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Abstract

In this thesis we study families of group schemes of prime power order,

in particular, of order p2. We show that these group schemes can be put

into deformation families and we investigate the associated invariant theory,

including actions and quotient varieties.
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Preface

This thesis consists of four chapters. In Chapter 1 we recall the main aspects

of finite flat group schemes over a ring and in particular the decomposition

G ∼= Grr ×Glr ×Grl ×Gll, (1)

for G a finite group scheme over a perfect field k. In Chapter 2 we study

Dieudonné correspondences and use them to construct a parameter space for

primitively generated finite group schemes. We also set up the Dieudonné

correspondence which is used to classify local-local group schemes of prime

power order in Chapter 3. Finally, in Chapter 4 we put group schemes in

deformation families and consider their representation and invariant theory,

with the goal towards constructing nonclassical Godeaux surfaces in positive

characteristic.
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Chapter 1

Group schemes

This chapter is a reminder of the basics of group schemes of prime power order

and, in particular, the decomposition

G ' Grr ×k Grl ×k Glr ×k Gll, (1.1)

where G is an affine group scheme over a perfect field k. Our main references

are [Wat79], [Pin], and [DG80].

1.1 Group schemes: definitions and main examples

In this section we will be working over a commutative base ring S which is not

assumed to be a field.

Definition 1.1.1. An affine group scheme over S is a representable functor

G : AlgS → Grp, (1.2)

from the category of S-algebras to the category of groups. The representing

object A of G is called the representing algebra of G. All group schemes in

this thesis are assumed to be commutative unless stated otherwise.

For an affine group scheme G there is, by definition, a natural transformation

G ' hA. (1.3)

The functor hA is defined by

hA : AlgS → Grp, (1.4)

R 7→ HomS(A,R) (1.5)
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for some S-algebra A. Since G lands in the category of groups, there are

natural transformations

m : G×S G→ G, (1.6)

−1 : G→ G, (1.7)

1 : SpecS → G, (1.8)

corresponding to group multiplication, inversion, and identity element respect-

ively. Taking the global sections functor, we see that the S-algebra A is

equipped with the maps

∆ : A→ A⊗S A, (1.9)

S : A→ A, (1.10)

ε : A→ S, (1.11)

called the comultiplication, the antipode, and the augmentation respect-

ively, such that certain diagrams commute (see p.8 of [Wat79]). An S-algebra A

with maps ∆, S, ε satisfying these conditions is called a Hopf algebra over S.

Alternative names for Hopf algebras include commutative and cocommutative

augmented algebras, bialgebras, bigebras with antipode etc.

A group scheme is called commutative if its essential image lies in the sub-

category of commutative groups. Most of the group schemes we consider will

be commutative, with the sole exception of Example 1.1.9.

Theorem 1.1.2. [Wat79, 1.4 Theorem] There is an equivalence of categories

{Commutative affine group schemes over SpecS} ' {Hopf algebras over S}.
(1.12)

Just like it is enough to specify only a group law in order to define a group,

it is enough to specify a comultiplication in order to define a Hopf algebra.

This principle holds in greater generality by Yoneda lemma.

Example 1.1.3 (The additive group scheme). The additive group scheme is

defined as

Ga : AlgS → Grp, (1.13)

R 7→ (R,+) (1.14)

and is represented by S[x]. The comultiplication is

x 7→ 1⊗ x+ x⊗ 1. (1.15)

2



Example 1.1.4 (The multiplicative group scheme). The multiplicative group

scheme is defined as

Gm : AlgS → Grp, (1.16)

R 7→ (R∗,×). (1.17)

This group scheme is represented by S[x, x−1] = S[x, y]/(xy − 1) with comulti-

plication

x 7→ x⊗ x. (1.18)

Definition 1.1.5. An S-group scheme G is called finite if its representing

algebra is finite over S. The dimension of A over S is called the order of G.

Example 1.1.6 (αpn). Let k be a field of positive characteristic p and n a

positive integer. The group scheme αpn is defined as

αpn : Algk → Grp, (1.19)

R 7→ {r ∈ R : rp
n

= 0}. (1.20)

This is an absolute Frobenius kernel of Ga. Its representing algebra is k[x]/(xp
n
)

with comultiplication

x 7→ x⊗ 1 + 1⊗ x. (1.21)

It is clear that αpn is a finite group scheme of order pn.

Example 1.1.7 (µn,S). The group scheme µn,S is a Frobenius kernel of Gm,

namely,

µn,S : AlgS → Grp, (1.22)

R 7→ {r ∈ R : rn = 1}. (1.23)

Example 1.1.8 (Finite constant group schemes). Let Γ be a finite group in

a group-theoretic sense. Let A = SΓ = HomSet(Γ, S). For each σ ∈ Γ define

eσ ∈ A to be 1 on σ and 0 otherwise. Then {eσ}σ∈Γ is an S-basis of A. The

Hopf algebra structure on A is given by

∆(eσ) =
∑
ρτ=σ

eρ ⊗ eτ . (1.24)

Such a group scheme is denoted by ΓS or just Γ if no confusion is likely to

arise. We call such group schemes finite constant group schemes.

If Γ is a constant group scheme of order p2 for p prime then it is either
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(Z/p)2 or Z/p2 and is commutative in both cases. This is not the case for

group schemes, as the following example shows.

Example 1.1.9 (A noncommutative group scheme of order p2, A.3.6 in

[Gor02]). Let k be a ring of characteristic p. Consider the functor

G : Algk → Grp, (1.25)

R 7→

{(
m a

0 1

)
: m ∈ µp(R), a ∈ αp(R)

}
(1.26)

This is a subfunctor of GL2. It is easy to see that this functor G is represented

by A = k[x, y]/(xp − 1, yp) with Hopf algebra structure induced from that of

GL2:

µ : A⊗k A→ A, (1.27)

x 7→ x⊗ x, (1.28)

y 7→ x⊗ y + y, (1.29)

ε : A→ k, (1.30)

x 7→ 1, (1.31)

y 7→ 0, (1.32)

S : A→ A, (1.33)

x 7→ x−1, (1.34)

y 7→ −x−1 ⊗ y. (1.35)

Let A,B be two matrices in G(R) for some k-algebra R, i.e.,

A =

(
m a

0 1

)
, B =

(
n b

0 1

)
. (1.36)
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Then, in general,

AB =

(
mn mb+ a

0 1

)
6=

(
mn na+ b

0 1

)
= BA, (1.37)

since mb+ a 6= na+ b. This shows that G is not commutative. A basis of A is

given by {xiyj}0≤i,j≤p−1, so the order is p2.

Here is another way to look at G: µp acts on αp by multiplication:

µp(R)×αp(R)→ αp(R), (1.38)

(m, a) 7→ ma, (1.39)

with (ma)p = 0. This makes G into a semidirect product of αp and µp.

Definition 1.1.10. Let N,G be group schemes over a base S. Consider the

automorphism functor of N

Aut(N) : Sch /S → Grp, (1.40)

T 7→ Aut(NT ) (1.41)

and an action of G on N

ρ : G→ Aut(N). (1.42)

The semidirect product group scheme NoρG is the representable functor

N oρ G : Sch /S → Grp, (1.43)

T 7→ N(T ) oρT G(T ). (1.44)

While we mostly work with finite flat group schemes over a field, where

flatness is automatic, we will also work with finite flat group schemes over

general rings. The kernel of a morphism of finite flat group schemes over a

field is a finite flat group scheme. Moreover, the category of commutative finite

group schemes over a field is abelian (see [Stacks, Lemma 03CN]). However,

this does not hold over rings as the next example shows.

Example 1.1.11. Consider the group scheme

AlgZ → Grp, (1.45)
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B 7→ {b ∈ B : b2 = b}, (1.46)

i.e., the functor sending a ring to its set of idempotents. The group law is

(x, y) 7→ x+ y − 2xy = x(1− y) + y(1− x). (1.47)

The reason for this composition law is that if x and y are idempotents in a

commutative ring, then xy, x(1−y), y(1−x), and (1−x)(1−y) are orthogonal

idempotents, so any sum of these is an idempotent as well. This functor is in

fact represented by Z[x]/(x2 − x), i.e., this is the constant group scheme Z/2.

Define the morphism

Z/2→ µ2, (1.48)

Z/2(B)→ µ2(B), (1.49)

e 7→ 1− 2e. (1.50)

The kernel of this morphism is represented by Z[x]/(x2− x, 2x), which is finite,

but has torsion, to it cannot be a flat module.

1.2 Group schemes of rank two over a local ring

Classification of group schemes over general rings is quite difficult. We can get

full results over low ranks. Let R be a commutative local ring. Following Tate

and Oort ([Tat97] and [TO70]), we will show how to classify group schemes

of order 2 over R. Let A be the representing Hopf algebra of such a group

scheme. We have the short exact sequence

0→ I → A
ε−→ R→ 0, (1.51)

which is split because R is projective over itself. More precisely, the splitting

is given by the structure map R → A. Recall that for any R-modules M,N

there is a canonical isomorphism

n∧
M ⊕N ∼=

⊕
i+j=n

i∧
M ⊗

j∧
N. (1.52)

Now, A is an R-module of rank 2 by assumption. We have

0 =
3∧
A =

3∧
ker ε⊕

2∧
ker ε, (1.53)
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which implies
∧3 ker ε =

∧2 ker ε = 0. It follows that

R =
2∧
A =

2∧
ker ε⊕

1∧
ker ε =

1∧
ker ε = ker ε. (1.54)

We have shown that for a group scheme of rank 2 the augmentation ideal has

rank 1. This does not generalise: if k ⊕ I = kn for n ≥ 3 then ker ε is not

necessarily free, but it does hold over fields.

Now let {x} be an R-basis of I, so that I = Rx. Then A is spanned by {1, x},
so A⊗A is spanned by {1⊗1, x⊗1, 1⊗x, x⊗x}. There exist scalars a1, a2, a3,

and b in R such that

∆(x) = a1(1⊗ 1) + a2(x⊗ 1) + a3(1⊗ x) + b(x⊗ x). (1.55)

In a Hopf algebra we must have

(ε⊗ id) ◦∆ = idA . (1.56)

Applying these to x we get

(ε⊗ id)(a1(1⊗ 1) + a2(x⊗ 1) + a3(1⊗ x) + b(x⊗ x)) = a1 + a2x = x, (1.57)

which implies a1 = 0 and a2 = 1. By symmetry, we must also have a3 = 1.

The comultiplication law is then

∆(x) = x⊗ 1 + 1⊗ x+ b(x⊗ x). (1.58)

The augmentation module I is an ideal, so x2 ∈ I, which means that there is

a ∈ R such that x2 = −ax and x2 + ax = 0. It follows that

A = R[X]/(X2 + aX) (1.59)

as R-algebras.

Let us now look at the antipode map. We have

S(x) = u+ cx, (1.60)

for u, c ∈ R. Note that

(S, id) ◦∆ = ε, (1.61)

which corresponds to g × g−1 = 1 in abstract group theory. Applying both

sides to x we get

u+ cx+ x+ bux+ bcx2 = 0, (1.62)
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from which it follows that u = 0. Note that it is not possible to conclude that

c = −1 from the above since x2 = ax. We now know that S(x) = cx. But

S2 = id, so c2x = x and c2 = 1. By expanding both sides of

∆(x2) = ∆(−ax), (1.63)

we can show that ab = 2 (look at the coefficient of x⊗ x). From the above, we

get

cx+ x− bcax = 0, (1.64)

i.e.,

c+ 1− abc = 0, (1.65)

c+ 1− 2c = 0, (1.66)

c = 1. (1.67)

Conversely, given a, b ∈ R with ab = 2, we can define the affine group scheme

Ga,b(A) = {y ∈ A : y2 + ay = 0} (1.68)

with the group operation

(y1, y2) 7→ y1 + y2 + by1y2. (1.69)

Define an equivalence relation on R2 by declaring (a1, b1) ∼ (a2, b2) if and only

if there is u ∈ R∗ such that a1 = ua2 and b1 = u−1b2. Then

Ga1,b1
∼= Ga2,b2 (1.70)

if and only if (a1, b1) ∼ (a2, b2). The Hopf algebra isomorphism is given by

Ga1,b1 → Ga2,b2 , (1.71)

x 7→ ux (1.72)

with the inverse

x 7→ u−1x. (1.73)

Conversely, every isomorphism of Hopf algebras of rank 2 is of this form – for

the proof it is crucial that ab = 2.

We have already seen examples of Ga,b. For example, if k is a field then we have

G1,2 corresponding to k[x]/(x2 +x) which is Z/2 and G2,1 = k[x]/(x2 +1) = µ2.
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Furthermore, if 0 = 2 in k then G0,0 is α2. Cartier duality (see the next section)

swaps a and b:

GDa,b = Gb,a. (1.74)

1.3 Cartier duality for finite group schemes.

Let G be a commutative finite flat group scheme over S and let A be its

representing algebra. The S-linear dual algebra of A

AD := HomS(A,S) (1.75)

is also a Hopf algebra. Indeed, let m,S, i denote the multiplication, the

antipode, and the S-algebra structure map for A. Then

mD : AD → AD ⊗S AD, (1.76)

SD : AD → AD, (1.77)

iD : AD → SD ' S (1.78)

(1.79)

give A the structure of a Hopf algebra. Let GD be the group scheme corres-

ponding to AD. We call GD the Cartier dual of G.

Theorem 1.3.1. [Wat79, p. 17] The Cartier dual functor is a duality theory for

the category of finite commutative group schemes, i.e., there is an isomorphism

of functors

id ' (−)D
2
. (1.80)

There is a duality pairing

G×S GD → Gm,S , (1.81)

(g, φ) 7→ φ(g). (1.82)

Furthermore, for any S-algebra B,

GD(B) = HomB(GB,Gm,B) ∼= HomB(B[T±1, A⊗S B]). (1.83)

In other words, on the level of group schemes, the Cartier dual behaves like

the Hom-sheaf Hom(−,Gm) and this can be made precise by working in the

fppf-topology (see Section 021L in [Stacks] and Chapter 5 of [Ols16]).

Example 1.3.2 (µn
∼= Z/nD). The dual of µn is represented by

HomS(S[t±1, S[x]/(xn − 1)]). (1.84)
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Take φ : S[t±1]→ S[x]/(xn − 1)] and let φ(t) = p(x) =
∑n−1

i=0 aix
i. Note that

p(fg) = p(f)p(g) for f, g polynomials, so∑
ai(fg)i ≡

∑
ai(f)i

∑
ai(g)i mod (fn − 1, gn − 1). (1.85)

Comparing the terms above we see aiaj = 0 if i 6= j and a2
i = 1. Also note

that
∑
ai = 1, so the ai are orthogonal idempotents. Each ai corresponds to

a point in Z/n, the constant group scheme with base S, which is the Cartier

dual of µn.

We can also see the duality in more explicit terms. The constant group scheme

Z/n has an S-basis {e0, ..., ep−1} with maps

∆ : ei 7→
∑
j+k=i

ej ⊗ ek, (1.86)

ε : e0 7→ 1, ei 6=0 7→ 0, (1.87)

S : ei 7→ e−i, (1.88)

i : s 7→ s, (1.89)

∇ : ei ⊗ ej 7→ δi,jei. (1.90)

Let the dual group scheme Z/nD have the dual basis {e0, ..., ep−1}, with maps

∇D : ei 7→ ei ⊗ ei, (1.91)

iD : ei 7→ 1, (1.92)

SD : ei 7→ e−i, (1.93)

εD : s 7→ s, (1.94)

∆D : ei ⊗ ej 7→ ei+j , (1.95)

which are the maps defining the Hopf algebra structure on S[x]/(xn − 1), the

representing algebra of µn,S .

Now assume S has positive characteristic p. We can write down the Cartier

pairing for the pair (µp,Z/p). It is a function

S[t±1]→ S[x]/(xp − x)⊗S S[y]/(yp − 1), (1.96)

where S[x]/(xp − x) represents Z/p. Let {1, x, ..., xp−1} be an S-basis of

S[x]/(xp − 1) and let f0, ..., fp−1 be its dual basis. Then

fi =
f i1
i!
. (1.97)
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Denote by expp the truncated exponential

expp(a) = 1 + a+
a2

2
+ ...+

ap−1

(p− 1)!
. (1.98)

Hence y = expp(f1). The Cartier pairing is

S[t±1]→ S[x]/(xp − x)⊗S S[y]/(yp − 1), (1.99)

t 7→ expp(x⊗ log(y)). (1.100)

Example 1.3.3. The additive finite group scheme αp is self-dual: αD
p
∼= αp,

with the dual basis given by divided powers.

1.4 The canonical decomposition

In this section we will recall how every finite commutative algebraic group

over a perfect field admits a canonical decomposition as a direct sum of four

components. For the more precise statement, see Prop 1.4.8.

Let G = SpecA be a finite commutative algebraic group scheme and TG,0 the

Zariski tangent space at the origin. The point 0 ∈ G is the image of Spec k → G

which comes from the counit Hopf algebra map ε : A→ k.

Proposition 1.4.1. There is an isomorphism of k-vector spaces

TG,0 ∼= Hom(GD,Ga), (1.101)

where the k-action on the right hand side is induced from the k-action of Ga.

Proof. The tangent space TG,0 is naturally isomorphic to the kernel of the map

G(k[t]/(t2))→ G(k). (1.102)

This corresponds to the kernel of the restriction map of k-algebras

Hom(A, k[t]/(t2))→ Hom(A, k). (1.103)

A map f : A→ k[t]/(t2) = k⊕ tk has two components and the first component

has to be the counit map. So f = ε + tλ, where λ : A → k is a linear map.

Define

f̃ : k[t]→ AD (1.104)

t 7→ λ. (1.105)
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This gives an element of Hom(GD,GA) by taking Spec f̃ .

Conversely, given ψ : k[t]→ AD, let λ = ψ(t) and define

ψ : A→ k[t]/(t2) (1.106)

a 7→ ε(a) + tλ(a). (1.107)

It is clear that we do get a linear bijection between these vector spaces.

Proposition 1.4.2. If k is a field of characteristic 0, then any finite commut-

ative group scheme over k is étale.

Proof. Let G be a finite group scheme over k. We can assume that k is

algebraically closed. The translation action of G(k) on G is transitive, hence it

is enough to show that G is étale at the origin. By the previous proposition, it

is enough to show that any map GD → Ga is zero. The image of GD under

this map is a finite subgroup scheme of Ga. We will show that Ga has no

finite subgroup schemes. Let H ⊂ Ga be a finite subgroup scheme. Then

H(k) ⊂ Ga(k) = k+ is a finite subgroup. But k+ is a Q-vector space, in

particular, it has no finite subgroups. Hence H(k) = 0 and it follows that H is

of the form k[x]/(xn) for some n. The comultiplication

x 7→ 1⊗ x+ x⊗ 1 (1.108)

of Ga must restrict to H as well. Therefore,

(x⊗ 1 + 1⊗ x)n =

n∑
i=1

(
n

i

)
xn−i ⊗ xi (1.109)

must be in the ideal generated by xn ⊗ 1, 1⊗ xn. Since the characteristic of k

is zero, all the binomial coefficients in the formula above are nonzero. Hence

n = 1 and H = 0.

Using a similar argument, we can show that if char k = p, then αp is simple.

Indeed, let H ⊂ αp be a subgroup scheme. Then it is of the form Spec k[x]/(xn)

for n < p. So all the binomial coefficients are again nonzero and n = 1, so

H = 0.

Remark. For our proof it was essential that G is commutative because we are

using Cartier duality. However, the result holds without the commutativity

assumption, see [Wat79, §11.4].

Proposition 1.4.3. Let G be a finite commutative algebraic group over a field

k. The following are equivalent:

12



(i) Gksep is constant.

(ii) G is étale.

(iii) FG is an isomorphism.

Proof. Let us show that (i) is equivalent to (ii). By definition, an étale

morphism is a smooth morphism of relative dimension zero, i.e., flat, finite

type, with vanishing sheaf of differentials. Since k is a field, G is étale if and

only if ΩG/k = 0. Formation of the sheaf of relative differentials is invariant

under base change, so ΩG/k = 0 is equivalent to ΩGksep/ksep = 0. This means

that Gksep is reduced and all its residue fields are separable over ksep. But ksep

is separably closed, so

Gksep ∼= tSpec ksep (1.110)

as a scheme. The group structure on Gksep corresponds to the group structure

on G(ksep), yielding

Gksep ∼= G(ksep). (1.111)

Now let us see that (ii) is equivalent to (iii). The group G is étale if and only if

the tangent space at the identity is trivial. The absolute Frobenius σ and the

relative Frobenius FG are both zero at this tangent space, so the étaleness of

G is equivalent to FG being an infinitesimal isomorphism. But FG is bijective

on points, so this is equivalent to FG being an isomorphism.

Definition 1.4.4. Let G be a finite commutative group scheme over a field. Let

FG : G→ G(p) be the relative Frobenius morphism. It induces a homomorphism

FGD : GD → (GD)(p) ∼= (G(p))D. (1.112)

The Verschiebung morphism VG (also denoted by V if there is no confusion

about G) is defined as the dual of FGD :

VG = FDGD : G(p) → G. (1.113)

Taking the Cartier dual of the previous proposition gives us

Proposition 1.4.5. The following are equivalent:

(i) Gksep ∼=
⊕k

i=1 µni,ksep for some positive integers ni.

(ii) GD is étale.

(iii) VG is an isomorphism.

Now let Gred ⊂ G be the underlying reduced subscheme of G. In general,

Gred does not have a natural group scheme structure making it a subgroup
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scheme of G. However, if k is a perfect field, then Gred is naturally a closed

subgroup of G. Since Gred is reduced, it is smooth ([SGA3]), hence it is

geometrically reduced ([SGA3]). By [EGA4, Volume IV 4.6.1] Gred ×k Gred is

reduced and hence the restriction of the multiplication map

G×k G→ G (1.114)

to Gred ×k Gred factors through Gred, making it a subgroup scheme of G. In

general, for G noncommutative, Gred ⊂ G is not normal.

Denote by G0 ⊂ G the connected component of the identity. It is a group

subscheme of G by [Wat79, p. 51].

Proposition 1.4.6. Let G be a finite group scheme over a perfect field k.

Then there is a canonical isomorphism of group schemes

G ∼= G0 ⊕Gred. (1.115)

Proof. We will show that the natural map

Gred → G/G0 (1.116)

is an isomorphism. The formation of Gred and G0 is compatible with base

change, so without the loss of generality we may assume that k is separably

closed. Then Gred → G/G0 is a bijective morphism between constant group

schemes, i.e., an isomorphism.

Remark. It is crucial that k is a perfect field in the above proposition, as

there are counterexamples for fields which are not perfect.

Definition 1.4.7. A finite commutative group scheme G is local if G = G0

and reduced if G = Gred. A group scheme G is of a-b type if G is of type a

and GD is of type b. Such a group scheme is called a group scheme of pure

type.

The previous definition implies that there are four possibilities for a finite

commutative group scheme G: reduced-reduced, reduced-local, local-reduced,

and local-local. Every group splits into the direct sum of four groups of these

types.

Proposition 1.4.8. Let G be a finite commutative group scheme over a perfect

field k. There is a unique and functorial decomposition of G

G ∼= Grr ⊕Grl ⊕Glr ⊕Gll, (1.117)

with Grr, Grl, Glr, Gll of reduced-reduced, reduced-local, local-reduced, local-local

types respectively.
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Proof. The decomposition G = G0 ⊕Gred is functorial in G. Take the Cartier

dual

GD = (G0 ⊕Gred)D = (G0)D ⊕ (Gred)D (1.118)

and apply the decomposition to each factor, so

GD = ((G0)D)0 ⊕ ((G0)D)red ⊕ ((Gred)D)0 ⊕ ((Gred)D)red. (1.119)

Apply the Cartier duality functor again to get

G = (GD)D (1.120)

= (((G0)D)0 ⊕ ((G0)D)red ⊕ ((Gred)D)0 ⊕ ((Gred)D)red)D (1.121)

= Gll ⊕Glr ⊕Grl ⊕Grr. (1.122)

Note that, in particular, there are no homomorphisms between groups of

different types.

Proposition 1.4.9. Let G,H be finite algebraic groups over k with G local

and H reduced. Then

Hom(G,H) = Hom(H,G) = 0. (1.123)

Proof. Let A = O(G), B = O(H), i.e., A is local and B is reduced. It is clear

that there are no k-algebra homomorphisms A→ B – the maximal ideal of A

is nilpotent since A is artinian, hence any homomorphism maps the maximal

ideal it to zero. But A = me ⊕ k, hence Hom(A,B) = 0.

Recall that a local ring has only two idempotents, 0 and 1. Indeed, if x = x2

then x(x−1) = 0. If x is in the maximal ideal, then x−1 is invertible and x = 0.

If x is not in the maximal ideal, then it is invertible and x = 1. Also recall a

theorem by Dedekind: if B is a reduced artinian ring, then B decomposes as a

finite product of fields

B = k1 × ...× kn. (1.124)

Let e1, ..., en be idempotents in B (ei is the row of zeros except for 1 in the

ith place). Because εBiB = idk, we may assume that εB(e1) = 1, i.e., k1 = k.

Since e1ei = 0 for all i ≥ 2 we have εB(ei) = 0. Let f : B → A be a morphism

of algebras. We must have εA = εB ◦ f , so f(e1) = 1 and f(ei) = 0 for all i ≥ 2.

But this implies f = iB ◦ εA, so f = 0 as required.

In fact, we can replace Hom by Ext1 in the proposition. If we are working

over a ring, nonsplit extensions are possible.
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Example 1.4.10. Let R = Z[1+
√
−7

2 ] = Z[a] be the base ring. Notice that

aa = 2. By Section 1.2, there are 4 group schemes of order 2 over R. These

are Z/2,µ2, Ga = SpecR[x]/(x2 − ax), and Ga = SpecR[y]/(y2 − ay). Define

an inclusion

0→ Z/2→ Ga ×Ga (1.125)

by

x 7→ at, (1.126)

y 7→ at, (1.127)

where t is a co-ordinate on O(Z/2). The cokernel is a representable sheaf and

is isomorphic to µ2. The resulting short exact sequence

0→ Z/2→ Ga ×R Ga → µ2 → 0 (1.128)

is not split. This can be checked by looking at its étale and connected parts.

Proposition 1.4.11. Let G be a commutative finite group scheme of pure

type. Then

(i) G is reduced-reduced if and only if F, V are both isomorphisms.

(ii) G is reduced-local if and only if F is an isomorphism and V is nilpotent.

(iii) G is local-reduced if and only if F is nilpotent and V is an isomorphism.

(iv) G is local-local if and only if F, V are both nilpotent.

Proof. Suppose that G is local, i.e., G = G0. The maximal ideal of G0

corresponding to the group identity element is nilpotent, so it is annihilated by

some power of the absolute Frobenius. Hence it must be annihilated by some

power of the relative Frobenius as well. Hence F is nilpotent on G. On the

other hand, if G is reduced, then by 1.4.3 we know that F is an isomorphism.

Applying the same argument to the case of G reduced and then to GD yields

the result.

Theorem 1.4.12. The assignment

G 7→ G(ks) (1.129)

defines an equivalence between the category of finite étale group schemes over a

field k and the category of continuous finite Z[Gal(ks/k)]-modules.

Sketch of proof. Let Γ be a finite abelian group with a continuous action of

Gk, the absolute Galois group of k. An action is continuous if each γ ∈ Γ is
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fixed by some GL for a field extension L/k. Define the corresponding group

scheme A(Γ) as follows. As a k-vector space, A(Γ) consists of maps

f : Γ→ k (1.130)

which commute with the action of Gk:

f(gγ) = γf(g). (1.131)

Let L/k be a finite extension such that GL acts trivially. Every f in A(Γ) then

lands in L and A(Γ) is finite dimensional over k. In fact, dimk A(Γ) = |Γ|. The

ring structure on A(Γ) is defined pointwise:

fg(γ) = f(γ)g(γ). (1.132)

The Hopf algebra structure is

∆(f)(γ, δ) = f(γ + δ), (1.133)

S(f)(g) = f(−g), (1.134)

ε(f)(g) = f(0). (1.135)

The algebra A(Γ) is a finite étale Hopf algebra, i.e., it is isomorphic to a finite

direct sum of finite field extensions of k.

The theorem implies that the study of Grr, Grl and, by Cartier duality, Glr

is essentially Galois theory. In particular, the case of k algebraically closed,

gives an equivalence with finite abelian groups. On the other hand, the group

schemes of local-local type are very different and need further tools.

1.5 Finite groups schemes of local-local type

Let G be a local-local group scheme over an algebraically closed field. We know

that Frobenius and Verschiebung are both nilpotent. We start with the case

F = V = 0.

Proposition 1.5.1. If FG = VG = 0 then G ∼= α⊕np , where n = dimk TG,0.

Proof. Consider the short exact sequence of k-modules

0→ I → A
ε−→ k → 0, (1.136)
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where ε is the counit map. Since k is projective, the sequence splits and

A ∼= I ⊕ k. Recall that TG,0 ∼= (I/I2)∨, so I is generated by n elements. But

F = 0, so ap = 0 for all a ∈ I. Hence I is nilpotent and its n generators generate

A as a k-algebra. Write A = k[x1, ..., xn]/J , I = (x1, ..., xn)/J for some ideal J .

Then xpi ∈ J for all i. Hence A must be a quotient of k[x1, ..., xn]/(xp1, ..., x
p
n).

It follows that dimk A ≤ pn. By 1.4.1, we can work with morphisms GD → Ga

instead of tangent vectors. Let

φ : GD → Ga (1.137)

be a morphism. Then, using V = 0 and functoriality of F ,

FGa ◦ φ = φ(p) ◦ FGD = φ(p) ◦ V D
G = 0. (1.138)

Therefore, φ factors through the kernel of FGa , which is αp.
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Chapter 2

Dieudonné modules and Hopf

algebras

2.1 Classification of primitively generated Hopf al-

gebras

In this section we classify Hopf algebras which are primitively generated. Fix

a base ring S, which is an Fp-algebra. Let H be a finite flat Hopf algebra over

S. An element a ∈ H is primitive if

∆(a) = 1⊗ a+ a⊗ 1. (2.1)

For example, x ∈ S[x]/(xp) = O(αp) is primitive. Let P (H) ⊂ H denote the

subset of primitive elements. A Hopf algebra H is primitively generated if

the smallest Hopf subalgebra of H which contains P (H) is H itself.

Example 2.1.1. Let H = O(αp) = S[x]/(xp). Then

P (H) = Sx, (2.2)

since for other powers xi of x we will have

∆(xi) = ∆(x)i = (1⊗ x+ x⊗ 1)i 6= 1⊗ xi + xi ⊗ 1, (2.3)

because there will be mixed terms with coefficients not dividing p, unless i = p.

If H = S[x]/(xp
n
) and H corresponds to the algebraic group αpn then

P (H) = Sx⊕ Sxp ⊕ Sxp2 ...⊕ Sxpn−1
. (2.4)

Let Z/p denote the constant group scheme, then P (Z/p) = Sx. The multi-

plicative group scheme µp, represented by S[t]/(xp − 1) with comultiplication

∆(x) = x⊗ x is primitive-free: P (µp) = 0.
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Example 2.1.2. The p-torsion group scheme Mp2 of a supersingular elliptic

curve over Fp is not primitively generated since it admits a quotient isomorphic

to αp which corresponds to a proper Hopf subalgebra containing all the

primitive elements. Indeed, we have a nonsplit extension

0→ αp →Mp2 → αp → 0 (2.5)

in the category of commutative group schemes.

Proposition 2.1.3. Let H be a Hopf algebra and P (H) the set of primitive

elements. Then P (H) has the following properties:

1. P (H) ∩ S = 0,

2. P (H) is an S-module.

3. If S is a PID then P (H) is free over S.

4. t ∈ P (H) implies tp ∈ P (H).

Proof. The proofs are immediate, for example, for 1, let a ∈ P (H) ∩ S, then

∆(a) = a∆(1) = a⊗ 1, (2.6)

on the other hand,

∆(a) = a⊗ 1 + 1⊗ a, (2.7)

so that

a = a(1⊗ 1) = 1⊗ a = 0, (2.8)

since 1⊗ 1 ∈ H ⊗H is 1.

The last property implies that the Frobenius map restricts to primitive

elements, i.e., we can define

P (H)→ P (H) (2.9)

t→ tp. (2.10)

Example 2.1.4. Take αp, which is represented by H = S[x]/(xp) with x

primitive. We know that P (H) = Sx and F (x) = 0.

Example 2.1.5. Consider αpn , which is represented by H = S[x]/(xp
n
) with

x primitive. Then

P (H) = Sx⊕ Sxp ⊕ Sxp2 ...⊕ Sxpn−1
(2.11)

and F (xp
i
) = xp

i+1
.
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Example 2.1.6. If Z/p is the constant group scheme with P (Z/p) = Sx then

F (x) = x.

Define S{F} to be the noncommutative ring of polynomials with single

variable F and Fs = spF . This is the baby version of the Dieudonné ring, but

this will work for the primitively generated case.

Proposition 2.1.7 (Dieudonné correspondence for primitively generated Hopf

algebras). Let S be an Fp-algebra and a principal ideal domain. There is an

equivalence of categories

{Finitely generated free primitively generated Hopf algebras over S} (2.12)

'

{Modules of finite type over S{F}, free over S.} (2.13)

We call the modules on the right hand side of the equivalence primitive

Dieudonné modules.

Proof. For any H, the module of primitive elements P (H) is free over S and

the action of F on H restricts to P (H), so it is indeed an S{F}-module. For

a Hopf algebra morphism

φ : H1 → H2 (2.14)

the restricted map φ|P (H1) lands in P (H2), so we do get a functor between

categories.

On the other hand, consider an S{F}-module M of finite type free over S. Let

{e1, ..., en} be an S-basis of M . Then

Fei =

n∑
j=1

ajiej (2.15)

for some aji ∈ S. Define

H = S[x1, ..., xn]/({xpi −
∑
j

ajixj}i=1,...,n) (2.16)

with the xi primitive. Then H is a primitively generated Hopf algebra which

corresponds to M .

Definition 2.1.8. A morphism of primitive Dieudonné moddules M1 and

M2 is an S-linear map

M1 →M2 (2.17)

which respects the F -action.
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Remark. Taking just the functor

{S-Hopf algebras} → {S{F}-modules} (2.18)

H 7→ P (H) (2.19)

does not give us an equivalence. For example, P (Z/p2) ∼= P ((Z/p)2) and

S{F}[X] with X commuting variable is not in the image of P (−).

Remark. The functor P (−) is a contravariant Dieudonné module theory in

the sense of [DG80].

Example 2.1.9. Let G = αp, then we know that it corresponds to the module

Se with Fe = 0.

Example 2.1.10. Let G = αpn . This algebraic group corresponds to
⊕n

i=1 Sei

with Fei = ei+1 if i 6= n and Fen = 0. We can work backwards from the

module to recover the algebraic group.

Example 2.1.11. The finite group scheme Z/p corresponds to Se with Fe = e.

Example 2.1.12. Take M = Se1 ⊕ Se2 and let F swap e1 and e2. The

corresponding Hopf algebra is

S[x1, x2]/(xp1 − x2, x
p
2 − x1) ∼= S[x]/(xp

2 − x), (2.20)

where x is primitive. This Hopf algebra corresponds to Z/p2.

2.2 The parameter space for primitively generated

Hopf algebras

Take a finite free S-module M and let {e1, ..., en} be its S-basis. For an

arbitrary matrix A ∈ Mn(S) define the action of F ∈ S{F}:

Fei := Aei. (2.21)

There is a primitively generated Hopf algebra H associated to the pair (n,A).

On the other hand, every primitively generated Hopf algebra H defines a

matrix – the corresponding primitive Dieudonné module is finite over S and

the Fei define an S-linear map. We need to know when two matrices define

the same Hopf algebra.

Proposition 2.2.1. Two matrices A and B in Mn(S) define isomorphic Hopf

algebras if and only if there is an invertible matrix Q ∈ Mn(S)∗ such that

QA = BQ(p), (2.22)
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where Q(p) is obtained from Q by raising every entry to the power of p.

Proof. Assume that A and B define free R-modules MA,MB of rank n over S.

Fix an S-isomorphism MA
∼= MB and an S-basis {e1, ..., en} for both of these

modules. Let

Q : MA →MB (2.23)

be a map of S{F}-modules, i.e., a map of primitive Dieudonné modules. Then

QF = FQ, which we can write out using the basis:

FQ(e1) =F (q11e1 + q21e2 + ...+ qn1en) (2.24)

=(qp11b11 + ...+ qpn1b1n)e1 (2.25)

(qp11b21 + ...+ qpn1b2n)e2+ (2.26)

... (2.27)

(qp11bn1 + ...+ qpn1bnn)en (2.28)

and, on the other hand,

QF (e1) =Q(a11e1 + a21e2 + ...+ an1en) (2.29)

=(a11q11 + a21q12 + ...+ an1q1n)e1+ (2.30)

(a11q21 + a21q22 + ...+ an1q2n)e1+ (2.31)

... (2.32)

(a11qn1 + a21qn2 + ...+ an1qnn)en. (2.33)

Repeating the above calculation for all ei, we conclude QA = BQ(p), where

the (i, j)-th entry of Q(p) is qpij . The modules MA and MB are isomorphic if

and only if there is an inverse to Q, i.e., Q ∈Mn(S)∗

2.3 Primitively generated Hopf algebras of low rank

We consider primitively generated Hopf algebras of p-rank n over various finite

rings.

Example 2.3.1. Let S = Fp and n = 1. We already know about αp, repres-

ented by Fp[x]/(xp). The parameter space is Fp/ ∼, where λ1 ∼ λ2 if and only

if apλ1 = aλ2. By Fermat’s little theorem this implies λ1 = λ2, so there are p

isomorphism classes given by {Fp[x]/(xp − λx)}λ∈Fp .

Example 2.3.2. Let S = F2 and n = 2. We use the code from Appendix B

to calculate the parameter space, which in this case is the quotient stack over

Fp modulo twisted conjugation. Calling MatrixConjClass(FiniteField(2),2); we
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get the list{(
1 0

0 1

)}
, (2.34){(

0 0

0 1

)
,

(
1 1

0 0

)
,

(
1 0

0 0

)
,

(
1 0

1 0

)
,

(
0 0

1 1

)
,

(
0 1

0 1

)}
, (2.35){(

1 1

1 0

)
,

(
0 1

1 1

)}
, (2.36){(

0 1

1 0

)
,

(
1 0

1 1

)
,

(
1 1

0 1

)}
, (2.37){(

0 0

1 0

)
,

(
0 1

0 0

)
,

(
1 1

1 1

)
,

}
, (2.38){(

0 0

0 0

)}
(2.39)

The corresponding Hopf algebras are given by calling

[PrimGenHopfAlg(C[1]): C in L];

which returns

[

Affine Algebra of rank 2 over GF(2)

Lexicographical Order

Variables: x_1, x_2

Quotient relations:

[

x_1^2 + x_1,

x_2^2 + x_2

],

Affine Algebra of rank 2 over GF(2)

Lexicographical Order

Variables: x_1, x_2

Quotient relations:

[

x_1^2,

x_2^2 + x_2

],

Affine Algebra of rank 2 over GF(2)

Lexicographical Order

Variables: x_1, x_2

Quotient relations:

[

x_1^2 + x_1 + x_2,

x_1 + x_2^2
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],

Affine Algebra of rank 2 over GF(2)

Lexicographical Order

Variables: x_1, x_2

Quotient relations:

[

x_1^2 + x_2,

x_1 + x_2^2

],

Affine Algebra of rank 2 over GF(2)

Lexicographical Order

Variables: x_1, x_2

Quotient relations:

[

x_1^2 + x_2,

x_2^2

],

Affine Algebra of rank 2 over GF(2)

Lexicographical Order

Variables: x_1, x_2

Quotient relations:

[

x_1^2,

x_2^2

]

]

The comultiplication in these algebras is particularly simple – all the xi are

primitive.

Example 2.3.3. We can also consider S = Fp for various primes p and

n = 3, 4, 5. The number of isomorphism classes grows quite fast.

2-rank # of classes 3-rank # of classes 4-rank # of classes 5-rank # of classes

1 2 1 3 1 2 1 5

2 6 2 12 2 6 2 30

3 14 3 39 3 14 3 155

4 34 4 129 4 34 4 ?

5 74 5 ? 5 74 5 ?

2.4 Primitive extensions of Hopf algebas

Using the classical Dieudonné module theory in the sense of [Gro74, Chapitre

II], the group Ga, represented by S[x] corresponds to the 1-dimensional module

S{F}. This is a projective object in the category of S{F}-modules and can be
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used to construct projective resolutions. For example, consider αp and let M

be the corresponding Dieudonné module. Then we have a short exact sequence

0→ S{F} F−→ S{F} →M → 0 (2.40)

which is a projective resolution of M in the category of modules of finite type

over S{F}, free over S. We have

0→ HomS{F}(S{F},M)→ HomS{F}(S{F},M)→ Ext1
S{F}(M,M)→ 0.

(2.41)

Note that HomS{F}(S{F},M) ∼= M via f 7→ f(1). So we get the sequence

0→M
0−→M → Ext1

S{F}(M,M), (2.42)

since the Frobenius is 0 on M . We conclude that Ext1
S{F}(M,M) ∼= M . But

note that this Ext group only classifies extensions which give primitively

generated Hopf algebras. For example, the group scheme Mp2 constructed in

Section 3.2 does not arise this way.

2.5 Witt vectors

In this section we will define the ring of Witt vectors and show that it is an

affine group scheme, i.e., it represents a certain functor. The canonical reference

for this material is [Ser79, Section II.6] and this is what I am following, but I

hope to be more down to earth in my treatment.

Basic idea: W allows us to build Zp from Fp without any prior knowledge of

Zp. Remarkably, we construct an integral domain of characteristic zero from a

field of characteristic p. The construction is related to the fact that while the

additive group of the power series ring k[[t]] in characteristic p has p-torsion,

the multiplicative group 1 + tk[[t]] is torsion-free. This means that some aspect

of characteristic zero is preserved in positive characteristic.

Pick a prime p and define Witt polynomials by

Φn ∈ Z[x0, ..., xn], (2.43)

Φn(x0, ..., xn) = xp
n

0 + pxp
n−1

1 + ...+ pnxn. (2.44)

Now define Witt addition and multiplication polynomials Sn, Pn ∈
Z[x0, ..., xn, y0, ..., yn] implicitly by

Φn(S0, ..., Sn) = Φn(x0, ..., xn) + Φn(y0, ..., yn), (2.45)
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Φn(P0, ..., Pn) = Φn(x0, ..., xn) · Φn(y0, ..., yn). (2.46)

For example, the first few of these are

S0(x0, y0) = x0 + y0, (2.47)

P0(x0, y0) = x0y0, (2.48)

S1(x0, x1, y0, y1) = x1 + y1 −
1

p

p−1∑
i=1

(
p

i

)
xi0y

p−i
0 . (2.49)

These become rather cumbersome to write down even for small values of n, so

it is better to think of these conceptually.

Definition 2.5.1. The Witt ring scheme is a representable functor defined

by

W : AlgZ → Ring, (2.50)

A 7→
∞∏
i=0

A. (2.51)

The addition and multiplication on W (A) are defined using the Witt addition

and multiplication polynomials:

(w0, w1, ...) + (v0, v1, ...) = (S0(w0, v0), S1(w0, w1, v0, v1), ...), (2.52)

(w0, w1, ...) · (v0, v1, ...) = (P0(w0, v0), P1(w0, w1, v0, v1), ...). (2.53)

The truncated ring of Witt vectors is the quotientWn(A) = W (A)/pnW (A).

We can also define the Frobenius and the Verschiebung operators on W (A):

F : W (A)→W (A), (2.54)

(a0, a1, ...) 7→ (ap0, a
p
1, ...), (2.55)

V : W (A)→W (A), (2.56)

(a0, a1, ...) 7→ (0, a0, a1, ...). (2.57)

These satisfy V F = FV = p, i.e., their composition acts as multiplication by

27



p. Both F and V descend to operations on the truncated Witt ring Wn(A).

Proposition 2.5.2. Let k be a field of characteristic p and W = W (k) its

corresponding Witt ring. Then W is an integral domain of characteristic zero,

with multiplicative identity (1, 0, 0, ...).

Example 2.5.3. W (Fp) ∼= Zp. Note that in particular we haveWn(Fp) = Z/pn

and W (Fp) is obtained as the limit of the Wn(Fp).

Example 2.5.4. W (Fpn) is the unique degree n unramified extension of Zp.

We can now define the Dieudonné ring. We use the following notation: for

a commutative ring A, the ring A{x1, x2} denotes the noncommutative ring

with variables x1 and x2 which do not necessarily commute between themselves

or with elements of A. The notation A[x1, x2] always denotes the commutative

polynomial ring over A.

Definition 2.5.5. Let A be a ring and W = W (A) its corresponding Witt

ring. The Dieudonné ring is defined as

D = W{F, V }/(FV − p, V F − p, Fw − σ(w)F,wV − V σ(w)), (2.58)

where σ : W → W is the automorphism induced by the absolute Frobenius

map on A.

Note that D is a noncommutative ring in general, with the only exception

D(Fp).

Define the Frobenius kernels on Wn by

Wm
n (A) = {(a0, ..., an−1) : ap

m

i = 0, 0 ≤ i ≤ n− 1}. (2.59)

The operators F and V restrict to

F : Wm
n (A)→Wm

n (A), (2.60)

V : Wm
n (A)→Wm

n (A). (2.61)

2.6 Dieudonné correspondence

Now we arrive to the main theorem for Dieudonné theory for local-local group

schemes.

Theorem 2.6.1 (Théorème 4.2, [Gro74] and Chapitre V [DG80]). Let k be a
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perfect field. There is a categorical equivalence

D∗ : {Local-local commutative algebraic group schemes of rank pn over a field k}

'

{Dieudonné modules of length n over Wk, killed by powers of F and V .}

The functor D∗ is constructed as follows. Let G be a local-local group

scheme of prime power order, then

D∗(G) = Hom(lim−→
m,n

Wm
n , G) (2.62)

The actions of F and V on the Wm
n induce actions on their injective limit, so

we get an action of F and V on D∗(G), making it a Dieudonné module. We

will also need the ‘quasi-inverse’ to D∗, as outlined in Annexe 6 of [Gro74].

Definition 2.6.2. Let M be a Dieudonné module of length n over W , killed

by powers of F and V . Choose N large enough so that V N+1 = 0 on M . Let

AM be the quotient of the free k-algebra k[Tx : x ∈M ] by the ideal generated

by the following elements:

1. TFx − T px for all x ∈M ;

2. Tx+y − SN (TV Nx, ..., Tx, TV Ny, ..., Ty) for all x, y ∈M ;

3. Tλx − PN (λp
−N

1 , λp
−N

2 , ..., λp
−N

N+1, TV Nx, ..., Tx) for λ ∈ E, x ∈M .

Proposition 2.6.3. [Gro74, §6.2] AM is a local-local Hopf algebra with comul-

tiplication

∆(Tm) = SN (TV Nm⊗ 1, TV N−1m⊗ 1, ..., Tm⊗ 1, 1⊗TV Nm, ..., 1⊗Tm), (2.63)

Proposition 2.6.4. [Gro74, §6. Annexe] There exists a left adjoint functor

E∗ to D∗. For every Dieudonné module M the functor E∗(M) is representable

and its representing object is SpecAM .

Example 2.6.5. Let M be the quotient of D by (F, V ). Then N = 0. Let

{m} be an D-basis for M . Then the corresponding Hopf algebra H is generated

by Tm over k. The comultiplication is

∆(Tm) = S0(Tm ⊗ 1, 1⊗ Tm) = Tm ⊗ 1 + 1⊗ Tm. (2.64)

Note that

T pm = TFm = T0 = 0. (2.65)

We conclude that H is isomorphic to k[t]/(tp) with t primitive, i.e., H represents

the group scheme αp.
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Example 2.6.6. Let M be the quotient of D by (Fm, V n). Then we have an k-

basis {Tij}1≤i≤m,1≤j≤n for the Hopf algebra H of M . Note that FTij = Ti+1,j ,

so we may relabel the Tij as tp
i

j . The comultiplication is

∆(tp
i

j ) = SN (TV Nm⊗ 1, TV N−1m⊗ 1, ..., Tm⊗ 1, 1⊗ TV Nm, ..., 1⊗ Tm), (2.66)

which we recognise as the comultiplication for the Frobenius kernel Wm
n . We

conclude that

H = k[t1, ..., tn]/(tp
m

1 , ..., tp
m

n ). (2.67)

Example 2.6.7. Given a Hopf algebra H, we may also work backwards to

find the corresponding module over D. For example. let H be k[t]/(tp
5
) with

∆(t) = t⊗ 1 + 1⊗ t+

p−1∑
i=1

1

i!(p− i)!
tp

3i ⊗ tp4−p3i. (2.68)

Let M be the corresponding Dieudonné module and let m ∈M correspond to

t, i.e., Tm = t. Then

(Tm)5 = TF 5m = 0, (2.69)

so F 5M = 0, but F 4M 6= 0 because F 4m 6= 0. The comultiplication is given

by

∆(t) = S1(T p
3

m ⊗ 1, Tm ⊗ 1, 1⊗ T p3m , 1⊗ Tm), (2.70)

= S1(TF 3m ⊗ 1, Tm ⊗ 1, 1⊗ TF 3m, 1⊗ Tm), (2.71)

= S1(TV m ⊗ 1, Tm ⊗ 1, 1⊗ TV m, 1⊗ Tm). (2.72)

It follows that V = F 3 and V 2 = 0. Therefore, M is the quotient of D by

(F 5, F 3 − V, V 2) or (F 5, F 3 − V ).

Example 2.6.8. Let H = k[t1, t2]/(tp
2

1 , t
p2

2 ) with t1 primitive and

∆(t2) = t2 ⊗ 1 + 1⊗ t2 +

p−1∑
i=1

1

i!(p− i)!
tpi1 ⊗ t

p2−pi
1 . (2.73)

Let M be the corresponding Dieudonné module and say it is generated by

x1, x2 which correspond to t1, t2, i.e., t1 = Tx1 , t2 = Tx2 . Notice that

t21 = T 2
x1 = TF 2x1 = 0 = T0, (2.74)

so F 2x1 = F 2x2 = 0, while Fx1 6= 0, Fx2 6= 0. Recall the polynomial S1:

S1(X0, X1, Y0, Y1) = X1 + Y1 −
1

p

p−1∑
i=1

(
p

i

)
Xi

0Y
p−i

0 . (2.75)
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Then we can write

∆(t1) = S0(Tx1 ⊗ 1, 1⊗ Tx1), (2.76)

= S1(0⊗ 1, Tx1 ⊗ 1, 1⊗ 0, 1⊗ Tx1), (2.77)

= S1(TV x1 ⊗ 1, Tx1 ⊗ 1, 1⊗ TV x1 , 1⊗ Tx1), (2.78)

so it follows that V x1 = 0. On the other hand,

∆(t2) = S1(T px1 ⊗ 1, Tx ⊗ 1, 1⊗ T px1 , 1⊗ Tx) (2.79)

= S1(TFx1 ⊗ 1, Tx2 ⊗ 1, 1⊗ TFx1 , 1⊗ Tx2), (2.80)

= S1(TV x2 ⊗ 1, Tx2 ⊗ 1, 1⊗ TV x2 , 1⊗ Tx2), (2.81)

so Fx1 = V x2. We get a module M generated by x1, x2, subject to F 2M =

0, V 2M = 0, V x1 = 0, Fx1 = V x2.

Dieudonné modules can also be used to describe the local structure of group

schemes.

Proposition 2.6.9. Let G be a finite group scheme over k. There is a canonical

isomorphism of k-vector spaces

TG,0 ∼= (M(G)/FM(G))∨. (2.82)

Proof. By definition,

TG,0 = ker(G(k[ε])→ G(k)) ∼= Hom(GD,Ga) = Hom(GD,W1). (2.83)

Notice that W1 = kerV , so that

Hom(GD,W1) = kerV |M(GD) = kerV |M(G)D = coker(F |M(G))
∨. (2.84)

Remark. If A is an abelian variety over k, there is an exact sequence

0→ H0(A,Ω1
A)→ H1

dr(A)→ H1(A,OA)→ 0. (2.85)

It was shown by Oda in [Oda69] that there is a canonical isomorphism

H1
dR(A) ∼= M(A[p]). (2.86)

Moreover, the Hodge filtration H0(A,Ω1
A) ⊂ H1

dR(A) can be identified with

kerF |M(A[p]) = VM(A[p]) ⊂M(A[p]). (2.87)
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The exact sequence can be written as

0→ V (M(A[p]))→M(A[p])→ T[OA] Pic0A→ 0 (2.88)
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Chapter 3

Group schemes of order p2

and p3

3.1 The p-torsion group scheme A[p]

Fix a Noetherian scheme S. Let π : A → S be an abelian scheme of relative

dimension g. For a natural number n, denote by [n] : A→ A the multiplication

by n map. It is a proper flat morphism and its kernel A[n] is a finite flat

group scheme of order n2g. Let S0 ⊂ S be the open subscheme where all the

primes dividing n are invertible. The kernel A[n] is étale over S0 and S0 is the

maximal S-scheme with such property. Therefore, if A/k is an abelian variety

and k is a field of characteristic p, then A[p] is never étale over k. Let i be

the order of the largest étale quotient of A[p]. Then i ≤ pg and in the case of

equality A is called an ordinary abelian variety.

Example 3.1.1 (g=1, Example A.3.14 in [Gor02]). Let E be an elliptic curve.

Recall the construction of the Hasse invariant: the absolute Frobenius

F : E → E (3.1)

induces the morphism

F ∗ : H1(E,OE)→ H1(E,OE) (3.2)

on cohomology which is not linear, but p-linear, i.e., F ∗(λa) = λpF ∗(a) for

λ ∈ k, a ∈ H1(E,OE). The curve E has genus 1, so h1(OE) = 1, therefore,

F ∗ is either the zero map or a bijection. In the former case, we say that E

has Hasse invariant 0 or E is ordinary, in the latter case, we say that E has

Hasse invariant 1 or E is supersingular. Note that E is always nonsingular

as a k-variety.

Every elliptic curve is principally polarised and hence E[p] is self-dual. The
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group scheme E[p] is affine of order p2. There are two cases corresponding

to the two values of the Hasse invariant. We list the corresponding cases

along with their canonical filtrations (see [Oor05]) and Dieudonné modules in

local-local cases.

(i) E is an ordinary elliptic curve. Assume that E is defined over an

algebraically closed field. Then we have a split exact sequence

0→ µp → E[p]→ Z/p→ 0. (3.3)

The Cartier duality for E[p] swaps the two factors: µDp = Z/p and

Z/pD = µp. The kernel of the Frobenius is µp and the canonical filtration

is

0 ⊂ µp ⊂ E[p]. (3.4)

Note that this filtration cannot be refined: µp is a simple object and

does not admit any subgroup schemes, on the other side, the ranks of µp

and E[p] are p and p2 respectively, so if H is a group scheme such that

µp ⊂ H ⊂ E[p], then H = µp or E[p].

(ii) E is supersingular. Then there is a non-split exact sequence

0→ αp → E[p]→ αp → 0, (3.5)

where the image of αp → E[p] is unique and is the kernel of both

Frobenius and Verschiebung. If k is algebraically closed and E1, E2 are

supersingular elliptic curves over k, then E1[p] = E2[p]. The canonical

filtration is

0 ⊂ αp ⊂ E[p], (3.6)

with αp simple of order p, E[p] of order p2. Note that E[p] is not simple

in the category of finite group schemes, but it is simple in the category

of BT1 group schemes, see [Oor05, p. 277]. We will study E[p] in more

detail in Section 3.2 – it is the self-dual local-local group scheme Mp2 .

Example 3.1.2 (g = 2, Example A.3.15 in [Gor02]). Let A be a principally

polarised abelian surface over an algebraically closed field, so that A[p] is

self-dual. There are four possibilities:

(i) A is ordinary. Then we have

A[p] ∼= (µp × Z/p)2. (3.7)

Here µ2
p is the kernel of Frobenius and (Z/p)2 is the kernel of Ver-

schiebung.
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(ii) A has étale part of order p. Then

A[p] ∼= E[p]× µp × Z/p, (3.8)

where E[p] is the p-torsion of a supersingular elliptic curve E. By the

previous part, A[p] contains a unique embedded αp. The kernel of

Frobenius is αp × µp and the kernel of Verschiebung is αp × Z/p.

(iii) A has no étale part. Then A is supersingular1 and there are two further

cases:

(iiia) A is superspecial, which means that A is the product of two

supersingular elliptic curves E1, E2. Then

A[p] ∼= E1[p]× E2[p], (3.9)

and if k is algebraically closed, then E1[p] ∼= E2[p] and

A[p] ∼= E1[p]2. (3.10)

(iiib) A is not superspecial. Then there is a filtration αp ⊂ G ⊂ A[p],

where G fits into non-split short exact sequences

0→ αp → G→ αp ×αp → 0 (3.11)

and

0→ G→ A[p]→ αp → 0. (3.12)

The kernel of the Frobenius on G is isomorphic to αD
p2 and we show

in Section 3.2.1 that it has Dieudonné module with F = V 2 = 0,

while the kernel of the Verschiebung is isomorphic to αp2 and has

F 2 = V = 0.These two kernels are dual to each other. In general,

Frobenius and Verschiebung are swapped by Cartier duality, this

follows from 1.4.4. There is a non-split exact sequence

0→ αp → αp2 ×αD
p2 → G→ 0. (3.13)

Note that neither of αp2 ,α
D
p2 can be realized as the p-torsion of a

supersingular elliptic curve.

1Note that for g ≥ 3 supersingularity implies having no physical torsion but the converse
is false.

35



3.2 Classification over Fp

3.2.1 Group schemes of order p2

Let k be an algerbaically closed field of characteristic p. We want to classify

group schemes of order p2 over k. Note that a similar classification is done in

[Wan13], using purely algebraic techniques and without invoking Dieudonné

modules. We treat all the cases where a group scheme or its Cartier dual is

etalé using Galois theory, as in 1.4.12. In the case of an algebraically closed field

the classification is reduced to that of constant commutative group schemes of

order p2. In the local-local case we can use Dieudonné theory as outlined in

Chapter 2.

Altogether, we get three types of group schemes:

1. Products of group schemes of order p, i.e., split extensions {Z/p,αp,µp}×
{Z/p,αp,µp}.

2. Nonsplit extensions of µp by itself and Z/p by itself. There is only one

nonsplit extension of Z/p by Z/p, namely Z/p2 and if we are working

over an algebraically closed field this corresponds to a unique nonsplit

extension of µp by µp, which will be the Cartier dual of Z/p2 and is

isomorphic to µp2 .

3. Nonsplit extensions of αp by itself. There are three of those and we now

classify them.

Local-local nonsplit group schemes correspond to simple Dieudonne modules.

A local-local group scheme of order p2 is neccessarily killed by p – this can be

seen by writing down F and V in co-ordinates as matrices, hence its Dieudonné

module is a vector space over k. Let M be such a module, i.e., a two-dimensional

vector space over k equipped with Frobenius and Verschiebung. Since we are

in the local-local setting, both Frobenius and Verschiebung are nilpotent. Up

to a change of basis, there are three options:

1. F =

(
0 1

0 0

)
, V =

(
0 0

0 0

)
;

2. F =

(
0 0

0 0

)
, V =

(
0 1

0 0

)
;

3. F = V =

(
0 1

0 0

)
.

One of the above modules corresponds to αp2 . Unlike αp, it is not self-dual.

Proposition 3.2.1. The group scheme αp2 is not self-dual.
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Proof. The representing k-algebra of αp2 is A = k[x]/(xp
2
). Let {1, x, ..., xp2−1}

be its basis. The Hopf algebra structure on A is given by the following maps

(all tensor products over k).

∆: A→ A⊗A, (3.14)

x 7→ x⊗ 1 + 1⊗ x, (3.15)

ε : A→ k, (3.16)

x 7→ 0, (3.17)

S : A→ A, (3.18)

x 7→ −x, (3.19)

m : A⊗A→ A, (3.20)

xi ⊗ xj 7→ xi+j , (3.21)

ι : k → A. (3.22)

Let {e0, ..., ep2−1} be the basis of AD dual to {1, x, ..., xp2}. The multiplication

in AD is given by the map

∆D : AD ⊗AD → AD. (3.23)

The value ∆D(ei ⊗ ej)(xk) is calculated as

(ei ⊗ ej)(∆(xk)) = (ei ⊗ ej)
( k∑
q=0

(
k

q

)
xq ⊗ xk−q

)
(3.24)

=

(
i+ j

i

)
(3.25)

=

(
i+ j

i

)
ei+j(x

i+j) (3.26)

and hence

eiej =

(
i+ j

i

)
ei+j . (3.27)

Note that i+ j > p2 implies
(
i+j
i

)
= 0 in k, so the multiplication formula above

makes sense for all 0 ≤ i, j ≤ p2 − 1. More precisely, if i+ j ≥ p2, then ei and

ej are orthogonal. This multiplication makes e0 the unit element. For i > 0

we have

epi =

(
2i

i

)
e2ie

p−2
i =

(
2i

i

)(
3i

i

)
e3ie

p−3
i =

(2i)!

i!i!

(3i)!

i!(2i!)
e3ie

p−3
i

=
(3i)!

(i!)3
e3ie

p−3
i = · · · = (pi)!

(i!)p
epi. (3.28)

If p ≤ i < p2 − 1, then ip ≥ p2, so epi = 0. If i < p, then p - (i!)p, but the
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numerator of (pi)!
i!p has a factor of p, so (pi)!

i!p = 0. We conclude that for all i > 0

epi = 0. Pick an arbitrary element

b = λ0e0 + λ1e1 + · · ·+ λp2−1ep2−1 ∈ AD. (3.29)

Taking the pth power and remembering that we are over characteristic p, obtain

bp = λp0e0. (3.30)

So b ∈ AD is nilpotent if λ0 = 0 and is a unit otherwise. We conclude that

AD is isomorphic to k[x, y]/(xp, yp). So A 6∼= AD, because, for example, in the

latter ring the maximal ideal is killed by raising to the power p. In particular,

the algebraic group schemes αp2 and αD
p2 are not isomorphic.

We know that αp2 is not αD
p2 , but which module does it correspond to? The

ring k[x]/(xp
2
) is local with the maximal ideal m = (x) and dimkm/m

2 = 1.

Hence dimkM/FM = 1 and F is not zero, therefore V = 0 for αp2 . On the

other hand, αD
p2 must then have F = 0 and V nonzero.

It is also possible to approach the problem of classification directly with modules.

Let M be a 2-dimensional Dieudonné module with F, V nilpotent. We start

with the easy case when F = V =

(
0 0

0 0

)
. Let {t1, t2} be a basis. Recall from

that 2.6.2 that the corresponding Hopf algebra is generated by x = Tt1 , y = Tt2

with comultiplication

∆(Tt1) = S0(Tt1 ⊗ 1, 1⊗ Tt1) = x⊗ 1 + 1⊗ x, (3.31)

∆(Tt2) = S0(Tt2 ⊗ 1, 1⊗ Tt2) = y ⊗ 1 + 1⊗ y. (3.32)

Also note that TFt1 = (Tt1)p = 0 and TFt2 = (Tt2)p = 0. So we get the algebra

k[x, y]/(xp, yp), (3.33)

where both x and y are primitive. This is the group scheme α2
p.

Now let us consider the case when F =

(
0 1

0 0

)
, V =

(
0 0

0 0

)
. We can guess

that it will correspond to αp2 because the Frobenius action on this group

scheme is nontrivial. Indeed, let {t1, t2} be a basis, then

V t1 = V t2 = Ft1 = 0, F t2 = t1. (3.34)
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The comultiplication is

∆(Tt1) = S0(Tt1 ⊗ 1, 1⊗ Tt1) = Tt1 ⊗ 1 + 1⊗ Tt1 , (3.35)

∆(Tt2) = S0(Tt2 ⊗ 1, 1⊗ Tt2) = Tt2 ⊗ 1 + 1⊗ Tt2 . (3.36)

Note that Tt1 = TFt2 = T pt2 , so the algebra is generated by Tt2 = x. We get the

algebra k[x]/(xp
2
) with x primitive. In other words, we get the group scheme

αp2 .

We can now recover the dual of αp2 through Dieudonné modules. This will

correspond to V =

(
0 1

0 0

)
, F =

(
0 0

0 0

)
, so the action is

Ft1 = Ft2 = 0 = V t1 = 0, V t2 = t1. (3.37)

The comultiplication is now

∆(T1) = S1(TV t1 ⊗ 1, Tt1 ⊗ 1, 1⊗ TV t1 , 1⊗ Tt1), (3.38)

= S1(0⊗ 1, Tt1 ⊗ 1, 1⊗ 0, 1⊗ Tt1), (3.39)

= T1 ⊗ 1 + 1⊗ T1. (3.40)

∆(T2) = S1(Tt1 ⊗ 1, Tt2 ⊗ 1, 1⊗ Tt1 , 1⊗ Tt2), (3.41)

= Tt2 ⊗ 1 + 1⊗ Tt2 −
1

p

p−1∑
i=1

(
p

i

)
T p−i1 ⊗ T i1 (3.42)

Relabel T1 = x, T2 = y, F = 0 tells us that there is no algebraic relationship

between x and y. The Hopf algebra is k[x, y]/(xp, yp) with x primitive and

∆(y) = y ⊗ 1 + 1⊗ y − 1

p

p−1∑
i=1

(
p

i

)
xp−i ⊗ xi. (3.43)

3.2.2 The self-dual local-local group scheme of order p2.

Finally, we have the local-local self-dual group scheme of order p2. This group

scheme has

F = V =

(
0 1

0 0

)
. (3.44)

If y = Tt1 , x = Tt2 then Fy = x, Fx = 0, V y = x, V x = 0, so we do get the

Hopf algebra k[z]/(zp
2
), where we identify y = z, x = zp. The comultiplication
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is given by

∆(z) = S1(zp ⊗ 1, z ⊗ 1, 1⊗ zp, 1⊗ z) (3.45)

= z ⊗ 1 + 1⊗ z − 1

p

p−1∑
i=1

(
p

i

)
zp

2−pi ⊗ zpi (3.46)

We denote this group Mp2 . For example p = 2 gives

x 7→ x⊗ 1 + 1⊗ x− x2 ⊗ x2 (3.47)

and p = 3 gives

x 7→ x⊗ 1 + 1⊗ x− x6 ⊗ x3 − x3 ⊗ x6. (3.48)

Note that Mp2 is isomorphic to E[p], where E is a supersingular elliptic curve

over k.

Proposition 3.2.2. Write the group law as

xy = x+ y − fp(x, y), (3.49)

where fp(x, y) is a polynomial depending on the prime p. Then

fp(x, y) ≡
(
p2

p

)
p
xpyp

2−p +

(
p2

2p

)
p
x2pyp

2−2p + ...+

(
p2

p

)
p
xp

2−pyp mod p, (3.50)

i.e., only xiyj-terms with p | i and p | j survive.

Proof. Write fp(x, y) as

fp(x, y) =

p2−1∑
i=1

(
p
i

)
p
xiyp

2−i (3.51)

and denote
(pi)
p =: Fi. We claim that Fi ≡ 0 mod p if and only if p divides i.

Suppose i = pj for some 0 < j < p. Then

Fi =

(
p2

pj

)
p

=
p2!

(pj)!(p2 − pj)!p
(3.52)

=
p2(p2 − 1)...(p2 − p)...(p2 − 2p)...(p2 − p(j + 1))...(p2 − pj)...

pj(pj − 1)...(pj − p)...(pj − 2p)...(p2 − pj)...p
(3.53)

=
p2(p2 − 1)...(p2 − p)...(p2 − p(j + 1))...

p2j(pj − 1)...(pj − p)...(p2 − p(j + 1)...
(3.54)

In the last expression, every factor of p in the numerator comes from p2 − pk
for 1 ≤ k ≤ j + 1 and it is cancelled by p from pj − pk in the denominator. We
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are left with a fraction expression for an integer where both numerator and

denominator are not divisible by p, so Fi itself is not divisible by p.

Now assume that p does not divide i. The expression for Fi now reads

Fi =
p2!

p(i!)(p2 − i)!
(3.55)

=
p2(p2 − 1)...(p2 − i+ 1)(p2 − i)...

pi(i− 1)...(p2 − i)...
(3.56)

=
p(p2 − 1)...(p2 − i+ 1)

i(i− 1)...
(3.57)

If i < p then p does not divide i! and the numerator has a factor of p, even of

p2, so Fi ≡ 0 mod p. If i ≥ p, let n be the biggest natural number such that

i > pn, so that i < p(n+ 1). Then

Fi =
p(p2 − 1)(p2 − 2)...(p2 − p)...(p2 − 2p)...(p2 − pn)...(p2 − i+ 1)

i(i− 1)...pn...p(n− 1)...p...
(3.58)

Altogether there are n+ 1 factors of p in the numerator, coming from p2 − jp
for 1 ≤ j ≤ n and p at the beginning. In the denominator, there are n factors

of p, coming from p, 2p, ..., np. So Fi is divisible by p. and Fi ≡ 0 mod p.

3.2.3 Group schemes of order p3 killed by p.

In a manner similar to the previous section, we only need to consider local-local

group schemes of order p3. We will have the underlying assumption that the

group schemes we consider are killed by p. This implies that the underlying

Dieudonné modules are vector spaces over Fp, equipped with F, V nilpotent

of length at most three. By basic linear algebra, any nilpotent matrix is

similar to a direct sum
⊕n

i=1 Si, where each Si is a canonical nilpotent matrix.

The canonical n-by-n nilpotent matrix is the matrix that has 1s on the

superdiagonal and 0s elsewhere. Hence, up to linear isomorphism, F and V

come from the list 0 0 0

0 0 0

0 0 0

 ,

0 1 0

0 0 0

0 0 0

 ,

0 1 0

0 0 1

0 0 0

 . (3.59)

We need to make sure that FV = p = 0 so that the module is a vector space.

These correspond to the cases with Fn = V m = 0 and 1 ≤ m,n ≤ 3, except

for the case m = n = 3, for which FV 6= 0.

This gives us 9 classes of local-local group schemes. We will also need
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S2(X0, X1, X2, Y0, Y1, Y2), which is equal to

X2+Y2+
1

p
(Xp

1 +Y p
1 )− 1

p2

p2−1∑
i=1

(
p2

i

)
Xi

0Y
p2−i

0

−1

p

(
X1 + Y1 −

1

p

p−1∑
i=1

(
p

i

)
Xi

0Y
p−i

0

)p
(3.60)

Note that

S2(0, 0, X2, 0, 0, Y2) = S0(X2, Y2) (3.61)

and

S2(0, X1, X2, 0, Y1, Y2) = S1(X1, X2, Y1, Y2). (3.62)

• Class 1 is V = F = 0 and it corresponds to k[x]/(xp
3
) with x primitive,

i.e., α3
p.

• Class 2 is F 2 6= 0, F 3 = 0, V = 0. This is the group scheme αp3 , repres-

ented by k[x]/(x9) and x primitive.

• Class 3 is V 2 6= 0, V 3 = 0, F = 0, which is the dual of αp3 . This is a group

scheme with algebra generated by 3 elements, so k[x, y, z]/(xp, yp, zp).

To write out the comultiplication, consider the action of V :

V x = 0, (3.63)

V y = x, (3.64)

V z = y. (3.65)

Then the comultiplication is

∆(x) = S2(V 2x⊗ 1, V x⊗ 1, x⊗ 1, 1⊗ V 2x, 1⊗ V x, 1⊗ x) (3.66)

= S2(0⊗ 1, 0⊗ 1, x⊗ 1, 1⊗ 0, 1⊗ 0, 1⊗ x) (3.67)

= x⊗ 1 + 1⊗ x (3.68)

∆(y) = S2(V 2y ⊗ 1, V y ⊗ 1, y ⊗ 1, 1⊗ V 2y, 1⊗ V y, 1⊗ y) (3.69)

= S2(0⊗ 1, x⊗ 1, y ⊗ 1, 1⊗ 0, 1⊗ x, 1⊗ y) (3.70)

= S1(x⊗ 1, y ⊗ 1, 1⊗ x, 1⊗ y) (3.71)

∆(z) = S2(x⊗ 1, y ⊗ 1, z ⊗ 1, 1⊗ x, 1⊗ y, 1⊗ z). (3.72)

• Class 4 is F 2 = 0, V = 0, i.e.,

Ft1 = 0, F t2 = t1, F t3 = 0 (3.73)
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where t1, t2, t3 is a basis of M . The Hopf algebra will have a relation

T pt2 = Tt1 , so it is generated by Tt1 = x and Tt3 = y with the algebra

structure

k[x, y]/(xp
2
, yp) (3.74)

and x, y both primitive. We can recognise this class as αp ×αp2 .

• Class 5 is the dual of class 4, i.e., V 2 = 0, F = 0. This gives the Hopf

algebra k[x, y, z]/(xp, yp, zp). Let {t1, t2, t3} be the corresponding basis

of the Dieudonné module, then

V t1 = 0, V t2 = t1, V t3 = 0. (3.75)

The comultiplication is

∆(x) = S1(TV t1 ⊗ 1, Tt1 ⊗ 1, 1⊗ TV t1 , 1⊗ Tt1) (3.76)

= S1(0⊗ 1, x⊗ 1, 1⊗ 0, 1⊗ x) (3.77)

= x⊗ 1 + 1⊗ x (3.78)

∆(y) = S1(TV t2 ⊗ 1, Tt2 ⊗ 1, 1⊗ TV t2 , 1⊗ Tt2) (3.79)

= S1(Tt1 ⊗ 1, Tt2 ⊗ 1, 1⊗ Tt1 , 1⊗ Tt2) (3.80)

= y ⊗ 1 + 1⊗ y +
1

p

p−1∑
i=1

(
p

i

)
xi ⊗ xp−i (3.81)

∆(z) = S1(TV t3 ⊗ 1, Tt3 ⊗ 1, 1⊗ TV t3 , 1⊗ Tt3) (3.82)

= S1(0⊗ 1, z ⊗ 1, 1⊗ 0, 1⊗ z) (3.83)

= z ⊗ 1 + 1⊗ z (3.84)

(3.85)

This class is αp ×αD
p2 .

• Class 6 is the class corresponding to αp ×Mp2 and is self-dual.

• Class 7 is the first class which gives a ’new’ type of a group scheme. Let

F 3 = 0 and V 2 = 0 with basis {t1, t2, t3}. As always with F 3 = 0 the

Hopf algebra is k[x]/(xp
3
), where x corresponds to Tt3 . Consequently, we

only need the comultiplication for x, which is

∆(x) = S1(xp ⊗ 1, x⊗ 1, 1⊗ xp, 1⊗ x) (3.86)

= x⊗ 1 + 1⊗ x+
1

p

p−1∑
i=1

(
p

i

)
(xp)p−i ⊗ (xp)i (3.87)
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• Class 8 is the dual of Class 7 with F 2 = 0, V 3 = 0. This gives the Hopf

algebra k[x, y]/(xp
2
, yp). The action of V is

V t1 = 0, V t2 = t1, V t3 = t1. (3.88)

• Class 9 is self-dual with F 3 = V 3 = 0. Its Hopf algebra is k[x]/(xp
3
) and

the comultiplication is

∆(x) = S2(xp
2 ⊗ 1, xp ⊗ 1, x⊗ 1, 1⊗ xp2 , 1⊗ xp, 1⊗ x). (3.89)

Remark. Note that the classification of local-local group schemes of order pn

killed by p is equivalent to classifying pairs of nilpotent linear transformations

which multiply to 0. When n = 1, 2, or 3 this is particularly easy because a

nilpotent matrix in each of these cases is determined by its order. This is no

longer the case when n ≥ 4 For example, we have matrices
0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 ,


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 (3.90)

which both square to zero but which are not equivalent.

3.3 Local-local group schemes in families.

From the previous section, we know that the local-local group schemes of

order p2 are α2
p,αp2 ,α

D
p2 , and Mp2 . It is possible to put them into a single

deformation family, which will be an unfolding of αp ×αp.

Proposition 3.3.1. Let B = Z[t1, t2] be the base ring. The algebra A =
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B[x, y]/(xp, yp − t1x) is a Hopf algebra with operations

∆: A→ A⊗B A, (3.91)

x 7→ x⊗ 1 + 1⊗ x, (3.92)

y 7→ y ⊗ 1 + 1⊗ y − t22
p

p−1∑
i=1

(
p

i

)
xi ⊗ xp−i, (3.93)

S : A→ A, (3.94)

x 7→ −x, (3.95)

y 7→ −y, (3.96)

ε : A→ B, (3.97)

x 7→ 0, (3.98)

y 7→ 0. (3.99)

Proof. We need to show that three group-like axioms hold.

Associativity is encoded in the commutativity of

A⊗B A⊗B A A⊗B A

A⊗B A A

id⊗∆

∆⊗ id

∆

∆

We only need to check this on algebra generators and it is obvious that

associativity holds for x, since ∆(x) represents the operation of addition. So
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we need to check it for y:

∆⊗ id(∆(y)) =∆⊗ id(y ⊗ 1 + 1⊗ y − t22
p

p−1∑
i=1

(
p

i

)
xi ⊗ xp−i) (3.100)

=(y ⊗ 1 + 1⊗ y − t22
p

p−1∑
i=1

(
p

i

)
xi ⊗ xp−1)⊗ 1 + 1⊗ 1⊗ y

(3.101)

− t22
p

p−i∑
i=1

(
p

i

) i∑
j=0

(
i

j

)
xi−j ⊗ xj

⊗ xp−i (3.102)

=y ⊗ 1⊗ 1 + 1⊗ y ⊗ 1− t22
p

p−1∑
i=1

(
p

i

)
xi ⊗ xp−i ⊗ 1 + 1⊗ 1⊗ y

(3.103)

− t22
p

p−1∑
i=1

i∑
j=0

(
p

i

)(
i

j

)
xi−j ⊗ xj ⊗ xp−i (3.104)

=y ⊗ 1⊗ 1 + 1⊗ y ⊗ 1 + 1⊗ 1⊗ y − t22
p

p∑
i=1

i∑
j=0

(
p

i

)(
i

j

)
xi−j ⊗ xj ⊗ xp−i

(3.105)

On the other hand,

id⊗∆(∆(y)) = id⊗∆(y ⊗ 1 + 1⊗ y − t22
p

p−1∑
i=1

(
p

i

)
xi ⊗ xp−i) (3.106)

=y ⊗ 1⊗ 1 + 1⊗ (y ⊗ 1 + 1⊗ y − t22
p

p−1∑
i=1

(
p

i

)
xi ⊗ xp−i)

(3.107)

− t22
p

p−1∑
i=1

(
p

i

)
xi ⊗∆(xp−i) (3.108)

=y ⊗ 1⊗ 1 + 1⊗ y ⊗ 1 + 1⊗ 1⊗ y − t22
p

p−1∑
i=1

(
p

i

)
1⊗ xi ⊗ xp−i

(3.109)

− t22
p

p−1∑
i=1

p−i∑
j=0

(
p

i

)(
p− i
j

)
xi ⊗ xp−i−j ⊗ xj (3.110)

=y ⊗ 1⊗ 1 + 1⊗ y ⊗ 1 + 1⊗ 1⊗ y − t22
p

p∑
i=1

p−i∑
j=0

(
p

i

)(
p− i
j

)
xi ⊗ xp−i−j ⊗ xj

(3.111)
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The two polynomials

t22
p

p∑
i=1

i∑
j=0

(
p

i

)(
i

j

)
xi−j ⊗ xj ⊗ xp−i (3.112)

and

t22
p

p∑
i=1

p−i∑
j=0

(
p

i

)(
p− i
j

)
xi ⊗ xp−i−j ⊗ xj (3.113)

are equal. Indeed, the (i, j)-summand of the first one is(
p

i

)(
i

j

)
xi−j ⊗ xj ⊗ xp−i, (3.114)

whereas the (j, p− i)-summand of the second one is(
p

j

)(
p− j
p− i

)
xi−j ⊗ xj ⊗ xp−i, (3.115)

with (
p

i

)(
i

j

)
=

(
p

j

)(
p− j
p− i

)
(3.116)

which is the Subset-of-a-subset identity for binomial coefficients.

The existence of an identity corresponds to the commutativity of

B ⊗B A A⊗B A

A A

ε⊗ id

∼=

=

∆

We need to look at what happens to y only:

ε⊗ id(∆(y)) = ε⊗ id(y ⊗ 1 + 1⊗ y − t22
p

p−1∑
i=1

(
p

i

)
xi ⊗ xp−i) = 1⊗ y, (3.117)

which is where y gets sent under the isomorphism

A→ B ⊗B A, (3.118)

a 7→ 1⊗ a. (3.119)

Finally, we need
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A A⊗B A

B A

(S, id)

ε

∆

to be commutative. We have

(S, id)(∆(y)) = (S, id)(y⊗1+1⊗y− t
2
2

p

p−1∑
i=1

(
p

i

)
xi⊗xp−i) = −y+y− t

2
2

p

p−1∑
i=1

(
p

i

)
(−1)ixp = 0

(3.120)

and

ε(y) = 0. (3.121)

We can reduce the coefficients of the group scheme above mod p, so that

we get a family over Fp[t1, t2].

αp ×αp

αD
p2

αp2αp2

αD
p2

Mp2Mp2

Mp2 Mp2

t2

t1

Figure 3.1: An unfolding of αp ×αp

Proposition 3.3.2. Let k be an algebraically closed field of characteristic p.

The group scheme Spec k[x, y, t1, t2]/(xp, yp− t1x) is a family of group schemes
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of local-local type over Spec k[t1, t2] = A2
k. The affine plane is stratified into

four components:

1. Over the locus where t1 and t2 are both invertible, the geometric fibres

are isomorphic to Mp2.

2. Over the locus where t2 = 0 and t1 is invertible, the geometric fibres are

isomorphic to αp2.

3. Over the locus where t1 = 0 and t2 is invertible, the geometric fibres are

isomorphic to αD
p2.

4. Over the point t1 = t2 = 0 the geometric fibre is isomorphic to αp ×αp.

We call this group scheme the local-local Tate-Oort group scheme of or-

der p2 and denote it by TOll
p2.

Proof. Recall that the comultiplication is

∆(x) = x⊗ 1 + 1⊗ x, (3.122)

∆(y) = y ⊗ 1 + 1⊗ y − t22
p

p−1∑
i=1

(
p

i

)
xi ⊗ xp−i. (3.123)

With t1, t2 both invertible, we have yp = t1x, so the group scheme is isomorphic

to Fp[y]/(yp
2
) with comultiplication making it into a copy of Mp2 . The other

cases are similar.

Corollary 3.3.3. Fix (t1, t2) ∈ A2
k and consider the corresponding finite flat

group scheme Gt1,t2. The Cartier dual of this group scheme is given by

GDt1,t2 = Gt2,t1 , (3.124)

i.e., the dual of Gt1,t2 is the group scheme represented by k[x, y, t1, t2]/(xp, yp−
t2x) and comultiplilcation where x is primitive and

∆(y) = y ⊗ 1 + 1⊗ y − t21
p

p−1∑
i=1

(
p

i

)
xi ⊗ xp−i. (3.125)

It follows that the Cartier duality action on these group schemes induces the

action on the plane A2
k which is given by the matrix

(
0 1

1 0

)
.

3.4 Small Tate-Oort scheme of order p2.

We start with this case to prepare for the more complicated case of the

deformation family of all group schemes of order p2. The small Tate-Oort
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group scheme TOs
p2 will be a deformation family of the groups αp2 and µp2 .

This construction closely follows the construction of Reid in [Rei19].

The group schemes αp2 and Z/p2 are closed subschemes of Ga, while µp2 is a

closed subscheme of Gm. Reid defines a hybrid additive-multiplicative group

scheme G as SpecA, where A = B[x, 1
1+tx ], for B any base ring and t ∈ B

arbitrary. The Hopf algebra structure on A is given by

∆(x) = x⊗ 1 + 1⊗ x+ tx⊗ x. (3.126)

The scheme SpecB is stratified into two components

SpecB = D(t) ∪ V (t) = SpecBt ∪ SpecB/t (3.127)

and above the open subscheme D(t) the scheme G is isomorphic to Gm via

x 7→ 1 + tx and above the closed subscheme V (t) the scheme G is isomorphic

to Ga.

Define the given representation of G to be

ρgiv(R) : G(R)→ GL2(R), (3.128)

x 7→

(
1 0

x 1 + tx

)
, (3.129)

where R is a B-algebra.

Definition 3.4.1. Let p be a prime number and B = Z[S, t]/(Stp
2−1 + p) a

base ring. The small Tate-Oort group scheme TOs
p2 of order p2 is defined

as the subscheme of SpecB[x] cut out by

xp
2 − Sgp(t, x), (3.130)

where

gp(t, x) =
(1 + tx)p − 1− tpxp

pt
. (3.131)

Proposition 3.4.2. Inside the co-ordinate ring of TOs
p2 we have the relation.

(1 + tx)p = 1. (3.132)

3.5 Tate-Oort group scheme TOl
p2

The group scheme TOl
p2 is a deformation family that includes local group

schemes of order p2. Let

B = Z[w1, w2]/(w1w
p2−1
2 + p) (3.133)
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be the base ring. Consider the scheme

GB,t1,t2 = SpecB[x1, x2,
1

1 + w1x
,

1

1 + w2y
, t1, t2] (3.134)

The Tate-Oort group scheme TOl
p2 is defined as the closed subscheme

of GB,t1,t2 with ideal generated by

xp.yp − t1x (3.135)

The Hopf algebra structure on the function ring A of TOl
p2 is defined as:

∆ : A→ A⊗A, (3.136)

x 7→ x⊗ 1 + 1⊗ x+ w2x⊗ x, (3.137)

y 7→ y ⊗ 1 + 1⊗ y + w1y ⊗ y −
t22
p

p−1∑
i=1

(
p

i

)
xi ⊗ xp−i, (3.138)

S : R→ R, (3.139)

x 7→ −x
1 + w1x

, (3.140)

y 7→ −y
1 + w2y

, (3.141)

ε : R→ B, (3.142)

x 7→ 0, (3.143)

y 7→ 0 (3.144)

Proposition 3.5.1. The group scheme TOl
p2 is a deformation family that

includes all local group schemes of order p2 over k that exist:

• Setting t1 = t2 = 0 gives TOl
p × TOl

p, which contains split extensions of

local group schemes of order p, i.e., s = t = 0 gives α2
p, w1 invertible

w2 = 0 gives µp × αp, w1 = 0 w2 invertible gives αp × µp and w1, w2

invertible gives µ2
p.

• Over the locus where t1 is invertible and t2 = 0 we can have w1, w2 both

invertible, so that geometric fibres are isomorphic to µ2
p and over the

point w1 = w2 = 0 the fibre is αp2.

• Over the locus where t1 = 0, t2 invertible, the only possibility is w1 =

w2 = 0, so the fibre is αD
p2.

• Over the locus where t1, t2 are both invertible, the only possibility is

w1 = w2 = 0 so the fibre is isomorphic to Mp2.

The group scheme TOl
p2 has a representation theory similar to that of TOp

– we can figure out invariants of action by considering multiplicative group
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schemes like µp2 or µ2
p and then this should give invariants for all other group

schemes in the family. The only difference is that we do not include the étale

group schemes Z/p2 and Z/p× Z/p, so there is no description of how Cartier

duality works in this case. Note however that setting s = t = 0 allows us to

recover the unfolding of αp ×αp from Figure 3.1.
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Chapter 4

Invariant theory of Tate-Oort

group schemes and geometric

applications

4.1 Actions of TOp

This section introduces the Tate-Oort group schemes which is an example of a

group scheme discovered by Reid in [Rei19]. Recall that over an algebraically

closed field k of positive characteristic p, there are three isomorphism classes

of group schemes of order p:

αp,µp,Z/p. (4.1)

The Tate-Oort group scheme puts them into a single deformation family. Note

that αp and µp are isomorphic as schemes over k and that αp and Z/p share the

same multiplication law, i.e., they are both subgroup schemes of Ga, whereas

µp is a subgroup scheme of Gm.

In the first step, we put Ga,Z and Gm,Z into a family over SpecZ. Choose t ∈ Z
and let A = Z[x, 1

1+tx ]. We put a Hopf algebra structure on A by defining

∆ : A→ A⊗Z A, (4.2)

x 7→ x⊗ 1 + 1⊗ x+ tx⊗ x, (4.3)

S : A→ A, (4.4)

x 7→ −1

1 + tx
, (4.5)

ε : A→ B, (4.6)

x 7→ 0. (4.7)
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The group scheme G = SpecA is isomorphic to Gm over the locus where t is

invertible, i.e., over SpecZ[t, t−1] and is isomorphic to Ga over the locus where

t = 0, i.e., over SpecZ/(t). The group scheme is defined over Z, hence it can

be defined over any base ring B.

Definition 4.1.1. The given representation M of G is defined as

G =

{(
1 0

x 1 + tx

)}
⊂ GL2 Z. (4.8)

The group scheme TOp is defined as a p-torsion subgroup scheme of G. It

comes in two flavours: characteristic p and mixed characteristic. We will focus

on mixed characteristic case here. Let the base be B = Z[S, t]/(P ), where

P = Stp−1 + p. Define TOp by (F = 0) ⊂ G, where F = xp − Sfp(t, x) and

fp(t, x) =
(1 + tx)p − 1− tpxp

pt
. (4.9)

For example, p = 2 gives F = x2 − Sx, p = 3 gives F = x3 − S(tx2 + x) and

so on. The main property and the point of these polynomials is that

(1 + tx)p ≡ 1 mod (F, P ). (4.10)

This allows us to search for TOp-invariant polynomials.

Example 4.1.2. [5.3 Rei19] Consider P2
B〈u0,u1,u2〉, the projective plane over

B with the ui homogeneous generators of the co-ordinate ring. Let TO3 act

on P2
B〈u0,u1,u2〉 by Sym2M , where M is the given representation. On the level

of algebras the action is given by

B[u0, u1, u2]→ B[u0, u1, u2]⊗B B[x,
1

1 + tx
]/(P, F ), (4.11)

(u0, u1, u2) 7→ (u0, u1, u2)

 1 0 0

x 1 + tx 0

x2 2x(1 + tx) (1 + tx)2

 . (4.12)

More precisely,

u0 7→ u0 + xu1 + x2u2, (4.13)

u1 7→ (1 + tx)u1 + 2x(1 + tx)u2, (4.14)

u2 7→ (1 + tx)2u2. (4.15)

The action diagonalises over SpecB[1
t ] with eigenvectors

v0 = u0, (4.16)
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v1 = u0 + tu1, (4.17)

v2 = u0 + 2tu1 + t2u2, (4.18)

corresponding to eigenvalues 1, (1 + tx), (1 + tx)2 respectively.

Denote 1 + tx = τ . We will now calculate the ring of invariants with respect

to this TO3-action. We first work with various bases of monomials in the vi

and then move to monomial bases in the ui.

In degree 1 the action is given by diag(1, τ, τ2), which gives the only invariant

linear form v0 = u0. In degree 2 the action is diag(1, τ, τ2, τ2, 1, τ) which has

two corresponding monomials: v2
0 = u2

0 and v1v2. We write out v1v2 in terms

of the ui to get

v1v2 − v2
0 = (u0 + tu1)(u0 + 2tu1 + t2u2) (4.19)

= 3tu0u1 + t2u0u2 + 2t2u2
1 + t3u1u2 (4.20)

Substitute 3 7→ −St2 to get

−St2u0u1 + t2u0u2 + 2t2u2
1 + t3u1u2 (4.21)

and cancel t2 to get an invariant

(u0u2 + 2u2
1) + tu1u2 − Su0u1. (4.22)

The action on cubic forms is given by

Sym3 diag(1, τ, τ2) = diag(1, τ, τ2, τ2, 1, τ2, 1, τ, τ2, 1). (4.23)

We can now read off invariant cubics – these correspond to 1’s on the diagonal,

so we get v3
0, v0v1v2, v

3
1, v

3
2.

Remark. We implicitly order monomials by degree with v0 > v1 > v2, but of

course any other ordering of the monomials would give us the same invariant

cubics.

Now we need to write down the invariant cubics in terms of the original

basis. We have

v3
0 = u3

0 = f0, (4.24)

55



which gives us the first invariant cubic. For the second invariant cubic consider

v0v1v2 − v3
0 = 3tu2

0u1 + t2u2
0u2 + 2t2u0u

2
1 + t3u0u1u2 (4.25)

= −St3u2
0u1 + t2u2

0u2 + 2t2u0u
2
1 + t3u0u1u2 (4.26)

(4.27)

where replace 3 7→ −St2 which is the relation given by P = St2 − 3. Now

cancel t2 to get the second invariant

f1 = (2u0u
2
1 + u2

0u2) + tu0u1u2 − Stu2
0u1 (4.28)

We get the third invariant cubic in a similar fashion:

v3
1 − v3

0 = (u0 + tu1)3 − u3
0 (4.29)

= 3tu2
0u1 + 3t2u0u

2
1 + t3u1 (4.30)

= −St3u2
0u1 − St4u0u

2
1 + t3u3

1 (4.31)

and cancel t3 to get

f2 = u3
1 − S(u2

0u1 + tu0u
2
1). (4.32)

Finally, the last invariant is obtained from starting with

v3
2 − v3

0 =(u0 + 2tu1 + t2u2)3 − u3
0 (4.33)

=t6u3
2 + 6t5u1u

2
2 + 3t4u0u

2
2 + 12t4u2

1u2 + 8t3u3
1 (4.34)

+ 12t4u2
1u2 + 8t3u3

1 + 12t3u0u1u2 + 12t2u0u
2
1 + 3t2u2

0u2 + 6tu2
0u1

(4.35)

=t6u3
2 − 2St7u1u

2
2 − St6u0u

2
2 − 4St6u2

1u2 + 8t3u3
1 (4.36)

− 4St5u0u1u2 − 4St4u0u
2
1 − St4u2

0u2 − 2St3u2
0u1 (4.37)

We want to cancel the factor of t6, but some summands only have factors of

lower powers of t. To get rid of those, we consider

v3
2−v3

0−8(v3
1−v3

0)+6(v0v1v2−v3
0) = t6u3

2+6t5u1u
2
2+3t4u0u

2
2+12t4u2

1u2+18t3u0u1u2+9t2u2
0u2.

(4.38)

Now we can substitute 3 7→ −St3 and get the last invariant

f3 = u3
2 − S(u0u

2
2 + 4u2

1u2 + 2tu1u
2
2) + S2(u2

0u2 + 2tu0u1u2). (4.39)

We can consider a relative elliptic curve

E : (f0 + f1 + f2 + f3 = 0) ⊂ P2
B. (4.40)
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In characteristic 0 E is the Hesse cubic and in characteristic 3 we get a

supersingular elliptic curve.

Altogether, over the fibre S = t = 3 = 0 the invariant ring has the following

generators in degrees up to 3:

Degree Generators

1 u0

2 u2
0, u0u2 + 2u2

1

3 u3
0, u

2
0u2 + 2u0u

2
1, u

3
1, u

3
2

Example 4.1.3. [5.3 Rei19] We start with TO2 and we try to produce an

action on P(1, 1, 2)(u0,u1,w). The action on linear terms is given by(
1 0

x 1 + tx

)(
u0

u1

)
(4.41)

and the action on quadratic terms is
1 0 0 0

x 1 + tx 0 0

x2 2x(1 + tx) (1 + tx)2 0

x3 3x2(1 + tx) 3x(1 + tx)2 (1 + tx)3




u2
0

u0u1

u2
1

w

 (4.42)

which we need to specify because of the presence of w. We act on the graded

ring A = Z[u0, u1, v] and want to figure out the subring ATO2 of invariants of

this action.

Define polynomials

v0 = u0, (4.43)

v1 = u0 + tu1, (4.44)

q = u2
0 + 3tu0u1 + 3t2u2

1 + t3w. (4.45)

These polynomials and their products will diagonalise the group action in

various degrees.

We start with degree 1. In the basis {v0, v1}, the group action diagonalises as

diag(1, τ), which gives us the only invariant linear form v0 = u0.

In degree 2, we have eigenforms (v2
0, v0v1, v

2
1, q) which diagonalise the action to

diag(1, τ, τ2, τ3), with τ2 corresponding to v2
1 and giving us the new invariant

57



in degree 2:

v2
1 − v2

0 = (u0 + tu1)2 (4.46)

= 2tu0u1 + t2u2
1 (4.47)

= −St2u0u1 + t2u2
1 (4.48)

Cancel t2 to get

u2
1 − Su0u1. (4.49)

In degree 3 we act on the basis (v3
0, v

2
0v1, v0v

2
1, v

3
1, v0w, v1w) by the matrix

diag(1, τ, τ2, τ3, τ3, τ4). The only new invariant, i.e., not the product of invari-

ants of degrees 1 and 2, is u1w. We write it out:

v1w − v3
0 = (u0 + tu1)(u2

0 + 3tu0u1 + 3t2u2
1 + t3w) (4.50)

= t4u1w + t3u02 + 3t3u3
1 + 6t2u0u

2
1 + 4tu2

0u1 (4.51)

= t4u1w + t3u02 + 3t3u3
1 − 3St3u0u

2
1 + S2t3u2

0u1 (4.52)

Cancel t3 to get

(u0w + 3u3
1) + tu1w − 3Su0u

2
1 + S2u2

0u1. (4.53)

In degree 4 we have eigenforms (v4
0, v

3
0v1, v

2
0v

2
1, v0v

3
1, q

2, v2
0q, v0v1q, v

2
1q) on which

the group acts as diag(1, τ, τ2, τ3, τ4, τ6, τ3, τ4, τ5). This gives us only one new

invariant, corresponding to the eigenvalue τ6 = 1, namely q2. We have

q2 − u4
0 = (u2

0 + 3tu0u1 + 3t2u2
1 + t3w)2 (4.54)

= t6w2 + 6t5u2
1w + 6t4u0u1w + 9t4u4

1 + 2t3u2
0w + 18t3u0u

3
1 + 15t2u2

0u
2
1 + 6tu3

0u1

(4.55)

and in order to proceed, we need to add linear multiples of other invariant

forms – this is because we want to cancel as high power of t as possible. We

want to add integer multiples of other invariant quartics, these are:

v4
0, v

4
1, v

2
0v

2
1, v0v

3
1, v0v1q (4.56)

In order to proceed, we will write out these polynomials in a table:
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q2 v0v1q v4
1 v0v

3
1 v2

0v
2
1

w2 t6

u2
1w 6t5

u0u1w 6t4 t4

u4
1 9t4 t4

u2
0w 2t3 t3

u0u
3
1 18t3 3t3 4t3 t3

u2
0u

2
1 15t2 6t2 6t2 3t2 t2

u3
0u1 6t 4t 4t 3t 2t

Now we need to do a balancing exercise – increase the degree (in t) of each

coefficient of q2 until it is 6, or as high as possible if 6 cannot be achieved. We

start with u0u1w, which has coefficient 6t4 and which can only be modified by

adding an integer multiple of v0v1q. One choice is to do q2 − 2v0v1q to get

q2 − 2v0v1q v0v1q v4
1 v0v

3
1 v2

0v
2
1

w2 t6

u2
1w 6t5

u0u1w 4t4 t4

u4
1 9t4 t4

u2
0w t3

u0u
3
1 12t3 3t3 4t3 t3

u2
0u

2
1 3t2 6t2 6t2 3t2 t2

u3
0u1 −2t 4t 4t 3t 2t

Next we look at u4
1 and its coefficient 9t4, which we want to make into 8t4.

This can be achieved by subtracting v4
1:

q2 − 2v0v1q − v4
1 v0v1q v4

1 v0v
3
1 v2

0v
2
1

w2 t6

u2
1w 6t5

u0u1w 4t4 t4

u4
1 8t4 t4

u2
0w t3

u0u
3
1 8t3 3t3 4t3 t3

u2
0u

2
1 −3t2 6t2 6t2 3t2 t2

u3
0u1 −6t 4t 4t 3t 2t

Finally, we balance −3t2 and −6t, the coefficients or u2
0u

2
1 and u3

0u1 respectively,

by adding 3v2
0v

2
1:
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q2 − 2v0v1q − v4
1 + 3v2

0v
2
1 v0v1q v4

1 v0v
3
1 v2

0v
2
1

w2 t6

u2
1w 6t5

u0u1w 4t4 t4

u4
1 8t4 t4

u2
0w t3

u0u
3
1 8t3 3t3 4t3 t3

u2
0u

2
1 6t2 6t2 3t2 t2

u3
0u1 4t 4t 3t 2t

We are left with

q2−2v0v1q−v4
1 +3v2

0v
2
1 = t6w2 +6t5u2

1w+4t4u0u1w+8t4u4
1 +8t3u0u

3
1. (4.57)

We can substitute 2 = −St, 4 = S2t2, 8 = −S3t3 and cancel t6 to get the last

invariant

w2 − 3Su2
1w + S2u0u1w − S3(tu4

1 + u0u
3
1). (4.58)

The fibre over S = t = 2 is α2 and the invariant ring with respect to this group

scheme has generators u0, u
2
1, u0v, v

2 in degrees 1,2,3,4 respectively.

4.2 Actions of TOs
p2.

Example 4.2.1. Consider P3
[u0,u1,u2,u3], the projective space over the ring

B = Z[S, t]/(St3 − 2). We will act by TOs
4. Recall the given representation(

1 0

x 1 + tx

)
. (4.59)

We act on linear forms by the symmetric fourth power of the given representa-

tion, i.e., by

Sym4(M) =


1 0 0 0

x 1 + tx 0 0

x2 2x(1 + tx) (1 + tx)2 0

x3 3x2(1 + tx) 3x(1 + tx)2 (1 + tx)3

 (4.60)

The calculation will proceed with some help from computer algebra, see Ap-

pendix B for the MAGMA code. One function that we will repeatedly use

is

inv_mon(n,L)

which takes a diagonalised action in form of a list L and an integer n ≥ 1

and outputs invariant monomials of degree n. We want to figure out what
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the invariant ring B[u0, u1, u2, u3]TO4 is. The action is diagonalised to D =

diag(1, τ, τ2, τ3) (where τ = 1 + tx) with respect to the basis

v0 = u0, (4.61)

v1 = u0 + tu1, (4.62)

v2 = u0 + 2tu1 + t2u2, (4.63)

v3 = u0 + 3tu1 + 3t2u2 + t3u3. (4.64)

There is only one linear invariant form, that is v0 = u0.

In degree 2 the action is Sym2(D). We call

R<t>:=PolynomialRing(Rationals());

R<t>:=quo<R | t^4-1>;

inv_mon(2,L);

which gives us the output

[

v_0^2,

v_1*v_3,

v_2^2

]

The last two polynomials are written out in a table – this way makes it easier

to cancel powers of t. The rows are labelled monomials in ui and the columns

are labeled by invariant polynomials in vi.

v1v3 − v2
0 v2

2 − v2
0

u1u3 t4

u2
2 t4

u1u2 3t3 4t3

u0u3 t3

u2
1 3t2 4t2

u0u2 3t2 2t2

u0u1 4t 4t

We cannot cancel t3 starting with v1v3 because of the monomial u0u3 – it is

not present in v2
2−v2

0. But we can cancel t2 by substituting 4 = S2t6. However,
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we can cancel t4 in v2
2 − v2

0. Altogether, we get two invariant quadratics

v2
0 = u2

0 (4.65)

v1v3 = 3(u2
1 + u0u2) + 3tu1u2 + tu0u3 + t2u1u3 + S2t6u0u1, (4.66)

v2
2 = u2

2 − Stu0u2 + S2(t5u1u2 + t4u2
1 + t3u0u1) (4.67)

In degree 3 the representation will be Sym3(D), which contains a copy of

Sym2(D) via the map Sym2(D) 7→ v0 Sym2(D). The invariant cubics in the vi

are obtained by calling

inv_mon(3,L);

We get

[

v_0^3,

v_0*v_1*v_3,

v_0*v_2^2,

v_1^2*v_2,

v_2*v_3^2

]

with the monomials starting with v0 known to us beforehand – these monomials

are obtained as products of v0 with degree 2 invariants. There are two new

invariant monomials: v2
1v2 and v2v

2
3. We put all the cubic invariants into a

table. We shall start with v2
1v2 as it has a smaller number of monomials.

v2
1v2 − v3

0 v0v1v3 − v3
0 v0v

2
2 − v3

0

u2
1u2 t4

u0u1u3 t4

u0u
2
2 t4

u3
1 2t3

u2
0u3 t3

u0u1u2 2t3 3t3 4t3

u0u
2
1 5t2 3t2 4t2

u2
0u2 t2 3t2 2t2

u2
0u1 4t 4t 4t

What we need to do is to cancel as high power of t as possible. We allow to

modify an invariant polynomial by scaling it and adding a Z-linear combination

of other invariant polynomials. We look at the column corresponding to

v2
1v2 − v3

0 and compute pseudovaluations of the entries. These are 4, 6, 6, 2, 2, 4

top to bottom. In order to cancel t4, we need to modify monomials 5t2u0u
2
1 and

t2u2
0u2. More precisely, we are looking at coefficients 5t2 and t2 and we want to

modify them so that the integral part is even in both cases. This can only be
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achieved by summing it with something odd, which leaves us only one option –

v0v1v3 − v3
0, since the corresponding coefficients in v0v

2
2 − v3

0 are even. So we

want to consider (v2
1v2− v3

0) + n(v0v1v3− v3
0), where n must be an odd integer.

This introduces the monomial nt3u2
0u3 which will have pseudovaluation 3 (n is

odd) and which cannot be further modified since this monomial is not present

in any other invariant polynomials. This shows that we cannot cancel t4. Note

however that we can cancel t3 by considering v2
1v2 − v0v1v3:

v2
1v2 − v3

0 v0v1v3 − v3
0 v0v

2
2 − v3

0 v2
1v2 − v0v1v3

u2
1u2 t4 t4

u0u1u3 t4 −t4

u0u
2
2 t4

u3
1 2t3 2t3 = −St6

u2
0u3 t3 −t3

u0u1u2 2t3 3t3 4t3 −t3

u0u
2
1 5t2 3t2 4t2 2t2 = −St5

u2
0u2 t2 3t2 2t2 −2t2 = St5

u2
0u1 4t 4t 4t

We cancel t3 and multiply by −1 to get the new invariant form

v0v1v3−v2
1v2 = u2

0u3 +u0u1u2 + t(u0u1u3−u2
1u2) +S(t3u3

1 + t2u0u
2
1− t2u2

0u2).

(4.68)

The next invariant polynomial is v2v
2
3, which has a bigger number of monomials

in ui, but the technique is the same.
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v2v
2
3 − v3

0 v0v
2
2 − v3

0 v2
vv2 − v3

0

u2u
2
3 t8

u1u
2
3 2t7

u2
2u3 6t7

u3
2 9t6

u0u
2
3 t6

u1u2u3 18t6

u1u
2
2 36t5

u2
1u3 12t5

u0u2u3 8t5

u0u
2
2 15t4 t4

u2
1u2 45t4 t4

u0u1u3 10t4

u3
1 18t3 2t3

u0u1u2 36t3 4t2 2t3

u2
0u3 2t3

u0u
2
1 21t2 4t2 5t2

u2
0u2 7t2 2t2 t2

u2
0u1 8t 4t 4t

Suppose that we want to cancel t8, but because the term 9t6u3
2 is only present in

one invariant monomial we cannot modify it. But we can cancel t6 – there is no

canonical choice here, but one choice that works is to take v2v
2
3−v3

0 +v0v
2
2−v2

1v2:
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v2v
2
3 − v3

0 v0v
2
2 − v3

0 v2
vv2 − v3

0 v2v
2
3 − v3

0 + v0v
2
2 − v2

1v2

u2u
2
3 t8 t8

u1u
2
3 2t7 2t7 = −St10

u2
2u3 6t7 6t7 = −3St10

u3
2 9t6 9t6

u0u
2
3 t6 t6

u1u2u3 18t6 18t6 = −9St9

u1u
2
2 36t5 36t5 = 9S2t11

u2
1u3 12t5 12t5 = 3S2t11

u0u2u3 8t5 8t5 = −S3t14

u0u
2
2 15t4 t4 16t4 = S4t16

u2
1u2 45t4 t4 44t4 = −11St7

u0u1u3 10t4 10t4 = −5St7

u3
1 18t3 2t3 16t3 = S4t15

u0u1u2 36t3 4t2 2t3 38t3 = −19St6

u2
0u3 2t3 2t3 = −St6

u0u
2
1 21t2 4t2 5t2 20t2 = 5S2t8

u2
0u2 7t2 2t2 t2 8t2 = −S3t11

u2
0u1 8t 4t 4t 8t = −S3t10

Cancel t6 to get the invariant polynomial

v2v
2
3 − v3

0 + v0v
2
2 − v2

1v2 =9u3
2 + u0u

2
3 + t2u2u

2
3 (4.69)

− S(t4u1u
2
3 + 3t4u2

2u3 + 9t3u1u2u3 + 11tu2
1u2 + 5tu0u1u3)

(4.70)

+ S2(9t5u1u
2
2 + 3t5u2

1u3 + 5t2u0u
2
1) (4.71)

− S3(t8u0u2u3 + t5u2
0u2 + t4u2

0u1) + S4(t10u0u
2
2 + t9u3

1)

(4.72)

In degree 4 the MAGMA output is

[

v_0^4,

v_0^2*v_1*v_3,

v_0^2*v_2^2,

v_0*v_1^2*v_2,

v_0*v_2*v_3^2,

v_1^4,

v_1^2*v_3^2,

v_1*v_2^2*v_3,

v_2^4,

v_3^4

]
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There are only two new invariant polynomials – v4
1 and v4

3. We don’t need to

modify v4
1:

v4
1 − u4

0 = t4u4
1 + 4t3u3

1u0 + 6t2u2
0u

2
1 + 4tu2

0u1 (4.73)

= t4u4
1 + S2t9u0u

3
1 − 3St5u2

0u
2
1 + S2t7u2

0u1 (4.74)

and we can cancel t4 to get the invariant

v4
1 − v4

0 = u4
1 − 3Stu2

0u
2
1 + S2(t5u0u

3
1 + t3u3

0u1) (4.75)

The invariant quartic v4
3 will be rather large:

v4
3 =t12u4

3 + 12t11u2u
3
3 + 12t10u1u

3
3 + 54t10u2

2u
2
3 + 4t9u0u

3
3 (4.76)

+ 108t9u1u2u
2
3 + 108t9u3

2u3 + 81t8u+ 24 + 54t8u2
1u

2
3 (4.77)

+ 36t8u0u2u
2
3 + 324t8u1u

2
2u3 + 324t7u1u

3
2 + 36t7u0u1u

2
3 (4.78)

+ 108t7u0u
2
2u3 + 324t7u2

1u2u3 + 108t6u0u
3
2 + 486t6u2

1u
2
2 (4.79)

+ 6t6u2
0u

2
3 + 108t6u3

1u3 + 216t6u0u1u2u3 + 324 + t6u0u1u
2
2 (4.80)

+ 324t5u3
1u2 + 108t5u0u

2
1u3 + 36t5u2

0u2u3 + 81t4u4
1 + 54t4u2

0u
2
2 (4.81)

+ 324t4u0u
2
1u2 + 36t4u2

0u1u3 + 108t3u0u
3
1 + 108t3u2

0u1u2 + 4t3u3
0u3

(4.82)

+ 54t2u2
0u

2
1 + 12t2u3

0u2 + 12tu3
0u1 + u4

0. (4.83)

We will try to cancel t12. Note that the coefficients of the terms starting with

u2u
3
3 to u3

2u3 are even and have a power of t which is at least 9. Moreover,

these terms are not summands of any other invariant polynomials, so we will

ignore them in subsequent tables. We will consider three tables altogether. In

the first table we will have only summands in the ui which have powers of t in

their coefficients of at least 6 – this is so that we only need to make sure that

the integral part is divisible by 4 = S2t6 in each case, so that we can cancel t12.

v4
3 v4

2 v2
1v

2
3

u4
2 81t8 t8

u2
1u

2
3 54t8 t8

u1u
3
2 324t7 8t7

u0u1u
2
3 36t7 6t7

u0u
3
2 108t6 4t6

u2
1u

2
2 486t6 24t6 9t6

u2
0u

2
3 6t6 t6

u3
1u3 108t6 t6

u0u1u2u3 216t6 12t6

Note that we skipped the monomials in the ui which were already divisible by
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4 and which were not summands in either v4
2 or v2

1v
2
3. The coefficients where

integral part is not divisible by 4 are underlined. We can get rid of 81t8 by

subtracting 81v4
2 and we can double 54t8 by adding 54v2

1v
2
3. In order to keep

the integral coefficients as small as possible, we reduce 81 and 54 modulo 16,

so that it won’t affect the calculations in the next two tables.

v4
3 v4

2 v2
1v

2
3 v4

3 − v4
2 + 6v2

1v
2
3

u4
2 81t8 t8 80t8

u2
1u

2
3 54t8 t8 60t8

u1u
3
2 324t7 8t7 316t7

u0u1u
2
3 36t7 6t7 72t7

u0u
3
2 108t6 4t6 104t6

u2
1u

2
2 486t6 24t6 9t6 516t6

u2
0u

2
3 6t6 t6 12t6

u3
1u3 108t6 6t6 144t6

u0u1u2u3 216t6 12t6 288t6

In the last column all of the integral coefficients are now divisible by 4.

In the next table we look at the rows which have powers of t of between 3 and

5 and we want to make the integral part divisible by 8 = −S3t9.

v4
3 − v4

2 + 6v2
1v

2
2 v4

1 v2
0v

2
1

u0u1u
2
2 408t5

u3
1u2 400t5

u0u
2
1u3 192t5

u2
0u2u3 72t5

u4
1 119t4 t4

u2
0u

2
2 102t4 t4

u0u
2
1u2 528t4

u2
0u1u3 96t4

u0u
3
1 220t3 4t3

u2
0u1u2 264t3 4t3

u3
0u3 16t3

The coefficients with integral parts not divisible by 8 are underlined. One way

to proceed is to add1 9v4
1 + 2v2

0v
2
2:

1we could have added v41+2v20v
2
2 to balance this table, but then we would not get divisibility

by 16 in the last table.
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v4
3 − v4

2 + 6v2
1v

2
2 v4

1 v2
0v

2
1 v4

3 − v4
2 + 6v2

1v
2
2 + 9v4

1 + 2v2
0v

2
2

u0u1u
2
2 408t5 408t5

u3
1u2 400t5 400t5

u0u
2
1u3 192t5 192t5

u2
0u2u3 72t5 72t5

u4
1 119t4 t4 128t4

u2
0u

2
2 102t4 t4 104t4

u0u
2
1u2 528t4 528t4

u2
0u1u3 96t4 96t4

u0u
3
1 220t3 4t3 256t3

u2
0u1u2 264t3 4t3 272t3

u3
0u3 16t3 16t3

In the last column all of the integral coefficients are now divisible by 8.

We now look at the last tables, which consists of those rows which have powers

of t 1 and 2. We want to make integral parts divisible by 16, but they already

are:

v4
3 − v4

2 + 6v2
1v

2
2 + 9v4

1 + 2v2
0v

2
2

u2
0u

2
1 224t2

u3
0u2 48t2

u3
0u1 96t

We can replace powers of 2 by powers of −St3 and cancel t12 to get the invariant

form

v4
3 − v4

0 =u4
3 − 27Stu2

2u
2
3 (4.84)

+ S2(3t5u2u
3
3 + 3t4u1u

3
3 + t3u0u

3
3 + 27t3u1u2u

2
3 + 27t3u3

2u3 + 9t2u0u2u
2
3

(4.85)

+ 27tu0u
2
2u3 + 15t2u2

1u
2
3 + 79tu1u

3
2 + 129t3u0u

3
2 + 3u2

0u
2
3) (4.86)

− S3(9t4u0u1u
2
3 + 13t3u0u

3
2 + 51t2u0u1u

2
2 + 9t2u2

0u2u3 + 13tu2
0u2)

(4.87)

+ S4(5t8u4
2 + 9t6u3

1u3 + 25t5u3
1u2 + 33t4u0u

2
1u2 + 17t3u2

0u1u2 + t3u3
0u3)

(4.88)

− S5(9t9u0u1u2u3 + 3t7u2
0u1u3) + 3S6t11u0u

2
1u3 − S7t9u4

1 + S8t12u0u
3
1

(4.89)

The invariant ring is generated in degrees 1,2,3,4. There are no generators in

higher degrees because of the relation τ4 = 1.
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4.3 Numerical Godeaux surfaces

All surfaces in this section are smooth and projective unless stated otherwise.

Let X be a minimal surface of general type. The smallest possible invariants

for X are χ(OX) = K2
X = 1 and pg = q = 0. The first example of such a

surface was given by Godeaux in [God31]. After almost 90 years since the first

example, there is still no complete classification or understanding of this type

of surfaces.

Definition 4.3.1. A minimal surface X of general type with K2
X = 1 is called

a numerical Godeaux surface.

Numerical Godeaux surfaces over C with an involution were classified by

Calabri, Ciliberto, and Mendes Lopes in [CCML07].

Example 4.3.2. Let us construct a numerical Godeaux surface over C. Let

x0, x1, x2, x3 be co-ordinates on P3
C. Take G = Z/5 and let it act on P3 by

1
5(0, 1, 2, 3), i.e., we take the following representation of Z/5:

Z/5→ GL4, (4.90)

1 7→


1 0 0 0

0 ε 0 0

0 0 ε2 0

0 0 0 ε3

 = A, (4.91)

where ε is a primitive fifth root of unity. Then A acts on the column vector

(x0, x1, x2, x3)T . The action has four fixed points: [1 : 0 : 0 : 0], [0 : 1 : 0 :

0], [0 : 0 : 1 : 0], and [0 : 0 : 0 : 1]. The Fermat quintic surface X defined by

x5
0 +x5

1 +x5
2 +x5

3 = 0 does not pass through any of the fixed points of this action.

Furthermore, the defining polynomial is G-invariant, so the quotient Y = X/G

is a smooth surface. By [Bar+04, Proposition V.2.1], we have π1(X) = 0, so

π1(Y ) ∼= G and qY = 0.

Proposition 4.3.3. [Lie09, Proposition 1.1] Let X be a minimal surface of

general type with K2
X = 1. Then the following hold:

b1(X) = 0, (4.92)

|π1(X)| ≤ 6, (4.93)

pg(X) ≤ 2, (4.94)

h01(X) = h1(X,OX) ≤ 1. (4.95)
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In particular, if h01(X) = 1 then X has a non-reduced Picard scheme, which

can only happen in positive characteristic.

In characteristic 0, the only possibilities for G = Tors(X) are

0,Z/2,Z/3,Z/4,Z/2× Z/2,Z/5. (4.96)

By [Rei78, Theorem 2.1] the case Z/2×Z/2 is excluded. We have already seen

the case Z/5 and all the other cyclic groups are also possible by the works of

Barlow [Bar84; Bar85] (G = 0,Z/2) and Reid [Rei78] (G = Z/3,Z/4).

In positive characteristic, numerical Godeaux surfaces are further subdivided

into three classes.

Definition 4.3.4. Let X be a numerical Godeaux surface. If h1(OX) = 0,

then X is called a classical Godeaux surface. If h1(OX) = 1 the surface X

is called a nonclassical Godeaux surface. These are further subdivided into

two cases depending on the action of the Frobenius F : H1(OX)→ H1(OX).

If F is an isomorphism, X is called a singular Godeaux surface. If F acts

as zero, X is called a supersingular Godeaux surface.

Nonclassical Godeaux surfaces exist only if the characteristic of the field is

low enough, as shown in the following theorem by Liedtke.

Proposition 4.3.5. [Lie09, Theorem 2.1 and Theorem 2.4] Nonclassical

Godeaux surfaces can exist in characteristic 2, 3, and 5 only.

Liedtke specialises to the case p = 5 in [Lie09].

Proposition 4.3.6. [Lie09, p. 4] and [Proposition I.1.7 Eke88] Let X be a

smooth surface over an algebraically closed field of characteristic p > 0 and

π : Y → X a nontrivial µp- or αp-torsor. Then we have the equalities

χ(OY ) = pχ(OX) (4.97)

and

K2
Y = pK2

X . (4.98)

Proposition 4.3.7. [Proposition 2.3 Lie09] Let X be a minimal surface of

general type and π : Y → X a nontrivial αp- or µp-torsor. Then Noether’s

inequality

K2
Y ≥ 2h0(ωY )− 4 (4.99)

holds.

Proposition 4.3.8. Let p = 3 and X a supersingular Godeaux surface. As-

uume that the torsor corresponding to Pic0X is normal, so that Liedtke’s

version of Noether’s inequality can be applied. Then the only possibilities for

Pic0X are α3,α9, and M9, with αD
9 not possible.
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Proof. Suppose that X is supersingular. Then the action of F on H1(OX)

gives an embedding

α3 ↪→ Pic0X. (4.100)

Note that µp ↪→ Pic0X is not possible because the Frobenius is not bijective

on H1(OX). The embedding gives rise to an αD
3 -torsor

Y → X. (4.101)

Consider the corresponding exact sequence of group schemes

0→ α3 → Pic0X → G→ 0. (4.102)

Suppose that G is nontrivial, then there is an embedding α3 ↪→ G giving rise

to an αD
3 -torsor above Y . In particular, h1(OY ) 6= 0 – if it is zero, then PicY

is an étale group scheme. By 4.3.6, we have

K2
Y = 3K2

X = 3, (4.103)

so that

3 = h0(OY )− h1(OY ) + h2(OY ), (4.104)

from which it follows that

h2(OY ) = 2 + h1(OY ) ≥ 3. (4.105)

On the other hand, Noether’s inequality 4.3.7 gives

3 ≥ 2h0(ωY )− 4, (4.106)

from which it follows that

h2(OY ) ≤ 3.5 (4.107)

and hence we get

h2(OY ) = 3, (4.108)

h1(OY ) = 1. (4.109)

Recall that α3
∼= αD

3 and now look at the α3-torsor above Y , say

Z → Y. (4.110)

Consider the corresponding exact sequence

0→ α3 → Pic0 Y → H → 0 (4.111)
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We know that K2
Z = 3K2

Y = 9 and hence

h2(OZ) = 8 + h1(OZ) ≥ 9. (4.112)

On the other hand, by Noether’s inequality,

9 ≥ 2h0(ωZ)− 4, (4.113)

h0(ωZ) ≤ 6.5, (4.114)

so H = 0 and Pic0 Y = α3. Hence Pic0X ∈ Ext1(α3,α3) and so it must be

one of α3 × α3,α9,α
D
9 ,M9, but because h1(OX) = 1 we cannot have group

schemes with tangent space of dimension 2. This leaves α9 and M9 as the

other two possibilities, in addition to α3 corresponding to G = 0.

Remark. It should be possible to perform a similar analysis for the case p = 2,

but we would need to consider group schemes of order 23 = 8 as well. These

were classified in Section 3.2.3.

4.4 Further directions

As we saw in the previous section, classical Godeaux surfaces were constructed in

all characteristics. Nonclassical Godeaux surfaces can only exist in characteristic

2,3, or 5. In characteristic 5 these were constructed by Lang in [Lan81] (étale

case), Miranda in [Mir84] (singular case), and Liedtke in [Lie09] (supersingular

case). Kim and Reid give a unified treatment of these surfaces in characteristic

5 [KR], using the Tate-Oort group scheme TOp from [Rei19]. We have shown

that in characteristic 3 the only possibilities for Pic0X are α3,α9, or M9 in

the supersingular case. It should be possible to deal with characteristics 2 and

3 and put nonclassical Godeaux surfaces into a single deformation family, using

the group schemes TOll
p2 and TOl

p2 .
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Appendix A

Frobenius morphisms

Let X be a scheme of characteristic p, i.e., pOX = 0. Note that p must be

unique, unless X is trivial. Equivalently, we say that X of characteristic p if

the structure morphism SpecZ factors uniquely through SpecFp.
The absolute Frobenius morphism of X is defined as the identity on the

topological space and x 7→ xp on the structure sheaf – this map is indeed a

morphism of sheaves of rings because (a+ b)p = ap + bp in characteristic p.

If instead of SpecFp we have another scheme S of characteristic p as our base

scheme, then there is a relative version of Frobenius which is OS-linear.

X(p) X

S S

X

FS

FX/S

FX

The square in the diagram is a pullback square in the category of Fp-schemes

(or Z-schemes) and defines X(p). The morphism FX/S : X → X(p) is defined

uniquely by the property of the pullback square and is OS-linear.

Example A.0.1. Let A = Fp[x], then we have the pushforward square of

Fp-algebras
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Fp Fp

Fp[x] Fp[x]⊗k k

Fp[x]

FFp[x]/Fp

FFp[x]

Note that xp = x in Fp, so everything in sight is Fp-linear and there is no need

for relative Frobenius.

Example A.0.2. Take k = F9 = F3[i] and A = F9[x]. The absolute Frobenius

is no longer the identity, e.g., i maps to 2i. We have the diagram

F9 F9

F9[x] F9[x]⊗F9 F9

F9[x]

FF9[x]/F9

FF9[x]

The map F9[x]→ F9[x]⊗F9 F9
∼= F9[x] is given by

ax 7→ x⊗ ap, (A.1)

so that the relative Frobenius is given by

FF9[x]/F9
: F9[x]→ F9[x], (A.2)

ax 7→ axp. (A.3)

In general, ifA is an Fp-algebra of finite type, say, A = Fp[x1, ..., xn]/(f1, ..., fm),

then A(p) = Fp[x1, ..., xn]/(f
(p)
1 , ..., f

(p)
m ). Here, f (p) is obtained from f be rais-

ing all coefficients of f to the pth power. The relative Frobenius in this case is

given by axi 7→ axp on generators.
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Appendix B

MAGMA code

All of calculations for this thesis were done in MAGMA Computational Algebra

System [BCP97].

// The default FrobeniusImage function of MAGMA takes a matrix

defined over a finite field and computes its Frobenius image. It

does not work with matrices defined over algebras of positive

characteristic. The function below does.

function FrobeniusImageRing(M,n)

return

Matrix(NumberOfRows(M),NumberOfColumns(M),[M[j,i]^(Characteristic(Parent(M))^n):

i in [1..NumberOfRows(M)], j in [1..NumberOfRows(M)]]);

end function;

// The purpose of MatrixRingList is to get the list of elements of

the matrix ring M_n(R). Just calling Set(MatrixRing(R,n)) is not

good, because if R is a finite ring which is not a field then it

is not possible to iterate over MatrixRing(R,n) -- MAGMA gives a

mistake even if R is a ring of order 4.

function MatrixRingList(R,n)

m:=#R^(n^2);

C:=CartesianPower(R,n^2);

L:=[i: i in Set(C)];

P:=[];

for i in [1..m] do

P[i]:=Matrix(R,n,n, [j: j in L[i]]);

end for;

return P,#P;

end function;

// Our function takes in a finite ring R and an integer n and outputs
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p-conjugates of matrices in M_n(R)]

function MatrixConjClass(R,n)

M:=MatrixRing(R,n);

L:={@ x: x in Set(M)@};

G:={@ x: x in L | IsInvertible(x) @};

P:={@ @};

while #L ne 0 do

for x in L do

K:={@ FrobeniusImageRing(y,1)*x*y^-1 : y in G @};

P:=Include(P,K);

L:= L diff K;

end for;

end while;

return P;

end function;

// This function takes two matrices and outputs true if their

corresponding primitively generated Hopf algebras are isomorphic

and false otherwise

function MatrixIsoHopfAlg(A,B)

M:=MatrixRing(Parent(A[1,1]),NumberOfRows(A));

L:={@ x: x in Set(M)@};

G:={@ x: x in L | IsInvertible(x) @};

K:={@ FrobeniusImageRing(y,1)*A*y^-1 : y in G @};

if B in K then return true;

else return false;

end if;

end function;

// This function takes a representation of a group (in diagonal form)

and outputs invariant monomials of degree n

function inv_mon(n,L)

L:=[R!L[i]: i in [1..#L]];

M:=DiagonalMatrix(Parent(L[1]),#L,L);

P:=PolynomialRing(Integers(),#L);

K:=[];

O:=[];

AssignNames(~P, ["v_" cat IntegerToString(k) : k in [0..#L-1]] );

N:=[R!SymmetricPower(M,n)[i,i]: i in

[1..NumberOfRows(SymmetricPower(M,n))]];

for i in N do

if i eq 1 then Append(~K, Index(N,i));

N[Index(N,i)]:=0;

end if;

end for;
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G:=MonomialsOfDegree(P,n);

for i in K do

Append(~O,G[i]);

end for;

return O;

end function;

// Our function takes in a finite ring R and an integer n and outputs

p-conjugates of matrices in M_n(R)]

function MatrixConjClass(R,n)

M:=MatrixRing(R,n);

L:={@ x: x in Set(M)@};

// We create a copy of L so that we can iterate over L and remove

elements from L1 -- it is not recommended to change the list we

are iterating over

L1:= L;

G:={@g : g in L | IsInvertible(g) @};

// G:=GeneralLinearGroup(n,R);

P:={@ @};

for x in L do

if #L1 eq 0 then break;

end if;

if x notin L1 then continue;

end if;

K:={@ FrobeniusImage(y,1)*x*y^-1 : y in G @};

P:=Include(P,K);

L1:= L1 diff K;

// This part is optional: uncomment to see the progress in real time

printf "The size of L1 is now ";

#L1;

end for;

return P;

end function;

// This function takes two matrices and outputs true if their

corresponding primitively generated Hopf algebras are isomorphic

and false otherwise

function MatrixIsoHopfAlg(A,B)

M:=MatrixRing(Parent(A[1,1]),NumberOfRows(A));

L:={@ x: x in Set(M)@};

G:={@ x: x in L | IsInvertible(x) @};

K:={@ FrobeniusImageRing(y,1)*A*y^-1 : y in G @};

if B in K then return true;
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else return false;

end if;

end function;

// This function takes a matrix M with entries in an F_p-algebra and

outputs the corresponding primitively generated Hopf algebra H

function PrimGenHopfAlg(M)

n:=NumberOfRows(M);

p:=Characteristic(Parent(M[1,1]));

P:=PolynomialRing(Parent(M[1,1]), n);

// This step is needed to make the output more readable -- the

variables will have names x_1, x_2 etc.

AssignNames(~P, ["x_" cat IntegerToString(k) : k in [1..n]] );

// Define the ideal of relations for the Hopf algebra

L:=[P.i^p-(&+[Transpose(M)[i,j]*P.j : j in [1..n]]): i in [1..n]];

H:=quo<P | L>;

return H;

end function;

// Setting up the group scheme

K<t>:=FunctionField(Rationals());

A<x>:=PolynomialRing(K);

S:=-2/t^3;

RR<x,u_0,u_1,u_2,u_3, y_1, y_3>:=PolynomialRing(K,7);

Phi:=x^4-S*(2*t^2*x^3+3*t*x^2+2*x);

R:=quo<RR|Phi>;

tau:=1+t*x;

// specifying the given representation, same as in TO_p case:

A:=Matrix(R,2,2,[1,0,x,tau]);

// specifying the action on linear terms, i.e., u_0, u_1, u_2, u_3

B:=SymmetricPower(A,3);

// this will give us the action on quadratic terms, i.e., Sym^2 (u_i)

+ (y_1, y_3).

C:=SymmetricPower(B,3);

// we only need the following 12*12 submatrix:

Act:=Matrix(R,12,12,[C[i,j]: i in [1..12], j in [1..12]]);

Act:=Transpose(Act);

// the diagonal helps us find invariant terms

[Act[i,i]: i in [1..12]];
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L:=[1,t,t^2,t^3];

R<t>:=PolynomialRing(Rationals()); R<t>:=quo<R | t^4-1>;

// This function takes a representation of a group (in diagonal form)

and outputs invariant monomials of degree n

function inv_mon(n,L)

R:=Parent(L[1]);

L:=[R!L[i]: i in [1..#L]];

M:=DiagonalMatrix(Parent(L[1]),#L,L);

P:=PolynomialRing(Integers(),#L);

K:=[];

O:=[];

AssignNames(~P, ["v_" cat IntegerToString(k) : k in [0..#L-1]] );

N:=[R!SymmetricPower(M,n)[i,i]: i in

[1..NumberOfRows(SymmetricPower(M,n))]];

for i in N do

if i eq 1 then Append(~K, Index(N,i));

N[Index(N,i)]:=0;

end if;

end for;

G:=MonomialsOfDegree(P,n);

for i in K do

Append(~O,G[i]);

end for;

return O;

end function;
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