

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/145493

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/145493
mailto:wrap@warwick.ac.uk

THE UNKNOWABILITY OF AUTONOMOUS TOOLS AND THE LIMINAL EXPERIENCE OF THEIR
USE

Zhewei Zhang (University of Warwick)
Aron Lindberg (Stevens Institute of Technology)

Kalle Lyytinen (Case Western Reserve University)
Youngjin Yoo (Case Western Reserve University)

Forthcoming in Information Systems Reseach 2021

 1

 THE UNKNOWABILITY OF AUTONOMOUS TOOLS AND THE
LIMINAL EXPERIENCE OF THEIR USE

In the extant theoretical discourse on socio-technical systems, the relationships between inputs and outputs

of technologies are assumed to be knowable to human agents, occasionally ex ante, but always ex post.

Recently a new breed of autonomous tools has emerged, which can independently learn and execute novel

actions. The input-output-relationships of these tools, however, are unknowable to human agents, both ex

ante and ex post. This calls for analysis of how humans experience the enactment of socio-material agency

while interacting with autonomous tools. To this end, we conduct an exploratory, theory-building,

comparative case study at one of the world’s largest semiconductor manufacturers. We investigate how

chip designers interact with two families of design technologies: one following a traditional designer-centric

approach where the designer knows what outputs particular inputs to the tools will generate, and another

relying on autonomous tools which continually surprise the user. Our inquiry reveals significant differences

in designers’ experiences of using different tools. When using autonomous tools, designers’ experience of

enacting socio-material agency becomes liminal; a state of continuous emergence, where interactions with

the tools are marked by ambiguity, and the design is moved forward along multiple design trajectories in

accordance with a multifarious temporality. These insights require us to expand upon several dominant

views on the enactment of socio-material agency and necessitate novel thinking on the role and impact of

autonomous tools in future work systems as well as on how design and innovation proceeds under such

conditions.

Keywords: Autonomous Tools, Socio-Material Agency, Liminality, Design, Digital Innovation

 2

THE UNKNOWABILITY OF AUTONOMOUS TOOLS AND THE
LIMINAL EXPERIENCE OF THEIR USE

Scout, a chip designer working at a major semiconductor design and manufacturing company, is

tuning a tool for building the layout of a chip subsection. She attempts to generate three separate chip

designs based on three sets of parameters which she has specified, hoping that the tool will produce several

new promising designs by Monday morning. As she starts packing up for the weekend, she thinks to herself:

“I hope some of these come out alright, but you never know.” On Monday morning, she logs into her

workstation and downloads the finished designs from her design repository. One set of parameters failed

to converge, thus not producing any results, while another set produced a subpar layout with regards to

the speed and electrical interference requirements for her subsection. The third one, however, appeared to

be promising. As Scout surveyed the intricate design produced by her tools, she thought to herself: “These

designs are truly remarkable, but I honestly can’t make any sense of them—they seem somewhat random

to me!” She then began the arduous labor of specifying a new round of runs by modifying the parameters

that led to the third design.

This vignette illustrates how a new breed of digital technologies now support many design and

engineering tasks. These technologies operate autonomously while carrying out complete design tasks; they

assume high-level input from designers who, in turn, focus on identifying salient design goals and

constraints expressed in a set of design parameters (Seidel et al. 2018a; Seidel et al. 2018b). These

technologies rely on computation-heavy, self-learning algorithms, which draw upon as well as produce

exceptionally large volumes of data. Their use has been made possible by cost-effective access to powerful,

distributed computing resources connected through cloud-based infrastructures (Tilson et al. 2010). These

technologies, as the vignette shows, are now capable of performing actions that are unanticipated by their

users, and even by the tools’ designers. Simply put, the technologies exhibit a new kind of material agency1,

prompting us to refer to such technologies as autonomous tools.

1 We use the terms “material agency,” “socio-material agency,” and “socio-technical systems” as these are established

terms in the literature. In this study, however, the term “material” primarily refers to the “technical” aspects of tools,
i.e., specific forms of material agency possessed by technologies that rely on computation. We chose to retain these
accepted terms to not distract the reader from our core argument.

 3

The emergence of autonomous tools challenges many pivotal assumptions that underpin the studies

of the mutual constitution of agency by human agents and technologies acting in a concerted, systemic

fashion agency which we, in short, call socio-material agency. Past studies have used a multitude of

perspectives to account for and characterize the nature of such agency. These include distributed cognition

(Hutchins 1995), critical realism (Leonardi 2011), actor-network theory (Latour 2005), and agential realism

(Barad 2003). The inquiries that draw upon these positions have galvanized increasingly sophisticated

debates concerning the degree to which the agency of technologies extends, connects with, or limits human

agency (Leonardi 2011), and explores how socio-material agency emerges from the ways in which human

agents understand and interact with the technology and its features (Beane and Orlikowski 2015).

The received views of socio-material agency characterize technologies as having relationships

between their inputs (e.g., instructions from a designer) and their outputs (e.g., artifacts generated by a

design tool) that may occasionally be unknowable ex ante, but will become knowable ex post, whether

during or after usage. These technologies are assumed to function in ways that the agents using them

principally understand and can make sense of based on their use experience. Per these perspectives, human

agents’ knowledgeability of the input-output relationships of technologies create the necessary epistemic

foundation for an agent’s ability to enact the tools and assimilate the use experience. Such knowledgeability

enables human agents to use technologies in ways that will extend their agency. However, the emergence

of autonomous tools shatters most of these assumptions because the input-output relationships of

autonomous tools remains fundamentally unknowable to human agents, both ex ante and ex post (Pasquale

2015). This is not only due to the ambivalent ontology of the digital tools (Kallinikos et al. 2013) or the

opacity (Burrell 2016; Turkle 1997) and “black-boxed performance” (Faraj et al. 2018) of complex

algorithms and their learning capabilities (MacKenzie 2018; MacKenzie 2019), but also due to the

dynamism of the computing environments within which these technologies operate. This fundamental shift

in the epistemic foundations of human tool deployment invites us to rethink how the enactment of socio-

material agency is experienced. Hence, we ask the following research question:

How do autonomous tools reshape the human experience of enacting socio-material agency?

 4

To answer this question, we examine the use of two families of design automation (DA)

technologies at ChipCo—a pseudonym for a leading global semiconductor manufacturer. The company has

successfully designed and manufactured integrated computer chips for over 40 years and has been involved

in DA efforts for the last 30 years. As a result, its design processes are supported by a wide range of

sophisticated design technologies that represent, implement, track, validate, and record chip designers’

decisions. Overall, the company has digitalized its design tasks in ways that put designers firmly in control

of the design process and its outcomes. During our field study, ChipCo started to change its design approach

and automation goals by introducing autonomous DA technologies to generate increasing portions of the

physical layout of an integrated circuit (IC) chip2. During the initial stages of our field study, ChipCo used

these technologies only for a few select sections of the chip, while continuing to use traditional DA

technologies to design the rest of the chip. The parallel use of two distinct families of DA technologies

offered a unique opportunity to conduct a comparative study on the effects of the two families of DA

technologies. This allowed us to identify significant differences in the enactments of socio-material agency

and related experiences under the two different technological conditions.

THEORY REVIEW

The concept of agency—an agent’s capacity to act within, respond to, and shape its environment

(Emirbayer and Mische 1998)—is fundamental to most streams of social theory. Not surprisingly, most

debates around the origins and nature of agency focus on human agency and deal with issues such as free

will, intentionality, rationality, motivation, or the relationships between agency and structure. An excellent

review of how human agency has been treated in several streams of sociology, anthropology, and economics

is Emirbayer and Mische (1998). In their treatise, human agency manifests an interplay of three temporal

dimensions: (a) iterative—a human agent’s ability to recall, select, and apply her past experience; (b)

projective—a human agent’s ability to imagine the possible trajectories of her future actions; and (c)

2 The terms “integrated circuit chip,” “semiconductor chip,” “IC chip,” and simply “chip,” are used interchangeably,

as is customary in industry, see, e.g., https://en.wikipedia.org/wiki/Integrated_circuit

 5

practical-evaluative—a human agent’s ability to make practical and normative judgments with regards to

alternative trajectories of action in the present. In this view, the experience of agency consists of how these

temporal dimensions are enacted, emphasized, and interrelated in practice. Human agents can enact

temporal structures that tie together the three temporal dimensions of agency in multiple ways. For example,

agents can emphasize either the past or future dimension in their action, either through reminiscing about

the past or by being strongly projective with regard to the future (Shen et al. 2015). Similarly, agents can

experience a tight coupling of the temporal dimensions, and establish stringent causal connections between

their past, their current decisions, and their future projections. Such connections, of course, may also be

loosened, prompting humans to experience disconnects between their past, the present, and the future, thus

producing a disorienting experience of how and why events unfold the way they do.

Going back as far as Marx (1945), several analyses of human agency have examined how, and to

what extent, human agency is enabled and conditioned by technologies, and to what extent technologies

exhibit an agency of their own, i.e., material agency. Though material agency rarely has been examined in

the context of three temporal dimensions of human agency, and some scholars have claimed that it lacks

inherent reflective capacities to connect the past, the present, and the future (Giddens 1984), it nevertheless

exhibits a capacity for taking action in relation to its environment and thereby extending or complementing

human agency. The ensuing relationships between human and material agencies have been the subject of a

long string of analyses concerning the nature of the socio-material agency of systems which share both

technical and human elements that interact while carrying out human tasks (Trist 1981). In such settings,

socio-material agency captures the joint capacity of humans and technology elements to interact and make

a difference (Latour 2005).

The Information Systems (IS) field, due to its technical origins and organizational focus, has

utilized notions of human agency informed by multiple strands of social theory (Bourdieu 1998; Giddens

1984) and has applied these notions while treating information systems as socio-technical systems (Bijker

et al. 1987; Hirschheim 1985; Kling and Scacchi 1982; Latour 2005; Pinch and Bijker 1984; Sarker et al.

2019; Trist and Bamforth 1951). Hence, issues concerning socio-material agency have been pivotal to both

 6

the theory and empirics of the field. The inaugural studies of socio-technical systems (for a review, see

(Trist 1981) opened this line of inquiry by arguing that while humans create technologies, technologies also

shape human agency. Generally, the relationships between technologies and social systems (e.g., tasks,

human qualities and traits, organization, social norms, and institutional arrangements) are regarded as

mutually dependent and recursively organized (Leavitt et al. 1962).

These studies usually assume that socio-material agency is forged under two conditions:

knowability of tools and knowledgeability of human agents, implying that humans skillfully interact with

technologies in order to extend their capabilities (Giddens 1984). The deployment of technologies is based

on the human knowledge of the expected effects of using technologies under specific conditions, as humans

project their plans into the future. This knowledge enables them to exercise the full range of temporal

capacities associated with human agency, which, in turn, shapes the subjective, temporal experience of the

agents (Emirbayer and Mische 1998). The concrete empirical ways in which human agency becomes

interwoven with material agency has been examined in multiple strands of socio-technical studies. We will

review some of the more influential strands that are concerned with how humans experience the enactment

socio-material agency, especially with regard to the knowability of the input-output relationships of the

technologies that are being used.

Building upon these foundations, but augmenting them with a perspective drawn from cognitive

science, Hutchins (1995) examined the uses of navigation tools and operations in aircraft cockpits (Hutchins

et al. 1996) while formulating his well-known theory of “distributed cognition.” This perspective focuses

on how technological artifacts enable and extend human cognition. A stream of studies showed that the

agency of such technologies is distributed in time and space, interacting with human agency (in the form

of the cognitive tasks of inferring, calculating, and remembering) to constitute a distributed cognitive

system. Hence, distributed cognition is a manifestation of socio-material agency formed through an

interleaved “computation” process, whereby human actors and technological artifacts interact to produce

specific cognitive outcomes (such as navigation decisions) across space and time. Hutchins posits that in

concrete work settings, attempts to explain human cognition as occurring solely “within the skull” are futile.

 7

Rather, human agents need to rely on multi-faceted artifacts and their standing capacities to store and

propagate representational (cognitive) states (Hutchins 1995, p. 118). His theory also posits that human

agents will knowingly draw on such specific capacities as they participate in distributed cognition.

Essentially, the input-output relationships of technologies need to be knowable both ex ante and ex post for

the distributed cognitive system to work.

Such knowledge empowers human agents in such a way that they experience tighter linkages

between the past, their present decision-making, and its future consequences. Agents will draw on the past

to inform their current decisions and can reliably project visions, plans, and goals into the future, based on

their knowledge of the state of the artifacts (Boland et al. 1994; Mangalaraj et al. 2014; Shaft and Vessey

2006). In line with this, recent studies have applied a distributed cognition to software development (Xiao

et al. 2018) and shown how open source software developers draw on well-understood heuristics that

knowingly utilize artifacts features to store and transform knowledge representations that move a software

designs forward. While doing so, developers tie together the past, the present, and the future in a conscious

and controlled manner.

A nascent stream of IS research has drawn on critical realism (Archer et al. 1998) to expand the

analyses of socio-material agency by adding concepts that emphasize the contextual and temporally

bounded nature of the relationships that underlie socio-material agency. These aspects have been refined in

novel concepts such as “affordances” (Gibson 1977; Gibson 1979; Norman 1990), borrowed from

ecological psychology, as well as ideas of “imbrication” between human and material agencies (Leonardi

2013; Leonardi 2011; Mutch 2013). Leonardi (2011), for example, posits that while digital technologies

partially owe their features to their inherent, standing material characteristics, such features themselves

participate contextually in constituting socio-material agency. Hence, socio-material agency only emerges

when the features are contextualized as affordances, i.e., when the features have become cognitively

mediated, appropriated, and deployed by participating humans. The affordances can only be activated hic

et nunc during ongoing human-technology interactions. Human agency is always imbricated with the

agency of technologies, a process through which humans engage in ongoing interpretative efforts to

 8

understand what technologies can actually do for them.

According to this view, the input-output relationships of technologies will be knowable to

participating human agents ex post, and they are in many cases also knowable ex ante. Such knowledge,

however, is always imperfect and evolving. Contextual interactions will, therefore, grow the agent’s range

of available affordances by increasing the agent’s knowledge of technologies (Jung and Lyytinen 2014).

Similar to the distributed cognition view, the critical realist perspective places the human agent and her

knowledgeability in the foreground when explaining how the enactment of socio-material agency is

experienced by participating humans. While the human agent can draw on past events and may project

visions into the future, decision-making about technology use in the present remains non-deterministic.

Technology use involves engaging with a largely tractable but uncertain reality that exhibits a range of

probabilities, the underlying generative mechanisms of which cannot be observed directly. From this

viewpoint, the practical-evaluative dimension of human agency is fraught with uncertainty and the space

of affordances is unbounded (Fayard and Weeks 2007; Nan and Lu 2014). For example, Leonardi (2011)

describes how mechanical engineers working on automobile crash simulations draw on the past by utilizing

known affordances of design technologies while projecting into the future by providing constraints that

condition the performance of these technologies. While the process is not deterministic, users are assumed

to know, even if only nebulously, the impact of affordances and how they constrain future action. Human

agents will therefore, at least in principle, draw together the past, the present, and the future as they enact

socio-material agency.

Actor-Network Theory (Latour 1987; Latour 2012; Latour et al. 1992; Latour 2005) privileges

neither the human nor the technology in studying how socio-material agency is formed. Human and material

agents3 make up actor-networks through which the interests of diverse agents become translated and

mediated. In this view, socio-material agency emerges in the performance of a network of relationships

mediating heterogeneous interests. Generally, such performance is a function of the capacities of the

3 Latour (1987) uses the term “actant” to refer to both human and material agents. We use the term agents to maintain

consistency across our argument.

 9

participating agents, their relationships, and the included scripts. ANT is scale-free, in the sense that any

agent can be made up of networks of lower-level agents (Latour 2005). Because the internal structure of an

agent can be explicated as an actor-network, ANT assumes that the input-output relationships of agents can

be known, at least ex post, when an action is being performed while activating a particular actor-network.

ANT, and the studies conducted using it, helps us understand how human agents enter into

situations where their agency is weak and the events in which they participate are experienced as being

exogenously driven. Because of the structural emphasis of ANT analyses, past events, patterns, and

tendencies exert significant influence on how events unfold in the present and leave less space for

projectivity. Humans experience the enactment of agency as if being carried forth by waves of events within

networks nested within networks (Hanseth and Monteiro 1997; Kavanagh and Araujo 1995). For example,

Faraj et al. (2004) studied the emergence of web browser technology and examined how technology-related

practices were shaped within actor-networks by the processes of inscribing, translating, and framing. The

input-output relationships of web browsers were therefore not wholly known by human agents ex ante by

reference to their material features, but rather emerged through complex interactions within networks.

Hence, in ANT, knowledge of input-output relationships is primarily available ex post, when a particular

actor-network has been performed, stabilized, and made knowledgeable. This implies that the projective

dimension is weakened, thus rupturing the tight connections between the past, the present, and the future

in the experience of enacting socio-material agency.

Finally, the agential realist view, originally formulated by Barad (2003), suggests that the

ontological separation of human and technological agencies is artificial, thus positing “ontological

inseparability” (Orlikowski 2007; Suchman 2006). During interactions, the agencies become “inextricably

intertwined” and can only be separated by “agential cuts” that temporarily and analytically separate the

involved entities and their features from their holistic unity. In a sense, mutually constituted agency is the

only ontological state of agency. Material agency only becomes knowable ex post and is endowed with

agency once it is enacted by humans. Hence the agency of the technology cannot be separated from human

agency, which itself is always relationally mediated by technologies. Through human enactments,

 10

technologies become knowable through their contingent features-in-use, i.e., actionable technology features

emerge only when they are enacted by humans.

Agential realism allows little room to analyze, ex ante, how the past and the future are connected

in human action. Agency is present in the moment of practice while it is being performed (Introna 2011).

For example, Beane and Orlikowski (2015) show how telepresence robots are enacted within a healthcare

where the role and agency of the technology emerge as it is being enacted. In agential realism, past

“materialized practices” influence and shape future action. Projecting into the future, however, becomes

difficult as practice only exists as it is materialized in specific activities or artifacts (Orlikowski and Scott

2014). Hence, the input-output relationships of the technology become knowable primarily ex post, while

ex ante knowledge is fallible and weak, given that it is present only in memory traces of previously

materialized practices. The projective dimension of socio-material agency is experienced as weakened.

While each research stream shows significant variations in how the human enactment of socio-

material agency is portrayed and experienced, a common assumption across these research streams is that

the input-output relationships of technology artifacts become knowable, in some cases, ex ante or, at least

after deployment, ex post. Furthermore, these research streams assume that over time and through repeated

use, human knowledgeability increases and therefore allows for a growing mastery of technology, which

enables a tighter integration of past, present, and future technology use. This, in turn, suggests that socio-

material agency is experienced by human agents in ways that coherently connect the past, the present, and

the future (Table 1).

11

Table 1. R
eceived accounts of socio-m

aterial agency and its epistem
ic foundations

Perspective
Socio-m

aterial agency
H

um
an experience of enacting

socio-m
aterial agency

E
x ante

know
ledge

E
x post

know
ledge

R
epresentative citations

D
istributed

C
ognition

H
um

an agents extend their
cognitive capacity and reach
through tool use

Tight integration of iterative,
evaluative, and projective
dim

ensions of agency

Y
es

Y
es

Boland et al. 1994; H
utchins

1995; H
utchins et al. 1996;

M
angalaraj et al. 2014; Shaft

and V
essey 2006; X

iao et al.
2018

C
ritical

R
ealism

H

um
an and m

aterial agencies
becom

e im
bricated in that they

m
utually constitute agency

iteratively as new
 affordances

em
erge through learning

N
on-determ

inistic integration of
iterative, evaluative, and
projective dim

ensions of agency
w

ithin specific contexts

Partial
Y

es
Fayard and W

eeks 2007; Jung
and Lyytinen 2014; Leonardi
2011; Leonardi 2013; M

utch
2013; N

an and Lu 2014

A
ctor-

N
etw

ork
Theory

H
um

ans and technologies jointly
possess capacities to “m

ake a
difference” based on their structural
arrangem

ents

A
gency em

erges only in
structural arrangem

ents,
w

eakening the projective
dim

ension of hum
an agency

w
hile strengthening the iterative

dim
ension.

Partial
Y

es
Faraj et al. 2004; H

anseth and
M

onteiro 1997; K
avanagh and

A
raujo 1995; Latour 1987;

Latour 2005; Latour 2012;
Latour et al. 1992

A
gential

R
ealism

M

aterial agency does not exist
outside hum

an agency and only
com

es to life w
hen it is m

utually
constituted during entanglem

ent

A
gency em

erges hic et nunc
through perform

ative enactm
ent

and em
phasizes the practical-

evaluative dim
ension of agency

Partial
Y

es
Barad 2003; B

eane and
O

rlikow
ski 2015; Introna 2011;

O
rlikow

ski 2007; Scott and
O

rlikow
ski 2014; Suchm

an 2006

 12

How Autonomous Tools Challenge Received Notions of Socio-Material Agency

Autonomous tools, as exemplified by technologies such as IBM’s Watson (High 2012) and Google’s

DeepMind (Silver et al. 2016), perform complex cognitive tasks such as performing medical diagnosis,

playing complex games, or designing a whole car body, all without the direct and continuous input from

human agents. These technologies draw upon advances in artificial intelligence, machine learning, neural

networks, and genetic algorithms, which are applied to huge datasets while leveraging powerful computing

resources, enabling the performance of cognitively complex, and often creative, tasks such as synthesis,

pattern detection, natural language processing, or prediction. These tools do this to such an extent that

perceptions of their independent agency arise, i.e., the tools exhibit a form of computational agency

(Winograd and Flores 1986) such that they have capacity to perform independent actions through

computation. TSuch agency can be observed while these technologies perform cognitively complex tasks

that string together multiple interdependent actions, often iteratively, to produce nearly complete solutions

for given tasks without active human intervention (Tong and Sriram 1992). Moreover, these technologies

have a capability to learn from their own actions and improve their “projective” capabilities (Lyytinen et

al. 2020).

The complex, equifinal, and dynamic ways of arriving at algorithmic solutions through the use of

autonomous tools, as well as the sheer complexity of solutions, severely limits the knowability of the input-

output relationships of such tools. Consequently, what such technologies ultimately accomplish based on

particular inputs, becomes, in principle, unknowable to participating human agents, both ex ante as well as

ex post. Computational agency becomes opaque (Burrell 2016; Turkle 1997) and inscrutable (Pasquale

2015); technologies appear not only to act on their own, but to also do so in ways that cannot be understood

either in an iterative or practical-evaluative sense (Emirbayer and Mische 1998). The material

configurations of computational resources (such as storage, processors, or software) that underlie material

agency change dynamically in real time and therefore have emergent properties (Kroll 2018). Hence, when

using autonomous tools, the projective ability of human agency is severely weakened.

 13

The starting point for understanding the reasons for the unknowability, ex ante and ex post, of the

input-output relationships of autonomous tools is to understand the nature of the procrastinated binding that

applies to all performances of computing devices (Yoo et al. 2012). Procrastinated binding refers to the

process of dynamically executing the immaterial algorithm expressed in symbolic form on a physical device

in a specific space and time continuum. During the algorithm’s runtime, the binding ties together symbolic

expressions and physical resources to produce a particular computational outcome. The binding is

procrastinated in the sense that it does not exist when the algorithm is created; rather, it takes place every

time the algorithm hits the silicon during runtime. The outcome of the computation does not emerge until

the binding takes place and runs its course. Further, autonomous tools draw on algorithms that are non-

deterministic and self-learning, such as genetic algorithms (Seidel et al. 2018a), making it difficult, if not

impossible, to predict the outcome of each runtime. In addition, autonomous tools implement procrastinated

binding in settings that are characterized by distributed and heterogeneous data and a wide array of

computing resources distributed and allocated dynamically through cloud-based infrastructures. This

renders the associated computational processes and their outcomes highly sensitive to the actual material

conditions of runtime, such as the amount of memory or computing resources allocated (Dodgson et al.

2007), or the variety of data pools (Holland et al. 1989). Because of this, autonomous tools have an inherent

capacity to produce de novo outcomes in each run (Kallinikos et al. 2013).

These characteristics of autonomous tools suggest the unknowability of the relationships between

the inputs that human agents supply them with, and the outputs that the tools generate in response, both ex

ante as well as ex post. These limits radically alter the reciprocal epistemic relationships between human

agents and their tools, and therefore influence the experience of enacting socio-material agency—an

experience which can be characterized as being liminal. The concept of liminality originated in

anthropology (Turner 1987) as a way of capturing “in-between” states, such as those that take place during

coming of age rituals. The concept has been further extended by organizational scholars, who have, for

example, used it to capture the status and experiences of temporary workers (Garsten 1999). Within

information systems research, scholars have used liminality to describe transitions from old to new roles

 14

and systems, and to the digitally mediated interactions across the boundaries across different cultural

environments (Wagner et al. 2012). Henfridsson and Yoo (2014) emphasize the ambiguous aspect of

liminality, as experienced by institutional entrepreneurs when multiple innovation trajectories emerge, even

though only a few can be executed. Thus, liminality is produced by the co-presence of multiple, distinctively

different forces and potentialities that shape human experience, the balance of which is a state of emergence

marked by ambiguity and multifariousness. In our study, these forces and potentialities are concerned with

what is known and not known about the input-output relationships of participating technologies.

A COMPARATIVE CASE STUDY OF PHYSICAL LAYOUT DESIGN AT CHIPCO

To answer our research question, we empirically explore how the use of autonomous tools reshapes

the experience of enacting socio-material agency in the setting where our original research puzzle emerged:

the task of designing the physical layout 4 of IC chips—one of the most challenging and complex

engineering tasks of today. Semiconductor design in general, and physical layout design in particular, offers

a rich context for the study of our research question for several reasons. Semiconductor design is an example

of a highly complex design task that, due to its scale and dynamics, have had a deep connection to DA since

its inception. As a cognitive task, chip design is highly abstract and complex (Appendix A provides a brief

overview of chip design as well as a glossary). Due to miniaturization occurring at an exponential rate,

contemporary IC chips contain several billion transistors5, where the gate length is 15-20 nanometers and

is expected (at the time of the writing of this article) to soon decrease to 10-12 nanometers. To accomplish

the complex design goals associated with such tasks, as well as to respond to the exponentially growing

scale and complexity of related challenges, chip designers not only have to use a broad suite of DA tools

but must also learn new tools and skills every few years. Chip designers frequently interact with tooling

4 While the term “physical” is used here to describe a stage of the IC design, the design task itself is performed in a

completely virtual setting. The term “physical”, as opposed “logical,” is used to denote the fact that the design output
is a “physical layout” in real, Cartesian, two-dimensional space. The physical layout is the first time in the IC design
process where representations of the physical chip, rather than computer code, are produced and analyzed.

5 Currently the number of transistors on a typical core chip is over 6 billion. For example, Intel’s CoreI9 chip has
roughly 6.5 billion gates while AMD’s Epyc has a record 19.2 billion transistors.

 15

professionals6, and some also build their own tools.

Since the early 80’s, the dominant DA approach (i.e., a set of tools and an attendant way of using

them to conduct design) to physical layout design has been Structured Digital Design (SDD) where a

schematic design of a portion of chip is created aided by computers (Thomas et al. 1983). The designer next

focuses on transforming the initial schematic into a physical layout using another set of computer-aided

wiring tools. Since the early 2000s, a new generation of design approaches has emerged that use other types

of DA tools, often referred to as Physical Synthesis (PS) tools, based on genetic algorithms (Brown and

Linden 2009). We will refer to such tools as “autonomous tools.” These tools offer a powerful new way of

improving physical design productivity because they autonomously generate full layout solutions for whole

sections of a chip.

As the size and the complexity of the chip design continuously grows7, ChipCo came to the

conclusion that the design approach leveraging traditional tools could not keep up with the pace of

complexity in chip design, and therefore was not sustainable. In their search for a solution, they started to

experiment with autonomous tools in non-critical areas of the chip. Autonomous tools generate satisficing,

“good enough” solutions more quickly, but incur costs in terms of increased uncertainty as the designers

have less control over the actual placement process. Over time, the performance and quality of PS tools

have improved significantly; newer versions of placement algorithms have better and more efficient

heuristics, and hardware performance has improved greatly.

At the time of our study, ChipCo used both these approaches in its physical design process, each

supported by a separate suite of tools. In our study setting, the two approaches were applied under identical

time-to-market constraints and identical types of requirements with regards to thresholds such as clock

speed, heat generation, power consumption, electrical interference, etc. Further, both approaches were at

times used simultaneously. While both approaches relied on digital tools, the autonomous tools operated in

6 By tools, we mean software environments for chip design, akin to the integrated development environments (IDEs)

commonly used in software development.
7 As expressed by Moore’s law, the complexity of chips double every 18-24 months.

 16

quite different ways from the traditional tools. Hence, our comparative case study offers a fruitful research

setting for understanding how autonomous tools reshape the experience of enacting socio-material agency.

Data Collection and Analysis

We conducted a four-year, comparative, theory-generating case study at one of ChipCo’s primary design

centers. Since our goal was to understand how the enactment of socio-material agency was experienced

differently across the two different DA approaches, we followed Yin’s (2003) embedded case study

approach8. During the study period, designers at ChipCo worked primarily on three major IC design projects

that covered separate chip generations; we refer to these projects using the pseudonyms Maplewood,

Calverton, and Downton. This setting allowed us to collect data from multiple design process episodes

following the same DA approach as our embedded case, and then to compare the two design approaches

across all projects. This design helped us to better account for potential cumulative learning effects and to

avoid “accidental” interactions that might have been included in a smaller sampling window. During the

study period, the ratio of sections designed by approaches that leveraged autonomous as opposed to

traditional tools increased from roughly 1:1 to 4:1. Most of the sections are now designed using autonomous

tools, with traditional tools being applied only to a few highly critical sections that exhibit complex and

unusual layout requirements.

At ChipCo, the design of each generation of chips follows a strict 24-month cycle, divided into four

distinct phases. During each phase, the designers need to generate a working physical layout that meets

specific requirements set by the management team for that phase. As the project moves from phase to phase

across the design cycle, the requirements grow stricter. We treated an individual designer’s design process

during each such phase as a unit of analysis. We were able to follow the last two phases of the Maplewood

design cycle, Calverton’s full design cycle, and the first two phases of the Downton design cycle. In total,

we collected data from 31 embedded cases, 9 using traditional tools and 22 using autonomous tools (5 of

8 We emphasize that this is not a longitudinal study since our research question did not focus on how the two design

approaches changed over time.

 17

which were carried out by designers who had also used traditional tools during the course of project

Downton).

Given the novelty of the study’s context and its comparative nature, we followed grounded theory

method for data analysis and theory building (Strauss and Corbin 1998). We relied on interviews as the

main data source, not only because of the sensitivity of the highly classified design work conducted at our

case site, but also due to the possibility of grasping the lived experience of the designers. The confidential

nature of the work limited our access to, and presentation of, other sources such as project documentation,

project performance data, or direct participant observation. Our choice of interviews as the primary method

is in line with Walsham’s (1995) argument that interviews offer the “best access” to interpreting the

experiences of participants concerning sampled actions and events. In our case, we were concerned with

how designers experienced the enactment of design processes leveraging different DA technologies. We

adopted an interpretive stance to make sense of the designers’ lived experiences and enacted practices.

Generally, the approach was guided by a constant cross-checking of emerging concepts against empirical

data (Berente and Yoo 2012; Myers 1997). Figure 1 depicts the overall flow of data collection and analysis.

 18

Figure 1. Data Analysis Process

In total, we conducted 9 rounds of on-site interviews, which took place approximately every six

months during the four-year research period. The site visits were scheduled to coincide roughly with the

end of each main design phase. The interviewees were selected by a “purposeful sampling” strategy (Morse

2007; Strauss and Corbin 1998). We primarily interviewed experienced physical designers who were

involved in critical aspects of the physical chip design. To capture various “voices” (Myers and Newman

2007), we also interviewed tool designers and the management team, thereby gaining alternative

perspectives. The interviews were conducted in a semi-structured manner with open-ended questions; this

gave us and the interviewees flexibility to explore the novel phenomena at hand (Myers and Newman 2007).

Appendix B summarizes the interview guide used during our interviews and shows how it was updated as

the study progressed. The questions were used as prompts for open-ended conversations. Additional

clarifying questions were asked during each interview based on the flow of a particular interview. The

 19

establishment of a baseline of activities allowed us to approach the latter interview stages as “travelers”

(Kvale and Brinkmann 2009), thus gaining access to the idiosyncratic experiences and reflections of the

designers. Table 2 summarizes the interviews. In total, we conducted 58 interviews.

Table 2. Interviews by project and work domain
Visit # Time Project Autonomous

Tool
Designers

Traditional
Tool Designers

Others9 Total

1 2010-11 Maplewood 1 (A10) 2 (H, I) 6 9
2 2011-05 Maplewood 3 (A, B, C) 1 (H) 3 7
3 2011-11 Calverton 2 (B, C) 2 (J, K) 1 5
4 2012-05 Calverton 3 (B, C, D) 1 (J) 0 4
5 2012-10 Calverton 2 (B, C) 1 (J) 3 6
6 2013-02 Calverton 2 (B, D) 1 (J) 2 5
7 2013-05 Downton 1 (C) 111 (J) 3 5
8 2014-02 Downton 3 (E, F, G) 3 (J, K, L) 3 9
9 2014-05 Downton 1 (F) 1 (J) 6 8

Overall, we adopted a “dramaturgical model” for our interviews that emphasizes the social

interactions between interviewers and interviewees (see Appendix C for details, also (Myers and Newman

2007). At the beginning of each interview, we explained the purpose of our research and told the

interviewees that all researchers had signed a non-disclosure agreement, thus ensuring that all conversations

would be confidential and the subjects’ anonymity would be protected (Myers and Newman 2007). The

interview then moved on to gathering background information about the interviewee, including his or her

training and experience. Next we drilled into his or her current work roles, design context, and tasks. We

asked the interviewees to take us through their recent design activities, step-by-step, covering the time

period between our visits. This allowed us to explore in detail how designers used DA tools in their work

and how they collaborated with others. We also asked how physical designers, tool designers, and managers

9 “Others” includes all other non-physical designers, such as tool designers, architects, and managers.
10 The letters A to J in the parentheses denote the individual designers we interviewed.
11 From project Downton and onwards, all the interviewees using traditional tools had switched to using the

autonomous tool approach. We have listed them in the autonomous tool designers’ categories as the interviews cover
important topics with regard to the difference between the two approaches from the perspective of designers with
experience of also using traditional tools.

 20

dealt with the growing complexity of their designs and how this influenced their design practices. All

interviews were taped and transcribed verbatim and stored in a central repository for later analysis (Myers

and Newman 2007; Yin 2003). To understand the organization of design processes, we traced each

designer’s design process using graphic representations (Gaskin et al. 2014) and returned to the site to verify

the accuracy of our understanding of each design process. We also presented our analyses of design

practices and early findings at the site to validate our second-level interpretations. Over the course of the 4

years of the study, and many repeated conversations, we built strong social relationships and a high degree

of trust with our interviewees, resulting in genuine and open-ended exchanges (Myers and Newman 2007).

We coded interviews for design practices and the experiences of using tools. In line with this, two

of the authors conducted open coding on the transcripts, continuously comparing emerging codes to ensure

consistency of the process description (Strauss and Corbin 1998). We followed the three steps adopted by

Mazmanian (2012) to ensure the accuracy of our coding. First, both coders read all the transcripts and

individually developed two sets of provisional codes (resulting in 592 low-level codes and 34 extensive

memos). After this coding was done, we conducted a literature review to search for relevant constructs; for

example, it was during the course of this that we came across the concept of “liminality.” We found this

concept to be useful for characterizing the experiences of the designers we observed, and the concept

therefore “earned its way…through demonstrations of its relationship to the phenomenon under

investigation” (Corbin and Strauss 1990, p. 9). Second, the two coders, in conjunction with two other co-

authors who were not involved in the initial coding, conducted comparative analysis to identify key

characteristics of the design practices related to traditional and autonomous tools by detailing how each

process unfolded and exploring the designers’ experiences of enacting each process. We then forged

theoretical categories (e.g., "temporal organization" and "input-output relationships," see Appendix D) to

capture how designers experienced the commonalities and differences across the two design approaches.

Third, all the transcripts were re-coded according to the consolidated coding scheme for the final round of

analysis in which all four co-authors were involved. These accounts were also presented to the designers

during the 6th, 7th, and 8th site visits. Based on their feedback, the accounts were revised to ensure they

 21

faithfully reflected the design practices of traditional and autonomous tool designers.

FINDINGS

Design Process Using Traditional Tools

Design processes at ChipCo that leverages traditional tools starts with inheriting an existing design from

previous generations of chips. Therefore, a traditional tool designer’s first step is to pull the schematic and

corresponding logic specification file from the previous generation of chip design and compare it with the

new specification received from the logic design team. The designer will attempt to revise and update the

old schematic to match the new logic specification files. To produce the new matching schematic, a

comparison tool is used to verify the functional equivalence between the schematic and the specification

file. It usually takes around a month for the verification process to finalize a new schematic that matches

the logic specification file without any issues. This new schematic then becomes the foundation for the

initial placement of components on the chip. Figure 2 shows an example of schematics and a corresponding

placement layout.

Schematics Placement Layout

Figure 2. Example schematics and corresponding placement layout12

12 Images are provided as illustrations only. The actual design interfaces may be different in their particulars but similar

in their general makeup. The schematics and placement layouts shown were taken from http://www.4004.com and
are made available under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

 22

Once the new schematic is finalized, a connectivity description file 13 can be automatically

generated by the connectivity tracing tool. Based on this file, the designer, using traditional wiring tools,

begins to create a detailed layout by placing different components on the chip, thereby generating an initial

placement. This step is normally rather quick, using a “fairly tight, tight loop” (Traditional Tool Designer

J) between the connectivity description file on the one hand, and an intermediate “prototype” file14 on the

other hand. This intermediate file contains the physical placement of components on the circuit board and

is a more tangible instantiation of the final placement layout compared to the schematic or the connectivity

description file. Running the wiring tool is generally quick, about “a handful of minutes, maybe fifteen

minutes” (Traditional Tool Designer J) but debugging the output and creating new specifications for the

tool can take several hours. Once the designer feels satisfied with the placement, she begins to route the

wirings between components. This requires her to run timing tests that measure the delays and processing

times between distinct parts of the layout, to ensure that the given timing constraints are met. Based on the

results generated by the testing tool, the designer revises the layout design on a daily basis by manually

modifying the physical component placement or wiring; one designer described this in the following

manner: “rearrange [her] block to put things closer together or line things up for change what metal layer

[she is going to be in]” (Traditional Tool Designer J). Figure 3 shows a typical design process leveraging

traditional tools.

Figure 3. A typical design process using traditional tools

13 This file is called a “netlist,” and specifies the connections between the electronic components (i.e., the network of

components, hence the name) described in a given schematic.
14 This is called “rapid file,” which is a prototype-like layout that allows the designer to test specified requirements.

 23

As the design matures, other requirements, such as power, heat, leakage, and noise are gradually

introduced. As a result, it takes longer, anywhere between a couple of hours to half a day, for each iteration

to build a new layout. The changes also become subtler as more of the components’ placements are fixed:

“In the last two weeks, you fixed sort of the layout and you tried to tweak…like adding in a gauge, changing

the size of a gauge and whatnot” (Traditional Tool Designer J).

Throughout the design process, designers using traditional tools submit their designs to the

validation team every two weeks. The validation team pulls together all the sections of the chip and

performs tests to ensure that progress is made with regards to timing and connections between different

physical components and areas. As a result of such analyses, it is common for designers to have to go back

to the connectivity description file to make some fundamental changes in order to accommodate changes

that were separately introduced to a larger section of the chip. Iterations continue until the full chip conforms

completely to the logic specification and meets all stated requirements. At this point, the designer hands the

final placement design to the integration and validation team.

Design Process Using Autonomous Tools

Just like a traditional tool designer, an autonomous tool designer starts a new project with designs

inherited from the previous generation of chips. Since the design process leveraging autonomous tools does

not involve creating a schematic, only the previous generation’s logic specification files will be retrieved.

For designers using autonomous tools, “the first step is just to get our tools to work” (Autonomous Tool

Designer F). In a design process using autonomous tools, layouts are generated directly from the logic

specification. To accomplish this, a synthesis tool, which integrates multiple functionalities, each of which

are carried out by individual tools under the traditional DA approach, is used. To facilitate the design of a

new chip with increased complexity and constraints, the synthesis tool is continuously improved by adding

new features and capabilities—in particular, each generation draws on an improved placement algorithm.

Due to these changes, however, it is generally impossible to generate a working layout based on the

 24

inherited logic specification files without crashing the tool a few times. During this time period, the

autonomous tool designer works primarily on validating the toolset to solve any compatibility issues and

can spend “a ton of time even just trying to get the tools to start building” (Autonomous Tool Designer C).

The main focus is to create “cleanup scripts” to debug the errors caused by incompatibilities between the

new version of the tool and the old logic specification files.

After the updated synthesis tool has been tuned and made compatible with the inherited logic

specification, the designer is able to start working on generating the physical layout based on the new logic

specification. Instead of manually placing electronic components, the autonomous tool designer relies on

the tool to synthesize the logic specification directly into a completed placement solution through an

iterative search and optimization process. The designer’s primary task is to specify a set of constraints and

goals for the tool, which influences the synthesis algorithm’s behavior: “Work harder on this. Work harder

on that. Focus in this area more” (Autonomous Tool Designer C). Because of the complexity of placing

and wiring hundreds of thousands of components, each synthesis run (the designers call it a “spin” or

“experiment”) can take from several days to weeks to finish. Often, such a spin may complete without

creating a solution at all. Together with the time required to set up tool constraints and conduct a post-run

evaluation, it usually takes about one calendar week to generate a single solution and evaluate its feasibility.

To speed up the design process and cut off unfeasible solution trajectories, designers normally run several

spins in parallel, each with slightly varied goals and constraints. The basic design principle for processes

leveraging the synthesis tool is to “kick them all off in parallel. When they come back, figure out what the

best one is and see if that problem’s been solved” (Autonomous Tool Designer C). After the synthesis tool

generates multiple layout solutions (i.e., multiple versions generated using slightly varying input goals and

constraints), each solution will be tested against the design requirements, such as timing constraints, using

the same testing tool that is used by traditional tool designers. Based on the test results, the designer chooses

the solution that exhibits the best results as the new baseline solution and comes up with more refined and

improved constraints for the next round of experiments. Figure 4 shows a typical design process using

autonomous tool iterating across three “experiments.”

 25

Figure 4. A typical design process using autonomous tools
Because of the long running time, designers using autonomous tools normally work on several

modular units (called functional unit blocks or FUBs) at once. This stands in contrast to the focus on one

or two such units that designers using traditional tools normally maintain. Because autonomous tool

designers simultaneously work on multiple units, they tend to stagger their work on each unit in such a way

that they can analyze the experimental results and develop the specification for the next experiment of one

unit while keeping the other units’ experiments running in the background. One designer explained this as

such: “So I own three huge [modular units], and you know I try and stagger them a bit so that there’s one

finishing you know every other day and then I can look at it, analyze it, figure out what I need to tweak to

make it better and then kick it off again before the next [modular unit] finishes” (Autonomous Tool

Designer C).

Comparable to the design process leveraging traditional tools15 , additional covering tests are

gradually introduced into the design process, with timing being the first and most important set of

requirements. Once the timing results meet established performance expectations, the designer will begin

to include additional tests, such as power, heat, leakage, manufacturability, and noise. The synthesis

algorithm runs for increasing spans of time as these additional constraints are introduced. As the project

approaches the deadline, a wide range of requirements need to be met. Resynthesizing at this stage can

15 In fact, the design team is structured based on the chip sections rather than the design approaches. Therefore, a

section may be designed by a team of designers using mixed approaches.

 26

cause substantial changes in the layout, thus giving rise to substantial risks and potential delays. To avoid

full re-synthesis at these later stages, designers using autonomous tools can switch to “tweaking” the

existing design using discrete, manual changes that resemble the hand-editing performed by designers using

traditional tools. Just as for the design processes that leverage traditional tools, the validation team will

continue to pull intermediate designs from the design database every two weeks to run integration tests on

the larger sections of the chip. Once the placement completely matches the logic specification and the

design conforms to all requirements, the designer can hand off the final design to the validation team.

Different Behaviors of Design Tools

As the two illustrations of the design processes indicate, designers using traditional and

autonomous tools accomplish similar design goals but follow different processes. These differences are not

related to any varying degrees of digitalization since both approaches are fully digitalized. Rather, the

differences stem from the underlying logic of how each DA approach allows for framing the design

problem, how it guides and supports the search for solutions, and how during this process, human and

computational agencies now have different capacities, thus leading to different experiences of enacting

socio-material agency. A summary of these differences is provided in Table 3.

Table 3. Differences in design processes leveraging traditional vs. autonomous tools
Concepts Traditional tools Autonomous Tools

Tools’
Behaviors

Computation Serially executes the designer’s
specific wiring and layout
commands based on pre-
determined computational tasks.

Generates layouts automatically
based on the goals and constraints
provided by designers.

Non-deterministic and self-learning
algorithms featuring built-in
randomness.

Procrastinated
binding

Draws upon fixed computational
resources to perform pre-
determined computational tasks at
runtime.

Assumes procrastinated binding
but the design outcome is not in
principle affected by the
availability of computational
resources during the runtime due to
the simplicity of the computation

Draws upon procrastinated binding
of highly distributed and
heterogeneous computational
resources available at runtime.

The design outcome is significantly
affected by the availability of
computational resources during the
runtime and procrastinated binding

Runtime It takes several minutes to update
the layout with edits made by the

It takes several days to generate the
new layout based on constraints

 27

designers. specified by the designers.
Execution of

input
Direct implementation of
designers’ manual placement and
wiring in digital form.

One of many possible solutions
found by the algorithm that satisfy
the constraints set by the designer.

Designers’
Behaviors

Action Uses the tools to extend cognitive
capabilities in ways that help
realize the design goals.

The designer directly manipulates
the component placement and
wiring, with full control over the
actual layout.

Provides goals and constraints to
restrict the behavior of the synthesis
algorithm.

The designer has no control over the
production of the actual layout
during solution-generation.

Design
approach

Focus on the recent placement and
wiring changes, deciding which
exact changes to make, such as the
placement of new components or
new wiring.

Focus on the set of inputs and
constraints that yields the best
results from the parallel
experiments, while attempting to
specify new sets of inputs and
constraints that would lead the
algorithm to generate a solution that
meets all requirements.

Temporal
organization

Iterative:
The designer works with iterations
that are limited in design scope.

Practical-evaluative:
The designer makes decisions with
regards to new placements or
wirings based on her knowledge of
an appropriate solution, which is a
direct descendant of the existing
layout.

Projective:
In each iteration, the designer
specifies exactly what changes
should be made and expects them
to be accurately implemented in
the layout.

Iterative:
The designer works with iterations
that are expansive in design scope.

Practical-evaluative:
The designer makes changes by
adjusting constraints and then
chooses the “best” outcome from
multiple layouts generated by
previous experiments.

Projective:
In each iteration, the designer tunes
constraints but cannot fully foresee
their effect on the produced layout.

Input to the
tools

Specific placement and wiring of
the components.

Specific parameters of the synthesis
algorithms.

Expectation of
Input

The components should be placed
at the specified locations.

The generation of the layout should
follow the rules specified by the
input parameters.

Input-output
relationships

Designer understands the tools in
terms of their operations and
expected effects.

Tools are black-boxed and causally
ambiguous to the designer.

Broadly speaking, traditional SDD tools provide capabilities similar to traditional 2D/3D

Computer-Aided Design tools (Henderson and Values 1991; Majchrzak et al. 1987). The tools use iconic

 28

representations of a limited set of design elements, which allow designers to place and connect such

elements in relation to each other so as to create dependencies between components that are known to

produce expected functionalities in the design outcome. Further, traditional tools visualize the physical

layout of the IC chip and the connections between the chosen design elements (e.g., gates), and also record

and validate designer-initiated changes. Such a style of design is, as one designer expressed it, “very manual

labor-intensive” (Traditional Tool Designer J).

The traditional tools serially execute commands issued by a designer by producing a corresponding

digital representation of the layout. The tools also compute the consequences of such design decisions vis

à vis given design goals (such as timing). A designer described the work with traditional tools thus: “instead

of the designer going in and grabbing that one and moving it over here and grabbing that, you can give a

logical description of, “Grab this group and make it horizontal. And grab this group and make it horizontal.

Grab both of those and make them vertical” (Tool Designer O). For example, when a designer gives a

command to create a path between two components, the traditional design tool will take a few moments to

generate the new placement by implementing the change into the existing layout; it will then evaluate the

consequences of the action in terms of heat, electrical interference, and timing.

As traditional tools mainly realize designers’ specific commands that produce local changes in the

digital layout, the runtimes of manual design tools are relatively short, normally lasting for “a handful of

minutes, maybe fifteen minutes” (Traditional Tool Designer J). Therefore, traditional tools are less

computationally demanding than autonomous tools, and generally work well with available ranges of

computing resources.

In contrast, autonomous tools are designed to automatically generate a complete layout of a given

design task that “has all the cells placed, all routed” (Autonomous Tool Designer F) and are expected to

do so each time the tools are run. This task is accomplished through the use of a complex, genetic

algorithm16. The behavior of the algorithm is guided and restricted by a set of constraints (referred to by

16 A genetic algorithm is a type of heuristic algorithm for which the search process is iterative, based on Darwin’s

theory of evolution towards increased fitness (Wang et al. 2009).

 29

autonomous tool designers as “knobs”) given by the designer. The search for a feasible solution to the

placement of components is a computationally demanding task. In fact, it is theoretically impossible to find

the optimal placement within the limited time and resources given to the task17. To overcome this theoretical

barrier, autonomous tools rely on genetic (heuristic) algorithms that carry out an iterative search process.

This process always contains some built-in randomness18, and, because the process is self-learning, it takes

on evolutionary characteristics19:

“It’s like a genetic algorithm that it’s trying to do. You know like how evolution happens. Like you

start throwing… ‘What if I put this gate before here? What if I convert this?’” (Autonomous Tool

Designer F).

These algorithms are currently able to generate “good enough” solutions within a reasonable time period

(days to weeks) for relatively complex placement problems. The search for a solution, however, may vary

greatly from run to run even for the same problem with the same set of constraints. This is because of the

underlying, evolutionary computational process, its randomness (such as the initial states that are randomly

selected), and the way in which the problem is presented to the algorithm in the form of constraints.

Furthermore, each run needs to be supported by extensive computational resources, with the availability of

such resources influencing both how long the “spin” runs and how good the solution is. Hence, the search

capability of each iteration is constrained by the available resources. For example, the storage required for

each autonomous tool run is in the hundreds of gigabytes:

“you had 16 runs and each one of these runs takes up between 50 gigabytes to 100 to 200 gigabytes

of data before you’re done. So you start talking terabytes of data” (Manager Y).

Therefore, in practice, access to, and the nature of, the computational resources available for generating the

17 Computational wiring is a problem known to be NP-hard (only solvable in non-deterministic polynomial time). This

means that, while it is solvable, there are no known algorithms that can find a solution in polynomial time, given the
number of inputs, i.e., the number of components and the number of wires between them and their expected length
(timing). See https://en.wikipedia.org/wiki/NP-hardness

18 One designer said: “I always joke that the R in [their abbreviation for the autonomous tool approach] stands for
‘random.’”

19 The actual algorithm used by the autonomous tools is proprietary and is therefore kept anonymous.

 30

solution will play a significant role in the effectiveness of the solution search. As one autonomous tool

designer noted to us:

“They found that their tools couldn’t handle it [a modular unit] being that big. It was just too big

of a runtime. Some of the tools would just crash because they’d run out of memory trying to design

it, and so the tools chopped the thing in half right down the middle, but in a terrible way. The

[modular unit] wasn’t designed to be two pieces, and then they cut it down the middle, they had

way too many wires crossing that interface” (Autonomous Tool Designer D).

Different Behaviors of Designers

Traditional tools extend the agency of human designers by providing visualization aids and offering

direct manipulation commands for placing components or wiring. The internal operation of the tool is

transparent since the tools directly implement the requested command and show the result in a visible

manner that is understood by the designer. Designers using traditional tools exercise a large degree of

control over how the tool behaves. As one tool designer commented, “It’s still fully specified by the

designer” (Tool Designer O).

 Consequently, the tool maintains a tight relationship with the designer; the tool continuously

receives inputs from the designer, prompting specific actions that help the designer to reach her design goal.

Designers using traditional tools work in small iterations, each of which lasts only a few minutes. Within

each iteration, the designer posits and evaluates possible solutions based on her knowledge and decides

which series of commands will best instruct the tools to move towards a solution. Because the commands

are strictly implemented and immediately reflected in the layout, a designer using traditional tools is able

to predict what outputs will be generated and how the design will be improved. One traditional tool designer

noted: “if you change something, it’s going be more or less the same thing, plus your change” (Traditional

Tool Designer H).

As designers manipulate the layout and search for a plausible solution, each stepwise manipulation

is informed by her evolving understanding of the design problem, her past design experiences, and the

 31

current design goals. Because of bounded cognition, designers using traditional tools work only on a limited

set of alternatives for an existing layout. Designers extend their capacity by implementing laborious and

error-prone design steps using well-established design rules hardwired into the tools. Designers control the

design in that they follow a continuous “trajectory” towards a solution, where each subsequent design action

builds on the cumulative effects of past decisions:

“I mean it seems the experience [using traditional tools] seems like I have a better understanding of

the details of it, and with such large partitions [using autonomous tools] you have to abstract to a

higher level, and you only get to see your work on parts of that if there’s a problem with it. If there’s

no problem, then you just move on. Now it seems in the structured part [using traditional tools] it

was a little more predictable, or a little easier to see ‘I am here and I need to get here’; and at least

for the [autonomous tool] part of it, it’s hard to see, at least for me, ‘This is where I am at and where

I need to get and what it will take to get there.’ [That] isn’t as clear.” (Traditional Tool Designer K)

In contrast, designers using autonomous tools deliver new, incrementally modified constraints to

the autonomous tools and expect that the tool will accommodate those modifications to move the layout

towards their design goals. An autonomous tool designer expressed this as follows: “For [autonomous

tools], we’re capturing inputs and constraints and the tool goes off and synthesizes it. So, for [autonomous

tools], you want to take those inputs and constraints and everything that you feed into the machine and

move them forward to the new process” (Tool Designer O). The tool runs autonomously by generating a

candidate layout. Designers have a relatively low degree of insight into the computational process that

undergirds the generation of this layout. One autonomous tool designer bluntly said, “it is logically very

much a black box to me” (Autonomous Tool Designer D). Therefore, each time the autonomous tools are

run, the designers expect the generation of a single layout from a set of the many possible layouts that would

satisfy the specified constraints.

As it generally takes several days for autonomous tools to generate a complete solution, the design

process is characterized by longer iterations of wider scope (i.e., covering a complete modular unit). One

 32

autonomous tool designer commented that “the whole automated flow is about four days, five days”

(Autonomous Tool Designer C). The built-in randomness of the algorithm combined with the available

computational resources means that designers using autonomous tools cannot directly manipulate

individual design elements: “We said we wanted ‘This constraint and output, this side driver and do this’,

and it [the tool] said, ‘No. I’ll put something else there,’ and did things like that” (Tool Designer O). Given

the unpredictability of the generated placement solution, designers using autonomous tools typically

experiment with multiple, parallel solutions by varying and tweaking the design parameters (i.e., the

specified constraints) and then choosing the “best” result as the starting point for the next iteration: “we

kick them all off in parallel. When they come back, figure out what the best one is and see if that problem’s

been solved” (Autonomous Tool Designer C).

Since the algorithms have the capacity to handle an extremely large number of gates and wirings,

the granularity of the solution space is no longer bounded by the designer’s cognitive capabilities. In

addition, autonomous tools generate layouts that bear little similarity to existing human layouts. In fact, the

layouts tend to baffle and surprise human designers. Therefore, the design process no longer follows a

singular design trajectory and becomes, rather, a family of discrete and independent design choices and

design trajectories, which the designer traverses jointly with the tool. During the course of this process the

tool provides evaluative information as to whether a particular trajectory is worth pursuing. One

autonomous tool engineer noted:

“I don’t understand what my [section] does nearly as well from a logic standpoint as I used to for

my other [sections]. I used to understand. Even [subsections produced by autonomous tools] ten

years ago, I knew what they did. I had looked at the logic specification and understood all the

different blocks of the specification and what it did and I could probably make hand edits to it myself.

Nowadays, no, I don’t. I only know at a high level what it does. I don’t know what each of the different

modules actually produces. I don’t know what each of the [sections] is storing… Every time you run

the [autonomous tools], it completes the cells in completely different locations. So it can vary from

run to run, but even let’s say like it does exactly the same thing and it places two cells really far

 33

apart that needed to be closer together” (Autonomous Tool Designer C).

In sum, the two DA approaches imbue chip design with alternative design logics and lead designers

to experience the enactment of socio-material agency differently. Next, we will theorize our empirical

findings to better understand these differences.

DISCUSSION

When designers use autonomous tools, they enact socio-material agency, the experience of which

can be characterized as being liminal, i.e., a state of emergence marked by ambiguity and multifariousness

faced by designers when multiple possible design trajectories co-exist and are continuously being revised

and rewoven to move a design artifact forward using tools with unknowable input-output relationships. We

summarize our theoretical development in Figure 5 below.

Figure 5. How using autonomous tools produces liminal experiences

Emergence

The experience of liminality can be understood as a state of emergence in two interrelated but

distinct ways. First, the threshold between human and computational agencies has become fleeting and

 34

nebulous, and therefore the effects of various actions becomes emergent, rather than linear. As expressed

by Latour (2005, p. 53), the figurations of agencies, i.e., “the process by which agencies take on observable

properties” continuously changes. Specifically, the input-output relationships of the autonomous tool are,

in principle, unknowable ex ante and ex post. As an example, consider the following: when a designer feeds

an instruction to an autonomous tool, she is, in principle, unable to predict the exact outcomes of this

particular set of instructions. To the autonomous tool, the designers’ instructions are simply one out of

many variables that influence the emergence of a particular outcome. Indeed, the self-learning, genetic

algorithms powering autonomous tools have built-in randomness, compounded by ongoing interactions

with a complex and dynamically shifting computing environment, producing a procrastinated binding that

is highly dynamic both in process and outcomes.

Second, the fleeting threshold between human and computational agencies prompts the emergence

of multiple potential trajectories (i.e., how the design artifact evolves over time). Multiple such trajectories

can and will exist simultaneously and are continuously being revised and rewoven. It becomes difficult to

determine why the socio-material agency, as a whole, is enacted the way it is or to what agencies (human

or computational) specific actions or outcomes should be attributed. This means that the evolutionary

trajectories of the design artifact, i.e., the semiconductor chip that is being designed, continuously exist in

a state of emergence (Henfridsson and Yoo 2014). Hence, the overall design trajectory is not formed by the

consecutive sediments of past design artifacts, therefore rejecting the idea of strict path dependence of

design trajectories (David 1994; David 2001; Liebowitz and Margolis 1995; Van Driel and Dolfsma 2009).

Ambiguity

The ambiguity of the liminal experience faced by designers using autonomous tools is captured by

the assessment of designers that it was difficult, if not outright impossible, to directly connect their inputs

to the outputs generated by their tools (Reed and DeFillippi 1990). This perception is rooted in the dynamic

forms of procrastinated binding performed by such tools (Yoo et al. 2012). Autonomous tools exhibit high

degrees of dynamism because of a) the unique, non-deterministic and self-learning nature of the algorithms

they run, and b) the dynamically shifting nature of the computing environment within which the tools are

 35

used. First, metaheuristic search, such as the use of the genetic algorithms embedded in autonomous tools,

is not fixed during algorithmic execution (Kallinikos et al. 2013). Consequently, algorithmic behavior

remains unpredictable. The self-learning nature of such algorithms introduces additional randomness,

making it more or less impossible to predict outputs other than in a probabilistic sense. Second, autonomous

tools are “computation-heavy” connect with vast, shifting, computing environments. Autonomous tools

perform procrastinated binding dynamically by seeking to utilize various amounts of computing resources

as well as the latest versions of adjacent artifacts (e.g., the surrounding subsections of a chip) each time

they are run. Therefore, each time the algorithm is performed, it potentially faces a different environment

and is therefore likely to produce a different result even when the parameter settings are nearly identical.

The high degree of dynamism exhibited by autonomous tools forms the basis of the unknowability

of their input-output relationships. As a parallel, consider how (Pickering 1993) described how particle

physicists utilize a bubble chamber as an observation instrument. The precise material configuration of the

chamber is never fully known to the scientist, but only “temporally emerges in the real time of practice” (p.

575). The resistances of the chamber “appeared as if by chance – they just happened. It just happened that

when [the scientist] configured his instrument this way (or this, or this) it did not produce tracks, but when

he configured it that way, it did” (p. 576, emphasis original). For a scientist the performance of a bubble

chamber can only be observed in real time. Similarly, the unknowability inherent not only to the

computational agency of autonomous tools, but also to the computing environments within which they

operate, is experienced by designers in real time.

The computational agency of autonomous tools differs, however, in one significant way from the

material agency and its unknowability described by Pickering. Pickering notes that the scientist will

eventually gain a deeper understanding through use of the chamber, thus enabling her to precisely account

for how and why the chosen material configuration of the chamber worked, i.e., her knowledge of the

material agency that she interacts with will grow, at least ex post. The designers using autonomous tools,

in contrast, will, at most, gain a hazy appreciation of how and why the tool behaves as it does. Because the

input-output relationships of such tools are unknowable, both ex ante as well as ex post, designers will

 36

never become fully knowledgeable with regards to the tool’s behaviors.

Multifariousness

The multifariousness of the liminal experience faced by designers using autonomous tools is rooted

in the disintegrating connections across the three temporal dimensions of human agency (the past, present,

and future). When using autonomous tools, it is harder for humans to project into the future because they

cannot reliably predict the trajectories that will be chosen by the autonomous tools. It is also more difficult

for them to draw upon the past, because there is less assurance that the past will be iterated upon or inherited

from in a predictable manner. This then changes the ways in which action is practically evaluated and

executed in the present, i.e., it changes the enactments of human designers.

Ultimately, designers were compelled to “[subject] their own agentic orientations to imaginative

recomposition and critical judgment” (Emirbayer and Mische 1998, p. 1010). For example, designers had

to constantly shift through multiple past experiments and identify suitable candidate histories that would

help them evaluate their present decisions, while projecting appropriate hypotheticals for testing the next

round of alternatives. Through experimentation they sought to continuously adapt (Eisenberg 1990) to the

dynamic and causally ambiguous behavior of autonomous tools. Designers treated their experiments as

“alternative courses of actions [being] tentatively enacted” (Emirbayer and Mische p. 988), indicating that

multiple parallel design trajectories existed simultaneously.

Hence, when human agents use autonomous tools, they are likely to experience the enactment of

temporality as being multifarious. This is because agents using autonomous tools face what Pickering

(1993) refers to as the temporally emergent structure of a problem space where the “contours of agency”

are unknowable ex ante, prompting human agents to continually seek to understand the workings of

computational agency and the outputs that are generated, even if such outputs are only temporarily

stabilized (Pickering 1993, p. 564). Working under such conditions, human agents can never reasonably

connect the past to the future so as to evaluate the progress of their task. Rather, the past becomes a contested

string of multiple possible parallel histories, each with its own set of evaluative criteria, and each offering

a partial and sometimes fleeting insight into the structure of the overall solution space. This historicity

 37

connects the past, present, and future along multiple trajectories. The human agent’s temporal orientation

is conditioned and dominated by the need to make sense of the unpredictable computational agency of

autonomous tools and their parallel histories. The process and interactions between the human designer and

the autonomous tool are woven together from multiple discrete present moments that are rarely directly

connected. Each moment holds multiple alternative conjectures with regard to how the design process may

unfold, only to disappear into the background as new alternative histories are discovered. Since the human

agent can never fully comprehend the overwhelmingly large solution spaces, the manner in which

autonomous tools move each design trajectory forward appears to the human agents as a random walk.

Each successive iteration is associated with the possibility of new probes, each of which may yield a sliver

of understanding when it is combined with the already existing fount of prior trajectories.

THEORETICAL IMPLICATIONS

Our findings have several implications for how to think about the impacts of increased autonomy

of digital technologies, for studies of design and digital innovation, as well how we conceive of the broader

usage of autonomous tools in our contemporary world.

Contemporary theorizing around the use of digital artifacts has identified several characteristics

that digital artifacts share but which are lacking in physical artifacts. These include ontological ambivalence

(Kallinikos et al. 2013), generativity (Zittrain 2006), re-programmability (Yoo et al. 2010),

communicability (Yoo 2010), and so forth. Increasingly, technologies such as Apple’s Siri, Amazon’s

Alexa, and Google Now are used to enhance experiences of using consumer products (such as cars, TV,

etc.). The emergence of these services points to an urgent need to understand the process and consequences

of digital innovations that feature a growing number of autonomous capabilities. Scholars have begun to

explore the level and nature of the autonomy afforded by artificial intelligence technologies that now act as

components in many technological systems, as well as within the context of designing digital artifacts

(Callon and Muniesa 2005; Mackenzie 2006; Orlikowski and Scott 2015). Exploring the liminal

experiences of enacting socio-material agency can add to the research on digital innovation by articulating

 38

more clearly the emergent properties of interactions across data, algorithms, computing infrastructures, and

attendant human practices.

The liminal experience of enacting socio-material agency associated with autonomous tools

suggests that we may need to expand our ontological and epistemological perspectives to understand and

account for the independent runtime actions of autonomous tools imbued with artificial intelligence and

machine learning. If we are to understand the complex structures and dynamics that emerge from

autonomous systems that operate under conditions of dynamic, procrastinated binding, a multiplicity of

perspectives is required. We may, for example, draw on recent advances in assemblage theory (DeLanda

2013; DeLanda 2016; Müller 2015) that represent a renewed interest in materialism as a philosophical

perspective, drawing heavily on theories of evolution and complex adaptive systems. Applying such a

perspective on socio-material agency may help forge a more nuanced theory of procrastinated binding that

explicates how various elements of data, algorithms, and processing capacities interact within dynamic

computing environments to produce emergent outcomes.

Further, our finding that autonomous tools approach design problems in a non-linear way represents

a challenge to received notions of design, such as the dominant idea of linear search and its associated costs

(Simon 1996). Simon’s original theory neither assumed nor discussed “jumps” or “indeterminacy” in

theorizing how design solutions are searched for and “computed.” Nor did he discuss the possibility of

parallelism in the search for a solution. Our findings suggest a renewed focus within IS and organizational

studies on the role of computational technologies in accomplishing complex cognitive activities, such as

those found in design processes. The use and command of autonomous tools are becoming increasingly

common across design professions and they will challenge the inherited conceptual and theoretical

frameworks we have developed to understand their effects (Seidel et al 2018a). These technologies

fundamentally disrupt the idea of design, leaving us with a wide array of unanswered questions. For

example, we need to ask: What is the nature of the loose couplings embedded in consecutive generations

of a design artifact? What is the role of the cognitive strategies and heuristics that designers use to specify

experiments while learning simultaneously from multiple search histories? In sum, this suggests that stage

 39

models (Royce 1970) are insufficient to capture the nature and temporality of design driven by autonomous

tools, no matter how refined the model (Boehm 1988) and irrespective of the degree to which it can account

for the presence of iteration in a given trajectory (Lyytinen and Berente 2017), its rhythm (McGrath and

Kelly 1986), or its speed (Leonardi 2011). Therefore, if we wish to grasp how design changes when

autonomous tools are used to support design tasks, further research is required.

Additionally, traditional conceptions of design are based on the idea that the primary design agency

lies with human designers. Designers draw upon “kernel theories” (Gregor and Jones 2007; Walls et al.

1992) that help scaffold the mental imagery of the preferred design conditions—what the artifact should be

and do in its finished state—and the means for achieving them. This gives rise to a convergent process in

which the preferred solution is incrementally crafted within the problem space through designer-controlled

moves. This idea is firmly embedded in the idea of the purified agency of the designer, who uses

technologies as extensions of herself and therefore sees technologies as “present-at-hand20” (Heidegger

1962; Sennett 2008).

The design processes supported by autonomous tools unfold quite differently. Rather than starting

out with a kernel theory, a designer may start by outlining the task’s goals and constraints before engaging

with varying outputs of autonomous tools driven by their generalized search capabilities. The autonomous

tool, in a sense, continuously abduces (Paavola 2005), i.e., induces and formulates reasonable working

hypotheses with regards to the solution. In doing so, the tool may well discover new variants of the kernel

theory, but this occurs through a process that is black boxed from the perspective of the designer. The search

is composed of a continuous series of discontinuous adjustments between the designer, the tool, and the

solution space. As a result, designers will increasingly have to move away from their traditional role of

artisans endowed with deep knowledge of their tools and materials (Sennett 2008) through which they

realize specific “preferred conditions” (Simon 1996). Instead, designers must become experimentalists,

who probe an uncertain, dynamic world, creating, in the process, provisional theories about how both their

20 Present-at-hand, Vorhandenheit in German, refers to a mode of being of an agent who is merely looking at or

observing something. It reflects the disembodied understanding of an object through a theoretical gaze.

 40

tools and the artifacts they design will work. This suggests that designers are not being replaced by

autonomous tools, but rather that the role of the designer qua designer is changing. Hence, we are observing

a fundamental shift with regard to how design and innovation work is organized which prompts us to

reconsider received theories of design. Recently, Seidel et al. (2018a) suggested that designers need to

approach this type of computational agency via multiple interrelated knowledge practices, namely:

parameterization; process analysis; and the constant modification of algorithms. It is clear that more

research is needed to understand how designers contend with the liminal experiences of enacting socio-

material agency engendered by autonomous tools, where the tools are seen as “ready-to-hand”21 (Heidegger

1962; Sennett 2008).

Our insights with regard to the liminal experiences of enacting socio-material agency while using

autonomous tools extend beyond the domains of design and digital innovation. An increasing number of

applications are imbued with autonomous features that may lead to the types of liminal experiences that we

captured in our case study. For example, consider a situation of riding in an autonomous car, or using driver

assistance technologies. In such a situation the liminal experience of enacting socio-material agency is

brought to the forefront—why does the car (i.e., the technical system) behave the way that it does? Why

does the autonomous driving system react in particular ways to certain human inputs? These are the types

of questions that we will increasingly need to ask as broader ranges of human practices are mediated by

autonomous tools. Indeed, the liminal experience of using such tools forces us to confront issues such as

technology-based trust (Jarvenpaa et al. 1998; Jarvenpaa and Leidner 1999) and ethics (Banerjee et al. 1998;

Smith and Hasnas 1999). This suggests that we need to find ways of making autonomous tools more

transparent and understandable as has been the goal within “explainable AI” (Hagras 2018; Pasquale 2015;

Zhu et al. 2018).

21 Ready-to-hand, Zuhandenheit in German, refers to a mode of being of an agent involved in the world, acting on an

object to achieve something. An object that is ready-to-hand comes into being when it fits into a meaningful part of
a purposeful action.

 41

BOUNDARY CONDITIONS

Our study is a single-site, comparative case study, and therefore confers limited generalizability

(Lee and Baskerville 2003) on to our findings. It will be important for the IS field to encourage similar

studies in other settings and to examine the degree to which the results may be generalized across contexts

and technologies, as well as to identify important contextual elements and boundary conditions. For

example, our study focused on the design of semiconductor chips, which as a design activity resides at the

more complex end of the spectrum while also assuming well-defined and measurable design goals. This

task is also highly amenable to complex algorithmic solutions. This may, potentially, decrease the degree

of knowability that designers experience, compared to design contexts that are simpler. It would therefore

be interesting to understand how autonomous tools interact with human agency in other contexts, such as

the AI-driven design of websites or self-driving cars, drones, and unmanned vehicles.

An important intersection between autonomous tools and related data-generating capacities is

emerging in the form of online crowds (Orlikowski and Scott 2015). The vast datasets that crowds generate

have been crucial for training machine-learning algorithms, enabling them to make fine-grained and

individualized predictions as exemplified by the recommendation engines used by the likes of Amazon and

Netflix. Because of the nature of the context we examined in this paper, we cannot account for such

interactions. It is, however, clearly an important factor that exacerbates the dynamic and unpredictable

nature of computation, and we urge scholars to examine the interactions between autonomous tools and

crowd-generated data.

Autonomous tools and the liminal experiences of enacting socio-material agency will force us to

reconsider how complex knowledge work is organized (Puranam et al. 2014). For example, in our study we

did not analyze the effects of liminality on the coordination and composition of (design) routines (Gaskin

et al. 2014; Lindberg et al. 2016)—two crucial aspects of organizing design and other professional work

teams. We also need to consider issues of trust (Jarvenpaa et al. 1998; Jarvenpaa and Leidner 1999), power

(Levina and Arriaga 2014), privacy and transparency (Pasquale 2015), as well as ethics (Smith and Hasnas

1999) as they relate to use of autonomous tools, since each of these focal phenomena will be irrevocably

 42

changed as liminality enters into domains that have traditionally been dominated by tools with knowable

input-output relationships. The insights provided herein open the door to a host of studies that have the

potential to change the way we think about organizing when using autonomous tools.

CONCLUSION
As autonomous tools move digitalization beyond “paving the cow paths” of design work, future

designers will need to drop their identification as artisans (Sennett 2008) and become more akin to

laboratory scientists, who explore multiple, diffuse design trajectories and related working hypotheses

(Pickering 1993). The lack of knowability of autonomous tools pulls us out of the convenient and familiar

industrial-era assumptions through which we understand the composition and workings of most socio-

technical systems and propels us into unknown territory. It is now incumbent on both scholars and

practitioners to make significant efforts to understand how to live and work in a world where the enactment

of socio-material agency will increasingly be experienced as liminal.

REFERENCES

Archer, M. S., Bhaskar, R., Collier, A., Lawson, T., and Norrie, A. 1998. Critical Realism:

Essential Readings. Psychology Press.
Banerjee, D., Cronan, T. P., and Jones, T. W. 1998. "Modeling It Ethics: A Study in Situational

Ethics," Mis Quarterly), pp. 31-60.
Barad, K. 2003. "Posthumanist Performativity: Toward an Understanding of How Matter Comes

to Matter," Signs: Journal of women in culture and society (28:3), pp. 801-831.
Beane, M., and Orlikowski, W. J. 2015. "What Difference Does a Robot Make? The Material

Enactment of Distributed Coordination," Organization Science (26:6), pp. 1553-1573.
Berente, N., and Yoo, Y. 2012. "Institutional Contradictions and Loose Coupling:

Postimplementation of Nasa's Enterprise Information System," Information Systems
Research (23:2), pp. 376-396.

Bijker, W. E., Hughes, T. P., and Pinch, T. J. 1987. The Social Construction of Technological
Systems: New Directions in the Sociology and History of Technology. MIT press.

Boehm, B. W. 1988. "A Spiral Model of Software Development and Enhancement," Computer
(21:5), pp. 61-72.

Boland, R. J., Tenkasi, R. V., and Te'eni, D. 1994. "Designing Information Technology to Support
Distributed Cognition," Organization Science (5:3), pp. 456-475.

Bourdieu, P. 1998. Practical Reason: On the Theory of Action. Stanford University Press.
Brown, C., and Linden, G. 2009. Chips and Change: How Crisis Reshapes the Semiconductor

Industry. MIT Press.
Burrell, J. 2016. "How the Machine ‘Thinks’: Understanding Opacity in Machine Learning

Algorithms," Big Data & Society (3:1), p. 2053951715622512.

 43

Callon, M., and Muniesa, F. J. O. s. 2005. "Peripheral Vision: Economic Markets as Calculative
Collective Devices," (26:8), pp. 1229-1250.

Corbin, J. M., and Strauss, A. 1990. "Grounded Theory Research: Procedures, Canons, and
Evaluative Criteria," Qualitative sociology (13:1), pp. 3-21.

David, P. A. 1994. "Why Are Institutions the ‘Carriers of History’?: Path Dependence and the
Evolution of Conventions, Organizations and Institutions," Structural Change and
Economic Dynamics (5:2), pp. 205-220.

David, P. A. 2001. "Path Dependence, Its Critics and the Quest for ‘Historical Economics’,"
Evolution and path dependence in economic ideas: Past and present (15), p. 40.

DeLanda, M. 2013. Intensive Science and Virtual Philosophy. Bloomsbury Publishing.
DeLanda, M. 2016. Assemblage Theory. Edinburgh University Press.
Denning, P. J., and Lewis, T. G. J. A. S. 2017. "Computers That Can Run Backwards," (105:5),

p. 270.
Dodgson, M., Gann, D. M., and Salter, A. 2007. "“In Case of Fire, Please Use the Elevator”:

Simulation Technology and Organization in Fire Engineering," Organization Science
(18:5), pp. 849-864.

Eisenberg, E. M. J. C. R. 1990. "Jamming: Transcendence through Organizing," (17:2), pp. 139-
164.

Emirbayer, M., and Mische, A. 1998. "What Is Agency?," American Journal of Sociology (103:4),
pp. 962-1023.

Faraj, S., Kwon, D., and Watts, S. 2004. "Contested Artifact: Technology Sensemaking, Actor
Networks, and the Shaping of the Web Browser," Information Technology & People).

Faraj, S., Pachidi, S., and Sayegh, K. 2018. "Working and Organizing in the Age of the Learning
Algorithm," Information and Organization (28:1), pp. 62-70.

Fayard, A.-L., and Weeks, J. 2007. "Photocopiers and Water-Coolers: The Affordances of
Informal Interaction," Organization studies (28:5), pp. 605-634.

Garsten, C. 1999. "Betwixt and Between: Temporary Employees as Liminal Subjects in Flexible
Organizations," Organization studies (20:4), pp. 601-617.

Gaskin, J. E., Berente, N., Lyytinen, K., and Yoo, Y. 2014. "Toward Generalizable Sociomaterial
Inquiry: A Computational Approach for Zooming in and out of Sociomaterial Routines.,"
MIS Quarterly (38), pp. 849-871.

Gibson, J. J. 1977. “The Theory of Affordances,” in Perceiving, Acting, and Knowing. Towards
an Ecological Psychology. Hoboken, NJ: John Wiley & Sons Inc.

Gibson, J. J. 1979. The Ecological Approach to Visual Perception. Psychology Press.
Giddens, A. 1984. The Constitution of Society: Outline of the Theory of Structuration. University

of California Press.
Gregor, S., and Jones, D. J. J. o. t. A. f. I. s. 2007. "The Anatomy of a Design Theory," (8:5).
Hagras, H. 2018. "Toward Human-Understandable, Explainable Ai," Computer (51:9), pp. 28-36.
Hanseth, O., and Monteiro, E. 1997. "Inscribing Behaviour in Information Infrastructure

Standards," Accounting, management and information technologies (7:4), pp. 183-211.
Heidegger, M. 1962. Being and Time. New York: Harper & Row.
Henderson, K. J. S., Technology,, and Values, H. 1991. "Flexible Sketches and Inflexible Data

Bases: Visual Communication, Conscription Devices, and Boundary Objects in Design
Engineering," (16:4), pp. 448-473.

Henfridsson, O., and Yoo, Y. 2014. "The Liminality of Trajectory Shifts in Institutional
Entrepreneurship," Organization Science (25:3), pp. 932-950.

 44

High, R. 2012. "The Era of Cognitive Systems: An inside Look at Ibm Watson and How It
Works.," IBM Corporation, Redbooks).

Hirschheim, R. 1985. "Information Systems Epistemology: An Historical Perspective," Research
methods in information systems), pp. 13-35.

Holland, J. H., Holyoak, K. J., Nisbett, R. E., and Thagard, P. R. 1989. Induction: Processes of
Inference, Learning, and Discovery. MIT press.

Hutchins, E. 1995. Cognition in the Wild. MIT press Cambridge, MA.
Hutchins, E., Klausen, T. J. C., and work, c. a. 1996. "Distributed Cognition in an Airline

Cockpit,"), pp. 15-34.
Introna, L. D. 2011. "The Enframing of Code: Agency, Originality and the Plagiarist," Theory,

Culture & Society (28:6), pp. 113-141.
Jarvenpaa, S. L., Knoll, K., and Leidner, D. E. 1998. "Is Anybody out There? Antecedents of Trust

in Global Virtual Teams," Journal of management information systems (14:4), pp. 29-64.
Jarvenpaa, S. L., and Leidner, D. E. 1999. "Communication and Trust in Global Virtual Teams,"

Organization science (10:6), pp. 791-815.
Jung, Y., and Lyytinen, K. 2014. "Towards an Ecological Account of Media Choice: A Case Study

on Pluralistic Reasoning While Choosing Email," Information Systems Journal (24:3), pp.
271-293.

Kallinikos, J., Aaltonen, A., and Marton, A. J. M. Q. 2013. "The Ambivalent Ontology of Digital
Artifacts,"), pp. 357-370.

Kavanagh, D., and Araujo, L. 1995. "Chronigami: Folding and Unfolding Time," Accounting,
Management and Information Technologies (5:2), pp. 103-121.

Kling, R., and Scacchi, W. 1982. "The Web of Computing: Computer Technology as Social
Organization," in Advances in Computers. Elsevier, pp. 1-90.

Kroll, J. A. 2018. "The Fallacy of Inscrutability," Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences (376:2133), p. 20180084.

Kvale, S., and Brinkmann, S. 2009. Interviews: Learning the Craft of Qualitative Research
Interviewing. Sage.

Latour, B. 1987. Science in Action: How to Follow Scientists and Engineers through Society.
Harvard university press.

Latour, B. 2012. We Have Never Been Modern. Harvard university press.
Latour, B., Mauguin, P., and Teil, G. J. S. S. o. S. 1992. "A Note on Socio-Technical Graphs,"

(22:1), pp. 33-57.
Latour, B. J. P. y. S. 2005. "Reassembling the Social," (43:3), pp. 127-130.
Leavitt, H. J., March, J. G., and March, J. G. 1962. Applied Organizational Change in Industry:

Structural, Technological and Humanistic Approaches. Pittsburgh: Carnegie Institute of
Technology, Graduate School of Industrial Administration.

Lee, A. S., and Baskerville, R. L. 2003. "Generalizing Generalizability in Information Systems
Research," Information systems research (14:3), pp. 221-243.

Leonardi, P. 2013. "Theoretical Foundations for the Study of Sociomateriality," Information and
organization (23:2), pp. 59-76.

Leonardi, P. M. 2011. "When Flexible Routines Meet Flexible Technologies: Affordance,
Constraint, and the Imbrication of Human and Material Agencies," MIS quarterly), pp.
147-167.

Levina, N., and Arriaga, M. 2014. "Distinction and Status Production on User-Generated Content
Platforms: Using Bourdieu’s Theory of Cultural Production to Understand Social

 45

Dynamics in Online Fields," Information Systems Research (25:3), pp. 468-488.
Liebowitz, S. J., and Margolis, S. E. 1995. "Path Dependence, Lock-in, and History," Journal of

Law, Economics, & Organization), pp. 205-226.
Lindberg, A., Berente, N., Gaskin, J., and Lyytinen, K. 2016. "Coordinating Interdependencies in

Online Communities: A Study of an Open Source Software Project," Information Systems
Research (27:4), pp. 751-772.

Lyytinen, K., and Berente, N. 2017. "Iteration in Systems Analysis and Design: Cognitive
Processes and Representational Artifacts," in Systems Analysis and Design: Techniques,
Methodologies, Approaches, and Architecture. Routledge, pp. 51-71.

Lyytinen, K., Nickerson, J. V., and King, J. L. 2020. "Metahuman Systems = Humans + Machines
That Learn," Journal of Information Technology (0:0), p. 0268396220915917.

Mackenzie, A. 2006. Cutting Code: Software and Sociality. Peter Lang.
MacKenzie, D. 2018. "Material Signals: A Historical Sociology of High-Frequency Trading,"

American Journal of Sociology (123:6), pp. 1635-1683.
MacKenzie, D. 2019. "How Algorithms Interact: Goffman's ‘Interaction Order’in Automated

Trading," Theory, Culture & Society (36:2), pp. 39-59.
Majchrzak, A., Chang, T.-C., Barfield, W., Eberts, R., and Salvendy, G. 1987. Human Aspects of

Computer-Aided Design. Bristol, PA, USA: Taylor & Francis/Hemisphere.
Mangalaraj, G., Nerur, S., Mahapatra, R., and Price, K. H. 2014. "Distributed Cognition in

Software Design: An Experimental Investigation of the Role of Design Patterns and
Collaboration," MIS Quarterly (38:1), pp. 249-274.

Marx, K. 1945. "Capital: A Critique of Political Economy.,").
Mazmanian, M. 2012. "Avoiding the Trap of Constant Connectivity: When Congruent Frames

Allow for Heterogeneous Practices," Academy of Management Journal).
McGrath, J. E., and Kelly, J. R. 1986. Time and Human Interaction: Toward a Social Psychology

of Time. Guilford Press.
Morse, J. M. 2007. "Sampling in Grounded Theory," in The Sage Handbook of Grounded Theory,

A. Bryant and K. Charmaz (eds.). SAGE Publications Ltd, pp. 229-244.
Müller, M. 2015. "Assemblages and Actor‐Networks: Rethinking Socio‐Material Power, Politics

and Space," Geography Compass (9:1), pp. 27-41.
Mutch, A. 2013. "Sociomateriality—Taking the Wrong Turning?," Information and Organization

(23:1), pp. 28-40.
Myers, M. D. 1997. "Qualitative Research in Information Systems," Management Information

Systems Quarterly (21), pp. 241-242.
Myers, M. D., and Newman, M. 2007. "The Qualitative Interview in Is Research: Examining the

Craft," (17:1), pp. 2-26.
Nan, N., and Lu, Y. 2014. "Harnessing the Power of Self-Organization in an Online Community

During Organizational Crisis," Mis Quarterly (38:4), pp. 1135-1158.
Norman, D. A. 1990. The Design of Everyday Things. New York: Doubleday.
Orlikowski, W., and Scott, S. V. 2015. "The Algorithm and the Crowd: Considering the Materiality

of Service Innovation,").
Orlikowski, W. J. 2007. "Sociomaterial Practices: Exploring Technology at Work," Organization

studies (28:9), pp. 1435-1448.
Orlikowski, W. J., and Scott, S. V. 2014. "What Happens When Evaluation Goes Online?

Exploring Apparatuses of Valuation in the Travel Sector," Organization Science (25:3),
pp. 868-891.

 46

Paavola, S. 2005. "Peircean Abduction: Instinct or Inference?," Semiotica (2005:153-1/4), pp. 131-
154.

Pasquale, F. 2015. The Black Box Society. Harvard University Press.
Pickering, A. 1993. "The Mangle of Practice: Agency and Emergence in the Sociology of Science,"

American journal of sociology (99:3), pp. 559-589.
Pinch, T. J., and Bijker, W. E. 1984. "The Social Construction of Facts and Artefacts: Or How the

Sociology of Science and the Sociology of Technology Might Benefit Each Other," Social
Studies of Science (14:3), pp. 399-441.

Puranam, P., Alexy, O., and Reitzig, M. 2014. "What's “New” About New Forms of Organizing?,"
Academy of Management Review (39:2), pp. 162-180.

Reed, R., and DeFillippi, R. J. 1990. "Causal Ambiguity, Barriers to Imitation, and Sustainable
Competitive Advantage," Academy of management review (15:1), pp. 88-102.

Royce, W. W. 1970. "Managing the Development of Large Software Systems: Concepts and
Techniques," Proceedings of the 9th international conference on Software Engineering,
pp. 328-338.

Sarker, S., Chatterjee, S., Xiao, X., and Elbanna, A. 2019. "The Sociotechnical Axis of Cohesion
for the Is Discipline: Its Historical Legacy and Its Continued Relevance," Mis Quarterly
(43:3), pp. 695-720.

Seidel, S., Berente, N., Lindberg, A., Lyytinen, K., and Nickerson, J. V. 2018a. "Autonomous
Tools and Design: A Triple-Loop Approach to Human-Machine Learning,"
Communications of the ACM (62:1), pp. 50-57.

Seidel, S., Berente, N., Martinez, B., Lindberg, A., Lyytinen, K., and Nickerson, J. V. 2018b.
"Autonomous Tools in System Design: Reflective Practice in Ubisofts Ghost Recon
Wildlands Project," Computer (51:10), pp. 16-23.

Sennett, R. 2008. The Craftsman. New Haven, Conn.: Yale University Press.
Shaft, T. M., and Vessey, I. 2006. "The Role of Cognitive Fit in the Relationship between Software

Comprehension and Modification," Mis Quarterly), pp. 29-55.
Shen, Z., Lyytinen, K., and Yoo, Y. 2015. "Time and Information Technology in Teams: A Review

of Empirical Research and Future Research Directions," European Journal of Information
Systems (24:5), pp. 492-518.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser,
J., Antonoglou, I., Panneershelvam, V., and Lanctot, M. J. n. 2016. "Mastering the Game
of Go with Deep Neural Networks and Tree Search," (529:7587), p. 484.

Simon, H. A. 1996. The Sciences of the Artificial. Boston, MA: MIT Press.
Smith, H. J., and Hasnas, J. 1999. "Ethics and Information Systems: The Corporate Domain," Mis

Quarterly), pp. 109-127.
Strauss, A., and Corbin, J. 1998. "Basics of Qualitative Research: Techniques and Procedures for

Developing Grounded Theory," 2 nd Ed).
Suchman, L. A. 2006. Human-Machine Reconfigurations, (2 edition ed.). Cambridge ; New York:

Cambridge University Press.
Thomas, D. E., Hitchcock Iii, C. Y., Kowalski, T. J., Rajan, J. V., and Walker, R. A. 1983.

"Automatic Data Path Synthesis," IEEE Computer (16:12), pp. 59-70.
Tilson, D., Lyytinen, K., and Sørensen, C. J. I. s. r. 2010. "Research Commentary—Digital

Infrastructures: The Missing Is Research Agenda," (21:4), pp. 748-759.
Tong, C., and Sriram, D. 1992. Artificial Intelligence in Engineering Design: Volume Iii:

Knowledge Acquisition, Commercial Systems, and Integrated Environments. Elsevier.

 47

Trist, E. 1981. "The Socio-Technical Perspective. The Evolution of Socio-Technical Systems as a
Conceptual Framework and as an Action Research Program," in Occasional Paper. John
Wiley & Sons, pp. 49-75.

Trist, E. L., and Bamforth, K. W. 1951. "Some Social and Psychological Consequences of the
Longwall Method of Coal-Getting: An Examination of the Psychological Situation and
Defences of a Work Group in Relation to the Social Structure and Technological Content
of the Work System," Human relations (4:1), pp. 3-38.

Turkle, S. 1997. "Seeing through Computers," The American Prospect (8:31), pp. 76-82.
Turner, V. 1987. "Betwixt and Between: The Liminal Period in Rites of Passage," Betwixt and

between: Patterns of masculine and feminine initiation), pp. 3-19.
Van Driel, H., and Dolfsma, W. 2009. "Path Dependence, Initial Conditions, and Routines in

Organizations: The Toyota Production System Re-Examined," Journal of Organizational
Change Management (22:1), pp. 49-72.

Wagner, E. L., Newell, S., and Kay, W. 2012. "Enterprise Systems Projects: The Role of Liminal
Space in Enterprise Systems Implementation," Journal of Information Technology (27:4),
pp. 259-269.

Walls, J. G., Widmeyer, G. R., and El Sawy, O. A. J. I. s. r. 1992. "Building an Information System
Design Theory for Vigilant Eis," (3:1), pp. 36-59.

Walsham, G. J. E. J. o. i. s. 1995. "Interpretive Case Studies in Is Research: Nature and Method,"
(4:2), pp. 74-81.

Wang, L.-T., Chang, Y.-W., and Cheng, K.-T. T. 2009. Electronic Design Automation: Synthesis,
Verification, and Test. Morgan Kaufmann.

Winograd, T., and Flores, F. 1986. Understanding Computers and Cognition: A New Foundation
for Design. Intellect Books.

Xiao, X., Lindberg, A., Hansen, S., and Lyytinen, K. J. J. o. t. A. f. I. S. 2018. "" Computing"
Requirements for Open Source Software: A Distributed Cognitive Approach," (19:12), pp.
1217-1252.

Yin, R. K. 2003. Case Study Research: Design and Methods. SAGE.
Yoo, Y. 2010. "Computing in Everyday Life: A Call for Research on Experiential Computing,"

Mis Quarterly (34:2), pp. 213-231.
Yoo, Y., Boland Jr, R. J., Lyytinen, K., and Majchrzak, A. 2012. "Organizing for Innovation in

the Digitized World," Organization science (23:5), pp. 1398-1408.
Yoo, Y., Henfridsson, O., and Lyytinen, K. 2010. "Research Commentary-the New Organizing

Logic of Digital Innovation: An Agenda for Information Systems Research," Information
Systems Research (21), pp. 724-735.

Zhu, J., Liapis, A., Risi, S., Bidarra, R., and Youngblood, G. M. 2018. "Explainable Ai for
Designers: A Human-Centered Perspective on Mixed-Initiative Co-Creation," 2018 IEEE
Conference on Computational Intelligence and Games (CIG): IEEE, pp. 1-8.

Zittrain, J. L. 2006. "The Generative Internet," Harvard Law Review), pp. 1974-2040.

 48

APPENDIX A: A BRIEF OVERVIEW OF CHIP DESIGN

Since the invention of the IC in the early 60’s, chip performance has grown exponentially (Denning

and Lewis 2017). Semiconductor manufacturers have had to cope with the growing complexity of ICs

through continuous advancement in DA. Chip design improvements have, for the past 30 years, been driven

largely by DA innovations that have improved designers’ productivity to reach the levels necessary to

produce increasingly complex chips without significantly increasing the number of engineers. During this

period, the scope of DA has shifted from supporting a single design step (such as placing a gate or a set of

gates, each carrying a specific Boolean function) and connecting those gates to implement a given set of

Boolean functions to support an expansive set of design tasks, such as generating schematic scaffolds for

rough gate placement, validating support for logic and power, supporting the overall workflow, and

assisting with project coordination. The recent trend has been to turn previously independent tasks that were

initially integrated by the wits of a designer into a single computational task where the tool independently

lays out and validates a fully specified functional logic for a given design feature, such as USB functionality

or memory caching, on an allocated physical area.

IC chip design is roughly divided into four tasks: specification; logic design; physical design; and

validation. Specification determines how the chip is expected to behave logically, and also specifies its

physical performance requirements, such as clock speed, power consumption, or instruction fetch time.

Architects, high-level physical designers, and logic programmers develop such specifications early on

during the chip design. During the logic design stage, logic programmers generate specifications that detail

the logic functions that each section of an IC is expected to perform. The specification is expressed in terms

of Boolean logic functions and timing requirements. The outcome of the logic design is a logic specification

file formulated in a machine-readable programming language such as RTL (Register Transfer Level).

During the physical design stage, physical designers (whom we focus on in this study) implement the given

RTL specifications by placing circuit gates and related logics on an allocated physical space of the IC. The

physical design implements, in silicon, the behavior expressed in the given RTL code, while trying to meet

other physical constraints set up for the chip that might include timing, power, heat, dissipation (leakage of

 49

electrons), noise, and manufacturability. Finally, during validation, physical engineers and validation

specialists test whether the physical chip performance meets the specification.

The use of DA during the physical design phase has often been regarded as the most critical factor

in improving design productivity. It is the longest stage of the chip design process and is also the most error

prone22. At the same time, the effort necessary to carry out the physical design has increased by a steady

factor of two on a biannual basis, thus following Moore’s law (Denning and Lewis 2017). Therefore, close

to 100% of the design work during physical design has been digitalized and heavily automated to keep up

with the continuous need for productivity improvements.

In Table 4 below we explain the technical terms used throughout the manuscript. Note that some

of the names of technologies have been changed to similar-sounding names to protect the confidentiality of

our interviewees.

Table 4. Glossary
Gates Short for “logic gate” or “electronic gate”—the basic component of chip design. It performs one or

several Boolean functions.
Wiring Electronic connections between gates.
FUB “Functional Unit Block”—a region of a chip often allocated to a single designer.
Layout The representation of a physical placement of electronic components that matches the logic

specification and meets specified engineering requirements, such as timing or noise-related
requirements.

Netlist A file containing the list of functional components and connections between these components
based on the schematic. Note however that these components are not “physically” placed but are
instead simulated during layout design.

Rapid Files An intermediary layout created based on a netlist. The rapid file is a prototype-like-layout that
allows the designer to test the given requirements.

Schematics A graphic diagram representing an abstract and rough design based on the logic specification.
Schematics do not necessarily fulfill all the detailed engineering requirements but are rather an
abstract representation of how components relate on a chip.

22 In our interactions with the leaders and design managers at ChipCo they often highlighted the special challenges

related to physical layout.

 50

APPENDIX B: INTERVIEW GUIDE

As our interviews were carried out over 4 years spanning 9 rounds, we adapted our interview

questions over time. During our first site visit, we focused on attaining a comprehensive overview of the

chip design process. We therefore interviewed a large number of designers that included team leads, tool

designers, section managers, and project managers. Based on these initial interviews and our emerging

theoretical insights, we constantly updated our interview questions as presented in Table 5 below. Primary

questions (questions asked at all visits) were repeated in each interview round. “Questions no longer asked

in later visits” were only asked during the first two visits to help us gain a broad understanding of the overall

design practices at ChipCo. “Questions added in later visits” were added during our last three visits as we

focused more on the designers’ relationship with their tools.

Table 5. Interview Guide

Designers Tool
Designers

Management Questions asked at all visits

Yes Yes Yes Please begin by giving me a short history of your own career
and how you came to work with your present organization.

Yes Yes Yes We are interested in various forms of information
technologies that you use in your design project. What are the
key digital tools that your company uses to support design
projects? Can you tell us what specific digital tools your
organization has adopted recently?

Yes Yes Yes We are interested in studying if and how the design practices
and information technology use of your organization have
changed based on your adoption of the tools you mentioned
above.

Yes Yes Yes How has the nature of design tasks in your organization
changed over the years during your time here?

Yes No No Can you describe how the design processes and digital tools
are embedded in each step and phase of the task in the example
you mentioned? What are the reasons for using these tools in
each task?

Yes No No In particular, can you describe your current design practices,
standardized methods, and the specific ways in which you
determine requirements, manage them, and how they interact
with design decisions.

 Questions no longer asked in later visits
Yes No No We are interested in how these digital tools relate to

conventional tools (non-digital) for design work.
Yes No No What has been the relationship between the use of digital and

non-digital tools in the example project you mentioned above?

 51

Yes No No What has been the relationship between the use of digital and
non-digital tools in the example project you mentioned above?

No Yes Yes How did you come to adopt these tools? How did you come
to adopt the design platforms that you mention above? Where
did the requirements emerge for these systems—from
technology opportunities or from learning from your clients,
markets, or internal experiences?

No Yes Yes What were the main barriers in adopting these tools among
different work groups at the different sites involved?

No Yes Yes Were there differences in the ways in which each group or
individual had to work?

 Questions added in later visits
Yes No No How is the use of digital tools related to the time-space

distribution of your design practices?
Yes No No How has your relationship with the tools changed over the life

of the tool, the individual task, and over the life of projects?
No Yes Yes How has the nature of collaboration in your organization

changed over the years during your time here?
No Yes Yes Have you or your organization discontinued use of any of

these collaborative tools? If so, what were the main reasons
for choosing to do so? If not, why?

No Yes Yes Please explain how the use of one of these collaborative tools
has changed over the life of the tool and over the life of the
project.

 52

APPENDIX C: DRAMATURGICAL MODEL OF INTERVIEWS

We followed the guidelines proposed by Myers and Newman (2007) to conduct interviews

according to the “dramaturgical model” (see Table 6 below). By doing so, we were able to get our

interviewees to talk freely about what they actually did. Our interviewees tended to open up and the setting

became a safe space where interviewees “ventilated” through talking about shared experiences, frustrations,

feelings, difficulties, challenges, and perceived puzzles with regards to the work processes that they were

carrying out.

Table 6. Dramaturgical model of interviews
Guidelines Implementations in our study
Situating the
researcher as an actor

We started our interviews by briefly introducing ourselves and providing an
overview of the research. We also asked questions related to interviewees’
background and experience before moving on to the research questions.

Minimize social
dissonance

We explained that the researchers had signed a non-disclosure agreement, i.e.,
that all the conversations would be kept confidential and the subjects would be
kept anonymous. We also built trusting relationships with our interviewees
through repeated conversations and also by interacting with them socially
during coffee breaks and luncheons.

Represent various
“voices”

We interviewed tool designers, architects, management teams, and several
designers at different time points to capture alternative perspectives and
experiences of how the chip design progressed using the two approaches.

Everyone is an
interpreter

All interviews were taped, transcribed verbatim, and stored in a central
repository for comparison. We also verified and discussed our interpretations
with the interviewees in the next rounds of interviews.

Use mirroring in
questions and
answers.

All interviewers were familiar with the technical terminology used in the chip
design, and subsequent questions were constructed using the interviewee’s
language. We were given several tutorials during each visit on how the
technology had changed and also on different aspects of chip design such as
layout, tool designs, architectures, logic design, power, and manufacturing
problems.

Flexibility We adopted a semi-structured interview guide using open-ended questions.
Additional clarifying questions, prompted by an individual interview, were
asked as the need emerged during each interview.

Confidentiality of
disclosures

We signed non-disclosure agreements with the company and all the interview
recordings and transcripts were securely stored.

 53

APPENDIX D: CODING TREE OF INTERVIEW DATA

Table 7. Coding Tree
Representative Quotation First order Second order Third order

Traditional Tools:
“[Designer] can give a logical description of,
“Grab this group and make it horizontal. And
grab this group and make it horizontal. Grab
both of those and make them vertical” (Tool
Designer O)

Autonomous Tools:
“So one of main inputs is gonna be the
[constraint A] and one of the inputs is gonna be
the [constraint B] and the [constraint C]”
(Manager Y)

 Inputs Computation Computational
agency

Traditional Tools:
“It’s still fully specified by the designer, which is
why it’s more intensive and still custom, but we
allow the designer to manipulate the design
easier… in the design space, we’re writing those
tools to allow the designer to manipulate it more
efficiently” (Tool Designer O)

Autonomous Tools:
“So the algorithm is random because at the
beginning it’s random. You don’t know where
you’re going to start. So imagine the air. You
throw a ball somewhere in air, and it’s random
and then it tries to do its best to find the
minimum solution around that there.”
(Autonomous Tool Designer F)

Execution of
Input

Traditional Tools:
“you can make changes in [tool A] to define the
relative placement of the pieces based off the net
list, and so you save your results into a rapid file
and then you iterate upon” (Traditional Tool
Designer J)

Autonomous Tools:
“In the design space, you change the inputs and
then you kick it off to the tool and then the tool
changes the design on its own and spits out
results” (Tool Designer O)

Outputs

Traditional Tools:
“it’s still automated from the standpoint of what
you’re doing is telling it where to place different
design elements, so you can control where things
get placed and then you capture that in a recipe

Input-Output
Relationships

 54

so you can repeat it and then we can use a router,
an auto router to connect it, or you can even direct
to the router as well. You know as much control
as you need, but what’s different, we used to draw
all that by hand.”. (Manger T)

Autonomous Tools:
“I don’t understand what my [section] does
nearly as well from a logic standpoint as I used
to for my other [sections]. I used to understand.
Even [subsections produced using autonomous
tools] ten years ago, I knew what they did. I had
looked at the logic specification and understood
all the different blocks of the specification and
what it did and I could probably make hand edits
to it myself. Nowadays, no, I don’t. I only know
at a high level what it does. I don’t know what
each of the different modules actually produces. I
don’t know what each of the [sections] is
storing…” (Autonomous Tool Designer C)
Traditional Tools:
“all the tools are generally in-house and have
been home-grown over the last 15 to 20 years”
(Tool Designer O)

Autonomous Tools:
“[Autonomous] tools, we tend to buy from third-
party companies like [company A] and [company
B] and we bring those tools in and we customize
them.” (Tool Designer O)

Computational
resources

Procrastinated
binding

Traditional Tools:
“Now we want to capture all that in a tool so if
something has to move, you change the recipe
and then tools just redraw and regenerate it for
you” (Manger S)

Autonomous Tools:
“Some of the tools would just crash ‘cause
they’d run out of memory trying to design it, and
so they chopped the thing in half right down the
middle, but in a terrible way. The FUB wasn’t
designed to be two pieces, and when they cut it
down the middle, they had way too many wires
crossing that interface.” (Autonomous Tool
Designer C)

Impact on design

Traditional Tools:
“Yeah, I mean it’s a handful of minutes, maybe
15 minutes…so it is pretty fast.”
(Traditional Tool Designer J)

Autonomous Tools:

Runtime

 55

“Okay, so this sequence here on our large FUBs
takes nine days. So just doing that first step of is
sometimes six days, and doing all the analyses,
the machines run for two to three days.”
(Autonomous Tool Designer B)
Traditional Tools:
“[We] read the RTL, hand draw the schematics,
hand do the placement.” (Traditional Tool
Designer J)

Autonomous Tools:
“because in [Autonomous Design] you like to do
a lot of different experiments where you try
different knobs or different settings”
(Autonomous Tool Designer G)

Design approach Action Human agency

Traditional Tools:
“So, we’ve done some things to say, ‘Take this
group of logic and array it out horizontally. And
then take these other cells and group them up and
array them out horizontally.’” (Traditional Tool
Designer H)

Autonomous Tools:
“There’s a lot of configuration you can do to the
[tool], so there are a lot of tweaks you can do,
different knobs you can turn to tell it ‘Work harder
on this. Work harder on that. Focus in this area
more.’ So there’s a lot of knobs that you can do
internally other than moving black boxes. You can
force the placement into different areas to reduce
congestion and things like that. So there are a lot
of internal knobs.” (Tool Designer P)

Input to the tools

Traditional Tools:
“if you change something, it’s going be more or
less the same thing, plus your change”
(Traditional Tool Designer H).

Autonomous Tools:
“You couldn’t control it. It would fix not quite the
way you would actually want it. So if you really
wanted things done the way you want it and it was
important, then you had to do it by hand.”
(Autonomous Tool Designer D)

Expectation of
input

Traditional Tools:
“Yeah. I mean probably a couple times [per
day]… there’s more debug time, so being able to
figure out what needs to be changed sometimes
took longer” (Traditional Tool Designer J)

Iterative
dimension

Temporal
organization

 56

Autonomous Tools:
“They iterate every week for years. For more than
two years.” (Manager T)
Traditional Tools:
“I mean it is much more predictable every time
you redo it. You may get a little slight difference
in the routing from the auto router” (Traditional
Tool Designer J)

Autonomous Tools:
“You can’t predict where the gates are going to
be, where the latches are going to be. You can’t
predict any of that.” (Autonomous Tool Designer
D)

Projective
dimension

Traditional Tools:
“my experiences with it is that you can get a pretty
good idea on it. You see what the width of the
[gate] is and things involved” (Traditional Tool
Designer J)

Autonomous Tools:
“kick them all off in parallel. When they come
back, figure out what the best one is and see if that
problem’s been solved” (Autonomous Tool
Designer D)

Practical-
evaluative
dimension

