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Abstract

The aim of this work is to provide a method to find explicitly generators for the

Picard group of a K3 surface of degree four defined over a finite field.

This work has been motivated primarily by the difficulty related to this problem, and by

the lack of examples in the literature.

Another question related to this problem is if given a K3 surface of degree 4 defined over

a finite field, is it possible to determine the minimal degree of a non complete intersection

curve lying over it.

We could not answer completely to this question, but we were still able to find algorithms

to determine whether or not it contains a conic defined over an extension of the base field.

We were also able to determine an algorithm to find twisted cubics defined over the base

field in case it is F2.

vi



Chapter 1

Introduction

The study of K3 surfaces has seen many developments in the recent years.

While many problems have been solved and our understanding grown, there are still many

open question on the arithmetic of those surfaces.

In particular, one big question regards divisors on K3s. In this thesis we will focus on this

problem looking at quartic K3 surfaces defined over a finite field.

In this thesis we will try to dig into this problem focusing on K3 surfaces defined over F2.

Thanks to the work of Degtyarev, Rams, Schütt and Veniani we now have a complete

picture of how many lines can be contained in a K3 surface and we also know which con-

figurations of lines are admissible.

However, not much is know if we turn towards higher degree curves.

For example, even though there are examples in the literature of K3 surfaces in charac-

teristic 0 with a big number of conics no reasonable upper bound is known.

Even less is know regarding non plane curves (such as twisted cubics).

Knowing divisors on a surface is a key ingredient when trying to compute the Picard

rank. Even a small set of curves could potentially determine a finite index sublattice of

the former.

Computing the Picard rank for a K3 surface X over Q is in most cases a very difficult

question to answer. One has to find an upper and lower bound and hope to get the coin-

ciding. The lower bound can be found by finding divisors and then use the Gram matrix.

On the other hand, reducing modulo a prime p we get another K3 surface Xp over a finite

field whose Picard rank is greater or equal than ρ(X). Hence, we can get an upper bound

for the rank over Q.

Computing the Picard rank over finite fields is normally easier than characteristic 0 since

we can use Tate conjecture.

Namely, the factorization of the zeta function tells immediately not only the rank, but

also the minimal field extension needed to achieve the geometric rank using a base field

extension.

Starting from this, Van Luijk presented the first example of a K3 surface with Picard rank

1 also providing an algorithm to determine if the latter holds.

1



His method relies on finding two different primes p, q for which the reductions Xp, Xq have

Picard rank 2 and different discriminants up to a square. Hence, he has to find a curve

on each surface, then the computation of the discriminant is trivial.

Once the discriminants are known, if they lay in two different classes modulo squares, then

the K3 has rank 1 over Q.

The starting point for our calculations has been the Tate Conjecture. For K3 surfaces it

is now a theorem, thanks to recent works by M. Lieblich, D. Maulik, F. Charles, W. Kim

and W. Madapusi Pera. Using this result it is possible to determine the Picard number of

a K3 surface defined over a finite field.

However, the problem of finding generators for such group still remains open.

We have first been able to write algorithms that make it possible to determine whether or

not a smooth quartic in P3(Fp) contains lines and conics.

With regards to cubic curves, if we have a plane cubic lying in a quartic this would imply

that we have a plane section made by the cubic and a line. Hence, when dealing with

cubics we should only take into account twisted cubics.

For such curves we had to work in a slightly different way then before. We started fixing a

model γ for such a curve and then we determined all possible smooth quartics containing

it.

Then, we divided this set into PGL4 orbits. The cardinality of each of them will be a

multiple of the order of Stab(γ), and the latter is isomorphic to PGL2 . For example, over

F2 it has order 6.

So, we ended up determining the number of quartics in every orbit up to multiplication

by an element of the stabilizer of γ.

All twisted cubics are projectively equivalent, hence the former is equivalent to the number

of twisted cubics lying over a specific K3.

Once we have these informations it is possible to find the sublattice of the Picard group

generated by curves of degree less or equal than 3.

We applied such algorithms to K3 surfaces of degree four defined over F2. Thanks to

Kedlaya and Sutherland, we have the complete list of such surfaces up to PGL4 action.

Morever, they also provide the list of associated zeta functions, enabling us to compute

the geometric Picard number of all these surfaces.

Having the explicit zeta function we know how the Picard number increases over finite

extensions of F2. In particular, we know on which extension the Picard group would be

completely defined, making our computations substantially faster.

Using the previously described algorithms, we could determine curves of low degree lying

on such surfaces and for many of these surfaces we could find a sublattice of finite index

of the Picard group.

In order to achieve this for all the surfaces we would have to look for curves of higher

degree, but up to now we have not found a suitable algorithm apart from brute force,

which would be computationally unfeasible.
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Chapter 2

K3 surfaces

1 Introduction to K3 surfaces

Suppose X is a smooth irreducible projective surface defined over a field K.

Definition 1.1. • A prime divisor on X is a curve Y on X. A Weil divisor is a finite

formal linear combination
∑

i∈I niDi of prime divisors over Z. The divisors form a

group Div(X).

• A Weil divisor is effective if ∀i ∈ I, ni ≥ 0.

• Let f be a rational function on X and vZ be the discrete valuation defined by a prime

divisor Z. We can then define Div(f) = (f) :=
∑

Z vZ(f)Z. Such divisors form a

subgroup Princ(X) ≤ Div(X).

We now introduce three different equivalence relations for divisors: linear, numer-

ical and algebraic.

Definition 1.2. • Two divisors C,D are linearly equivalent if there exists a rational

function f such that C −D = div(f).

• The Picard group of X is defined as Pic(X):= Div(X)
Princ(X) , meaning that it is the group

of divisors modulo linear equivalence.

• A divisor D is numerically equivalent to zero if D.E = 0 for all divisors E. D,E are

numerically equivalent if their difference D − E is numerically equivalent to zero.

• Num(X) is the group of divisors modulo numerical equivalence.

For algebraic equivalence we follow notation and results from [23].

Let X be a surface and T a non singular irreducible curve. An algebraic family of effective

divisors on X is a Cartier divisor D on X × T , flat over T . For any choice of two closed

points in T , the two corresponding divisors on X are said to be prealgebraically equivalent.

Two divisors C,D are algebraically equivalent if there exists a finite sequence of divisors

{Di}, i ∈ {1, . . . , n} where D0 = C, Dn = D and Di prealgebraically equivalent to Di+1.
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The group of divisors modulo algebraic equivalence is called Néron-Severi group. Its rank,

denoted ρ(X) is called Picard number of X. We can then define Div0(X) to be the

subgroup of divisors algebraically equivalent to 0, meaning that we may write NS(X) =

Pic(X)/P ic0(X) where Pic0(X) is the image of Div0(X) inside Pic(X).

Definition 1.3. A K3 surface is a smooth, projective, surface X with trivial canonical

sheaf ωX = OX and irregularity q = dim H1(X,OX) = 0.

Definition 1.4. The rank ρ := rank(NS(X)) is called the Picard number of X.

Proposition 1.5. [26] Prop 2.1

The Neron Severi group of X is a finitely generated abelian group.

Proposition 1.6. [26] Prop 2.4

For a K3 surface X the following holds:

Pic(X) ∼= NS(X) ∼= Num(X).

Moreover, the intersection pairing on Pic(X) is even, non-degenerate and of signature

(1, ρ(X)− 1).

For a K3 surface ρ(X) ≤ 22. If charK = 0, the maximum value for the Picard

number is 20. The K3 surfaces for which ρ = 20 are called singular.

Example 1.7. Kummer surfaces.

We shall consider an abelian variety A. Since A has a group law, we have an automorphism

i ∈ Aut(A) : i(x) = −x called natural involution.

Since A = R4/Λ, where Λ is a lattice, the set of the fixed point under i

Fixi(A) = {a : i(a) = a} = {a ∈ A s.t. 2a = 0} = A[2].

is isomorphic to (Z/2Z)4.

We can contruct the following commutative diagram (where Ã denotes the blow-up on the

fixed points):

A

��

Ã

��

oo

A/i Ã/i ∼= Ã/̃i =: Km(A)oo

It can be proven that Km(A) is a K3 surface.

A second set of examples comes from complete intersection of hypersurfaces.

Definition 1.8. Let X ⊂ Pn be the m-dimensional variety given by complete intersection

of n − m hypersurfaces of degree dj. Then X is a complete intersection of multidegree

(d1, . . . , dn−m).
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Using adjunction formula (i.e. KX = (KY ⊗ X)|X where X is a codimension

1 subvariety of Y ) and the following classical result, we can find more examples of K3

surfaces.

Proposition 1.9. If we are given X ⊂ Pn as in the previous definition, then for 0 < i <

dim X we have hi,0(X) = 0 and π1(X) = 0.

Proposition 1.10. The complete intersections in Pn which are K3 surfaces are the fol-

lowing:

1) X4 ⊂ P3, i.e. a quartic in P3;

2) X2,3 ⊂ P4, i.e. the complete intersection of a quadric and a cubic;

3) X2,2,2 ⊂ P5, i.e. the complete intersection of three quadrics.

2 Singular K3 surfaces

As it was said before, a singular K3 surface has maximal Picard rank. The main example

is probably the Fermat quartic.

Example 2.1. The Fermat quartic

S = {x40 + x41 + x42 + x43 = 0} ⊂ P3

is a singular K3 surface.

One way to prove it is by picking the 48 lines on S and verify that the Gram matrix has

rank 20 as shown in [58].

The main invariant of a singular K3 surface is the trascendental lattice: consider

the Neron-Severi group NS(X) as a lattice in H2(X,Z) with cup-product. Then we define

the trascendental lattice T (X) as the orthogonal complement

T (X) = NS(X)⊥ ⊂ H2(X,Z).

The Torelli theorem in the case of K3 surfaces becomes particulary interesting if the two

surfaces are singular. More precisely, given two K3 surfaces X and Y , the Torelli theorem

states that any Hodge isometry H2(X,Z) ∼= H2(Y,Z) is induced by a unique isomorphism

X ∼= Y .

Using the fact that for K3 surfaces H2(X,Z) has rank 22 and signature (3, 19), we can

deduce that the trascendental lattice has rank 22 − ρ(X) and signature (2, 20 − ρ(X)).

Hence, if X has maximal Picard rank T (X) is a rank 2, even, positive-definite lattice,
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which will be identified with a 2× 2 matrix

T (X)←→

(
2a b

b 2c

)

where a, b, c ∈ Z and d = b2 − 4ac < 0.

Hence, we can restate the Torelli theorem as follows:

Theorem 2.2. Two singular K3 surfaces X,Y are isomorphic if and only if there is an

isometry T (X) ∼= T (Y ). Equivalentely the quadratic forms induced by the 2 × 2 matrices

are conjugate under SL(2,Z).

We also have the following classification:

Theorem 2.3. The map X 7→ T (X) gives a bijection

{Singular K3 surfaces}/ ∼=←→ {positive-definite oriented even lattices of rank two}/ ∼= .

The injectivity comes from the restated Torelli theorem which says that two K3

surfaces X,Y are isomorphic if and only if exists and isometry T (X) ∼= T (Y ).

The proof of the surjectivity is due to Shioda and Inose, who in [54] showed how to produce

a singular K3 surface with given trascendental lattice. We will give just a sketch of their

work. They started with an abelian variety A with ρ(A) = 4 and given quadratic form Q

on the trascendental lattice T (A). It was already known that in this case A is the product

of two isogenous elliptic curves E,E′ with CM in Q(
√
d). Writing E,E′ as complex tori

we have E = Eτ , E′ = Eτ ′ where τ = −b+
√
d

2a and τ ′ = b+
√
d

2 . It follows that the Kummer

surface of A is a singular K3 surface with intersection form 2Q. In order to get a singular

K3 with intersection form exactly Q, Shioda and Inose chose a particular elliptic fibration

on Km(A) that, with a suitable quadratic base change, proves the result.

3 Supersingular K3 surfaces

We have seen that over a field of characteristic zero the Picard number of a K3 surface is

at most 20. This is no longer true over fields with positive characteristic.

In this case the Picard number can be equal to the second Betti number, i.e. ρ(X) = b2 =

22. Such K3 surfaces are called Shioda - supersingular.

Here are some examples of Shioda-supersingular K3 surfaces X defined over K, char(K) =

p:

i) the Kummer surface Km(E × E) of a self-product of an elliptic curve is a super-

singular K3 surface if and only if E is a supersingular K3 surface in characteristic

p > 2;
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ii) the Fermat quartic surface
∑3

i=0 x
4
i = 0 is supersingular if and only if p ≡ −1(mod 4).

In [1], Artin studied such examples using the formal Brauer group.

We will now give the basic definition of the latter as stated in [26].

Let X be a scheme.

Definition 3.1. An Azumaya algebra over X is an OX-algebra A that is coherent as an

OX-module and étale locally isomorphic to the matrix algebra Mn(OX).

An Azumaya algebra is called trivial if it is isomorphic to End(E) for some locally free

sheaf E. Two algebras A1, A2 are equivalent if there exists locally free sheaves E1, E2 such

that

A1 ⊗ End(E1) ∼= A2 ⊗ End(E2)

as Azumaya algebras.

The set of such equivalence classes is the Brauer group of X under the group structure

given by tensor product. The inverse Aop of an algebra is the OX − algebra obtained by

reversing the order of multiplication of A.

Such formal group, is smooth of dimension h2,0 := dim (X,O). By the p-rank of

the kernel of the multiplication by p, it is possible to define the height h of the Brauer

Group:

ph = #ker(p : Br(X) −→ Br(X)). (2.1)

From a joint work ([2]), Artin and Mazure could prove that ρ(X) ≤ 22− 2h, hence either

h = ∞ either h ≤ 10. In [1], Artin then gave a definition for Artin-supersingular K3

surfaces.

Definition 3.2. A K3 surface defined over a field of positive characteristic is supersingular

if and and only if the height of its Brauer group is infinite.

In this paper, Artin showed that Shioda-supersingular K3s are Artin-supersingular.

The converse follows from the proof of Tate’s conjecture (as we will show later on).

3.1 The Artin invariant

In his paper [1] from 1974, Artin proved that the moduli space of supersingular K3 surfaces

is 9-dimensional and is stratified by the invariant σ0.

Let X be a supersingular K3 surface over an algebraically closed field k of characteristic p,

and let NS(X) be the Neron-Severi group of X. The discriminant of the intersection form

on NS(X) is an even power of p:

det NS(X) = −p2σ0

and σ0 = σ0(X) is a positive integer such that 1 ≤ σ0 ≤ 10. This integer is called the

Artin invariant of X.
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The stratification of this moduli space is given by

{σ0 = 1} ⊂ {σ0 ≤ 2} ⊂ · · · ⊂ {σ0 ≤ 10}.

Supersingular K3 surfaces with Artin invariant σ0 form a (σ0 − 1)-dimensional family.

We know give some recent results about supersingular K3 surfaces with Artin invariant 1.

Namely, there is a unique (up to isomorphism) supersingular K3 surface with σ0(X) = 1

in characteristic p, for every prime.

This particular case have been studied in great detail for fields of small characteristic, but

not much is known for supersingular K3 surfaces with big Artin invariant.

Start with the following definition

Definition 3.3. Let X be a smooth projective surface and C a smooth curve. A genus

one fibration is a surjective morphism S � C such that the generic fiber is a curve of

arithmetic genus one.

It is not hard to prove that any genus one fibration on a supersingular K3 surface

of Artin invariant 1 admits a section, as shown in [15].

Moreover, for p = 2 and p = 3 we also know all the possible configurations of the singular

fibers. Using this information Elkies and Schütt in [15] classified all the possible genus 1

fibrations of the supersingular K3 surface with σ0 = 1 in characteristic 2.

In [49], Sengupta has done the same thing for p = 3.

8



Chapter 3

Tate Conjecture and Picard

number for K3 surfaces

1 Tate Conjecture

1.1 Statement

There are many possible ways to express the Tate conjecture, we will follow the formulation

by Totaro in [64].

Let X be a smooth projective variety defined over K, a finitely generated field either over

Q or Fq for some q = pn. Let Ks be the separable closure of K and G := Gal(Ks|K). We

also give the following definition for the Tate twists:

Definition 1.1. Let µlr(Ks) be the group of the lr roots of unity. We define the Tate

twists Zl(1) as the inverse limit of µlr(Ks):

Zl(1) = lim←−
n

µln

This means that Zl(1) ∼= Zl but the former has a non trivial action of G.

Consider now a closed subvariety Y of X with codim (Y ) = a.

Then, Y determines an element of H2a(X,Zl(a)). Actually, because we are considering

subvarieties defined over K, the class of Y lies inside H2a(X ⊗Ks,Zl(a))G.

Tate conjecture statement is that the converse holds:

Conjecture 1.2. Let K,Ks, X,G as before.

Then, H2a(X ⊗Ks,Ql(a))G is spanned by the classes of codimension-a subvarieties.

In degree two, this gives an isomorphism

NS(X)⊗Ql
∼= (H2

et(X ×Ks,Ql(a)))G.
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1.2 History

Characteristic 0

The first setting for which the Tate conjecture for K3 surfaces was proven was in charac-

teristic 0.

The main tool for this proof (and also for proofs for the finite field cases) is the Kuga-

Satake construction.

We will recall the main definitions and properties as used in [64].

The main idea behind such a construction is to associate the H2(X,Z) of a K3 surface

X with the H2(A,Z) of an abelian surface A. The reason why it is useful to have such a

correspondence while working on the Tate conjecture goes back to the proof by Faltings

in 1983 in [21].

He proved Mordell conjecture (which states that every curve of genus at least 2 over a

number field has only finitely many rational points) and as part of the proof he proved

that the Tate conjecture holds for divisors on an abelian variety defined over a number

field.

Finite fields

The proof of the Tate conjecture for K3 surfaces over finite field has seen a lot of people

beeing involved. The hardest case is that of supersingular K3 surfaces, a very special class

of K3s which has a very different behavior from characteristic 0.

The first result was achieved by Artin and Swinnerton-Dyer in 1973 for K3 surfaces ad-

mitting an elliptic fibration.

Definition 1.3. Let f : A′ −→ Y be a flat proper map of schemes such that every

geometric fiber is one of the following:

a) an elliptic curve;

b) a rational curve with a node;

c) a rational curve with a cusp;

we call such a map f a Weierstrass fibration.

One obtains f : A′ −→ Y from the minimal model A∗ by contracting all components of

fibers except for the ones containing the identity section. So, A∗ is nonsingular and A′

normal and we have a morphism π : A∗ −→ A′ which is an isomorphism outside finitely

many points of A (open set of smooth points of A′).

This is their main theorem in [3]:

Theorem 1.4. [3] Let f : A′ −→ Y be a Weierstrass fibration, where Y is the projective

line over a finite field K, such that the associated nonsingular model A∗ is a K3 surface.

Then, if l 6= p = char K:

α ∈ H2(A′,Zl(1))⊗Ql
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is invariant under the action of G = Gal(K|K), then it is in the image of Pic(A′)⊗Ql.

Later on, in [46] Rudakov, Shafarevich and Zink proved the case of K3 surfaces of

degree 2.

For non-supersingular K3 surfaces in characteristic p > 5, the Tate conjecture was proved

by Nygaard and Ogus in 1985 in [40].

Their proof of the Tate conjecture relies on the existence of quasicanonical lifting. Roughly

speaking, they constructed a lifting Y of a K3 surface X to C such that the action of the

Frobenius map on the crystalline cohomology of X corresponds to an endomorphism of

the Hodge structure of Y .

The supersingular case (in characteristic different from 2) has been proved in the last few

years by Charles, Kim, Madapusi Pera and Maulik.

Finally, Kim and Madapusi Pera proved Tate conjecture for K3 surfaces defined over a

field of characteristic 2 which was the last open case.

It is worth pointing out that for supersingular K3 surfaces, Tate conjectures would imply

that the two definitions given in the previous chapter by Artin and Shioda coincide. Here

is a sketchy explanation of how such equivalence is established.

The definition of Artin-supersingular makes use of the Brauer group, from which it is nor-

mally hard to extract any informations. Instead, it is possible to formulate an equivalent

definition using the Frobenius action (see for example page 404 of [26] or section 5.1 in

[64]). Namely, this is the definition of supersingular K3 surface given by F. Charles in

[10]:

Definition 1.5. Let X be a K3 surface defined over a finite field. We say that X is

supersingular if the Frobenius morphism acts on the second et́ale cohomology group of X

through a finite group.

As a consequence, after passing to a certain finite extension, we would have that

the Galois action on H2
et(X,Ql(1)) is trivial. Hence, Tate conjecture coincides with the

claim that ρ(X) = 22.

This part of the Tate conjecture was the last the be proved. In fact, the argument of

Nygaard and Ogus fails over supersingular (in the sense of Artin) K3 surfaces since the

goal would be to show that the Picard number is 22, but any lifting of a K3 surface X to

characteristic 0 would have rank 20 at most.

One important step was performed by Lieblich, Maulik, Snowden who gave an equivalent

formulation for the Tate conjecture for K3 surfaces defined over finite fields of characteristic

p ≥ 5.

Theorem 1.6. [32] Let K be a finite field of characteristic p ≥ 5.

1) There are only finitely many isomorphism classes of K3 surfaces over K which sat-

isfies the Tate conjecture over K;
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2) If there are only finitely many isomorphism classes of K3 surfaces over the quadratic

extension K ′ of K, then every K3 surface over K satisfies the Tate conjecture over

K ′.

In particular, if p ≥ 5, the Tate conjecture holds for all K3 surfaces over K if and only if

there are only finitely many K3 surfaces defined over each finite extension of K.

In 2012 François Charles proved the Tate conjecture for Artin-supersingular K3

surfaces defined over a field of characteristic greater than 3.

His main result is the following:

Theorem 1.7. [10] Let X be a supersingular K3 surface defined over an algebraically

closed field of characteristic p ≥ 5. Then, the rank of the Néron-Severi has maximal pos-

sible value, which is 22 (meaning that Artin-supersingular implies Shioda-supersingular).

Using results by Nygaard and Ogus this implies the following:

Theorem 1.8. [10] The Tate conjecture holds for K3 surfaces defined over finite fields of

characteristic p ≥ 5.

Thanks to [32] this implies that for every such field there exists only finitely many K3

surfaces up to isomorphism.

In 2014 Madapusi Pera proved Tate conjecture for fields K of odd characteristic,

proving the case char K = 3.

Theorem 1.9. [34] Let X be a K3 surface over a finitely generated field K of characteristic

non equal to 2. Then the Tate conjecture holds for X.

That means that for any given prime l invertible in K the l-adic Chern class map

ch : Pic(X)⊗Ql −→ H2
et(Xsep,Ql(1))G

is an isomorphism. Here Ksep is a separable closure of K and G = Gal(Ksep|K) is the

associate absolute Galois group.

Finally, in 2015 Kim and Madapusi Pera completed the proof of Tate conjecture

for K3 surfaces in chacteristic 2. They used E. Lau classification of 2-divisible groups

to construct canonical models for Shimura varieties of abelian type and as an immediate

application they proved

Theorem 1.10. [30] The Tate conjecture holds for K3 surfaces over finitely generated

fields.

1.3 Zeta function and Weil conjectures

We now introduce some key results known as the Weil conjectures (which were proved

by Deligne in the case of K3 surfaces) which will make it possible to give equivalent

formulations of the Tate conjecture. This will make use of a fundamental tool, the Hasse-

Weil zeta function of a K3.
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Definition 1.11. Let X be a smooth algebraic variety of dimension d over a finite field

Fp, its zeta function is defined by

Z(X, t) := exp
(∑
n≥1

#X(Fpn)
tn

n

)
.

Theorem 1.12. Suppose X is a smooth projective variety of dimension n over a finite filed

K := Fq for q = pk. Let Z(X,T ) be its zeta function. The latter satisfies the following:

1) Rationality: Z(X,T ) is a rational function of q−t;

2) Functional equation: Z(X,T ) satisfies a functional equation Z(X,n−T ) = ±qE(n
2
−T )Z(X,T )

for some integer E (which is actually the Euler characteristic);

3) Riemann Hypothesis: we can write the zeta function as

Z(X,T ) :=
P1(T )P3(T ) . . . P2n−1(T )

P0(t)P2(T ) . . . P2n(T )

where the Pi(T ) are integral polynomials with roots of absolute value q−n/2. Also, if

l 6= p we have that

Pi(X,T ) := det(1− TFrob|H i
et(XFq

,Ql))

which implies that P0(T ) = 1− T and P2n(T ) = 1− qnT .

4) Betti numbers: suppose R is a f.g. Z-algebra with R� K and R ↪→ C and X/Spec R

is a smooth and proper scheme such that X = XK . Then, the degree of each Pi is

the i-th Betti number of the manifold X(C).

The rationality of the Zeta function and its functional equation had been proved

by Dwork by 1960. The analogue of the Riemann hypothesis was eventually proved by

Deligne in 1974, who had verified it for K3 surfaces a few years earlier.

1.4 Artin-Tate formula

Using the zeta function Z(X, t), Tate was able to reformulate the conjecture in [62] as

follows.

Theorem 1.13. Let X be a surface defined over the finite field Fq and Z(X, t) its zeta

function. Thanks to Deligne, from [11], we know that the latter has the form

Z(X, t) :=
P1(t)P3(t)

(1− t)P2(t)(1− q2t)
.

Then, Tate conjecture holds if and only if the Picard rank ρ(X) is equal to the multiplicity
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of q ad a reciprocal root of P2(t). This is equivalent to say that the order of the pole of

Z(X, t) at t = 1 is equal to ρ(X).

This statement was then refined by Artin and Tate showing the connection between

the Neron-Severi, the frobenius and the Brauer Group.

We can now give a compact form of the Tate conjecture which we will use for the

rest of our work.

Theorem 1.14. [62]

Let X be a projective smooth surface over a finite field Fq and P2(X,T ) as above.

Denote by ρ and ∆ the rank and the discriminant of the Neron-Severi, respectively, and

Br(X) its Brauer group. Also, let α(X) := χ(X,OX)− 1 + dim(Pic(X))

Then,

(Tate Conjecture) ρ(X) equals the multiplicity of q as a reciprocal root of P2(X,T );

(3.1)

(Artin-Tate) #Br(X) is finite and P2(X, q
−s) ∼ (−1)ρ(X)−1|Br(X)|det(Di ·Dj)

qα(X)(NS(X) : B)2
as s −→ 1.

(3.2)

where D1, . . . , Dρ are independent elements of NS(X) and B :=
∑

ZDi is subgroup of

NS(X) generated by Di.

In 1975 in [36] Milne proved the equivalence between Tate conjecture and Artin-

Tate formula.

Theorem 1.15. Let X be a smooth projective surface over a finite field k of characteristic

not equal to 2. If Tate conjecture holds, then also does Artin-Tate formula.

Since our aim is to use Tate conjecture to determine the Picard rank of certain K3

surfaces, we need to compute efficiently get the coefficients of P2(X,T ).

Van Luijk showed how to approach this problem in [65] using a result from [6], page 5.

Lemma 1.16. Let V be a vector space of dimension n and T a linear operator on V. Let

ti denote the trace of T i.

Then, the characteristic polynomial of T is equal to

fT (x) = det(x · Id− T ) = xn + c1x
n−1 + c2x

n−2 + · · ·+ cn, (3.3)

where ci are defined recursively by

c1 := −t1 and − kck = tk +

k−1∑
i=1

citk−i. (3.4)
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For us, the polynomial f in the above Lemma will be P2(X, t) =
∑2

i=0 2cix
i.

To apply this lemma and get the coefficients of P2(X, t), we need to calculate the traces

of the Frobenius operator. This can be achieved using the Lefschetz Trace formula:

Theorem 1.17. Lefschetz Trace formula

Let V be a n-dimensional projective variety with good reduction at a prime p, then for

l 6= p and q = pk

#V (Fq) =
2n∑
i=0

(−1)iTr(Frob , H i
et(V,Q`)).

For a K3 surface X the latter reads as follows:

Tr(Frobk) = #X(Fqk)− q2k − 1. (3.5)

Hence, we need to compute the coefficients tk from 1.16, we need the number of points

over extensions of the ground field.

In conclusion, via 1.16, we can calculate recursively the coefficients ck.

Since point counting is normally very computationally expensive to achieve, one should

avoid to compute all such coefficients directly.

Thanks to the second Weil conjecture, we can apply the following functional equation to

relate the coefficient ci to c22−i:

q22P2(X,T ) = ±T 22P2(X, q
2/T ). (3.6)

Suppose we have calculated the traces tk for k = 1, . . . , 11.We will use c11 to get rid of the

sign ambiguity.

This is resolved as follows: if c11 6= 0, it is possible to conclude that the sign of the

functional equation is positive since if that happens, for both sides of 3.6 the coefficient of

x11 is c11p
22. Obviously, if the sing was negative such coefficient would be 0.

In contrast, if c11 = 0 we need to compute also c12 to get rid of the sign ambiguity by

comparing the coefficients of x12, i.e. solve p22c10 = ±c12p20.

2 Computing the Picard number

Thanks to the results we described in the previous section, we can now determine the

Picard rank of a K3 surface X over Fp.
Since we want to use Tate conjecture, we need to determine the zeta function of X.

For K3 surfaces we will apply a normalization of the zeta function, as given in [63], using

the following isomorphism of Gal(Fq/Fq) modules, where µln is the group of ln roots of

unity:

H2
et(X,Ql(1)) ∼= H2

et(X,Ql)⊗Zl
(Ql ⊗Zl

lim←−µln) (3.7)

Let X be a K3 surface over a finite field Fq. From its definition, we deduce that P0(X,T ) =
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P3(X,T ) = 1. Hence, its zeta function is:

Z(X,T ) =
1

(1− T )L(X, qT )(1− q2T )
(3.8)

where

L(X,T ) := det(1− tFrob|H i
et(XFq

,Ql(1))) =

22∏
i=1

(1− γiT ), (3.9)

and γi have absolute value 1. Hence, in this case Tate conjecture says that the Picard

number of X is determined by the number of γi that are roots of unity.

The first step will be to use a point counting algorithm to determine #X(Fp) . . .#X(Fp11).

There are different methods to get those numbers, here is a survey of some of those result

based on [16].

The first approach one could think of to determine the number of rational points over a

variety X ⊂ PN (Fpk) could be to determine all the Fq rational points, namely check for all

the N -tuples (x0, . . . , xN−1) which ones satisfies the equation that define X. Clearly, for

the purpose of computing the zeta function, the explicit calculation of the rational points

is redundant. Moreover, the complexity of such method is O(p(N−1)k).

One could slightly improve the method whenX is given by a polynomial f := f1(x1, . . . , xM )+

f2(xM+1, . . . , xN ). Using convolution it is possible to improve the above method to

O(qmax(M,N−M)k).

However, this method is still far from being computationally efficient.

To achieve better results one should use algorithms which do not require to find explicitly

the rational points.

For example, Harvey’s p-adic method as shown in [24].

He presented two algorithms: the first takes as input an arithmetic scheme X and com-

putes Z(XFP
, t) in time p1/2+O(1). The second one computes the zeta function for all

p < N in time Nlog3+O(1)(N).

The beauty of his method is that it is completely elementary and it is very general in

theory. However, it probably can be implemented only for very specific varieties, such as

K3 surfaces of degree 2, as shown in [16].

For specific types of K3s it is possible to determine an ad hoc algorithm. In chapter 4 we

will have a close look at the algorithm implemented by K. Kedlaya and A. Sutherland for

quartic surfaces which uses Zinoviev’s formulas.

From point counting, we can then apply Lefschetz Trace formula to get the trace of Frobi

for 0 < i ≤ 11. Then, applying Newton’s identities we can obtain the first 11 coefficients

for the Hasse-Zeta function of X.

Finally, the full equation for Z(X, t) is given by its functional equation.

As we have seen at the beginning of the chapter, Tate’s conjecture has been finally proven

for all K3 surfaces defined over finite fields.
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Hence, the following holds:

rank(NS(X ×K K)) =
∑
χ

ordT=χ/q(P2(X, t)) (3.10)

where the sum is over the roots of unity χ.

However, using 3.9, this is equivalent to find the complex roots of unity of the normaliza-

tion of P2(X,T ) that we have called L(X,T ).

The same approach can be used to compute the Picard rank of X over Fqk by simply

counting the number of roots of L(X,T ) which belong to Fqk .

Namely, suppose we have L(X,T ) = fi1(T )e1 . . . fin(T )enG(T ) where fj is the jth-cyclotomic

polynomial and G the non cyclotomic factor of P2(X,T ). Such decomposition is sometimes

written (for example in [63]) as L = LalgLtrc, with

Lalg =
∏
γi∈µ∞(1− Tγi) (3.11)

Ltrc =
∏
γi 6∈µ∞(1− Tγi) (3.12)

where µ∞ is the group of complex roots of unity.

Then we have that ρ(X) =
∑

j degfj · ej = 22 − deg(Ltrc) and the minimal degree of Fq
to achieve the geometric rank is N = l.c.m(i1, . . . , iN ).

We will show some explicit examples in the next chapter.
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Chapter 4

Divisors on K3 surfaces

We now show our methods to detect all lines and conics over smooth quartic surfaces.

For curves of degree 3, we could find a method to find twisted cubics if they are define

over the base field.

For every family of curves we show the method and the code used. The computer program

on which we implemented our algorithms is Magma.

We also add some examples of these computations. These examples come from the

database of quartics over P3(F2) provided by Kedlaya and Sutherland. What made their

list of quartic K3s very useful for us, was that they also provided the computation for zeta

function of every quartic.

However, our methods can be applied for any characteristic p > 0.

1 Lines

1.1 Literature review

Probably, the most famous examples concerning lines contained in an algebraic surface is

the case of smooth cubics in P3.

Proposition 1.1. Let S be a smooth cubic surface defined over P3(K) where K an alge-

braically closed field. Then, S contains 27 lines.

Moving towards K3 smooth quartics, the first attempt was made by Segre in 1945

[48] where he claimed that a line on a smooth complex quartic intersects at most 18 other

lines. This result was used to prove that the maximum number of lines would be 64.

However, as pointed out by Rams and Schütt in [43], a mistake in his arguments actually

yields a bound of 72 lines on such a surface.

The erroneous claim was that a line on a complex quartic surface does not intersect at

most 18 other lines.

This problem was then studied by S. Rams and M. Schütt. In their first joint paper [43]

they dealt with smooth quartic surfaces defined over a field of characteristic p ≥ 0, p 6= 2, 3.

In particular, they proved the following:

18



Proposition 1.2. [43]

1) A line l on a geometrically smooth quartic surface S in P3(K) intersect at most 20

other lines provided that char (K) 6= 2, 3.

2) If l meets more than 18 lines on S, then S can be given by a quartic polynomial

x3x
3
1 + x4x

3
2 + x1x2q(x3, x4) + x3g(x3, x4)

where q, g ∈ K[x3, x4] are homogeneous of degree 2 resp. 3.

3) The line l = {x3 = x4 = 0} meets 20 lines on S if and only if g4|g.

This result leads to their main theorem:

Theorem 1.3. Let K be a field of characteristic p ≥ 0 with p 6= 2, 3. Then any geomet-

rically smooth quartic surface over K contains at most 64 lines.

Also, this bound is sharp since in any characteristic not 2 and 3 such bound can be attained

by the Schur’s quartic

{x4 − xy3 = z4 − zw3} ⊂ P3.

In characteristic 3 the Schur’s surface contains 112 lines, motivating Rams and

Schütt towards a study of the two remaining characteristics:

Theorem 1.4. [42] Let K be a field of characteristic 3. Then, any smooth quartic surfaces

over K contains at most 112 lines.

Proposition 1.5. [42] Let K be a field of characteristic 2. Then, any smooth quartic

surface over K contains at most 84 lines.

As they pointed out in the paper, they could not determine any example to show

that bound could have been sharp.

Infact, thanks to a subsequent paper, they improved such bounds as follows:

Theorem 1.6. [44] Let K be a field of characteristic 2. Then, any smooth quartic surface

over K contains at most 64 lines.

Again, the bound they found was not sharp (we will see how it has been improved to

60). In section 8 of the paper they gave an explicit example of a smooth quartic containing

60 lines over F16.

Namely, they considered geometrically irreducible quartic surfaces with an action by the

symmetric group S5.

Such surfaces form a one-dimensional pencil that can be written as Sµ = {s1 = s4 + µ22}
in P4.

Choosing µ0 = 1 +α2 +α3 (where α is the fifth rooth of unity) it can be showed that Sµ0

contains the line given by {s1 = x3+x2+(α3+α+1)x1 = x4+(α3+α2+α+1)x2+αx1 = 0}
and its entire S5-orbit (which consists of 60 lines).
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While Rams and Schutt focused on smooth surfaces, D.C. Veniani worked with quartic

surfaces admitting isolated rational double points over an algebraically closed field. He

started considering the field of definition to have characteristic different from 2, 3.

His main result was

Theorem 1.7. [67] Let K be an algebraically closed field of characteristic p ≥ 0, p 6= 2, 3

and let X ⊂ P3(K) be a surface of degree 4 over K admitting only isolated rational double

points and singularities. Then, X contains at most 64 lines.

He then worked on characteristic 2 and 3. In the first case, he was able to prove

that:

Theorem 1.8. [66] Let X is a K3 quartic surface (hence, a quartic surface in P3 with at

most isolated rational double points as singularities) defined over a field of characteristic

2. Then, X contains at most 68 lines.

Such bound is attained by a one dimensional family X68 with one type A3 singularity. If

X contains 68 lines, it is projectively equivalent to a member of such family.

X68 := λx0x
2
1x2 + x41 + x1x

3
2 + x30x3 + x0x2x

2
3 = 0

For char K = 3 he managed to improve the results of [42]:

Theorem 1.9. [68] If X is a K3 quartic surface defined over a field of characteristic 3,

then X contains 112 lines or at most 67. Moreover, if X contains 112 lines it means that

X is projectively equivalent to the Fermat quartic surface.

A similar improvement for char K = 2 was found by Degtyarev in [12]. He managed

to get sharp bounds for the number of lines contained in a K3 surface defined over a field

of characteristic 2 or 3. Moreover, he was able to determine accurate bounds in the case

of supersingular surfaces.

Let X be a non singular quartic surface defined over P3(K) where K = K. Also, let Fn X

be the set of lines contained in X.

Theorem 1.10. [12] Assume that char K = 2 and X is supersingular. Then either

|Fn X| = 40, and there are five configurations or |Fn X| ≤ 32, and this bound is sharp.

Theorem 1.11. [12] Assume that char K = 3 and X is supersingular. Then either

|Fn X| = 112 and X is the Fermat quartic or |Fn X| = 58 and there are three configura-

tions or |Fn X| ≤ 52, and this bound is sharp.

Theorem 1.12. [12] Assume that char K = 2, 3 and X is not supersingular. X contains

at most 60 lines.

1.2 Determining lines on a K3 surface

Below we give a description of the method we followed to explicitly determine the lines

contained in a K3 surface defined over a finite field.
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Suppose now we are looking at a quartic X : f(W,X, Y, Z) = 0 in P3(Fq). Using the Tate

conjecture we know its Picard rank and the degree N of the minimal extension for which

it is attained.

Every line is given by a parametrization of the form

L : A1 −→ P3

[1, t] 7−→ [a0 + b0t : a1 + b1t : a2 + b2t : a3 + b3t].

We will divide all possible lines into 6 families :

A1 := {L given by [1 : t : a0t+ a1 : a2t+ a3] for some ai ∈ Fq, i = 0, 1, 2, 3};

A2 := {L given by [1 : a0 : t : a1t+ a2] for some ai ∈ Fq, i = 0, 1, 2};

A3 := {L given by [1 : a0 : a1 : t]] for some ai ∈ Fq, i = 0, 1};

A4 := {L given by [0 : 1 : t : a0t+ a1] for some ai ∈ Fq, i = 0, 1};

A5 := {L given by [0 : 1 : a0 : t] for a0 ∈ Fq};

A6 := {L given by [0 : 0 : 1 : t]}.

Indeed we will not only be interested in lines defined over the ground field, but over any

finite extensions of Fq.
Suppose we want to determine if X contains lines belonging to the first family.

Then, for the general line L in A1, we want to determine whether or not there is a choice

of coefficients such that g(t) := f(L(1, t)) is identically zero.

Since the scheme obtained from the coefficients of g must have dimension 0 (or −1 meaning

that it is empty), its degree would give us the number of points. Such points will be defined

over an extension of the ground field which still needs to be determined. We show in a

moment how we managed to find it.

The following code gives us the number of lines in each family Ai.

LINES:= func t i on ( f ,N)

K:=GF( q ) ;

R<W,X,Y, Z>:=PolynomialRing (K, 4 ) ;

CountLines : = [ ] ;

// f i r s t fami ly

AR0<[a0 ]>:= PolynomialRing (K, 4 ) ;

A0:=Spec (AR0) ;

T0<t0>:=PolynomialRing (AR0) ;

eva0 := hom < R−>T0 | [ 1 , t0 , a0 [ 1 ] ∗ t0+a0 [ 2 ] , a0 [ 3 ] ∗ t0+a0 [ 4 ] ] >;

c o e f := C o e f f i c i e n t s ( eva0 ( equ ) ) ;

Fa0:=Scheme (A0 , c o e f ) ;
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DimDeg:=[ Dimension ( Fa0 ) , Degree ( Fa0 ) ] ;

Append(˜ CountLines , DimDeg ) ;

end func t i on ;

And then we have to repeat this procedure for the other 5 families.

Once we have computed the lines, we need to find their defining equations, since our aim

is to compute the intersection matrix of the sublattice of the Picard group.

Here is our general idea.

First of all, we need to find on which extension of Fq the lines are defined. We will work

on each family separately.

Secondly, given a rational point on the corresponding affine scheme, we determine the

three points of P3 that will generate the subscheme.

Finally, we will write the equations of the two plane whose intersection is the line we are

looking for.

We now explain in more details those three steps.

First of all we want to determine the smallest Fq finite extension on which all the lines are

defined. This is required for the computation of the intersection numbers between divisors

to obtain the Gram matrix of the K3 surface X.

Thanks to the Tate conjecture, we know the minimal field extension degree N for the

Picard lattice to be fully defined. However, the lines could be defined over a smaller field

whose degree will be denoted Min Exp.

We definitely could avoid this discussion and use directly N to define the lines (and later

conics and twisted cubics), but this would be computationally inefficient.

Hence, to determine the minimal field of definition of the set of lines for X, we simply

compared the number of rational points of the base change of the scheme Fa0 with its

degree.

We already know that if there is any rational point, it would be defined over F2N . To get

the minimal extension, we looped over its subfields, meaning all the Fqk where k divides

N , to find the smallest one on which the number of rational points is equal to the degree

of the scheme.

l i n e s : = [ ] ;

Div:= D i v i s o r s (N) ;

n :=1;

whi l e #Rat iona lPo int s ( BaseExtend (Fa0 ,GF(2ˆ Div [ n ] ) ) ) ne Degree ( Fa0 )

do n+:=1;

end whi le ;

Min Exp:=Div [ n ] ;

We now construct the rational point of the base change over the extension previously

determined.

BC0:=BaseExtend (Fa0 , GF(2ˆ Min Exp ) ) ;

po in t s0 := Rat iona lPo int s (BC0 ) ;
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f o r P in po int s0 do

Space<W,X,Y, Z>:=Pro j e c t iveSpace (GF(2ˆ( Min Exp ) ) , 3 ) ;

Once we have a rational point P we are able to determine the two points that generate

the affine line L. However, since we want to work with projective schemes, we need to

find a third point that combined with the other two generates the line in P3.

//we have now to determine the th i rd po int

M01:= Transpose ( Matrix ( [ [ 1 , 0 ,P [ 1 ] ,P [ 4 ] ] , [ 1 , 1 , P[1 ]+P [ 2 ] ,P[3 ]+P [ 4 ] ] , [ 0 , 0 , 1 , 0 ] ] ) ) ;

m01:=Determinant ( Matrix ( [ M01 [ 2 ] , M01 [ 3 ] , M01 [ 4 ] ] ) ) ;

m02:=Determinant ( Matrix ( [ M01 [ 1 ] , M01 [ 3 ] , M01 [ 4 ] ] ) ) ;

m03:=Determinant ( Matrix ( [ M01 [ 1 ] , M01 [ 2 ] , M01 [ 4 ] ] ) ) ;

m04:=Determinant ( Matrix ( [ M01 [ 1 ] , M01 [ 2 ] , M01 [ 3 ] ] ) ) ;

i f m01 ne 0 then

base : = [ 1 , 0 , 0 , 0 ] ;

e l i f m02 ne 0 then

base : = [ 0 , 1 , 0 , 0 ] ;

e l i f m03 ne 0 then

base : = [ 0 , 0 , 1 , 0 ] ;

e l s e

base : = [ 0 , 0 , 0 , 1 ] ;

end i f ;

Once this is done, using the minors of the matrix of coefficients of the three points we

obtain equations for two planes whose intersection is L.

M02:= Transpose ( Matrix ( [ [ 1 , 0 ,P [ 2 ] ,P [ 4 ] ] , [ 1 , 1 , P[1 ]+P [ 2 ] ,P[3 ]+P [ 4 ] ] , base ] ) ) ;

n01:=Determinant ( Matrix ( [ M02 [ 2 ] , M02 [ 3 ] , M02 [ 4 ] ] ) ) ;

n02:=Determinant ( Matrix ( [ M02 [ 1 ] , M02 [ 3 ] , M02 [ 4 ] ] ) ) ;

n03:=Determinant ( Matrix ( [ M02 [ 1 ] , M02 [ 2 ] , M02 [ 4 ] ] ) ) ;

n04:=Determinant ( Matrix ( [ M02 [ 1 ] , M02 [ 2 ] , M02 [ 3 ] ] ) ) ;

M:=Scheme ( Space , [ m01∗W+m02∗X+m03∗Y+m04∗Z , n01∗W+n02∗X+n03∗Y+n04∗Z ] ) ;

Append(˜ l i n e s ,M) ;

end f o r ;

then do the same for the other families.

1.3 Examples

We now give some examples of lines contained in smooth quartic K3 surfaces defined over

F2.

Remark 1.13. Let X be such a K3 surface defined over Fp, where p is a prime, and l a

line contained in X such that it is defined over K := FpN .

Then, the action of Frobenius (and its powers) gives another line still contained in X.
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Namely, suppose that K∗ :=< ζ > as a cyclic group, we have that Frobi : ζ 7→ ζp
i

for

1 ≤ i ≤ N − 1. Then, Frobi(l) is still a line and it is contained in X.

This result can also be applied to divisors of higher degree.

We shall start considering the following example.

Take X1 defined by:

f1 = W 3Z +WXY Z +WZ3 +X4 +X2Y Z +XY 3 +XY Z2 +XZ3 + Y 4 + Y 3Z + Z4.

This a quartic K3 surface the characteristic polynomial of the Frobenius is

φX1(x) = (x− 1)3(x+ 1)5(x2 + 1)5(2x4 − x3 − x+ 2)

and hence it has geometric Picard number 1 · 3 + 1 · 5 + 5 · 2 = 18 and this rank is achieved

lifting the surface over K := F24 since l.c.m.(1, 2, 4) = 4.

From the first part of the code we can see that the sum of the degrees of the six schemes

Fa1, Fa2, . . . , Fa6 is 40, giving us the number of lines over K. If we look for lines defined

over subfields of K we end up not finding any. Hence, we are forced to work over K. With

z we denote a generator of K∗ ' Z/15 as a cyclic group.

As it was said in remark 1.13, we don’t need to give the entire list, only one generator per

Frobenius orbit.

For sake of clarity, we start giving one explicit example of such orbit.

Let L0 be the scheme over F24 given by

W + z7X + Z;

z14X + Y + z7Z

The Frobenius morphism acts by Frob : z 7→ z2, hence we get the line L1 given by:

W + z14X + Z;

z13X + Y + z14Z

Similarly, via Frob2, F rob3 we get

L2 := V (W + z13X + Z, z11X + Y + z13Z);

L3 := V (W + z11X + Z, z7X + Y + z11Z)

Here is the list of the orbits (for each of them we get 4 lines, hence 40 in total):

Scheme over GF (24) defined by W + z7X + Z; z14X + Y + z7Z;

Scheme over GF (24) defined by zW + z7X + Z;X + zY + z6Z;

Scheme over GF (24) defined by z3W + z7X + Z; z10X + z3Y + z9Z;
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Scheme over GF (24) defined by Z; z7X + Y ;

Scheme over GF (24) defined by W + Z; z7X + Y + z11Z;

Scheme over GF (24) defined by W + zY + Z;X + z2Y + zZ;

Scheme over GF (24) defined by zW + z2Y + Z; zX + z2Y + Z;

Scheme over GF (24) defined by zW + z9X + Z; z12X + zY + z6Z;

Scheme over GF (24) defined by z5W + z2X + Z; zX + z5Y + z10Z;

Scheme over GF (24) defined by z7W + zX + Z; z6X + z7Y + Z.

Second example:

Consider now the quartic X0 over F2 given by

f0 := W 3Z +WX2Z +WXY 2 +WXY Z +WY Z2 +X3Y +X2Y Z +XY 3 +Y 2Z2 +Z4.

The characteristic polynomial of Frobenius is φX0(x) := (x+ 1)(x−1)5(x2 + 1)(2x2 + 3x+

2)(x6 + x3 + 1)2.

Hence, we can deduce that its geometric Picard number is 1 + 5 + 2 + 6 · 2 = 20 and such

group would be defined over and extension of degree l.c.m.(1, 2, 4, 9) = 36. Here are the

number of lines over all the subextensions:

k Number of Lines

1 2

2 4

3 2

4 8

6 4

9 11

12 8

18 13

36 18

We write below the lines defined over extensions of F2 up to degree 12. For any of these

fields Ki we denote by z the generator of K∗i as a cyclic group.

Scheme over F2 defined by Z, Y ;

Scheme over F2 defined by Z,X.

Scheme over F22 defined by Z, Y ;

Scheme over F22 defined by zW + z2X + Z, zY + Z;

Scheme over F22 defined by z2W + zX + Z, z2Y + Z;
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Scheme over F22 defined by Z,X.

Scheme over F23 defined by Z, Y ;

Scheme over F23 defined by Z,X.

Scheme over F24 defined by Z, Y ;

Scheme over F24 defined by z5W + z10X + Z, z5Y + Z;

Scheme over F24 defined by z6W + z2X + Z, z6Y + z11Z.

Scheme over F24 defined by z10W + z5X + Z, z10Y + Z;

Scheme over F24 defined by z3W + zX + Z, z3Y + z13Z;

Scheme over F24 defined by z9W + z8X + Z, z9Y + z14Z;

Scheme over F24 defined by z12W + z4X + Z, z12Y + z7Z;

Scheme over F24 defined by Z,X.

Scheme over F26 defined by Z, Y ;

Scheme over F26 defined by z21W + z42X + Z, z21Y + Z;

Scheme over F26 defined by z42W + z21X + Z, z42Y + Z;

Scheme over F26 defined by Z,X.

Scheme over F29 defined by Z, Y ;

Scheme over F29 defined by z151W + z330X + Z, z151Y + z443Z;

Scheme over F29 defined by z302W + z149X + Z, z302Y + z375Z;

Scheme over F29 defined by z372W + z170X + Z, z372Y + z445Z;

Scheme over F29 defined by z331W + z165X + Z, z331Y + z477Z;

Scheme over F29 defined by z186W + z85X + Z, z186Y + z478Z;

Scheme over F29 defined by z421W + z338X + Z, z421Y + z494Z;

Scheme over F29 defined by z93W + z298X + Z, z93Y + z239Z;

Scheme over F29 defined by z466W + z169X + Z, z466Y + z247Z;

Scheme over F29 defined by z233W + z340X + Z, z233Y + z379Z;

Scheme over F29 defined by Z,X.

Scheme over F212 defined by Z, Y ;

Scheme over F212 defined by z1365W + z2730X + Z, z1365Y + Z;
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Scheme over F212 defined by z1638W + z546X + Z, z1638Y + z3003Z;

Scheme over F212 defined by z2730W + z1365X + Z, z2730Y + Z;

Scheme over F212 defined by z819W + z273X + Z, z819Y + z3549Z;

Scheme over F212 defined by z2457W + z2184X + Z, z2457Y + z3822Z;

Scheme over F212 defined by z3276W + z1092X + Z, z3276Y + z1911Z;

Scheme over F212 defined by Z,X

2 Conics

2.1 Literature review

As we have seen in the previous section, thanks to the recent works we do have a sharp

bound for the maximum number of lines which a smooth quartic surface may contain.

For conics such a bound is still unknown.

Here are some examples of quartic surfaces containing a big number of conics.

In 1994, W.Barth and T.Bauer in [4] determined quartics with 352 conics.

The following year, T.Bauer in [5] found a two-dimensional family of quartics in P3 con-

taining 16 mutually disjoint conics and altogether exactly 432 conics.

He also states in his paper that a Chern class computation, by the methods of [27], would

show that the maximal number of conics contained in a smooth quartic in P3 should be

5016. However, this bound is of course far from being sharp.

Define G ≤ Aut(P3(Q)) the subgroup generated by the following transformations:

[x : y : z : w] 7→ [y : x : w : z], [z : w : x : y], [x : y : −z : −w], [x : −y : z : −w].

The family of quartic surfaces invariant under the action of G can be parametrized by P4

and it was shown by Eklund [13] that the general element of such family contains at least

320 conics.

The same family was studied by F. Bouyer to answer the question of what is the smallest

extension for the conics on it to be defined in case such a surface is defined over a number

field [7].

He was also able to show in another paper [8] that for some families of quartics invariant

under G the general element has Picard group generated by lines and conics.

We also have the recent paper by J.A.D. Maia, A. R. Silva, I. Vainsencher and F. Xavier

[35] where they proved the following:

Theorem 2.1. [35] For all d ≥ 5 the locus of surfaces in P3 of degree d containing a conic
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is a variety of codimension 2d− 7 and degree(
d

4

)
(d2 − d+ 8) · (d2 − d+ 6)·

(207d8 − 288d7 + 498d6 + 5068d5 − 15693d4 + 31732d3 − 37332d2 + 9280d− 47040)/967680.

(4.1)

For d = 4 the correct degree is 5016/2 due to Bezout.

In order to determine all conics contained in a quartic K3 surface, we adapted what

we have done to find lines to this case.

Suppose we have X : {f(w, x, y, z) = 0} a smooth quartic in P3(Fq). Take k ∈ N and π a

plane in P3
F
qk

.

We want to see if exists π such that f |π = q1(w, x, y, z) · q2(w, x, y, z) where at least one

of the qi ∈ Fqk is an irreducible homogeneous polynomial of degree 2.

Indeed, we can either have a section given by two conics or by one conic and two lines.

We will divide all the possibilities into 16 families. This number comes from the total

number of possible plane sections and the number of potentially irreducible conics lying

over the section.

Namely, we can cut the quartic with four families of planes in P3(Fq):

plane: w = a0 · x+ a1 · y + a2 · z;

plane: x = a0 · y + a1 · z;

plane: y = a0 · z;

plane: z = 0;

Once we have a plane quartic Plane Qua := Plane Qua(x1, x2, x3), all possible conics

that can occur as a factor of this plane quartic have to belong to one of the following

families:

C0 : x21 + a1 · x1 · x2 + a2 · x1 · x3 + a3 · x22 + a4 · x2 · x3 + a5 · x23

C1 : x22 + a1 · x1 · x2 + a2 · x1 · x3 + a3 · x2 · x3 + a4 · x23

C2 : x23 + a1 · x1 · x2 + a2 · x1 · x3 + a3 · x2 · x3

C3 : x1 · x2 + a1 · x1 · x3 + a2 · x2 · x3

So, we start by defining the basic elements:

c o n i c s := func t i on ( qua ,N)

K:=GF( q ) ;

Con i c sL i s t : = [ ] ;

Div:= D i v i s o r s (N) ;
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Once we have N we can start construction the first family taking a general plane section

and look for smooth conics of type C0:

// f i r s t fami ly

A<[a]>:= PolynomialRing (K, 8 ) ;

AF:= Fie ldOfFrac t i ons (A) ;

R<[y]>:= PolynomialRing (AF, 4 ) ;

P:= Proj (R) ;

plane :=a [ 1 ] ∗ y [2 ]+ a [ 2 ] ∗ y [3 ]+ a [ 3 ] ∗ y [ 4 ] ;

Plane Qua:= Evaluate ( qua , [ p lane ] cat y [ 2 . . 4 ] ) ;

con i c :=y [ 2 ] ˆ 2 +a [ 4 ] ∗ y [ 2 ] ∗ y [3 ]+ a [ 5 ] ∗ y [ 2 ] ∗ y [4 ]+

+a [ 6 ] ∗ y [3 ]ˆ2+ a [ 7 ] ∗ y [ 3 ] ∗ y [4 ]+ a [ 8 ] ∗ y [ 4 ] ˆ 2 ;

Once we have the plane section and the general conic, we divide the former by the latter

and build the scheme defined by the coefficients of the remainder.

Using Magma the easiest way is by using the command Quotrem. Again, the degree of

the scheme will tell us the number of conics.

Q, rem:=Quotrem ( Plane Qua , con i c ) ;

equ :=[ Numerator ( cc ) : cc in C o e f f i c i e n t s ( rem ) ] ;

con i c1 :=Scheme ( Spec (A) , equ ) ;

dim1:=Dimension ( con ic1 ) ;

deg1 :=Degree ( con i c1 ) ;

As before, we look for the smallest extension of the ground field where all the conics lying

in this family are defined.

n :=1;

whi l e # Rat iona lPo int s ( BaseExtend ( conic1 ,GF(2ˆ Div [ n ] ) ) ) ne deg1

do n+:=1;

end whi le ;

Min Exp:=Div [ n ] ;

We can now construct explicitly the conics, taking into account that we do not want to

work with the singular ones, since they already came out while looking for lines.

C1:=BaseExtend ( conic1 ,GF(2ˆ Min Exp ) ) ;

Base<W,X,Y, Z>:=Pro j e c t iveSpace (GF(2ˆ Min Exp ) , 3 ) ;

P1:= Rat iona lPo ints (C1 ) ;

Con i c sL i s t : = [ ] ;

f o r p in P1 do

c base :=Xˆ2 +p [ 4 ] ∗X∗Y+p [ 5 ] ∗X∗Z+p [ 6 ] ∗Yˆ2+p [ 7 ] ∗Y∗Z+p [ 8 ] ∗Zˆ2 ;

plane :=W+p [ 1 ] ∗X+p [ 2 ] ∗Y+p [ 3 ] ∗Z ;

cc :=Scheme ( Base , [ c base , p lane ] ) ;

i f I sNonSingular ( cc ) then

Append(˜ ConicsLis t , cc ) ;
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end i f ;

end f o r ;

We have to repeat this procedure for the other families.

2.2 Examples

The first example we will show a quartic which contains many conics defined over a big

extension of the ground field, which we could have not been able to determine using the

first approach showed. Consider the K3 surface X2 defined by

f2 :=W 3Z +WX2Z +WY 3 +X4 +X3Y +X2Y 2+

+XY 3 +XY 2Z +XY Z2 +XZ3 + Y 4 + Y 3Z + Y 2Z2 + Y Z3 + Z4

over F2.

As we have done before we need the characteristic polynomial of Frobenius to compute

the Picard rank:

φX2(x) = (−2)(x− 1)2(x+ 1)2(x2 − x+ 1)(x2 + 1)(x2 + x+ 1)(x4 + 1)(x8 + 1).

Hence the geometric Picard number is 2 + 2 + 2 + 2 + 2 + 4 + 8 = 22 and the Picard group

will be completely defined over K := F248 since l.c.m(1, 2, 6, 4, 3, 8, 16) = 48.

We now determine the number of conics over the extensions F2k for k ∈ Divisors(48):

k Number of Conics

1 0

2 0

3 0

4 0

6 0

8 16

12 0

16 64

24 64

48 112

So, to obtain them all we have to work over K.

Here are two examples of conics defined over F248 . With z we denote its generator as an

extension of F2.

Scheme over GF (248) defined by

X2+
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+ (z45 + z44 + z42 + z39 + z38 + z37 + z35 + z34 + z33 + z32 + z31 + z30 + z29+

+ z27 + z26 + z25 + z24 + z22 + z18 + z7 + z5 + z4 + z2 + 1)XY+

(z47 + z45 + z43 + z42 + z40 + z39 + z38 + z37 + z36 + z35 + z34 + z33 + z32+

+ z31 + z29 + z27 + z24 + z22 + z19 + z17 + z16 + z15 + z11 + z9 + z8 + z7 + z5 + z4 + z3 + z + 1)Y 2+

+ (z46 + z43 + z42 + z41 + z40 + z38 + z37 + z36 + z34 + z33 + z29 + z27 + z26 + z25 + z22 + z21 + z19+

+ z18 + z16 + z14 + z11 + z10 + z9 + z8 + z7 + z3 + z + 1)XZ+

+ (z42 + z39 + z35 + z34 + z31 + z29 + z28 + z27 + z26 + z25+

+ z21 + z17 + z16 + z15 + z14 + z13 + z10 + z9 + z7 + z2 + z)Y Z+

+ (z47 + z46 + z45 + z44 + z42 + z41 + z39 + z37 + z36+

+ z35 + z34 + z33 + z32 + z31 + z24 + z21 + z20 + z19+

+ z17 + z14 + z12 + z11 + z8 + z7 + z4 + z2 + z + 1)Z2,

W + (z47 + z46 + z45 + z44 + z43 + z40 + z37 + z36 + z35 + z33 + z32 + z30 + z26 + z25 + z24 + z23

+ z20 + z18 + z16 + z13 + z12 + z10 + z5 + z3 + z2 + z)X+

+ (z47 + z42 + z41 + z38 + z37 + z33 + z31 + z28 + z26

+ z24 + z22 + z21 + z19 + z18 + z16 + z15 + z14 + z12 + z9 + z7 + z5 + z4 + z + 1)Y

+ (z47 + z46 + z45 + z44 + z42 + z41 + z40 + z38 + z37 + z35 + z34 + z32 + z30 + z28 + z27 + z24 + z23+

z21 + z17 + z15 + z14 + z10 + z9 + z8 + z7 + z5 + z3 + z2 + z + 1)Z,

Scheme over GF (248) defined by

X2+

+ (z45 + z41 + z40 + z31 + z30 + z29 + z28 + z26 + z24 + z23 + z22 + z21 + z16 + z15+

+ z13 + z12 + z9 + z8 + z6 + z3 + z)XY+

+ (z41 + z34 + z32 + z31 + z27 + z25 + z24 + z23 + z19 + z18+

+ z17 + z16 + z15 + z14 + z13 + z12 + z8 + z3 + z2 + z + 1)Y 2

+ (z47 + z45 + z43 + z42 + z41 + z39 + z35+

+ z34 + z29 + z26 + z25 + z24 + z20 + z19 + z18 + z16 + z14 + z13 + z12 + z10 + z5 + z4)XZ+

+ (z45 + z44 + z43 + z42 + z40 + z39 + z36 + z34 + z31 + z30 + z29 + z28 + z26 + z24+

+ z23 + z20 + z19 + z18 + z16 + z12 + z9 + z8 + z7 + z6 + z5 + z4 + z3 + z2 + z)Y Z+

+ (z47 + z37 + z36 + z34 + z33 + z32 + z31 + z30 + z28 + z27 + z25 + z24 + z23 + z22 + z21 + z20+

+ z18 + z14 + z13 + z12 + z11 + z10 + z8 + z7 + z4 + z)Z2,

W + (z47 + z46 + z45 + z44 + z43 + z42 + z41 + z34 + z33 + z32 + z31 + z30 + z26 + z23 + z22+

+ z21 + z20 + z17 + z15 + z12 + z9 + z7 + z6 + z5 + z3)X+

+ (z47 + z45 + z41 + z39 + z38+
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+ z36 + z32 + z28 + z27 + z26 + z25 + z24 + z23 + z22 + z21 + z20 + z19 + z16 + z15 + z12+

+ z11 + z10 + z5 + z4 + z + 1)Y+

+ (z45 + z44 + z43 + z42 + z40 + z38 + z36 + z34 + z33 + z32+

+ z31 + z29 + z26 + z22 + z21 + z20 + z19 + z18 + z16 + z10 + z9 + z8 + z7 + z6 + z4 + z2 + z)Z

We now go back to the previous examples, starting with

X0 : f0 = W 3Z+WX2Z+WXY 2+WXY Z+WY Z2+X3Y +X2Y Z+XY 3+Y 2Z2+Z4.

This example is interesting since it shows how sometimes we can work over smaller exten-

sions then the one determined by the Tate conjecture. In particular, in this case if we had

directly looked for conics over the extension of degree 36, which a priori should be the one

to look at, we would have only find conics which are base change of conics defined over

smaller fields. So, instead of looking for rational points over F236 , we can work over F29

which is much smaller. On a single example the time difference can be hardly noticed,

but later on we will explain how we want to implement this method for a large number of

quartic surfaces. Hence, we are trying to speed up the computations as much as we can.

k Number of Conics

1 1

2 1

3 1

4 1

6 1

9 19

12 12

18 19

36 19

Thanks to remark 1.13, we can give the list of conics defined over F29 up to Frobenius

action.

Hence, we get the following:

Scheme over F29 defined by

X2 + z245XY + z456XZ + z182Y Z + z143Z2,

W + z175X + z273Y + z252Z,

Scheme over F29 defined by

z14XY + Y 2 + z279XZ + z480Y Z + z10Z2,

W + z378X + z140Y + z483Z,

Scheme over F2 defined by

X2 +WY + Y 2,
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Z;

where the first two conics give rise to other 8 conics each and the last one is obviously

invariant under the action of the Frobenius. So, this is enough to determine the list of 19

conics contained in X0.

Similarly, we consider X1 defined by

W 3Z +WXY Z +WZ3 +X4 +X2Y Z +XY 3 +XY Z2 +XZ3 + Y 4 + Y 3Z + Z4

and we look for conics over F2, F22 and F24 we can see that in the first two cases we have

no conics, whereas over the latter we can find 84 of them.
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3 Twisted cubics

3.1 Definition and basic properties

The main reference for this section is Algebraic Geometry by Hartshorne. Assume that

we are working over an algebraically closed field K.

Definition 3.1. The twisted cubic is the curve C ⊂ P3 defined by f : P1 −→ P3 where

f(s : t) := (s3 : s2t : st2 : t3).

Proposition 3.2 (Hartshorne, page 159). Let C be a non singular curve of degree 3 in

P3(K), for K be an algebraically closed field.

Then, one of the following has to happen:

• C is a planar curve;

• C can be obtained from the twisted cubic γ by an automorphism of P3(K).

Remark 3.3. The result above can be generalized to any field k as follows.

Suppose C ⊂ P3(k) be a cubic not contained into any plane Π.

Let OC(1) be the restriction of the line bundle associated to the plane sections of the curve

and ΩC be the canonical line bundle of C.

From the above result by Hartshorne, we know that over k we have that C ∼= P1.

Now, ΩC ⊗ OC(1) is a line bundle defined over k which has two sections (via cohomology

and base change).

Hence, the associated morphism C −→ P1(k), defined over k, is an isomorphism over k.

The condition for the associated morphism to be an isomorphism does not depend on the

field. Hence, we can deduce that C is isomorphic to P1(k). In conclusion, the morphism

i : C ↪→ P3 is the morphism associated to the linear system OP1(k)(3), hence i(C) is the

twisted cubic up to an automorphism of P3.

We now see another way to define the twisted cubic (thanks to the previous result

we can refer to the twisted cubic, rather than a twisted cubic).

Definition 3.4. A variety X of dimension r in Pn is a strict complete intersection if

I(X) can be generated by n− r elements.

If X can be written as the intersection of n − r hypersurfaces we say that X is a set

theoretic complete intersection.

Proposition 3.5. • Let X be a variety in Pn such that X = V (I) where I is an ideal

generated by r elements. Then, dim X ≥ n− r.

• A strict complete intersection is a set-theoretic complete intersection.

• The converse is false.
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We will now show that the twisted cubic is a set theoretic intersection of a quadric

and a cubic, but not a strict complete intersection.

Let us consider the following quadrics contained in P3(K)[x,y,z,t]:

Q0 := {yz − xt = 0}; Q1 := {y2 − zx = 0}. (4.2)

They both contain the line y = x = 0, and they residually intersect in points (x, y, z, t)

s.t. x
y = y

z = z
t =: θ.

Thus, the residual intersection is the twisted cubic γ. Note that the quadric Q2 :=

{z2 − yt = 0} contains the twisted cubic, but not the line y = x = 0, hence γ is the

intersection of the three quadrics Q0, Q1, Q2.

However, the twisted cubic is not a set-theoretic complete intersection of any choice of

{Qi, Qj}, i, j ∈ {0, 1, 2} since the intersection would also contain a line:

Q0 ∩Q1 = γ ∪ {y = x = 0} (4.3)

Q0 ∩Q2 = γ ∪ {y = t = 0} (4.4)

Q1 ∩Q2 = γ ∪ {y = z = 0} (4.5)

Now, I :=< q0, q1, q2 > where Qi := {qi = 0}.
Hence, such generators are

q0 = yz − xt, (4.6)

q1 = y2 − zx, (4.7)

q2 = z2 − yt. (4.8)

No linear form can vanish on γ and the above 3 generators are linearly independent, hence

I cannot be generated by less then 3 polynomials. This implies that γ cannot be a strict

complete intersection.

To conclude that I(γ) = I, we need to show that I is a radical ideal. Here is the proof.

I ⊂
√
I is trivial.

For the converse, let us pick P := P (x, y, z, t) that vanishes on γ. We will prove that

P ∈ I.

We claim that we can write P = R(x, t) +S(x, t)y+T (x, t)z+ i(x, y, z, t), where R,S, T ∈
K[x, t] and i ∈ I.

The proof of the latter is by induction on the degree of P .

Hence, we have that

0 = P (s3, s2t, st2, t3) = R(s3, t3) + S(s3, t3)s2t+ T (s3, t3)st2 + 0 (4.9)

Hence, comparing the monomials of degree modulo 3 we can deduce that no cancellation

can occur, hence R = T = S = 0.

We can now use this fact to show that γ is a set theoretic complete intersection. Namely,
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we will show that γ = V (y2 − xz) ∩ V (z3 − 2yzt+ xt2).

First of all, z3 − 2yzt+ xt2 = z(z2 − yt) + t(xt− yz), hence lies in I.

This implies that γ ⊆ V (y2 − xz) ∩ V (z3 − 2yzt + xt2). To prove the converse, we have

that

(z2 − yt)2 = z(z3 − 2yzt+ xt2) + t2(y2 − xz) (4.10)

(xt− yz)2 = x(z3 − 2yzt+ xt2) + z2(y2 − xz). (4.11)

This means that< q2, q0 >∈
√
q1, z3 − 2yzt+ xt2, hence I ⊆

√
q1, z3 − 2yzt+ xt2 proving

that γ = V (y2 − xz) ∩ V (z3 − 2yzt+ xt2) ⊆ γ.

This proves that the twisted cubic is a set theoretic complete intersection.

3.2 Code

As before, suppose we are given a K3 surface X defined over a finite field Fq.
The idea to find twisted cubic will somehow resemble what we have previously done for

lines and conics.

We were not able to proceed using the exact same method, since we would be dealing with

schemes of dimension 40, thus computing the degree of those schemes is not feasible.

Hence, we used a method similar to the first approach used for conics.

Start considering the fundamental twisted cubic γ, namely the one given by the minors of

the matrix [
W X Y

X Y Z

]
Hence, it is given by the equations

f1 := WY −X2 = 0

f2 := XZ − Y 2 = 0

f3 := WZ −XY = 0

Our approach aims to find all possible K3 surfaces of degree four which contain γ and

then compare X with this set.

If a quartic contains γ, it means that we should have three polynomials g1, g2, g3 over Fq
homogeneous of degree 2 such that X := g1 · f1 + g2 · f2 + g3 · f3 = 0.

Each gi has 10 coefficients, so running the coefficients over Fq we get a first set C0 of

quartics.

However, not each one of those quartic surfaces is actually a K3, we need to get rid of the

singular ones. Call this new set C1.

Once this is done, we think of this set as a disjoint union of quartics depending on the

PGL4 orbit they lay in, meaning that we write C1 = tGi.
As we have reminded in the previous section, all twisted cubics are projectively equivalent.

However, this action is not fully transitive: every twisted cubic γi is stable under the
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action of a subgroup of PGL4 that we denote by Stab(γ), independent on the choice of

the conjugacy class of γi, which contains the image of the isomorphisms of P1.

To make things clear, the twisted cubic can be written as

γ :P1 −→ P3

(s : t) 7−→ (s3 : s2t : st2 : t3)

Hence every linear transformation on P1 can be mapped into an element of PGL4 which

fixes γ.

Let’s now consider a PGL4-class of quartics Gk := {X0, . . . , Xn}.
From what we have said before, we can write the class Gk as a distinct union of classes

of the Stabilizer. In general, we will have that the size of every such class is a multiple of

#Stab(γ).

Identifying the quartics modulo the action of Stab(γ), we finally have the set C we were

looking for.

To determine whether X contains a twisted cubic we have to determine if there is any

element of its PGL4 orbit which lays in C.

Here is the code we are using for this first part of the computations for smooth quartics

over F2.

K:=GF( 2 ) ;

Ring<W,X,Y, Z>:=PolynomialRing (K, 4 ) ;

f 1 :=Xˆ2+W∗Y;

f2 :=Yˆ2+X∗Z ;

f3 :=W∗Z+X∗Y;

D:=[Wˆ2 ,W∗X,W∗Y,W∗Z ,Xˆ2 ,X∗Y,X∗Z ,Yˆ2 ,Y∗Z , Z ˆ 2 ] ;

V<[a]>:= VectorSpace (K, 3 0 ) ;

TwistedCubics :={} ;

f o r P in V do

g1:=&+[P[ i ]∗D[ i ] : i in [ 1 . . 1 0 ] ] ;

g2:=&+[P[ i +10]∗D[ i ] : i in [ 1 . . 1 0 ] ] ;

g3:=&+[P[ i +20]∗D[ i ] : i in [ 1 . . 1 0 ] ] ;

//we are working over GF(2)

cub:=g1∗ f 1+g2∗ f 2+g3∗ f 3 ;

Inc lude (˜ TwistedCubics , cub ) ;

end f o r ;

Space<W,X,Y, Z>:=Pro j e c t iveSpace (K, 3 ) ;

f o r Q in TwistedCubics do

S:=Scheme ( Space ,Q) ;

i f I s S i n g u l a r (S) then

Exclude (˜ TwistedCubics , Q) ;
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end i f ;

end f o r ;

Once this is done, we have to divide all quartics lying in the set TwistedCubics into PGL4

orbits.

An equivalent approach to this problem would be to enumerate all the twisted cubics

defined over F2. This can be achieved starting from the fundamental twisted cubic and

via PGL4 find the complete list of such curves over F2.

Once this is done, it is sufficient to check if they are contained in a K3 surface X.

3.3 Examples

Here is an example.

Consider the following K3 surface defined over F2:

W 3Z +W 2Y 2 +WY 3 +X4 +X2Y 2 +X2Y Z +XY 2Z +XY Z2 +XZ3 + Y 3Z + Z4.

This quartic contains 8 twisted cubic defined over its base field:

γ0 := [X2 +XZ + Y Z + Z2 +XW + YW +W 2,

XY +XZ + Y Z + Z2 +XW + YW + ZW,

Y 2 + Z2 +XW +W 2];

γ1 := [X2 +XZ + Z2 + ZW,

XY +XZ +XW + YW,

Y Z + Z2 +XW + YW + ZW ];

γ2 := [X2 + Y Z + ZW,

XZ + YW +W 2,

Z2 +XW ];

γ3 := [X2 +XZ + Z2 + ZW,

XY +XZ + ZW,

Y Z + Z2 +XW + YW ;

γ4 := [X2 + Y 2 +XW + ZW +W 2,

XZ + Z2 +XW + YW +W 2,

Y Z + Z2 +XW + YW + ZW ];
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γ5 := [X2 +XZ + Y Z + Z2 +XW + YW + ZW +W 2,

XY +XZ +XW + YW,

Y 2 + Z2 +XW + ZW +W 2];

γ6 := [X2 + Y Z +XW,

XZ +XW + YW + ZW +W 2,

Z2 +XW + ZW ];

γ7 := [X2 + Y 2 + Z2 +XW +W 2,

XZ +XW + YW + ZW +W 2,

Y Z + Z2 +XW + YW ].

4 Computing the sublattice

Once we have found divisors over a quartic K3 surfaceX, we need to compute the sublattice

generated by such divisors.

First of all, since every time we tried to work over the smallest possible extension of F2,

we need to have them defined over the same field. The easiest way to do it is to go back

to zeta function of X to determine the degree of the minimal extensions on which all the

generators of the Picard group are defined. Once we have this degree nX , we can lift all

the divisors we have found over F2nX .

We can now build their intersection matrix M .

We can construct it as follows: suppose we have a list of divisors {H,L,C, TC} where H

is the hyperplane section, L is the set of lines, C the set of irreducible conics and TC the

set of twisted cubics.

Every entry of M denotes the intersection number between two divisors.

Namely, in the first line we have M [0, 0] = 4, M [0, i] = 1 for i ≤ #L, M [0, i] = 2 for

#L ≤ i ≤ #C + #L and M [0, i] = 3 for #L+ #C ≤ i ≤ #C + #L+ #TC.

On the diagonal we have M [i, i] = 2 · g(D)− 2 for any divisor D. Since we are considering

rational curves the value would be −2 on the whole diagonal apart from M [0, 0].

For the other entries, we have to compute the degree of the intersection between the two

divisors. Since the intersection scheme is either empty or zero-dimensional, this would

give us the number of points of the intersection.

GramMatrix:= func t i on ( gen , gen1 , gen2 )

Mat : = [ ] ;

Line : = [ 4 ] ;

f o r i in [ 1 . . # gen1 ] do

Line :=Append( Line , 1 ) ;

end f o r ;
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f o r i in [ 1 . . # gen2 ] do

Line :=Append( Line , 2 ) ;

end f o r ;

Mat:=Append(Mat , Line ) ;

f o r S in gen do

Line : = [ ] ;

i f S in gen1 then

Line :=Append( Line , 1 ) ;

e l s e

Line :=Append( Line , 2 ) ;

end i f ;

f o r D in gen do

i f S eq D then

Line := Append( Line , 2∗ ArithmeticGenus (S)−2);

e l s e

Line :=Append( Line , Degree (S meet D) ) ;

end i f ;

end f o r ;

Mat:=Append(Mat , Line ) ;

end f o r ;

r e turn Mat ;

end func t i on ;

4.1 Examples

Let’s pick the examples considered in the previous sections. We will recall the defining

equation, the geometric Picard ρ(X) and the minimal degree N for achieving such rank.

Also, all those three examples contain no twisted cubic defined over the base field.

X0 : f0 = W 3Z+WX2Z+WXY 2+WXY Z+WY Z2+X3Y +X2Y Z+XY 3+Y 2Z2+Z4.

N=36; ρ(X0) := 20.

It has 17 lines and 19 conics giving a sublattice of whose intersection matrix has rank 20,

hence it is of finite index.

Let’s now consider the surface X1 defined by

f1 := W 3Z +WXY Z +WZ3 +X4 +X2Y Z +XY 3 +XY Z2 +XZ3 + Y 4 + Y 3Z + Z4,

N:=4, ρ(X1) := 18.

We have 40 lines and 84 conics and they give a sublattice of finite index.

Finally, we consider X2 defined by

f2 :=W 3Z +WX2Z +WY 3 +X4 +X3Y +X2Y 2+
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+XY 3 +XY 2Z +XY Z2 +XZ3 + Y 4 + Y 3Z + Y 2Z2 + Y Z3 + Z4.

N:=48 ; ρ(X2) := 22;

We have 16 lines, 112 conics and we get a sublattice of finite index.

This will not of course happen every time, but in general for a good number of quartics

such a sublattice is achieved.

We will show statistics about this fact when considering smooth quartics over F2.
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Chapter 5

K3 surfaces defined over F2

1 A census of quartics over F2

We now give an overview of the paper A census of zeta functions of quartic K3 surfaces

over F2 by K. Kedlaya and A. V. Sutherland.

This paper aims to detect all the smooth quartic surfaces over F2 and their zeta function.

To start this investigation, recall that the zeta function of an algebraic variety X defined

over Fq with q = pe is

Z(X, t) := exp
( ∞∑
n=1

#X(Fqn)
tn

n!

)
.

For K3 surfaces via the Weil Conjecture we have the following:

Theorem 1.1. Let X be a K3 surface over Fq. Then

Z(X, t) =
1

(1− t)(1− qt)(1− q2t)L(qt)
(5.1)

where L(t) is a polynomial of degree 21 and all of its roots with absolute value 1.

They computed the set Q of PGL4 equivalence classes for smooth quartics and it

turns out to contain 528,257 elements. Via point counting they could also compute all

their zeta functions, and this set turns out to have 52,755 elements.

1.1 Survey of the work by Kedlaya and Sutherland

The vector space of homogeneous polynomials of degree 4 over F2 is 35 dimensional. So,

every such polynomial f can be identified with a vector v(f) = (v0, v1, . . . , v34) where

vi ∈ F2 is the coefficient of the i − th term (considering lexicographical ordering of the

monomials in F2[W,X, Y, Z]4). For a better labeling, this vector is translated into a

positive integer which will be less that 235.

The group PGL4(F2) acts on homegeneous quartics via linear change of coordinate and

it can be identified with a subgroup G of GL35(F2) of order 20,160. Since they were

interested in quartic surfaces up to isomorphisms, it is sufficient to consider the G-orbits
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of V. Each one of them will be represented by a unique lexicographically minimal element

v.

To determine the number of orbits we will use Burnside Lemma:

Lemma 1.2. Let G be a finite group that acts on a set X. Let X/G be the set of orbits

of X. For every g ∈ G let Xg := {x ∈ X s.t. g · x = x}. Then

|X/G| = 1

|G|
·
∑
g∈G
|Xg|.

Hence,

#(V/G) =
1

|G|
∑
g∈G

#V g =
#C

#G

∑
C

(#F2)
dim 1(C) = 1, 732, 56.

Here the second sum runs over the conjugacy classes and dim1(C) denotes the 1-eigenspace

of the conjugacy class C.

This brute force approach would not be feasible for fields bigger that F2: over F3 there are

4,127,971,480 orbits, and over F4 100,304,466,278,983. Once the list of orbits is known, it

is possible to restrict it to those which define a K3 surface. Namely, those are the orbits

represented by a vector v(f) for which the polynomial f ∈ F2[W,X, Y, Z] is irreducible,

or for which the singular locus defined by the Jacobian matrix of f is nonempty.

Appling those conditions it turns out that 528,257 satisfy them. It is now time to find

the zeta functions for such quartics, hence it is necessary to count the rational points of

f(W,X, Y, Z) = 0 over extensions of F2 (from the functional equation of the zeta function

we know it suffices to stop at the degree 11 field extension).

The naive approach to point counting would be to simply iterate over points (x0, y0) ∈ F2
2m

and find the roots of g(W ) = f(W,x0, y0, 1) that lie over F2m . Of course one should

consider the case Z = 0, but in this way we are simplifying the calculations.

Zinoviev’s formulas in [70] provide a method to find such roots by giving an explicit n×n
linear systems of equations whose solutions correspond to the roots of g.

Going back to the point counting, it is worth noticing that a general polynomial g defined

as g(W ) = f(W,x0, y0, 1) does not have degree 4.

For all but 34 of the surfaces in Q the degree of the defining polynomial f(W,X, Y, Z) in

W is at most 3. In the typical case, after making g monic and applying a linear change of

variables, we may assume that g(W ) = W 3 +g1W +g0. It is hence possible to precompute

a lookup table T indexed by pairs (g0, g1) ∈ F2
2m whose entries record the number of

roots of the polynomial W 3 + g1W + g0. Each entry of T is an integer 0 ≤ n ≤ 3, thus

#T = 22r+1.

It is faster to compute T than to instantiate f(W,x0, y0, 1) at every pair (x0, y0) ∈ F2
2

and this process can be accelerated by ordering the pairs (g0, g1) in such a way to make

it easier to compute the matrices appearing in Zinoviev’s formulas. This will make the

computation of T worthwhile and we can reuse the same table for every X ∈ Q. Thus,
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the cost of point counting is dominated by the time required to compute f(W,x0, y0, 1).

In order to perform all the point counting required to get the zeta functions, a better

way is to reverse this approach. This means to loop over pairs (x0, y0) and for each pair

count the solutions to f(W,X, Y, Z) = 0 over finite extensions of F2 (and f ∈ Q) instead

of iterating over surfaces given by f(W,X, Y, Z) = 0.

This allows to instantiate 35 homogeneous quartic polynomials at X = X0, Y = y0, Z = 1

just once for each pair and then for every f ∈ Q compute f(W,x0, y0, 1) as an F2-linear

combination of those.

This algorithm works fast enough and for every X ∈ Q we can write L(T ) = 1 + a1T +

· · · + a21T
21 with a1, . . . , a12 known. Using the zeta functional equation it is possible to

determine all the others coefficients.

Using this method, they were able to provide the following outputs:

• the list Q of all quartic K3s over F2;

• the list of all possible zeta functions together with the associated K3s.

In order to make the .txt file shorter and more readable, the list Q is given as of integers

NX ≤ 235 together with the number of rational points defined up to F211 .

Every K3 X ∈ Q is associated to an integer NX by writing the list of coefficents (which is

a series of 0s and 1s of length 35) which is then converted to base 10.
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2 Survey of the results

We now show how we used the algorithms described in previous chapter applied to the

list Q determined by Kedlaya and Sutherland.

As seen in chapter 3, from the existing literature we have already have a complete picture

of the number of lines contained in a K3 surface.

Thanks to our computations, we can add conics and (partially) twisted cubics to this

picture.

However, we could not get any results for curves of higher degrees.

2.1 Preliminary computations

First of all, we have to translate the list given by Kedlaya and Sutherland into quartic

surfaces since they provide the elements of Q as integer N ≤ 235.

The algorithm used to perform this first step was pretty straightforward, we simply had

to reverse what they did.

Here is one easy example. The first K3 in their list is identified as 2147491859, which after

easy computations turns out to represent the quartic X3Y + Y 4 +W 3Z + Y Z3 + Z4.

Secondly, we have to use the Tate conjecture to determine the geometric Picard rank for

all these surfaces and the minimal extension of the ground field to achieve it.

We used Sage for this first part, whereas for the rest of the computations we found out

that MAGMA was performing much better.

Here is the distribution of the geometric Picard rank for our set Q.

Ranks:= [ 0, 87312, 0, 140397, 0, 74575, 0, 66842, 0, 61929, 0, 36065, 0, 26966, 0, 19271,

0, 9139, 0, 3390, 0, 2371].

2.2 Lines

Since we could not determine a degree independent algorithm, we approached such com-

putation by degree of the divisors. Hence the first curves analyzed were lines.

As stated in the previous chapter, sharp bounds for the number of lines have already been

found. Nevertheless, we still needed to have the explicit equations for each X ∈ Q.

We used the method described in chapter 4, at the same time we computed the rank of

the Picard sublattice obtained by such divisors.

The following vector contains the distribution of lines on the quartics belonging to Q.

The first entry identifies the number of K3 surfaces for which we found no lines and so on.

NumberOfLines:=[268406, 98965, 46986, 20173, 47773, 12344, 6796, 8484, 7300, 1565,

3082, 1456, 1152, 954, 731, 135, 858, 198, 101, 138, 221, 58, 102, 33, 59, 28, 25, 9, 33, 14,

7, 3, 22, 3, 3, 0, 13, 3, 3, 0, 21]

It is worth noticing that for such quartics the number of lines is at most 40, which agrees

with the bound of the paper by Degtyarev [12].

In his paper he showed that the number of lines on a quartic K3 in characteristic 2 is at
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most 60. In case X is supersingular, the maximum is either 40 or at most 32.

Here are the data for supersingular K3. We have 2371 such surfaces and the number of

lines are

LinesSS:=[856, 122, 57, 14, 725, 16, 67, 92, 132 ,10, 50, 35, 30, 4 ,4, 5, 68, 18, 0, 0, 37, 0,

8, 0, 6, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 12].

2.3 Conics

Once done with lines, we then moved to irreducible conics. For such divisors not much

is known, in particular there are very few examples in the literature of K3s with a big

number of conics. Even though we restrict our analysis only to K3s of degree 4 over the

field F2, we could find examples containing up to 672 conics.

To obtain the complete description of the conics contained in the quartic K3s over F2, we

worked as described in the previous chapter.

Proceeding in this way we were able to find the exact number of conics contained in every

K3 over the field F2 and their equations.

Here is the vector with the number of conics we found.

NumberOfConics:=[ 290764, 28357, 62528, 9982, 28793, 5344, 13867, 5646, 15670, 3354,

8946, 1625, 7480, 1219, 4796, 1071, 4625, 595, 3755, 1181, 4155, 594, 1905, 356, 1930, 513,

1055, 302, 1185, 183, 1024, 316, 1597, 235, 617, 148, 859, 129, 325, 105, 644, 97, 545, 144,

355, 122, 241, 43, 312, 74, 231, 79, 295, 70, 401, 336, 1488, 87, 312, 89, 343, 87, 138, 73,

222, 20, 214, 38, 140, 10, 146, 38, 228, 16, 103, 34, 101, 31, 88, 32, 226, 28, 72, 11, 115,

17, 59, 12, 42, 9, 117, 32, 96, 11, 25, 1, 86, 9, 36, 11, 35, 4, 19, 16, 72, 12, 34, 4, 30, 2, 23,

5, 72, 5, 48, 4, 32, 2, 19, 7, 48, 6, 15, 6, 11, 0, 12, 10, 78, 0, 27, 8, 25, 1, 19, 7, 11, 0, 3, 4,

45, 2, 17, 4, 29, 5, 6, 0, 12, 0, 9, 5, 19, 2, 22, 1, 11, 0, 16, 4, 61, 1, 250, 3, 11, 16, 11, 0,

284, 0, 11, 0, 4, 0, 0, 0, 60, 0, 4, 0, 2, 0, 2, 0, 2, 0, 12, 0, 7, 1, 0, 0, 40, 0, 2, 0, 5, 0, 3, 2,

10, 0, 6, 0, 1, 0, 0, 0, 24, 0, 0, 0, 1, 0, 0, 0, 9, 0, 15, 0, 3, 0, 0, 0, 55, 0, 6, 0, 0, 0, 3, 4, 4, 0,

0, 3, 2, 0, 0, 0, 16, 0, 1, 0, 4, 0, 4, 0, 2, 0, 0, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

16, 0, 0, 0, 4, 0, 3, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0,

0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 7, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16];

The greatest number of conics for such quartics is 672.
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Below is the list of such K3 surfaces (all of which are supersingular):

f0 :=W 3Z +W 2Y 2 +WY 3 +WZ3 +X4 +X2Y 2 +X2Y Z +X2Z2 +XY 2Z+

+XY Z2 + Y 3Z + Z4,

f1 :=W 3Z +W 2Y 2 +WY 3 +WZ3 +X4 +X2Y 2 +X2Y Z +X2Z2 +XY 2Z+

+XY Z2 + Y 3Z + Y 2Z2 + Y Z3,

f2 :=W 3Z +W 2Y 2 +WY 3 +WZ3 +X4 +X2Y 2 +X2Y Z +X2Z2 +XY 2Z +XY Z2 + Y 4 + Y Z3,

f3 :=W 3Z +WXY 2 +X4 +XZ3 + Y 4 + Y 3Z,

f4 :=W 3Z +W 2Y 2 +WY 3 +WZ3 +X4 +X2Y 2 +X2Y Z +X2Z2 +XY 2Z+

+XY Z2 + Y 4 + Y 2Z2 + Z4,

f5 :=W 3Z +WY 3 +WY Z2 +X4 +X2Y 2 +X2Y Z +X2Z2 +XY 2Z +XY Z2 + Z4,

f6 :=W 3Z +WY 3 +WY Z2 +X4 +X2Y 2 +X2Y Z +X2Z2 +XY 2Z +XY Z2 + Y 2Z2 + Y Z3,

f7 :=W 3Z +WY 3 +WY Z2 +X4 +X2Y 2 +X2Y Z +X2Z2 +XY 2Z +XY Z2+

+ Y 4 + Y 3Z + Y 2Z2 + Z4,

f8 :=W 3Z +WY 3 +X4 +X2Z2 +XZ3 + Y Z3,

f9 :=W 3Z +W 2Y 2 +WY 2Z +WZ3 +X4 +X2Y 2 +X2Y Z +X2Z2 +XY 3 +XY Z2 +XZ3 + Y Z3,

f10 :=W 3Z +WXY 2 +X4 +XZ3 + Y 4 + Y 3Z + Z4,

f11 :=W 3Z +W 2Y 2 +WXY 2 +WZ3 +X4 +XZ3 + Y 4 + Y 3Z + Y 2Z2,

f12 :=W 3Z +WY 3 +WY Z2 +X4 +X2Y 2 +X2Y Z +X2Z2 +XY 2Z +XY Z2 + Y 4 + Y 3Z + Y Z3,

f13 :=W 3Z +WX2Z +WXZ2 +WY 3 +WY Z2 +WZ3 +X4 +X3Y +X2Y 2 +X2Z2+

+XY 3 +XY 2Z + Y 4 + Y 3Z + Y Z3,

f14 :=W 3Z +W 2Y 2 +WXY 2 +WZ3 +X4 +XZ3 + Y 4 + Y 3Z + Y 2Z2 + Z4,

f15 :=W 3Z +W 2Y 2 +WX2Y +X4 +X3Z +X2Y 2 +X2Z2 +XY 3 + Y 4 + Y 3Z + Y Z3,

2.4 Twisted cubics

We want to find the number of twisted cubics defined over F2 lying on every quartic of Q.

First of all, we have computed the image of the vector space given by the coefficients of the

gi (see notation from section 3.2) into the vector space of all the smooth quartics over F2.

This does not give the exact number of smooth quartic surfaces which contain a twisted

cubics since we still have to identify quartics lying in the same PGL4 orbit. At this point

we have a set C of around 590,000 quartics.

For each quartic Q ∈ C we have determined the number NQ of all its conjugates lying in

C. Since over F2 the order of Stab(γ) is 6, in general NQ will be a multiple of 6.

Here is the number of twisted cubics defined over F2 for the quartic K3s:

[453092, 57235, 13736, 2716, 998, 243, 128, 25, 19, 4, 3, 0, 0, 0, 0, 1].
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We also computed this number considering only K3s for which we found no lines or conics:

[141640, 20946, 1369,58].

This means that for 141640 K3s we still have not found any divisors.

We tried to carry out the same computation over F4, but in this situation the size of the

orbit of the twisted cubic gets too big.

It is a well-know result that gives the size of PGL(n,Fq):

Proposition 2.1.

#PGL(n,Fq) = q
n(n−1)

2

n∏
i=2

(qi − 1).

Proof. Notation: PGL(n, q) = PGL(n,Fq). Same will be for GL(n, q).

Since the order of GL (n, q) is the number of order basis over Pn(Fq), we have that

#GL (n, q) = (qn − 1) · (qn − q) · · · · · (qn − qn−1) = q
n(n−1)

2

n∏
i=1

(qi − 1)

Dividing by the order of its center (which is q − 1), we get the result.

Hence, the size of PGL(4,F4) is 987,033,600.

This number makes it impossible to proceed with the same method used for F2.

3 Subgroups of the Picard

Once we have the list of divisors, we computed the sublattice generated by such divisors

and its index.

Here is the computation only using lines:

• Rank of the sublattice:

[268406, 98965, 46986, 57878, 16249, 11842, 9854, 7053, 2684, 3424, 1480, 1494, 673,

451, 239, 344, 103, 74, 29, 23, 0, 6].

• Index of the sublattice obtained: the first entry denotes the number of K3s for which

we found a sublattice of finite index:

[34816, 23268, 59424, 17332, 21772, 12229, 25588, 10129, 16533, 6983, 10280, 4081,

6615, 2561, 4002, 1291, 1531, 366, 871, 57, 122, 0, 0].

This means that for 6.5% of the surfaces we have already found a sublattice of finite index.

Then, we can add conics and see how much of the Picard lattice is being filled by such

curves. We also found the minimal field extension over which the conics are defined, which

was an important data to allow us to compute the intersection numbers for every pair of

curves (C1, C2) lying on X.

Thus, it was possible to determine the Gram matrix G(X) which gave us the following

results:
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• Ranks of the Picard sublattice using lines and conics:

[ 164013, 116446, 52233, 67709, 27003, 24510, 17170, 16526, 8258, 10833, 4536, 5690,

2416, 3372, 1448, 2197, 761, 923, 225, 295, 34, 1659 ];

• Index of the sublattice obtained: the first entry denotes the number of K3s for which

we found a sublattice of finite index:

[ 72458, 52256, 78959, 23439, 30313, 14822, 29057, 11274, 18488, 6104, 9621, 3580,

6590, 1903, 3069, 584, 1203, 102, 402, 20, 0, 0, 0 ];

Hence, for 13.7% of the surfaces we were able to find a sublattice of finite index.

Twisted cubics:

• Ranks of the Picard sublattice using lines and conics and twisted cubics over F2:

[141640, 123148, 57894, 72123, 28725, 27097, 17244, 16713, 8512, 11347, 4404, 5863,

2496, 3433, 1420, 2271, 763, 951, 220, 298, 36, 1659];

• Index of the sublattice obtained: the first entry denotes the number of K3s for which

we found a sublattice of finite index:

[91621, 55112, 75025, 24365, 30780, 16648, 28700, 11956, 18680, 6647, 9229, 3909,

6460, 2224, 2895, 711, 1139, 122, 374, 20, 0 0 0];

This tells that for 17.3% of the K3s we found a sublattice of finite index. Also, for 73.18%

of the K3s we found at least one curve.

4 Application

As we already said, we hoped to find good algorithms to understand more about the

distribution of curves contained in the K3s lying in Q and at the same time derive some

datas regarding their Picard lattice.

Even though we could not fully solved this problem, even a partial algorithm can still be

of some use.

For example, we could get examples of K3s containing 672 conics, more than any other

example found in the literature.

Another possible application of our methods could come from the work of Van Luijk in

[65].

Namely, in this paper he produced an example of a K3 of degree 4 with geometric Picard

number 1.

4.1 K3 surfaces with ρ = 1

We go back to the work by Van Luijk in [65].

Let R := Z[x, y, z, w] be the homogeneous coordinate ring of P3
Z.

Consider the following family of quartics Xh := {wf1+2zf2 = 3g1g2+6h}, where fi, gi ∈ R
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defined by :

f1 =x3 − x2 +−x2z + x2w − xy2 − xyz + 2xyw + xz2 + 2xzw + y3+

+ y2z − y2w + yz2 + yzw − yw2 + z2w + zw2 + 2w3,

f2 =xy2 + xyz − xz2 − yz2 + z3,

g1 =z2 + xy + yz,

g2 =z2 + xy;

and h is an homogeneous polynomial of degree 4.

Theorem 4.1. [65] Let h ∈ R homogeneous polynomial of degree 4. Then, the quartic

Xh is smooth over Q and has geometric Picard number 1. The Picard group PicXh is

generated by the hyperplane section

The proof works in this way:

a) To have a bound of the Picard number over Q one can find a prime p of good

reduction, then Pic(Xh) injects into Pic(Xh)Fp .

b) Thanks to the Tate conjecture computing the Picard number of the reduction is

relatively easy: once the zeta function is know it is sufficient to count the number

of eigenvalues counted with multiplicity. One should aim to find a prime such that

the Picard number of the reduction is 2.

c) If the latter is the case, if we had Picard number 2 over Q, then the discriminants of

the Picard groups would belong to the same square class. Hence, the aim is to find

two primes such that different square classes arise for the discriminant. This would

imply that Xh has geometric Picard number 1.

In order to determine the discriminants of two reductions, he found two primes (2 and 3)

for which XF2 and XF3 have Picard number 2. Then, to get the discriminant he had to

find one curve for each reduction.

This is where our algorithms could be useful, enabling to determine more examples of such

K3 surfaces.

4.2 New examples

We could potentially use our methods to determine new examples of K3 sufaces of Picard

number 1.

In order to apply Van Luijk method one needs to know the discriminant of the Picard

group, which can be obtained by knowing its generators.
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5 Open questions

We now state some questions which remain open.

First of all, considering what we have done counting conics, we know the maximum number

of conics lying over a quartic K3 surface defined over F2.

Question 5.1. The following questions regarding conics are still open:

• Which is the maximum number of conics contained in a general K3 surface defined

over F2?

• Which is the maximum number of conics contained in a quartic K3 surface defined

over bigger finite fields of characteristic 2?

Next, for twisted cubics we could only determine such curves when defined over

the base field F2.

Question 5.2. What is the maximum number of twisted cubics contained in a quartic K3

defined over F2? And over bigger fields of characteristic 2?
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