
Rev. Sci. Instrum. 91, 125107 (2020); https://doi.org/10.1063/5.0014986 91, 125107

© 2020 Author(s).

Improved accuracy in high-frequency AC
transport measurements in pulsed high
magnetic fields
Cite as: Rev. Sci. Instrum. 91, 125107 (2020); https://doi.org/10.1063/5.0014986
Submitted: 31 May 2020 . Accepted: 27 October 2020 . Published Online: 11 December 2020

 Hiroyuki Mitamura,  Ryuta Watanuki,  Erik Kampert, Tobias Förster, Akira Matsuo,  Takahiro Onimaru,
Norimichi Onozaki, Yuta Amou, Kazuhei Wakiya, Keisuke T. Matsumoto, Isao Yamamoto, Kazuya Suzuki, Sergei

Zherlitsyn, Joachim Wosnitza,  Masashi Tokunaga, Koichi Kindo, and Toshiro Sakakibara

ARTICLES YOU MAY BE INTERESTED IN

Sub-kelvin temperature management in ion traps for optical clocks
Review of Scientific Instruments 91, 111301 (2020); https://doi.org/10.1063/5.0024693

Multiprobe scanning probe microscope using a probe-array head
Review of Scientific Instruments 91, 123702 (2020); https://doi.org/10.1063/5.0015897

An automated setup to measure the linear and nonlinear magnetic ac-susceptibility down
to 4 K with higher accuracy
Review of Scientific Instruments 91, 123905 (2020); https://doi.org/10.1063/5.0029095

https://images.scitation.org/redirect.spark?MID=176720&plid=1134823&setID=375687&channelID=0&CID=377361&banID=520216738&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=44691cc65a760f59d15c64c083e25903e499ecba&location=
https://doi.org/10.1063/5.0014986
https://doi.org/10.1063/5.0014986
http://orcid.org/0000-0003-0737-8287
https://aip.scitation.org/author/Mitamura%2C+Hiroyuki
http://orcid.org/0000-0002-5331-923X
https://aip.scitation.org/author/Watanuki%2C+Ryuta
http://orcid.org/0000-0002-7159-8578
https://aip.scitation.org/author/Kampert%2C+Erik
https://aip.scitation.org/author/F%C3%B6rster%2C+Tobias
https://aip.scitation.org/author/Matsuo%2C+Akira
http://orcid.org/0000-0001-9990-3098
https://aip.scitation.org/author/Onimaru%2C+Takahiro
https://aip.scitation.org/author/Onozaki%2C+Norimichi
https://aip.scitation.org/author/Amou%2C+Yuta
https://aip.scitation.org/author/Wakiya%2C+Kazuhei
https://aip.scitation.org/author/Matsumoto%2C+Keisuke+T
https://aip.scitation.org/author/Yamamoto%2C+Isao
https://aip.scitation.org/author/Suzuki%2C+Kazuya
https://aip.scitation.org/author/Zherlitsyn%2C+Sergei
https://aip.scitation.org/author/Zherlitsyn%2C+Sergei
https://aip.scitation.org/author/Wosnitza%2C+Joachim
http://orcid.org/0000-0002-1401-9381
https://aip.scitation.org/author/Tokunaga%2C+Masashi
https://aip.scitation.org/author/Kindo%2C+Koichi
https://aip.scitation.org/author/Sakakibara%2C+Toshiro
https://doi.org/10.1063/5.0014986
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0014986
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0014986&domain=aip.scitation.org&date_stamp=2020-12-11
https://aip.scitation.org/doi/10.1063/5.0024693
https://doi.org/10.1063/5.0024693
https://aip.scitation.org/doi/10.1063/5.0015897
https://doi.org/10.1063/5.0015897
https://aip.scitation.org/doi/10.1063/5.0029095
https://aip.scitation.org/doi/10.1063/5.0029095
https://doi.org/10.1063/5.0029095


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

Improved accuracy in high-frequency AC
transport measurements in pulsed
high magnetic fields

Cite as: Rev. Sci. Instrum. 91, 125107 (2020); doi: 10.1063/5.0014986
Submitted: 31 May 2020 • Accepted: 27 October 2020 •
Published Online: 11 December 2020

Hiroyuki Mitamura,1,a) Ryuta Watanuki,2 Erik Kampert,3,b) Tobias Förster,3 Akira Matsuo,1
Takahiro Onimaru,4 Norimichi Onozaki,2 Yuta Amou,2 Kazuhei Wakiya,4,c) Keisuke T. Matsumoto,4,d)

Isao Yamamoto,2 Kazuya Suzuki,2 Sergei Zherlitsyn,3 Joachim Wosnitza,3,5 Masashi Tokunaga,1
Koichi Kindo,1 and Toshiro Sakakibara1

AFFILIATIONS
1 Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan
2Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
3Hochfeld-Magnetlabor Dresden (HLD-EMFL) andWürzburg-Dresden Cluster of Excellence ct.qmat,
Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany

4Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
5Institut für Festkörper- und Materialphysik, TU Dresden, 01062 Dresden, Germany

a)Author to whom correspondence should be addressed: mitamura@issp.u-tokyo.ac.jp
b)Present address: WMG, University of Warwick, Coventry CV4 7AL, UK.
c)Present address: The Center for Rare Earths Research, Muroran Institute of Technology, Muroran 050-8585, Japan.
d)Present address: Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan.

ABSTRACT
We show theoretically and experimentally that accurate transport measurements are possible even within the short time provided by pulsed
magnetic fields. For this purpose, a new method has been devised, which removes the noise component of a specific frequency from the signal
by taking a linear combination of the results of numerical phase detection using multiple integer periods. We also established a method to
unambiguously determine the phase rotation angle in AC transport measurements using a frequency range of tens of kilohertz. We revealed
that the dominant noise in low-frequency transport measurements in pulsed magnetic fields is the electromagnetic induction caused by
mechanical vibrations of wire loops in inhomogeneous magnetic fields. These results strongly suggest that accurate transport measurements
in short-pulsed magnets are possible when mechanical vibrations are well suppressed.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0014986., s

I. INTRODUCTION

Pulsed magnets allow us to reach magnetic fields much larger
than available when using static-field magnets. Various physical
properties (magnetization, ESR,1,2 NMR,3 neutron diffraction,4 x-
ray diffraction,5 x-ray absorption,6 magnetic torque,7 magnetostric-
tion,8–11 magnetocaloric effect,12,13 heat capacity,14,15 imaging,16

cyclotron resonance,17,18 ultrasound,19,20 electric polarization,21–23

and so on) have been measured by using pulsed magnetic fields.

Especially in transport measurements, much research on semicon-
ductor, semimetals,24,25 metal to insulator transitions,26 and super-
conductors27,28 has been carried out using pulsed magnets. On the
other hand, magnetoresistance measurements of highly conductive
metals have not been performed very vigorously, although this has
been enabled by using highly sophisticatedly cut samples.29–31 This
is because of the challenges to achieve a sufficiently high resolu-
tion.32,33 In other words, the integration time in pulsed magnetic
fields is significantly shorter than that for static magnetic fields,
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and the signal is hidden in the noise inherent to generating pulsed
magnetic fields.

Until now, a usual way for achieving a better resolution is
to increase the pulse-duration time, i.e., to increase the integra-
tion time. This means, however, to increase the size of the power
supply and the magnet, which required substantial initial invest-
ment and maintenance costs. Since a large amount of energy dissi-
pates inside the magnet, the time required to cool down the magnet
becomes long, restricting the number of pulses per experimental run
significantly.

To overcome this difficulty, we propose a different approach.
The improved accuracy in high-frequency AC transport measure-
ments is promoted by an advanced concept of numerical phase
detection, which enables demodulation within a short time and at
a low frequency by integrating over an integer number of peri-
ods. If mechanical vibrations can be suppressed effectively, long
pulse durations are not necessarily required for highly accurate
measurements.

We will first show the basic principles of our method in Sec. II.
Next, pulsed-field measurements in Yokohama (Sec. III A), Dresden
(Sec. III B), and Kashiwa (Sec. III C) will be described. In Secs. III A–
III C, we will show that low-noise measurements can be made even
in a short time, our method of correcting the phase shift is appro-
priate, and verify the frequency dependence and how to solve issues
related to the simultaneous measurements of multiple samples.

II. FUNDAMENTALS
Here, we explain the basic method of high-resolution electri-

cal transport measurements in pulsed magnetic fields established
by the authors. The improvement achieved using our measurement
method is largely due to the introduction of a low-frequency AC
method by numerical phase detection. Section II A explains the basic
principle of the numerical phase detection method and the reason
for its efficiency in measurements in pulsed magnetic fields. In addi-
tion, the introduction of numerical phase detection has revealed
the origin of the noise occurring in magnetic-field generation. We
describe its mechanism and a reduction method in Sec. II B. Gener-
ally, the so-called “phase-rotation problem,” which appears to rotate
the phase as the frequency increases in AC measurements, cannot be
neglected anymore. In Sec. II C, we discuss the method for dealing
with this challenge. Finally, Sec. II D describes two methods to sub-
tract specific backgrounds common to pulsed magnetic field exper-
iments from the experimental data. For each technique described
below, Table I shows the subsections in which the corresponding
experimental results are described.

A. Numerical phase detection
In general, noise in DC measurements can be eliminated only

by integrating data over a time much longer than the time scale of the
noise, i.e., of the reciprocal of the noise frequency. If the time scale of
the noise is longer than the integration time, it is difficult to remove
it. We often encounter such a situation in transport measurements
in pulsed magnetic fields because their measurement time scales are
short, and many strong noise sources exist.

In this case, an effective noise-reduction method is the use
of AC measurements. Among AC demodulation techniques, phase

TABLE I. Overview of the investigated experimental techniques and the subsections
describing the corresponding experimental results.

Technique fundamentals Expt. results

II A Numerical phase detection
Numerical phase detection III A

II B Noise origin and reduction
Vibration of wires due to Lorentz force III C⟨8⟩
Mechanical vibration of probe III A, III C⟨6⟩
Differential vs single-ended signaling III C⟨4⟩
Choice of the modulation frequency III C⟨2⟩
Linear combination III A, III C⟨3⟩

II C Phase compensation
Calibration of phase shift III B
Asynchronization III A, III C⟨5⟩

II D Measurement background subtraction
Phase inversion III A
Magnetic flux compensation coil III A, III C⟨7⟩

detection is one of the most powerful methods. Generally, for the
phase detection, when the angular frequency of the signal to be
demodulated is ω0 [see Eq. (A1) in Appendix A], we multiply
the original signal by 2 cosω0t [see Eq. (A2) in Appendix A] or
2 sinω0t [see Eq. (A3) in Appendix A]. Then, we obtain mixtures of
time-invariant components and second-harmonic oscillations. Next,
we eliminate the components of the second-harmonic oscillation
cos 2ω0t and sin 2ω0t, whereby the time-independent components
remain.

In actual pulsed-field measurements, roughly about 1000 data
points are needed for a reasonable temporal resolution. This means
that for tens of milliseconds long pulse duration, one data point
should be acquired every tens of microseconds. Moreover, an AC
analog demodulation method requires 100 up to 1000 oscillations
per single data point. If we thus attempt to keep the aforementioned
effective time resolution (i.e., tens of microseconds), the required
modulation frequency will be in the order of several megahertz to
several tens of megahertz. Since termination reflections become con-
spicuous in this frequency band, the impedance matching of the cir-
cuit is required, and conventional four-point measurements become
challenging.

Contrary to analog AC demodulation, for the numerical phase
detection method,34 if the integral is performed in an interval of
integer multiples of 2π/ω0, the desired signal component can be
extracted even within a small number (1, 2, 3, . . .) of oscillation
periods according to the relations of Eqs. (A4)–(A6) in Appendix A.
For the above example, the necessary modulation frequency is about
several tens of kilohertz. Since impedance matching of the circuit
is not required in this frequency band, its associated circuit design
becomes much easier. On the other hand, if the number of peri-
ods required to integrate the data is decreased, the noise reduction
performance rapidly deteriorates because the pass gains Gcc

n and Gcc
n ,

which are defined in Eqs. (A7) and (A9) in Appendix A, remain rel-
atively large at other frequencies than the modulation frequency. In
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order to deal with this problem, several noise reduction techniques
will be introduced, as discussed in Sec. II B.

B. Noise origin and reduction
Before considering the noise-reduction methods, we need to

examine the cause of the noise inherent to pulsed magnetic fields.
First, we need to examine how the setup performs in zero field. The
goal now is to achieve a data quality in pulsed magnetic fields as close
as possible to the zero-field performance.

The primary reason for the noise inherent to measurements
in magnetic fields is that if wires are not sufficiently immobilized
when an AC current flows through the signal line, the wires vibrate
due to the Lorentz force. As a result, the effective area enclosed by
the wire changes and an electromotive force is generated. Since the
noise generated by such wire vibrations occurs in the same frequency
range as the sample’s modulation frequency, it is practically impos-
sible to remove this noise using a numerical process. Therefore, in
order to avoid such noise, it is necessary to fix the wire rigorously
to the main body of the probe. This means that the construction of
angular-rotation probes for low-noise measurements is challenging
because such probes often require flexible wires.

Even after implementing such countermeasures, some noise
remains, often at fixed, well-defined frequencies. The dominant
source of residual noise is that the probe with a fixed wire loop
experiences mechanical vibrations in an inhomogeneous magnetic
field caused by the finite length of the magnet. Here, the frequency
of the noise is the mechanical eigenfrequency of the probe or
magnet.

Wiring manners of four-point resistance measurements are
roughly categorized into the following two methods: (A) Only the
core wires of four coaxial cables are used as signal lines and the
outside of the coaxial cables are used as a shield, namely, the single-
ended signaling method. (B) Both the core and shield of two coaxial
cables or two twisted-pair cables are used as voltage and current
lines, namely, the differential signaling method. We found that in
pulsed magnetic fields, (B) has a better robustness against noise
including the effect of leakage fields. For case (A), since the cross sec-
tion surrounded by the wires is very large, the magnetic flux enter-
ing is large and electromotive forces can critically affect the signal
quality.

By introducing a numerical phase detection, fast Fourier trans-
formation (FFT) can be applied to the measured data at any time so
that the noise spectrum can be easily disentangled. Moreover, if the
noise spectrum is well reproducible, as in our case, it is easy to apply
countermeasures.

The first measure is to separate the modulation frequency as far
as possible from the noise frequency. Then, we use a first-order filter
built from a capacitor and resistor (CR filter).

As mentioned before, in numerical phase detection, the noise-
reduction performance deteriorates rapidly with a decreasing num-
ber of periods to integrate over the data. In this case, an addi-
tional noise-removal method is needed. Here, we discuss the noise-
reduction methods detailed in Appendixes A–C.35,36 Inherent noise
components in pulsed magnetic fields often appear at specific fre-
quencies, as mentioned above. On the other hand, in numerical
phase detection, the pass gain varies depending on the number of
periods to integrate over the data [see Figs. 1(a) and 1(d)], but the

zero point of the real part always coincides with the zero point of the
imaginary part, even if a linear combination of pass gains is taken. By
using this relation, it is possible to eliminate an arbitrary frequency
independent of the modulation frequency.

For example, when we use a linear combination of the demodu-
lated signal using one and two periods of the modulation frequency,
it is possible to tune the frequency at which the pass gain becomes
zero by changing the ratio of the coefficients [Figs. 1(c) and 1(d)].
Then, while keeping a good time resolution, it is possible to elim-
inate specific frequency components more efficiently than through
the use of any analog filter.

When the number of periods used is further increased, the
passing gains of multiple arbitrary frequencies can be set to 0 simul-
taneously (Appendix B 1). Furthermore, the order of such notch
filters can be arbitrarily increased (Appendix B 3) and we can com-
bine both filter techniques. Using these methods, theoretically, it is
possible to transmit and receive data at a higher information den-
sity than the conventional OFDM (Orthogonal Frequency Dupli-
cate Multiple) method that is currently widely used for wireless
communication and broadcasting.

In this paper, we consider a high-pass filter that removes noise
components sufficiently lower than the sample’s modulation fre-
quency (Appendix B 2). For example, in measurements performed
in Yokohama (Sec. III A), the modulation frequency was 50 kHz and
the noise frequency was around 5 kHz, which satisfies this condition
well.

In this way, we can efficiently remove low-frequency noise
components using data taken in a very short time using one and
two modulation-frequency periods. In general, filters of various
functions can be formed by taking linear combinations of demod-
ulation results for various periods. This is a convenient way for
noise removal through the inspection of the FFT spectrum of the
signal after the measurement. This method can also be used for
the high-speed removal of crosstalk in simultaneous measurements
of multiple samples. For example, in measurements performed in
Kashiwa (Sec. III C), the modulation frequencies of two samples
were 20 kHz and 31.25 kHz, and their mixing frequency of 11.25 kHz
was removed. The general principle and some applications of this
method are described in the Appendixes A–C.

C. Phase compensation
Even though the modulation frequency can be drastically

reduced by introducing numerical phase detection, a frequency of
several tens of kilohertz is still higher than the frequency used for AC
transport measurements in static magnetic fields. At such a high fre-
quency, the phase shift between the input and output signals cannot
be ignored. Here, we show a way to solve this issue.

In general, inserting a CR filter before the preamplifier essen-
tially reduces the input impedance. This causes a voltage drop over
the intermediate transmission line and results in a phase shift that
is difficult to grasp. Therefore, the voltage line should be termi-
nated by a preamplifier with a sufficiently large input impedance,
and the CR filter should be placed after the preamplifier. We have
calibrated the phase rotation angle and gain of the CR filter prior
to any experiments accordingly: (1) Divide the output of the func-
tion generator into two separate signals, connect one directly to one
channel of an oscilloscope, and let the other pass through the CR
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FIG. 1. (a) Real and (b) imaginary parts
of the pass gain vs the normalized
general angular frequency x ≡ ω/ω0
for n periods of integration are shown.
The pass gain strongly depends on n,
except for x = 1. The zero positions of
the real and imaginary parts coincide,
as seen in Eq. (B2). In the range of
0 ≤ x < 1, generally, n zero points exist
at equal intervals. (c) Real (Gcc

total ) and
(d) imaginary (Gss

total ) parts of the total
pass gain of a linear combination of the
results of phase detection for one and
two period(s). Here, the pass gain of
the signal frequency is normalized to
unity. Whereas some zero points of the
real and imaginary parts move depend-
ing on the weight of the coefficients, they
appear always at the same ω. This fact
strongly suggests that an arbitrary fre-
quency component can be eliminated
within a time resolution of 2 periods by
tuning the weight of the coefficients.

filter and connect this signal to another channel of the oscilloscope.
(2) Drive the function generator at the actual modulation frequency
and record both signals simultaneously. (3) Demodulate both signals
and extract the phase difference and amplitude ratio. In this way,
we can reproduce the potential difference between the voltage ter-
minals of the sample without rotating the phase. In the frequency
band actually used, the influence of the stray capacitance between
the lines is not crucial; however, it might be a point for future
consideration.

Since the function generator and the oscilloscope have separate
local oscillators, a phase shift may occur. In order to solve this prob-
lem, usually, we employ a synchronization technique in which one
oscillator is used as a master and others are driven in slave mode.
However, in the present case for the transient pulsed-field measure-
ments, the rather slow synchronization feedback loop using a PLL
VCO (Phase Locked Loop Voltage Controlled Oscillator) prevents
such measures. Therefore, we simultaneously record the target and
reference signal and apply our numerical phase detection to both.
The reference signal in our transport measurements is obtained by
placing a shunt resistor in series with the sample and reading the
potential difference between the two ends of the shunt resistor by
another channel of the oscilloscope. The TCXO [Temperature Con-
trolled (X)crystal Oscillator] of the used devices has a frequency
drift of several parts per million during the field pulse. Even after
1000 oscillation periods, the phase rotates by only a few degrees. For
such small phase shifts, it is sufficient to calculate the phase shift,

from the measured real and imaginary parts of the reference signal
using the arctangent function, and accordingly correct the phase of
the target signal. Here, the error in the pass gain is smaller than a
few parts per million, similar to the deviation of the frequency, so
the error in the absolute value of the amplitude is negligible. Indeed,
by dividing the target signal by the amplitude of the reference signal,
we can correct for fluctuations of the reference signal, which further
improves the accuracy of the measured signal. Since the arctangent
function is a multivalued function, this often causes discontinuous
jumps. As will be described later, it is possible to avoid the influ-
ence of this by using the function generator in burst mode, which
provides a perfect reproduction of the phase.

D. Measurement background subtraction
Reproducible backgrounds, such as the induced electromotive

force (∝dB/dt) during magnetic field sweeps, are often not com-
pletely eliminated by integration over a short time. In such a case,
it is quite effective to perform phase detection both with and with-
out inverting the phase of the modulated wave and then take the
difference between the two signals.

In order to support this procedure, the function generator
should be used in burst mode driven by an external trigger. More-
over, the external trigger signal for the function generator must
occur somewhat earlier than the trigger signal for the thyristor
switch generating the pulsed magnetic field. As a result, reproducible
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backgrounds are canceled and the combined amplitude of the sig-
nal components is doubled. This method can be realized because
the reproducibility of the reference oscillation is much more precise
than the tolerance (instrumental error of several parts per million) of
the reference oscillation of the TCXO, as will be shown in Sec. III A
for the data taken in Yokohama. Here, magnetic-field pulses could
be generated frequently due to the short cooling time of the mag-
net. On the other hand, the pulse duration of the used magnet is
short and the influence of dB/dt on the sample’s signal is not neg-
ligible. For the measurements performed in Dresden and Kashiwa
(see Secs. III B and III C), this technique was not adopted because
the pulse duration was relatively long and the cooling time of the
magnets was longer accordingly.

When the function generator is used in burst mode, the current
flows through the sample for a very short time so that the Joule heat-
ing of the sample can be suppressed and the signal-to-noise ratio is
improved.

The influence of the induced electromotive force (∝dB/dt) on
the signal’s background can be reduced by adding a voltage propor-
tional to the induced signal generated in a separate pick-up coil. This
is a very effective way for removing this background in a situation
where high-pass filters cannot be used. In particular, it has a great
effect on the large dB/dt immediately after the start of the magnetic-
field pulse. This allows us to reduce the dynamic range and improve
the resolution by lowering the input range of the oscilloscope.

III. IMPLEMENTATION
In Sec. III A, specific examples of experiments in the three

international magnetic field research facilities will be presented. In
Yokohama, we devised a technique to remove noise components
of a specific frequency efficiently by performing numerical process-
ing. Moreover, the effectiveness of reducing the reproducible back-
ground by two measurements in which the phase of the applied
current is inverted was confirmed. In Dresden, we established a com-
pensation technique for phase rotation and verified its validity. In
Kashiwa, we investigated the frequency dependence of the behav-
ior of the real and imaginary parts of the signal under zero mag-
netic field and estimated its origin. The simultaneous measurements
of two samples were also investigated to confirm any interference
effects of the signals on each other. The experimental conditions
used in each laboratory are shown in Tables II and III.

A. Yokohama
Here, we discuss a challenging experiment of measuring the

magnetoresistance of a highly conductive metal in pulsed magnetic
fields. As a result, we have succeeded to observe the Shubnikov–
de Haas (SdH) oscillations in the nonmagnetic intermetallic com-
pound LaB4 as a reference material for the magnetic NdB4 with Nd3+

(4f 3) forming a Shastry–Sutherland lattice.37,38 This result shows
that the numerical phase-detection method is appropriate for such
measurements in pulsed magnetic fields.

1. Experimental
The transverse magnetoresistance of a single-crystalline sample

of LaB4 with a residual resistivity ratio (RRR) of 60 was measured
for I ∥ [100] and B ∥ [010] at 4.2 K in magnetic fields up to 22 T.

The pulse duration was 15 ms and the energy was delivered by a
160 kJ capacitor bank. The sample was cut into the size of 1.87(0.72)
× 0.94 × 0.98 mm3. Here, the number inside the brackets indicates
the distance between the voltage electrodes. At this point, as shown
in Fig. 2(a), we used a single-ended input preamplifier (SA-200F3,
NF Corp.). No high-pass but a self-made CR-type low-pass filter
(cutoff frequency: 50 kHz, slope: 6 dB/oct) was used. The eddy-
current effects had to be taken into account in the measurements.
Therefore, we reduced this signal by using a compensation coil of
inner diameter (i.d.) 3 mm × 3 turns, thereby reducing the dynamic
range of the oscilloscope, thereby increasing the resolution. The
background voltage remaining after the field compensation coil was
canceled out by subtracting the result of a second measurement with
inverting phase of the modulated wave. The sampling rate and ver-
tical resolution of the recorder (DL750E, Yokogawa) are 1 MS/s and
16 bit, respectively. The modulation frequency was 50 kHz, so the
number of data points for one modulation period was 20. The typ-
ical peak-to-peak amplitude of the applied current was 140 mAp−p.

2. Results and discussion
Figures 2(b)–2(o) show the results for both excitations with

positive and negative phases. The magnetic field [Fig. 2(e)], the cur-
rent [Figs. 2(b) and 2(c)], and the voltage [Figs. 2(g) and 2(h)] are
obtained by the induced electromotive force in a pickup coil, the
potential difference across a shunt resistor, and the potential dif-
ference over the sample, respectively. In the overall envelope, no
difference between the two data sets is observed. As seen in the
detailed views (d), (j), and (k), the polarities of the signals are,
indeed, inverted. The resulting difference signals of the current and
voltage are shown in Figs. 2(f) and 2(i), respectively. Particularly, in
the voltage signal, asymmetric components in the envelope, caused
by the large dB/dt and other reproducible background signals, are
successfully removed in the difference data [see Figs. 2(g)–2(i) and
2(j)–2(l), respectively]. We applied our numerical phase detection to
both current and voltage signals. That is, both data were multiplied
by 2 cosω0t and 2 sinω0t and a moving average (smoothing) of 20
points was applied. In this case, since the number of points is even,
the trapezoidal rule for the numerical integration was applied. As
can be seen in Fig. 3(b), the absolute value of the current is almost
constant; however, both of the real and imaginary parts are varying,
as shown in Fig. 3(a). Namely, the phase of the current is shifting due
to the difference in the reference oscillation between the function
generator and the oscilloscope. Dividing the real part of the cur-
rent by the imaginary part and using the arctangent function, extract
the time-dependent phase shift [see Fig. 3(c)]. In this experiment,
the phase shifts by only 3.9○ after 850 oscillations. For such small
phase shifts, the phase can be corrected numerically [see Figs. 3(d)
and 3(e)]. Finally, the voltage divided by the current gives the resis-
tance. In this experiment, a filter was placed in front of the pream-
plifier and the phase rotation due to the impedance of the filter was
not corrected. This was done in the later experiments in Dresden.
Therefore, some uncertainty in the phase correction remains. We
tuned the phase so that the magnetic quantum oscillations appear
mainly in the real part of the resistance [Fig. 3(f)]. When plotting
the resistance as a function of magnetic field [Fig. 4(a)], the oscilla-
tions for rising and falling fields coincide very well. This shows the
high quality of the data acquisition.
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TABLE II. The measurement conditions in each experiment in Yokohama and Dresden.

Yokohama Dresden

Sample LaB4 PrIr2Zn20

Size: length × width × thicknessa 1.87(0.72) × 0.94 × 0.98 mm3 2.8(1.55) × 0.492 × 0.276 mm3

Current (I) direction ∥ [11̄0] ∥ [11̄0]
Field (B) direction ∥ [111] ∥ [111]

Magnetic fields
Peak fieldsb (T) 22 61
Duration time (ms) 15 300
Max. energy 160 kJ 50 MJ

Temperature (K) 4.2 1.6–20

Instruments
Function generator 1/2 WF1966 (NF corp.) DS360 (Stanford)
Modulation frequency (kHz) 50 16.6667
Typical current 140 mAp-p 50 mAp-p
Periods in burst mode 850 5000

First preamplifier SA-200F3 (NF Corp.) SA-400F3 (NF Corp.)
Gain 100 100

Second preamplifier Null Null
. . . . . .

Gain . . . . . .

Oscilloscope DL750E DL850E
(Yokogawa) (Yokogawa)

Sampling rate (MS/s) 1 1
Vertical resolution 16 bit 16 bit
Number of data points 20 000 200 000

Analog filter Handmade In DL850E
LPF 50 kHz 40 kHz
Slope 6 dB/oct 6 dB/oct
HPF Null Null
Slope . . . . . .

Magnetic flux
compensation coil
Inner diameter (mm) 3 3
Number of turns 3 3

Time resolution (μs) 40 120
Data points per one period 20 60
Periods for demodulation 1 and 2 1 and 2

aThe number inside the brackets indicates the distance between the voltage electrodes.
bThese values are not the maximum possible magnetic fields of these systems but the maximum magnetic fields generated for our
experiments.

When performing an FFT of the background subtracted resis-
tance ΔR as a function of 1/B, multiple SdH frequencies can be
resolved [Fig. 4(b)]. This shows that with our method, we are able
to resolve SdH oscillations in metallic samples having a resistance of
only a few microhms.

In the FFT of the raw voltage data, shown in Figs. 2(g) and
2(h), a peak around 5 kHz is observed, as shown in Figs. 2(m) and
2(n). Although this frequency hardly changes between the two mea-
surements, a small peak remains in the difference signal [Fig. 2(o)].
Therefore, the reproducibility of the phase and amplitude is not
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TABLE III. The measurement conditions in each experiment in Kashiwa.

Measurement I

Channel 1 Channel 2 Measurement II Measurement III

Sample Au wire Ag wire Pt wire Cu–Ag wire
“Sample A” “Sample B”

Size: diameter × lengtha 0.05 mm × 3.5(0.3) mm 0.05 mm × 3.5(0.3) mm 0.05 mm × 3.5(0.3) mm 0.05 mm × 3.5(0.3) mm
Current (I) direction � B � B � B � B
Field (B) direction � I � I � I � I

Magnetic fields
Peak fieldsb (T) 31 11 33
Duration time (ms) 11 11 37
Max. energy (kJ) 600 600 900

Temperature (K) 4.2, 78 78 4.2

Instruments
Function generator 1/2 WF1966 (NF Corp.) 2/2 WF1966 (NF Corp.) 1/2 WF1966 (NF Corp.) 1/2 WF1966 (NF Corp.)
Modulation frequency (kHz) 1–62.5 1–62.5 25 10
Typical current 190 mAp-p 0 or 190 mAp-p 190 mAp-p 190 mAp-p
Periods in burst mode 40–2500 40–2500 375 440

First preamplifier SA-410F3 (NF Corp.) SA-410F3 (NF Corp.) SA-410F3 (NF Corp.) SA-410F3 (NF Corp.)
Gain 100 100 100 100

Second preamplifier SR560 (Stanford) SR560 (Stanford) SR560 (Stanford) SR560 (Stanford)
Gain 1 1 1 1

Oscilloscope DL850E (Yokogawa) DL850E (Yokogawa) DL850E (Yokogawa) DL850E (Yokogawa)
Sampling rate (MS/s) 1 1 1 1
Vertical resolution 16 bit 16 bit 16 bit 16 bit
Number of data points 20 000 20 000 20 000 50 000

Analog filter BPF in SR560 BPF in SR560 BPF in SR560 BPF in SR560
LPF . . . . . . 100 kHz 30 kHz
Slope 6 dB/oct 6 dB/oct 6 dB/oct 6 dB/oct
HPF . . . . . . 10 kHz 3 kHz
Slope 6 dB/oct 6 dB/oct 6 dB/oct 6 dB/oct

Magnetic flux Null Null Null

Compensation coil
Inner diameter . . . . . . 2 mm . . .
Number of turns . . . . . . 57 . . .

Time resolution 16 μs–1 ms 16 μs–1 ms 100 μs 40 μs
Data points per one period 16–1000 16–1000 40 100
Periods for demodulation 1–3 1–3 1 and 2 1 and 2

aThe number inside the brackets indicates the distance between the voltage electrodes.
bThese values are not the maximum possible magnetic fields of these systems but the maximum magnetic fields generated for our experiments.

perfect. We assume that the 5 kHz frequency is caused by the
mechanical eigenfrequency of the probe.

In the following, we show how to increase the signal-to-noise
ratio according to the method described in Sec. II B. Figures 5(a)
and 5(b) show the R vs B curves for the case where the integration
interval is taken over one (20 points) and two periods (40 points)
of the modulation, respectively. Although, overall, the two curves

seem to be identical, they differ in details. This mismatch is due to
the fact that the pass gain for frequencies except for the modula-
tion frequency differs for the integration interval over one and two
periods. According to the above theory, we take the sum of both
and divide by two. By that, the sharp peaks and valleys are canceled
out and become smooth, as shown in Fig. 5(c). The time resolution
of this method is the same as that for the demodulation using two
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FIG. 2. Diagram of the circuit and raw data of magnetoresistance measurements of LaB4. (a) The diagram of the circuit used to measure the transverse magnetoresistance
of LaB4 in Yokohama. A single-ended preamplifier was used at that time. Instead of a high-pass filter, a dB/dt compensation coil was used. A handmade low-pass filter
was employed. Time dependence of the applied current with (b) normal and (c) reversed phase. (d) shows the details near the start and end point of the applied current,
respectively. (e) Highly reproducible time dependence of the pulsed magnetic field. Therefore, the additional phase shift between the two measurements is very small, as seen
in (d). Thus, we may perform phase detection on (f), which is the measurement result using the normal phase minus the result with reversed phase. This makes it possible
to subtract nicely the reproducible background. The actual normal and reversed phase output voltages and the difference between them are shown in (g)–(i), respectively.
The asymmetry in (g) and (h) (i.e., the background considered to be due to dB/dt) disappears in (i). Furthermore, it can be seen that an oscillatory signal of about 5 kHz is
considerably suppressed, according to the detailed views (j)–(l) corresponding to (g)–(i). This fact is also evident in the FFT spectra (m)–(o) of these signals. This subtraction
is, however, not perfect. The remainder can be removed by using another technique described below (Fig. 5).

periods, but the noise removal performance is far superior. Whereas
a numerical high-pass filter was chosen in this example, in general,
after acquiring the data, it is possible to analyze the frequency com-
ponent of the noise and perform optimum processing on the data.
Unlike analog filters, these methods do not cause phase rotation of
the signal. This method also has the great advantage that noise can
be eliminated after the measurements.

Finally, we have realized an extremely high resistance resolu-
tion of several 10 μΩ within a time window of at most 40 μs in

the present experiment. From the dimensions of this sample, the
resolution in terms of resistivity is estimated to be several μΩ cm.

B. Dresden
PrIr2Zn20 is a cubic-lattice superconductor in which the Pr3+

ion has a nonmagnetic non-Kramers Γ3 doublet ground state. There-
fore, it has been frequently discussed whether in this material,
quadrupolar interactions mediate Cooper-pair coupling.39,40 Here,
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FIG. 3. (a) Real and imaginary parts of
the current values phase-detected from
the data shown in Fig. 2(c). (b) Absolute
value and (c) phase shift of the current
obtained. (d) Real and imaginary parts of
the voltage phase-detected from the data
shown in Fig. 2(i). (e) Real and imaginary
parts of the voltage based on the phase
of the current. (f) Orthogonal transforma-
tion of (e), which maximizes the signal’s
time-dependent changes in the real part
and keeps the imaginary part constant.

we report on the observation of SdH oscillations in this material. In
general, the extremal-area cross section of the Fermi surface can be
obtained by analyzing the frequency of this oscillation.

1. Experimental
Here, the transverse magnetoresistance of a single-crystalline

sample [2.80(1.55) × 0.429 × 0.276 mm3] was measured in mag-
netic fields up to 61 T at 1.6 K, 4.2 K, 6.5 K, 10 K, and 20 K for
I ∥ [11̄0] and B ∥ [111]. The magnetic-field pulse duration was about
150 ms. The necessary energy of about 8 MJ was supplied by a 50 MJ

capacitor bank. A differential-type preamplifier (SA-400F3, NF
Corp.) was used. A typical current of 40 mAp−p with a modula-
tion frequency of 16.6667 kHz was applied by a function generator
(DS360, Stanford Research Systems). 60 data points were recorded
per modulation-frequency period using a digital-storage oscillo-
scope [DL850E (16 bits, 1 MS/s), Yokogawa]. A built-in low-pass
filter with a cut-off frequency of 40 kHz and a slope of 6 dB/oct in the
oscilloscope was used. Moreover, a dB/dt compensation coil of i.d.
3 mm × 3 turns was used after the preamplifier to remove the dB/dt
component (see Fig. 6). Since the cooling time of the used magnet
after each field pulse is about 2 h, no measurements with inverted

FIG. 4. (a) Resultant field-dependent magnetoresistance of LaB4. The data for rising and falling fields are shown in red and blue for the real part, respectively, and in orange
and green for the imaginary part, respectively. Prominent SdH oscillations appear at high magnetic fields, without any noticeable hysteresis for up and down sweep. The data
in the light blue rectangle are shown in Fig. 5 in an enlarged scale. (b) Fast Fourier transformed ΔR as a function of 1/B. Here, a fourth-order polynomial fit to the real part
of the magnetoresistance (a) was used to determine ΔR. The results for the up and down sweep are shown in red and blue, respectively. Both results agree well with each
other.
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FIG. 5. Enlarged view of the high-field data of LaB4 shown in Fig. 4(a). (a) Results after demodulation using one modulation-frequency period and (b) after using two periods.
(c) Average of both results. While the data in (c) have the same time resolution as those shown in (b), the noise rejection is drastically higher in (c). This principle corresponds
to the case of m = 2 discussed in Sec. B 2 of Appendix B.

current were performed. We performed, however, the same signal
processing as in Fig. 5, i.e., averaging the results of one and two mod-
ulation periods. This operation is equivalent to a high-pass filter.
Therefore, it is considered to be effective in suppressing the influ-
ence of dB/dt, which is a frequency component sufficiently lower
than the modulation frequency, although it is not as effective as the
phase-inverting method.

2. Results and discussion
The phase-shift compensation due to reference-oscillator dif-

ferences between the function generator and the oscilloscope was
carried out as discussed before for the Yokohama experiments in
Sec. III A. Here, we will explain a method for canceling the phase
shift due to other effects. The relatively long signal lines were ter-
minated by a preamplifier with a relatively large input impedance of
100 kΩ. The resulting voltage drop due to the self-inductance and
the resistance of the intermediate wires could, thus, be substantially

eliminated, and a possible phase rotation in this part of the circuit
was prevented.

The rotation of the phase caused by the filter, the preamplifier,
and the compensation coil was experimentally determined. Thereby,
the modulation signal from the function generator was connected
directly to one channel of the oscilloscope as well as to one of the
mentioned devices. The output from the devices was then con-
nected to a second oscilloscope channel (Fig. 7). We have deter-
mined 32.30○ as the total phase shift due to the measurement circuit
by this calibration.

Based on this calibration, we separated the result of the magne-
toresistance measurement at 1.6 K into its real and imaginary parts,
as shown in Fig. 8.

In the real part, on a monotonously increasing background, we
find clear and reproducible oscillations as a function of magnetic
field [Fig. 9(a)]. With increasing temperature, the oscillations occur
at the same magnetic fields but decrease in amplitude.

FIG. 6. Diagram of the circuit used to
measure the transverse magnetoresis-
tance of PrIr2Zn20 in Dresden. Instead of
a high-pass filter, a dB/dt compensation
coil was used. A built-in low-pass filter of
the oscilloscope was employed.
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FIG. 7. Method to determine the output phase shift and the gain of devices used in
the circuit of Fig. 6. The output phase shift and gain of the device are calibrated by
a comparison of the phase difference and amplitude ratio with respect to a direct
signal from the function generator.

Several peaks appear in the FFT of the background-subtracted
data as a function of 1/B [Fig. 9(b)] evidencing the SdH-effect nature
of the observed oscillations. This reflects the high resolution of our
pulsed-field experiment on a microhm sample. An in-depth scien-
tific discussion of these results is beyond the scope of this techni-
cal/instrumental paper and will be provided in a separate publica-
tion. In the imaginary part of the signal (Fig. 8), no SdH oscillations
can be resolved. The monotonous decrease of this signal with field
indicates that the orthogonal axes of the real and imaginary parts
are properly chosen. Then, the imaginary part is affected by para-
sitic mutual inductances near the sample, i.e., the current and voltage
lines around the sample behave as primary and secondary coils of a
transformer, respectively. As this only affects the imaginary part of
the signal, an unambiguous separation from the real part can be car-
ried out, also separating the influence of the phase rotation, yielding
a reliable absolute value of the signal.

FIG. 8. Real (red line) and imaginary (blue line) parts of the experimentally
obtained resistance of PrIr2Zn20 as a function of magnetic field.

FIG. 9. (a) Transverse magnetoresistance vs magnetic field measured during
down sweeps of PrIr2Zn20 at 1.6 K, 4.2 K, 6.5 K, 10 K, and 20 K. The data are
vertically offset for clarity. At high magnetic fields, clear SdH oscillations are vis-
ible, which decrease in amplitudes with increasing temperature. (b) Temperature
dependence of the FFT of the background-subtracted magnetoresistance vs 1/B.
The background was approximated by a fourth-order polynomial.

C. Kashiwa
In Sec. III B, it has been confirmed that the real and imaginary

parts of the signal can be separated without any arbitrariness by cal-
ibrating the gain and phase shift of the amplifier and the filter. Here,
we will further examine the frequency dependence of the real and
imaginary signal parts. We will also describe the signal interference
due to the simultaneous measurement of two samples. In addition,
we examine the remaining topics listed in Table I.

1. Experimental

a. Measurement I. Gold (sample A) (99.95% TANAKA Kik-
inzoku Kogyo K.K.) and silver (sample B) (99.95% TANAKA Kikin-
zoku Kogyo K.K.) wires with a diameter of 0.05 mm were prepared
as test samples. The used function generator WF1966 (NF Corp.)
has two output channels. Channel 1 was connected to sample A and
channel 2 was connected to sample B. We prepared two indepen-
dent circuits with the preamplifier SA-410F3 (NF Corp.) as the first
stage and the preamplifier SR560 (Stanford Research Systems) as the
second stage (see Fig. 10). We performed five experiments under the
following conditions:

1. An AC current of the same amplitude but with various fre-
quencies (1 kHz, 2 kHz, 3.125 kHz, 4 kHz, 5 kHz, 6.25 kHz,
10 kHz, 20 kHz, 31.25 kHz, 40 kHz, 50 kHz, and 62.5 kHz)
was applied to sample A during 40 ms, but no current was
applied to sample B. The filter built into the latter amplifier was
set to flat (DC) mode. The gain and phase shift of the ampli-
fiers at each frequency were calibrated according to the concept
described in Sec. III B. Another gold wire having a diameter of
0.02 mm was used for the current and voltage leads. The two
samples with their leads were fixed ∼15 mm apart from each
other on the same probe with GE varnish.

2. Using the circuit depicted in the top half of Fig. 10, the magne-
toresistance of the gold wire was measured at 10 kHz (6 dB/oct
BPF: 3–30 kHz) and 25 kHz (6 dB/oct BPF: 10–100 kHz) at
4.2 K in fields up to 31 T in order to investigate any frequency
dependence. Each of the sample’s current and voltage leads was
soldered to a terminal on individual printed circuit boards. The
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FIG. 10. Circuit diagram for Measurement I ⟨1⟩–⟨3⟩.The resistance of two sam-
ples (gold wire and silver wire) is measured simultaneously. Bandpass filters are
employed instead of a compensation coil for canceling the dB/dt component. The
frequencies, current amplitudes, and filters can be set individually. D is the distance
between both samples, which is about 15 mm in ⟨1⟩ and 5 mm in ⟨3⟩, respectively.

two samples were fixed ∼5 mm apart from each other on the
same probe with GE varnish.

3. We measured the magnetoresistance of both samples A and B
individually as well as simultaneously at 4.2 K in fields up to
11 T with a pulse duration time of 11 ms. In both cases, AC
currents with frequencies of 20 kHz and 31.25 kHz and peak-
to-peak amplitudes of 190 mA were applied to samples A and
B individually, respectively.

4. We tested whether differential signaling outperforms single-
ended signaling.

5. We surveyed the synchronization of the oscilloscope’s and
function generator’s crystal oscillators experimentally through
the analysis of the phase shift of a 25 kHz signal.

6. Using a glass Dewar with an inner diameter of 10 mm and an
fiber-reinforced-plastic (FRP) probe with an outer diameter of
6 mm, we compared three specific mechanical noise-reduction
methods. (A) The Teflon tape is wrapped around the tip of the
probe so that it tightly fits inside the Dewar. (B) A SUS304 pipe
with an outer diameter of 8 mm, a wall thickness of 0.5 mm,
and a length of 61 mm is attached to the tip of the probe. (C)
Nothing is attached to the tip of the probe.

b. Measurement II.
7. In order to investigate the effect of a compensation coil, we

measured the magnetoresistance with [Fig. 21(f)] and without
[Fig. 21(a)] a magnetic flux compensation coil in fields up to

11 T with a pulse duration of 11 ms. Here, the magnetic pulse
waveform is shown in Fig. 20(a). The sample was a platinum
wire (99.98%, The Nilaco Corporation) with an outer diam-
eter of 0.05 mm, and we also prepared a compensation coil
with an outer diameter of 2 mm and 57 turns. The sample’s
current and voltage leads were soldered to four terminals on
individual printed circuit boards and fixed on a probe with
GE varnish. We performed measurements with and without a
bandpass filter in both of the measuring circuits.

c. Measurement III.

8. A copper-silver-alloy (6 wt. % of Ag) filament with a rectangu-
lar cross section (∼0.05 mm × ∼0.05 mm) was prepared as a test
sample. A gold wire having a diameter of 0.02 mm was used for
the current and voltage leads. In order to investigate the effect
of wiring vibrations due to the Lorentz force, we measured the
magnetoresistance of the filament at 78 K in fields up to 33 T
with a pulse duration of 37 ms, as shown in Fig. 22(c).

2. Results and discussion

a. Measurement I.

1. The results are shown in Fig. 11. The measured voltage signal of
sample B [Fig. 11(b)] shows a dominant imaginary component,
which is linear in frequency, but a real component that is very
small. This indicates that the main cause of crosstalk is due to
the mutual inductance between the wirings.

Figure 11(a) displays the measured voltage over sample
A. Here, the real signal component is finite and almost inde-
pendent of frequency and the imaginary component decreases
linearly with frequency. This strongly suggests that the former
is derived from the actual resistance of the sample and the lat-
ter is caused by the mutual inductance between the current and
voltage leads of sample A, similar to the crosstalk observed in
sample B. From the fact that the imaginary component of the
signal is small and the real component only displays a minute
frequency dependence, we conclude that the separation of the
real and imaginary components has been performed correctly.

FIG. 11. Frequency dependence of the potential difference between the voltage
terminals of the (a) Au and (b) Ag wire, respectively, with the current flowing in the
Au wire at 78 K. The imaginary part in (a) decreases and in (b) increases linearly
with frequency. On the other hand, the frequency dependence of the real part is
much smaller than that of the imaginary part. Particularly, the real part in (b) is
almost negligible.
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This is consistent with the experimental results in Sec. III
B, where the SdH signal appears in the measured signal’s real
part but not in the imaginary part.

2. We measured the magnetoresistance of a gold wire at frequen-
cies of 10 kHz and 25 kHz up to 31 T at 4.2 K. Here, the
phase and gain of the preamplifier and filter were calibrated
for each frequency by the method described in Sec. III B. As
shown in Fig. 12(a), the real parts for both frequencies match
very well with each other. On the other hand, the imaginary
parts are frequency- and magnetic-field dependent, but their
magnitudes seem to be roughly proportional to the frequency.

These experimental results evidently show that the real
part is the actual magnetoresistance of the sample and the
imaginary part is due to the influence of the mutual inductance
of the wiring around the sample, and prove that our method
can correctly separate the real and imaginary parts. The
details of the magnetoresistance results using one modulation-
frequency period and corresponding FFT spectra of the voltage
are shown in Figs. 12(b) and 12(c), respectively. The oscillation
on the magnetoresistance data is dominantly due to the com-
ponents of dB/dt with 45 Hz, as will be explained in more detail
in the following paragraph ⟨3⟩ as well as in Measurement II ⟨7⟩.
We can suppress this vibration by looking at the FFT results
and making a decision to move the modulation frequency away
from DC. That is, in this case, it can be predicted in advance
that a result with a lower oscillation amplitude can be obtained
at 25 kHz than at 10 kHz.

3. First, the magnetoresistance of the Au and Ag wire was mea-
sured individually at 20 kHz and 31.25 kHz, respectively. Using
one demodulation period, the results for the Au and Ag wires
are shown in Figs. 13(a) and 13(b), respectively. The results

FIG. 12. (a) Magnetoresistance of the gold wire at 4.2 K for signal frequencies of
10 kHz and 25 kHz using appropriate bandpass filters. The data are only shown
for the down sweep of the 31 T pulse. Here, the signals were averaged, as shown
in Fig. 5(c). (b) The details of (a) demodulated using one modulation-frequency
period. (c) FFT spectra of the voltage signals in a linear scale for signal frequencies
of 10 kHz and 25 kHz.

FIG. 13. Results of individual measurements of the magnetoresistance of (a) Au
and (b) Ag wires. Demodulated results of the simultaneous measurement of the
magnetoresistance of both wires by using data of (c) and (d) one, (e) and (f) two,
and (g) and (h) three modulation-frequency periods for the Au and Ag sample,
respectively. (i) [(j)] Linear combination of the data of (c) and (e) [(d) and (f)],
weighted to cancel the crosstalk. (k) [(l)] Linear combination of the data of (c),
(e), and (g) [(d), (f), and (h)], weighted to cancel not only the crosstalk but also the
lower-frequency background. The red and blue lines show the real and imaginary
parts of the measurement results in pulsed magnetic fields, respectively. The green
lines in (a) and (b) show the measurement results in quasi-static magnetic fields by
using a PPMS (Physical Property Measurement System/Quantum Design, Inc.).

in quasi-static magnetic fields up to 12 T by using a PPMS
are also shown in Figs. 13(a) and 13(b) as green lines. For
both samples, this visualizes the high consistency between
the results obtained in pulsed magnetic fields with those in
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quasi-static-magnetic fields. Next, their magnetoresistance was
measured simultaneously. Similarly, the results of the demod-
ulation using one, two, and three periods are displayed in
Figs. 13(c), 13(e), and 13(g) for the Au wire and Figs. 13(d),
13(f), and 13(h) for the Ag wire, respectively. The results
clearly show that oscillatory components are superimposed on
the results. The FFT spectra indicate large frequency com-
ponents of 31.25 kHz and 20 kHz in addition to the mod-
ulation frequencies of 20 kHz and 31.25 kHz in Figs. 14(a)
and 14(b), respectively. This means that the modulation fre-
quency of the respective other sample is superimposed on
the signal of interest. FFT spectra of the resulting resistance
of Figs. 13(c)–13(h) are shown in Figs. 15(a)–15(f), respec-
tively. Figures 15(a), 15(c), 15(e) [Figs. 15(b), 15(d), 15(f)]
corresponding to the Au (Ag) wire show the frequency com-
ponents 11.25 kHz (11.25 kHz) and 20 kHz (31.25 kHz) in
addition to the DC component. The former is the crosstalk
effect from the other sample as mentioned above, but the
latter is considered to be due to dB/dt of ≈45 Hz, which is
a very low frequency compared to the modulation frequen-
cies of 20 kHz and 31.25 kHz. Figures 16(a)–16(d) show the
simulation results of the passing gains Gcc

n and Gss
n defined

in Eqs. (A7) and (A9) of Appendix A associated with these
demodulation processes. Here, n is defined as the number
of periods. Gcc

n and Gss
n of the Au (Ag) wires are nonzero at

11.25 kHz (11.25 kHz) and 20 kHz (31.25 kHz) for n = 1,
2, and 3. It can be easily understood that simply increasing
the number of integration periods does not eliminate these
oscillation components easily. Here, we attempt to remove
these unwanted frequency components by using their passing-
gain difference due to the difference in modulation periods, as
shown in Appendix B 1.

First, consider the case of m = 2 in Eq. (B5) of Appendix B 1
to cancel the counterpart-frequency component. The equation to be
solved is as follows:

(
1 1

Gss
1 (x1) Gss

2 (x1)
)(
a1

a2
) = (

1
0
). (1)

FIG. 14. (a)–(j) FFT spectra of the magnetoresistance in a logarithmic scale of
the Au and the Ag wire in simultaneous measurements. The corresponding result-
ing magnetoresistance is shown in Figs. 13(c)–13(l), respectively. The cyan and
magenta circles indicate the positions of the modulation and crosstalk frequencies,
respectively.

FIG. 15. FFT spectra of the magnetoresistance in a logarithmic scale of the Au and
the Ag wire in simultaneous measurements. The corresponding resulting magne-
toresistance is shown in Figs. 13(c)–13(l). The cyan and magenta circles indicate
the positions of the modulation and crosstalk frequencies, respectively.

Here, 31.25/20 (20/31.25) is chosen as x1 for sample A (B), and
then we obtain a1 = 0.163 (−0.741) and a2 = 0.837 (1.741), respec-
tively. Figures 13(i) and 13(j) show the results of the weighted sum
of the data obtained by analyzing one and two periods, with the cor-
responding FFTs shown in Figs. 15(i) and 15(j). It can be seen that
the frequency component of 11.25 kHz is significantly reduced com-
pared to the data before the linear combination. The corresponding
passing gains Gcc

total and Gss
total defined in Eqs. (A12) and (A11) of

Appendix A are used for the Au (Ag) wire measurements for the case
of m = 2 in Figs. 16(e) and 16(f) [Figs. 16(g) and 16(h)], respectively.
The values of Gcc

total and Gcc
total for m = 2 are clearly 1 and 0 at 20 kHz

and 31.25 kHz (31.25 kHz and 20 kHz) for the Au (Ag) wire mea-
surements, respectively. In Figs. 13(i) and 13(j), the oscillations in
the high-field region have disappeared accordingly. However, oscil-
lations in the low-field region still remain. The oscillations are due to
dB/dt, which corresponds to the low frequency and needs to addition
of a high-pass filter (HPF) for further suppression.
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FIG. 16. Simulation results of the pass gain of the numerical phase detection for
modulation frequencies of 20 kHz and 31.25 kHz. (a) Gcc

n in Eq. (A7) and (b) Gss
n

in Eq. (A9) for the 20 kHz signal using one (n = 1), two (n = 2), and three (n = 3)
modulation-frequency periods. (c) Gcc

n and (d) Gss
n for the 31.25 kHz signal using

one, two, and three modulation-frequency periods. (e)/(g) Linear combination of
the data for n = 1, 2, namely, m = 2 (blue line), and n = 1, 2, 3, namely, m = 3
(green line), in (a)/(b) and (f)/(h) linear combination of the data for m = 2 (blue line)
and m = 3 (green line) in (a)/(b). The results for m = 2 are weighted to optimally
cancel the crosstalk. The results for m = 3 are weighted to cancel not only the
crosstalk but also the lower-frequency background.

Next, the case of m = 3 is considered using Eq. (A14) of
Appendix A, Eq. (B1) of Appendix B 1, and Eq. (B11) of Appendix
B 2 to cancel the very low frequency component in addition to the
counterpart-frequency component. The equation to be solved is as
follows:

⎛
⎜⎜
⎝

1 1 1
1 −1 1

Gss
1 (x1) Gss

2 (x1) Gss
3 (x1)

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

a1

a2

a3

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1
0
0

⎞
⎟⎟
⎠

. (2)

Here, 31.25/20 (20/31.25) is also chosen as x1 for sample A (B),
and a1 = 0.186 (−0.153), a2 = 0.5 (0.5), and a3 = 0.314 (0.653) are
obtained, respectively.

Figures 13(k) and 13(l) show the results of the weighted sum of
the data obtained by analyzing one and two periods, with the cor-
responding FFTs shown in Figs. 15(k) and 15(l). From these, it can
be seen that in addition to 11.25 kHz, the frequency component at
20 kHz (31.25 kHz) is also significantly reduced compared to the
data before the linear combination. The corresponding passing gains

Gcc
total and Gss

total for the Au (Ag) wire measurements for the case of
m = 3 are shown in Figs. 16(e) and 16(f) [Figs. 16(g) and 16(h)],
respectively. The values of both of Gcc

total and Gss
total for m = 3 are also

1 and 0 at 20 kHz and 31.25 kHz (31.25 kHz and 20 kHz) for Au (Ag)
wire measurements, respectively. In addition, the values of Gcc

total and
Gss
total for m = 3 at lower frequencies become far closer to zero than

those for m = 2. In Figs. 13(k) and 13(l), the oscillation at lower mag-
netic fields is well suppressed, in addition to the suppression of the
oscillation at higher fields.

According to the OFDM concept, when removing a component
of 31.25 kHz (20 kHz) from a signal with a modulation frequency
of 20 kHz (31.25 kHz), the data over a time of 800 μs [i.e., 16 (25)
periods] are required. However, employing the concept shown in
Figs. 1(c) and 1(d), these frequencies can be removed by integrating
data over two periods (100 μs and 64 μs, respectively), which is con-
siderably shorter than required for the OFDM concept (see Fig. 17).
Thus, this proposed method is a promising and powerful tool for
signal demodulation.

4. Using identical samples of the silver wire, we prepared the
wiring shown in the circuit diagrams of Fig. 18(a) and
Fig. 18(e). We randomly moved the external coaxial cables
and then measured three times in zero magnetic field at 78 K
for both setups. The results are shown in Figs. 18(b)–18(d)
and 18(f)–18(h) for single-ended and differential signaling,
respectively. Although the real parts of the signals are repro-
ducible, the imaginary part is not when using the single-
ended method. This is the definitive proof that the differen-
tial method is overwhelmingly superior to the single-ended
method.

5. Figures 19(a) and 19(b) show the phase shift of the voltage
across the shunt resistor if the reference oscillators of the
oscilloscope and the function generator are synchronized, or
not. We used a modulation frequency of 25 kHz and a silver
wire as a sample. In the case of synchronization, small steps
appear, which may be a phenomenon specific to this oscillo-
scope. On the other hand, in the asynchronous case, the phase

FIG. 17. Experimental value of the voltage over a shunt resistor in ⟨3⟩ of Measure-
ment I. It takes 0.8 ms for both frequencies of (a) 20 kHz (gold wire) and (b) 31.25
kHz (silver wire) waves to return to the same phase. Whereas the conventional
OFDM method requires 0.8 ms to separate the two signals (purple rectangle), the
method for m = 2 in Figs. 16(e)–16(h) requires only 0.1 ms and 0.064 ms (blue
rectangles), respectively. Even if low-frequency components are removed in the
case of m = 3 [Figs. 16(e)–16(h)], only 0.15 ms and 0.096 ms (green rectangles)
are required, respectively.
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FIG. 18. (a) The circuit diagram for single-ended signaling and (b)–(d) the results of three times repeating the successive operations of randomly moving the coaxial cables
and measuring the Ag sample’s resistance. (e) The circuit diagram for differential signaling and (f)–(h) the results of three times repeating the successive operations of
randomly moving the coaxial cables and measuring the Ag sample’s resistance.

shift changes almost linearly with time. When considering the
phase-shift correction method for these results, it seems that
the asynchronous case will be easier to process.

6. We investigated the influence of mechanical noise under three
conditions. The results are shown in Figs. 20(b)–20(d), respec-
tively. The noise is largest when the SUS304 pipe is attached
to the tip of the probe, especially for increasing fields. The
data shown in Fig. 20(b) are slightly noisier than those shown
in Fig. 20(d). This may be related to the fact that stainless-
steel Dewars are used in Yokohama and Dresden, while glass
Dewars are used in Kashiwa. In any way, it is clear that
eddy currents in metal tubes are the cause of mechanical
vibrations.

FIG. 19. Experimental results of the phase shift of a 25 kHz signal generated by the
function generator with respect to the oscilloscope in the case of (a) synchronous
and (b) asynchronous detection, respectively.

b. Measurement II.

7. The measured voltage over a platinum wire in a magnetic
field up to 11 T without a magnetic-flux compensation coil
or bandpass filter is shown in Fig. 21(b). The amplitude of
the component oscillating at the modulation frequency is con-
siderably smaller than the component corresponding to dB/dt
in Fig. 20(a). This means that the measurement is performed
in a much larger range than required for the signal originat-
ing from the sample, which is discarding the information of
the lower bits of the oscilloscope’s AD converter. Applying
numerical phase detection using one modulation period, the
result shown in Fig. 21(c) is obtained. It can be easily seen
that fluctuations are superimposed on the signal derived from
the sample. In this case, the dB/dt component in the output
voltage has a very low frequency of about 45 Hz and a very
large amplitude; hence, the mixing frequency with the 25 kHz
modulation is not effectively removed by the numerical phase
detection. For these two reasons, it is essential to remove this
large dB/dt component superimposed on the signal before dig-
itizing it by the AD converter in the oscilloscope. The possible
methods for suppressing the dB/dt component from the sam-
ple’s signal are as follows: subtracting the voltage obtained by a
magnetic-flux compensation coil [Figs. 21(g) and 21(h)], using
a high-pass filter [Figs. 21(d) and 21(e)], or a combination of
both methods [Figs. 21(i) and 21(j)], respectively. Although
these methods display differences in the noise level, they all
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FIG. 20. Difference in mechanical noise
depending on how the probe is fixed
inside a glass Dewar and in the center
of the magnet. (a) The magnetic pulse
profile and its time derivative, measured
using the voltage of the field pickup
coil. (b) Real and imaginary parts of the
detected signal of a gold wire with the
Teflon tape wrapped around the tip of the
probe so that it just fits inside the Dewar.
(c) The signal when a SUS304 pipe with
an outer diameter of 8 mm, a wall thick-
ness of 0.5 mm, and a length of 61 mm is
attached to the tip of the probe. (d) The
signal without anything attached to the
tip of the probe.

are a very effective means to lower the oscilloscope’s dynamic
range (and increase its resolution) and suppress the ringing out
due to dB/dt. The results in quasi-static magnetic fields up to
12 T by using a PPMS are also shown in Fig. 21(e) as a green
line. The results in pulsed-magnetic fields are consistent with
those in quasi-static-magnetic fields.

c. Measurement III.

8. The magnetoresistance of a sample with loosely fixed wirings
is shown in Fig. 22(a) for measurements using the DC and
AC method. Their results differ largely, although there is no
noise detected. Next, the wiring around the sample was fur-
ther fixed and the sample was measured again. Now, both

FIG. 21. Circuit diagram (a) without and (f) with a compensation coil, and the corresponding data of V vs time in (b)/(d) and (g)/(i), respectively, and of R vs B in (c)/(e) and
(h)/(j), respectively, without/with a bandpass filter (BPF) for a platinum wire. The red and blue lines show the real and imaginary parts, respectively. The green line in (e)
shows the measurement results in quasi-static magnetic fields by using a PPMS.

Rev. Sci. Instrum. 91, 125107 (2020); doi: 10.1063/5.0014986 91, 125107-17

© Author(s) 2020

https://scitation.org/journal/rsi


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

FIG. 22. (a) Resistance data when the wiring around the sample is loosely fixed.
There is a discrepancy in the results between AC (10 kHz) and DC excitation. (b)
Resistance data after further reinforcing the fixation of the wiring. The results of
DC and AC (10 kHz) measurements match very well. (c) Waveform of the pulsed
magnetic field used in this experiment.

the AC and DC results are in good agreement with each other
as well as with the previous DC method, as shown in Fig. 22(b).
As the Lorentz force on the AC current in the wiring causes
a mechanical vibration with a frequency in the same range as
the applied modulation frequency, it is nearly impossible for
any signal processing technology to separate such components
from the actual signal of interest.

IV. SUMMARY
In the present study, we have realized a very high resolution

in electrical transport measurements performed in pulsed magnetic
fields by introducing a numerical phase-detection technique. The
impedance due to the mutual inductance around the sample can be
suppressed to several microhms using a low modulation frequency.
In addition, we were able to reduce a reproducible background signal
by measuring a sample twice with opposite AC-current polarities.
This was achieved by an excellent frequency stability of the TCXOs
used in the frequency generator and storage oscilloscope.

In AC measurements, handling of the phase shift is challeng-
ing. We have additionally devised a correction method for this phase
shift in AC measurements and demonstrated its validity for actual
data. Generally, the simultaneous measurement of multiple sam-
ples leads to the interference of the used modulation frequencies.
We have addressed this problem and give guidance to avoid such
interference. Utilizing these techniques, we consider that the magne-
toresistance and Hall resistance of various highly conductive metal-
lic samples will be easily and extensively measured in pulsed high
magnetic fields in the future.

The well-defined noise, seen in FFT analysis, is often due to
mechanical eigenfrequencies of the probe (and magnet). This is
considered to be induced by the electromotive force generated by
the mechanical oscillation of the loop part of the wiring in a non-
uniform magnetic field. In order to reduce such noise, a new tech-
nique of numerical phase detection was developed. These tech-
niques are expected to be applied not only to transport measure-
ments in pulsed magnetic fields but also to various other transient
measurements.

On the other hand, if mechanical vibrations can be suppressed
well, it can be said that long magnetic-field pulses are not necessarily
required for accurate measurements. Indeed, our method has suffi-
cient temporal resolution for existing pulsed magnets. A short pulse
duration rather allows us to apply a large current during the pulse
increasing the signal-to-noise ratio.
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APPENDIX A: GENERAL FORMULA
The fundamental concept of phase detection is to extract the

desired quantity by multiplying the oscillating signal [Fig. 23(a)]
with 2 cosω0t [Fig. 23(b)] or 2 sinω0t [Fig. 23(c)], when the angu-
lar frequency of the modulated signal is set to ω0. Assuming that the
signal f (t) is

f (t) ≡ A cosω0t + B sinω0t, (A1)

then f (t) × 2 cosω0t and f (t) × 2 sinω0t become

f (t) × 2 cosω0t = A(1 + cos 2ω0t) + B sin 2ω0t, (A2)

f (t) × 2 sinω0t = A sin 2ω0t + B(1 − cos 2ω0t), (A3)

respectively [Figs. 23(d) and 23(e)].
If the terms of cos 2ω0t and sin 2ω0t, which are second-

harmonic oscillations, are successfully removed, the values of A and
B are obtained as components independent of time. In the analog
method, since these terms are removed by a low-pass filter, one
needs a far longer integration time than just one period of the mod-
ulation frequency [Figs. 23(f) and 23(g)]. In the numerical phase-
detection method (the so-called digital method), however, second-
harmonic oscillations can be eliminated with a very short integration
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FIG. 23. The fundamental principle of the numerical phase detection. When the detected signal (a) is multiplied by a cosine wave (b) and a sine wave (c) with the same
frequency, a mixed signal with twice the original frequency appears in the real (d) and imaginary (e) parts, respectively. When using moving averages with an interval of
integral multiples of the oscillation period, only the real (f) and imaginary (g) parts of the signal remain.

time by using the relations

ω0

2nπ ∫
+ nπ

ω0

−
nπ
ω0

cos 2ω0tdt = 0 (n = 1, 2, 3, . . .), (A4)

ω0

2nπ ∫
+ nπ

ω0

−
nπ
ω0

sin 2ω0tdt = 0 (n = 1, 2, 3, . . .), (A5)

ω0

2nπ ∫
+ nπ

ω0

−
nπ
ω0

1dt = 1 (n = 1, 2, 3, . . .), (A6)

i.e., by selecting the integration interval as an integral multiple of one
period. Here, the pass gains (Gcc

n : real part, Gss
n : imaginary part, Gsc

n
and Gcs

n : off-diagonal components) for the general angular frequency
ω are given by

Gcc
n (

ω
ω0
) ≡ ω0

2nπ ∫
+ nπ

ω0

−
nπ
ω0

cosωt × 2 cosω0tdt

=
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(−1)n−1

nπ

2( ω
ω0
)

1−( ω
ω0
)

2 sinnπ( ω
ω0
) ( ω

ω0
≠ 1)

1 ( ω
ω0
= 1),

(A7)

Gsc
n (

ω
ω0
) ≡ ω0

2nπ ∫
+ nπ

ω0

−
nπ
ω0

sinωt × 2 cosω0tdt

= 0, (A8)

Gss
n(

ω
ω0
) ≡ ω0

2nπ ∫
+ nπ

ω0

−
nπ
ω0

sinωt × 2 sinω0tdt

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(−1)n−1

nπ
2

1−( ω
ω0
)

2 sinnπ( ω
ω0
) ( ω

ω0
≠ 1)

1 ( ω
ω0
= 1),

(A9)

Gcs
n (

ω
ω0
) ≡ ω0

2nπ ∫
+ nπ

ω0

−
nπ
ω0

cosωt × 2 sinω0tdt

= 0, (A10)

with the integration time of n periods of the angular modulation fre-
quency ω0. Here, we set x ≡ ω/ω0 to obtain a dimensionless angular
frequency. Gsc

n (x) and Gcs
n (x) are identical to zero and Gcc

n (x) and
Gss
n (x), for n = 1, 2, 3, 4, and 5, are shown in Figs. 1(a) and 1(b),

respectively. The envelope (amplitude) of the actual passing wave-
form for a specific angular frequency oscillates between the values of
Gcc
n (x) and Gss

n (x) (see Fig. 24).
As can be seen from Figs. 1(a) and 1(b), the performance of

eliminating noise, considered as an advantage of phase detection,
rapidly becomes worse as the integration time becomes shorter.
Therefore, when using the numerical method, if n is very small, we
must consider a noise elimination method separately.

Generally, there are various sources of noise, but often the
noise appears at a specific frequency, as discussed in the main text.
Therefore, we newly devised a method for efficiently removing spe-
cific frequency components by numerical phase detection using data
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FIG. 24. The case of forced demodulation of a target signal of a frequency different from that of the reference signal. (a) Target signal with a frequency of one tenth of the
reference signal. The target signal multiplied by a cosine wave (b) and a sine wave (c) results in the signals (d) and (e), respectively. The results (f) and (g) of the averaging
operation strongly depend on the integer value (1—red lines, 2—blue lines, . . .) that determines the possible intervals. In this case, taking the average (green lines) of the
red and blue lines suppresses the oscillations considerably. This mechanism corresponds to the case of m = 2 in Appendix B 2.

over a limited time range. We have noticed that the characteristic
frequency dependence of the pass gain depends on n. Furthermore,
we have found that an excellent filtering function can be realized by
taking a linear combination of pass gains with different n. By that,
unwanted phase shift does not occur in the obtained signal. Here,
the total pass gain [Gcc

total(x) and Gss
total(x)], by taking a linear com-

bination of the results of phase detection using data from one to m
periods, is shown in the following:

Gcc
total(x) ≡ a1Gcc

1 (x) + a2Gcc
2 (x) +⋯ + amGcc

m(x), (A11)

Gss
total(x) ≡ a1Gss

1 (x) + a2Gss
2 (x) +⋯ + amGss

m(x). (A12)

Generally, there is the relation

Gcc
n (1) = Gss

n (1) = 1, (n = 1, 2, 3, . . . ,m). (A13)

If the condition

a1 + a2 +⋯ + am = 1 (A14)

is imposed, the relation

Gcc
total(1) = Gss

total(1) = 1 (A15)

is automatically established. In order to determine the values of a1,
a2, . . ., am, here, m− 1 equations are required. The choice of the filter
function depends on the conditions imposed on a1, a2, . . ., am.

APPENDIX B: EXAMPLES
The presented method is an extremely powerful tool for reduc-

ing the noise at a specific frequency within a very short time by
using numerical phase detection. As an example, a method for con-
structing a multi-frequency notch filter, a high-pass filter, and a
higher-order notch filter is provided below.

1. Multi-frequency notch filter
When the angular frequencies ωi ≡ xiω0, (xi ≠ 1) of the noise to

be removed are discrete and have a finite number (μ − 1),

Gss
total(xi) = 0 (i = 1, 2, 3, . . . ,μ − 1) (B1)

should be imposed. From Eqs. (A7) and (A9), generally, the relation

Gcc
n (x) = xGss

n (x) (n = 1, 2, 3, . . . ,m) (B2)

holds. Therefore,

Gcc
total(x) = xGss

total(x) (B3)
is established. If xi is the relative, dimensionless noise frequency to
be eliminated, then

Gss
total(xi) = 0⇒ Gcc

total(xi) = 0 (i = 1, 2, 3, . . . ,μ − 1) (B4)

holds. Thus, we only need to consider the zero points of Gss
total(x).

We can write these equations together in the form of matrices as
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⎛
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⎠

. (B5)

This simultaneous linear equation for a1, a2, . . . am can be eas-
ily solved numerically. As a result, numerical phase detection with a
notch-filter function for arbitrary and known angular frequency ωi
(≠ω0) (i = 1, . . ., μ − 1) is realized by using only the short-time data
of at most 2 mπ/ω0t without resulting in any additional phase shift
of the signal (see Fig. 25).

2. High-pass filter
When Gcc

n (x) of Eq. (A7) and Gss
n (x) of Eq. (A9) are expanded

into a power series with respect to x around x = 0,

Gcc
n (x) = 2(−1)n−1 ⋅ x

1 − x2 ⋅
1
nπ

sinnπx

= 2(−1)n−1 ⋅ (x + x3 + x5 +⋯)(x − n2π2

3!
x3 +

n4π4

5!
x5 +⋯)

= 2(−1)n−1 ⋅ {x2 + (1 − n2π2

3!
)x4

+(1 − n2π2

3!
+
n4π4

5!
)x6 +⋯}, (B6)

Gss
n (x) = 2(−1)n−1 ⋅ 1

1 − x2 ⋅
1
nπ

sinnπx

= 2(−1)n−1 ⋅ (1 + x2 + x4 +⋯)(x − n2π2

3!
x3 +

n4π4

5!
x5 +⋯)

= 2(−1)n−1 ⋅ {x + (1 − n2π2

3!
)x3

+(1 − n2π2

3!
+
n4π4

5!
)x5 +⋯} (B7)

are obtained. Here, we should emphasize that the coefficient of each
lowest-order term is 2(−1)n+1, so it does not converge to zero even
at the limit of n → ∞. This means that even if the time domain of
the integral is simply increased, it is difficult to suppress noise of the
lower limit frequency. However, if we assume a1 = 1/2 and a2 = 1/2
when m = 2, Eqs. (A11), (A12), (B6), and (B7) give

Gcc
total(x) = a1Gcc

1 (x) + a2Gcc
2 (x)

= 1
2
⋅ 2{x2 + (1 − π2

3!
)x4 +⋯}

−1
2
⋅ 2{x2 + (1 − 4π2

3!
)x4 +⋯}

= π2

2
x4 +⋯, (B8)

FIG. 25. The implementation example
of a multi-frequency notch filter that
removes the frequency components at m
− 1 points (m = 2, 3, 4, and 5). As an
example, the frequency components to
be removed are chosen as the order of x
= 13/20, 8/20, 5/20, and 3/20. The coef-
ficients can be easily determined by sub-
stituting numerical values into Eq. (B5).
(a) and (b) show the real (Gcc

total ) and
imaginary (Gss

total ) parts of the frequency
dependence of the pass gain, respec-
tively. (c) and (d) are the enlarged views
of (a) and (b), respectively.
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Gss
total(x) = a1Gss

1 (x) + a2Gss
2 (x)

= 1
2
⋅ 2{x + (1 − π2

3!
)x3 +⋯}

−1
2
⋅ 2{x + (1 − 4π2

3!
)x3 +⋯}

= π2

2
x3 +⋯. (B9)

In this way, we can eliminate the lowest-order terms while
keeping the constraint of Eq. (A15). Therefore, although the time
domain required for the integration is the same, this method can
much more efficiently reduce low-frequency noise than simple data
integration for n = 2. If this idea is further expanded, coefficients of
arbitrary degree can be erased. When considering Gss

n (x), Gcc
n (x) is

also automatically optimized because of Eq. (B3). If m ≥ 2,

Gss
total(x) = a1Gss

1 (x) + a2Gss
2 (x) +⋯ + amGss

m(x)

= 2
1 − x2 [{a1 − a2 +⋯ + (−1)m+1am}x

− π2

3!
{12a1 − 22a2 +⋯ + (−1)m+1m2am}x3

+
π4

5!
{14a1 − 24a2 +⋯ + (−1)m+1m4am}x5⋯] (B10)

is obtained from Eqs. (A9) and (A12). If we assume

a1 − a2 + a3 +⋯ + (−1)m+1am = 0,

12a1 − 22a2 + 32a3 +⋯ + (−1)m+1m2am = 0,

14a1 − 24a2 + 34a3 +⋯ + (−1)m+1m4am = 0⋯,

(B11)

the coefficients of all terms from x to x2m−1 are 0 in Eq. (B10). We
obtain the following simultaneous linear equations:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 ⋯ 1

1 −1 ⋯ (−1)m+1

12 −22 ⋯ (−1)m+1m2

⋮ ⋮ ⋱ ⋮
12m−4 −22m−4 ⋯ (−1)m+1m2m−4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

a1

a2

⋮
am

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
0
0
⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(B12)

by combining Eq. (A14). The solutions are

m = 2⇒ a1 =
1
2

, a2 =
1
2

,

m = 3⇒ a1 =
5

16
, a2 =

1
2

, a3 =
3

16
,

m = 4⇒ a1 =
7

32
, a2 =

7
16

, a3 =
9

32
, a4 =

1
16

,

m = 5⇒ a1 =
21

128
, a2 =

3
8

, a3 =
81

256
, a4 =

1
8

, a5 =
5

256
⋯.

(B13)

When Gcc
total and Gss

total are expanded in a series of power x, the
lowest order of Gss

total is lower than that ofGcc
total. Thus, the property of

Gss
total dominates the performance of this filter. As a result, numerical

phase detection with a function of the (2m − 1)th order high-pass
filter can be realized using only the data of the time width of at most
2 mπ/ω0t without any phase shift of the signal. Figure 26 shows the

pass gains of the concrete real and imaginary parts. In other words,
we can give the Gcc

total and Gss
total superior character not found in the

original Gcc
n and Gss

n .

3. Higher-order notch filter
Here, we consider a higher-order notch filter to remove noise

distributed with a certain width around x = x1. When the conditions

Gss
total(x1) = Gcc

total(x1)
= Gss

total
′(x1) = Gcc

total
′(x1)

= Gss
total

′′(x1) = Gcc
total

′′(x1)
⋯

= Gss
total

(l)(x1) = Gcc
total

(l)(x1) = 0

(B14)

are imposed, an lth order notch filter is realized. Since the relations

Gcc
total

′(x) = Gss
total(x) + xGss

total
′(x)

Gcc
total

′′(x) = 2Gss
total

′(x) + xGss
total

′′(x)
Gcc
total

′′′(x) = 3Gss
total

′′(x) + xGss
total

′′′(x)
⋯

Gcc
total

(l)(x) = lGss
total

(l−1)(x) + xGss
total

(l)(x)

(B15)

are established from Eq. (B3), the relations

Gss
total(x1) = Gss

total
′(x1)

= Gss
total

′′(x1) = ⋯ = Gss
total

(l)(x1) = 0

⇒ Gcc
total(x1) = Gcc

total
′(x1)

= Gcc
total

′′(x1) = ⋯ = Gcc
total

(l)(x1) = 0

(B16)

hold identically. Since the equation

Gss
total
( j)(x) = a1Gss

1
(j)(x) + a2Gss

2
(j)(x)

+ a3Gss
3
( j)(x) +⋯ + amGss

m
(j)(x) (B17)

holds for an arbitrary integer j from Eq. (A12), the required simulta-
neous linear equation to determine a1, a2, . . ., am is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 ⋯ 1
Gss

1 (x1) Gss
2 (x1) ⋯ Gss

m(x1)
Gss

1
′(x1) Gss

2
′(x1) ⋯ Gss

m
′(x1)

⋮ ⋮ ⋱ ⋮
Gss

1
(l)(x1) Gss

2
(l)(x1) ⋯ Gss

m
(l)(x1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

a1

a2

⋮
am

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
0
0
⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

, (B18)

where l = m − 1. This linear equation for a1, a2, . . ., am can be eas-
ily solved numerically, resulting in an lth-order notch-filter function
that can remove the noise component of a known frequency by using
the information of only the time width of at most 2 mπ/ω0 without
any phase rotation of the signal (see Fig. 27).

The characteristics of the newly created filters, which take a
linear combination of outputs of the numerical phase detection
using each integration period, are not limited to the above examples,
but any combination of them is possible. Thus, this technique can
remove noise at specific frequencies taking full advantage of the abil-
ity to reduce the time width required for integration with numerical
phase detection.
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FIG. 26. Implementation example of
high-pass filters. The total pass gain of
(2m − 1)th (m = 1, 2, 3, 4, and 5) order
high-pass filters is shown. The coeffi-
cients used are from the exact solutions
(B13) obtained by solving Eq. (B12).
(a) and (b) show the real (Gcc

total ) and
imaginary (Gss

total ) parts of the frequency
dependence of the pass gain, respec-
tively. (c) and (d) are the enlarged views
of (a) and (b), respectively.

APPENDIX C: A THEOREM WITH RESPECT TO LINEAR
DEPENDENCE

Since Gss
n (x) contains a sine function, its zero points appear

periodically and infinitely. Therefore, the equations giving the zero
points ofGss

total(x)may not be independent from each other. It is pos-
sible to shorten the integration time by selecting the frequency to be
removed. This is quite effective when a set of frequencies to be used
can be selected in advance, such as for broadband communication.
The method is shown below. According to Eqs. (A9) and (A12),

Gss
total(κ + Δx) = 2

1 − (κ + Δx)2

m

∑
n=1

an
(−1)n−1

nπ
sinnπ(κ + Δx)

= 2
1 − (κ + Δx)2

m

∑
n=1

an
(−1)n−1

nπ
(−1)nκ sinnπΔx

(C1)

and

Gss
total(κ − Δx) =

2
1 − (κ − Δx)2

m

∑
n=1

an
(−1)n−1

nπ
sinnπ(κ − Δx)

= − 2
1 − (κ − Δx)2

m

∑
n=1

an
(−1)n−1

nπ
(−1)nκ sinnπΔx

(C2)

are obtained with regard to x = κ ± Δx, κ = 1, 2, 3, . . . and x ≠ 1.
Therefore, the equation

Gss
total(κ + Δx) = −1 − (κ − Δx)2

1 − (κ + Δx)2 G
ss
total(κ − Δx) (C3)

holds identically. According to the above relation, the relation

Gss
total(κ − Δxi) = 0⇒ Gss

total(κ + Δxi) = 0, for κ ± Δxi ≠ 1 (C4)

is obtained. This means that upon removing the frequency compo-
nent κ − Δx, the frequency component of κ + Δx is also removed at
the same time.

Next, we will show that the same relation generally holds for
higher-order notch filters [(l + 1)th, l = 0, 1, 2, . . .]. When we choose
f 1(Δx), f 2(Δx), and g(Δx) as

f1(Δx) ≡ Gss
total(κ + Δx), (C5)

f2(Δx) ≡ Gss
total(κ − Δx), (C6)

g(Δx) ≡ −1 − (κ − Δx)2

1 − (κ + Δx)2 , (C7)

the relation of

f1(Δx) = g(Δx)f2(Δx) (C8)
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FIG. 27. Implementation example of
high-order notch filters. The pass gain
of the notch filter that removes the fre-
quency component of x = 0.4 in the l
(= m − 1)th order (m = 2, 3, 4, and 5)
is shown. The coefficients a1, a2, . . .,
am can be easily determined by substi-
tuting numerical values into Eq. (B18).
(a) and (b) show the real (Gcc

total ) and
imaginary (Gss

total ) parts of the frequency
dependence of the pass gain, respec-
tively. (c) and (d) are the enlarged views
of (a) and (b), respectively.

holds without losing generality. By taking the lth derivative of
Eq. (C8), we obtain

f ′1(Δx) = g′(Δx)f2(Δx) + g(Δx)f ′2(Δx)
⋯

f (l)1 (Δx) =
l

∑
j=0

lCjg(l−j)(Δx)f (j)2 (Δx).
(C9)

Thus, finally, we obtain the following relation:

f2(Δx) = f ′2(Δx) = ⋯ = f ( j)2 (Δx) = 0

⇒ f1(Δx) = f ′1(Δx) = ⋯ = f ( j)1 (Δx) = 0
for κ + Δxi ≠ 1.

(C10)

According to Eq. (B16), it is shown that all differential coefficients
up to the lth order are zero even in the real part of the pass gain.

This means that if the function for an (l + 1)th order notch
filter is provided for the angular frequency of κ − Δx, even at the
frequency of κ + Δx, it will automatically have a function for the
(l + 1)th order filter. In order to successfully utilize this relation,
it is desirable that the respective frequencies are arranged at equal
intervals and are collected on the high-frequency side within a pos-
sible frequency band. By doing so, the integration time can be further
shortened.
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