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Abstract—The paper proposes a novel Object Shape Error 
Response (OSER) approach to estimate the dimensional and 
geometric variation of assembled products and then, relate, these 
to process parameters, which can be interpreted as root causes 
(RC) of the object shape defects. The OSER approach leverages 
Bayesian 3D-Convolutional Neural Networks integrated with 
Computer-Aided Engineering (CAE) simulations for RC isolation. 
Compared with the existing methods, the proposed approach (i) 
addresses a novel problem of applying deep learning for object 
shape error identification instead of object detection; (ii) 
overcomes fundamental performance limitations of current linear 
approaches for Root Cause Analysis (RCA) of assembly systems 
that cannot be used on point cloud data; and, (iii) provides 
capabilities for unsolved challenges such as ill-conditioning, fault-
multiplicity, RC prediction with uncertainty quantification and 
learning at design phase when no measurement data is available. 
Comprehensive benchmarking with existing machine learning 
models demonstrates superior performance with R2=0.98 and 
MAE=0.05 mm, thus improving RCA capabilities by 29%. 

Index Terms— Bayesian Deep Learning, 3D Convolutional 
Neural Networks, Assembly, Manufacturing 

I. INTRODUCTION 

BJECT shape errors modelling and diagnosis are 
important enablers of Industry 4.0 and provide a 

transformative framework integrating facilitators such as big 
data, in-line 3D scanners, robotics and AI algorithms towards 
achieving near-zero-defect manufacturing. In this paper, the 
proposed 3D object shape error response (OSER) approach 
translates into estimating and discriminating between shape 
error patterns and linking them to manufacturing process 
parameters. Estimating at first and then reducing or eliminating 
these error patterns ensures dimensional product quality (as 
defined by GD&T) which is a major challenge for industries 
such as automotive, aerospace and shipbuilding. Two-thirds of 
the quality issues in the automotive and aerospace sectors are 
caused by dimensional variations [1]. The key goal is 
developing an RCA model that can identify the relationship 
between shape errors and manufacturing process parameters. 

Past methods used to diagnose manufacturing dimensional 
quality faults are based on: (i) statistical estimation; and, (ii) 
pattern matching based approaches. These approaches have 
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been shown to have limitations in their applicability to 
complex, high dimensional and nonlinear systems [2] as these 
used linear models between process parameters and 
measurements of product dimensional quality for both systems 
with rigid [3] and complaint parts [4]. Ceglarek et al [5] used 
CAD-based variation patterns and a fault matching technique 
which combined principal component analysis and pattern 
similarity for fault diagnosis. This work was later extended to 
include the effect of measurement noise and then generalized 
for multistage assembly process using state-space model, 
stream-of-variation [6]. Jin et al. [7] used a Bayesian network 
approach for estimating fixture faults using all measured points. 
Bastani et al. [8] used a spatially correlated Bayesian Learning 
algorithm for an underdetermined system by exploiting the 
spatial correlation of dimensional variation from various error 
sources. In summary, the aforementioned approaches are linear 
and are designed to work for relatively small number of 
measurement points on each manufactured part. This 
significantly limits the application of the methods for 3D object 
shape error modelling and diagnosis in manufacturing.  The 3D 
shape error modelling and diagnosis used in manufacturing 
must have the capability to satisfy a number of requirements 
with respect to:  

(i) High data dimensionality of a batch of 3D objects [9] 
which are defined by CAD (ideal parts) and point-clouds (non-
ideal parts) with millions of points for each part or subassembly. 

 (ii) Non-linearity due to compliant parts being constrained 
by assembly fixtures and part-to-part interactions  [10]. 

(iii) Collinearities as many manufacturing systems are ill-
conditioned [11] with error patterns of key process parameters 
being near parallel, thus, yielding widely discrepant results. 

(iv) High faults multiplicity [12] as current near-zero-defects 
strategies require taking into consideration 6-sigma defects that 
lead to redefining defects from binary {0,1}, i.e., fault/no-fault, 
to continuous <0,1>, i.e., the fault being measured as a level of 
variation with dynamically changing threshold of acceptance, 
that significantly increases fault multiplicity. 

(v) Uncertainty quantification in the RCA output,  as the 
identified RC frequently leads to costly corrective actions [13], 
it is crucial therefore to enhance the RCA model by an 
uncertainty estimation of the predictions. 
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(vi) Dual data generation capability by using metrology 
gages and multi-physics-simulator needed for RCA model 
training.  As the RCA model needs to be trained on a very large 
number of fault scenarios, which cannot be generated via real 
systems; and the training needs to be done before the real 
assembly systems are ready for production; there is a strong 
need to generate data via high fidelity multi-physics simulator 
for training RCA model. Then, the RCA model will use point-
cloud data of real free-form surfaces obtained via robotic 3D 
scanner when implemented in a real system.  

This paper will address the above requirements as follows:   
(1) Requirements (i)-(iv) by developing a 3D deep learning 

approach. As markets get competitive in terms of product 
quality, production volume and costs, manufacturers aim to 
leverage developments in the field of artificial intelligence. 
Deep neural networks have revolutionized data-intensive tasks 
that involve generating insights from high dimensional input 
data [21]. 2D/3D convolutional neural networks (CNN) are 
known to perform well when spatial data such as depth images, 
point-clouds, mesh, and medical scans have to be analysed for 
tasks such as control systems, object detection, video analysis 
and cancer detection. Manufacturing is one of the major 
domains that has benefited from this development [16]. This 
paper proposes a 3D CNN architecture that enables the 
extraction of spatial features from point clouds and hence, 
models non-linear relationships between features and process 
parameters. This approach has high performance for non-linear 
and ill-conditioned systems having high fault multiplicity. 

(2) Requirement (v) by leveraging a Bayesian 3D CNN based 
approach. Recent developments in artificial intelligence 
cautions making real-life decisions based on point-estimates. 
As compared to traditional CNNs with deterministic weights 
Bayesian CNNs leverage probability distributions over model 
weights and model outputs and enable quantification of 
predictive uncertainty, prevent overfitting and require 
comparatively lesser data to train [17]. Successful applications 
of the above have been done in healthcare [18] and load 
forecasting [19]. Using such models enables segregation of the 
uncertainties into aleatoric and epistemic, the former 
quantifying the uncertainty due to uncontrollable factors such 
as system noise while the latter quantifies uncertainties due to 
model structure and insufficient training data [17]. The 
proposed approach estimates each model parameter as a 
distribution (epistemic uncertainty) while also modelling the 
output estimates as parameters of a multi-variate distribution 
(aleatoric uncertainty). Such estimates involving the different 
types of uncertainties in model predictions are crucial as these 
quantify when the model is ‘randomly guessing’ as compared 
to making a confident prediction. Particularly within 
manufacturing environments, these uncertainty estimates 
integrate a degree of confidence within the estimates and hence, 
support the decision-maker in making cost-effective selection 
of corrective action(s) which can be quite costly. 

 (3) Requirement (vi) by making the developed  Bayesian 3D 
CNN from (2) compatible with point cloud data obtained via 
either multi-physics simulator or 3D scanners and leveraging 

the epistemic uncertainty estimates to perform intelligent 
closed-loop training and enable model convergence using a 
lesser number of training samples. In turn, this reduces total 
data generation and model training time. Since multi-physics-
simulator is computationally expensive and generating each 
sample for assembly applications can be time intensive for high 
fidelity simulations, it is crucial to reduce overall simulation 
time. The reduction in simulation time provided by leveraging 
the epistemic uncertainty estimates of Bayesian 3D CNNs is 
significantly higher than the increased training time for 
Bayesian deep learning approaches. The approach developed in 
this paper will utilize high fidelity multi-physics simulator of 
the assembly process, called Variation Response Method 
(VRM) [20]. The VRM has the capability for, first, modelling 
and simulating assembly process with compliant parts 
constrained by assembly fixtures and part-to-part interactions; 
and, then it enables high-fidelity point-cloud data generation of 
3D assembled products/subassemblies with error patterns as 
obtained under different sets of process parameters.  The VRM 
model accuracy was verified and validated for various assembly 
processes [20]. Additionally, the approach is equipped to utilize 
data obtained from measurements using 3D optical scanners. 
3D optical scanners enable real-time high dimensional point 
cloud data extraction from manufacturing systems within short 
cycle times. This point cloud data can be post-processed using 
alignment techniques to extract deviations for points, thus 
enabling dual data generation and integration. In summary, the 
paper develops a novel 3D Object Shape Error Response 
(OSER) approach in an effort to enable RCA within 
manufacturing systems using point cloud data. The proposed 
methodology integrates deep learning (which addresses 
requirements (i)-(iv)), Bayesian training enabled by Bayes–by–
Backprop [21] and Flipout [22]  (Requirement (v)); and, multi-
physics simulator to address Requirement (vi). 

The key contributions of the paper are as follows: 
(1) Proposed 3D OSER methodology based on a novel 

Bayesian 3D CNN architecture: it builds on current work done 
in the area of 3D Object Detection [14] by expanding it to 
manufacturing systems where the key goal is not to detect the 
object but to estimate various shape error patterns present on 
the final object/product and relate these variation pattern to 
manufacturing process parameters variations within the system. 
To the best of our knowledge, this is the first paper to propose 
an uncertainty enabled 3D CNN based deep learning model for 
RCA of assembly systems.  

(2) Propose a closed-loop framework for training and 
deployment of the Bayesian 3D CNN model that leverages a 
Computer-Aided Engineering (CAE) simulator known as VRM 
[20] to emulate the multi-stage assembly system. The VRM 
performs sampling which leverage the epistemic uncertainty 
estimates of the Bayesian 3D CNN thereby, reducing overall 
simulation and training time. Given that data availability within 
manufacturing systems is costly, scarce and the data can be 
highly skewed the VRM functions as a physics-based Digital 
Twin for generating augmented data that is close to the real 
system and can therefore, be used to train the proposed model.  
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The trained model can then be leveraged for applications such 
as RCA of assembly systems using point cloud scans obtained 
from 3D scanners. 

(3) Verify & validate the methodology on an industrial 
automotive door assembly process made of compliant parts.  

(4) Benchmark 3D OSER methodology against three 
categories of methods that can be leveraged to estimate the 
dimensional and geometric variation of assembled products 
namely, (i) current linear state-of-the-art RCA models; (ii) 
machine learning models in a multi-output regression setting; 
and, (iii) deep learning models such as various types of CNNs 
and fully connected networks to highlight performance and the 
ability to fulfil the aforementioned six requirements. 

The rest of the paper is organised as follows; Section II 
formulates the object shape error estimation problem, presents 
the proposed Bayesian 3D CNN architecture, the steps involved 
in architecture optimization and the overall steps required to 
train and deploy the model; Section III presents the industrial 
case study. Finally, conclusions and future work are 
summarized in Section IV. 

II. METHODOLOGY

A. Object Shape Error Estimation in Manufacturing 

 Multi-stage assembly systems can be mathematically 
expressed as a state-space model where different states 
correspond to different stages of the manufacturing system [3]. 
The input is an object (set of parts to be assembled) entering the 
assembly process. Within the process, object shape errors can 
be introduced in any of the stages due to one or multiple 
variations in the process parameters and are further propagated 
through the stages (Fig. 1). Any object � at its design nominal 
shape is characterized by a set of nominal points �� = {���}, 
� = 1, … , ��, where ��� is a vector consisting of the x,y and z 
coordinates of the kth input point and �� represents the total 
number of points on object �. The object here represents a 
single subassembly which is assembled in a single station, 
which can be understood as a collective reference to all parts 
used in this assembly station. In practice, the points correspond 
to mesh nodes in the Computer-Aided Design model of the 
object when considering CAE simulations and to actual points 
within the point cloud when considering the 3D scan of the 
object.  �� = {���} denotes the deviation of each point � after 
the nominal object � has gone through different stages of the 
process, ��� is a vector comprised of deviations of each point 
in x,y and z axes on object �. An assumption made in this paper 
is that the assembly process has a single station which includes 
multiple stages � = 1, … ,4 involving objects/parts: positioning 
(P), clamping (C), fastening (F) and release (R). Stage � = 0 is 
used to represent the incoming part that includes deviations 
from the previous processes such as part fabrication. As the 
object � goes through multiple stages the set of points are 
represented as ��

�  while ��
�  represents the deviations. 

As the main goal of this paper is object shape error estimation, 
hence, the paper extends the problem formulation in object 
detection, which only considers the set of points {���} [15], by 
including deviations for each point {���} as additional features. 
This adds the required discriminative ability in the data hence, 

enabling object shape error estimation. Thus, the object shape 
error for object � after stage � can be represented as: 

��
� = (��

� , ��
� )                                    (1) 

On the other hand, the set of all process parameters across all 
stages are denoted by � where � = {��, … , ��}, ℎ denotes the 
total number of process parameters. The deviation of points at 
each stage �  for object � can be expressed as the sum of all 
deviations accumulated in all stages from stage 0 up to stage �: 

��
� = ∑ ��

��
��� (2)

where ��
� represents the shape error of incoming object �

caused by upstream manufacturing processes. After each stage 
�  the actual points of the object � with error can be written as:

��
� = �� + ��

�                                     (3) 

At the end of the final assembly stage � = 4  the object shape 

error data for the assembly ���� is collected and decomposed 

into the nominal points � and their deviations ���� by using 

alignment techniques[9], where ���� , ���� are now a 
collective reference to the set of all incoming objects that have 
been assembled. The measurement system error � is considered 
to be negligible (� ≈ 0). The object with errors is represented 
as a point cloud of non-ideal parts: 

�� = {(��, ��
� )} = (�, ��)                           (4)  

where ��
�   can be considered as features at each point ��. 

The aim of the Bayesian 3D CNN model training is to learn 
assembly process transfer function �(. ) (equivalent to state 
transition matrix in [6]). The function �(. ) is parametrized by 
weights and biases of a CNN that can accurately estimate the 
process parameters �  given the point cloud data of non-ideal 
�� parts collected from the system: 

� =  �(��)                 (5) 

PCFR: Position-Clamp-Fastening-Release

Fig. 1. Object Shape Error Propagation in Assembly Systems 

The high accuracy of the 3D CNN in estimating all assembly 
process parameters � provides the underlined capability of the 
OSER approach for high root cause (RC) isolability. Essentially 
within assembly systems, RCs are estimated as a subset of the 
estimated process parameters: 

�� ⊆   �                    (6) 
Based on the requirements and the production phase of the 

assembly system the exact definition of an RC may differ but 
the key requirement to conduct RCA under any definition is to 
accurately estimate all process parameters �. Hence the 
proposed OSER approach aims to do the aforementioned by 
estimating �(. ) as specified in (5). 

B. 3D Object Shape Error Voxelization 

In the presented OSER approach the simulation output 
represented as mesh or point cloud data {(��, ��

� )} (4) is 

Objects point cloud data
�� = ��

� + �

Process parameters : �

M��
� , ��

� Assembly Station
with PCFR stages 

3D 
scanner

Object Shape Error:
�� = {(��, ��

� )}

��
� , ��

�
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transformed to voxel grids ���,�,�� with discrete voxel 

coordinates (u,v,w) in the following way: for all points �� =

(�� , �� , ��) that fall within a voxel grid ���,�,�� the maximum 

value of �� = (��� , ��� , �̃�) characterizes the features of the 

corresponding voxel grid and is represented as ���,�,�,��. The 

voxelization techniques used in object detection [15] is applied 
to construct the initial voxel structure of the object and for each 
unique object the voxel features are characterized by the shape 
error ��. The key difference is that in object detection, voxel 
grids are characterized by either binary voxels or voxels 
containing RGB values for each point instead of real values of 
shape error �� as in the OSER approach. Although binary 
voxels, traditionally used in Object Detection retain the spatial 
structure, the granularity of voxelization required to 
discriminate between minor differences in the shape error will 
make the problem computationally infeasible and hence, limit 
performance. In the proposed approach, the nominal object is 
voxelized and each voxel is characterized by real vales of the 
shape error ��. This is critical in representing the geometric 
variations with the required granularity for effective RCA. This 
efficiently retains all information about the spatial structure of 
the object as well as the components of object shape errors. 
Given the alignment ensures a fixed orientation, there is no need 
for data augmentation to achieve rotation invariance. 

C.Uncertainty Estimation 

Given the uncertainties of the system and the availability of 
only a limited dataset, a deterministic estimate of function �(. )
as shown in (5) is not feasible. Hence, by leveraging Bayesian 
inference, a prior distribution can be allocated over the space of 
possible functions �(�), which represents a prior belief of the 
possible functions �(. ). Given a dataset, a likelihood �(�|�, ��)
is defined to model the function from which the observation is 
generated; and, hence, given a dataset (��, �) the posterior 
distribution over the functions �(�|��, �) can be inferred. The 
function is characterized by model parameters � represented by 
�� (weights and biases for neural networks) and the posterior 
over the function can be inferred by estimating the posterior 
over the parameters �. In Bayesian Neural networks, this is 
achieved through Bayes–by–Backprop  [21] and Flipout [22]. 
Given a dataset the posterior can be written as: 

�(�|��, �) = �(�|��, � ) �(�) �(�|��)⁄              (7) 

For complex models such as deep neural networks, it is not 
analytically possible to infer the true posterior for all model 
parameters �(�|��, �) hence, an approximating variational 
distribution ��(�) parametrized by �, such as normal 
distribution, is used to approximate the posterior. This approach 
is known as variational inference [23]. The approximating 
distribution should be as close as possible to the true posterior 
which is achieved by minimizing the Kullback-Leibler (KL) 
divergence with respect to �: 

��(��(�)||�(�|��, �)) = ∫ ��(�) ��� ��(�) �(�|��, �)⁄ �� (8) 

Using the estimated variational distribution �∗
�

(�) the 

process parameter distribution quantifying the uncertainties for 

a new data point ��∗ can be obtained using: 

�(�∗|��∗, ��, �) ≈ ∫ �(�∗|��, �)�(�|��, �)�� =: �∗
�

(�∗|��∗) (9)

D.Bayesian 3D CNN Model Architecture 

Building on the work done on voxel-based approaches for 3D 
object detection such as VoxNet[15], the research proposes a 
Bayesian 3D CNN architecture to enable object shape error 
estimation. The 3D convolutions aggregate features from the 
input which are then utilized by the fully connected layers and 
mapped to process parameters. The model consists of three 3D 
convolutional Flipout layers, a 3D max-pooling layer followed 
by three fully connected Flipout layers, the final layer estimates 
parameters of the predictive distribution for all process 
parameters. The convolution can be represented as: 

���
���

= ���� ���� +

∑ ∑ ∑ ∑ ���
���

�(���)�
(���)(���)(���)�����

���
�����
���

�����
���� � (10) 

where ���
���

 represents the layer output value at position (�, �, �) 
in the ath layer and bth feature map. ReLU is the Rectified Linear 
Unit activation function[24]. ���  represents the bias; m 
represents no. of filters from the previous layer; (��, �� , ��)
and (��, �� , ��) represent the kernel dimensions and stride 
lengths in the three directions respectively; ���

���
 represents the 

weights of the connections. The convolution operation as in 
(10) is done consecutively for the three convolutional layers. In 
3D max-pooling operation, the resolution of the feature map is 
reduced by taking the maximum value of the local 
neighbourhood of the layer outputs. Given the Bayesian 
framework, each parameter of the Bayesian 3D CNN model 
follows a distribution. In the case of neural networks, it is not 
feasible to assign informative priors hence, non-informative 
prior distributions are placed over the model parameters.  Each 
parameter is approximated using variational inference approach 
assuming that the posterior follows a normal distribution. The 
overall model has 1,997,286 trainable parameters. Output nodes 
have linear activation units. Fig. 2 shows the proposed Bayesian 
3D CNN model architecture with annotated hyper-parameters.  

Fig. 2. Bayesian 3D CNN Model Architecture of the OSER method 

E. Architecture Selection and Optimization 

Hyper-parameters optimization for Bayesian 3D CNNs is 
done to maximize performance and eliminate architectures that 
are more likely to overfit. As this is computationally intensive 
hence, in order to perform optimization in a computationally 
feasible manner the following steps were involved: 

Step 1 – Set Baseline: VoxNet [14] which is a 3D CNN 
architecture used for object detection consisting of two 3D 
convolutional layers, one max-pooling layer and two fully 
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connected is set as the baseline. A dataset consisting of 1500 
samples is generated to conduct k-fold cross-validation (k=6). 
The hyper-parameters are split into two categories; Category 
one consists of the number of convolutional layers �� =
{2,3,4} and number of dense layers �� = {1,2,3}; Category two 
consisted of the number of filters in each 3D convolutional 
layer, filter size for each 3D convolutional layer and number of 
hidden units in each dense layer. 

Step 2 – Grid Search for Category one Hyper-parameters: In 
this step, grid search for category one hyper-parameters are 
conducted and each selection is evaluated using k-fold cross-
validation (Fig. 3). For computational feasibility, category two 
hyper-parameters are kept constant and equal to the VoxNet 
architecture values. �� = 3 and �� = 3 were obtained as the 
optimal hyper-parameters having the minimum cross-
validation Mean Absolute Error (MAE) average of 0.08 mm. 

Step 3 – Hyperband for Category Two Hyper-parameters: 
The optimal values for category one hyper-parameters are fixed 
and further Hyperband [25] is leveraged to obtain the optimal 
values for category two hyper-parameters given its ability to 
speed up the random search process through adaptive resource 
allocation and early stopping. 

Step 4 – Deterministic to Bayesian Model: The final step 
includes replacing the deterministic layer with Bayesian Flipout 
layers and then training using Bayes-By-Backprop. Various 
learning rates and prior distributions for the model weights were 
tested. Standard normal distribution provided the best balance 
between weight initialization and weight exploration, which 
was inferred by conducting an uncertainty vs. error calibration 
study. The training hyper-parameters that provided the best 
uncertainty calibration and ensured that the model performance 
was greater than or equal to the deterministic counterpart were 
selected as the final Bayesian 3D CNN architecture training 
hyper-parameters. The key changes from the baseline 
architecture of Object Detection that enable fulfilment of the 
aforementioned six requirements are summarized in Table 1. 

Fig. 3. Grid search for category one hyper-parameters 

F. Model Training and Deployment 

Training of the model is done in a closed-loop framework 
using data generated by VRM. The key motivation behind using 
a closed-loop framework as opposed to an open-loop 
framework is to minimize the bottle-neck computation, i.e., 
multi-physics simulation using the VRM model. Although this 
increases the number of training iterations, nonetheless, the 

TABLE I. OBJECT DETECTION & OSER COMPARISON  

Object Detection 
(VoxNet) 

Object Shape Error 
Detection (OSER) 

Rationale 

Single-channel 
binary occupancy 

input voxel of 
dimension 

32 × 32 × 32

Multi-channel real-
valued object shape error 
input voxel of dimension

64 × 64 × 64 × 3

High data dimensionality of 
shape error 

(�, ��) (Requirement (i)) 

Two 3D 
Convolutional 

layers, one dense 
layer and categorical 

output layer 

Three 3D Convolutional 
layers, three dense layers 

and real-valued output 
layer 

Increased model capabilities 
to handle non-linearity, 

collinearity and high fault 
multiplicity 

(Requirement (ii),(iii),(iv)) 

Deterministic Layer Bayesian Flipout Layer 

Uncertainty quantification 
for corrective actions and 
closed-loop sampling for 

faster convergence 
(Requirement (v),(vi)) 

overall time of VRM simulation and training is significantly 
reduced as fewer samples need to be generated. The key steps 
of the proposed framework are summarized below (Fig. 4):  

Step 1 – Sampling: Process parameters � are sampled from 
the allowable ranges. Latin Hypercube Sampling [26] is used to 
generate initial process parameter sample values given it 
distributes samples optimally across the ℎ −dimensional 
process parameter space by stratifying the possible ranges. The 
consecutive sets of samples are generated using Monte Carlo 
sampling based on the uncertainty �(��) of the model. 

Step 2 – VRM Simulation: The samples are used as input to 
the VRM to simulate the assembly process and generate the 
output mesh from which the point cloud and deviations of each 
point are extracted after the desired stage � of the assembly 
system as in (4)  �� = {(��, ��

� )}. 
Step 3 – Model Training: The point cloud and deviation data 

of object shape errors along with the respective process 
parameters (�� = ({(��, ��

� )}, �) are used for model training. 

Note that �� is voxelized ���,�,�,�� before it is used for training. 

Bayes–by–Backprop and Flipout are applied for model training. 
The loss function optimized while training comprises of the 
sum of KL divergence for each layer (9) and the negative log-
likelihood (11) of the predictive distribution.  

− ln � = 1 2⁄ [ln(|�|) + (� − �)����(� − �) + ℎ ln(2�)] (11) 

The KL divergence term quantifies the divergence between the 
standard normal prior and the learnt posterior and hence, 
prevents overfitting by penalizing weights for diverging from 
the prior. Group normalization [27] with four groups is used 
after each convolutional layer. This also prevents overfitting 
and accounts for small minibatch size due to GPU memory size 
constraints and aids in stabling the training process. Weights of 
the network are initialized using normal initializer [28]. The 
Adam method for stochastic optimization was used to optimize 
the loss function while training [29]. The initial learning rate is 
fine-tuned to � = 0.0005 and monotonic KL annealing was 
leveraged to ensure the model initially learns the object shape 
error and process parameter relations before applying the KL 
penalty for uncertainty quantification. The learning rate fine-
tuning, monotonic KL annealing and ReLU activations prevent 
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gradient vanishing.  The predictive distribution is modelled as 
a multivariate normal �� with ℎ components (same number of 
components as the number of process parameters ℎ), 
� ~ ��(�, �) where each component corresponds to a process 
parameter hence the mean across all components of the multi-
variate distribution corresponds to the set of process parameters 
�. The distribution is assumed to have a diagonal covariance 
matrix �. The scale parameters in the diagonal are assumed to 
be fixed since the noise has been assumed to be negligible.  

After each iteration of training the model is evaluated on the 
validation set. For evaluation, Monte Carlo (MC) sampling 
from the model is done and the sample means �� and standard 
deviations �(��) are estimated for each process parameter. 
�(��) represents the epistemic uncertainty while the fixed scale 
parameters of the predictive distribution represent the known 
aleatoric uncertainty [17]. Given the assumption of negligible 
measurement noise, aleatoric uncertainty is considered to be 
negligible and hence, the overall uncertainty in the prediction 
can be assumed to be equal to epistemic uncertainty  �(��). This 
uncertainty is used for sampling in the next iteration. 

Mean Absolute Error (MAE) between the model estimates 
�� = �� and actual value � across all process parameters ℎ (12) 
is used as the metric for model performance evaluation given 
the ease of interpretation and given that the model outputs are 
continuous and real-valued. Training is stopped when MAE is 
below the required threshold �. The threshold value for this 
metric is determined based on the quality requirements for a 
specific product as required by design tolerances and the 
accuracy of the measurement system. The model is trained 
within the measurement system accuracy. For example, 
automotive body assembly process tolerances are within [-
1mm,1mm], and the 3D optical scanner used has a repeatability 
of 0.05 mm and accuracy within 0.15 mm.  

��� = ∑ |� − ��| ℎ⁄�                (12) 

Step 4 – Model Deployment: After training the model can be 
deployed within an actual system. The data collected from the 
3D scanner �� is aligned to obtain point cloud and deviations 

�� = {��, ��
� } and then, voxelized ��,�,�,� before it can be 

given to the trained model for conducting RCA inference. 
Inferencing estimates the process parameters for a given �� (5) 
using MC sampling from the trained model. Using these 
samples, process parameters (distribution mean) �� and their 
uncertainty (distribution standard deviation) �(��) can be 
estimated. The sample mean �� is considered as the model 

Fig. 4. Model Training and Deployment Framework 

estimate ��, while �(��) quantifies the uncertainty. Further, the 
RCs can be inferred as a subset of �� (6). The work has been 
implemented using Python 3.7 and TensorFlow - GPU 2.0 [30] 
and TensorFlow-Probability 0.8. A python library, Bayesian 
Deep Learning for Manufacturing [31] has been developed to 
validate and replicate the results of the methodology. For this 
paper, both, the data generation and evaluation of the OSER 
methodology have been done using VRM. Two Nvidia Tesla 
V100 32 GB GPUs are used for model training and deployment. 

III.CASE STUDY 

A. Assembly Setup 

For verification and validation of the proposed OSER 
approach, an automotive assembly of two components namely, 
the door inner and hinge reinforcement are selected. The 
assembly setup and parameters are shown in Fig. 5. The 
assembly process is controlled by the six (ℎ = 6) parametrized 
process parameters �� , ��, … , �� (depicted using yellow 
symbols in Fig. 4). Assembly parameters such as pin-hole, pin-
slot and NC blocks for the door inner are considered constant 
(depicted using green symbols in Fig. 5) and are not 
parameterized. Data is collected after stage � = 4. The point 
cloud is characterized by � = 10841 points, which are pre-
processed and voxelized to (�, �, �) = (64,64,64) voxel grids. 
The deviation features � include deviations in all directions for 
all points(��� , ��� , �̃�). The assembly consists of four stages (Fig. 
6): Stage 1 involves positioning (i) the door inner on the pin-
hole, pin-slot and the three NC blocks (not parametrized; 
marked in green in Fig.1), (ii) hinge reinforcement using the 
pin-slot (��), pin-hole (��, ��); Stage 2 comprises of clamping 
two parts together using three NC-Blocks with clamps 
(��, �� and ��); Stage 3 involves fastening/joining of the two 
parts using self-piercing riveting (SPR); and, finally, Stage 4 
involves releasing the clamps (��, �� and ��) after the fastening 
is completed. The training range for all process parameters is 
[- 1 mm, 1 mm] while the validation range is [-2 mm, 2 mm]. 

Point cloud and deviation data {(��, ��
�)} are collected after 

release, i.e., Stage 4 (Fig. 5). The data is voxelized ����,��,��,��

and used as model input and the process parameters �� , ��, …,
�� are used as model outputs.  

Fig. 5. Assembly Process Parameters 

Fig. 6. PCFR Stages of the Assembly Process  
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After starting with 200 initial samples for model training, 200 
samples are adaptively added during each iteration of the 
closed-loop training based on the uncertainty estimates and the 
model is trained on the combined dataset including all previous 
samplings to ensure that there is no catastrophic forgetting 
(using 200 samples provided an optimal tradeoff between VRM 
simulation time and model training time). These samples and 
outputs are used for training the Bayesian 3D CNN model. The 
diagonal scale parameters for all process parameters in the 
covariance matrix are fixed at 0.001. A validation set of 300 
samples is generated within the validation range, and after each 
iteration, the trained model is evaluated on the validation set. 
During evaluation for each of 300 samples, 1000 MC samples 
are drawn from the trained model. The sample means are 
considered as the estimate for the process parameters while the 
sample standard deviations quantify the uncertainty for each 
process parameter for the given sample. RCs can be inferred 
from the process parameter estimates. The closed-loop training 
is stopped when average MAE across all process parameters for 
the validation set is below the threshold which is selected to be 
0.05 mm for automotive assembly applications as the impact of 
variations less than 0.05 mm is not detectable by the 3D 
scanner. After this, the model is ready for deployment with 
measurement data collected from 3D optical scanners followed 
by alignment and voxelization. For each measurement, MC 
samples from the trained Bayesian 3D CNN model can be 
drawn to estimate process parameter mean and standard 
deviations (uncertainty). Measurement data collection is done 
using WLS400A mounted on an ABB robot.  

In summary, the industrial assembly process selected for case 
study consists of (i) high dimensionality point cloud (10841 
points); (ii) non-linearity as induced by fixturing (N-2-1, where 
N=6), two compliant parts and part-to-part interactions (door 
inner to hinge reinforcement); (iii) collinearity induced by 
fixturing as locators: ��, �� , ��� �� are within 5 degrees of 
collinearity (-3 to 2-degree deviation from axis y); and, (iv) high 
fault multiplicity as we take into consideration 6-sigma defects 
at the level of variation within 3D scanner accuracy (<0.05 mm) 
that significantly increases fault multiplicity from zero to 6 
process parameters manifesting errors (100% fault 
multiplicity). The door assembly requirements are: (1) Product:
Design tolerances of door assembly: <-1.0, 1.0> [mm], (2) 
Process: Fixturing calibration and commissioning is achieved 
within <-0.1; 0.1> [mm], and (3) Shape error detection: Using 
the 3D optical scanner for measurement.  

Key Performance Indicators (KPIs) used for assessment of 
the results are as follows: (i) Mean Absolute Error (MAE) <0.05 
mm and, (ii) R�>0.95 for the model to have the capability to 
explain more than 95% variance in the process parameters 
under the assembly system Requirements (ii)-(iv). 

B. Results  

The KPIs of model performance are summarized for all 
��, … , �� in Fig 7. The model convergence is shown in Fig. 8. 
The model converges with average MAE across all process 
parameters equal to 0.05 (below the required threshold) and 
average �� equal to 0.98 after 10 iterations of closed-loop 

training, which included a total of 2000 samples being 
generated adaptively. For validation purposes, this study trained 
both Bayesian 3D CNN and a deterministic version of the 
model, i.e., 3D CNN with the same architecture as in Fig. 2. 

Fig. 7. MAE and �� across all process parameters 

Fig. 8. Bayesian 3D CNN OSER Convergence 

C. Benchmarking and Discussion  

The benchmarking analysis is conducted by using the six 
requirements as listed in Section I. The case study and results 
along with analysis of collinearity, multiplicity and uncertainty 
are used to demonstrate the capabilities of the proposed 
approach to fulfil the aforementioned requirements. 

The benchmarking analysis of the proposed 3D OSER 
approach is discussed on two levels: 

1. OSER vs. currently used approaches at production phase 
when point cloud data is available – The benchmarking is 
conducted for two scenarios: (a) RCA; and, (b) RCA with 
uncertainty quantification;  
RCA: as discussed in Section I, the state-of-the-art models used 
for assembly process RCA such as [32] [8] are linear and can 
be classified as regularized linear regression approaches (Table 
II). Hence, their upper limit performance can be estimated by 
using regularized linear regression on all point deviations d
within the point cloud.  They also use a limited number of 
sampled points from the point cloud on a single part (less than 
100 out of >10,000) which additionally limit their performance 
for assembly processes.  The OSER methodology validation 
against the six requirements as presented in Section I is as 
follows. Requirement (i) is fulfilled by the proposed 
voxelization approach which ensures that irrespective of the 
dimensionality of the point cloud, it is transformed into a sparse 
tensor of dimensions (64,64,64,3) which preserves 
information in terms of the object spatial structure and point 
deviation features. This also enables the application of the 
OSER based models that require a regular data structure as 
input. Secondly, the model performance of the state-of-the-art 
regularized linear regression approaches is at ��� =
 0.41 mm and �� = 0.76 (see Table II), which is unsatisfactory 
as compared to the required MAE<0.05, �� >0.95. This is 
because the regularized linear regression model can explain 
only the linear variance in the system. By comparison, the 
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proposed OSER model demonstrates good performance at 
��� =  0.05, �� = 0.98, hence fulfilling Requirements (ii), 
(iii) and (iv). Fig. 9 compares the performance of regularized 
linear regression (i.e. upper limit for state-of-the-art 
approaches) with the proposed OSER approach under different 
levels of fault multiplicity and collinearity. For example, in 
scenarios 1, 2 and 3 (fault multiplicity up to 50%) both 
approaches have similar performance.  However, in scenarios 
4, 5 and 6  as the fault multiplicity increases to 4, 5, and 6 
parameters being simultaneously at fault, i.e., 100% of 
parameters, and with induced by design collinear relation 
between process parameters and input, the performance of 
linear model decreases while OSER approach exhibits 
performance above the required threshold (�� >0.95). 

Fig. 9. Performance under different levels of fault collinearity and multiplicity 
(from single fault ��; and two-fault ��, ��; … up to all parameters being 

simultaneously at fault ��, ��, … , ��) 

The benchmarking also comprehensively assesses the OSER 
against existing deep learning and machine learning techniques 
[33] in ways that are not currently used for RCA of assembly 
processes (see Table II). This paper implemented these 
techniques and applied them for the aforementioned case study.  
CNN based deep learning methods where selected as they retain 
spatial information while learning which is essential for object 
shape error estimation. Each model is compared in its ability to 

fulfil the aforementioned six requirements. Table II shows the 
implemented benchmark approaches and the results.  The multi-
view 2D CNN (MV-CNNs) [34] approach considers six 2D 
projections of the object shape error. Gridding is performed on 
each projection. Each projection has an input dimension of 
64 × 64 × 3. Each of the six projections is given as input to the 
MV- CNN consisting of six heads. These are pooled before the 
fully connected layers. Depth based CNNs [35] considers a 
single projection along the y-axis with dimension 64 × 64 × 4. 
The first three channels consist of the shape error (�) while the 
fourth channel consists of the y-coordinate of the nominal 
point-cloud ��. Both 2D CNNs based approaches have same 
hyperparameters as the OSER (but only considering 2D 
Convolutions and 2D Max-pooling). The deep dense neural 
network is given as input the flattened vector of shape error � =
������� {(��� , ��� , �̃�)}. It consists of two hidden layers (1024,5 
12 nodes respectively) with ReLU activations and a linear 
output layer with 6 nodes. All machine learning models take as 
input a transformed input of � = ������� {(��� , ��� , �̃�)}. 
Principal component Analysis (PCA) is used for the 
transformation and reduced features explaining 99% of the 
variance are retained.    Comparison for Requirement (i) is done 
on the basis of transformation used for input. Shape error 
voxelization retains information pertaining to the 3D structure 
and shape error features, while projection retains only 2D 
spatial structure. Flattening eliminates all information related to 
the spatial structure while PCA also eliminates information 
explaining 1% of the variance. Comparison for Requirements 
(ii), (iii) and (iv) are done on performance attributes namely, 
accuracy (MAE) and goodness-of-fit (��). Comparison for 
Requirement (v) is done on the ability to quantify and segregate 
uncertainties. Lastly, comparison for requirement (vi) is done 
on overall training time which is inclusive of the CAE 
simulation time and model training time. Although the 

TABLE II. BENCHMARKING RESULTS

Requirement (i) Requirement (ii),(iii),(iv) Requirement (v) Requirement (vi) 

Models 

Accuracy 
(MAE) 

Goodness-of-fit 
(��)

Sampling 

CAE 
Simulatio

n Time 
(minutes)

Model 
Training 

Time 
(minutes)

Total 
Training 

Time 
(minutes) Mean SD Mean SD 

Proposed 

OSER 
(Bayesian 3D CNN) 

3D Shape Error 
Voxelization 0.05 0.03 0.98 0.01 

Aleatoric & 
Epistemic 

Uncertainty 

Epistemic 
uncertainty 

sampling 
(2000 samples)

4400 424 4824 

OSER 
(3D CNN) 

3D Shape Error 
Voxelization 

0.05 0.01 0.98 0.009 No  
Random Sampling 

(4000 samples) 
8800 268 9068 

Deep Learning

Multi-View 2D CNNs 
(MV-CNNs) 

6 face projection 
and 2D gridding 

0.08 0.02 0.94 0.01 No 
Random Sampling 

(4000 samples) 
8800 321 9121 

Depth Based 2D CNNs
1 face projection 
and 2D gridding 

0.12 0.04 0.93 0.02 No 
Random Sampling 

(3000 samples) 
6600 248 6848 

Deep Dense Neural 
Networks 

Flattening 0.28 0.09 0.91 0.07 No 
Random Sampling 

(5000 samples) 
11000 358 11358 

Machine 
Learning 

Gradient Boosted Trees PCA 0.26 0.08 0.93 0.08 No 
Random Sampling 

(3000 samples) 
6600 120 6720 

Random Forests PCA 0.29 0.09 0.92 0.08 No 
Random Sampling 

(3000 samples) 
6600 136 6736 

Support Vector 
Regression 

PCA 0.38 0.09 0.85 0.1 No 
Random Sampling 

(2500 samples) 
5500 180 5680 

Currently used 
linear 

approaches 

Regularized Linear 
Regression 

PCA 0.41 0.01 0.76 0.01 No 
Random Sampling 

(1600 samples) 
3300 10 3310 
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proposed model has higher model training time, the overall 
training time is significantly lesser due to the ability to leverage 
the epistemic uncertainty to generate informative samples 
leading to faster convergence with only ~2000 samples. All 
other models are trained using random sampling until 
convergence. Fig. 10 summarizes the convergence of the entire 
set of benchmarking models. The hyper-parameters of the 
machine learning models were optimized using grid search. For 
statistical quantification of accuracy and goodness-of-fit, 20 
runs of training and testing are conducted using a set of 4000 
randomly sampled data points for training and 300 for 
validation within the validation range. The mean and standard 
deviation (SD) for each model-averaged across six process 
parameters have been reported. The model performance of the 
proposed OSER model is significantly better in terms of 
accuracy and goodness-of-fit. Result from ANOVA followed 
by post-hoc Tukey-HSD test at 95% significance level 
considering two sources of variations (model type and process 
parameter) showed the differences to be statistically significant. 
This comes at the expense of increased model complexity. 

Fig. 10. Convergence comparison for all benchmarking models

RCA with Uncertainty Quantification: As discussed in 
Section I the identified RCA frequently leads to costly 
corrective actions conducted in the manufacturing environment,  
therefore, it is crucial, especially for 6-sigma faults to have 
decision-driven RCA directed toward informing choices by 
uncertainty quantification of solving problems. The OSER 
methodology provides standard deviation of the predicted 
process parameter distributions �(��) that quantifies this 
uncertainty hence, fulfilling requirement (v). Although the 
performance of the OSER with 3D CNN and OSER with 
Bayesian 3D CNN models are similar, the latter can quantify 
and segregate the aleatoric and epistemic uncertainty while 
estimating the process parameters. To demonstrate the 
capability of the model in quantifying the uncertainty on unseen 
samples, evaluation is done on 500 samples within the training 
range [-1 mm, 1 mm] and 500 samples outside of the training 
range [-2 mm, 2 mm]. The standard deviation across all 
observations has been averaged and compared for each process 
parameter ��, … , �� . Results are shown in Fig. 11. 
Additionally, the epistemic uncertainty estimates enable 
closed-loop training reduce overall training time. 

2. OSER vs. approaches at design phase when NO point cloud 
data is available – In manufacturing environments, the 
availability of a comprehensive dataset inclusive of all fault 
scenarios is not feasible, hence augmenting the dataset with 
high-fidelity multi-physics simulation enables training and 
deployment of deep learning approaches during the design

Fig. 11. Process Parameters Distribution Standard Deviations 

phase of a new product/production system introduction. Given 
the proposed OSER approach transforms the simulation mesh 
nodes output and scanned point cloud output to the same 
voxelized shape error that is compatible with 3D CNN, it 
enables this integration hence fulfilling Requirement (vi).  This 
provides the capability for modelling and simulation of the 
assembly process and conducting system diagnosability and 
resilience analysis. Currently, no approaches providing this 
capability for object shaper error RCA at the design phase. 

IV. CONCLUSIONS

This paper presented an Object Shape Error Response 
(OSER) approach which is relevant to manufacturing industries 
where dimensional and geometric variations can be quantified 
as object shape errors. This is also relevant to areas such as 
robotics, computer-aided detection, stamping, machining and 
additive manufacturing where RCA of dimensional variations 
translates to estimating object shape error patterns and relating 
them to process parameters. Transfer learning can be leveraged 
for application in these domains with exponentially lesser 
training samples [16], a focus for future work. The proposed 
approach leverages a Bayesian 3D CNN model trained within a 
closed-loop framework using a multi-physics simulation 
(VRM) model, to estimate shape errors and relate them to 
process parameters while quantifying uncertainty. This can then 
be deployed on real data collected from 3D surface scanners 
and thereby, enable more effective and efficient decision 
making for control and correction of manufacturing systems. 
The approach is benchmarked against state-of-the-art assembly 
RCA models and other machine learning models to highlight, 
statistically significantly better model performance while 
fulfilling the manufacturing system design requirements. 
Leveraging such automated RCA models ensures early 
estimation and elimination of process variations before they 
become defects which can improve the quality and productivity 
of the system by reducing scrap and machine downtime. This 
also eliminates the need for trial and error approaches for root 
causes analysis, which is often ineffective and inefficient. 
Future work aims to explore scaling up the work to multi-
station assembly systems. Various encoder-decoder based CNN 
architectures such as U-Net [36] and Pointnet [14] that enable 
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process parameter estimation for a heterogeneous set of process 
parameters, i.e., continuous and categorical as well as enable 
object shape error estimation in-between stages/stations be 
explored to comprehensively perform RCA on multi-station 
systems. Approaches for uncertainty guided continual learning 
will also be explored that enable transfer learning to different 
manufacturing systems while simultaneously retaining 
knowledge of previous assembly systems. The future work also 
aims to develop a life-long continual learning approach 
leveraging Bayesian 3D CNNs which is crucial for 
continuously changing manufacturing environments. 
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