

Manuscript version: Author's Accepted Manuscript

The version presented in WRAP is the author's accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/146744

How to cite:

Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

© 2021 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>.

Publisher's statement:

Please refer to the repository item page, publisher's statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

Influence of plasticiser type and nanoclay on the properties of chitosan based materials[‡]

- 3
- 4 Pei Chen^{a,b}, Fengwei Xie^{b,*,†}, Fengzai Tang^c, Tony McNally^{b,**}
- ⁶ ^a College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- 6 ^b International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry
- 7 CV4 7AL, United Kingdom
- 8 ^c WMG, University of Warwick, Coventry CV4 7AL, United Kingdom
- 9 * Corresponding author. Email addresses: d.xie.2@warwick.ac.uk, fwhsieh@gmail.com (F. Xie)
- 10 ** Corresponding author. Email address: t.mcnally@warwick.ac.uk (T. McNally)
- 11 † This author leads the research.
- ¹² [‡] Supplementary material provided.
- 13 Abbreviations: MMT, montmorillonite; CMC, carboxymethyl cellulose; IL, ionic liquid; [C₂mim][OAc], 1-
- 14 ethyl-3-methylimidazolium acetate; PEC, polyelectrolyte complexation; T_d , thermal decomposition
- 15 temperature at maximum weight-loss rate; tan δ , loss tangent; T_{β} , peak temperature of β -transition; T_{α} , peak
- 16 temperature of α -transition; *E*, Young's modulus; σ_t , tensile strength; ε_b , elongation at break; θ_{c0s} , contact
- 17 angle at 0 s; θ_{c60s} , contact angle at 60 s; RH, relative humidity; RT, room temperature.

19 Abstract:

20 Chitosan, a biocompatible polysaccharide having antimicrobial efficacy, is highly useful for 21 biomedical and other applications. How chitosan properties can be tailored continues to attract 22 intense research interest. Herein, chitosan and chitosan/carboxymethyl cellulose (CMC) materials 23 filled with montmorillonite (MMT) were thermomechanically processed resulting in excellent 24 nanoclay dispersion. Inclusion of MMT significantly increased the molecular relaxation temperatures, tensile mechanical properties, and film surface hydrophobicity. When plasticisers such 25 26 as 1-ethyl-3-methylimidazolium acetate ([C₂mim][OAc]) or glycerol were introduced, the effect of MMT on the biopolymer properties largely depends on whether the MMT alters plasticiser-27 28 biopolymer interactions. [C₂mim][OAc]-plasticised chitosan exhibited a relatively high contact angle 29 (100±7°) similar to the un-plasticised chitosan/MMT material, derived from the strong hydrogen-30 bonding capability of [C₂mim][OAc]. Polyelectrolyte complexation (PEC) allowed the glycerolplasticised chitosan/CMC material to have a hydrophobic surface (contact angle: 90±6°) similar to 31 32 that of the un-plasticised chitosan/CMC/MMT material. Specifically, further inclusion of MMT 33 interrupted biopolymer-plasticiser interactions, leading to increased surface wettability. However, 34 while addition of [C₂mim][OAc] resulted in reduced hydrophilicity of the chitosan/CMC matrix, addition of MMT counteracted this effect by interacting with the IL. This work shows the plasticizers 35 and MMT influence surface hydrophilicity mainly by determining the availability of free biopolymer 36 37 polar groups.

- *Keywords:* Biopolymer thermomechanical processing; Polysaccharide plasticisation; Chitosan
- 40 nanocomposites; Nanoclay; Ionic liquid; Surface hydrophilicity

42 **1** Introduction

43 The utilisation of natural biopolymers such as polysaccharides (e.g. cellulose, chitin/chitosan, 44 starch, and alginate) and proteins continue to attract increasing interest as these materials are 45 renewable, are widely available, biodegradable, and have low toxicity or are non-toxic. For the 46 production of products, biopolymers are usually processed with plasticisers since, without plasticiser, 47 biopolymer materials are too brittle or fragile to use [1]. Glycerol is the most widely used plasticiser for biopolymers due to its non-volatility and matching hydrophilicity. In recent years, ionic liquids 48 49 (ILs) have attracted much attention for the processing and plasticisation of biopolymers, especially starch [2-10]. ILs that contain a strongly basic, hydrogen-bond-accepting anion (e.g. carboxylates or 50 51 halides) can effectively disrupt biopolymer hydrogen-bonded networks [10]. 52 However, how biopolymer-plasticiser (especially IL) interactions determine the properties of 53 biopolymers is not fully understood. Chen et al. [11] suggested that glycerol is more advantageous 54 for chitosan plasticisation than ILs because the hydrophobic end groups (C-H) of glycerol can 55 prevent hydrogen bonding between chitosan chains whereas ILs, which have stronger hydrogen-56 bonding capability, can form multiple hydrogen bonds with chitosan chains and thus limit chain 57 mobility. In contrast, a few studies [2, 4, 6, 7, 12] indicated that ILs are more effective plasticisers than glycerol for biopolymers such as starch, protein, and chitosan, resulting in a more amorphous 58 59 structure, greater chain mobility, and mechanical ductility. Moreover, while ILs are more hydrophilic 60 than glycerol, there has been no consensus on how plasticisers affect the hydrophilicity or hygroscopicity of biopolymers. Sankri et al. [6] indicated that starch plasticised by 1-butyl-3-61 methylimidazolium acetate ([C4mim]Cl) were significantly less hygroscopic than the glycerol-62

63	plasticised counterpart. Zhang et al. [4] found that at a high plasticiser content (24 wt%), starch
64	plasticised by 1-ethyl-3-methyl-imidazolium acetate ([C2mim][OAc]) showed greater water uptake
65	during conditioning at 75% relative humidity (RH), whereas the reverse was observed at a low
66	plasticiser content (9 wt%).
67	Nanocomposites from biorenewable resources have been produced to enhance mechanical
68	properties (tensile, flexural, and impact) and play a wide and increasing role in diverse industrial
69	applications (e.g. drug delivery, tissue engineering, fuel cells, electronics, food packaging,
70	environmental remediation, genetic engineering, and biomedical sciences) [13]. Nonetheless, limited
71	studies have been undertaken on how nanofillers influence the hydrophilicity of plasticised
72	biopolymers other than starch. In the area of starch-based nanocomposites, it has been established
73	that the hydrophilic nature of glycerol can negate the improved water resistance provided by
74	montmorillonite (MMT) [14]. In a study [15] where chitosan was shown to function as a
75	compatibiliser between the starch matrix and MMT, higher chitosan content led to increased surface
76	hydrophobicity and decreased water vapour transmission rate and moisture absorption of the
77	composite film. MMT was also found to decrease the water absorption, water solubility, and surface
78	wettability of carboxymethyl starch films [16]. In these studies, the increased hydrophobicity was
79	attributed to the biopolymer-MMT interaction and the tortuous path in the matrix created by the
80	delaminated 2D nanoclay. However, how the interplay between nanofiller and plasticiser affects the
81	surface hydrophilicity of chitosan-based nanocomposites has largely been unexplored, which forms
82	the motivation for this current study.

83	We prepared chitosan and chitosan/carboxymethyl cellulose (CMC) polyelectrolyte-complexed
84	materials with MMT by thermomechanical processing. This method provides strong shear stresses
85	and efficient mixing for high filler concentration and high-viscosity 'melts', enabling excellent
86	dispersion of MMT nanosheets in the biopolymer matrices as well as the plasticisation of
87	biopolymers [17-21]. This method could also realise macroscopically uniform, bulky polyelectrolyte-
88	complexed biopolymer materials, whereas in frequently used solution conditions, the rapid
89	complexation between two polymers at the contact interface can result in heterogeneous aggregates
90	[22]. We hypothesise that the material surface hydrophilicity/hydrophobicity can be largely
91	influenced by the varying biopolymer-plasticiser interactions, while mechanical properties are
92	mainly controlled by biopolymer inter-chain hydrogen bonding. We propose mechanisms underlying
93	the hydrophilicity/hydrophobicity of biopolymer materials that were affected by MMT and the
94	plasticisers ([C ₂ mim][OAc] and glycerol).

95 2 Materials and methods

96 2.1 Materials

Chitosan (poly(β-(1,4)-D-glucosamine), derived from crab shells, with a viscosity of about 100 mPa·s (*i.e.* 1% solution in 1% acetic acid at 25 °C), a degree of deacetylation of >90%, and a weightaverage molecular mass (M_w) of about 150k g·mol⁻¹, was purchased from Shanghai Ryon Biological Technology Co., Ltd (China). This chitosan was characterised previously [23]. CMC sodium, with a viscosity of 50–100 mPa·s (Brookfield, 2% solution, at 25 °C), a degree of substitution (DS) of 0.7, and an M_w value of 90,000 g·mol⁻¹, was acquired from Shanghai Macklin Biochemical Co., Ltd (China). The characteristics of this CMC were reported in our previous study [24]. Glycerol (≥99% analytical grade) was supplied by Fisher Scientific UK Ltd (UK); [C₂mim][OAc] (≥95.0%) and

MMT K 10 (surface area 220–270 m²/g) by Sigma-Aldrich Company Ltd (UK); formic acid (98 wt%
AR) and NaBr (pure) by Scientific Laboratory Supplies Ltd (UK). Deionised water was used
throughout.

108 **2.2 Sample preparation**

109 Table 1 shows the formulations and corresponding codes of the different chitosan-based samples 110 prepared in this study. The matrices used were either chitosan alone (A) or chitosan/CMC (B). The 111 codes also indicate the plasticiser used, with, for example, "G2" representing 20 wt% glycerol and 112 "E4" indicating 40 wt% [C₂mim][OAc]. The suffix "F" denotes the samples were prepared as films. 113 Following our method established previously [24], the samples were prepared by pre-blending the 114 ingredients, thermomechanical kneading at 80 °C for 15 min, hot-pressing at 110 °C and 160 bar for 115 10 min, and conditioning at 57% RH for three weeks before characterisation. The samples without 116 plasticiser or MMT (A-F and B-F) [24], those plasticised by glycerol without MMT (AG2-F, AG4-F, 117 BG2-F, and BG4-F) [25], and those plasticised by [C₂mim][OAc] without MMT (AE2-F, AE4-F, 118 BE2-F, and BE4-F) [26], all prepared in the same way, have been reported previously and are used 119 for comparison throughout the discussion.

Sample	Chitosan	CMC	Glycerol	[C ₂ mim][OAc]	MMT	2M Formic acid
						solution
A/M-F	100	_	_	_	0.75	261
AG2/M-F	100	_	20	_	0.75	261
AG4/M-F	100	_	40	_	0.75	261
AE2/M-F	100	_	_	20	0.75	261
AE4/M-F	100	_	_	40	0.75	261
B/M-F	50	50	_	_	0.75	261
BG2/M-F	50	50	20	_	0.75	261
BG4/M-F	50	50	40	_	0.75	261
BE2/M-F	50	50	_	20	0.75	261
BE4/M-F	50	50	_	40	0.75	261

Table 1. Sample codes and compositions (represented as portions by weight).

123 **2.3 Sample characterisation**

Scanning electron microscopy (SEM) imaging was performed using a ZEISS SIGMA fieldemission scanning electron microscope with an acceleration voltage of 6 kV. The biopolymer films
were cryo-fractured using liquid nitrogen and the samples sputter-coated with gold/palladium before

127 imaging.

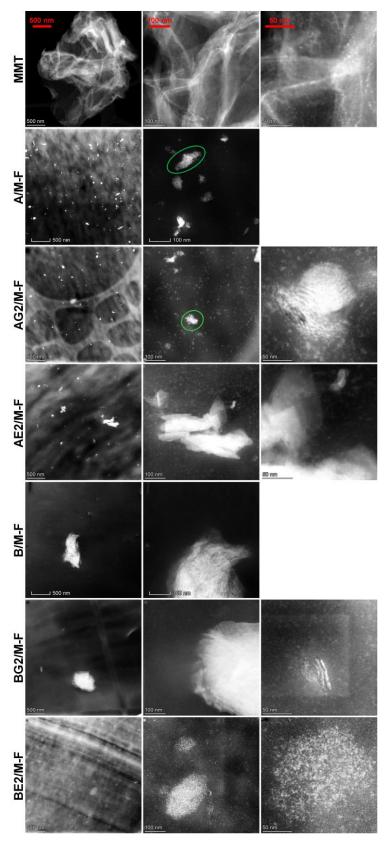
128 Scanning transmission electron microscopy (STEM) was conducted using a Talos F200X

129 transmission electron microscope at 200 kV to obtain both bright-field (BF) and high-angle annular

130 dark-field (HAADF) images. Ribbons about 60 nm thick were sectioned from epoxy-embedded

131 sample blocks and subsequently transferred onto holey carbon films on 200-mesh copper grids. No

132 liquid was used during preparation to avoid damaging the samples.

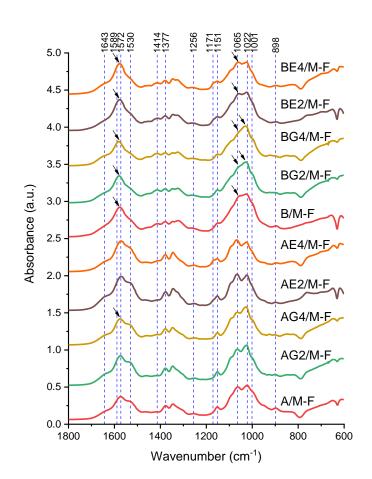

133	X-ray diffraction (XRD) analysis was undertaken using a PANalytical Empyrean X-ray
134	diffractometer at 40 kV and 40 mA with a Co target (K α = 1.790307 Å) and a beam slit of 10 mm.
135	The samples were scanned over an angular range (2 θ) of 6–40° with a step size of 0.0263° and a step
136	rate of 2.16 s/step.
137	Fourier-transform infrared (FTIR) spectra were collected using a Bruker TENSOR 27 FTIR
138	spectrometer with an attenuated total reflection (ATR) accessory with 32 scans for each sample over
139	a range of 4000–500 cm^{-1} at room temperature (RT).
140	Thermo-gravimetric analysis (TGA) was undertaken using a Mettler Toledo TGA apparatus over
141	a temperature range of 30–700 °C at 10 K/min under nitrogen.
142	Dynamic mechanical thermal analysis (DMTA) was performed using a Tritec 2000 DMA
143	(Triton Technology Ltd., UK) in the dual cantilever mode with a sample length of 5 mm at a
144	displacement of 0.01 mm. Temperature scans were performed from -100 °C to 180 °C at 2 K/min
145	and 1 Hz. The dynamic storage modulus (E'), loss modulus (E''), and loss tangent (tan $\delta = E''/E'$)
146	were automatically calculated by the software.
147	Tensile tests were performed using an Instron 3367 universal testing machine with a 1kN load
148	cell at a crosshead speed of 3 mm/min. As the specimens were in the form of thin sheets, specimen
149	extension was measured by grip separation as recommended by ASTM Standard D882. Young's
150	modulus (<i>E</i>), tensile strength (σ_t), and elongation at break (ε_b) were automatically determined using
151	Instron Bluehill 3 software from at least seven replicates for each sample.
152	Contact angle data were obtained from sessile tests at RT based on Young-Laplace using an
153	Attension Theta Lite instrument (Biolin Scientific, UK). As the contact angle kept changing after the

154 water drop was placed on the biopolymer film surface, contact angles at 0 s and 60 s (θ_{c0s} and θ_{c60s} , 155 respectively) were recorded.

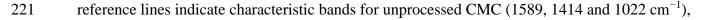
156 **3 Results and Discussion**

157 **3.1 Morphology and structures of chitosan-based composites**

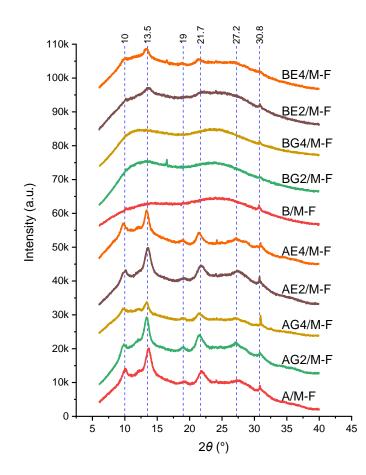
- 158 Figure S1 shows SEM images of cryo-fractured surfaces of the different bionanocomposite
- 159 films. All the samples displayed a cohesive structure, indicating successful processing of chitosan
- 160 and CMC. No significant difference in micron-scale morphology can be seen between these MMT-
- 161 filled and unfilled biopolymers (*i.e.* without MMT) [24-26].
- 162 **Figure 1** shows the morphology of neat MMT imaged using STEM. Stacks or agglomerations of
- 163 large and individual sheets of MMT can be seen. In some areas, the MMT is just a few layers thick
- and was seen to be translucent, whereas the creases in the stacks had greater contrast and were more
- 165 visible.


168 Figure 1. Scanning transmission electron microscopy high-angle annular dark-field (STEM-169 HAADF) images of MMT and the different bionanocomposite films. Green circles indicate possible un-processed chitosan structure.

172	STEM was also used to examine the different bionanocomposite films, also shown in Figure 1.
173	For all the A-series of bionanocomposites, many bright dots in HAADF images can be seen
174	(examples enclosed by green circles), which are also exhibited by A-F [24]. These dots could be
175	some unprocessed chitosan structure. As no other features apparently existed in A/M-F, we consider
176	MMT was predominately delaminated and became invisible especially against the chitosan
177	background under STEM. MMT is naturally negatively charged because of isomorphic substitutions
178	occurring between clay platelets [28, 29]. As a result, a strong affinity between chitosan and MMT
179	should be expected because of not only the matching hydrophilicity but also ionic interaction,
180	leading to the intercalation of chitosan chains between MMT platelets and the subsequent
181	delamination of MMT platelets. In previous studies [17, 30], where significantly higher amounts
182	(2.5–10 wt%) of MMT were incorporated into chitosan, features like the creases or waviness of
183	MMT stacks were apparent and ubiquitous in the nanocomposites.
184	Compared with A/M-F, the images for AG2/M-F and AE2/M-F revealed some MMT
185	agglomerations. They also showed some 'cloudy' areas with diffused bright contrast in the HAADF
186	images, indicative of a "dissolvable" feature, which, may be ascribed to partially exfoliated MMT
187	nanosheets. Thus, the plasticiser negatively affected the delamination of MMT as it competed with
188	the biopolymer to interact with the MMT. However, as these agglomerations or 'cloudy' areas are
189	small in number and scattered distantly, it is considered that most of the MMT nanosheets were still
190	well dispersed in the chitosan matrix because of the strong shearing action applied during processing,
191	and the single and small bundles of nanosheets became much less visible.


192	B/M-F is similar to B-F [24], except that some MMT agglomerations were visible, larger than
193	those in A/M-F. In this regard, the ionic and hydrogen-bonding interactions between CMC and
194	chitosan may have competed with the similar interactions between chitosan and MMT, leading to
195	poorer MMT dispersion in the polyelectrolyte-complexed chitosan/CMC (B) matrix. BG2/M-F also
196	contained large agglomerations of MMT as well as 'dissolvable' features. Different from other
197	samples, BE2/M-F displayed large densely populated structures. As BE2-F did not show this
198	morphology [26], these features may be ascribed to partially exfoliated MMT nanosheets. In BE2/M-
199	F, the IL (especially $[C_2mim]^+$ cation) may have interacted with MMT through ionic interaction,
200	contributing to the dispersion of MMT nanosheets. This phenomenon is worth further investigation.
201	Figure 2 shows the FTIR spectra for the different bionanocomposites. Our previous studies [25,
202	26] indicated that, for the A-matrix, plasticisation by glycerol could cause blue shifts of the
203	absorption bands originally at 1572 cm^{-1} (N–H bending from amine and amide II) and 1022 cm^{-1}
204	(skeletal vibration of C–O stretching). For the B-matrix, inclusion of glycerol also caused a blue
205	shift of the absorption band at 1022 cm^{-1} and no significant changes to peak position were observed
206	for the A- and B-matrices plasticised by [C ₂ mim][OAc]. Complexation between chitosan and CMC
207	caused a blue shift of the absorption band at 1572 cm^{-1} and a red shift of the band at 1065 cm^{-1}
208	(asymmetric C–O–C stretching in the glycosidic linkage), suggesting strong molecular interactions
209	between chitosan and CMC [25, 26]. MMT displayed a sharp peak at 1001 cm ^{-1} (Figure S2) due to
210	the Si-O silica stretching mode [31] and this characteristic band of MMT was still slightly visible
211	for all the samples. Besides, some changes to the FTIR spectra caused by inclusion of MMT were
212	obvious. Compared with that for A-F and B-F, for A/M-F and B/M-F the band at 1065 cm ⁻¹ was red-

213 shifted and became less sharp. Compared with AE2-F and AE4-F, AE2/M-F and AE4/M-F displayed a slight blue shift of the band at 1022 cm⁻¹. For BG2/M-F, the band at 1022 cm⁻¹ was also blue-214 shifted compared with that for BG2-F. In this regard, interaction of MMT with the biopolymers 215 216 could have affected the biopolymer backbone chain and the saccharide ring by a steric hindrance effect. 217


220 Figure 2. Fourier-transform infrared (FTIR) spectra for the different bionanocomposite films. The

- 222 unprocessed chitosan (1643, 1572, 1530, 1377, 1256, 1151, 1065, 1022 and 898 cm⁻¹) [24],
- $[C_2 mim][OAc]$ (1171 cm⁻¹) [26], and MMT (1001 cm⁻¹) (Figure S2). The arrows indicate shifts in 223 224

peak position or changes in peak intensity.

226	Figure 3 shows the XRD curves for the different bionanocomposites. As discussed previously
227	[25, 26], the A-series of samples displayed an apparent crystalline structure, which should be
228	predominantly due to re-crystallisation as their XRD patterns are completely different from that of
229	unprocessed chitosan. The B-series of samples, un-plasticised or plasticised by glycerol, were largely
230	amorphous, implying the complexation with CMC suppressed the re-crystallisation of chitosan. The
231	B-series of samples plasticised by [C2mim][OAc] had a low degree of crystallinity due to the re-
232	crystallisation of chitosan facilitated by the IL. Inclusion of MMT to the different matrices did not
233	result in changes to the XRD patterns for most samples. However, A/M-F showed reduced peak
234	intensities relative to A-F, and B/M-F was more amorphous than B-F. This suggests that inclusion of
235	MMT hindered the chain interactions and rearrangement for un-plasticised chitosan. Nonetheless,
236	addition of 20 wt% glycerol allowed the chitosan chains to have greater mobility and therefore more
237	likely to allow chain rearrangement and re-crystallisation especially with the assistance of MMT, as
238	shown by AG2/M-F displaying more intense peaks than AG2-F. With these exceptions, the
239	remaining MMT-filled biopolymers did not show XRD patterns different from those for the unfilled
240	biopolymers.

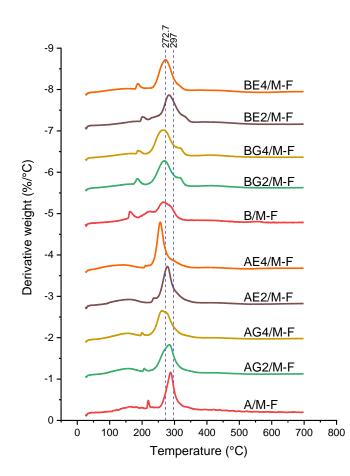
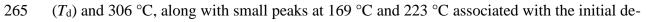

242

Figure 3. X-ray diffractograms for the different bionanocomposite films. The reference lines indicate
 characteristic peaks for A-F [24].

246 **3.2** Material properties of chitosan-based composites

Figure 4 shows the curves of derivative weight as a function of temperature for the different bionanocomposites obtained by TGA. Compared with A-F where the major peak temperature (T_d , maximum weight-loss rate) was 296 °C [24], A/M-F was less thermally stable ($T_d = 288$ °C), perhaps associated with reduced chain interactions and crystallinity (discussed in XRD results). For the Amatrix plasticised by glycerol (20 wt% or 40 wt%), inclusion of MMT did not change T_d (284 °C for AG2/M-F and 262°C for AG4/M-F). AE2/M-F had a higher T_d value (278 °C) than that of AE2-F (272 °C) [26]. In this regard, while plasticisation by [C₂mim][OAc] significantly decreased the

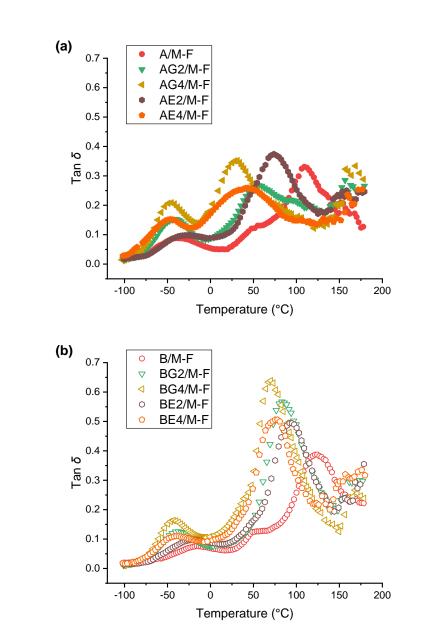
thermal stability of chitosan, MMT counteracted this effect of the IL by shielding against the transfer of pyrolysis products [32]. However, for the chitosan matrix plasticised by the higher content (40 wt%) IL, which displayed further reduced thermal stability [26], the effect of MMT was insignificant $(T_d = 256 \text{ °C for AE4/M-F}).$



259

Figure 4. Derivative weight *vs.* temperature curves measured by thermogravimetric analysis (TGA)
 for the different bionanocomposite films. The reference lines indicate the major peak temperatures of
 A-F and B-F, respectively [24].

263


264 Our previous study [24] showed that B-F had a major weight loss as overlapped peaks at 273 °C

266	polymerisation of the biopolymers. The overlapped peaks at higher temperature (306 $^{\circ}$ C) may be
267	attributed to the more thermally stable polyelectrolyte complexes. For B/M-F, T_d reduced to 266 °C
268	and the peak derived from the polyelectrolyte complexes was less apparent. This corresponds with
269	the reduction in crystallinity (see XRD results) and may also be derived from the partially weakened
270	PEC between the two biopolymers due to the dispersed MMT nanosheets. BG2/M-F, BG4/M-F,
271	BE2/M-F, and BE4/M-F had T _d values (269 °C, 265 °C, 283 °C, and 273 °C, respectively) similar to
272	their respective matrix counterparts [25, 26], suggesting inclusion of MMT was ineffective at
273	changing the thermal stability of these plasticised B-matrices. The high thermal stability of BE2/M-F
274	is due to the enhanced chain interactions and re-crystallisation induced by [C ₂ mim][OAc].
275	Figure 5 shows the tan δ curves as a function of temperature measured by DMTA for the
276	different bionanocomposites. For A-F, two transitions can be identified [24], a weak one centred at
277	–47 °C associated with a β -relaxation of chitosan (the motions of the side chains or lateral groups of
278	chitosan) and a much more prominent one at about 119 °C attributed to the α -transition (glass
279	transition) of chitosan [33, 34]. For A/M-F, the peak temperature of the β -transition (T_{β}) increased to
280	about -38 °C whereas the peak temperature of the α -transition (T_{α}) was 109 °C. Thus, for the un-
281	plasticised A-matrix, inclusion of MMT restricted the movement of chitosan side chains, due to
282	interaction between negatively charged MMT and the chitosan cation. For the plasticised A-matrix,
283	inclusion of MMT did not result in changes to T_{β} or T_{α} . On the other hand, B-F also exhibited two
284	major transitions ($T_{\beta} = -43 \text{ °C}$ and $T_{\alpha} = 97 \text{ °C}$) [24]. In comparison, B/M-F showed significantly
285	higher relaxation temperature ($T_{\beta} = -13$ °C and $T_{\alpha} = 123$ °C) indicating MMT restricted the mobility
286	of both the side and main chains of the biopolymers in this ternary system. For the plasticised B-

matrix, inclusion of MMT did not significantly alter T_{β} or T_{α} . Therefore, biopolymer chain mobility in these composites is mainly determined by the plasticiser type. BE2/M-F had $T_{\beta} = -21$ °C and $T_{\alpha} =$ 93 °C, higher than the respective values for other plasticised B-samples [25, 26]. In this case, [C₂mim][OAc] enhanced inter-chain interactions rather than providing a plasticisation effect, in agreement with the high crystallinity and thermal stability discussed above.

295 Figure 5. Dynamic mechanical thermal analysis (DMTA) results for the different bionanocomposite

298	Representative stress-strain curves from tensile testing (Figure S3) indicate that while AG4/M-
299	F and AE4/M-F were more elastomeric, most samples behaved like a hard and tough polymer
300	displaying strain-hardening behaviour. In particular, A/M-F, B/M-F, and BE2/M-F showed higher
301	stiffness and strength, associated with the formation of an inter-chain hydrogen-bonded network in
302	these samples. From the stress–strain curves, the calculated E , σ_t , and ε_b values are shown in Figure
303	6 (a), (b) and (c), respectively. Compared with A-F ($E = 1260 \pm 169$ MPa, $\sigma_t = 46.8 \pm 5.6$ MPa, and $\varepsilon_b =$
304	22.6±4.6%), A/M-F displayed significant increases in these mechanical properties ($E = 1744 \pm 118$
305	MPa, $\sigma_t = 60.4 \pm 1.1$ MPa, and $\varepsilon_b = 13.1 \pm 2.9\%$). Compared with B-F ($\sigma_t = 50.5 \pm 3.6$ MPa, and $\varepsilon_b =$
306	10.4±3.4%), B/M-F had higher σ_t (68.4±5.9 MPa) and ε_b (13.1±2.8%). The enhanced mechanical
307	properties of the composites where MMT was added to the A- and B-matrices can be ascribed to the
308	strong hydrogen-bonding and electrostatic interactions between MMT and chitosan and the large
309	surface areas of MMT nanosheets, both contributing to effective stress transfer, despite the lower
310	crystallinity (see XRD results) and possible decreased chitosan chain interactions, as discussed
311	above. B/M-F also exhibited higher σ_t than A/M-F while both samples had similar ε_b , behaviour
312	derived from PEC and an enhanced hydrogen-bonded network.
313	

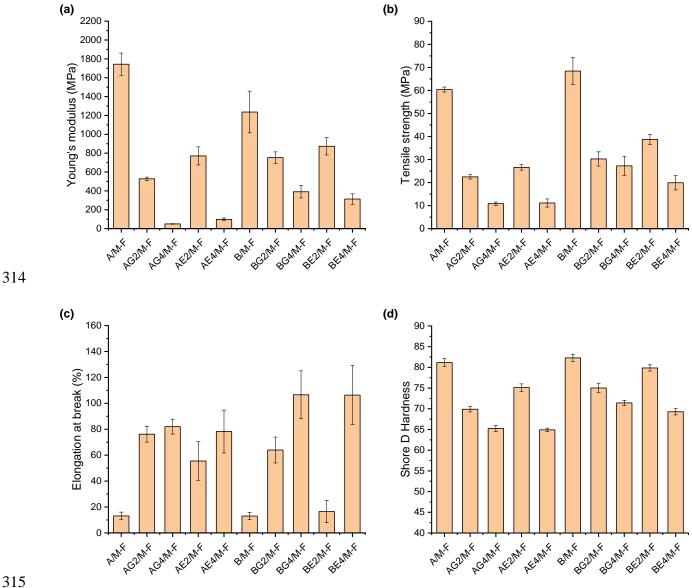
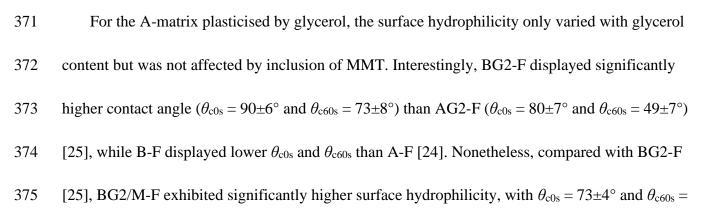


Figure 6. Tensile properties (a) Young's modulus, b) tensile strength and c) Elongation at break) and 316 d) Shore D hardness for the different bionanocomposite films. Error bars represent standard 317 deviations.

- 318
- 319

320 However, when the A- or B-matrix was plasticised with 20 wt% glycerol, inclusion of MMT 321 even resulted in poorer mechanical properties. Specifically, AG2/M-F had $E = 528 \pm 18$ MPa and $\sigma_t =$ 22.5±0.9MPa, lower than those for AG2-F ($E = 730\pm 26$ MPa and $\sigma_t = 26.3\pm 1.4$ MPa) [25]. BG2/M-F 322 323 had $E = 528 \pm 18$ MPa and $\sigma_t = 22.5 \pm 0.9$ MPa, lower than those for BG2-F ($E = 883 \pm 65$ MPa and $\sigma_t = 600$


324	38.4±2.8 MPa) [26]. In AG2/M-F and BG2/M-F, the inclusion MMT may assist the distribution of
325	glycerol in the chitosan matrix and promote interactions with the biopolymer. While AG2/M-F had
326	moderately higher crystallinity than AG2-F (see XRD results), crystallinity seemingly did not play a
327	dominant role in determining the mechanical properties. A higher content (40 wt%) of glycerol
328	resulted in weaker biopolymer chain interactions and in this case, MMT may assist with limited
329	stress transfer between biopolymer chains. Therefore, AG4/M-F exhibited marginally higher σ_t
330	(10.8±0.7 MPa) and ε_b (82.0±5.7%) than AG4-F ($\sigma_t = 8.5\pm0.5$ and $\varepsilon_b = 58.8\pm5.1\%$) [25]. BG4/M-F
331	had a slightly higher <i>E</i> value (391±66 MPa) than BG4-F (333±60 MPa) [25].
332	For the A-matrix plasticised by [C ₂ mim][OAc], inclusion of MMT did not result in significant
333	changes in the mechanical properties of chitosan, except that AE2/M-F had lower ε_b (55.5±15.0%)
334	than AE2-F (72.0±9.2%) [26]. This shows the dominant role of the plasticiser in determining the
335	interactions between chitosan chains, whereas the interaction between chitosan and MMT was weak.
336	Due to ionic interactions, the $[C_2mim]^+$ cation is likely to bind with the MMT. On the other hand,
337	BE2/M-F displayed lower ε_b (16.4±8.6%) than BE2-F (33.4±8.0%) [26], and BE4/M-F showed
338	lower <i>E</i> (333±56 MPa) and σ_t (19.9±3.1 MPa) than BE4-F (<i>E</i> = 518±82 MPa and σ_t = 24.0±3.2%)
339	[26]. Likely, in the B-matrix plasticised by [C ₂ mim][OAc], MMT could restrict inter-chain hydrogen
340	bonding. This will be further discussed in Section 3.3.
341	Figure 6 d) shows the Shore D hardness for the different samples, which shows similar trends
342	shown by <i>E</i> and σ_t from tensile testing. In the regard, the plasticisers and inclusion of MMT
343	influenced the hardness in the same way as for tensile properties. The highest Shore D hardness was
344	obtained for A/M-F (81.2±0.9) and B/M-F (82.3±0.9). The hardness values for the two MMT-filled

un-plasticised samples were higher than that for the respective unfilled matrices (77.2±0.9 for A-F
and 77.5±0.9 for B-F), suggesting reinforcement is derived from the MMT. Compared with A-F and
A/M-F, all plasticised A-samples showed lower hardness values irrespective of MMT addition.
Compared with B-F, only BG2-F, BE2-F, and BE2/M-F displayed higher hardness values but still
lower than that of B/M-F. Overall, plasticisation had a greater effect than MMT addition on
biopolymer material hardness.

351 The surface wettability (hydrophilicity/hydrophobicity) of materials is important particularly for 352 biomedical applications requiring biocompatibility and cell adhesion [35]. Cell adhesion occurs 353 preferentially on moderately water-wettable polymer surfaces [36]. In addition, high surface 354 hydrophilicity can lead to a hydrated layer on the materials as a high-surface-energy barrier to 355 prevent biofouling (protein absorption) [37]. Therefore, it is interesting to tailor the surface 356 wettability of chitosan materials via plasticisation or nanofiller addition. Figure 7 shows the contact 357 angle values obtained showing the surface hydrophilicity of the different bionanocomposite films. As 358 the contact angle kept changing during the sessile measurement, both values at 0 s and 60 s (θ_{c0s} and θ_{c60s}) were recorded. The θ_{c0s} and θ_{c60s} values for A-F were 90±5° and 68±5°, respectively [24]. In 359 360 comparison, A/M-F had higher contact angle values ($\theta_{c0s} = 98\pm6^\circ$ and $\theta_{c60s} = 89\pm6^\circ$). Compared with B-F ($\theta_{c0s} = 71 \pm 6^{\circ}$ and $\theta_{c60s} = 60 \pm 65^{\circ}$), B/M-F also displayed higher θ_{c0s} (88±6°) and θ_{c60s} (70±11°). 361 362 These results highlight the effect of inclusion of MMT in enhancing the surface hydrophilicity of 363 both un-plasticised A- and B-matrices, behaviour attributed to the effective biopolymer-MMT 364 interactions and the shielding provided by MMT nanosheets against water molecules.

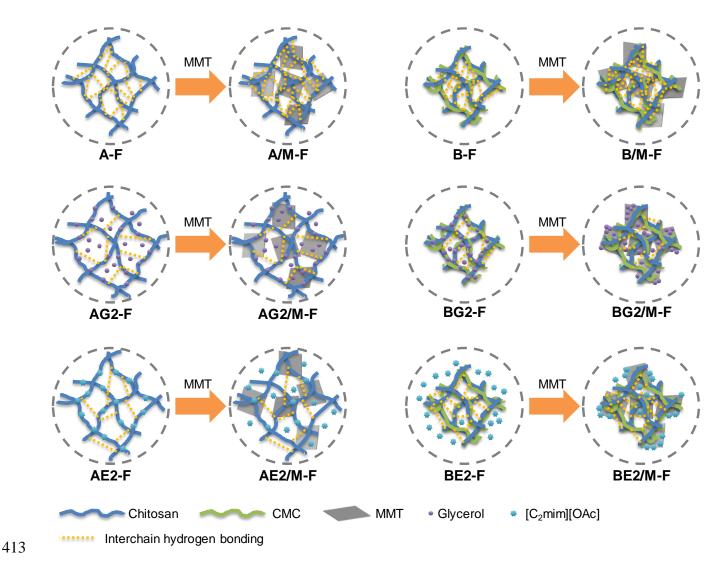


Figure 7. a) Contact angle values and b) droplet images for the different bionanocomposite films at 0
s and 60 s. Error bars represent standard deviations. AG2-F, AE2-F, BG2-F, and BE2-F were tested
in our previous studies [25, 26].

376	$47\pm7^{\circ}$, a consequence of the MMT nanosheets disrupting interactions between biopolymer chains
377	and between biopolymer and glycerol. However, the effect of MMT was negligible with a high
378	content (40 wt%) of glycerol in the B-matrix, as reflected by the similar θ_{c0s} and θ_{c60s} values for
379	BG4-F and BG4/M-F.
380	Inclusion of MMT led to increased surface hydrophilicity for the A-matrix plasticised by
381	[C ₂ mim][OAc]. In this regard, MMT disrupts the hydrogen bonding between chitosan chains and the
382	interaction between chitosan and the IL, making more polar groups available to interact with water.
383	In contrast, for the IL-plasticised B-matrix, inclusion of MMT resulted in lower surface
384	hydrophilicity (increased hydrophobicity), possibly due to enhanced PEC between biopolymer
385	chains.
386	3.3 Discussion on surface hydrophilicity/hydrophobicity of chitosan-based composites
300	Discussion on surface ny arophinety/ny arophobienty of entosun bused composites
387	Our previous study [24] indicated that compared with A-F, B-F had much higher hydrolytic
387	Our previous study [24] indicated that compared with A-F, B-F had much higher hydrolytic
387 388	Our previous study [24] indicated that compared with A-F, B-F had much higher hydrolytic stability, attributed to PEC between chitosan and CMC. The enhanced structural stability of
387 388 389	Our previous study [24] indicated that compared with A-F, B-F had much higher hydrolytic stability, attributed to PEC between chitosan and CMC. The enhanced structural stability of biopolymers by PEC can be ascribed to ionic bonds (governed by electrostatic attraction, or
387 388 389 390	Our previous study [24] indicated that compared with A-F, B-F had much higher hydrolytic stability, attributed to PEC between chitosan and CMC. The enhanced structural stability of biopolymers by PEC can be ascribed to ionic bonds (governed by electrostatic attraction, or Coulomb's law) being stronger than hydrogen bonds. However, B-F still showed higher surface
387388389390391	Our previous study [24] indicated that compared with A-F, B-F had much higher hydrolytic stability, attributed to PEC between chitosan and CMC. The enhanced structural stability of biopolymers by PEC can be ascribed to ionic bonds (governed by electrostatic attraction, or Coulomb's law) being stronger than hydrogen bonds. However, B-F still showed higher surface hydrophilicity than A-F [24], due to the higher hydrophilicity of CMC.
 387 388 389 390 391 392 	Our previous study [24] indicated that compared with A-F, B-F had much higher hydrolytic stability, attributed to PEC between chitosan and CMC. The enhanced structural stability of biopolymers by PEC can be ascribed to ionic bonds (governed by electrostatic attraction, or Coulomb's law) being stronger than hydrogen bonds. However, B-F still showed higher surface hydrophilicity than A-F [24], due to the higher hydrophilicity of CMC. Surface hydrophilicity of a biopolymer material is largely determined by the surface free energy
 387 388 389 390 391 392 393 	Our previous study [24] indicated that compared with A-F, B-F had much higher hydrolytic stability, attributed to PEC between chitosan and CMC. The enhanced structural stability of biopolymers by PEC can be ascribed to ionic bonds (governed by electrostatic attraction, or Coulomb's law) being stronger than hydrogen bonds. However, B-F still showed higher surface hydrophilicity than A-F [24], due to the higher hydrophilicity of CMC. Surface hydrophilicity of a biopolymer material is largely determined by the surface free energy linked to chemical groups exposed on the material surface. For some biopolymers such as gelatin,
 387 388 389 390 391 392 393 394 	Our previous study [24] indicated that compared with A-F, B-F had much higher hydrolytic stability, attributed to PEC between chitosan and CMC. The enhanced structural stability of biopolymers by PEC can be ascribed to ionic bonds (governed by electrostatic attraction, or Coulomb's law) being stronger than hydrogen bonds. However, B-F still showed higher surface hydrophilicity than A-F [24], due to the higher hydrophilicity of CMC. Surface hydrophilicity of a biopolymer material is largely determined by the surface free energy linked to chemical groups exposed on the material surface. For some biopolymers such as gelatin, the high chain mobility would allow for the burying of polar groups in the bulk phase, making the

397 rearrange themselves to change the material surface configuration [38]. According to Zhang et al. 398 [39], the contact angle for solution-cast gelatin/starch films decreased from 114 to 72 with increasing 399 starch content from 0 wt% and 100 wt%, indicating that starch has higher surface hydrophilicity than 400 gelatin. However, research [40, 41] suggested that for chitosan/gelatin films (ratio from 100:0 to 401 0:100, w/w) without crosslinking prepared by solution casting, the contact angle was in the range of 402 78–90°; blending gelatin in chitosan was found to result in a moderately lower contact angle (higher 403 surface hydrophilicity) and the pure-gelatin film was still more hydrophilic than the pure-chitosan 404 film. In these studies, the difference in contact angle for gelatin might be due to the different ways of 405 sample preparation, which led to different amounts of gelatin polar groups exposed on the surface. In 406 this current work, as only polysaccharides were involved, we consider the surface hydrophilicity to 407 be mainly linked to the availability of polar groups (typically hydroxyl groups) that participate in 408 hydrogen-bonding interactions and the shielding effect due to the presence of the nanofiller, as 409 illustrated schematically in Figure 8 and discussed more specifically below. As contact angle 410 decreased with time for the chitosan and chitosan/CMC samples, likely, the wetting process, which 411 disrupted hydrogen bonding in the materials, also allowed more polar groups exposed on the surface.

414 Figure 8. Schematic representation of the structures of the different bionanocomposite films
 415 compared to their biopolymer counterparts.

A/M-F and B/M-F had reduced surface wettability relative to A-F and B-F, respectively, as a consequence of the strong hydrogen-bonding and ionic interactions between MMT and chitosan and, the large surface area of MMT nanosheets. Compared with A-F, the A-samples plasticised by glycerol displayed higher surface hydrophilicity. In these samples, glycerol weakened the hydrogenbonded network in chitosan and increased the biopolymer free volume. Presumably, there was still a significant portion of glycerol molecules not hydrogen-bonded with chitosan polar groups, which

423	could bind with water and contributed to the increased surface hydrophilicity. Due to the more
424	dynamic structure induced by glycerol, inclusion of MMT nanosheets was not effective at shielding
425	the polar groups and reducing the surface hydrophilicity, although it further disrupted the inter-chain
426	hydrogen-bonded network (as shown by reduced <i>E</i> and σ_t).
427	Compared with the glycerol-plasticised A-samples, AE2-F had reduced surface hydrophilicity.
428	In this regard, we propose that the IL anion ([OAc] ⁻) could effectively bind with chitosan hydroxyl
429	and amine groups, significantly reducing the amounts of free hydroxyl and amine groups available
430	for interaction with water. Similarly, Sankri et al. [6] indicated that starch plasticised by [C4mim]Cl
431	were significantly less hygroscopic than the glycerol-plasticised counterpart. Chen et al. [11]
432	suggested that ILs, due to their strong hydrogen-bonding capability, might bind with multiple
433	hydroxyl groups of chitosan. However, the similar mechanical properties of AG2-F and AE2-F [25,
434	26] indicates the formation of substantive hydrogen-bonding crosslinks by [C ₂ mim][OAc] between
435	chitosan chains was unlikely. Moreover, compared with that of AE2-F, the enhanced surface
436	wettability of AE2/M-F suggests the MMT nanosheets may have restricted binding between the IL
437	and chitosan polar groups.
438	Surprisingly, B/G2-F had low surface hydrophilicity similar to B/M-F. PEC brings the
439	biopolymer chains closer, reducing free volume and assisting the binding between glycerol and
440	biopolymer polar groups, reducing the amounts of free polar groups. Our visual observation indicates
441	that the B-series of samples contracted more than the A-series of samples during conditioning,
442	leading to a denser structure for the former. In agreement with this, a previous study [42] showed the
443	excellent oil and water barrier properties of polyelectrolyte-complexed chitosan/CMC materials,

which the authors ascribed to the more dense material structure formed by PEC. PEC-induced
densification of chitosan/fibroin materials has also been observed previously [43]. Compared with
BG2-F, BG2/M-F displayed increased surface hydrophilicity. In this regard, the competing
interactions between glycerol and MMT resulted in a greater amount of free biopolymer polar
groups.

Unlike AE2-F, BE2-F had high surface wettability. In BE2-F, the IL assisted chain mobility, recrystallisation, and the interactions between chitosan and CMC (resulting in high thermal stability and T_{α}). However, the interactions between chitosan and CMC also led to more free IL ions that were not interacting with the biopolymers in sample BE2-F. The MMT added could interact with the IL and, thus, reduced surface wettability resulted.

454 **4** Conclusions

455 This study shows the different ways in which MMT nanosheets influence the properties of biopolymers, dependent on plasticiser type. For un-plasticised A- and B-matrices, inclusion of MMT 456 457 largely increased molecular relaxation temperatures, enhanced tensile mechanical properties, and 458 increased surface hydrophobicity, all associated with strong hydrogen bonding and ionic interactions 459 between MMT and chitosan. In particular, MMT shields the biopolymer polar groups, leading to 460 reduced surface hydrophilicity. Meanwhile, inclusion of MMT reduced thermal stability and 461 crystallinity, by hindering biopolymer chain interactions (hydrogen-bonding and/or ionic). When 462 plasticisers such as glycerol or [C₂mim][OAc] are introduced to the biopolymer system, any effect of 463 MMT on material properties largely depends on whether the MMT alters the role of the plasticiser.

464	Unexpectedly, hydrophilic plasticisers may reduce the surface hydrophilicity of biopolymer
465	films by interacting with biopolymer polar groups. This includes AE2-F, whose high surface
466	hydrophobicity is derived from the strong hydrogen-bonding capability of [C ₂ mim][OAc], and BG2-
467	F, where PEC assisted the binding between biopolymer polar groups and glycerol. In these cases,
468	inclusion of MMT interrupts the interactions between the plasticiser and biopolymer(s), leading to
469	increased surface wettability, while its effect on the biopolymer inter-chain interactions was
470	marginal. Thus, we conclude the plasticisers and MMT nanosheets influenced the surface
471	hydrophilicity of biopolymer materials mainly by varying the availability of free polar groups of
472	biopolymers.
473	This study has enabled a better understanding of the structure-property relationships of
474	biopolymers and provided insights into the design of biopolymer materials with tailored
475	hydrophilicity/hydrophobicity for specific applications (e.g. packaging, coating, controlled release,
476	wound dressing, and tissue engineering).
477	
478	Conflicts of Interests
479	Declarations of interest: none
480	Acknowledgements
481	This project has received funding from the European Union's Horizon 2020 research and
482	innovation programme under the Marie Skłodowska-Curie grant agreement No. 798225. P. Chen

483 acknowledges the financial support from the China Scholarship Council (CSC) for her visiting

484	position and thanks IINM, WMG, University of Warwick, UK for hosting her research visit. F. Xie
485	also acknowledges support from the Guangxi Key Laboratory for Polysaccharide Materials and
486	Modification, Guangxi University for Nationalities, China (Grant No. GXPSMM18ZD-02).
487	Data availability
488	The raw/processed data required to reproduce these findings cannot be shared at this time due to
489	technical or time limitations.
490	References
491	[1] M.G.A. Vieira, M.A. da Silva, L.O. dos Santos, M.M. Beppu, Natural-based plasticizers and
492	biopolymer films: A review, Eur. Polym. J. 47(3) (2011) 254-263.
493	[2] F. Xie, B.M. Flanagan, M. Li, P. Sangwan, R.W. Truss, P.J. Halley, E.V. Strounina, A.K.
494	Whittaker, M.J. Gidley, K.M. Dean, J.L. Shamshina, R.D. Rogers, T. McNally, Characteristics of
495	starch-based films plasticised by glycerol and by the ionic liquid 1-ethyl-3-methylimidazolium
496	acetate: A comparative study, Carbohydr. Polym. 111 (2014) 841-848.
497	[3] F. Xie, B.M. Flanagan, M. Li, R.W. Truss, P.J. Halley, M.J. Gidley, T. McNally, J.L. Shamshina,
498	R.D. Rogers, Characteristics of starch-based films with different amylose contents plasticised by 1-
499	ethyl-3-methylimidazolium acetate, Carbohydr. Polym. 122 (2015) 160-168.
500	[4] B. Zhang, F. Xie, T. Zhang, L. Chen, X. Li, R.W. Truss, P.J. Halley, J.L. Shamshina, T.
501	McNally, R.D. Rogers, Different characteristic effects of ageing on starch-based films plasticised by
502	1-ethyl-3-methylimidazolium acetate and by glycerol, Carbohydr. Polym. 146 (2016) 67-79.
	31

- 503 [5] B. Zhang, F. Xie, J.L. Shamshina, R.D. Rogers, T. McNally, D.K. Wang, P.J. Halley, R.W.
- 504 Truss, S. Zhao, L. Chen, Facile Preparation of Starch-Based Electroconductive Films with Ionic
- 505 Liquid, ACS Sustainable Chem. Eng. 5(6) (2017) 5457-5467.
- 506 [6] A. Sankri, A. Arhaliass, I. Dez, A.C. Gaumont, Y. Grohens, D. Lourdin, I. Pillin, A. Rolland-
- 507 Sabaté, E. Leroy, Thermoplastic starch plasticized by an ionic liquid, Carbohydr. Polym. 82(2)
- 508 (2010) 256-263.
- 509 [7] E. Leroy, P. Jacquet, G. Coativy, A.l. Reguerre, D. Lourdin, Compatibilization of starch-zein
- 510 melt processed blends by an ionic liquid used as plasticizer, Carbohydr. Polym. 89(3) (2012) 955-
- 511 963.
- 512 [8] G. Colomines, P. Decaen, D. Lourdin, E. Leroy, Biofriendly ionic liquids for starch
- 513 plasticization: a screening approach, RSC Advances 6(93) (2016) 90331-90337.
- 514 [9] P. Decaen, A. Rolland-Sabaté, S. Guilois, V. Jury, N. Allanic, G. Colomines, D. Lourdin, E.
- 515 Leroy, Choline chloride vs choline ionic liquids for starch thermoplasticization, Carbohydr. Polym.
- 516 177(Supplement C) (2017) 424-432.
- 517 [10] F. Ren, J. Wang, F. Xie, K. Zan, S. Wang, S. Wang, Applications of ionic liquids in starch
- 518 chemistry: a review, Green Chem. 22(7) (2020) 2162-2183.
- 519 [11] M. Chen, T. Runge, L. Wang, R. Li, J. Feng, X.-L. Shu, Q.-S. Shi, Hydrogen bonding impact on
- 520 chitosan plasticization, Carbohydr. Polym. 200 (2018) 115-121.
- 521 [12] L.F. Boesel, Effect of plasticizers on the barrier and mechanical properties of biomimetic
- 522 composites of chitosan and clay, Carbohydr. Polym. 115 (2015) 356-363.

- 523 [13] B. Ates, S. Koytepe, A. Ulu, C. Gurses, V.K. Thakur, Chemistry, Structures, and Advanced
- Applications of Nanocomposites from Biorenewable Resources, Chem. Rev. 120(17) (2020) 93049362.
- 526 [14] F. Xie, E. Pollet, P.J. Halley, L. Avérous, Starch-based nano-biocomposites, Prog. Polym. Sci.
- 527 38(10-11) (2013) 1590-1628.
- 528 [15] P. Kampeerapappun, D. Aht-ong, D. Pentrakoon, K. Srikulkit, Preparation of cassava
- 529 starch/montmorillonite composite film, Carbohydr. Polym. 67(2) (2007) 155-163.
- 530 [16] K. Wilpiszewska, A.K. Antosik, T. Spychaj, Novel hydrophilic carboxymethyl
- 531 starch/montmorillonite nanocomposite films, Carbohydr. Polym. 128 (2015) 82-89.
- 532 [17] D.F. Xie, V.P. Martino, P. Sangwan, C. Way, G.A. Cash, E. Pollet, K.M. Dean, P.J. Halley, L.
- 533 Avérous, Elaboration and properties of plasticised chitosan-based exfoliated nano-biocomposites,
- 534 Polymer 54(14) (2013) 3654-3662.
- 535 [18] V. Epure, M. Griffon, E. Pollet, L. Avérous, Structure and properties of glycerol-plasticized
- chitosan obtained by mechanical kneading, Carbohydr. Polym. 83(2) (2011) 947-952.
- 537 [19] M. Matet, M.-C. Heuzey, E. Pollet, A. Ajji, L. Avérous, Innovative thermoplastic chitosan
- obtained by thermo-mechanical mixing with polyol plasticizers, Carbohydr. Polym. 95(1) (2013)
- 539 241-251.
- 540 [20] C. Gao, E. Pollet, L. Avérous, Properties of glycerol-plasticized alginate films obtained by
- thermo-mechanical mixing, Food Hydrocolloids 63 (2017) 414-420.
- 542 [21] C. Gao, E. Pollet, L. Avérous, Innovative plasticized alginate obtained by thermo-mechanical
- 543 mixing: Effect of different biobased polyols systems, Carbohydr. Polym. 157 (2017) 669-676.

- 544 [22] K. Murakawa, D.R. King, T. Sun, H. Guo, T. Kurokawa, J.P. Gong, Polyelectrolyte
- 545 complexation via viscoelastic phase separation results in tough and self-recovering porous hydrogels,
- 546 J. Mater. Chem. A 7(35) (2019) 5296-5305.
- 547 [23] P. Chen, F. Xie, F. Tang, T. McNally, Structure and properties of thermomechanically
- 548 processed silk peptide and nanoclay filled chitosan, Nanocomposites 6(3) (2020) 125-136.
- 549 [24] P. Chen, F. Xie, F. Tang, T. McNally, Thermomechanical-induced polyelectrolyte complexation
- 550 between chitosan and carboxymethyl cellulose enabling unexpected hydrolytic stability, Compos.
- 551 Sci. Technol. 189 (2020) 108031.
- 552 [25] P. Chen, F. Xie, F. Tang, T. McNally, Glycerol plasticisation of chitosan/carboxymethyl
- 553 cellulose composites: Role of interactions in determining structure and properties, Int. J. Biol.
- 554 Macromol. 163 (2020) 683-693.
- 555 [26] P. Chen, F. Xie, F. Tang, T. McNally, Ionic Liquid (1-Ethyl-3-methylimidazolium Acetate)
- 556 Plasticization of Chitosan-Based Bionanocomposites, ACS Omega 5(30) (2020) 19070-19081.
- 557 [27] P. Chen, F. Xie, F. Tang, T. McNally, Structure and properties of thermomechanically
- 558 processed chitosan/carboxymethyl cellulose/graphene oxide polyelectrolyte complexed
- bionanocomposites, Int. J. Biol. Macromol. 158 (2020) 420-429.
- 560 [28] F. Chivrac, E. Pollet, M. Schmutz, L. Avérous, New approach to elaborate exfoliated starch-
- based nanobiocomposites, Biomacromolecules 9(3) (2008) 896-900.
- 562 [29] F. Chivrac, E. Pollet, M. Schmutz, L. Avérous, Starch nano-biocomposites based on needle-like
- 563 sepiolite clays, Carbohydr. Polym. 80(1) (2010) 145-153.

564	[30] S.F. Wang, L. Shen, Y.J. Tong, L. Chen, I.Y. Phang, P.Q. Lim, T.X. Liu, Biopolymer
565	chitosan/montmorillonite nanocomposites: Preparation and characterization, Polym. Degrad. Stab.
566	90(1) (2005) 123-131.

- 567 [31] A. Ahmed, Y. Chaker, E.H. Belarbi, O. Abbas, J.N. Chotard, H.B. Abassi, A.N. Van Nhien, M.
- 568 El Hadri, S. Bresson, XRD and ATR/FTIR investigations of various montmorillonite clays modified
- 569 by monocationic and dicationic imidazolium ionic liquids, J. Mol. Struct. 1173 (2018) 653-664.
- 570 [32] A. Leszczyńska, J. Njuguna, K. Pielichowski, J.R. Banerjee, Polymer/montmorillonite
- 571 nanocomposites with improved thermal properties: Part II. Thermal stability of montmorillonite
- 572 nanocomposites based on different polymeric matrixes, Thermochim. Acta 454(1) (2007) 1-22.
- 573 [33] I. Quijada-Garrido, B. Laterza, J.M. Mazón-Arechederra, J.M. Barrales-Rienda, Characteristic
- 574 Features of Chitosan/Glycerol Blends Dynamics, Macromol. Chem. Phys. 207(19) (2006) 1742-
- 575 1751.
- 576 [34] I. Quijada-Garrido, V. Iglesias-González, J.M. Mazón-Arechederra, J.M. Barrales-Rienda, The
- 577 role played by the interactions of small molecules with chitosan and their transition temperatures.
- 578 Glass-forming liquids: 1,2,3-Propantriol (glycerol), Carbohydr. Polym. 68(1) (2007) 173-186.
- 579 [35] M.S. Kim, G. Khang, H.B. Lee, Gradient polymer surfaces for biomedical applications, Prog.
- 580 Polym. Sci. 33(1) (2008) 138-164.
- 581 [36] P.B. van Wachem, T. Beugeling, J. Feijen, A. Bantjes, J.P. Detmers, W.G. van Aken,
- 582 Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities,
- 583 Biomaterials 6(6) (1985) 403-408.

- 584 [37] T. Mohan, R. Kargl, K.E. Tradt, M.R. Kulterer, M. Braćić, S. Hribernik, K. Stana-Kleinschek,
- 585 V. Ribitsch, Antifouling coating of cellulose acetate thin films with polysaccharide multilayers,
- 586 Carbohydr. Polym. 116 (2015) 149-158.
- 587 [38] H. Yasuda, A.K. Sharma, T. Yasuda, Effect of orientation and mobility of polymer molecules at
- surfaces on contact angle and its hysteresis, Journal of Polymer Science: Polymer Physics Edition
 19(9) (1981) 1285-1291.
- 590 [39] N. Zhang, H. Liu, L. Yu, X. Liu, L. Zhang, L. Chen, R. Shanks, Developing gelatin–starch
- 591 blends for use as capsule materials, Carbohydr. Polym. 92(1) (2013) 455-461.
- 592 [40] V. Chiono, E. Pulieri, G. Vozzi, G. Ciardelli, A. Ahluwalia, P. Giusti, Genipin-crosslinked
- chitosan/gelatin blends for biomedical applications, J. Mater. Sci.: Mater. Med. 19(2) (2008) 889898.
- 595 [41] E. Pulieri, V. Chiono, G. Ciardelli, G. Vozzi, A. Ahluwalia, C. Domenici, F. Vozzi, P. Giusti,
- 596 Chitosan/gelatin blends for biomedical applications, Journal of Biomedical Materials Research Part
- 597 A 86A(2) (2008) 311-322.
- 598 [42] S. Basu, A. Plucinski, J.M. Catchmark, Sustainable barrier materials based on polysaccharide
- polyelectrolyte complexes, Green Chem. 19(17) (2017) 4080-4092.
- 600 [43] L. Meng, F. Xie, B. Zhang, D.K. Wang, L. Yu, Natural Biopolymer Alloys with Superior
- Mechanical Properties, ACS Sustainable Chem. Eng. 7(2) (2019) 2792-2802.
- 602

§ Supporting Information §

Influence of plasticizer type and nanoclay on the properties of chitosan-based materials

Pei Chen^{a,b}, Fengwei Xie^{b,*,†}, Fengzai Tang^c, Tony McNally^{b,**}

^a College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China

^b International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry

CV4 7AL, United Kingdom

^c WMG, University of Warwick, Coventry CV4 7AL, United Kingdom

* Corresponding author. Email addresses: d.xie.2@warwick.ac.uk, fwhsieh@gmail.com (F. Xie)

** Corresponding author. Email address: t.mcnally@warwick.ac.uk (T. McNally)

[†] This author leads the research.

1 Figures

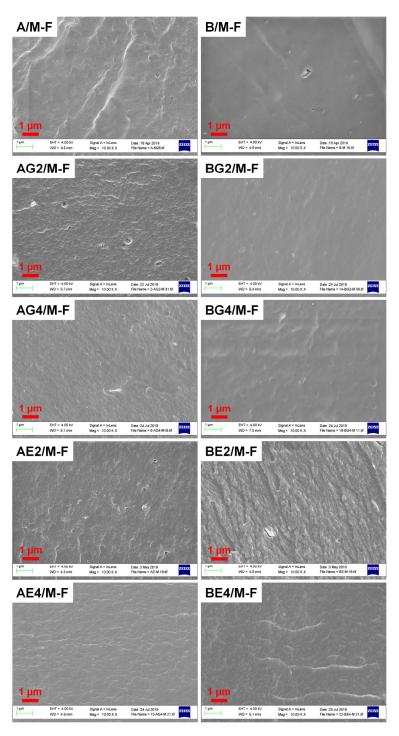


Figure S1. Scanning electron microscopy (SEM) images of cryofractured surfaces of the different bionanocomposite films.

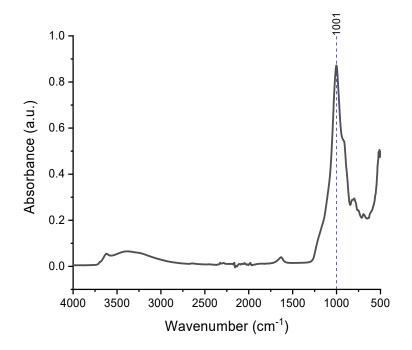


Figure S2. Fourier-transform infrared (FTIR) spectrum of montmorillonite (MMT).

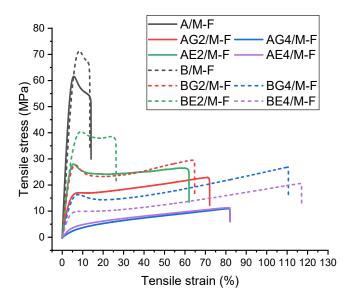


Figure S3. Representative stress–strain curves under tensile testing for the different bionanocomposite films.