B22, B13 6= 0; hence, we set B22 = B13 = 1. Let Y ′ be the unprojection

of (X,D) defined by 〈f, f , l1, . . . , l6, q〉 as in [33]. The polynomials

l1, l4, l5, l2 − f, q − 2B12l1 − l2 +
1

2
f − 2A12l4 ∈ C[x, y, z, u, v, T0, T1]

can be written as the maximal Pfaffians of the antisymmetric matrix

P :=


0 z y2 u v

0 T0 + zB12 F G

0 H I

−Sym 0 J

0

 ,

where

F := u+ y2A23 − zB22A13 + zA13,

G := −T1 − uB12 + zA12 + zA13B12 − zA13B12 − y2A23B12,

H := T1 − 3uB12 − v − zA12 + zA13B12 − zA13B12 − y2A23B12,

I := 2uB11 − zA13B11 + zA13B11 + y2A23B11 − 2x6A13

and

J := T0y + 2uA12 + uA23B11 + zyB12

+ y3 + zA12A13 − zA13A12 + y2A12A23+

1

2
y2A

2
23B11 +A13A23x

6 − 1

2
A

2
23B11y

2 −A23B11u.

To see that this matrix is in Jerry format we may simplify P using row and column

operations. After addingB12 multiples of column 1 from column 3 (we symmetrically

add B12 multiples of row 1 from row 2), a multiple of column 1 from column 2

(symmetrically row), −1
2A23B12 multiples of column 1 from column 4 (symmetrically

row) and 1
2A23 multiples of column 3 from column 4 (symmetrically row), we have
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the 5× 5 antisymmetric matrix

P ′ :=


0 z y2 u+ 1

2y
2A23 v

0 T0 + y2 F G

0 H I

−Sym 0 J

0

 ,

where

F := −A13B22z +A13z +
1

2
A23B12z +

1

2
A23T0 +

3

2
A23y

2 + 2u,

G := A12z +A13B12z −A13B12z −A23B12y
2 −B12u− T1 + v,

H := −A12z +A13B12z −A13B12z −
1

2
A23B12y

2 − 2B12u+ T1 − v,

I := −A13B11z − 2A13x
6 +A13B11z +A23B11y

2 + 2B11u+B12v

and

J := A12A13z +A12A23y
2 + 2A12u−A13A12z −

1

2
A13A23B11z

+
1

2
A13A23B11z +

1

2
A

2
23B11y

2 +A23B11u+B12yz + T0y + y3.

A final swap of rows and columns, shows that this matrix is in Jer13 format with

respect to

IE := 〈T0 + y2, z, u+
1

2
A23y

2, T1 +
1

2
A23B12y

2 − v〉.

The maximal Pfaffians of P ′ define a variety Z in P(1, 2, 3, 4, 4, 5, 5)〈x,y,z,u,T0,v,T1〉

containing E := V (IE). Note that for our choice of row and column operations,

the varieties defined by the Pfaffians of P ′ and P are equivalent.

We point out that in the three examples above our correspondence was one

directional. That is, we presented type II1 unprojections as type I unprojections.

We did not present type I unprojections as type II1. We ask:

Question. For numerical candidates marked with both a type I and a type II1

centre, can the families of Fano 3-folds constructed by type II1 be built as families

using type I projections?

The answer is expected to be yes. When we realise the numerical
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candidates using type II1 constructions, the Fano 3-folds we construct contain the

type I centre automatically. Since it is easy to perform “type I projections”, we

should be able to obtain the initial data of the type I unprojection: this is what we

were doing in the three previous examples. It is beyond the scope of this thesis to

check every codimension 4 Fano 3-fold construction of Table A.1 and [10] for such

a correspondence. Nevertheless, we indicate a predicted or known correspondence

for each numerical candidate in Table A.1.

Question. For numerical candidates marked with both a type I and a type II1

centre, can the families of Fano 3-folds constructed by type I unprojections be

built as families using type II1 projections?

This question is more difficult since at present we are unable to perform

“type II1 projections”.

Remark 5.1.6. Based on the families that have been constructed and checked

at present, it appears that the type II1
(2,1) families corresponds to the type I Tom

families and the type II1
(3,0) families correspond to the type I Jerry families. Brevity

and the need for future comedic opportunities therefore suggest naming the type

II1
(2,1) unprojection format Thomasina and the II1

(3,0) format Geraldine: some

Thomasinas are known as Tom, some Geraldines are known as Jerry.

5.2 Missing Codimension 4 Candidates

A natural question now arises: what happens to the codimension 4 numerical

candidates which are not marked by a type II1 or a type I centre? Using the idea

of type IIk unprojections established in Section 2.7.2, we are able to construct

further Fano 3-folds. In particular, we are able to realise 7 more codimension 4

numerical candidates as Fano 3-folds by extending the existing notion of type II2

unprojections.

Type II2 unprojections have historically been defined as OX [I−1D ] with ID

defined by the 2× 2 minors of matrices such as

M :=

(
u w v s xy xz

y z u w v s

)

(see [31]). However, we believe that type II2 unprojections occur using ID defined
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as the image of

φ : P(a0, a1, a2)→ P(3a0, a1, . . . , an).

We therefore believe that there are more formats of ID. Consider the following

examples:

Example 5.2.1. The image of

φ(a, b, c) := (x := a3, y := b, z := c, u := ab, v := a2b, w := ac, s := a2c)

is defined as the 2× 2 minors of M .

Example 5.2.2. Consider

φ(a, b, c) = (x := a, y := c, z := b3, u := bp1 + b2p2, v := bp3 + b2p4)

where p1, p2, p3, p4 ∈ C[a, b3, c]. Then im(φ) is defined by the 3× 3 minors of u v −p2z −p4z −p1z −p3z
−p1 −p3 u v −p2z −p4z
−p2 −p4 −p1 −p3 u v


where we write p1, p2, p3, p4 ∈ C[x, y, z] in the obvious manner.

Example 5.2.2 is the key variety in this section. Unprojections with ID

defined as in Example 5.2.2 allow us to realise a further 7 codimension 4 numerical

candidates which cannot be constructed by the results of [10] or Section 4.2; we

provide realisations below.

GRDB # 501. The numerical candidate defined by

g = −1 and B =

{
1

2
(1, 1, 1), 4× 1

3
(1, 1, 2),

1

8
(1, 1, 7)

}
is realised as the quasismooth codimension 4 Fano 3-fold

Y ⊂ P(1, 3, 6, 7, 8, 8, 9, 10)〈x,y,z,u,v,s,t,w〉 defined by

x9y3 − x10v + 7x6y4 + x6y2z + x5y2u+ 2x5uz + y6+

6x2y3u− x4zv + y2z2 − 7xyzv + y3t− z3 + yuv + yus− vw,

−x10y2 − x10z − 7x7y3 − x5yv − x5ys− xy5 + y3u− xy2t− v2 + zw,
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x10u− x9v + x5y2z − 6x6yv − x5z2 − x2y3z + y3s− vt+ uw,

−x15 − x6y3 − x6yz − 6x3y4 − x5w − y5 − xy2s− uv + zt,

−x10z + x6yu− x5yv + xy3z − 6x2y2v − xyz2 + y2w − vs+ ut,

−x14 − 7x11y − x5y3 − x5t− x2y2z + xy2u− y2v − xyw − u2 + zs,

x10s− x9t+ x6y2z − x5y2u− 7x6yt− x5uz + x4y2v+

x5yw − y4z + 6xy3v + 6x2y2w + y2z2 + xyzv − y3t− t2 + sw,

− x10yz − x9w + x5y2s− 6x6yw + x5u2 − x5zv + x5zs+ xy4z

− x4uv + 6x2y3s+ y2uz − 6xyuv − xyzt− uz2 + ys2 + yut− tw

and

− x10yu+ x9yv + x10w + 6x6y2v − x6y2s+

x5yz2 − x5uv − x5zt+ x4v2 + xy2uz − y4s

− y2zv + 6xyv2 + xyzw + z2v − yst− yuw + w2.

GRDB # 512. The numerical candidate defined by

g = −1 and B =

{
3× 1

3
(1, 1, 2),

1

5
(1, 2, 3),

1

7
(1, 1, 6)

}
is realised as the quasismooth codimension 4 Fano 3-fold

Y ⊂ P(1, 3, 5, 6, 7, 7, 8, 9)〈x,y,z,u,v,s,t,w〉 defined by
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9x17 + 6x14y + 28x11y2 + 45x11u+ 12x8y3 + 3x10v + 42x8uy

+ 19x5y4 + 4x7yv + 48x5uy2 − 3x6yt+ 3x6uz + 9x5u2 + 3x2y5 + 7x4y2v

+ 12x2uy3 + 4x4uv − 3x3y2t+ x3uyz + 3x4us+ 3x2u2y + 4xy3v − 2x3ut

+ 2xuyv − y3t− x2vt+ 3uy2z + xuys− yv2 − uyt− xt2 + u2z − tw,

− 9x16 − 6x13y − 19x10y2 − 13x10u− 9x7y3 − 14x7uy

− 2x8t− x4y4 + 3x4uy2 − x5yt− 3x5uz + 3x4u2+

2xuy3 − x2uyz − 2x3us+ xu2y − uys− t2 + vw,

9x15 + 15x12y + 25x9y2 + 12x9u+ 19x6y3 + 6x6uy − 3x7t

+ 4x3y4 − 3x5yv + 3x6w − 2x3uy2 − x4yt+ 3x4uz

− x2y2v + x3yw − uy3 + xuyz + 3y2w − ts+ uw,

− 6x14 − 14x11y − 19x8y2 − 27x8u− 9x5y3 − 21x5uy − 6x6t− x2y4

− 3x5w − 4x2uy2 − 2x3yt− 2x3uz − x2yw − 3y2t− uyz − ut+ vs,

6x13 + 2x10y + 12x7y2 + 8x7u+ 14x4y3 + 3x6s+ 8x4uy − 2x5t

+ 4xy4 − 2x3yv + x3ys+ 3x4w + 2xuy2 − x2yt− y2v + 3y2s+ xyw − tz + us,

− 33x12 − 29x9y − 40x6y2 − 13x6u− 14x3y3 − 3x5s− 7x3uy−

5x4t− 10y4 − x2ys− 2x3w − 7uy2 − 2xyt− u2 + vz − yw,

− 15x14 − 31x11y − 45x8y2 − 20x8u− 43x5y3 + 3x6yz − 8x7s

− 21x5uy + 5x6t− 11x2y4 + 5x4yv + x3y2z − 5x4ys+ 2x5w − 5x2uy2

+ 4x3yt+ 2xy2v − 4xy2s+ x2yw + y2t+ xtz − xus− s2 + zw,
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18x16 + 24x13y + 54x10y2 + 3x11z + 27x10u+ 49x7y3+

x8yz + 30x7uy − 6x8t+ 29x4y4 − 6x6yv + 6x5y2z − 3x7w+

28x4uy2 − 5x5yt+ 9x5uz + 4x4u2 + 12xy5 − 2x3y2v + x2y3z

− 2x3y2s− x4yw + 11xuy3 − 4x2y2t+ 3x2uyz − 2x3us+ 2xu2y

− 3y3v − x2ut− y3s− uyv + uz2 − uys− xts− sw

and

− 9x15y − 6x12y2 − x9y3 + 21x9uy − 3x10t+ 3x9w+

16x6uy2 − 4x7yt− 2x7uz − 3x5y2s+ 4x6yw + 9x3uy3−

7x4y2t− 3x4uyz − x5tz − 3x5us+ 2x3u2y − 4x4ut− x2y3s

+ 3x3y2w + 3uy4 − 4xy3t− xuy2z − x2uys+ 2x3uw + u2y2

− 2xuyt+ x2t2 + y3w + yvt− uzs+ uyw + xtw + w2.

GRDB # 550. The numerical candidate defined by

g = −1 and B =

{
1

2
(1, 1, 1), 3× 1

3
(1, 1, 2),

1

4
(1, 1, 3),

1

6
(1, 1, 5)

}
is realised as the quasismooth codimension 4 Fano 3-fold

Y ⊂ P(1, 3, 4, 5, 6, 6, 7, 8)〈x,y,z,u,v,s,t,w〉 defined by

2x10z + x7yz − x8v + x6yu+ 2x4y2z + x2y4 + 2x4yt

+ xy3z + x2yuz − y2z2 + xy2t− z2v + yus− vw,

−x6y2 + 2x4yu− x2y2z + xy2u− x2yt− y2s− v2 + zw,

2x10y + x7y2 − x4y3 + 2x4ys− y3z + xy2s− yzv − vt+ uw,

−5x8y − 4x5y2 − x4yz − x2y3 − x2ys− uv + zt− yw,

2x12 + x9y − x2y2z + 2x4w − y4 − x2zv + xyw − vs+ ut,
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−x10 − 2x4v − y2z − xyv − x2w − u2 + zs− yt,

−4x14−4x11y−x8y2+2x4y2z+2x4zv+xy3z+x2y2v−y3u+xyzv+x2zw−yzt−t2+sw,

2x10u+2x6y3+x7yu−x8t+x6ys+x3y4+x2yzs−y2uz−y3v−uzv+ys2−yzw− tw

and

−2x10v − x7yv + x8w + 2x4y4 − x6yt+ xy5 + x2y3u+ y2zv + zv2 − yst+ w2.

GRDB # 577 The numerical candidate defined by

g = −1 and B =

{
1

2
(1, 1, 1), 3× 1

3
(1, 1, 2), 2× 1

5
(1, 1, 4)

}
is realised as the quasismooth codimension 4 Fano 3-fold

Y ⊂ P(1, 3, 4, 5, 5, 6, 6, 7)〈x,y,z,u,v,s,t,w〉 defined by

− x7t+ x4y3 + x5z2 + x5yu+ 4x3y2z + x4zu− x4yt+ 2x2yz2

+ y3z + xz3 + xyzu+ xyzv + xy2s+ z2u− yu2 − yzt− xt2 + yzs+ tw,

−x6y2 − x5yz − x3y3 − x4z2 − x3ys+ xyz2 − x2zt− z3 − yzv − y2s− t2 − uw,

−x6y2 + x5yz − 2x3y3 + x4z2 − y4 + xyz2 + xy2v + z3 − yzu+ yzv − xzw − ts,

−x7z− x5y2− 2x4yz− 2x2y3− x3z2− x3yv− 3xy2z− 2yz2− 2xzt− y2v+ us+ zw,

x8y + x7z + x5y2 + 2x4yz + x3z2 − x3yu+ xy2z − y2u+ xzs− xyw − tv − zw,
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−x10 − 2x7y − x4y2 − 2x3yz − x4t− 3x2z2 + x3w− y2z − 2xyt− zt+ uv − zs+ yw,

− x9y − x8z − 2x6y2 − 3x5yz − 2x4z2 + x4yu− x2y2z + x3yt

− x3ys− 4xyz2 + 2xy2u− 2x2zs− z3 + yzu+ y2t+ xtv − s2 − vw,

2x6yz − x7s+ x4y3 + 2x5z2 + x3y2z + x4zv − x4ys+ xy4 + x2yz2

+ x2y2v + y3z + 2xz3 − 2xyzu+ xyzv − yzt+ z2v + yv2 − yzs− xts+ sw

and

− x7yz − x6z2 − x7w + 2x4y2z − x5yt− x3yz2 − x4zt

− x3y2v − x4zs− x4yw + 3xy3z − x2z3 + x2yzu− x2yzv

+ y2z2 − xyzt− z2t+ yut− z2s− yvs− yzw − xtw + w2.

GRDB # 872 The numerical candidate defined by

g = −1 and B =

{
5× 1

3
(1, 1, 2),

1

5
(1, 1, 4)

}
is realised as the quasismooth codimension 4 Fano 3-fold

Y ⊂ P(1, 3, 3, 4, 5, 5, 6, 7)〈x,y,z,u,v,s,t,w〉 defined by

x8u+ x6yz − x7v + x3y3 + x4yv + 2x2y2u+ 3x2uz2 + xyu2 + y3z

− y2z2 + 3yz3 + xy2v − 4xz2v − 2x2v2 + u3 + yuv + uzv + yus+ y2t+ vw,

−x10−3x4z2−x3yu−x2u2−xy2z−x2yv−x2zv−x2ys+y2u−xuv−xyt−v2−zw,

x8y − x2y3 − x2y2z + 3x2yz2 − x3yv − x3zv + y2s− vt− uw,
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−x9 − x3y2 − 3x3z2 − 2x4v − y3 − xu2 − xys+ x2w − uv + zt,

x7y − x4y2 − x5v − xy2z + 3xyz2 − x2zv − vs+ ut− yw,

−x8 − 2x4u− x2yz − 3x2z2 − 2x3v + xuz − x2t− u2 − yv + zs+ xw,

− x9y − x6y2 + 2x3y2z − 3x3yz2 + 2x4zv + y3z − 3y2z2 + xy2v

+ xyzv + x2v2 + 2x2vs− 2x2ut− yus− yzt− xvt− xuw − t2 − sw,

x10y + x8s+ x6yu− x7t− 2x4y2z + 3x4yz2 − 2x5zv

− x3y2u− x4uv + xy4 − x3v2 + x2y2s+ 3x2z2s− y2uz + 3yuz2

− xuzv + xyus− 3xz2t− x2vt+ x2uw + u2s+ ys2 + uzt+ tw

and

− x8yz − x8t+ x5y3 − x7w − x4y2u− x5uv + x2y4 + x2y2z2

− 3x2yz3 + x3y2v + x3z2v + xy3u+ x2yuv − 3x2z2t+ y2zv − 3yz2v

+ xzv2 − y2zs− xyvs− 3xz2w − 2x2vw − uvs− yst+ uzw + w2.

GRDB # 878. The numerical candidate defined by

g = −1 and B =

{
4× 1

3
(1, 1, 2), 2× 1

4
(1, 1, 3)

}
is realised as the quasismooth codimension 4 Fano 3-fold

Y ⊂ P(1, 3, 3, 4, 4, 5, 5, 6)〈x,y,z,u,v,s,t,w〉 defined by

x8z + x5y2 + 2x6s+ x4yu+ x4zu+ x4yv + 3x2y3

+ x2yz2 − x2us+ yu2 − zu2 − xs2 + y2t+ sw,
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−2x4y2 − x4z2 − 3x2zs− x2yt− z2u− yzv − s2 − uw,

−x4w + yzu− z2u+ y2v − st,

−x6z − x3y2 − x4s− x2zu− x2yv − y3 − xzs+ ut+ zw,

x6y + x4t+ x2yu− x2zu− z3 − sv − yw,

x8 − x5z − x4u− 3x2yz − x3s+ x2w − ys+ uv − zt,

− x7y − x4y2 + 2x4z2 − x5t− x3yu+ x3zu+

x2zs− 3x2yt− y2u+ yzu+ xsv − t2 − vw,

x8y + x5yz + 2x6t+ x4yu− x4zu+ x4zv + x2y2z − 3x2z3

+ xyzu− xz2u+ xy2v − x2ut− z2s+ zuv + yv2 − xst+ tw

and

− x6yz + 2x6w + x3yz2 − x4ys− 2x2yzu+ 2x2z2u− 3x2y2v

+ y2z2 − z4 − x2uw − yus+ zus− zsv − zut− yvt− yzw − xsw + w2.

GRDB # 1766. The numerical candidate defined by

g = −1 and B =

{
2× 1

2
(1, 1, 1), 5× 1

3
(1, 1, 2)

}
is realised as the quasismooth codimension 4 Fano 3-fold

Y ⊂ P(1, 2, 3, 3, 3, 4, 4, 5)〈x,y,z,u,v,s,t,w〉 defined by

x6u+ 2x4zy + x4yu− x5s+ 2x3z2 + 3x2zy2 + x2y2u+ 3xz2y + 3zy3

+ xzyu+ y3u− xy2s+ x2us+ x2zt+ 2z2u− u3 − xs2 + z2v + zyt+ sw,
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−x4y2 − x3zy − 2xzy2 − y4 + z2y − zyu− y2s− xus− zyv − xzt− s2 − uw,

x6y + x4y2 + x2y3 + y4 − x2zu+ x2zv + z2y − yu2 − y2s+ zyv − st− zw,

−x5y− 2x4z − 4x2zy− xy3 + x2yu− 2zy2 − xzu+ y2u− xys− xzv− zs+ ut+ yw,

x7 + x5y + x3y2 + xy3 + xz2 − y2u− xu2 − xys− x2w − sv + zt− yw,

−x6 − 2x2y2 − xzy − 2y3 − 2x2s− z2 − ys+ uv − yt+ xw,

− 2x8 − 3x6y − 3x4y2 − 3x2y3 − 2x2z2 − y4 + xy2u

+ 3x2u2 + 2x2ys− x2uv − x2yt− z2y − zyu+ yu2+

y2s+ xus+ zyv − yuv + xsv − 2xzt− 2y2t− xyw − t2 − vw,

x7y + x6z + x5y2 + x4zy + x3y3 + x4yv − x5t+ x2zy2 + xy4

+ x3zu+ x3zv + xz2y + zy3 + xzyu− y3u− 2xyu2 − xy2s+ 2xzyv + y3v

− xy2t+ z3 − zu2 − zys− yus+ zuv + zv2 + zyt− xst+ y2w + tw

and

− x6y2 − x4y3 − x6s− x2y4 − x4ys− x4yt− x5w − y5 + 2x2zyu

− x2y2s− x2zyv − z2y2 + xz2u+ zy2u− xz2v − zy2v − y3t

− xy2w − z2s+ u2s+ ys2 − usv − zvt− xsw + w2.

Given our experience of constructing codimension 4 Fano 3-folds using type

II1 and type I unprojections, we ask:
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Question. Is it possible to find more than one family of Fano 3-folds for these 7

numerical candidates? Do these families correspond to distinct type II2 unprojection

constructions?

Question. In the literature, constructions using cluster algebras for these

numerical candidates have been found (see [16]). Do the unprojection and cluster

algebra methods construct different families of Fano 3-folds for these numerical

candidates?
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Appendix A

Table of Type II1 Unprojections

For each codimension 4 numerical candidate marked with a type II1 centre, Table

A.1 provides the information required to realise the candidate as a Fano 3-fold using

type II1 unprojections.

The codimension 4 candidates are listed by their GRDB ID and presented

as Y ⊂ wP7. They are realised as the type II1
(n,m) unprojection of (X,D). The

choice of X is indicated by its GRDB ID and is always a codimension 2 variety

X ⊂ P(a0, . . . , a5)〈x0,...,x5〉 with a0 ≤ · · · ≤ a5. We define D ⊂ P(a0, . . . , a5) using

the type II1
(n,m) unprojection format and use the standard notation of Section 3.1.2

and [33]. In particular, we identify the vectors y and x with entries yi and xi

respectively.

Remark A.0.1. We do not specify the equations of X since the general X

containing D is sufficient. That is, for a given numerical candidate, the general X

containing D constructed as in Table A.1 will be quasismooth off D and such that

the singular locus is a set of finitely many nodes (see Section 4.2.2). The number

of nodes is also described in Table A.1.

Remark A.0.2. In Table A.1 we also highlight the cases where the standard type

II1
(3,0) unprojection construction fails (see Section 5.1.1).

It is known by [10] that the codimension 4 numerical candidates marked with

type I centres can be realised as Fano 3-folds using type I unprojections. When

Table A.1 encounters such a numerical candidate, we predict the family of [10] to

be constructed by the type II1 unprojection (See Section 5.1.2). This prediction

is based on calculating the Euler characteristic of the type II1 unprojection and

equating it to the Euler characteristic of the type I unprojection. We present this

information as the GRDB ID and the Tom and Jerry formats of Z ⊂ P6 used by

[10].
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Remark A.0.3. In the cases where Proposition 3.1.1 is applicable and the family of

[10] is known, we identify the family with an asterix: Tom∗i . Note that Proposition

3.1.1 only identifies Tom families.

Remark A.0.4. In the case where a codimension 4 numerical candidate is not

marked with a type I centre, there is no associated Tom and Jerry construction. We

indicate this as “n/a”.
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Table A.1: Codimension 4 Fano 3-folds via Type II1 Unprojections

Codimension 4 Candidate Type II1 Unprojection Initial Data

ID Y ⊂ wP7 ID (n,m) Data Nodes TJ

38 Y ⊂ P(2, 3, 4, 5, 6, 7, 8, 9) 37 (3, 0)

y = [x2, x4, x5]

x =
[
x1, x3, x

3
0 + x21

]
z = x0

10 n/a

37 (2, 1)

y = [x4, x5]

x =
[
x3, x

3
0 + x21

]
z = x0

w = x2

9 n/a

342 Y ⊂ P(1, 4, 6, 7, 7, 8, 9, 10) 338 (3, 0)

y = [x3, x4, x5]

x =
[
x1, x

5
0, x2

]
z = x2

17 n/a

338 (2, 1)

y = [x3, x5]

x = [x1, x2]

z = x2

w = x4

16 n/a
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360 Y ⊂ P(1, 4, 5, 6, 7, 7, 8, 9) 359 (3, 0)

y = [x3, x4, x5]

x =
[
x1, x2, x

6
0

]
z = x1

17 n/a

359 (2, 1)

y = [x3, x4]

x = [x1, x2]

z = x1

w = x5

16 n/a

569 Y ⊂ P(1, 3, 4, 5, 5, 6, 7, 9) 546 (3, 0)

y = [x3, x4, x5]

x =
[
x1, x2, x

7
0 + x1x2

]
z = x2

20 Jer25

546 (2, 1)

y = [x3, x4]

x = [x1, x2]

z = x2

w = x5

19 Tom∗1

574 Y ⊂ P(1, 3, 4, 5, 5, 6, 7, 7) 547 (3, 0)

y = [x3, x4, x5]

x =
[
x1, x2, x

5
0

]
z = x2

18 Jer45
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547 (2, 1)

y = [x3, x4]

x = [x1, x2]

z = x2

w = x5

17 Tom∗1

648 Y ⊂ P(1, 3, 4, 4, 5, 5, 6, 7) 640 (3, 0)

y = [x3, x4, x5]

x =
[
x20, x1, x2

]
z = x2

15 n/a

640 (2, 1)

y = [x4, x5]

x = [x1, x2]

z = x2

w = x3

14 n/a

1069 Y ⊂ P(1, 2, 6, 7, 8, 9, 9, 10) 1068 (3, 0)

y = [x2, x3, x5]

x =
[
x50, x

3
1, x4

]
z = x1

27 n/a

1068 (2, 1)

y = [x3, x5]

x =
[
x60 + x31, x4

]
z = x1

w = x2

24 n/a

118



1082 Y ⊂ P(1, 2, 5, 6, 7, 9, 11, 13) 1077 (3, 0) Standard Model Failure

1077 (2, 1)

y = [x3, x4]

x =
[
x80 + x41, x

10
0 + x51 + x22

]
z = x1

w = x5

39 Tom∗5

1084 Y ⊂ P(1, 2, 5, 6, 7, 8, 8, 9) 1068 (3, 0)

y = [x4, x3, x5]

x =
[
x50, x

2
1, x2

]
z = x2

27 n/a

1068 (2, 1)

y = [x3, x5]

x =
[
x40 + x21, x2

]
z = x2

w = x4

25 n/a

1083 (3, 0)

y = [x2, x3, x5]

x =
[
x21, x

5
0, x4

]
z = x1

24 n/a
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1083 (2, 1)

y = [x2, x5]

x =
[
x40 + x21, x4

]
z = x1

w = x3

22 n/a

1091 Y ⊂ P(1, 2, 5, 6, 7, 7, 8, 9) 1080 (3, 0)

y = [x2, x4, x5]

x =
[
x40 + x21, x3, x

8
0 + x41 + x1x3

]
z = x1

26 Jer34

1080 (2, 1)

y = [x2, x4]

x =
[
x40 + x21, x3

]
z = x1

w = x5

24 Tom∗1

1115 Y ⊂ P(1, 2, 4, 5, 6, 7, 7, 8) 1114 (3, 0)

y = [x2, x3, x5]

x =
[
x30, x

2
1, x4

]
z = x1

21 n/a

1114 (2, 1)

y = [x3, x5]

x =
[
x40 + x21, x4

]
z = x1

w = x2

19 n/a
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1122 Y ⊂ P(1, 2, 4, 5, 5, 6, 6, 7) 1114 (3, 0)

y = [x3, x4, x5]

x =
[
x2, x

5
0 + x0x

2
1 + 2x0x2, 2x

6
0 + x31 + 3x1x2

]
z = x1

26 n/a

1114 (2, 1)

y = [x3, x5]

x =
[
x21 + x2, x

6
0 + x31

]
z = x1

w = x4

23 n/a

1121 (3, 0)

y = [x2, x4, x5]

x =
[
x30, x

2
1, x3

]
z = x1

20 n/a

1121 (2, 1)

y = [x4, x5]

x =
[
x40 + x21, x3

]
z = x1

w = x2

18 n/a

1167 Y ⊂ P(1, 2, 3, 4, 5, 7, 9, 11) 1145 (3, 0) Standard Model Failure
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1145 (2, 1)

y = [x3, x4]

x =
[
x60 + x31 + x22, x

8
0 + x41

]
z = x1

w = x5

39 Tom∗5

1172 Y ⊂ P(1, 2, 3, 4, 5, 6, 6, 7) 1171 (3, 0)

y = [x2, x3, x5]

x =
[
x1, x

3
0, x4

]
z = x1

18 n/a

1171 (2, 1)

y = [x2, x5]

x = [x1, x4]

z = x1

w = x3

17 n/a

1181 Y ⊂ P(1, 2, 3, 4, 5, 5, 7, 12) 1150 (3, 0) Standard Model Failure

1150 (2, 1)

y = [x3, x4]

x =
[
x40 + x21, x

6
0 + x22 + x31

]
z = x1

w = x5

32 Tom∗3
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1182 Y ⊂ P(1, 2, 3, 4, 5, 5, 7, 9) 1151 (3, 0) Standard Model Failure

1151 (2, 1)

y = [x3, x4]

x =
[
x40 + x21, x

6
0 + x31 + x22

]
z = x1

w = x5

29
Tom1 (1166)

Tom3 (1180)

1183 Y ⊂ P(1, 2, 3, 4, 5, 5, 7, 7) 1154 (3, 0) Standard Model Failure

1154 (2, 1)

y = [x3, x4]

x =
[
x40 + x21, x

6
0 + x22 + x31

]
z = x1

w = x5

27 Tom3

1185 Y ⊂ P(1, 2, 3, 4, 5, 5, 6, 8) 1163 (3, 0)

y = [x2, x4, x5]

x =
[
x1, x3, x

7
0

]
z = x1

21 Jer24
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1163 (2, 1)

y = [x2, x4]

x = [x1, x3]

z = x1

w = x5

20 Tom∗1

1186 Y ⊂ P(1, 2, 3, 4, 5, 5, 6, 7) 1165 (3, 0)

y = [x2, x4, x5]

x =
[
x1, x3, x

6
0

]
z = x1

20 Jer34

1165 (2, 1)

y = [x2, x4]

x = [x1, x3]

z = x1

w = x5

19 Tom∗1

1218 Y ⊂ P(1, 2, 3, 4, 5, 5, 5, 6) 1179 (3, 0)

y = [x2, x4, x5]

x =
[
x1, x3, x

4
0

]
z = x1

18 Jer45

1179 (2, 1)

y = [x2, x4]

x = [x1, x3]

z = x1

w = x5

17 Tom1

124



1179 (2, 1)

y = [x4, x5]

x =
[
x40 + x21, x3

]
z = x1

w = x2

16 Tom3

1253 Y ⊂ P(1, 2, 3, 4, 4, 5, 5, 7) 1165 (3, 0)

y = [x3, x4, x5]

x =
[
x2, x

2
1, x

6
0

]
z = x1

24 Jer13

1165 (2, 1)

y = [x3, x4]

x =
[
x2, x

4
0 + x21

]
z = x1

w = x5

22 Tom∗1

1165 (2, 1)

y = [x3, x5]

x =
[
x2, x

6
0 + x31 + x22

]
z = x1

w = x4

21 Tom5

1256 Y ⊂ P(1, 2, 3, 4, 4, 5, 5, 6) 1171 (3, 0)

y = [x3, x4, x5]

x =
[
x2, x

4
0 + x21, x

5
0 + x20x2 + x2x1

]
z = x1

24 n/a
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1171 (2, 1)

y = [x3, x4]

x =
[
x2, x

2
1 + x40

]
z = x1

w = x5

22 n/a

1249 (3, 0)

y = [x2, x4, x5]

x =
[
x1, x

3
0, x3

]
z = x1

17 n/a

1249 (2, 1)

y = [x2, x5]

x = [x1, x3]

z = x1

w = x4

16 n/a

1350 Y ⊂ P(1, 2, 3, 4, 4, 4, 5, 5) 1249 (3, 0)

y = [x3, x4, x5]

x =
[
x2, x

3
0, x

2
1

]
z = x1

20 n/a

1249 (2, 1)

y = [x3, x5]

x =
[
x2, x

4
0 + x21

]
z = x1

w = x4

18 n/a
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1413 Y ⊂ P(1, 2, 3, 3, 4, 4, 5, 5) 1390 (3, 0)

y = [x3, x4, x5]

x =
[
x1, x2, x

4
0

]
z = x1

18 Jer35

1390 (2, 1)

y = [x2, x4]

x = [x1, x3]

z = x1

w = x5

17 Tom∗1

1390 (2, 1)

y = [x4, x5]

x =
[
x2, x

4
0 + x21

]
z = x1

w = x3

16 Tom3

2410 Y ⊂ P(1, 2, 2, 3, 4, 5, 5, 6) 2409 (3, 0)

y = [x2, x3, x5]

x = [x0, x1, x4]

z = x1

15 n/a

2409 (2, 1)

y = [x3, x5]

x =
[
x20 + x1, x4

]
z = x1

w = x2

14 n/a
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2422 Y ⊂ P(1, 2, 2, 3, 3, 4, 5, 7) 2403 (3, 0)

y = [x3, x4, x5]

x =
[
x2,+x

4
0 + x21 + x22, x

6
0

]
z = x1

26 Jer12

2403 (2, 1)

y = [x3, x4]

x =
[
x1, x

4
0 + x22

]
z = x1

w = x5

24 Tom∗2

2403 (2, 1)

y = [x3, x5]

x =
[
3x20 + x1 + x2, 5x

6
0 + 3x31 + x32

]
z = x1

w = x4

23 Tom5

2438 Y ⊂ P(1, 2, 2, 3, 3, 4, 4, 5) 2409 (3, 0)

y = [x3, x4, x5]

x =
[
x1 + 3x2, x

3
0 + x0x1, 2x

2
1 + x22

]
z = x1

23 n/a

2409 (2, 1)

y = [x3, x5]

x =
[
x1 + x2, x

4
0 + x21

]
z = x1

w = x4

21 n/a
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2419 (3, 0)

y = [x2, x4, x5]

x = [x0, x1, x3]

z = x1

14 n/a

2419 (2, 1)

y = [x4, x5]

x = [x1, x3]

z = x1

w = x2

13 n/a

2511 Y ⊂ P(1, 2, 2, 3, 3, 3, 4, 4) 2419 (3, 0)

y = [x3, x4, x5]

x =
[
x2, x1, x

3
0

]
z = x1

18 n/a

2419 (2, 1)

y = [x3, x4]

x = [x2, x1]

z = x1

w = x5

17 n/a

3509 Y ⊂ P(1, 2, 2, 2, 3, 3, 3, 4) 3508 (3, 0)

y = [x3, x4, x5]

x = [x0, x1, x2]

z = x1

14 n/a
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3508 (2, 1)

y = [x4, x5]

x = [x1, x2]

z = x1

w = x3

13 n/a

4825 Y ⊂ P(1, 1, 4, 6, 7, 8, 9, 10) 4795 (3, 0)

y = [x3, x4, x5]

x =
[
x50 + 3x51, x

6
0 + x61 + x2, x

7
0 + x71 + x1x2

]
z = x2

54 Jer24

4795 (2, 1)

y = [x3, x4]

x =
[
x50 + x51, x2

]
z = x2

w = x5

49 Tom∗3

4915 Y ⊂ P(1, 1, 3, 4, 5, 6, 7, 8) 4823 (3, 0)

y = [x3, x4, x5]

x =
[
x40 + x41 + x2, x

5
0 + x51 + 2x1x2, 9x

6
1 + x20x2

]
z = x2

47
Jer35 (4895)

Jer13 (4914)

4823 (2, 1)

y = [x3, x4]

x =
[
x2, x

5
0 + x51

]
z = x2

w = x5

42
Tom1 (4895)

Tom∗3 (4914)
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4823 (2, 1)

y = [x3, x5]

a1 =
[
x41 + x2, x

6
0 + x0x1x2 + x21x2

]
z = x2

w = x4

41
Tom2 (4895)

Tom5 (4914)

4938 Y ⊂ P(1, 1, 3, 4, 5, 5, 6, 11) 4836 (3, 0) Standard Model Failure

4836 (2, 1)

y = [x3, x4]

x =
[
x30 + x31, x

4
0 + x41 + x2

]
z = x2

w = x5

43 Tom∗2

4939 Y ⊂ P(1, 1, 3, 4, 5, 5, 6, 7) 4837 (3, 0)

y = [x3, x4, x5]

x =
[
x30 + x31, x

4
1 + x2, x

5
0 + x0x2 + x2x1

]
z = x2

38
Jer35 (4914)

Jer24 (4937)

4837 (2, 1)

y = [x3, x4]

x =
[
x30 + x31, x2

]
z = x2

w = x5

35
Tom1 (4914)

Tom∗2 (4937)
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4949 Y ⊂ P(1, 1, 3, 4, 5, 5, 6, 6) 4848 (3, 0)

y = [x3, x4, x5]

x =
[
x30 + x31, x2, x

4
0 + x41 + 2x2

]
z = x2

36 Jer25

4848 (2, 1)

y = [x3, x4]

x =
[
x30 + x31, x2

]
z = x2

w = x5

33 Tom∗2

4848 (2, 1)

y = [x4, x5]

x =
[
x40 + x41, x2

]
z = x2

w = x3

32 Tom1

5841 Y ⊂ P(1, 1, 2, 2, 3, 5, 7, 9) 5135 (3, 0) Standard Model Failure

5135 (2, 1)

y = [x3, x4]

x =
[
x40 + x41 + x22, x

6
0 + x61 + x32

]
z = x2

w = x5

59 Tom∗5
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5845 Y ⊂ P(1, 1, 2, 2, 3, 4, 5, 6) 5138 (3, 0) Standard Model Failure

5138 (2, 1)

y = [x3, x4]

x =
[
x30 + x31, x

4
0 + x41 + x22

]
z = x2

w = x5

38 Tom∗4

5859 Y ⊂ P(1, 1, 2, 2, 3, 3, 5, 8) 5154 (3, 0) Standard Model Failure

5154 (2, 1)

y = [x3, x4]

x =
[
x2, x

4
0 + x41

]
z = x2

w = x5

38 Tom∗3

5860 Y ⊂ P(1, 1, 2, 2, 3, 3, 5, 7) 5155 (3, 0) Standard Model Failure
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5155 (2, 1)

y = [x3, x4]

x =
[
x2, x

4
0 + x41

]
z = x2

w = x5

37
Tom1 (5840)

Tom∗3 (5858)

5862 Y ⊂ P(1, 1, 2, 2, 3, 3, 5, 5) 5156 (3, 0) Standard Model Failure

5156 (2, 1)

y = [x3, x4]

x =
[
x20 + x21 + x2, x

4
0 + x41 + x22

]
z = x2

w = x5

35 Tom3

5866 Y ⊂ P(1, 1, 2, 2, 3, 3, 4, 7) 5158 (3, 0) Standard Model Failure

5158 (2, 1)

y = [x3, x4]

x =
[
x2, x

3
0 + x31

]
z = x2

w = x5

33 Tom∗2
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5867 Y ⊂ P(1, 1, 2, 2, 3, 3, 4, 5) 5159 (3, 0) Standard Model Failure

5159 (2, 1)

y = [x3, x4]

x =
[
x2, x

3
0 + x31

]
z = x2

w = x5

31
Tom2 (5858)

Tom∗2 (5865)

5870 Y ⊂ P(1, 1, 2, 2, 3, 3, 4, 5) 5161 (3, 0)

y = [x3, x4, x5]

x =
[
x0x1 + x2, x0x2 + x31, x

4
0 + x22

]
z = x2

32
Jer24 (5844)

Jer12 (5865)

5161 (2, 1)

y = [x3, x4]

x =
[
x2, x

3
0 + +x0x2 + x31 + x1x2

]
z = x2

w = x5

29
Tom1 (5844)

Tom∗2 (5865)

5161 (2, 1)

y = [x3, x5]

x =
[
x20 + x21 + x2, x

4
0 + x22

]
z = x2

w = x4

28
Tom2 (5844)

Tom5 (5865)
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5914 Y ⊂ P(1, 1, 2, 2, 3, 3, 4, 4) 5200 (3, 0)

y = [x3, x4, x5]

x =
[
x20 + x21 + x2, x

3
0 + x1x2, x0x2 + x31

]
z = x2

30 Jer15

5200 (2, 1)

y = [x3, x4]

x =
[
x20 + x21 + x2, x

3
0 + x31 + 2x0x2

]
z = x2

w = x5

27 Tom2

5963 Y ⊂ P(1, 1, 2, 2, 3, 3, 3, 5) 5258 (3, 0) Standard Model Failure

5258 (2, 1)

y = [x3, x4]

x =
[
x2, x

2
0 + x21

]
z = x2

w = x5

27
Tom1 (5858)

Tom∗1 (5962)

5970 Y ⊂ P(1, 1, 2, 2, 3, 3, 3, 4) 5261 (3, 0)

y = [x3, x4, x5]

x =
[
x2, x

2
0, x

3
1

]
z = x2

26
Jer25 (5865)

Jer14 (5962)

136



5261 (2, 1)

y = [x3, x4]

x =
[
x2, x

2
0 + x21

]
z = x2

w = x5

24
Tom1 (5865)

Tom∗1 (5962)

5261 (2, 1)

y = [x3, x5]

x =
[
x2 + x20 + x21, x

3
0 + x31

]
z = x2

w = x4

23
Tom2 (5865)

Tom4 (5962)

6217 Y ⊂ P(1, 1, 2, 2, 3, 3, 3, 3) 5514 (3, 0)

y = [x3, x4, x5]

x =
[
x2, x

2
0, x

2
1

]
z = x2

23 Jer45

5514 (2, 1)

y = [x3, x4]

x =
[
x2, x

2
0 + x21

]
z = x2

w = x5

21 Tom1

6860 Y ⊂ P(1, 1, 2, 2, 2, 3, 3, 5) 5839 (3, 0)

y = [x3, x4, x5]

x =
[
x0, x2, x

4
1

]
z = x2

24 Jer13
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5839 (2, 1)

y = [x3, x4]

x = [x0, x2]

z = x2

w = x5

23 Tom∗1

5839 (2, 1)

y = [x3, x5]

x =
[
x0, x

4
0 + x41 + x22

]
z = x2

w = x4

22 Tom5

6865 Y ⊂ P(1, 1, 2, 2, 2, 3, 3, 4) 5843 (3, 0)

y = [x3, x4, x5]

x =
[
x0, x2, x

3
1

]
z = x2

22 Jer34

5843 (2, 1)

y = [x3, x4]

x = [x0, x2]

z = x2

w = x5

21 Tom∗1

6878 Y ⊂ P(1, 1, 2, 2, 2, 3, 3, 3) 5857 (3, 0)

y = [x3, x4, x5]

x =
[
x0, x2, x

2
1

]
z = x2

20 Jer35

138



5857 (2, 1)

y = [x3, x5]

x = [x0, x2]

z = x2

w = x4

19 Tom1

5857 (2, 1)

y = [x4, x5]

x =
[
x20 + x21, x2

]
z = x2

w = x3

18 Tom3

8051 Y ⊂ P(1, 1, 2, 2, 2, 2, 3, 3) 6858 (3, 0)

y = [x3, x4, x5]

x = [x1, x0, x2]

z = x2

18 n/a

6858 (2, 1)

y = [x4, x5]

x = [x1, x2]

z = x2

w = x3

17 n/a
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Appendix B

Assorted Code

In this appendix we provide code pertinent to this thesis.

The defining equations of the type II
(2,1)
1 unprojection ring can be calculated

using the generators of the OX -module HomOX
(ID,OX) (compare with the method

of Section 3.1.1). In Section B.1 we calculate these generators using the computer

algebra software Macaulay2 (see [19]).

In Section B.2 we recreate Section 4.3.1 using the computer algebra

software Magma (see [5]). That is, we construct a codimension 4 Fano 3-fold

Y ⊂ P(2, 3, 4, 5, 6, 7, 8, 9) via a type II
(2,1)
1 unprojection.

In Section B.3 we provide code which, when used in combination with the

data of Table A.1, allows for the construction of random and successful initial data

for type II1 unprojections.

B.1 Calculating Hom

It is possible to calculate the explicit equations of the type II(2,1) unprojection by

computing the OX -module I−1D
∼= HomOX

(ID,OX). In Section 2.3 the type II1

unprojection was defined by choosing specific generators of ωD, e0 and e1, and

choosing any lift of these generators in HomOX
(ID,OX) under the Poincaré residue

map. To construct the explicit equations of the unprojection, we will choose specific

generators of HomOX
(ID,OX) and show that the resulting images in ωD satisfy the

assumptions on e0 and e1. With the assumptions satisfied, the previously developed

theory still holds and we are able to work explicitly.

Let

Oamb := Z[a11, a21, a12, a22, w, z, v12, v13, v14, v24, u, v12, v13, v14, v24, u]
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be a positively graded ring such that the weight of z is even and

wt(a2i) = wt(a1i) +
1

2
wt(z)

for i = 1, 2. Let ID ⊂ Oamb be the homogeneous ideal defined by the 2 × 2 minors

of

M :=

(
a21 a22 za11 za12

a11 a12 a21 a22

)
together with the linear equation w = 0. We define Mij as the 2 × 2 minor of M

generated by ordered columns 1 ≤ i < j ≤ 4 and hence write

ID = 〈M12,M13,M14,M24, w〉. Let IX = 〈f, f〉 be the homogeneous ideal defined

by

f := M13v13 +M14v14 +M12v12 +M24v24 + wu

and

f := M13v13 +M14v14 +M12v12 +M24v24 + wu.

We assume that OX = Oamb/IX is a normal Gorenstein integral domain. We restate

Theorem 3.1.2 in our new notation:

Theorem B.1.1. There is an isomorphism

OX [I−1D ] ∼=
Oamb[T0, T1]

IX + 〈l1, . . . , l6, q〉

where

l1 := a21T1 + za11T0 + a11B12 − a21B14 − a22B15,

l2 := a22T1 + za12T0 +B12a12 +B13a21,

l3 := wT1 + (a21a22 + a11a12z)B35 + a11a21B23

+ a212zB45 + a12a21B24 + a12a22B25 + a221B34,

l4 := a21T0 + a11T1 + a12B15,

l5 := a22T0 + a12T1 − a11B13 − a12B14,

l6 := wT0 − a211B23 − a11a12B24 − a11a21B34

− (a12a21 + a11a22)B35 − a212B25 − a12a22B45
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and

q := T 2
1 − zT 2

0 − T0B12 −B14T1 +B25B13

with Bij defined to be the ij-th minor of

B :=

(
u v12 v13 v14 v24

u v12 v13 v14 v24

)

for 1 ≤ i < j ≤ 5.

To prove this theorem we calculate the generators of HomOX
(ID,OX) as an

OX -module.

Lemma B.1.1. The OX -module HomOX
(ID,OX) is generated by i, s0, s1 where i

is the inclusion map, s0 is the injective map defined by the natural extension of

s0(w) := a11(B35a22 +B23a11 +B24a12 +B34a21) + a12(B24a12 +B35a21 +B45a22)

s0(M12) := −B13a
2
11 −B14a11a12 −B15a

2
12

s0(M13) := −B14a11a21 −B15(a22a11 + a21a12) +B12a
2
11

s0(M14) := B13a21a11 −B15a22a12 +B12a11a12

s0(M24) := B13(a22a11 + a21a12) +B14a22a12 +B12a
2
12

and s1 is the injective map defined by the natural extension of

s1(w) := −a21(B35a22+B24a12+B34a21+B23a11)−a12(B35a11z+B24a22+B45a12z)

s1(M12) := B13a21a11 +B14a21a12 +B15a22a12

s1(M13) := B15(a21a22 + a11a12z) +B14a
2
21 −B12a21a11

s1(M14) := B15a
2
12z −B13a

2
21 −B12a21a12

s1(M24) := −B13a11a12z −B14a
2
12z −B13a21a22 −B12a22a12.

Proof. We may write the following presentation of ID as an OX -module:

0 ID O5
X O8

Xα β

where αT = (w,−M12,−M13−M14,−M24). Using the results of Chapter 3.9 [1], in

particular Theorem 3.9.5, HomOX
(ID,OX) is isomorphic to the kernel of the map
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O5
X → O8

X defined by βT . That is, HomOamb
(ID,OX) ∼= 〈U〉 for some matrix U .

We calculate U using Macaulay2 (see [19] for this computer algebra software).

We define Oamb, IX and ID.

i1: Oamb = QQ[v_12,vv_12,v_13,v_14,v_24,u,vv_13,vv_14,vv_24,uu,a_21,

a_22,w,a_11,a_12,z];

i2 : f = (a_21^2-a_11*a_11*z)*v_13+(a_21*a_22-a_11*a_12*z)*v_14-

(a_11*a_22-a_21*a_12)*v_12+(a_22^2-a_12*a_12*z)*v_24+w*u;

i3 : ff = (a_21^2-a_11*a_11*z)*vv_13+(a_21*a_22-a_11*a_12*z)*vv_14

-(a_11*a_22-a_21*a_12)*vv_12+(a_22^2-a_12*a_12*z)*vv_24+w*uu;

i4 : I_X = ideal(f,ff);

o4 : Ideal of Oamb

i5 : I_D = ideal((a_21^2-a_11*a_11*z),(a_21*a_22- a_11*a_12*z),

(a_11*a_22-a_21*a_12),(a_22^2- a_12*a_12*z),w);

o5 : Ideal of Oamb

The map β is computed using the resolution of ID

i6 : CD = res I_D;

i7 : Beta = CD.dd_(2);

5 8

o7 : Matrix Oamb <--- Oamb

To calculate U we desire β defined over OX and must change rings:

i8 : Beta = sub(Beta,Oamb/I_X),;

i9 : BetaT = transpose(Beta),;

The kernel of βT is then

i10 : U = kernel BetaT,;
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i11 : U = generators U,;

The matrix U is a 5× 47 matrix with entries in OX . We understand a column

Uj = (u1j , u2j , u3j , u4j , u5j)
T

of U as the map φUj ∈ HomOX
(ID,OX) defined by

−w 7→ u1j , M12 7→ u2j , M13 7→ u3j , M14 7→ u4j , M24 7→ u5j .

For us, the inclusion map i corresponds to zeroth column of U :

i12 : i = U_0;

To find the columns of U corresponding to s0 and s1, we discard any column Uj of

U which is a multiple of i:

i13 : for j from 1 to 46 list

isSubset(ideal(U_j_0),ideal(i_0)) and

isSubset(ideal(U_j_1),ideal(i_1)) and

isSubset(ideal(U_j_2),ideal(i_2)) and

isSubset(ideal(U_j_3),ideal(i_3)) and

isSubset(ideal(U_j_4),ideal(i_4))

o13 = {true, true, true, true, true, true, true, true, true,

-----------------------------------------------------------

true, false, true, true, true, true, true, true, true,

-----------------------------------------------------------

false, false, true, true, true, true, true, true, true,

-----------------------------------------------------------

true, true, true, true, true, true, true, true, true, true,

-----------------------------------------------------------

true, true, true, true, true, true, true, true, true}

i14 : l=oo;

i15 : for j from 0 to 45 do if l_j == false then print (j+1)

11

19

20
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We define

i16 : s0 = U_11;

i17 : s1 = U_19;

By sight we can see that s0 and s1 correspond to the generators of HomOX
(ID,OX)

defined in the statement of this Lemma. All that remains to show is that U20 is a

combination of i, s0 and s1. This is immediate:

i18 : {U_20+s1+(v_14*uu-vv_14*u)*i}

o18 = {|0|}

|0|

|0|

|0|

|0|

We have now proven our result.

Remark B.1.1. We interpret s0 ∈ I−1D in the usual manner of s0(x) = y ↔ s0 = y
x .

An analogous statement holds for s1.

Remark B.1.2. We used Macaulay2 version 1.14 with packages FourTiTwo,

Topcom, ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone and Truncations.

Should a different Macaulay2 version be used, it is possible for different integers to

be returned by the loop in the above. Nevertheless, we can proceed as expected by

adjusting the columns chosen for s0 and s1.

Remark B.1.3. We note that Bij is a homogeneous polynomial for all i and j, and

the entries of the vectors s0 and s1 are homogeneous. Let (s0/i) denote the 5 × 1

matrix where the j-th entry is the j-th entry of s0 divided by the j-th entry of i.

Then every entry of (s0/i) has the same degree and we may calculate the degree of

s0 as an unprojection indeterminate. An analogous statement holds for s1.

With s0 and s1 now defined, we may find the linear relations of

HomOX
(ID,OX).

Lemma B.1.2. For i, s0, s1 ∈ HomOX
(ID,OX) defined as above, we have the

following relations:

za11s0 + a21s1 + a11B12 − a21B14 − a22B15 = 0,
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za12s0 + a22s1 +B12a12 +B13a21 = 0,

ws1 + (a21a22 + a11a12z)B35 + a11a21B23

+ a212zB45 + a12a21B24 + a12a22B25 + a221B34 = 0,

a21s0 + a11s1 + a12B15 = 0,

a22s0 + a12s1 − a11B13 −B14a12 = 0

and

ws0 − a211B23 − a11a12B24 − a11a21B34

− (a12a21 + a11a22)B35 − a212B25 − a12a22B45 = 0.

Proof. We check that the above relations hold by using the explicit definitions for

i, s0, s1 provided in Lemma B.1.1. This can be done using the Macaulay2 code

i19 : l1 = -a_11*z*s0-a_21*s1+(a_11*v_12*uu-a_11*u*vv_12-

a_21*v_14*uu+a_21*u*vv_14-a_22*v_24*uu+a_22*u*vv_24)*i;

i20 : l2 = a_12*z*s0+a_22*s1+(-a_12*v_12*uu+a_12*u*vv_12-

a_21*v_13*uu+a_21*u*vv_13)*i;

i21 : l3 = -w*s1+(-a_11*a_12*z*v_13*vv_24+a_11*a_12*z*v_24*vv_13-

a_11*a_21*v_12*vv_13+a_11*a_21*v_13*vv_12-a_12*a_12*z*v_14*

vv_24+a_12*a_12*z*v_24*vv_14-a_12*a_21*v_12*vv_14+a_12*a_21*

v_14*vv_12-a_12*a_22*v_12*vv_24+a_12*a_22*v_24*vv_12-a_21^2*

v_13*vv_14+a_21^2*v_14*vv_13-a_21*a_22*v_13*vv_24+a_21*a_22

*v_24*vv_13)*i;

i22 : l4 = -a_21*s0-a_11*s1+(a_12*v_24*uu-a_12*u*vv_24)*i;

i23 : l5 = a_22*s0+a_12*s1+(a_11*v_13*uu-a_11*u*vv_13+a_12*v_14*uu

-a_12*u*vv_14)*i;

i24 : l6 = w*s0+(v_14*vv_13*a_21*a_11-v_13*vv_14*a_21*a_11+

v_24*vv_13*a_22*a_11-v_13*vv_24*a_22*a_11+vv_12*v_13*a_11^2

-v_12*vv_13*a_11^2+ v_24*vv_13*a_21*a_12-v_13*vv_24*a_21*a_12+
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v_24*vv_14*a_22*a_12-v_14*vv_24*a_22*a_12+vv_12*v_14*a_11*a_12-

v_12*vv_14*a_11*a_12+vv_12*v_24*a_12^2-v_12*vv_24*a_12^2)*i;

As l1, ..., l6 are equal to 0, the relations hold for i, s0 and s1 as vectors and their

counterparts in HomOX
(ID,OX).

This provides the linear equations of the unprojection (see Section 2.3).

Remark B.1.4. Note that these linear equations can be predicted by recreating

the Kustin-Miller style resolution of [39] (see Section 3.1.2).

Remark B.1.5. It may be the Macaulay2 may return different

The quadratic equation of the unprojection is obtained as in Lemma 3.1.1.

B.2 Example Unprojection Code

Codimension 4 Fano 3-folds can be constructed using computer algebra software.

The Magma code below realises GRDB numerical candidate #38,

Y ⊂ P(2, 3, 4, 5, 6, 7, 8, 9), via a type II
(2,1)
1 unprojection. With the help of the

initial data provided by Table A.1, the code is easily edited to construct many

numerical candidates.

First, we set up the initial data of the unprojection D ⊂ X ⊂ wP5 as in

Section 4.3.1. We define the ambient space wP5 = P(2, 3, 4, 5, 6, 7):

> P<x,y,z,u,v,w>:=ProjectiveSpace(Rationals(),[2,3,4,5,6,7]);

The divisor D ⊂ P(2, 3, 4, 5, 6, 7) is defined by the 2 × 2 minors of a matrix M

together with z = 0:

> M:=Matrix([[v,w,x*u,x*(x^3+y^2)],[u,x^3+y^2,v,w]]);

> D:=Scheme(P,Minors(M,2) cat [z]);

> M;

The output is:

[ v w x*u x^4+x*y^2]

[ u x^3+y^2 v w]

The variety X12,14 ⊂ P(2, 3, 4, 5, 6, 7) is defined by the degree 12 polynomial and the

degree 14 polynomial of Section 4.3.1:
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> f12:=Minors(M,2)[6]+Minors(M,2)[5]+z^3;

> f14:=x*Minors(M,2)[6]+x*Minors(M,2)[5]+Minors(M,2)[2]+

z*(x^5+z*v+u^2);

> X:=Scheme(P,[f12,f14]);

> f12;

> f14;

The outputs here are:

x^3*v + z^3 - x*u^2 + y^2*v + v^2 - u*w

and

-x^7 - 2*x^4*y^2 + x^5*z - x*y^4 + x^4*v - x^2*u^2 + x*y^2*v + z*u^2

+ z^2*v + x*v^2 - x*u*w + w^2

It is clear by construction that D ⊂ X; however, we use Magma to verify this:

> D subset X;

The output will be true. We check that X is quasismooth off D and the singular

locus of X is a set of finitely many nodes. The singular locus of X is defined:

> SX:=JacobianSubrankScheme(X);

We can check that it is 0-dimensional, reduced and a subset of D using the code:

> Dimension(SX) eq 0;

> IsReduced(SX);

> SX subset D;

Again, the outputs are all true. In this case X has 9 nodes:

> Degree(SX);

This completes the definition of the initial data of the unprojection. Using the

equations of Section 3.1.2, we know that the unprojection of (X,D) will lie in

P(2, 3, 4, 5, 6, 7, 8, 9). We define this space:

> Q<x,y,z,u,v,w,T_0,T_1>:=ProjectiveSpace(Rationals(),[2,3,4,5,6,7,8,9]);

Since the unprojection equations will require the ideal of X inside this new space,

we redefine X:
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> f12:=x^3*v+z^3-x*u^2+y^2*v+v^2-u*w;

> f14:=-x^7-2*x^4*y^2+x^5*z-x*y^4+x^4*v-x^2*u^2+x*y^2*v+z*u^2+z^2*v

+x*v^2-x*u*w+w^2;

The linear and quadratic equations of the unprojection will be defined using the

explicit equations of Section 3.1.2. To avoid confusion, we identify

z = zz, w = ww, A12 = A_12,

A12 = AA_12, B11 = B_11, B11 = BB_11,

B12 = B_12, B12 = BB_12, B22 = B_22,

B22 = BB_22, C = C, C = CC,

where the left-hand side is the notation used in Section 3.1.2 and the right-hand

side is the notation used in our Magma code:

> x_1:=u;

> x_2:=x^3+y^2;

> y_1:=v;

> y_2:=w;

> zz:=x;

> ww:=z;

> A_12:=1; B_11:=1; B_22:=0; B_12:=0; C:=z^2;

> AA_12:=x; BB_11:=x; BB_22:=1; BB_12:=0; CC:=x^5+u^2+z*v;

The linear and quadratic equations of the unprojection are:

> l1:=x_1*zz*T_0+y_1*T_1+x_1*(C*AA_12-A_12*CC)-2*y_1*(C*BB_12-B_12*CC)

-y_2*(C*BB_22-B_22*CC);

> l2:=x_2*zz*T_0+y_2*T_1+x_2*(C*AA_12-A_12*CC)+y_1*(C*BB_11-B_11*CC);

> l3:=ww*T_1+y_1^2*2*(B_11*BB_12-BB_11*B_12)+x_2^2*zz*2*(B_12*BB_22

-BB_12*B_22)+x_2*x_1*zz*(B_11*BB_22-BB_11*B_22)+x_2*y_2*(A_12*BB_22

-AA_12*B_22)+x_2*y_1*2*(A_12*BB_12-AA_12*B_12)+x_1*y_1*(A_12*BB_11-

AA_12*B_11)+y_2*y_1*(B_11*BB_22-BB_11*B_22);

> l4:=y_1*T_0+x_1*T_1+x_2*(C*BB_22-B_22*CC);

> l5:=y_2*T_0+x_2*T_1-x_1*(C*BB_11-B_11*CC)-2*x_2*(C*BB_12-B_12*CC);

> l6:= ww*T_0-x_2^2*(A_12*BB_22-AA_12*B_22)-x_2*x_1*2*(A_12*BB_12-

AA_12*B_12)-x_2*y_2*2*(B_12*BB_22-BB_12*B_22)-x_2*y_1*(B_11*BB_22-

BB_11*B_22)-x_1^2*(A_12*BB_11-AA_12*B_11)-x_1*y_2*(B_11*BB_22-

BB_11*B_22)-x_1*y_1*2*(B_11*BB_12-BB_11*B_12);

> q:=T_1^2-T_0^2*zz-T_0*(C*AA_12-A_12*CC)-2*T_1*(C*BB_12-B_12*CC)
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+(C*BB_22-B_22*CC)*(C*BB_11-B_11*CC);

The unprojection Y ⊂ P(2, 3, 4, 5, 6, 7, 8, 9) of (X,D) is:

> Y:=Scheme(Q,[q,l1,l2,l3,l4,l5,l6,f12,f14]);

We may check that Y is a 3-fold of codimension 4:

> Dimension(Y) eq 3;

> Codimension(Y) eq 4;

and Y has an empty singular locus:

> SY:=JacobianSubrankScheme(Y);

> IsReduced(SY);

> Dimension(SY) eq -1;

The output for each line is true. For complete clarity, we compare the Hilbert

numerator of Y to the Hilbert numerator of numerical candidate #38. The Hilbert

series of Y is defined by

> PY:= HilbertSeries(Ideal(Y));

and its Hilbert numerator is

> HilbY:=PY*&*[1-Parent(PY).1^a : a in Gradings(Ambient(Y))[1]];

> HilbY;

The output is, as required:

t^43 - 2*t^31 - t^30 - 2*t^29 - 2*t^28 - t^27 + 2*t^24 + 2*t^23

+ 3*t^22 + 3*t^21 + 2*t^20 + 2*t^19 - t^16 - 2*t^15 - 2*t^14

- t^13 - 2*t^12 + 1

Remark B.2.1. The type II
(3,0)
1 unprojection construction of Section 4.3.2 can be

defined in a similar manner. Suitable Macaulay2 code is provided by [33] (see [28]

in particular).

B.3 Initial Data Code

When using type II1 unprojections to realise codimension 4 numerical candidates as

Fano 3-folds, we are often more interested in the end result rather than the initial

data of the unprojection. For our purposes, the general codimension 2 complete
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intersection X ⊂ wP5 containing D is sufficient. In this section we define code to

construct “general” initial data.

Given the input of (i, j, wP5, D), the code below constructs a random

codimension 2 complete intersection Xi,j ⊂ wP5 which contains D, defined in the

usual type II1 manner. The constructed X is quasismooth off D and has a singular

locus equal to finitely many nodes. In computer algebra, general loosely translates

to random; therefore, the returned X is general in that it belongs to the Zariski

open set of codimension 2 varieties Xi,j ⊂ wP5 which contain D, are quasismooth

off D and have only finitely many nodes.

We begin by constructing random polynomials in Magma. For a given triple

(d,P,coeffs), we define a function randpoly which constructs random polynomials

of degree d on the projective space P where the coefficients of the polynomials are

in the sequence coeffs:

> randpoly := func< P,d,coeffs | d ge 0 select &+[CoordinateRing(P)|

Random(coeffs)*m:m in MonomialsOfWeightedDegree(CoordinateRing(P),

d)] else CoordinateRing(P)!0 >;

Similarly, we define a function randpolyD which constructs a random polynomial of

degree d in the ideal generated by ID:

> function randpolyD(P,ID,d,coeffs)

> R := Universe(ID);

> error if not R cmpeq CoordinateRing(P),"ID isn’t a sequence of

polys on P";

> f := R!0;

> for m in ID do

> if WeightedDegree(m) le d then

> f +:= m*randpoly(P,d-WeightedDegree(m),coeffs);

> end if;

> end for;

> return f;

> end function;

We are now in a position to define our desired code. To construct Xi,j in

wP5 containing a type II
(2,1)
1 divisor D, we define the function:

> function TypeII1_21(i,j,P,x,y,z,w : coeffs := [1..20])

> error if not (#x eq 2 and #y eq 2),

"Arguments 4 and 5 should have length 2";
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> error if not (i+j eq &+Gradings(P)[1]-1 and Dimension(P) eq 5),

"Given equation degrees do not define an index 1 Fano 3-fold";

> RP := CoordinateRing(P);

> error if not (z in RP and w in RP and Universe(x) eq RP and

Universe(y) eq RP),

"Polynomial arguments must lie in the coordinate ring of P";

> ZZXX:=[ x[i]*z: i in [1,2]];

> M:=Matrix(CoordinateRing(P),2,4, y cat ZZXX cat x cat y);

> ID:=Minors(M,2) cat [w];

> D:=Scheme(P,ID);

> fi:=randpolyD(P,ID,i,coeffs);

> fj:=randpolyD(P,ID,j,coeffs);

> X:=Scheme(P,[fi,fj]);

> SX:=JacobianSubrankScheme(X);

> is_ok := Dimension(SX) eq 0 and IsReduced(SX);

> num_nodes := is_ok select Degree(SX) else -1;

> is_ok and:= D subset X and SX subset D;

> return is_ok, num_nodes, X, D;

> end function;

The input data of this function comprises of

1. i and j, the integers corresponding to the degrees of the equations defining

our desired X;

2. P, the weighted projective space containing X;

3. x and y sequences of polynomials on P of length 2; and

4. z and w polynomials on P.

The type II
(2,1)
1 divisor D is defined as in Section 3.1.2 by identifying y = [y1, y2],

x = [x1, x2], z = z and w = w. Note that the function TypeII1_21 is defined with

the extra optional sequence coeffs which specifies a range for the coefficients of the

randomly chosen polynomials. If no information is provided here, the function runs

with coefficients in {1, . . . , 20}. The output of TypeII1_21 will be:

1. bool, true or false depending on whether X is quasismooth off D, with a

reduced singular locus consisting of finitely many nodes;

2. the number of nodes of X;
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3. X, X itself; and

4. D, D itself.

Remark B.3.1. Note that the function has inbuilt error codes which occur if the

input does not define a 2× 4 matrix, if the data supplied for D does not lie in the

appropriate coordinate space or if the provided Xi,j ⊂ P(a0, . . . , a5) is such that

i+ j − 1 6= (a0 + · · ·+ a5).

We may analogously define a function for the type II
(3,0)
1 unprojection by

altering the arguments and errors:

> function TypeII1_30(i,j,P,x,y,z : coeffs := [1..20] )

> error if not (#x eq 3 and #y eq 3),

"Arguments 4 and 5 should have length 3";

> error if not (i+j eq &+Gradings(P)[1]-1 and Dimension(P) eq 5),

"Given equation degrees do not define an index 1 Fano 3-fold";

> RP := CoordinateRing(P);

> error if not (z in RP and Universe(x) eq RP

and Universe(y) eq RP),

"Polynomial arguments must lie in the coordinate ring of P";

> ZZXX:=[ x[i]*z: i in [1,2,3]];

> M:=Matrix(CoordinateRing(P),2,6, y cat ZZXX cat x cat y);

> ID:=Minors(M,2);

> D:=Scheme(P,ID);

> fi:=randpolyD(P,ID,i,coeffs);

> fj:=randpolyD(P,ID,j,coeffs);

> X:=Scheme(P,[fi,fj]);

> SX:=JacobianSubrankScheme(X);

> is_ok := Dimension(SX) eq 0 and IsReduced(SX);

> num_nodes := is_ok select Degree(SX) else -1;

> is_ok and:= D subset X and SX subset D;

> return is_ok, num_nodes, X, D;

> end function;

Example B.3.1. It is possible to construct a codimension 4 Fano 3-fold

Y ⊂ P(2, 3, 4, 5, 6, 7, 8, 9) which is different to the one constructed in Section 4.3.1

by simply unprojecting using different initial data. We can set up initial data as

follows:
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> P<x,y,z,u,v,w>:=ProjectiveSpace(Rationals(),[2,3,4,5,6,7]);

> i:=12;

> j:=14;

> yy:=[w,v];

> xx:=[x^3+y^2,u];

> repeat

> time bool,N,X,D := TypeII1_21(i,j,P,xx,yy,x,z);

> until bool;
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