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Abstract

In this thesis we study families of group schemes of prime power order,
in particular, of order p?>. We show that these group schemes can be put
into deformation families and we investigate the associated invariant theory,

including actions and quotient varieties.



Preface

This thesis consists of four chapters. In Chapter 1 we recall the main aspects

of finite flat group schemes over a ring and in particular the decomposition
G = Grr X Glr X Grl X Gll7 (1)

for G a finite group scheme over a perfect field k. In Chapter 2 we study
Dieudonné correspondences and use them to construct a parameter space for
primitively generated finite group schemes. We also set up the Dieudonné
correspondence which is used to classify local-local group schemes of prime
power order in Chapter 3. Finally, in Chapter 4 we put group schemes in
deformation families and consider their representation and invariant theory,
with the goal towards constructing nonclassical Godeaux surfaces in positive

characteristic.



Chapter 1
Group schemes

This chapter is a reminder of the basics of group schemes of prime power order

and, in particular, the decomposition
G =~ Gy Xi G X G X G, (1.1)

where GG is an affine group scheme over a perfect field k. Our main references
are [Wat79], [Pin], and [DGS80].

1.1 Group schemes: definitions and main examples

In this section we will be working over a commutative base ring S which is not

assumed to be a field.

Definition 1.1.1. An affine group scheme over S is a representable functor

G : Algg — Grp, (1.2)

from the category of S-algebras to the category of groups. The representing
object A of G is called the representing algebra of G. All group schemes in

this thesis are assumed to be commutative unless stated otherwise.

For an affine group scheme G there is, by definition, a natural transformation

G ~ hy. (1.3)

The functor h 4 is defined by
ha : Algg — Grp, (1.4)
R +— Homg(A, R) (1.5)



for some S-algebra A. Since G lands in the category of groups, there are

natural transformations

m:GxsG— G, (1.6)
.G -G, (1.7)
1:SpecS — G, (1.8)

corresponding to group multiplication, inversion, and identity element respect-
ively. Taking the global sections functor, we see that the S-algebra A is
equipped with the maps

A:A— A®s A, (1.9)
S: A A, (1.10)
e: A= S, (1.11)

called the comultiplication, the antipode, and the augmentation respect-
ively, such that certain diagrams commute (see p.8 of [Wat79]). An S-algebra A
with maps A, S, € satisfying these conditions is called a Hopf algebra over S.
Alternative names for Hopf algebras include commutative and cocommutative
augmented algebras, bialgebras, bigebras with antipode etc.

A group scheme is called commutative if its essential image lies in the sub-
category of commutative groups. Most of the group schemes we consider will

be commutative, with the sole exception of Example 1.1.9.

Theorem 1.1.2. [Wat79, 1./ Theorem] There is an equivalence of categories

{ Commutative affine group schemes over Spec S} ~ {Hopf algebras over S}.
(1.12)

Just like it is enough to specify only a group law in order to define a group,
it is enough to specify a comultiplication in order to define a Hopf algebra.

This principle holds in greater generality by Yoneda lemma.

Example 1.1.3 (The additive group scheme). The additive group scheme is
defined as
Gq @ Algg — Grp, (1.13)

R+ (R, +) (1.14)

and is represented by S[x]. The comultiplication is

r—=1r+r®l. (1.15)



Example 1.1.4 (The multiplicative group scheme). The multiplicative group
scheme is defined as
G, : Algg — Grp, (1.16)

R (R, %). (1.17)

This group scheme is represented by S|z, z71] = S[z,y]/(zy — 1) with comulti-
plication
T T . (1.18)

Definition 1.1.5. An S-group scheme G is called finite if its representing

algebra is finite over S. The dimension of A over S is called the order of G.

Example 1.1.6 (apn). Let k be a field of positive characteristic p and n a

positive integer. The group scheme co,» is defined as

a,n : Alg, — Grp, (1.19)

R {re R:v"" =0}. (1.20)

This is an absolute Frobenius kernel of G,. Its representing algebra is k[z]/(zP")
with comultiplication
r—rzl+1® . (1.21)

It is clear that a,» is a finite group scheme of order p™.

Example 1.1.7 (u,, g). The group scheme p,, ¢ is a Frobenius kernel of G,
namely,

Ky, s Algg — Grp, (1.22)

R—{reR:r" =1} (1.23)

Example 1.1.8 (Finite constant group schemes). Let I" be a finite group in
a group-theoretic sense. Let A = ST = Homg (T, S). For each o € ' define
es € A tobe 1l on o and 0 otherwise. Then {e, }ser is an S-basis of A. The
Hopf algebra structure on A is given by

Ales) =Y e, ®@er. (1.24)

pT=0

Such a group scheme is denoted by I'g or just I' if no confusion is likely to

arise. We call such group schemes finite constant group schemes.

If T is a constant group scheme of order p? for p prime then it is either



(Z/p)? or Z/p? and is commutative in both cases. This is not the case for

group schemes, as the following example shows.

Example 1.1.9 (A noncommutative group scheme of order p?, A.3.6 in

[Gor02]). Let k be a ring of characteristic p. Consider the functor

G : Alg;, — Grp, (1.25)

RH{(? g:mEMAmﬁEaAM} (1.26)

This is a subfunctor of GLs. It is easy to see that this functor G is represented
by A = k[z,y]/(aP — 1,yP) with Hopf algebra structure induced from that of
GLQi

pARrA— A, (1.27)
T, (1.28)
y—ry+ty, (1.29)
et Ak, (1.30)
x> 1, (1.31)

y =0, (1.32)
S:A— A, (1.33)
T (1.34)
y— -2 ey (1.35)

Let A, B be two matrices in G(R) for some k-algebra R, i.e.,

m a n b
e ()= (2 ) o



Then, in general,

AB — mn mb-+a y mn na-+b _ A, (1.37)
0 1 0 1

since mb + a # na + b. This shows that GG is not commutative. A basis of A is
given by {z'y’}o<i j<p—1, so the order is p*.

Here is another way to look at G: u,, acts on «; by multiplication:

pp(R) X ap(R) — ap(R), (1.38)

(m,a) — ma, (1.39)
with (ma)? = 0. This makes G into a semidirect product of oy, and .

Definition 1.1.10. Let N, G be group schemes over a base S. Consider the

automorphism functor of NV

Aut(N) : Sch /S — Grp, (1.40)
T — Aut(Nr) (1.41)

and an action of G on N
p: G — Aut(N). (1.42)

The semidirect product group scheme N x,G is the representable functor

N x,G :Sch /S — Grp, (1.43)

T — N(T) x,, G(T). (1.44)

While we mostly work with finite flat group schemes over a field, where
flatness is automatic, we will also work with finite flat group schemes over
general rings. The kernel of a morphism of finite flat group schemes over a
field is a finite flat group scheme. Moreover, the category of commutative finite
group schemes over a field is abelian (see [Stacks, Lemma 03CN]). However,

this does not hold over rings as the next example shows.

Example 1.1.11. Consider the group scheme

Alg; — Grp, (1.45)



B {be B:V* =1}, (1.46)

i.e., the functor sending a ring to its set of idempotents. The group law is
()~ ao+y—2zy=x(1—y)+y(l—ux). (1.47)

The reason for this composition law is that if x and y are idempotents in a
commutative ring, then zy, (1 —y),y(1 —x), and (1 —x)(1 —y) are orthogonal
idempotents, so any sum of these is an idempotent as well. This functor is in
fact represented by Z[z]/(z? — z), i.e., this is the constant group scheme Z/2.

Define the morphism

72 = po, (1.48)
Z/2(B) — py(B), (1.49)
e 1— 2e. (1.50)

The kernel of this morphism is represented by Z[x]/(2? — x,2z), which is finite,

but has torsion, to it cannot be a flat module.

1.2 Group schemes of rank two over a local ring

Classification of group schemes over general rings is quite difficult. We can get
full results over low ranks. Let R be a commutative local ring. Following Tate
and Oort ([Tat97] and [TO70]), we will show how to classify group schemes
of order 2 over R. Let A be the representing Hopf algebra of such a group

scheme. We have the short exact sequence
0—-1—-A5R—0, (1.51)

which is split because R is projective over itself. More precisely, the splitting
is given by the structure map R — A. Recall that for any R-modules M, N

there is a canonical isomorphism

;\M@Ng $ /\M@/]\N. (1.52)

i+j=n

Now, A is an R-module of rank 2 by assumption. We have

3 3 2
O:/\A:/\kere@/\kere, (1.53)



which implies A*kere = A%kere = 0. Tt follows that

2 2 1 1
R:/\A:/\kere@/\kere:/\kere:kere. (1.54)

We have shown that for a group scheme of rank 2 the augmentation ideal has
rank 1. This does not generalise: if k& I = k™ for n > 3 then kere is not
necessarily free, but it does hold over fields.

Now let {x} be an R-basis of I, so that I = Rx. Then A is spanned by {1,z},
so A® A is spanned by {1®1,2®1,1®z,x ® x}. There exist scalars a1, as, as,
and b in R such that

Alx)=a1(1®1) +a(zr®1) +az(1®x) + bz @ x). (1.55)
In a Hopf algebra we must have
(e®id)o A =1idy. (1.56)
Applying these to z we get
(e®id)(a1(1®@ 1)+ a2(z®1)+a3(l®@x) + bz ®x)) = a1 + agx = x, (1.57)

which implies a; = 0 and as = 1. By symmetry, we must also have ag = 1.

The comultiplication law is then
Alz)=21+1Qz+b(z ®x). (1.58)

The augmentation module I is an ideal, so z? € I, which means that there is
a € R such that 22 = —ax and 22 + az = 0. It follows that

A= R[X]/(X? +aX) (1.59)

as R-algebras.

Let us now look at the antipode map. We have
S(z) = u+ cx, (1.60)

for u,c € R. Note that
(S,id) o A =¢, (1.61)

which corresponds to g x g1

= 1 in abstract group theory. Applying both
sides to = we get

u+ cx + x + buz + bex? = 0, (1.62)



from which it follows that © = 0. Note that it is not possible to conclude that
¢ = —1 from the above since 22 = az. We now know that S(z) = cx. But

S? =1id, so ¢’z = x and ¢® = 1. By expanding both sides of
A(z?) = A(—az), (1.63)

we can show that ab = 2 (look at the coefficient of x ® x). From the above, we

get
cx +x — beaxr =0, (1.64)

i.e.,
c+1—abc=0, (1.65)
c+1—2c=0, (1.66)
c=1. (1.67)

Conversely, given a,b € R with ab = 2, we can define the affine group scheme
Gap(A) ={y€ A:y’ +ay =0} (1.68)

with the group operation
(y1,92) = y1 + y2 + by1ye. (1.69)

Define an equivalence relation on R? by declaring (a1,b1) ~ (az,b2) if and only

if there is u € R* such that a; = uas and by = v~ 'by. Then
Gaypy = Gayg by (1.70)

if and only if (a1, b1) ~ (az2,b2). The Hopf algebra isomorphism is given by

Garor = Gas o (1.71)
T ux (1.72)

with the inverse
T U (1.73)

Conversely, every isomorphism of Hopf algebras of rank 2 is of this form — for
the proof it is crucial that ab = 2.

We have already seen examples of G, . For example, if k is a field then we have
G1,2 corresponding to k[x]/(x? +x) which is Z/2 and Go1 = k[z]/(2® +1) = .



Furthermore, if 0 = 2 in k then Gy is a. Cartier duality (see the next section)

swaps a and b:
Gy = Gha. (1.74)

1.3 Cartier duality for finite group schemes.

Let G be a commutative finite flat group scheme over S and let A be its

representing algebra. The S-linear dual algebra of A
AP .= Homg(A4, S) (1.75)

is also a Hopf algebra. Indeed, let m,S,7 denote the multiplication, the
antipode, and the S-algebra structure map for A. Then

mP . AP — AP @4 AP, (1.76)
SP . AP — AP (1.77)
(1.78)
(1.79)

iP AP 5 9P ~ 8

give A the structure of a Hopf algebra. Let GP be the group scheme corres-
ponding to AP. We call GP the Cartier dual of G.

Theorem 1.3.1. [Wat79, p. 17] The Cartier dual functor is a duality theory for

the category of finite commutative group schemes, i.e., there is an isomorphism

of functors
id ~ (—)P”. (1.80)
There is a duality pairing
G x5GP = Gy s, (1.81)
(9,¢) = ¢(g). (1.82)

Furthermore, for any S-algebra B,
GP(B) = Homp(Gp, G, ) = Homp(B[T*!, A®g B]). (1.83)

In other words, on the level of group schemes, the Cartier dual behaves like
the Hom-sheaf Hom(—, G,,) and this can be made precise by working in the
fppf-topology (see Section 021L in [Stacks] and Chapter 5 of [Ols16]).

Example 1.3.2 (u,, = Z/n"). The dual of u,, is represented by

Homg(S[t*!, S[z]/(z™ — 1)]). (1.84)



Take ¢ : S[t*!] — S[z]/(z" — 1)] and let ¢(t) = p(x) = E?:_Ol a;z’. Note that
p(fg) = p(f)p(g) for f,g polynomials, so

D ai(fg) =D aif)D ailg)’ mod (f7—1,9" - 1). (1.85)

Comparing the terms above we see a;a; = 0 if i # j and a? = 1. Also note
that ) a; = 1, so the a; are orthogonal idempotents. Each a; corresponds to
a point in Z/n, the constant group scheme with base S, which is the Cartier
dual of u,,.

We can also see the duality in more explicit terms. The constant group scheme

Z/n has an S-basis {eo, ..., ep—1} with maps

Ace Z ej ® ey, (1.86)
k=i

€:eg— 1,e520 — 0, (1.87)

S:iei—e_, (1.88)

i:§s, (1.89)

Ve ®ej— 0 6. (1.90)

Let the dual group scheme Z/n” have the dual basis {¢,...,eP~'}, with maps

VP e @, (1.91)
iP el 1, (1.92)
SP et e, (1.93)
P s, (1.94)
AP et @ el s et (1.95)

which are the maps defining the Hopf algebra structure on S[z]/(z" — 1), the
representing algebra of p,, g.
Now assume S has positive characteristic p. We can write down the Cartier

pairing for the pair (u,,Z/p). It is a function
S[E*Y) = Sla]/(a? — x) @s S[y)/ (" — 1), (1.96)

where S[z]/(zP — ) represents Z/p. Let {1,z,...,2P~1} be an S-basis of
S[z]/(zP — 1) and let fo, ..., fp—1 be its dual basis. Then

ﬁ:ﬁ. (1.97)

i!

10



Denote by exp,, the truncated exponential

a? a1
exp,(a) = 1+a+?+...+m. (1.98)
Hence y = exp,,(f1). The Cartier pairing is
St = S]/ (2P — x) @5 S[yl/(y* — 1), (1.99)
t = exp,(z ® log(y)). (1.100)

[a

Example 1.3.3. The additive finite group scheme «,, is self-dual: ozg ay,

with the dual basis given by divided powers.

1.4 The canonical decomposition

In this section we will recall how every finite commutative algebraic group
over a perfect field admits a canonical decomposition as a direct sum of four
components. For the more precise statement, see Prop 1.4.8.

Let G = Spec A be a finite commutative algebraic group scheme and Tz the
Zariski tangent space at the origin. The point 0 € G is the image of Speck — G

which comes from the counit Hopf algebra map e¢: A — k.

Proposition 1.4.1. There is an isomorphism of k-vector spaces
Tao = Hom(GP, G,), (1.101)

where the k-action on the right hand side is induced from the k-action of G,.

Proof. The tangent space T o is naturally isomorphic to the kernel of the map
G(k[t]/(t?) — G(E). (1.102)

This corresponds to the kernel of the restriction map of k-algebras
Hom (A, k[t]/(t*)) — Hom(A, k). (1.103)

A map f: A — k[t]/(t?) = k © tk has two components and the first component
has to be the counit map. So f = € + ¢\, where A : A — k is a linear map.
Define

fk[t] — AP (1.104)

ts A (1.105)

11



This gives an element of Hom(GP,G ) by taking Spec f.
Conversely, given 1 : k[t] — AP, let A = 9 (t) and define

¥ A — K[t]/(#%) (1.106)
a— e(a) +tA(a). (1.107)
It is clear that we do get a linear bijection between these vector spaces. O

Proposition 1.4.2. If k is a field of characteristic 0, then any finite commut-

ative group scheme over k is étale.

Proof. Let G be a finite group scheme over k. We can assume that k is
algebraically closed. The translation action of G(k) on G is transitive, hence it
is enough to show that G is étale at the origin. By the previous proposition, it
is enough to show that any map GP — G, is zero. The image of GP under
this map is a finite subgroup scheme of G,. We will show that G, has no
finite subgroup schemes. Let H C G, be a finite subgroup scheme. Then
H(k) C Gu(k) = kt is a finite subgroup. But kT is a Q-vector space, in
particular, it has no finite subgroups. Hence H (k) = 0 and it follows that H is

of the form k[z]/(x™) for some n. The comultiplication
r—=1@r+rel (1.108)

of G, must restrict to H as well. Therefore,

n
olt+lon)" =) <T,L>x"i®xi (1.109)

i=1
must be in the ideal generated by «™ ® 1,1 ® ™. Since the characteristic of k
is zero, all the binomial coefficients in the formula above are nonzero. Hence
n=1and H =0. 0

Using a similar argument, we can show that if char k = p, then «, is simple.
Indeed, let H C oy, be a subgroup scheme. Then it is of the form Spec k[z]/(z")
for n < p. So all the binomial coefficients are again nonzero and n = 1, so
H=0.

Remark. For our proof it was essential that G is commutative because we are
using Cartier duality. However, the result holds without the commutativity
assumption, see [Wat79, §11.4].

Proposition 1.4.3. Let G be a finite commutative algebraic group over a field

k. The following are equivalent:

12



(i) Gyser is constant.
(ii) G is étale.
(iii) Fg is an isomorphism.

Proof. Let us show that (i) is equivalent to (ii). By definition, an étale
morphism is a smooth morphism of relative dimension zero, i.e., flat, finite
type, with vanishing sheaf of differentials. Since k is a field, G is étale if and
only if Qg = 0. Formation of the sheaf of relative differentials is invariant
under base change, so Qg = 0 is equivalent to Qg, .;, kser = 0. This means
that Gpsep is reduced and all its residue fields are separable over £°P. But k%P
is separably closed, so

Glser = U Spec k5P (1.110)

as a scheme. The group structure on Gser corresponds to the group structure
on G(k°P), yielding
Gpser = G(EP). (1.111)

Now let us see that (ii) is equivalent to (iii). The group G is étale if and only if
the tangent space at the identity is trivial. The absolute Frobenius ¢ and the
relative Frobenius Fg are both zero at this tangent space, so the étaleness of
G is equivalent to Fg being an infinitesimal isomorphism. But Fg is bijective

on points, so this is equivalent to Fz being an isomorphism. ]

Definition 1.4.4. Let G be a finite commutative group scheme over a field. Let

Fg : G — G®) be the relative Frobenius morphism. It induces a homomorphism

Fgp : GP — (GPYP) = (gP)D, (1.112)

The Verschiebung morphism V¢ (also denoted by V' if there is no confusion
about G) is defined as the dual of Fion:

Vo =FL, G - G. (1.113)

Taking the Cartier dual of the previous proposition gives us
Proposition 1.4.5. The following are equivalent:
(i) Gpser = ED?ZI o, gsep for some positive inlegers n;.
(ii) GP is étale.
(iii) Vg is an isomorphism.
Now let G**¢ C G be the underlying reduced subscheme of G. In general,

G™ does not have a natural group scheme structure making it a subgroup

13



scheme of G. However, if k is a perfect field, then G*9 is naturally a closed
subgroup of G. Since G™Y is reduced, it is smooth ([SGA3]), hence it is
geometrically reduced ([SGA3]). By [EGA4, Volume TV 4.6.1] G™4 x;, G is

reduced and hence the restriction of the multiplication map
GxyG—=>G (1.114)

to G4 x;, G4 factors through G, making it a subgroup scheme of G. In
general, for G noncommutative, G**d C G is not normal.

Denote by G° C G the connected component of the identity. It is a group
subscheme of G by [Wat79, p. 51].

Proposition 1.4.6. Let G be a finite group scheme over a perfect field k.

Then there is a canonical isomorphism of group schemes

G =G G, (1.115)
Proof. We will show that the natural map

Gl - G /GY (1.116)

is an isomorphism. The formation of G* and G° is compatible with base
change, so without the loss of generality we may assume that k is separably
closed. Then G — G/G is a bijective morphism between constant group

schemes, i.e., an isomorphism. ]

Remark. It is crucial that k is a perfect field in the above proposition, as

there are counterexamples for fields which are not perfect.

Definition 1.4.7. A finite commutative group scheme G is local if G = G°
and reduced if G = G™4. A group scheme G is of a-b type if G is of type a
and GP is of type b. Such a group scheme is called a group scheme of pure
type.

The previous definition implies that there are four possibilities for a finite
commutative group scheme G: reduced-reduced, reduced-local, local-reduced,
and local-local. Every group splits into the direct sum of four groups of these

types.

Proposition 1.4.8. Let G be a finite commutative group scheme over a perfect

field k. There is a unique and functorial decomposition of G
G= Grr@Grl@Glr@Glla (1117)

with Gy, Gy, Gir, Gu of reduced-reduced, reduced-local, local-reduced, local-local
types respectively.

14



Proof. The decomposition G = G® & G is functorial in G. Take the Cartier
dual
GD — (GO D Gred)D — (GO)D @ (Gred)D (1.118)

and apply the decomposition to each factor, so
GD _ ((GO)D)O ® ((GO)D)red ® ((Gred)D)O ® ((Gred)D)red‘ (1‘119)

Apply the Cartier duality functor again to get

G =(G")P (1.120)
— (((GO)D)O D ((GO)D)red D ((Gred)D)O @ ((Gred)D)red)D (1121)
=Gy ® Gy & Gy @ Gy (1.122)

O

Note that, in particular, there are no homomorphisms between groups of

different types.

Proposition 1.4.9. Let G, H be finite algebraic groups over k with G local
and H reduced. Then

Hom(G, H) = Hom(H, G) = 0. (1.123)

Proof. Let A= O(G),B = O(H), i.e., Ais local and B is reduced. It is clear
that there are no k-algebra homomorphisms A — B — the maximal ideal of A
is nilpotent since A is artinian, hence any homomorphism maps the maximal
ideal it to zero. But A = m, @ k, hence Hom(A, B) = 0.

Recall that a local ring has only two idempotents, 0 and 1. Indeed, if 2 = 22
then z(z—1) = 0. If z is in the maximal ideal, then z—1 is invertible and = = 0.
If z is not in the maximal ideal, then it is invertible and x = 1. Also recall a
theorem by Dedekind: if B is a reduced artinian ring, then B decomposes as a
finite product of fields

B =k x .. %Xk, (1.124)

Let ey, ..., e, be idempotents in B (e; is the row of zeros except for 1 in the
ith place). Because epip = idg, we may assume that eg(e;) =1, i.e., k; = k.
Since eje; = 0 for all ¢ > 2 we have eg(e;) = 0. Let f: B — A be a morphism
of algebras. We must have e4 = ego f, so f(e1) =1 and f(e;) =0 for all i > 2.

But this implies f = ig o€y, so f =0 as required. ]

In fact, we can replace Hom by Ext! in the proposition. If we are working

over a ring, nonsplit extensions are possible.
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Example 1.4.10. Let R = Z[HT\E] = Z[a] be the base ring. Notice that
aa = 2. By Section 1.2, there are 4 group schemes of order 2 over R. These
are 7/2, uy, G, = Spec R[x]/(x? — az), and G = Spec R[y]/(y? — @y). Define

an inclusion

0> Z/2 = Gy x G (1.125)

by
x > at, (1.126)
y > at, (1.127)

where ¢ is a co-ordinate on O(Z/2). The cokernel is a representable sheaf and

is isomorphic to py. The resulting short exact sequence
0—=2Z/2— Gy xpGg— py —0 (1.128)

is not split. This can be checked by looking at its étale and connected parts.

Proposition 1.4.11. Let G be a commutative finite group scheme of pure

type. Then
(i) G is reduced-reduced if and only if F,V are both isomorphisms.
(i) G is reduced-local if and only if F' is an isomorphism and V is nilpotent.
(iii) G is local-reduced if and only if F' is nilpotent and V is an isomorphism.
(iv) G is local-local if and only if F,V are both nilpotent.

Proof. Suppose that G is local, i.e., G = G°. The maximal ideal of G°
corresponding to the group identity element is nilpotent, so it is annihilated by
some power of the absolute Frobenius. Hence it must be annihilated by some
power of the relative Frobenius as well. Hence F' is nilpotent on G. On the
other hand, if G is reduced, then by 1.4.3 we know that F' is an isomorphism.
Applying the same argument to the case of G reduced and then to GP yields
the result. O

Theorem 1.4.12. The assignment
G — G(k%) (1.129)

defines an equivalence between the category of finite étale group schemes over a
field k and the category of continuous finite Z[|Gal(k®/k)]-modules.

Sketch of proof. Let I" be a finite abelian group with a continuous action of

G, the absolute Galois group of k. An action is continuous if each v € T is
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fixed by some G, for a field extension L/k. Define the corresponding group

scheme A(T") as follows. As a k-vector space, A(T") consists of maps
f:T—k (1.130)
which commute with the action of Gj:

f(g7) =~f(9). (1.131)

Let L/k be a finite extension such that G, acts trivially. Every f in A(I") then
lands in L and A(T") is finite dimensional over k. In fact, dimy A(T') = |T'|. The

ring structure on A(T") is defined pointwise:

fa(y) = f(v)g(v)- (1.132)

The Hopf algebra structure is

A(f)(7,6) = f(y+9), (1.133)
S(f)(g) = f(=9), (1.134)
e(f)(g) = f(0). (1.135)

The algebra A(I") is a finite étale Hopf algebra, i.e., it is isomorphic to a finite

direct sum of finite field extensions of k. O

The theorem implies that the study of G,.., G,; and, by Cartier duality, G;,
is essentially Galois theory. In particular, the case of k algebraically closed,
gives an equivalence with finite abelian groups. On the other hand, the group

schemes of local-local type are very different and need further tools.

1.5 Finite groups schemes of local-local type

Let G be a local-local group scheme over an algebraically closed field. We know
that Frobenius and Verschiebung are both nilpotent. We start with the case
F=V=0.

Proposition 1.5.1. If Fg = Vg = 0 then G = of™, where n = dimy, T .

Proof. Consider the short exact sequence of k-modules

0=-1—-ASk—0, (1.136)
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where € is the counit map. Since k is projective, the sequence splits and
A~ ] @ k. Recall that T o = (I/1?)V, so I is generated by n elements. But
F =0,s0aP =0forall a € I. Hence [ is nilpotent and its n generators generate
A as a k-algebra. Write A = k[z1,...,x,)/J, I = (21, ...,x,)/J for some ideal J.
Then z¥ € J for all i. Hence A must be a quotient of k[z1, ..., z,) /(27 ..., z}).
It follows that dimy A < p". By 1.4.1, we can work with morphisms G — G,

instead of tangent vectors. Let
¢:GP = G, (1.137)
be a morphism. Then, using V = 0 and functoriality of F,
Fg,00=0¢" oFup =¢PoVP =0. (1.138)

Therefore, ¢ factors through the kernel of Fg,, which is a,.
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Chapter 2

Dieudonné modules and Hopf

algebras

2.1 Classification of primitively generated Hopf al-

gebras

In this section we classify Hopf algebras which are primitively generated. Fix
a base ring S, which is an Fj-algebra. Let H be a finite flat Hopf algebra over

S. An element a € H is primitive if
Ala)=1®a+a®1. (2.1)

For example, x € S[z]/(2P) = O(ay,) is primitive. Let P(H) C H denote the
subset of primitive elements. A Hopf algebra H is primitively generated if
the smallest Hopf subalgebra of H which contains P(H) is H itself.

Example 2.1.1. Let H = O(ay,) = S[z]|/(2P). Then
P(H) = Sz, (2.2)
since for other powers z* of z we will have
A=A =1®z4+z21)#1@s' +2'® 1, (2.3)

because there will be mixed terms with coefficients not dividing p, unless i = p.

If H = S[z]/(zF") and H corresponds to the algebraic group ayn then

n—1

P(H)= Sz @ Sa¥ & Sa?’ .. @ S (2.4)

Let Z/p denote the constant group scheme, then P(Z/p) = Sz. The multi-
plicative group scheme p,,, represented by S[t]/(z” — 1) with comultiplication

A(r) = x ® z is primitive-free: P(p,,) = 0.
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Example 2.1.2. The p-torsion group scheme M, of a supersingular elliptic
curve over Fp is not primitively generated since it admits a quotient isomorphic
to ay which corresponds to a proper Hopf subalgebra containing all the

primitive elements. Indeed, we have a nonsplit extension
0= ap—=>Mpe—a,—0 (2.5)

in the category of commutative group schemes.

Proposition 2.1.3. Let H be a Hopf algebra and P(H) the set of primitive
elements. Then P(H) has the following properties:

1. P(H)NS =0,

2. P(H) is an S-module.

3. If S is a PID then P(H) is free over S.
4. t € P(H) implies tP € P(H).

Proof. The proofs are immediate, for example, for 1, let a € P(H) N S, then

Aa) =aA(l) =a®1, (2.6)
on the other hand,
Ala)=a®1+1®a, (2.7)
so that
a=a(l®l)=1®a=0, (2.8)
since 1®1 € H®H is 1. O

The last property implies that the Frobenius map restricts to primitive

elements, i.e., we can define

P(H) — P(H) (2.9)

t—tP. (2.10)

Example 2.1.4. Take oy, which is represented by H = S[z]/(aP) with x
primitive. We know that P(H) = Sz and F(z) = 0.

Example 2.1.5. Consider a,n, which is represented by H = S[z]/(2P") with

x primitive. Then

n—1

P(H) — Sz &SP &SP ... & SaP (2.11)
i+1

and F(zF') = 2P
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Example 2.1.6. If Z/p is the constant group scheme with P(Z/p) = Sx then
F(z)=x.

Define S{F'} to be the noncommutative ring of polynomials with single
variable F' and F's = sPF. This is the baby version of the Dieudonné ring, but

this will work for the primitively generated case.

Proposition 2.1.7 (Dieudonné correspondence for primitively generated Hopf
algebras). Let S be an F,-algebra and a principal ideal domain. There is an

equivalence of categories

{Finitely generated free primitively generated Hopf algebras over S} (2.12)

12

{Modules of finite type over S{F'}, free over S.} (2.13)

We call the modules on the right hand side of the equivalence primitive

Dieudonné modules.

Proof. For any H, the module of primitive elements P(H) is free over S and
the action of F' on H restricts to P(H), so it is indeed an S{F'}-module. For
a Hopf algebra morphism

¢ Hi — Hy (2.14)

the restricted map ¢|p(,) lands in P(Hz), so we do get a functor between
categories.

On the other hand, consider an S{F'}-module M of finite type free over S. Let
{e1,...,en} be an S-basis of M. Then

n
Fei = Z ajiej (2.15)
j=1
for some aj; € S. Define

H = S[x1, ..., 2]/ ({z? — Z ajiTj }izt,..n) (2.16)

with the x; primitive. Then H is a primitively generated Hopf algebra which
corresponds to M. O

Definition 2.1.8. A morphism of primitive Dieudonné moddules M; and
Ms is an S-linear map
M1 — MQ (217)

which respects the F-action.
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Remark. Taking just the functor

{S-Hopf algebras} — {S{F'}-modules} (2.18)

H v P(H) (2.19)

does not give us an equivalence. For example, P(Z/p?) = P((Z/p)?) and
S{F}|X] with X commuting variable is not in the image of P(—).

Remark. The functor P(—) is a contravariant Dieudonné module theory in
the sense of [DG80].

Example 2.1.9. Let G = «, then we know that it corresponds to the module
Se with Fe = 0.

Example 2.1.10. Let G = ayyn. This algebraic group corresponds to ;" Se;
with Fe; = e;41 if i # n and Fe, = 0. We can work backwards from the

module to recover the algebraic group.
Example 2.1.11. The finite group scheme Z/p corresponds to Se with Fe = e.

Example 2.1.12. Take M = Se; @ Sey and let F swap e; and es. The

corresponding Hopf algebra is
Slay, wo] /(2] — @2, 25 — 11) = S[a]/ (2" — ), (2.20)

where x is primitive. This Hopf algebra corresponds to Z/p?.

2.2 The parameter space for primitively generated
Hopf algebras

Take a finite free S-module M and let {ey,...,e,} be its S-basis. For an
arbitrary matrix A € M,,(S) define the action of F' € S{F'}:

Fez' = Aei. (221)

There is a primitively generated Hopf algebra H associated to the pair (n, A).
On the other hand, every primitively generated Hopf algebra H defines a
matrix — the corresponding primitive Dieudonné module is finite over S and
the Fe; define an S-linear map. We need to know when two matrices define

the same Hopf algebra.

Proposition 2.2.1. Two matrices A and B in M, (S) define isomorphic Hopf
algebras if and only if there is an invertible matriz QQ € M,,(S)* such that

QA = BQW, (2.22)
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where Q) is obtained from Q by raising every entry to the power of p.

Proof. Assume that A and B define free R-modules M4, Mp of rank n over S.
Fix an S-isomorphism M4 = Mp and an S-basis {eq, ..., e, } for both of these
modules. Let

Q:Ma— Mp (2.23)

be a map of S{F}-modules, i.e., a map of primitive Dieudonné modules. Then

QF = F(@Q, which we can write out using the basis:

FQ(e1) =F(quie1 + gaie2 + ... + qnien) (2.24)
=(gl1b11 + ... + ¢ bin)e (2.25)
(qf1b21 + - + dpy bon)ea+ (2.26)
(2.27)
(qV1bn1 + -+ @1 bnn)en (2.28)
and, on the other hand,
QF(e1) =Q(a11€1 + az1€2 + ... + aniey) (2.29)
=(a11q11 + a21q12 + ... + @p1qin)e1+ (2.30)
(a11g21 + a21922 + ... + an1gen)e1+ (2.31)
(2.32)
(a11Gn1 + a21Gn2 + ... + @n1qnn)en- (2.33)

Repeating the above calculation for all e;, we conclude QA = BQ™), where
the (i,7)-th entry of Q@ is qu. The modules M4 and Mp are isomorphic if
and only if there is an inverse to @, i.e., Q € M, (S)* O

2.3 Primitively generated Hopf algebras of low rank

We consider primitively generated Hopf algebras of p-rank n over various finite

rings.

Example 2.3.1. Let S =F, and n = 1. We already know about «,, repres-
ented by Fp[z]/(2P). The parameter space is F),/ ~, where A; ~ Az if and only
if aPA\1 = aX9. By Fermat’s little theorem this implies A1 = A9, so there are p

isomorphism classes given by {F,[x]/(2P — Az)}xcF, .

Example 2.3.2. Let S = Fy and n = 2. We use the code from Appendix B
to calculate the parameter space, which in this case is the quotient stack over

[, modulo twisted conjugation. Calling MatrixConjClass(FiniteField(2),2); we
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get the list

o2y

o2 o)-fo o) G o) (-
o) G )

(o) 2)-fa )y

o) 6 o))y

)

The corresponding Hopf algebras are given by calling

[PrimGenHopfAlg(CJ1]): C in LJ;

which returns

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

L
Affine Algebra of rank 2 over GF(2)
Lexicographical Order
Variables: x_1, x_2
Quotient relatioms:
[
x_172 + x_1,
x_272 + x_2
1,
Affine Algebra of rank 2 over GF(2)
Lexicographical Order
Variables: x_1, x_2
Quotient relations:
L
x_172,
xX_272 + x_2
1,
Affine Algebra of rank 2 over GF(2)
Lexicographical Order
Variables: x_1, x_2
Quotient relatiomns:
L
x_172 + x_1 + x_2,
x_1 +x_272
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1,

Affine Algebra of rank 2 over GF(2)

Lexicographical Order

Variables: x_1, x_2

Quotient relations:

L

1,

x_172 + x_2,
x_1 + x_272

Affine Algebra of rank 2 over GF(2)

Lexicographical Order

Variables: x_1, x_2

Quotient relations:

[

1,

x_172 + x_2,
x_272

Affine Algebra of rank 2 over GF(2)

Lexicographical Order

Variables: x_1, x_2

Quotient relatiomns:

[

x_172,
x_272

The comultiplication in these algebras is particularly simple — all the x; are

primitive.

Example 2.3.3. We can also consider S = F, for various primes p and

n = 3,4,5. The number of isomorphism classes grows quite fast.

2-rank | # of classes || 3-rank | # of classes || 4-rank | # of classes || 5-rank | # of classes
1 2 1 3 1 2 1 5
2 6 2 12 2 6 2 30
3 14 3 39 3 14 3 155
4 34 4 129 4 34 4 ?
5 74 5 ? 5 74 5 ?

2.4 Primitive extensions of Hopf algebas

Using the classical Dieudonné module theory in the sense of [Gro74, Chapitre

I1], the group Gy, represented by S[z| corresponds to the 1-dimensional module

S{F}. This is a projective object in the category of S{F'}-modules and can be
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used to construct projective resolutions. For example, consider oy, and let M

be the corresponding Dieudonné module. Then we have a short exact sequence

0— S{F} 5 S{F} > M =0 (2.40)

which is a projective resolution of M in the category of modules of finite type
over S{F}, free over S. We have

0 — Homgpy (S{F}, M) — Homgpy (S{F}, M) — Extgpy (M, M) = 0.
(2.41)
Note that Homgpy (S{F}, M) = M via f = f(1). So we get the sequence

0 — M = M — Bxtly o (M, M), (2.42)

since the Frobenius is 0 on M. We conclude that Extls{F}(M, M) = M. But
note that this Ext group only classifies extensions which give primitively
generated Hopf algebras. For example, the group scheme M, constructed in

Section 3.2 does not arise this way.

2.5 Witt vectors

In this section we will define the ring of Witt vectors and show that it is an
affine group scheme, i.e., it represents a certain functor. The canonical reference
for this material is [Ser79, Section II.6] and this is what I am following, but I
hope to be more down to earth in my treatment.

Basic idea: W allows us to build Z, from [, without any prior knowledge of
Z,. Remarkably, we construct an integral domain of characteristic zero from a
field of characteristic p. The construction is related to the fact that while the
additive group of the power series ring k[[t]] in characteristic p has p-torsion,
the multiplicative group 1+ tk[[t]] is torsion-free. This means that some aspect
of characteristic zero is preserved in positive characteristic.

Pick a prime p and define Witt polynomials by

®,, € Z[xo, ..., Tnl, (2.43)

. n—1
D (20, ey p) = +p) 4.+ p . (2.44)

Now define Witt addition and multiplication polynomials S, P, €
Zlxo, ..., Tn, Yo, -, Y] implicitly by

D,,(50, ..., Sn) = Ppn(z0, ..oy Tn) + P (Y0, -, Yn)s (2.45)
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D, (Po, .y Pr) = @20, vy ) » P (Y0 +ovy Yn)- (2.46)

For example, the first few of these are

So(zo,Y0) = o + Yo, (2.47)
Py(20,y0) = Zoyo, (2.48)
R A
S1(wo, 1,Y0,41) = 71 + Y1 — » Z (ZZ) zoyh . (2.49)
i=1

These become rather cumbersome to write down even for small values of n, so

it is better to think of these conceptually.

Definition 2.5.1. The Witt ring scheme is a representable functor defined
by

W : Alg; — Ring, (2.50)
A=A (2.51)
=0

The addition and multiplication on W (A) are defined using the Witt addition

and multiplication polynomials:

(wo, w1, ...) + (vo, v1,...) = (So(wo, vo), S1(wo, w1, vy, V1), ...), (2.52)

(UJ(), w1, ) . (Uo, U1, ) = (P()(’LU(), Uo), Pl(w(), w1, Vo, Ul), ) (253)
The truncated ring of Witt vectors is the quotient W,,(4) = W(A)/p"W (A).

We can also define the Frobenius and the Verschiebung operators on W (A):

F:W(A) = W(A), (2.54)
(a0, a1, ...) — (b, db, ..), (2.55)
Vi W(A) = W(A), (2.56)
(a0, a1,...) — (0, a, a1, ...). (2.57)

These satisfy VF = FV = p, i.e., their composition acts as multiplication by

27



p. Both F' and V' descend to operations on the truncated Witt ring W,,(A).

Proposition 2.5.2. Let k be a field of characteristic p and W = W (k) its
corresponding Witt ring. Then W is an integral domain of characteristic zero,

with multiplicative identity (1,0,0,...).

Example 2.5.3. W(F,) = Z,,. Note that in particular we have W,,(F},) = Z/p"
and W (F,) is obtained as the limit of the W, (F}).

Example 2.5.4. W(F,») is the unique degree n unramified extension of Z,,.

We can now define the Dieudonné ring. We use the following notation: for
a commutative ring A, the ring A{z1,z2} denotes the noncommutative ring
with variables 1 and x5 which do not necessarily commute between themselves
or with elements of A. The notation A[z1,x2] always denotes the commutative

polynomial ring over A.

Definition 2.5.5. Let A be a ring and W = W(A) its corresponding Witt

ring. The Dieudonné ring is defined as
D=W{F,V}/(FV —p,VF —p, Fw — o(w)F,wV — Vo(w)), (2.58)

where o : W — W is the automorphism induced by the absolute Frobenius

map on A.

Note that D is a noncommutative ring in general, with the only exception
D(Fp).
Define the Frobenius kernels on W, by
WI(A) = {(ag, .., an_1) : ¥ =0,0<i<n—1}. (2.59)

The operators F' and V restrict to

FWMA) — WM (A), (2.60)

Vi WM(A) - WT(A). (2.61)

2.6 Dieudonné correspondence

Now we arrive to the main theorem for Dieudonné theory for local-local group

schemes.

Theorem 2.6.1 (Théoreme 4.2, [Gro74] and Chapitre V [DG80]). Let k be a
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perfect field. There is a categorical equivalence

D* : {Local-local commutative algebraic group schemes of rank p™ over a field k}

~

{Dieudonné modules of length n over Wy, killed by powers of F' and V.}

The functor D* is constructed as follows. Let G be a local-local group

scheme of prime power order, then

D*(G) = Hom(limy W}, G) (2.62)

The actions of ' and V' on the W}* induce actions on their injective limit, so
we get an action of F' and V' on D*(G), making it a Dieudonné module. We

will also need the ‘quasi-inverse’ to D*, as outlined in Annexe 6 of [Gro74].

Definition 2.6.2. Let M be a Dieudonné module of length n over W, killed
by powers of F' and V. Choose N large enough so that VN*! =0 on M. Let
Aps be the quotient of the free k-algebra k[T, : x € M] by the ideal generated

by the following elements:
1. Tp, —TF for all x € M;
2. Tery — SN(Tva, vy TI,TVNy, ...,Ty) for all z,y € M;
-N -N -N
3. T)\m—PN(AIf ,)\227 7"'7/\€V+17TVN95"")T50) for A€ E,x € M.
Proposition 2.6.3. [Gro7/4, §6.2] Ay is a local-local Hopf algebra with comul-
tiplication

A(Ty) = Sn(Tyn,y, @1, Tyn-1,,@1,... T, @ 1,10 Ty~ ...y 1Ty, (2.63)

Proposition 2.6.4. [Gro7/, §6. Annexe] There exists a left adjoint functor
E* to D*. For every Dieudonné module M the functor E*(M) is representable

and its representing object is Spec Apy.

Example 2.6.5. Let M be the quotient of D by (F,V). Then N = 0. Let
{m} be an D-basis for M. Then the corresponding Hopf algebra H is generated

by 1, over k. The comultiplication is
A(Tp) =S0(Tm ® 1,10 T) =T @ 1 4+1@ Ty (2.64)

Note that
TP = Tppy =Ty = 0. (2.65)

We conclude that H is isomorphic to k[t]/(t?) with ¢ primitive, i.e., H represents

the group scheme a,.
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Example 2.6.6. Let M be the quotient of D by (F™, V™). Then we have an k-
basis {T}; }1<i<m,1<j<n for the Hopf algebra H of M. Note that FT;; = T;11 j,

so we may relabel the Tj; as t?i. The comultiplication is
AM) = SN (Tyny @ L, Tyn-1,® 1, oo, Ty ® 1,1 @ Ty, ey 1@ Ty, (2.66)

which we recognise as the comultiplication for the Frobenius kernel W"*. We

conclude that

H = k[ty, . tn] /(82 827, (2.67)
Example 2.6.7. Given a Hopf algebra H, we may also work backwards to
find the corresponding module over D. For example. let H be k[t]/(t"") with

p—1
1 , .
Aty =t@1+1®t+» ﬁtp‘” ® 7' P (2.68)

= -t

Let M be the corresponding Dieudonné module and let m € M correspond to
t, i.e., T, =t. Then

(Tin)® = Tpsy, = 0, (2.69)

so FSM =0, but F*M # 0 because F*m # 0. The comultiplication is given
by

Al) = ST @1,T, @ 1,10TP 10 Th), (2.70)
=S51(Tps,,, ® 1,1, @ 1,1 Q@ Ty, 1 @ Thpy), (2.71)
=S1(Tvm® 1,1, ®1,1 Ty, 1 T,). (2.72)

It follows that V = F3 and V? = 0. Therefore, M is the quotient of D by
(F5,F3 —V,V?)or (F>,F3 —V).

Example 2.6.8. Let H = k:[tl,tg]/(tfz,tf) with ¢; primitive and

p—1
1 . .
A(tz):t2®1+1®t2+27ﬂ(p_i AT (2.73)
2 j] !

)

Let M be the corresponding Dieudonné module and say it is generated by

x1, 2 which correspond to t1,t2, i.e., t1 = Ty, ,t2 = T,,. Notice that
t] =T2 = Tp2,, =0=Ty, (2.74)

so F2x = F2x9 = 0, while Fzy # 0, Fxy # 0. Recall the polynomial Sy:

—1
1% _
S1(Xo, X1, Y0, Y1) = X1 + Y1 — » Z (1;) XY, (2.75)

=1
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Then we can write

A(t1) = So(Te, ® 1,1 @ Ty)), (2.76)
=50®1,T,, ®1,1®0,1®T,,), (2.77)
=51(Tvey, @1, T, @ 1,1 @ Ty, 1 Ty, ), (2.78)

so it follows that Vx; = 0. On the other hand,

Alts) =S1(TF @ 1, T, ® 1,10 TF 1@ T,) (2.79)
:SI(TFz1®17Tz2®171®TFw171®T$2>7 (28())
- SI(TV.Z’Q ®17T$2 ® 171®TV$271®T$2)7 (2'81>

so Fxy = Vxy. We get a module M generated by 1, x2, subject to F2M =
0,V2M =0,Vzy =0,Fa; = V.

Dieudonné modules can also be used to describe the local structure of group

schemes.

Proposition 2.6.9. Let G be a finite group scheme over k. There is a canonical

isomorphism of k-vector spaces
Teo = (M(G)/FM(G))Y. (2.82)
Proof. By definition,
Too = ker(G(k[e]) — G(k)) = Hom(GP,G,) = Hom(GP, Wy).  (2.83)
Notice that W7 = ker V, so that
Hom(G", W1) = ker V|ygpy = ker Vo = coker(Flpyy))¥.  (2.84)

O]

Remark. If A is an abelian variety over k, there is an exact sequence
0— H°A,QY) — HLY(A) — HY(A,04) — 0. (2.85)
It was shown by Oda in [Oda69] that there is a canonical isomorphism
Hin(A) 2 M(AR). (2.86)
Moreover, the Hodge filtration H°(A, QY) C Hl;(A) can be identified with

ker F|M(A[p]) = VM(A[p]) C M(A[p]) (2.87)
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The exact sequence can be written as

0 — V(M(A[p))) = M(A[p]) = Tjo, Pic” A — 0 (2.88)
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Chapter 3

Group schemes of order p?

and p°

3.1 The p-torsion group scheme A|p]

Fix a Noetherian scheme S. Let m: A — S be an abelian scheme of relative
dimension g. For a natural number n, denote by [n]: A — A the multiplication
by n map. It is a proper flat morphism and its kernel A[n| is a finite flat
group scheme of order n?9. Let Sy C S be the open subscheme where all the
primes dividing n are invertible. The kernel A[n] is étale over Sy and Sy is the
maximal S-scheme with such property. Therefore, if A/k is an abelian variety
and k is a field of characteristic p, then A[p| is never étale over k. Let i be
the order of the largest étale quotient of A[p]. Then ¢ < pY and in the case of

equality A is called an ordinary abelian variety.

Example 3.1.1 (g=1, Example A.3.14 in [Gor02]). Let E be an elliptic curve.

Recall the construction of the Hasse invariant: the absolute Frobenius
F.:E—FE (3.1)
induces the morphism
F*: HY(E,Op) - H'(E, Op) (3.2)

on cohomology which is not linear, but p-linear, i.e., F*(Aa) = NP F*(a) for
A € k,a € HY(E,Og). The curve E has genus 1, so h!(Og) = 1, therefore,
F* is either the zero map or a bijection. In the former case, we say that F
has Hasse invariant 0 or F is ordinary, in the latter case, we say that E has
Hasse invariant 1 or E is supersingular. Note that E is always nonsingular
as a k-variety.

Every elliptic curve is principally polarised and hence E|p| is self-dual. The
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group scheme E[p] is affine of order p?. There are two cases corresponding
to the two values of the Hasse invariant. We list the corresponding cases
along with their canonical filtrations (see [Oor05]) and Dieudonné modules in

local-local cases.

(i) E is an ordinary elliptic curve. Assume that E is defined over an

algebraically closed field. Then we have a split exact sequence
0— p, = Elp] = Z/p — 0. (3.3)

The Cartier duality for E[p] swaps the two factors: pl = Z/p and
7.)pP = - The kernel of the Frobenius is p,, and the canonical filtration
is

0C p,C Elp|. (3.4)

Note that this filtration cannot be refined: p,, is a simple object and
does not admit any subgroup schemes, on the other side, the ranks of p,
and E[p] are p and p? respectively, so if H is a group scheme such that
m, C H C Elp], then H = p,, or E[p].

(ii) E is supersingular. Then there is a non-split exact sequence
0—=a,— Ep] > a, =0, (3.5)

where the image of oy, — E[p| is unique and is the kernel of both
Frobenius and Verschiebung. If k is algebraically closed and FEp, Fy are
supersingular elliptic curves over k, then Ej[p] = Es[p]. The canonical
filtration is

0C oy C Efp], (3.6)

with «, simple of order p, E[p] of order p?. Note that E[p] is not simple
in the category of finite group schemes, but it is simple in the category
of BTy group schemes, see [Oor05, p. 277]. We will study E[p] in more

detail in Section 3.2 — it is the self-dual local-local group scheme M.

Example 3.1.2 (g = 2, Example A.3.15 in [Gor02]). Let A be a principally
polarised abelian surface over an algebraically closed field, so that A[p] is

self-dual. There are four possibilities:

(i) A is ordinary. Then we have

Alp] = (,,  Z/p)”. (3.7)

Here p? is the kernel of Frobenius and (Z/p)* is the kernel of Ver-

schiebung.
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(ii) A has étale part of order p. Then

Alpl = Elp] x p, X Z/p, (3.8)

where E[p] is the p-torsion of a supersingular elliptic curve E. By the
previous part, A[p] contains a unique embedded cy. The kernel of

Frobenius is ey, X p,, and the kernel of Verschiebung is a, X Z/p.

(iii) A has no étale part. Then A is supersingular! and there are two further

cases:

(ilia) A is superspecial, which means that A is the product of two

supersingular elliptic curves Fp, F». Then

Alp] = E1lp] x Es[p], (3.9)

and if k is algebraically closed, then Ej[p] = Es[p] and
Alp] = Ey[p)%. (3.10)

(iiib) A is not superspecial. Then there is a filtration o, C G C A[p],

where G fits into non-split short exact sequences
0—=0op,—=>G—=apxa,—0 (3.11)

and
0—G— Ap] - ap — 0. (3.12)

The kernel of the Frobenius on G is isomorphic to alg and we show
in Section 3.2.1 that it has Dieudonné module with F = V2 = 0,

while the kernel of the Verschiebung is isomorphic to a2 and has

P
F? =V = 0.These two kernels are dual to each other. In general,
Frobenius and Verschiebung are swapped by Cartier duality, this

follows from 1.4.4. There is a non-split exact sequence
0= ap = axal —G—0. (3.13)

Note that neither of a2, apD2 can be realized as the p-torsion of a

supersingular elliptic curve.

'Note that for g > 3 supersingularity implies having no physical torsion but the converse
is false.

35



3.2 Classification over F,

3.2.1 Group schemes of order p?

Let k be an algerbaically closed field of characteristic p. We want to classify
group schemes of order p? over k. Note that a similar classification is done in
[Wan13], using purely algebraic techniques and without invoking Dieudonné
modules. We treat all the cases where a group scheme or its Cartier dual is
etalé using Galois theory, as in 1.4.12. In the case of an algebraically closed field
the classification is reduced to that of constant commutative group schemes of
order p?. In the local-local case we can use Dieudonné theory as outlined in
Chapter 2.

Altogether, we get three types of group schemes:

1. Products of group schemes of order p, i.e., split extensions {Z/p, ap, p, } X

{Z/pv ap? up}

2. Nonsplit extensions of p,, by itself and Z/p by itself. There is only one
nonsplit extension of Z/p by Z/p, namely Z/p* and if we are working
over an algebraically closed field this corresponds to a unique nonsplit
extension of u, by p,, which will be the Cartier dual of Z/p* and is

isomorphic to py2.

3. Nonsplit extensions of ay, by itself. There are three of those and we now

classify them.

Local-local nonsplit group schemes correspond to simple Dieudonne modules.
A local-local group scheme of order p? is neccessarily killed by p — this can be
seen by writing down F' and V in co-ordinates as matrices, hence its Dieudonné
module is a vector space over k. Let M be such a module, i.e., a two-dimensional
vector space over k equipped with Frobenius and Verschiebung. Since we are
in the local-local setting, both Frobenius and Verschiebung are nilpotent. Up

to a change of basis, there are three options:

1
1.F:0 ,VZOO;
0 0 0 0
2.F:00,V:01;
0 0 0 0
1
3.F:V:0 .
0 0

One of the above modules corresponds to ay,2. Unlike av, it is not self-dual.

Proposition 3.2.1. The group scheme a2 is not self-dual.

P
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Proof. The representing k-algebra of a2 is A = k[:n]/(xpz). Let {1,x, ..., 1’p2_1}
be its basis. The Hopf algebra structure on A is given by the following maps

(all tensor products over k).

A:A— AR A, (3.14)
r—rl+1, (3.15)

e: A sk, (3.16)

z 0, (3.17)

S:A— A, (3.18)

T —x, (3.19)

m: AR A— A, (3.20)
' @ ad s 2t (3.21)
vk — Al (3.22)

Let {eg, ...,ey2_1} be the basis of AP dual to {1,, ..., acp2}. The multiplication
in AP is given by the map

AP: AP @ AP — AP, (3.23)

The value AP (e; ® e;)(x*) is calculated as

(e: @ e)(A(2")) = (e ® ¢;) (q:ZkIO <§> 2! ® "’“’H) (3.24)

_ <z J; j) (3.25)

= (4ot (320

and hence e, — (z JZ]> it (3.27)

Note that i +j > p? implies (’Jg] ) = 0 in k, so the multiplication formula above
makes sense for all 0 < 4, j < p? — 1. More precisely, if i + j > p?, then e; and

ej are orthogonal. This multiplication makes ey the unit element. For i > 0

we have
2\ o (2)(30) s 2D (D
€ = (J”ie‘f - <l> (Z')e?’ief T i!(2i!)e3ie€
(37)! 3 (pi)!
— Wesief — ... = Wepi. (328)

If p<i<p?—1,then ip > p? s0 ey = 0. If i < p, then p { (i!)?, but the
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numerator of (f!ip)! has a factor of p, so (f!ip)! = 0. We conclude that for all i > 0

el = 0. Pick an arbitrary element
b= Xoeo + Me1 + -+ )\pz,lePQ,l c AP. (3.29)

Taking the pth power and remembering that we are over characteristic p, obtain

b = Meg. (3.30)

So b € AP is nilpotent if A\g = 0 and is a unit otherwise. We conclude that
AP is isomorphic to k[z,y]/(xP,yP). So A% AP because, for example, in the
latter ring the maximal ideal is killed by raising to the power p. In particular,

the algebraic group schemes a2 and o} are not isomorphic. O
P

P

We know that a2 is not a:zla)?’ but which module does it correspond to? The
ring k[z]/(zP") is local with the maximal ideal m = (z) and dimj, m/m?2 = 1.
Hence dimy, M/FM =1 and F is not zero, therefore V' = 0 for a2. On the
other hand, afg must then have F' = 0 and V nonzero.

It is also possible to approach the problem of classification directly with modules.

Let M be a 2-dimensional Dieudonné module with F,V nilpotent. We start

00
with the easy case when F' =V = 0 ol Let {t1,t2} be a basis. Recall from

that 2.6.2 that the corresponding Hopf algebra is generated by x =T}, ,y = T},

with comultiplication

A(Ty) = So(Th © 1,10 T,) =z@1+1®a, (3.31)

A(Ti,) = So(T, ®1L,1@T,) =y @1+ 1®y. (3.32)

Also note that Ty, = (T3, )P = 0 and Try, = (T3,)? = 0. So we get the algebra

klz, y]/(?, "), (3.33)

where both x and y are primitive. This is the group scheme ag.

01 00
Now let us consider the case when F' = <0 ) V= 0). We can guess

0 0
that it will correspond to a2 because the Frobenius action on this group

scheme is nontrivial. Indeed, let {t1,t2} be a basis, then

Vi, =Vity=Ft; =0, Fty = t,. (3.34)
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The comultiplication is

A(Ty) =501y, @1,10T,) =T, @1+ 1@ Ty, (3.35)

A(T,) =50(T, ®1,10T},) =T, @ 1 + 1@ Ty,. (3.36)

Note that Ty, = Ty, = Ttp2, so the algebra is generated by 73, = z. We get the
algebra k[z]/(2?") with z primitive. In other words, we get the group scheme

2.

P
We can now recover the dual of a2 through Dieudonné modules. This will

01 00 L
correspond to V = JEF = , so the action is
0 0 0 0

Fti =Fty=0=Vt, =0,Vty = t;. (3.37)

The comultiplication is now

A(Ty) = Si(Tve, ® 1, Ty, @ 1,1 @ Ty, 1@ Thy), (3.38)

=$50®1,T, ®1,1®0,1®T}), (3.39)

=T @1+1xT). (3.40)

A(Ty)=51(T, @1, T, 1,1 0Ty, 1 @ Tt,), (3.41)
15 D\ pp—i ;

=Tt2®1+1®Tt2—pZ<i)Tf T} (3.42)

=1

Relabel T = x, T =y, F' = 0 tells us that there is no algebraic relationship
between x and y. The Hopf algebra is k[z,y]/ (2P, y?) with x primitive and

. 1
=1

1t . 4

3.2.2 The self-dual local-local group scheme of order p?.

Finally, we have the local-local self-dual group scheme of order p?. This group

0 1
F=V= (0 o)' (3.44)

Ify=1T,,z="T, then Fy =2, Fr =0,Vy = x,Vz = 0, so we do get the
Hopf algebra k[z]/ (zpz), where we identify y = z, 2 = 2P. The comultiplication

scheme has
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is given by

Alz) =51("® 1,20 1,1®2",1®z2) (3.45)
151
:z®1+1®z—z<l?>zp2_pz®zm (3.46)
p =1 t

We denote this group M. For example p = 2 gives
r—rR1+10r -2 ®a? (3.47)
and p = 3 gives
t—zl+1Qr—2@1® — 23 ®ab. (3.48)

Note that M, is isomorphic to E[p], where E is a supersingular elliptic curve

over k.

Proposition 3.2.2. Write the group law as

zy=x+y— fplz,y), (3.49)

where fp(z,y) is a polynomial depending on the prime p. Then

(pg) a;pyp Py P2 (p2) (p2) APl gptp
p

folz,y) = ; T R y? mod p, (3.50)

i.e., only x'y’-terms with p | i and p | j survive.
Proof. Write f,(x,y) as
P2—1 (p
iy (3.51)
-1 P

p
and denote %) =: F;. We claim that F; =0 mod p if and only if p divides 1.
Suppose i = pj for some 0 < j < p. Then

2
~ () p*!

B T o= (3:52)

PO 0ol Dl = 20 G+ D)l i)
pi(pj —1)-.(pj — p)---(pj — 2p)--.(p* — pj) '

_ PP0° = 1) (p? =)o (p® — p(j + 1))-.. (3.54)
p?i(pj —1)...(pj — p)-.(p? —p(j + 1)... '

In the last expression, every factor of p in the numerator comes from p? — pk

for 1 <k < j+1 and it is cancelled by p from pj — pk in the denominator. We
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are left with a fraction expression for an integer where both numerator and
denominator are not divisible by p, so Fj itself is not divisible by p.

Now assume that p does not divide ¢. The expression for F; now reads

p?!

= @ —a (3.55)
PP - 1) — i+ 1)(p* —0)...
- pi(i —1)...(p% —9)... (3.56)
- T (357

i(i—1)...

If ¢ < p then p does not divide ¢! and the numerator has a factor of p, even of
p?, 50 F; =0 mod p. If i > p, let n be the biggest natural number such that
i > pn, so that i < p(n +1). Then

p(P* = D)(@* = 2)..(p* = p)--(p* = 2p)...(p® —pn)...(p® —i + 1)
i(i—1)...pn...p(n — 1)...p...

F;, = (3.58)
Altogether there are n + 1 factors of p in the numerator, coming from p? — jp
for 1 < j < n and p at the beginning. In the denominator, there are n factors

of p, coming from p, 2p, ...,np. So F; is divisible by p. and F; =0 mod p. O

3.2.3 Group schemes of order p* killed by p.

In a manner similar to the previous section, we only need to consider local-local
group schemes of order p3. We will have the underlying assumption that the
group schemes we consider are killed by p. This implies that the underlying
Dieudonné modules are vector spaces over [, equipped with F,V nilpotent
of length at most three. By basic linear algebra, any nilpotent matrix is
similar to a direct sum @], S;, where each S; is a canonical nilpotent matrix.
The canonical n-by-n nilpotent matrix is the matrix that has 1s on the
superdiagonal and Os elsewhere. Hence, up to linear isomorphism, F' and V

come from the list

000\ /010\ /010
0o0o0|,]o0o0f,]0oo01 (3.59)
000/ \0oo0o0 \0oo0°oO

We need to make sure that F'V = p = 0 so that the module is a vector space.
These correspond to the cases with F" = V™ =0 and 1 < m,n < 3, except
for the case m = n = 3, for which F'V # 0.

This gives us 9 classes of local-local group schemes. We will also need
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Sa(Xo, X1, X2, Yy, Y1,Y3), which is equal to

1 1 ("2 2\ 1 151 N\
XotYot o (XT+HYD)-5 | D <pZ )XéYo” I R <X1 DD <p>XéYé”>

i

i=1 i=1

(3.60)

Note that
SQ(O)O7X270707}/2) - SO(X27Y2) (36]—)

and
S2(0, X1, X2,0,Y1,Y2) = S1(X1, X2, Y1, V). (3.62)
e Class 1is V = F = 0 and it corresponds to k[z]/(zP") with z primitive,
ie., a;‘;.

e Class 21is F2 #0,F3? =0,V = 0. This is the group scheme Q,3, Tepres-
ented by k[x]/(z%) and x primitive.

e Class 3is V2 #0,V3 =0, F = 0, which is the dual of a,3. This is a group
scheme with algebra generated by 3 elements, so k[z,y, z]/(zP, y?, 2P).

To write out the comultiplication, consider the action of V:

V=0, (3.63)
Vy =z, (3.64)
Vz=y. (3.65)

Then the comultiplication is

Alz) =SV, Viol,z®1,10V2z 1@ Ve,1®z) (3.66)
=5021,021,r®1,120,120,1® ) (3.67)
—r®l+1l® (3.68)

Aly) =S (Viye1,Vyelyo,1eViy,loVy,1oy)  (3.69)

(3.70)
(3.71)
(3.72)

= 5(001,z0L,y2,100,10z,10y) 3.70
=5 zelLyel,1z,1y) 3.71
Az) =Sz 1,yel,z01,102,10y,1® 2). 3.72

e Class 4is F2 =0,V =0, i.e.,
Ft; =0,Fty =t1,Ft3 =0 (3.73)
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where t1,%9,t3 is a basis of M. The Hopf algebra will have a relation
Tt]; = T1},, so it is generated by 73, = x and T3, = y with the algebra

structure
2

klz,y]/ (2", y") (3.74)
and x,y both primitive. We can recognise this class as a; X ayy2.

e Class 5 is the dual of class 4, i.e., V2 =0, F = 0. This gives the Hopf
algebra k[x,y, z]/(aP, yP, zP). Let {t1,t2,t3} be the corresponding basis

of the Dieudonné module, then
Vity =0,Vita =11, Vi3 = 0. (3.75)
The comultiplication is

A(r) = S1(Tvy, ® 1, Ty, @ 1,1 @ Ty, 1 @ Ty, ) (3.76)
=502L,z®1,1®0,l® ) (3.77)
=rz®1+1Qx (3.78)

(3.79)
(3.80)

Aly) =51(TVta® 1,11, ® 1,1 @ Ty, 1 ® Tt,) 3.79
=511, ®1,T, ®1,10T,,1®T,) 3.80
:y®1+1®y+lpzl<]?>xi®xp_i (3.81)

p =1 L

Alz) =51(Tyv, ® 1, T3, © 1,1 @ Ty, 1 @ Tty) (3.82)
=50®1,221,1®0,1® 2) (3.83)
=2014+1Q2 (3.84)

(3.85)

This class is ay, X al.
P
e Class 6 is the class corresponding to a; X M, and is self-dual.

e (Class 7 is the first class which gives a 'new’ type of a group scheme. Let
F3 =0 and V? = 0 with basis {t1,t2,t3}. As always with F3 = 0 the
Hopf algebra is k[x]/ (xpg), where = corresponds to T;,. Consequently, we

only need the comultiplication for z, which is

Al@) =S (@ lz® 110", 1@ 1) (3.86)
152

=r1+1@z+ . > (f) (zP)P~" @ (2P)* (3.87)
=1
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e Class 8 is the dual of Class 7 with F'2 = 0,V? = 0. This gives the Hopf
algebra k[z,y]/(z?",y?). The action of V is

Vir=0,Viy =t1,Vis =1,. (3.88)

e Class 9 is self-dual with F3 = V3 = 0. Its Hopf algebra is k[z]/(27") and

the comultiplication is

Alz) =S @lLa?olrel, 1o’ 10", 101).  (3.80)

Remark. Note that the classification of local-local group schemes of order p”
killed by p is equivalent to classifying pairs of nilpotent linear transformations
which multiply to 0. When n = 1,2, or 3 this is particularly easy because a
nilpotent matrix in each of these cases is determined by its order. This is no

longer the case when n > 4 For example, we have matrices

(3.90)

o O O O
o O O
o O O O
S = O O
o O O O
o O O O
o O O O
o O = O

which both square to zero but which are not equivalent.

3.3 Local-local group schemes in families.

From the previous section, we know that the local-local group schemes of

order p? are a]%, e, ap%, and M. It is possible to put them into a single

deformation family, which will be an unfolding of a, x a,.

Proposition 3.3.1. Let B = Z[t1,t2] be the base ring. The algebra A =
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Blx,y|/(aP,yP — t1z) is a Hopf algebra with operations

A: A— ARp A, (3.91)
s rel+l, (3.92)
t2 N . .
y*—>y®1+1®y—p;<i>x’®m” | (3.93)
S:A— A, (3.94)
o — (3.95)
Y= =y, (3.96)
e: A— B, (3.97)
z =0, (3.98)
y—0. (3.99)

Proof. We need to show that three group-like axioms hold.

Associativity is encoded in the commutativity of

d® A
A®BA®BA<Z&A®BA
A®id A

A®BA A

We only need to check this on algebra generators and it is obvious that

associativity holds for z, since A(x) represents the operation of addition. So
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we need to check it for y:

. , ¢2 21 4 .
ARid(A®Y) =A®idyel+10y — 52 (f) a' @ P~ (3.100)
=1
2 pl P\
:(y®1+1®y—52(i>x’®x”1)®1+1®1®y
=1
(3.101)
Z( > Z( ) @l | @l (3.102)
Jj=0 J

1
=yR1el+1eyel - Z()x P R1+1010y

(3.103)

t2 p—l i P 1 .. . .
52 (Z> <]> 2 @) @ aP (3.104)
0

=1 j=

P 7 .
t3 o . ,
=y 019l+10yel+11y— 2> <><>Z‘J®xﬂ®aﬂ’—l

1=1 5=0
(3.105)
On the other hand,
id@AA(Y) —ideAy 1+ 1oy — 2 Z <Z>x ® 2P (3.106)
‘[;2 p—l D . .
—ylel+loyel+loy— =) (.):ﬂ@xp‘l)
p =1 v
(3.107)

i pi( ):): ® A(zP7Y) (3.108)

12 = , ,
—y®1®1+1®y®1+1®1®y—ﬁ <>1®xz®x”_l
1

(3.109)
t%p i P\ [(p—1t\ ; i )
—= . )@ @) (3.110)
pl_lj =0 L J
B3~ (P (P
—y1lel+loyel+leley— 2 <>< >1; & 2P~ @ pi
pz:lj:O L
(3.111)
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The two polynomials

< i i 7 ® xJ ® P
;22 (0)0)

p p—t o\ (p—i\ . o '
—Z ()( ) )xl®xp_’_J ® 2’
p - ? J

are equal. Indeed, the (7, j)-summand of the first one is

(?) <Z> 2 @l @ P,
i) \J

whereas the (j,p — 7)-summand of the second one is

()G-pemer
00-0)6)

which is the Subset-of-a-subset identity for binomial coefficients.

and

The existence of an identity corresponds to the commutativity of

id
Bop A €1

A®BA

o A

A A

We need to look at what happens to y only:

p—1

(3.112)

(3.113)

(3.114)

(3.115)

(3.116)

2 . .
e@id(A(y) = e@idy@1+ 10y — 522 (f)a:’ P ) =1®y, (3.117)

=1

which is where y gets sent under the isomorphism

A— B®g A,

a—1® a.

Finally, we need
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B A

to be commutative. We have

2 -1 o p—1
(S.0)(A) = (i) (yeL+1oy-2 > < ) ) = —yry-2 S (”) (—1)'a? = 0

i=1 L
(3.120)

and
e(y) = 0. (3.121)

O]

We can reduce the coefficients of the group scheme above mod p, so that

we get a family over F,[t1,to].

ta
M, . M,
(8
p2
t1
Otpz ap X ap ap2
D
(87
p2
M, M,

Figure 3.1: An unfolding of ), X oy

Proposition 3.3.2. Let k be an algebraically closed field of characteristic p.
The group scheme Spec k[x,y, t1,to]/(2P,yP — t12) is a family of group schemes
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of local-local type over Speck[ty,to] = Az. The affine plane is stratified into

four components:

1. Qwer the locus where t1 and ta are both invertible, the geometric fibres

are isomorphic to M.

2. Qwer the locus where to = 0 and ty is invertible, the geometric fibres are

isomorphic to auy2.

3. Qwver the locus where t1 = 0 and ty is invertible, the geometric fibres are

isomorphic to afg .

4. Qver the point t1 =ty = 0 the geometric fibre is isomorphic to o X .

We call this group scheme the local-local Tate-Oort group scheme of or-
der p? and denote it by T@Zz.

Proof. Recall that the comultiplication is

Alr) =z1+1®x, (3.122)

2 21 . .
A(y) =y®1+1®y—;22 <f>m2®xp—l. (3.123)
=1

With ¢, 2 both invertible, we have y? = t;x, so the group scheme is isomorphic
to Fply]/ (y*") with comultiplication making it into a copy of M,2. The other

cases are similar. O

Corollary 3.3.3. Fix (t1,t2) € A% and consider the corresponding finite flat

group scheme Gy, 1,. The Cartier dual of this group scheme is given by
GtDl,tQ = Gtg,tla (3124)

i.e., the dual of Gy, 1, is the group scheme represented by k[z,y,t1,t2]/(aP, yP —

tox) and comultiplilcation where x is primitive and
t2 p_l P . .
A(y)—y®1+1®y—12(.)%@#@. (3.125)
P\
It follows that the Cartier duality action on these group schemes induces the

action on the plane Az which is given by the matriz

3.4 Small Tate-Oort scheme of order p>.

We start with this case to prepare for the more complicated case of the

deformation family of all group schemes of order p?. The small Tate-Oort
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group scheme T@ZQ will be a deformation family of the groups a2 and p,».
This construction closely follows the construction of Reid in [Reil9].

The group schemes a2 and Z/p? are closed subschemes of G, while Hp2 18 a

P
closed subscheme of G,,. Reid defines a hybrid additive-multiplicative group

scheme G as Spec A, where A = Bz, ﬁ], for B any base ring and t € B

arbitrary. The Hopf algebra structure on A is given by
Alz)=z1+1z+tz . (3.126)
The scheme Spec B is stratified into two components
Spec B = D(t) UV (t) = Spec B; U Spec B/t (3.127)

and above the open subscheme D(t) the scheme G is isomorphic to G, via
x +— 1+ tz and above the closed subscheme V(¢) the scheme G is isomorphic
to Gg.

Define the given representation of G to be

peiv(R): G(R) — GLa(R), (3.128)

1 0
T , (3.129)
z 1l+tx

Definition 3.4.1. Let p be a prime number and B = Z[S, #]/(St”" ! 4 p) a
base ring. The small Tate-Oort group scheme 'JI‘(O);Q of order p? is defined

where R is a B-algebra.

as the subscheme of Spec B|z] cut out by
2’ — Sg,(t,z), (3.130)

where
(1+tx)P —1—tPaP

pt
Proposition 3.4.2. Inside the co-ordinate ring of T(O);g we have the relation.

gp(t,x) = (3.131)

(1+tx)? = 1. (3.132)

3.5 Tate-Oort group scheme T@éz

The group scheme T@lpg is a deformation family that includes local group

schemes of order p?. Let

2

B = Zwy, wa)/(wrwh  +p) (3.133)
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be the base ring. Consider the scheme

1 1

t1,t 3.134
1+wix’ 1+ way’ 1,t2] ( )

GBt, t, = Spec Bz1, x2,

The Tate-Oort group scheme ']I‘(O)LQ is defined as the closed subscheme
of G, 1, with ideal generated by

P yP — (3.135)

The Hopf algebra structure on the function ring A of T(O);z is defined as:

A:A—- AR A, (3.136)
r—rzR1+1Qx+ wx @, (3.137)
t2 p-l D . .
y%y®1+l®y+w1y®y—;Z(Z_)x’@:cp—l, (3.138)
i=1

S:R— R, (3.139)
—x

. 3.140

o 1—}-’11}1[1}’ ( )
-y

= ) 3.141

Y 1+ way ( )

e:R— B, (3.142)

x 0, (3.143)

y+—0 (3.144)

Proposition 3.5.1. The group scheme T@ég is a deformation family that

includes all local group schemes of order p* over k that exist:

e Setting t1 = to = 0 gives ’]I‘(O)é X ’]I‘(O)é, which contains split extensions of

local group schemes of order p, i.e., s =t = 0 gives a2, w, invertible

p}
we = 0 gives Ky X Oy, w1 = 0 we invertible gives oy X s and w1, wo

invertible gives M;Q;-

e Quer the locus where t1 is invertible and to = 0 we can have w1, ws both
inwvertible, so that geometric fibres are isomorphic to ug and over the

point wy = wg = 0 the fibre is a,.

e Quer the locus where t1 = 0,to invertible, the only possibility is w1 =

wy = 0, so the fibre is a}?g.

e Quer the locus where ti,ta are both invertible, the only possibility is

w1 = wg = 0 so the fibre is isomorphic to ./\/lpz.

The group scheme T@ég has a representation theory similar to that of TQ,

— we can figure out invariants of action by considering multiplicative group
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schemes like 1,2 or u]% and then this should give invariants for all other group
schemes in the family. The only difference is that we do not include the étale
group schemes Z/p? and Z/p x Z/p, so there is no description of how Cartier
duality works in this case. Note however that setting s = ¢ = 0 allows us to

recover the unfolding of oy, X ay, from Figure 3.1.
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Chapter 4

Invariant theory of Tate-Oort
group schemes and geometric

applications

4.1 Actions of ’]I‘@p

This section introduces the Tate-Oort group schemes which is an example of a
group scheme discovered by Reid in [Reil9]. Recall that over an algebraically
closed field k of positive characteristic p, there are three isomorphism classes

of group schemes of order p:

Ctp, Wy, L/ p- (4.1)

The Tate-Oort group scheme puts them into a single deformation family. Note
that a, and p,, are isomorphic as schemes over k and that oy, and Z /p share the
same multiplication law, i.e., they are both subgroup schemes of G,, whereas
, is a subgroup scheme of Gy,.

In the first step, we put G, 7 and G, 7z into a family over Spec Z. Choose t € Z
and let A = Z[x, —--]. We put a Hopf algebra structure on A by defining

7@

A:A— Az A, (4.2)
r—rl+ler+tr®r, (4.3)

S:A— A, (4.4)

— 4.5

T T (4:5)

e: A— B, (4.6)

z 0. (4.7)

93



The group scheme G = Spec A is isomorphic to G, over the locus where ¢ is
invertible, i.e., over Spec Z[t,t~!] and is isomorphic to G, over the locus where
t =0, i.e., over SpecZ/(t). The group scheme is defined over Z, hence it can

be defined over any base ring B.

Definition 4.1.1. The given representation M of G is defined as

1 0
G = {(m 1 —{—tx)} C GLy Z. (4.8)

The group scheme TQO), is defined as a p-torsion subgroup scheme of G. It
comes in two flavours: characteristic p and mixed characteristic. We will focus
on mixed characteristic case here. Let the base be B = Z[S,t]/(P), where
P = Str~! + p. Define TO, by (F =0) C G, where F =a? — Sf,(t,x) and

(1+tz)P — 1 — tPaP
pt '

fp(tax) = (49)

For example, p = 2 gives ' = 22 — Sz, p = 3 gives F = 2® — S(tz? + ) and

so on. The main property and the point of these polynomials is that
(1+tx)) =1 mod (F,P). (4.10)

This allows us to search for TQ),-invariant polynomials.

Example 4.1.2. [5.3 Reil9] Consider ]P’2B<u07ul,u2>

B with the u; homogeneous generators of the co-ordinate ring. Let TO5 act

, the projective plane over

on IP’% ( by Sym? M, where M is the given representation. On the level

uQ,U1,u2)
of algebras the action is given by

1
Blug, u1, uz] = Blug, u1,u2] ®p Blz, m]/(Pa F), (4.11)
1 0 0
(uo, ut, u2) = (ug,ur,u2) | 1+tx 0 . (4.12)

2?2 2zx(14tx) (1+tx)?

More precisely,

up — ug + zug + 22 us, (4.13)
up = (1 +tx)uy + 2x(1 + tx)ug, (4.14)
ug — (1 + tz)?us. (4.15)

The action diagonalises over Spec B [%] with eigenvectors
Vo = ug, (4.16)
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V1 = Ug + tuy, (4.17)

Vo = ug + 2tu; + tQUQ, (4.18)

corresponding to eigenvalues 1, (1 + tz), (1 + tx)? respectively.

Denote 1 4 tx = 7. We will now calculate the ring of invariants with respect
to this TOQs-action. We first work with various bases of monomials in the v;
and then move to monomial bases in the u;.

In degree 1 the action is given by diag(1,7,72), which gives the only invariant
linear form vy = ug. In degree 2 the action is diag(1,7,72,72,1,7) which has
two corresponding monomials: ’U% = ug and vive. We write out vivo in terms

of the u; to get

v1vg — vE = (ug + tuy) (uo + 2tur + t2us) (4.19)
= 3tugu; + t2ugus + 2t2u% + t3ugusg (4.20)

Substitute 3 — —St? to get
—St?uguy + tPugus + 2t2u% + Bujus (4.21)
and cancel 2 to get an invariant
(uoug + 2u?) + tujus — Sugu;. (4.22)
The action on cubic forms is given by
Sym? diag(1, 7, 7%) = diag(1,7,7%,7%,1,7%,1,7,7%,1). (4.23)

We can now read off invariant cubics — these correspond to 1’s on the diagonal,

so we get vg’,vovlvg,vf’,v%.

Remark. We implicitly order monomials by degree with vy > v1 > wvo, but of
course any other ordering of the monomials would give us the same invariant

cubics.

Now we need to write down the invariant cubics in terms of the original
basis. We have
v = ujy = fo, (4.24)
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which gives us the first invariant cubic. For the second invariant cubic consider

VU1V — US’ = 3tu(2)u1 + t2u3u2 + 2t2u0u% + tBuguius (4.25)
= —St?’ugul + t2ugm + 2t2u0u% + Buguiusg (4.26)
(4.27)

where replace 3 — —St? which is the relation given by P = St? — 3. Now

cancel 2 to get the second invariant
fi = (Quou? + udus) + tuguiug — Stuul (4.28)

We get the third invariant cubic in a similar fashion:

v} — v = (uo + tur)® — uf (4.29)
= 3tudu; + 3t2uoud + t3u (4.30)
= —Studu; — Sttugud + t3u? (4.31)

and cancel 3 to get
fo = ud — S(uduy + tugu?). (4.32)

Finally, the last invariant is obtained from starting with

vs — vl =(up + 2tuy + t?us)® — u (4.33)
=t%u3 + 6t5urul + 3ttugus + 12t uuy + 8t3u3 (4.34)
+ 12t4u%u2 + 8t3u:1)’ + 12t3u0u1u2 + 12t2u0u% + 3t2u(2)u2 + 6tu3u1
(4.35)
=t%u3 — 28t uu3 — StSugu3 — 4S5t%uFuy + 8t3u? (4.36)
— 4StPuguiug — 4St4u0u% — St4ugu2 — 25t3ugu1 (4.37)

We want to cancel the factor of t%, but some summands only have factors of

lower powers of t. To get rid of those, we consider

v3—vg —8(v3—vd) +6(vov1va—v]) = tu+6t7u U3+ 3t ugul+12t udus+18t3 ugus ug+9t 3 udus.

(4.38)
Now we can substitute 3 — —St3 and get the last invariant
f3 = ud — S(uou3 + duduy + 2tugu3) + S%(uduy + 2tuguiuy). (4.39)

We can consider a relative elliptic curve

E: (fo+ fi+ f2+ f3 =0) C P3. (4.40)
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In characteristic 0 F is the Hesse cubic and in characteristic 3 we get a
supersingular elliptic curve.
Altogether, over the fibre S =t = 3 = 0 the invariant ring has the following

generators in degrees up to 3:

Degree Generators
1 uQ
2 ud, upug + 2u?
0y WoU2 1
3 ud, udug + 2uud, ui, ul

Example 4.1.3. [5.3 Reil9] We start with TOy and we try to produce an

action on P(1,1,2)(yg,u;,w)- The action on linear terms is given by

1 0 U
<x 1 +t:€> <u1> (441)

and the action on quadratic terms is

1 0 0 0 u?
1+t 0 0
z + iz upUL (4.42)
2?2 2x(1+tx)  (1+tx)? 0 u?
3 32%2(1+tx) 3z(l+tx)? (1+tx)? w

which we need to specify because of the presence of w. We act on the graded
ring A = Z[ug, u1,v] and want to figure out the subring AT92 of invariants of
this action.

Define polynomials

Vo = ug, (4.43)
v1 = ug + tuy, (444)
q = ud + 3tuguy + 3t2u? + t3w. (4.45)

These polynomials and their products will diagonalise the group action in
various degrees.

We start with degree 1. In the basis {vg, v}, the group action diagonalises as
diag(1,7), which gives us the only invariant linear form vy = ug.

In degree 2, we have eigenforms (v3, vov1,v%, q) which diagonalise the action to

diag(1,7,72,73), with 72 corresponding to v? and giving us the new invariant
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in degree 2:

v? —vE = (ug + tug)? (4.46)
= 2tuguy + t2u? (4.47)
= —St2ugu; + t2u? (4.48)
Cancel 2 to get
u? — Sugu. (4.49)

In degree 3 we act on the basis (v3, v3v1, vov?, V3, vow, viw) by the matrix
g 0 %0 ’ 1> Y1 I y

diag(1,7, 72,73, 73,74). The only new invariant, i.e., not the product of invari-

ants of degrees 1 and 2, is ujw. We write it out:

viw — v = (ug + tuy) (ud + 3tuouy + 3t2u? + t3w) (4.50)
= thugw + t3ue2 + 3t3ud + 6t%upu? + 4tuduy (4.51)
= thugw + t3ug2 + 3t3u? — 3St3uou? + S*t3uduy (4.52)

Cancel 2 to get
(uow + 3u) + tuyw — 3Supus + S*udu;. (4.53)

In degree 4 we have eigenforms (vé, vgvl, vgv%, vov?, 7, vgq, V14, v%q) on which

the group acts as diag(1, 7,72, 73,74, 76,73, 74, 75). This gives us only one new

invariant, corresponding to the eigenvalue 76 = 1, namely ¢?>. We have

¢ — up = (ud + 3tuguy + 3t%u3 + tPw)? (4.54)
= %02 + 6t5u%w + 6t uguiw + 9t4u‘11 + 2t3u%w + 18t3u0u:f + 15t2ugu% + 6tu%u1
(4.55)

and in order to proceed, we need to add linear multiples of other invariant
forms — this is because we want to cancel as high power of ¢ as possible. We

want to add integer multiples of other invariant quartics, these are:
va, vt vavd, vovd, vovig (4.56)

In order to proceed, we will write out these polynomials in a table:

o8



@ woviq Uf‘ vovi’ ’U(Q)U%
w? 16
ufw 6t°
wouw | 6t t
uf 9t td
uaw 2t3 t3
uouid | 183 33 43 3
wdu? | 1562 62 62 32 2
uduy | 6t 4 4 3t 2t

Now we need to do a balancing exercise — increase the degree (in t) of each
coefficient of ¢ until it is 6, or as high as possible if 6 cannot be achieved. We

start with uguiw, which has coefficient 6t* and which can only be modified by

adding an integer multiple of vgu1q. One choice is to do g% — 2vgv1q to get

¢® —2vpv1q  vovig vl vovi  vivi
w? t6
udw 6t°
UGULW 4t 4
uf ot t4
u%w t3
ugu? 12¢3 33 43 3
udu? 3t? 6t> 612 3t ¢
uduy —2t 4 4 3t 2

Next we look at uf and its coefficient 9¢*, which we want to make into 8t*.

This can be achieved by subtracting v{:

(12—21)01)1(]—1)il VoV1q vjl vovi” v%v%
w? t6
udw 6t°
UULW 4t t
uf 8t t4
udw t3
ugu3 8¢3 33 43 3
udu? —3t? 6t> 6t 3t ¢
uduy —6t 4 4 3t 2t

Finally, we balance —3t% and —6t, the coefficients or ugu% and ugul respectively,

by adding 3U%U%:
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¢ — 2vov1q — vi + 3vdv?  wovig v wevd  vie?
w? 6
ufw 6t°
UoUT W 4t t
uj 8t td
u%w #3
upu3 83 33 43 3
udu? 6t> 612 3t ¢
uduy 4 4 3t 2t

We are left with
¢* —2vov1q — v} +3v3v? = t%w? + 6t°udw + 4t uguy w + Sthut + 8t3ugul. (4.57)

We can substitute 2 = —St,4 = §%t2,8 = —53t3 and cancel t% to get the last

invariant

w? — 3Sutw + SPuguiw — S3(tu] + uou?). (4.58)

The fibre over S =t = 2 is s and the invariant ring with respect to this group

scheme has generators ug, u%, upv, v? in degrees 1,2,3.4 respectively.

4.2 Actions of "]I‘@}.

Example 4.2.1. Consider }P’:[)’uo wnug,us)’ the projective space over the ring

B =Z[S,t]/(St? — 2). We will act by TOj. Recall the given representation

1 0
<a: 1+ t:c) ' (4.59)

We act on linear forms by the symmetric fourth power of the given representa-

tion, i.e., by
1 0 0 0
1+1¢ 0 0
Sym*(M) = | © T (4.60)
2 20(1+tx)  (1+4tx)? 0

x
23 322(1+tx) 3z(l+tx)? (1+tx)?

The calculation will proceed with some help from computer algebra, see Ap-
pendix B for the MAGMA code. One function that we will repeatedly use

1S

inv_mon(n,L)

which takes a diagonalised action in form of a list L and an integer n > 1

and outputs invariant monomials of degree n. We want to figure out what
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the invariant ring Blug, u1, ug, u3)T4 is. The action is diagonalised to D =

diag(1,7,72,73) (where 7 = 1 + tz) with respect to the basis

vo = g, (4.61)

v1 = ug + tuy, (4.62)

vy = ug + 2tuy + t2us, (4.63)

vg = ug + 3tug + 3t2us + tus. (4.64)

There is only one linear invariant form, that is vy = ug.
In degree 2 the action is Sym?(D). We call

R<t>:=PolynomialRing(Rationals());
R<t>:=quo<R | t74-1>;

inv_mon(2,L);

which gives us the output

[
v_0"2,
v_1%v_3,
v_2"2

The last two polynomials are written out in a table — this way makes it easier
to cancel powers of £. The rows are labelled monomials in u; and the columns

are labeled by invariant polynomials in v;.

v1U3 — v% U% — U%

ULU3 t

u3 t4
ULU2 33 4¢3
UGU3 t3

u? 3t? 4¢2
UYUL 32 22
UYUL 4t 4t

We cannot cancel t3 starting with vjvs because of the monomial ugus — it is

not present in v3 —v3. But we can cancel t? by substituting 4 = S*t. However,
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we can cancel t* in v3 — v%. Altogether, we get two invariant quadratics

o =l (4.65)
vivg = 3(ut + ugug) + 3tujug + tugus + t2uius + S*t%uguy, (4.66)
v3 = u3 — Stugug + S?(tPurus + t*u? + t3uguy) (4.67)

In degree 3 the representation will be Sym?3(D), which contains a copy of
Sym?(D) via the map Sym?(D) ~ vg Sym?(D). The invariant cubics in the v;

are obtained by calling

inv_mon(3,L);

We get

[
v_0"3,
v_0*v_1%v_3,
v_0*v_272,
v_17"2%v_2,

v_2%v_372

with the monomials starting with vg known to us beforehand — these monomials
are obtained as products of vg with degree 2 invariants. There are two new
invariant monomials: vvy and vov3. We put all the cubic invariants into a

table. We shall start with v?vs as it has a smaller number of monomials.

vivg — vg VU1V3 — vg’ Vov3 — vg
u2ug t4
UQULUS t
ugu3 t
u$ 2t3
’LL%U3 t3
UOUL UL 23 3t3 413
ugu? 5t2 3t2 42
udug t2 3t? 212
uduy 4t 4t 4t

What we need to do is to cancel as high power of ¢ as possible. We allow to
modify an invariant polynomial by scaling it and adding a Z-linear combination
of other invariant polynomials. We look at the column corresponding to
v3vy — US’ and compute pseudovaluations of the entries. These are 4,6,6,2,2,4
top to bottom. In order to cancel t*, we need to modify monomials 5t2u0u% and
tZU%UQ. More precisely, we are looking at coefficients 5t? and t? and we want to

modify them so that the integral part is even in both cases. This can only be
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achieved by summing it with something odd, which leaves us only one option —
vov1v3 — v, since the corresponding coefficients in vgv3 — v are even. So we
want to consider (vivg — v3) + n(vov1vs — v3), where n must be an odd integer.
This introduces the monomial nt3u3us which will have pseudovaluation 3 (n is
odd) and which cannot be further modified since this monomial is not present
in any other invariant polynomials. This shows that we cannot cancel t4. Note

however that we can cancel 3 by considering v%vg — VpU1V3:

’U%Ug — va’ VoV1V3 — US U()U% — vg’ ’U%UQ — VU1V3
ufug t1 t4
UQULUS 4 —t*
uou3 t
us 2t3 23 = —5t6
udus t3 —t3
UpUI UL 23 3t3 4¢3 —3
ugu? 5t2 3t2 4¢2 2t2 = —St°
udus 12 32 22 —2t2 = St°
uduy 4t 4t 4t

We cancel ¢ and multiply by —1 to get the new invariant form

VoU1U3 — Vive = udug + uguiug +t(uouiuz — uiug) + St + tPuou? — t2udus).
(4.68)
The next invariant polynomial is vov3, which has a bigger number of monomials

in wu;, but the technique is the same.
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2 3

2 3

2 3

VU3 — V5 | Vov3 — vy | Vyv2 — U
u2u§ 8
uul 2t7
u3ug 6t7
us 9t6
u0u§ 6
UL ULU3 18t6
uju3 36t
utusz 12¢°
UYU2US 8¢°
upu3 15t td
udug 45t t4
UYUL U3 104
u? 18t3 2t3
UYUL U 363 42 23
U%U3 23
ugu? 21¢2 42 5t2
udug 7t2 22 12
udug 8t 4t 4t

Suppose that we want to cancel 3, but because the term 9¢5u3 is only present in
one invariant monomial we cannot modify it. But we can cancel t5 — there is no

canonical choice here, but one choice that works is to take ’U2’U§ —v%—kvov% —v%vgz

64



vv3 — v | vovd — v | vivg — v} | vav — vf + vovd — viv,
usu3 8 48
u1u3 217 247 = — Gt10
uus 6t 617 = —35110
uj 9t 916
u0u§ 6 6
U UU3 18t6 18t = —95¢?
uiu3 36t 36t5 = 95211
udug 12t 12¢5 = 352!
UOULUZ 8¢5 8¢5 = —8§3¢14
upu3 154 4 16t* = §4¢16
udus 45¢4 t4 44tt = —115¢7
QU U3 10t 10t* = —55¢7
u$ 18t3 2t3 16t% = S4¢1d
UQUL U2 36t3 42 2t3 38t3 = —19516
ugus 2t° 23 = — 516
upu? 21¢2 42 5t 20t? = 5528
udus Tt2 22 t2 8t2 = —§3¢11
uduy 8t 4t 4t 8t = —53¢10

Cancel t° to get the invariant polynomial

vzv% — vg’ + vovg — U%UQ :9u:23 + u0u§ + t2u2u§ (4.69)

— S(t4u1u§ + 3t4u§U3 + 9t3uyuguz + 11tudus + Stuguius)

(4.70)

+ S2(9tPuyu3 + 3t9uduz + 5t2ugu?) (4.71)

— S3(tBugugus + tPudug + t'uduy) + St Pugul + t2u?)
(4.72)

In degree 4 the MAGMA output is

[
v_074,
v_0"2%xv_1%v_3,
v_0"2%v_272,
v_0*xv_172%xv_2,
v_0*v_2%v_372,
v_174,
v_172%xv_3"2,
v_1%v_272%v_3,
v_274,
v_374
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There are only two new invariant polynomials — v{ and v3. We don’t need to

modify v:

vf —ug = ttut + 4t3udug + 6t%udu? + dtuduy (4.73)

= thuf + S*ugud — 3S5tPudu? 4+ 5%t uduy (4.74)
and we can cancel t* to get the invariant
v} — vy = uj — 3Studu? + S (PPuou’ + tuduy) (4.75)

The invariant quartic v§ will be rather large:

vy =t"2ui + 12t M ugu + 12¢0ugud + 54t %%k + 4t%uoud (4.76)
+ 108t uy ugu3 + 108t%usug + 81t%u 4 2* + 54t3utu3 (4.77)
+ 36t%ugugu + 324t5uyusus + 324t ugud + 36t ugug u (4.78)
+ 108t uguaus + 324t uugusz + 108tugu3 + 486t5u3u’ (4.79)
+ 6t%udu3 + 108t ug + 216t5uguiuguz + 324 + tuguqu3 (4.80)
+ 324t5uBug + 1085 uguug + 36t°udugug + 81ttut + 5attudud  (4.81)

+ 324t ugulug + 36t uduyus + 10863 ugud + 108t3uduius + 4tPudus
(4.82)

+ 54t*udu? + 1262 udug + 12tuduy + ug. (4.83)

t!2. Note that the coefficients of the terms starting with

We will try to cancel
usu3 to ulug are even and have a power of ¢ which is at least 9. Moreover,
these terms are not summands of any other invariant polynomials, so we will
ignore them in subsequent tables. We will consider three tables altogether. In
the first table we will have only summands in the u; which have powers of ¢ in
their coefficients of at least 6 — this is so that we only need to make sure that

the integral part is divisible by 4 = $2¢% in each case, so that we can cancel ¢!2.

v [ b o2
ul 818 | 8
u%ug 5418 8
wpul | 324¢7 | 8t7
ugui U3 367 6t7

upu3 1085 | 4t°
udud | 486t | 2416 | 9¢6

udu3 6t5 t6
uiug 108¢6 t6
UQUTU2U3 216¢6 12t6

Note that we skipped the monomials in the u; which were already divisible by
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4 and which were not summands in either v3 or v{v2. The coefficients where
integral part is not divisible by 4 are underlined. We can get rid of 81t® by
subtracting 81v§ and we can double 54t by adding 542}%1}%. In order to keep

the integral coefficients as small as possible, we reduce 81 and 54 modulo 16,

so that it won’t affect the calculations in the next two tables.

v3 vy | viv3 | v — 3 + 6Vl
uj 818 | 18 803
udu} 54t8 t8 60t
uud 3247 | 8t7 316t7
upuru3 | 36t7 6t7 7247
ugu3 108t° | 46 1046
u?u3 486t0 | 24¢6 | 9¢° 516t°
udu? 65 t6 126
ulug 108t° 6t° 144¢6
upuiugug | 216t° 12t6 28816

In the last column all of the integral coefficients are now divisible by 4.
In the next table we look at the rows which have powers of ¢ of between 3 and

5 and we want to make the integral part divisible by 8 = —53¢9.

vi —vs + 6v303 | vi | viv?
uoulu% 408¢t°
udus 400t°
UOU%Ug 192t°
u%uzu?, 7215
u‘ll 119¢* 4
ugu% 102t 4
upuFug 528t
ugulu;z, 96t
uou:{’ 2203 413
uduiug 26413 4t3
udus 16t3

The coefficients with integral parts not divisible by 8 are underlined. One way

to proceed is to add! v} + 2v3v3:

Lwe could have added vf+2vZv2 to balance this table, but then we would not get divisibility

by 16 in the last table.
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v3 — v+ 6v303 | vi | v3v? | v§ — v5 + 6vivd + 9uf + 20303

Uuguq U3 408t° 4085
u3ug 400t 400t°
uou%u;:, 192t5 192t°
udugug 7245 7245
uf 119¢4 t4 1284
udu3 102t* t 104t
ugudug 528t 528t
udugug 961 96t
upu3 2203 413 2563
uduyug 2643 4¢3 272t3
udus 16¢3 1613

In the last column all of the integral coefficients are now divisible by 8.
We now look at the last tables, which consists of those rows which have powers

of t 1 and 2. We want to make integral parts divisible by 16, but they already

are:
vi — v3 + 6viv3 + i + 20303
udu? 224¢*
udug 482
ugul 96t

We can replace powers of 2 by powers of —St3 and cancel t'? to get the invariant

form

v — vy =uj — 27Stuiu} (4.84)
+ 52(3t5u2u§ + 3t4u1u§ + t3u0u§ + 27t3u1u2u§ + 27t3u§U3 + 9t2u0u2u§

(4.85)

+ 2Ttuguiuz + 15t%udu3 + 79turus + 129t3uou3 + 3udu3) (4.86)

— S3(9t uguru3 + 13t3ugud + 51t2uguiul + 9 udusus + 13tudus)

(4.87)

=+ 54(51581/21 + 9t6u?U3 + 25t5u‘;’uz + 33t4u0u%u2 + 17t3u3u1uz + t?’ugu;),)
(4.88)

— S5(9t%uguiugus + 3t7u(2)u1u3) + 35’6t11u0u%u3 — S7tgu‘11 + S8t12u0u:1)’
(4.89)

The invariant ring is generated in degrees 1,2,3,4. There are no generators in

higher degrees because of the relation 74 = 1.
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4.3 Numerical Godeaux surfaces

All surfaces in this section are smooth and projective unless stated otherwise.
Let X be a minimal surface of general type. The smallest possible invariants
for X are x(Ox) = K)z( = 1 and p;, = ¢ = 0. The first example of such a
surface was given by Godeaux in [God31]. After almost 90 years since the first
example, there is still no complete classification or understanding of this type

of surfaces.

Definition 4.3.1. A minimal surface X of general type with Kg( = 1 is called

a numerical Godeaux surface.

Numerical Godeaux surfaces over C with an involution were classified by
Calabri, Ciliberto, and Mendes Lopes in [CCMLO07].

Example 4.3.2. Let us construct a numerical Godeaux surface over C. Let
xg,x1,T9,x3 be co-ordinates on IF’%. Take G = Z/5 and let it act on P3 by
%(O, 1,2,3), i.e., we take the following representation of Z/5:

Z/5 — GLu, (4.90)
100 0
0 0 0

1| € = A, (4.91)
00 €& 0
00 0 &

where € is a primitive fifth root of unity. Then A acts on the column vector
(w0, 71,72, 73)T. The action has four fixed points: [1:0:0:0],[0:1:0:
0,[0:0:1:0],and [0:0:0:1]. The Fermat quintic surface X defined by
25+ 123+ 23 +x3 = 0 does not pass through any of the fixed points of this action.
Furthermore, the defining polynomial is G-invariant, so the quotient Y = X/G
is a smooth surface. By [Bar+04, Proposition V.2.1], we have 7 (X) = 0, so
m(Y) = G and ¢y = 0.

Proposition 4.3.3. [Lie09, Proposition 1.1] Let X be a minimal surface of
general type with Kg( = 1. Then the following hold:

b1 (X) =0, (4.92)

[ (X)| <6, (4.93)

pg(X) <2, (4.94)

RN (X) = h'(X,0x) < 1. (4.95)
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In particular, if h°*(X) =1 then X has a non-reduced Picard scheme, which

can only happen in positive characteristic.

In characteristic 0, the only possibilities for G = Tors(X) are
0,2/2,7./3,Z/4,7/2 x Z]2,Z]5. (4.96)

By [Rei78, Theorem 2.1] the case Z/2 x Z/2 is excluded. We have already seen
the case Z/5 and all the other cyclic groups are also possible by the works of
Barlow [Bar84; Bar85] (G = 0,Z/2) and Reid [Rei78] (G =Z/3,7Z/4).

In positive characteristic, numerical Godeaux surfaces are further subdivided

into three classes.

Definition 4.3.4. Let X be a numerical Godeaux surface. If h!'(Ox) = 0,
then X is called a classical Godeaux surface. If h!(Ox) = 1 the surface X
is called a nonclassical Godeaux surface. These are further subdivided into
two cases depending on the action of the Frobenius F': H!(Ox) — H'(Ox).
If F'is an isomorphism, X is called a singular Godeaux surface. If F' acts

as zero, X is called a supersingular Godeaux surface.

Nonclassical Godeaux surfaces exist only if the characteristic of the field is

low enough, as shown in the following theorem by Liedtke.

Proposition 4.3.5. [Lie09, Theorem 2.1 and Theorem 2.4] Nonclassical

Godeaux surfaces can exist in characteristic 2,3, and 5 only.
Liedtke specialises to the case p =5 in [Lie09].
Proposition 4.3.6. [Lie09, p. 4] and [Proposition 1.1.7 Eke88] Let X be a

smooth surface over an algebraically closed field of characteristic p > 0 and

m: Y — X a nontrivial p,,- or ay-torsor. Then we have the equalities

x(Oy) = px(Ox) (4.97)

and
K% = pK%. (4.98)
Proposition 4.3.7. [Proposition 2.3 Lie09] Let X be a minimal surface of
general type and w:Y — X a nontrivial o, or p,-torsor. Then Noether’s
inequality
K% > 2h%(wy) — 4 (4.99)

holds.

Proposition 4.3.8. Let p = 3 and X a supersingular Godeauz surface. As-
uume that the torsor corresponding to Pic® X is normal, so that Liedtke’s
version of Noether’s inequality can be applied. Then the only possibilities for

Pic® X are ag, g, and My, with aé) not possible.
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Proof. Suppose that X is supersingular. Then the action of F on H'(Ox)
gives an embedding
as — Pic® X. (4.100)

Note that p, — Pic® X is not possible because the Frobenius is not bijective
on H'(Ox). The embedding gives rise to an af’-torsor

Y - X. (4.101)
Consider the corresponding exact sequence of group schemes
0— ag — Pic’ X = G — 0. (4.102)

Suppose that G is nontrivial, then there is an embedding ag — G giving rise
to an a?—torsor above Y. In particular, h'(Oy) # 0 — if it is zero, then PicY

is an étale group scheme. By 4.3.6, we have

K} =3K% =3, (4.103)
so that
3=h%0y) — h'(Oy) + h*(Oy), (4.104)
from which it follows that
h:(Oy) =2+ h'(Oy) > 3. (4.105)

On the other hand, Noether’s inequality 4.3.7 gives

3> 200 (wy) — 4, (4.106)
from which it follows that
R*(Oy) < 3.5 (4.107)
and hence we get
h%(Oy) = 3, (4.108)
hY(Oy) = 1. (4.109)

Recall that aig = a:’? and now look at the aig-torsor above Y, say
Z =Y. (4.110)
Consider the corresponding exact sequence

0—az—PicY = H—0 (4.111)
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We know that K% = 3K§2/ =9 and hence
h%(Oz) = 8+ 1 (Oz) > 9. (4.112)
On the other hand, by Noether’s inequality,

9 > 2h%(wyz) — 4, (4.113)

ho(wz) < 6.5, (4.114)

so H =0 and Pic’ Y = a3. Hence Pic® X € Ext!(as, a3) and so it must be
one of a3z X a3, g, aéj, My, but because h!(Ox) = 1 we cannot have group
schemes with tangent space of dimension 2. This leaves ag and My as the

other two possibilities, in addition to a3 corresponding to G = 0. O

Remark. It should be possible to perform a similar analysis for the case p = 2,
but we would need to consider group schemes of order 23 = 8 as well. These

were classified in Section 3.2.3.

4.4 Further directions

As we saw in the previous section, classical Godeaux surfaces were constructed in
all characteristics. Nonclassical Godeaux surfaces can only exist in characteristic
2,3, or 5. In characteristic 5 these were constructed by Lang in [Lan81] (étale
case), Miranda in [Mir84] (singular case), and Liedtke in [Lie09] (supersingular
case). Kim and Reid give a unified treatment of these surfaces in characteristic
5 [KR], using the Tate-Oort group scheme TO,, from [Reil9]. We have shown
that in characteristic 3 the only possibilities for Pic® X are as, ag, or My in
the supersingular case. It should be possible to deal with characteristics 2 and
3 and put nonclassical Godeaux surfaces into a single deformation family, using

the group schemes T@ﬁg and T@ég.
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Appendix A

Frobenius morphisms

Let X be a scheme of characteristic p, i.e., pOx = 0. Note that p must be
unique, unless X is trivial. Equivalently, we say that X of characteristic p if
the structure morphism Spec Z factors uniquely through SpecF,,.

The absolute Frobenius morphism of X is defined as the identity on the
topological space and x — zP on the structure sheaf — this map is indeed a
morphism of sheaves of rings because (a + b)P = a? + bP in characteristic p.
If instead of SpecF),, we have another scheme S of characteristic p as our base

scheme, then there is a relative version of Frobenius which is Og-linear.

X Fx

X/S

S S

Fs

The square in the diagram is a pullback square in the category of F,-schemes
(or Z-schemes) and defines X ). The morphism Fy /st X — X () is defined
uniquely by the property of the pullback square and is Og-linear.

Example A.0.1. Let A = [,[z], then we have the pushforward square of
[F,-algebras
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Note that 2 = x in [F),, so everything in sight is [F,-linear and there is no need

for relative Frobenius.

Example A.0.2. Take k = Fg = F3[i] and A = Fg[z|. The absolute Frobenius

is no longer the identity, e.g., ¢ maps to 2¢. We have the diagram

Fg 4>F9

Fg [x] d ]Fg [ZE] ®Fg ]Fg

%

Fo[z]

The map Fo[z] — Fg[x] ®p, Fo = Fg[z] is given by
ar — r ® adP, (A.1)
so that the relative Frobenius is given by

Frgla)/mg - Folz] = Fola], (A.2)

azr — azxP. (A.3)

In general, if A is an F)-algebra of finite type, say, A = Fp[z1, ..., zn]/(f1, ..s fm),
then A®) = Fp,lx1, ...,:Un]/(fl(p), cey f,’f)). Here, £ is obtained from f be rais-
ing all coefficients of f to the pth power. The relative Frobenius in this case is

given by ax; — axP on generators.
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Appendix B

MAGMA code

All of calculations for this thesis were done in MAGMA Computational Algebra
System [BCP97].

// The default FrobeniusImage function of MAGMA takes a matrix
defined over a finite field and computes its Frobenius image. It
does not work with matrices defined over algebras of positive

characteristic. The function below does.

function FrobeniusImageRing(M,n)

return
Matrix (NumberOfRows (M) ,Number0fColumns (M), [M[j,i] " (Characteristic(Parent (M)) n):
i in [1..NumberOfRows(M)], j in [1..NumberOfRows(M)]1);

end function;

// The purpose of MatrixRingList is to get the list of elements of
the matrix ring M_n(R). Just calling Set(MatrixRing(R,n)) is not
good, because if R is a finite ring which is not a field then it
is not possible to iterate over MatrixRing(R,n) -- MAGMA gives a

mistake even if R is a ring of order 4.

function MatrixRingList(R,n)

m:=#R"(n"2);

C:=CartesianPower (R,n"2);

L:=[i: i in Set(C)];

P:=[];

for i in [1..m] do
P[i]l:=Matrix(R,n,n, [j: j in L[il1);

end for;

return P,#P;

end function;

// Our function takes in a finite ring R and an integer n and outputs
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p-conjugates of matrices in M_n(R)]

function MatrixConjClass(R,n)
M:=MatrixRing(R,n);
L:={@ x: x in Set(M)@};
G:={@ x: x in L | IsInvertible(x) @};
P:={@ @};
while #L ne O do
for x in L do
K:={@ FrobeniusImageRing(y,1)*x*y~-1 : y in G @};
P:=Include(P,K);
L:= L diff K;
end for;
end while;
return P;

end function;

// This function takes two matrices and outputs true if their
corresponding primitively generated Hopf algebras are isomorphic
and false otherwise

function MatrixIsoHopfAlg(A,B)

M:=MatrixRing(Parent (A[1,1]) ,NumberOfRows(A));

L:={@ x: x in Set(M)@};

G:={@ x: x in L | IsInvertible(x) @};

K:={@ FrobeniusImageRing(y,1)*A*y~-1 : y in G @};

if B in K then return true;

else return false;

end if;

end function;

// This function takes a representation of a group (in diagonal form)
and outputs invariant monomials of degree n
function inv_mon(n,L)
L:=[R'L[i]: i in [1..#L11;
M:=DiagonalMatrix(Parent (L[1]) ,#L,L);
P:=PolynomialRing(Integers(),#L);
K:=[1;
0:=[1;
AssignNames(“P, ["v_" cat IntegerToString(k) : k in [0..#L-1]] );
N:=[R!SymmetricPower (M,n) [i,i]: i in
[1..NumberOfRows (SymmetricPower (M,n))]1];
for i in N do
if i eq 1 then Append("K, Index(N,i));
N[Index(N,i)]:=0;
end if;

end for;
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G:=Monomials0OfDegree(P,n);
for i in K do
Append (~0,G[1]);
end for;
return 0O;

end function;

// Our function takes in a finite ring R and an integer n and outputs

p-conjugates of matrices in M_n(R)]

function MatrixConjClass(R,n)

M:=MatrixRing(R,n);

L:={@ x: x in Set(M)@};

// We create a copy of L so that we can iterate over L and remove
elements from L1 -- it is not recommended to change the list we
are iterating over

Li:=L;

G:={0g : g in L | IsInvertible(g) @};

// G:=GenerallLinearGroup(n,R);

P:={0 @};
for x in L do

if #L1 eq O then break;
end if;
if x notin L1 then continue;
end if;
K:={@ FrobeniusImage(y,1)*x*y"-1 : y in G Q};
P:=Include(P,K);
L1l:= L1 diff K;
// This part is optional: uncomment to see the progress in real time
printf "The size of L1 is now ";
#L1;
end for;
return P;

end function;

// This function takes two matrices and outputs true if their
corresponding primitively generated Hopf algebras are isomorphic
and false otherwise

function MatrixIsoHopfAlg(A,B)

M:=MatrixRing(Parent (A[1,1]) ,NumberOfRows(A)) ;

L:={@ x: x in Set(M)@};

G:={@ x: x in L | IsInvertible(x) @};

K:={@ FrobeniusImageRing(y,1)*A*xy~-1 : y in G @};

if B in K then return true;
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else return false;
end if;

end function;

// This function takes a matrix M with entries in an F_p-algebra and
outputs the corresponding primitively generated Hopf algebra H

function PrimGenHopfAlg(M)

n:=Number0OfRows (M) ;

p:=Characteristic(Parent(M[1,11));

P:=PolynomialRing(Parent (M[1,1]), n);

// This step is needed to make the output more readable -- the
variables will have names x_1, x_2 etc.

AssignNames("P, ["x_" cat IntegerToString(k) : k in [1..n]] );

// Define the ideal of relations for the Hopf algebra

L:=[P.i"p-(&+[Transpose(M) [1,j]*P.j : j in [1..n]]): i in [1..n]];

H:=quo<P | L>;

return H;

end function;

// Setting up the group scheme

K<t>:=FunctionField(Rationals());

A<x>:=PolynomialRing(XK) ;

S:=-2/t"3;

RR<x,u_0O,u_1,u_2,u_3, y_1, y_3>:=PolynomialRing(K,7);

Phi:=x"4-S* (2%t~ 2%x"3+3*t*x"2+2%Xx) ;

R:=quo<RR|Phi>;

tau:=1+t*x;

// specifying the given representation, same as in TO_p case:

A:=Matrix(R,2,2,[1,0,x,taul);

// specifying the action on linear terms, i.e., u_0, u_1l, u_2, u.3

B:=SymmetricPower (A,3);

// this will give us the action on quadratic terms, i.e., Sym™2 (u_i)
+ (y_1, y_.3).

C:=SymmetricPower(B,3);

// we only need the following 12%12 submatrix:

Act:=Matrix(R,12,12,[C[i,j]l: i in [1..12], j in [1..12]11);

Act:=Transpose (Act);

// the diagonal helps us find invariant terms

[Act[i,i]: i in [1..12]1];
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L:=[1,t,t"2,t°3];

R<t>:=PolynomialRing(Rationals()); R<t>:=quo<R | t"4-1>;

// This function takes a representation of a group (in diagonal form)
and outputs invariant monomials of degree n

function inv_mon(n,L)

R:=Parent (L[1]);

L:=[R!L[i]: i in [1..#L]1];
M:=DiagonalMatrix(Parent (L[1]),#L,L);
P:=PolynomialRing(Integers() ,#L);
K:=[1;

0:=01;

AssignNames(“P, ["v_" cat IntegerToString(k) : k in [0..#L-1]] );
N:=[R!SymmetricPower(M,n) [i,i]: i in
[1..NumberOfRows (SymmetricPower (M,n))]1];
for i in N do
if i eq 1 then Append(“K, Index(N,i));
N[Index(N,i)]:=0;
end if;
end for;
G:=Monomials0OfDegree(P,n);
for i in K do
Append (~0,G[1]);
end for;
return 0O;

end function;
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