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Hand-eye calibration method with
a three-dimensional-vision sensor
considering the rotation parameters
of the robot pose

Jinsheng Fu1 , Yabin Ding1, Tian Huang1,2 and Xianping Liu2

Abstract
Hand-eye calibration is a fundamental step for a robot equipped with vision systems. However, this problem usually
interacts with robot calibration because robot geometric parameters are not very precise. In this article, a new calibration
method considering the rotation parameters of the robot pose is proposed. First, a constraint least square model is
established assuming that each spherical center measurement of standard ball is equal in the robot base frame, which
provides an initial solution. To further improve the solution accuracy, a nonlinear calibration model in the sensor frame is
established. Since it can reduce one error accumulation process, a more accurate reference point can be used for
optimization. Then, the rotation parameters of the robot pose whose slight errors cause large disturbance to the solution
are selected by analyzing the coefficient matrices of the error items. Finally, the hand-eye transformation parameters are
refined together with the rotation parameters in the nonlinear optimization solution. Some comparative simulations are
performed between the modified least square method, constrained least square method, and the proposed method. The
experiments are conducted on a 5-axis hybrid robot named TriMule to demonstrate the superior accuracy of the pro-
posed method.
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Introduction

The use of industrial robots is widespread in diverse

machining operations, such as drilling, milling, and grind-

ing. Compared with machine tools, machining robots have

many advantages of large workspace, high degree of free-

dom (DOF), cost-effectiveness, and high flexibility. Hence,

there have been attempts to use industrial robots for

machining processes instead of machine tools. Recently,

machining robots are expected to perform more complex

tasks, such as low-volume automated production in

unstructured environments. It requires the machining

robots not only to have good machining performance but

should be equipped with relevant measuring system to

assist the robots to locate the machining position of work-

piece.1–4 The commonly used measuring system in industry
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can be divided into contact measurement and noncontact

measurement. Due to the complex and irregular surface

profile of the workpiece, the contact measuring system is

difficult to meet the needs of industry. The visual measur-

ing system, as one of the widely applied noncontact mea-

suring systems, is characterized by low cost, compact

structure, easy integration, and installation and is capable

of realizing multiple fields of view measurement when it is

integrated into the robotic system and forms robotic visual

measuring system. And the problems such as occlusion,

shadow, and inefficient measurement data can be over-

come.5 There are many visual measuring systems, such

as monocular vision, stereo vision, structured light, and

fringe projection. Fringe projection measuring system has

been widely used in surface and mold measurement, rapid

prototyping, reverse engineering, industrial detection, and

other fields due to its characteristics of fast measurement

speed, high precision, strong system reliability, and large

amount of acquired point cloud. To obtain three-

dimensional (3D) point clouds of the workpiece accurately

and fast to determine the machining information, such as

the position of the workpiece relative to the robot end

effector and the machining allowance, a 3D-vision sensor

based on fringe projection is adopted into the machining

robot.

Two kinds of calibration need to be performed before

the robotic visual measuring system is used. One is visual

system calibration6–8 that is used to determine the internal

parameters of the camera (called camera calibration) and

external parameters between two cameras (called stereo

calibration) and describes the mapping relationship

between 3D space coordinates and two-dimensional (2D)

image coordinates. Usually, the visual measuring system

has been calibrated in advance by producer. The other is

hand-eye calibration, which is used to determine the trans-

formation between vision sensor and robot end effector. In

this article, hand-eye calibration aims to establish cooper-

ation between hand and eye to assist machining robotic

positioning. A typical process of measurement-assisted

robotic machining is shown in Figure 1. In the measure-

ment process (No. 1), a 3D-vision sensor mounted onto the

end effector of a machining robot measures the workpiece

to obtain the machining information in the vision sensor

frame. Through hand-eye transformation (No. 2), the

machining information under the vision sensor frame is

transformed into the robot end-effector frame. Finally,

according to the current position of the robot end effector

and the machining information, the robot end effector is

driven to the machining position to complete machining

(No. 3). It can be seen that hand-eye calibration is a key

step that accurately determine the position and pose rela-

tionship between vision sensor and robot end effector to

ensure the machining accuracy of the robot.

Essentially, hand-eye calibration is to solve the homo-

geneous transformation matrix between the vision sensor

frame and the robot end-effector frame, also known as the

hand-eye transformation matrix. There are many typical

algorithms for solving the matrix, including screw theory,9

quaternions,10 dual quaternions,11 Kronecker product,12,13

and so on. According to the calculating process, hand-eye

calibration methods can be divided into three categories.

The first belongs to separable closed-form solutions,14–16

which is to solve rotation and translation separately. The

rotation can be solved firstly by linear equations and then

the translation is solved with the solved rotation. This kind

of method is simple in derivation and convenient in solu-

tion, but the error of estimated rotation will propagate into

the solution of the translation. It is sensitive to the noise in

the collected data. The second belongs to simultaneous

solutions,17–19 which is to solve rotation and translation

simultaneously. Obviously, there is no error accumulation

problem in this kind of method, but the rotation estimated

cannot guarantee the orthogonality,20 such as Kronecker

product method. The rotation can be further optimized to

satisfy the orthogonality, but the translation cannot meet

the accuracy requirement. The third belongs to iterative

solutions,21–23 which is to solve rotation and translation

simultaneously by optimizing iteratively the objective

function established. This kind of method usually has high

accurate solution but is complex and time-consuming. In

addition, the accuracy of solution depends on the initial

value for iteration. Choosing wisely, linear method is gen-

erally adopted for estimating initial value and followed by

iterative optimization for accurate solution.

In summary, various hand-eye calibration methods have

been developed and tremendous progress has been made in

solving hand-eye transformation matrix. However, most

researchers only focus on the solution of the hand-eye

matrix by different mathematical tools or how to avoid

error accumulation during the solution. The effects of the

robot pose error on the solution accuracy are not fully

considered in their methods which are applied only in the

case of low accuracy requirement. Some researchers have

proposed to calibrate the hand-eye and the robot simulta-

neously,24,25 which leads to complicated derivation and

may arise linear correlation problems in parameter estima-

tion. Especially for parallel or hybrid robots, the error mod-

eling is actually a complicated problem.26,27

Figure 1. Typical process of measurement-assisted robotic
machining.
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This article aims to guide the positioning of machining

robots using a 3D-vision sensor, which is integrated at the

end effector of machining robots. An accurate hand-eye

calibration method only considering the rotation para-

meters of the robot pose is proposed. The hand-eye calibra-

tion model is simple and easy to establish. In addition, the

linear correlation problems are avoided through the para-

meter analysis. The main contributions of our work are

summarized as follows:

� A constrained least square solution is introduced to

provide good initial values for the next step of

optimization.

� A nonlinear optimization solution that further

improve the solution accuracy is presented simulta-

neously to optimize the rotation parameters that

have a significant impact on the solution accuracy.

� Simulations and experiments are conducted to com-

pare the three different methods and demonstrate the

superiority of the proposed method (PM).

The article is structured as follow. The second section

introduces robotic visual measuring system, coordinate

system and coordinate transformation, and conventional

calibration method. In the third section, the PM of hand-

eye calibration is presented and parameter analysis is also

performed to discuss the effects of different parameters on

the solution accuracy. Some simulation and experimental

results are detailed in the fourth section, and the article ends

with concluding remarks in the fifth section.

Background knowledge

Robotic visual measuring system

As shown in Figure 1, robotic visual measuring system is

mainly composed of a 5-axis hybrid robot and a 3D-vision

sensor. The 3D-vision sensor is mounted onto the A/C type

wrist of the 5-axis hybrid robot, which can be considered as

being fixed in spatial position with the end effector of the

robot. In the working process of the system, the 5-axis

hybrid robot cooperates with the 3D-vision sensor. After

the robot moves to the designated position, the sensor per-

forms the measurement function. After the measurement,

the robot moves to the next designated position, and the

sensor continues the measurement, and so on, until the

whole measurement task is completed. Finally, the mea-

sured data of multiple robot poses are unified in the same

coordinate frame, which generally is the workpiece coor-

dinate frame, and the complex surface profile is recon-

structed or the end effector of the robot is adjusted to the

specified position for machining according to the measure-

ment information. TCP/IP protocol is adopted to construct

data communication between the robot and the vision sen-

sor, which can implement real-time control.

The 3D-vision sensor consists of three sensors, which

are two industrial charge coupled device (CCD) cameras

and a digital light processing projector, as shown in Fig-

ure 2. The measurement principle is based on fringe pro-

jection profilometry. First, multifrequency fringes are

projected onto the object, which is deformed by the depth

change of the object and modulates the depth information

into the fringes. At the same time, two CCD cameras on the

left and right capture the deformed fringe images and trans-

mit the images to data processing system. And then through

phase analysis and phase unwrapping, the same imaging

points of object in the left and right camera planes can be

matched. Finally, 3D information of the object is recovered

according to the system configuration parameters.

Coordinate system and coordinate transformation

As shown in Figure 3, hand-eye calibration mainly involves

three coordinate frames: 3D-vision sensor frame (called

sensor frame for short [SF]), robot end-effector frame

(called end-effector frame for short [EF]), and robot base

frame (called base frame for short [BF]). The origins of

these coordinate frames are S, E, and B, respectively.TS
E

is hand-eye transformation matrix from the sensor frame to

the end-effector frame and is an unknown quantity to be

solved.TE
B is the homogeneous transformation matrix from

the end-effector frame to the base frame and is a known

quantity. For any homogeneous transformation matrix T, it

includes a rotation matrix R and a translation vector t, and it

can be expressed in the form of homogeneous matrix as

follows

Figure 2. Schematic diagram of 3D-vision sensor. 3D: three
dimensional.

Figure 3. Schematic diagram of hand-eye calibration.
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T ¼ R t

0T 1

� �
ð1Þ

where the rotation matrix R is an orthogonal matrix with

nine elements, consisting of three orthogonal column vec-

tors. It can be expressed as

R ¼ ½ r1 r2 r3 �¼
r11 r12 r13

r21 r22 r23

r31 r32 r33

2
664

3
775 ð2Þ

A standard ball is placed in the robot workspace for

calibration, the position of which is guaranteed to be fixed.

P is the spherical center.

After the robot moves to a certain position, the sensor

scans the standard ball and obtains the coordinate of sphe-

rical center. The relationship that the coordinate of the

spherical center is transformed from the sensor frame

SFf g to the base frame BFf g is established

pB ¼ TE
BTS

EpS ð3Þ

where pB represents the homogeneous coordinate of the

spherical center P in the base frame, pS represents

the homogeneous coordinate of the spherical center P in

the sensor frame.

Conventional calibration method

When the robot moves to different positions and the sensor

scans the standard sphere simultaneous, we can obtain the

following equations24

pB ¼ 1T E
BTS

E pS
1

pB ¼ 2T E
BTS

E pS
2

..

.

pB ¼ nT E
BTS

EpS
n

8>>>>><
>>>>>:

ð4Þ

Since the position of the standard ball relative to the

robot base remains invariable, without loss of generality,

the first measurement of the spherical center in the base

frame is regarded as the reference point, and the following

constraint equations can be established

1T E
BTS

E pS
1 ¼ iT

E
BTS

E pS
i i ¼ 2; 3:::n ð5Þ

By handling equation (5), we can obtain

Aix ¼ bi ð6Þ

where Ai¼½ pT
s1 � R1 � pT

si � Ri R1 � Ri � i ¼ 2; 3::: n,

x¼
� vecðRhÞ

th

�
, bi ¼ ti � t1, ps1, and psi are the corre-

sponding nonhomogeneous coordinates of pS
1 and pS

i ,

respectively. R1 and Ri are the corresponding rotation

matrices of 1T E
B and iT

E
B, respectively. t1 and ti are the

corresponding translation vectors of 1T E
B and iT

E
B,

respectively.Rh and th are, respectively, the rotation matrix

and translation vector of the hand-eye transformation

matrix TS
E.vecðÞ represents vectorization operation. And

vecðRhÞ¼ð rT
h1 rT

h2 rT
h3 Þ

T
,Rh ¼ ½ rh1 rh2 rh3 �.�

denotes Kronecker operation. Superscript T is transpose

symbol. Assuming C1 is a n1 � n2 matrix, C2 is a

n3 � n4 matrix, then C1� C2 is a n1n3 � n2n4 matrix, and

the following equation can be obtained

C1� C2¼

c11C2 � � � c1n2
C2

..

. . .
. ..

.

cn1 1C2 � � � cn1 n2
C2

2
664

3
775 ð7Þ

According to equation (4), multiple equations similar

to equation (6) can be obtained. The least square solution

of hand-eye transformation parameters obtained is as

follows

~xLS¼
Xn

i¼2

AT
i Ai

 !�1 Xn

i¼2

AT
i bi

 !
ð8Þ

Since no constraint is imposed on the rotation of the

hand-eye transformation matrix for solution, the rotation

estimated is not orthogonal. The direct method is to rear-

range the rotation ~xLSð1 : 9Þ of the least square solution

~xLS into the form of a rotation matrix

~RLS ¼ matrix
�

~xLSð1 : 9Þ; 3; 3
�

ð9Þ

where matrix
�

xð1 : 9Þ; 3; 3
�

is matrixing operation and is

inverse operation of vecðRhÞ. Assuming c is a m1m2 vec-

tor, then matrixðc;m1;m2Þ means to rearrange c as a

m1 � m2 matrix. ~xLSð1 : 9Þ represents the first nine ele-

ments in the vector ~xLS. The singular value decomposition

of the rotation matrix obtained ~RLS is computed in the form

~RLS¼ULV T ð10Þ

The ~RLS is corrected as follows

~RMLS ¼ UV T ð11Þ

The results with corrected rotation matrix are referred as

modified least square solution ~xMLS as follows:

~xMLS¼
vecð~RMLSÞ

~xLSð10 : 12Þ

 !
ð12Þ

Proposed method

Constraint least square solution

The translation ~xLSð10 : 12Þ of the modified least square

solution is not corrected synchronously with the rotation

matrix ~RLS . And ~xMLS is no longer optimal in the sense of
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least squares. Considering the orthogonality of the rotation

matrix, a constraint least square model is established

min
Xn

i¼2

jjAix� bijj2

s:t:

rT
h1 � rh1 � 1 ¼ 0

rT
h2 � rh2 � 1 ¼ 0

rT
h3 � rh3 � 1 ¼ 0

rT
h1 � rh2 ¼ 0

rT
h2 � rh3 ¼ 0

rT
h1 � rh3 ¼ 0

8>>>>>>>>>>><
>>>>>>>>>>>:

ð13Þ

where jjjj denotes the Frobenius norm. This model is solved

by introducing Lagrange multipliers28 and the constraint

least square solution is given as

ð~xCLS; ~ljÞ ¼ arg min
x;lj

Xn

i¼2

jjAix� bijj2þ
X3

j¼1

ljðxTGjx� 1Þ

þ
X6

j¼4

ljðxTGjxÞ
ð14Þ

where li is a Lagrange multiplier. Gi is a coefficient matrix

corresponding to the constraint in equation (13). The

obtained rotation in equation (14) is considered as being

orthogonal.

Nonlinear solution considering the rotation
parameters of the robot pose

According to equation (5), the accuracy of the reference

point in the base frame is affected by both the measurement

error of the sensor and the robot pose error. To obtain a

more accurate reference point, the first measurement of the

spherical center in the sensor frame can be referred as the

reference point. As the accuracy of the reference point is

only affected by the measurement error and one error accu-

mulation process is reduced, the accuracy of the reference

point in the sensor frame is higher than that in the base

frame, which provides the possibility to make a better esti-

mation for the hand-eye transformation parameters. How-

ever, the measurement by the sensor transformed from the

sensor frame under other robot poses to the sensor frame

where the reference point is located suffers from more error

propagation and error accumulation. Therefore, additional

parameters are introduced to reduce the effects of the errors

on the solution accuracy. In addition, excessive additional

parameters will lead to linear correlation between the para-

meters and reduce the accuracy of the solution. It is neces-

sary to analyze the effects of all the candidate parameters

on the solution accuracy. Through the parameter analysis in

the “Parameter analysis” section, we observed that slight

errors of the rotation parameters can cause large amount of

error. Hence, the rotation parameters of the robot pose are

regarded as the additional parameters and are optimized in

a nonlinear calibration model together with the hand-eye

transformation parameters. Based on the reference point in

the sensor frame, the nonlinear calibration model is estab-

lished as follows

f iðRi;R1;Rh; thÞ ¼ ps1i � ps1; i ¼ 2; :::; n ð15Þ

ps1i ¼ ðR1RhÞTRiRhpsi þ ðRT
h RT

1 Ri � RT
h Þth þ ðR1RhÞTðti � t1Þ

ð16Þ

where f iðRi;R1;Rh; thÞ means the ith measurement error

in the sensor frame when the first measurement of the

spherical center is as the reference point. ps1i represents

the coordinates of the spherical center transformed from

the sensor frame with the ith robot pose to the sensor

frame with the first robot pose. In addition, to ensure the

orthogonality of the rotation matrix calculated in the opti-

mization process, the rotation matrices Ri;Rh;R1 are para-

meterized by 3D vectors vi;vh;v1, respectively. The

parameters of the nonlinear model include Ri;Rh;R1;th.

Estimating the parameters of the nonlinear model in equa-

tion (15) is equivalent to minimizing the following objec-

tive function

Xn

i¼2

f iðRi;R1;Rh; thÞTf iðRi;R1;Rh; thÞ ð17Þ

This is a nonlinear optimization problem, which is

solved using Levenberg-Marquardt (LM) algorithm.29

Nonlinear optimization requires a good initial value to

ensure the accuracy of the solution. Here, the constraint

least square solution in equation (14) is used as the initial

values. We can obtain

ð~Ri; ~R1; ~Rh;PM;~th;PMÞ¼ argmin
Ri;R1;Rh;th

Xn

i¼2

f iðRi;R1; ~Rh;CLS;~th;CLSÞT

f iðRi;R1; ~Rh;CLS;~th;CLSÞ

ð18Þ

where ~Rh;CLS;~th;CLS represents the hand-eye transformation

parameters solved by equation (14). The central step of LM

algorithm is the solution of the normal equations that is

given as follows

ðJ TJ þ bE3nþ6ÞDu ¼� J Tf ð19Þ

where

J ¼ ½ J T
2 J T

3 � � � J T
n �

T;

J i ¼
@f i

@v2

� � � @f i

@vn

@f i

@v1

@f i

@vh

@f i

@th

" #
; i ¼ 2; ::; n

ð20Þ

f ¼ ½ f T
2 f T

3 � � � f T
n
�T ð21Þ

Du ¼½DvT
2 � � � DvT

n DvT
1 DvT

h DtT
h �

T ð22Þ

J is the Jacobian matrix of f. The parameter b varies from

iteration to iteration.29 E3nþ6 is the ð3nþ 6Þ � ð3nþ 6Þ

Fu et al. 5



identity matrix. The iterative value Du can be obtained by

solving the normal equations.

Du ¼� ðJT J þ bE3nþ6Þ�1
JT f ð23Þ

The obtained Du is subsequently used to update

Ri;R1;Rh; th by

Ri;new¼Ri;oldexpð½Dvi�^Þ; i ¼ 1; 2; :::; n; h

th;new ¼ th;old þ Dth

(
ð24Þ

The iterative process does not terminate until the varia-

tion of jjf jj falls below a set threshold, which indicates that

the parameters converge to the optimal value.

The PM is concluded in Algorithm 1:

Algorithm 1. Nonlinear optimization method considering the rotation parameters

~

~

~

~

6 International Journal of Advanced Robotic Systems



Parameter analysis

In this section, parameter analysis is carried on to select the

key parameters that have a great impact on the solution

accuracy of hand-eye transformation parameters. The key

parameters will be as additional parameters and optimized

together with the hand-eye transformation parameters to

improve the solution accuracy.

It has been proved30 that the solution accuracy is related

to the condition number of the Jacobian matrix J. Matrices

with small condition number are said to be well-

conditioned. In other words, the smaller the condition num-

ber of J, the better the solution. To understand the impact of

data errors on the solution, the total differential of function

f iðRi;R1;Rh; thÞ is given as follows

Df i¼
@f i

@psi

Dpsi þ
@f i

@ti

Dti �
@f i

@t1

Dt1þ
@f i

@vi

Dvi

þ @f i

@v1

Dv1þ
@f i

@vh

Dvh þ
@f i

@th

Dth

ð25Þ

where f i is short for f iðRi;R1;Rh; thÞ. And

Dpsi;Dti;Dt1;Dvi;Dv1 denote the data error items, the

coefficient matrices of which need to be analyzed. The

derivatives of f i with respect to psi; ti; t1;vi;v1 are given

as follows

@f i

@psi

¼ðR1RhÞTRiRh

@f i

@ti

¼ðR1RhÞT

@f i

@t1

¼ðR1RhÞT

@f i

@vi

¼� ðR1RhÞTRi½Rhpsi þ th�^

@f i

@v1

¼RT
h ½RT

1 ðRiRhpsi þ Rith þ ti � t1Þ�^

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð26Þ

In addition, Dvh;Dth denote the parameter items that

need to be estimated. The derivatives of f i with respect to

vh; th are given as follows:

@f i

@vh

¼½ðR1RhÞT
�

RiRhpsi þ ðRi � R1Þthþti � t1

�
�^ � ðR1RhÞTRiRh½psi�^

@f i

@th

¼ðR1RhÞTRi � RT
h

8>>>><
>>>>:

ð27Þ

where ½ �^ denotes Lie bracket.31 It can be seen that
@f i

@ti
; i ¼ 2; :::; n remains unchanged and is equal to

@f i

@t1
. If

ti; t1 are optimized as additional parameters, it will cause

the linear correlation of the columns of J, which will seri-

ously increase the condition number of J. Note that
@f i

@psi
is an

orthogonal matrix and does not change the norm of the

error Dpsi, and the measurement accuracy of the sensor is

relatively high (The measurement accuracy is given in the

“Experiments” section), the effect of the measurement

error caused by the sensor is ignored.

Observe the constitution of
@f i

@vi
and

@f i

@v1
, we can find that

@f i

@vi
and

@f i

@v1
can amplify the norm of Dvi and Dv1, respec-

tively, due to these items psi; th; ti � t1. This means that

slight errors Dvi and Dv1 can cause large error items
@f i

@vi
Dvi and

@f i

@v1
Dv1. As these errors are shared by the

hand-eye transformation parameters Rh; th, the solution

will suffer from a large disturbance. The rotation para-

meters of the robot pose should be used as the additional

parameters that significantly impact the solution accuracy

and are optimized together with the hand-eye transforma-

tion parameters.

Simulations and experiments

Some simulations and experiments are carried out to verify

the effectiveness of the PM. The PM is compared with the

modified least square method (MLS) and the constraint

least square method (CLS) under different aspects.

Simulations

The simulations are performed to compare the perfor-

mance of the three methods described in this article

from noise level and data bulk. The true values of

the hand-eye transformation parameters �vh;�th are given.

The TriMule robot32 is used for the simulations. m(m ¼
10, 20 . . . 100) robot poses �vi;�t if gi¼1;:::;m are randomly

generated in the robot workspace, and one measurement

data psi by the sensor under some robot pose is randomly

generated simultaneously. According to equation (5), the

remaining m � 1 measurement data psif gi¼1;:::;m�1 can be

calculated. Different levels of noise are added to the

generated data as follows: psi  �psi þ Dpsi;vi �viþ
Dvi; ti �t i þ Dti

Fu et al. 7



Dpsi*N

�
0;kdiagðs2

px;s
2
py;s

2
pzÞ
�

Dvi*N

�
0;kdiagðs2

!x;s
2
!y;s

2
!zÞ
�

Dti*N

�
0;kdiagðs2

tx;s
2
ty;s

2
tzÞ
�

8>>>><
>>>>:

ð28Þ

where Dpsi;Dvi;Dti are normally distributed noise.

k 2 ½1; 10� is noise level. s2
i ; i ¼ px; :::; tz is variance. The

rotation error erro and translation error ertr are defined in

the following equations

erro ¼
1

N

XN

i¼1

jj~vh;i � �vhjj ð29Þ

ertr ¼
1

N

XN

i¼1

jj~t h;i � �t hjj ð30Þ

where ~c and �c strand for the estimated value and the true

value, respectively. The rotation matrices of the hand-eye

transformation matrix ~Rh; �Rh are parameterized by 3D vec-

tors ~!h; �!h. The rotation matrix of the robot pose �Ri gen-

erated is also parameterized by 3D vector �!i. N is total

number of trials.

(a) Noise level

We set 10 noise levels and randomly select 20 sets of

data to estimate the hand-eye transformation matrix with

the three methods described above under each noise level;

500 trials are carried out under each noise level to get the

average error of rotation and translation. The simulation

results are shown in Figure 4. It shows the rotation error

and translation error of the three methods at different noise

levels.

It can be seen that with the increase of noise level, the

rotation error and the translation error of the three meth-

ods increase. In terms of solving the rotation matrix, the

accuracy difference of the three methods is not obvious,

while in solving the translation vector, the accuracy of

the PM is significantly better than the other two

methods.

(b) Data bulk

We select different amounts of data (m¼ 10, 20 . . . 100)

to estimate the hand-eye transformation matrix using the

three methods under low, medium, and high noise levels.

Similarly, 500 trials are carried out under each noise level

and the same amount of data to get the average error of

rotation and translation. The simulation results are shown

in Figure 5. Figure 5(a) to (c) shows the rotation error and

translation error of the three methods with different

amounts of data under low, medium, and high noise levels,

respectively.

The simulation results indicate that the rotation error

and the translation error of the three methods decrease with

the amount of data increasing under each noise level. The

accuracy improvement of the three methods is the most

obvious when the amount of data becomes from 10 to 20.

When about 40 sets of data, the accuracy improvement rate

slows down significantly.

In terms of solving the rotation matrix, the PM is slightly

better in accuracy than the other two methods before 20 sets

of data. After 30 sets of data, MLS becomes the best in

accuracy, and the PM is almost the same as CLS in

accuracy.

In terms of solving the translation vector, the PM shows

excellent advantages in accuracy. The accuracy difference

between CLS and MLS gradually becomes smaller.

According to the simulation results of noise level and

data bulk, the PM outperforms in the accuracy of the hand-

eye transformation matrix than MLS and CLS. Balancing

accuracy and efficiency in practical applications, it is rec-

ommended to select about 20 sets of data to estimate hand-

eye transformation matrix.

Experiments

(a) Experimental setup

The experimental setup mainly consists of a 5-axis hybrid

robot called TriMule (averaged repeatability 0.02 mm), a

3D-vision sensor developed by the research team of Tianjin

University (field of view 170 mm � 170 mm), a designed

Figure 4. Rotation error and translation error at different noise levels.
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artifact with known dimensions and data processing sys-

tem, as shown in Figure 6. The artifact has two standard

balls, ball A with the diameter of 19.9886 mm, ball B with

the diameter of 19.9878 mm, whose center distance

between the two balls is 59.8573 mm. The data processing

system monitors the measurement state in real time and

guarantees the measurement quality of the 3D-vision sen-

sor. It also provides images and 3D-point cloud display.

(b) 3D-vision sensor accuracy test

Before verifying the calibration method, the measure-

ment accuracy of the sensor should be tested. The arti-

fact is measured by the sensor from different positions,

and the 3D-point cloud of the artifact is obtained. The

diameter of ball A and ball B and the center distance

between the two balls are calculated by fitting the point

cloud measured. By comparing the calculated value with

the standard value of the artifact, we can evaluate the

measurement accuracy of the sensor. The measurement

experiment of the artifact is shown Figure 7. The

measurement results are listed in Table 1. Mean absolute

error (MAE) represents the deviation between the mea-

sured value of the sensor and the truth value. Standard

deviation (SD) represents the dispersion of the measure-

ment data. MAE of ball A diameter, ball B diameter and

the center distance is 0.0150 mm, 0.0101 mm, and

0.0058 mm, and SD is 0.0041 mm, 0.0094 mm, and

0.0045 mm, respectively, indicating that the accuracy

of the sensor is enough high for the hand-eye

calibration.

(c) Measurement-assisted robotic positioning

To compare the accuracy of the three methods, the hand-

eye calibration experiment is carried out with the ball A of

the artifact, and the hand-eye transformation matrix is cal-

culated using the three methods. An important application

of hand-eye calibration is to assist robotic positioning with

vision sensors. Under the same conditions, the accuracy of

auxiliary robotic positioning reflects the accuracy of hand-

eye calibration. Hence, an analog experiment is designed to

Figure 5. Rotation error and translation error with different amounts of data: (a) low noise level, (b) medium noise level, and (c) high
noise level.
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simulate the robotic positioning process of assisted by the

3D-vision sensor. By comparing the positioning accuracy,

the accuracy of the three methods in solving the hand-eye

transformation matrix can be indirectly evaluated.

The artifact is placed at a position in the robot work-

space. The ball A of the artifact is measured by the sensor

from one robot pose, and the ball B is measured from the

other robot pose. The spherical center coordinates of ball A

and ball B are transformed from the sensor frame to the

base frame, respectively. The spherical center coordinates

of ball A in the base frame are regarded as the starting

point, and the center coordinates of ball B are regarded as

the target point for positioning. The positioning error erpo is

defined as follows

erpo ¼ jdest � dsj ð31Þ

dest ¼ jj1T E
B

~T
S

E pS
a � 2T E

B
~T

S

E pS
b jj ð32Þ

where dest; ds represent the estimated value and standard

value of the ball center distance. pS
a ; p

S
b represent the homo-

geneous coordinates of the ball A’s center in the sensor

frame at one robot pose 1T E
B and ball B’s center at the other

robot pose 2T E
B, respectively.

The artifact is placed at 20 different positions in the

robot workspace. The positioning errors are shown in Fig-

ure 8. The maximum/mean positioning errors are 0.1133/

0.0367 mm (MLS), 0.0961/0.0278 mm (CLS), and 0.0703/

0.0244 mm (PM), respectively. It can be seen that the

Figure 6. Experimental setup.

Figure 7. Measurement experiment: (a) measurement of the artifact and (b) 3D-point cloud of the artifact. 3D: three dimensional.
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positioning errors with the PM get lower than that with the

other two methods.

(d) Point cloud registration

Another important application of hand-eye calibration is

to associate point clouds of the workpiece measured from

different robot poses into a common coordinate frame to

reconstruct the 3D model of the workpiece. Similarly, the

accuracy of the three methods can be indirectly compared

through the accuracy of the 3D model reconstructed.

The artifact is placed at a position in the robot work-

space and measured by the sensor from two different robot

poses. Both sets of point clouds are transformed from the

sensor frame to the base frame and are stitched together to

get the stitched model. The diameter of ball A and ball B of

the stitched model can be calculated and be compared with

the standard value of the artifact to get the diameter errors.

The point cloud registration process is shown in Figure 9.

The artifact is placed at 20 different positions in the

robot workspace. The diameter errors of ball A and ball

B are shown in Figure 10. The experimental results of point

cloud registration are summarized in Table 2 and further

demonstrate the superiority of the PM.

Conclusions

To guide the positioning of the machining robots, a 3D-

vision sensor is integrated at the end effector of machining

robots and form the robotic visual measuring system for

positioning and measurement. We have proposed an accu-

rate hand-eye calibration method to determine the transfor-

mation between the sensor and the robot end effector. A

hand-eye calibration model is established in the sensor

frame and is capable of providing the more accurate refer-

ence point for the solution of hand-eye transformation

Table 1. Measurement results of the artifact.

Position
Ball A diameter

(mm)
Ball B diameter

(mm)
Center distance

(mm)
Ball A diameter

error (mm)
Ball B diameter error

(mm)
Center distance

error (mm)

1 20.0075 19.9738 59.8696 0.0189 �0.0140 0.0123
2 19.9954 19.9737 59.8506 0.0068 �0.0141 �0.0067
3 20.0036 20.0001 59.8626 0.0150 0.0123 0.0053
4 20.0063 19.9895 59.8628 0.0177 0.0017 0.0055
5 20.0025 19.9790 59.8609 0.0139 �0.0088 0.0036
6 20.0057 19.9730 59.8610 0.0171 �0.0148 0.0037
7 20.0080 19.9903 59.8637 0.0194 �0.0148 0.0037
8 20.0082 19.9863 59.8638 0.0196 �0.0015 0.0065
9 19.9986 19.9706 59.8621 0.0010 �0.0172 0.0048
10 20.0007 19.9733 59.8608 0.0121 �0.0145 0.0035
MAE (mm) 0.0150 0.0101 0.0058
SD (mm) 0.0041 0.0094 0.0045

SD: standard deviation; MAE: mean absolute error.

Figure 8. Positioning error at different positions of the artifact.

Figure 9. Point cloud registration process.
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parameters. A nonlinear optimization algorithm has been

proposed. It is implemented with the consideration of the

effects of the robot pose error, where it should be neces-

sary to consider in high precision robotic machining. To

avoid the linear correlation problems, parameter analysis

is performed and the rotation parameters of the robot pose

having a significant impact on the solution accuracy are

selected as additional parameters to be optimized. A con-

straint least square solution has been given and provides

good initial values for optimization. The simulation

results on noise level and data bulk demonstrate that the

PM has higher accuracy in solving hand-eye transforma-

tion matrix than MLS and CLS. Positioning and measure-

ment experiments are designed and are carried out on a

5-axis hybrid robot named TriMule. The maximum/mean

positioning errors have been reduced from 0.1133/0.0367

mm (MLS), 0.0961/0.0278 mm (CLS) to 0.0703/0.0244

mm (PM) in the positioning experiment, and the maxi-

mum diameter errors of ball A and ball B have been

reduced from 0.1565/0.1433 mm (MLS), 0.1258/0.1105

mm (CLS) to 0.0899/0.0788 mm (PM) in the point cloud

registration experiment. The experimental results further

prove the superiority of the PM over MLS and CLS in

terms of positioning accuracy and point cloud stitching

accuracy. Additionally, the measurement accuracy of the

3D-vision sensor is also tested.

In the future work, we will fix the machining robot on a

mobile platform and develop a mobile robotic machining

system for large complex components. The calibration

method will be investigated to ensure global positioning

of the mobile robot.
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