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Abstract We initiate the analysis of the response of computer owners to various
offers of defence systems against a cyber-hacker (for instance, a botnet attack), as a
stochastic game of a large number of interacting agents. We introduce a simple mean-
field game that models their behavior. It takes into account both the random process
of the propagation of the infection (controlled by the botner herder) and the decision
making process of customers. Its stationary version turns out to be exactly solvable
(but not at all trivial) under an additional natural assumption that the execution time
of the decisions of the customers (say, switch on or out the defence system) is much
faster that the infection rates.
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1 Introduction

A botnet, or zombie network, is a network of computers infected with a malicious
program that allows cybercriminals to control the infected machine remotely without
the user’s knowledge. Botnets have become a source of income for entire groups of
cybercriminals since the cost of running botnets is cheap and the risk of getting caught
is relatively small due to the fact that other people’s assets are used to launch attacks.
The interactive process of the attackers and defenders can be modeled as a Game. The
use of game theory in modeling attacker-defender has been extensively adopted in
the computer security domain recently; see [5,24,26] and bibliography there for more
details. Two aspects are important. The first one is the contamination effect. The second
one is the large number of computers. So, in fact, one deals with a stochastic game
of a large number of interacting agents. This is amenable to Mean Field theory. To
investigate this approach represents the main objective of this paper. Our model takes
into account both the random process of the propagation of the infection (controlled
by the botnet herder) and the decision making process of customers. We develop a
stationary version which turns out to be exactly solvable (but not at all trivial) under an
additional natural assumption that the execution time of the decisions of the customers
(say, switch on or out the defense system) is much faster that the infection rates.

Similarmodels canbe applied to the analysis of defense against a biologicalweapon,
for instance by adding the active agent (principal interested in spreading the disease),
into the general mean-field epidemic model of [25] that extends the well established
SIS (susceptible-infectious-susceptible) and SIR (susceptible-infectious-recovered)
models.

Mean-field games present a quickly developing area of the game theory. It was
initiated by Lasry-Lions [23] andHuang–Malhame–Caines [15,16], see [1,4,6,13,14]
for recent surveys, as well as [2,3,7–9,22,27] and references therein. The papers
[11,12] initiated the study of finite-state space mean-field games that are the objects
of our analysis here.

The paper is organized as follows. In the next section we introduce our model,
formulate the basic mean-field game (MFG) consistency problem in its dynamic and
stationary versions leading to precise formulation of our main problem of character-
izing the stable solutions (equilibria) of the stationary problem. This problem is a
consistency problem between an HJB equation for a stochastic control of individual
players and a fixed point problem for an evolutionary dynamics. These two preliminary
problems are fully analyzed in Sects. 3 and 4 respectively. Section 5 is devoted to the
final synthesis of the stationaryMFG problem from the solutions to these two prelimi-
nary problems. In particular, the phase transitions and the bifurcation points changing
the number of solutions are explicitly found. In the last section further perspectives
are discussed.

2 The Model

Assume that any computer can be in four states: DI, DS,U I,US, where the first
letter, D or U , refers to the state of a defended (by some system, which effectiveness
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we are trying to analyze) or an unprotected computer, and the second letter, S and I , to
susceptible or infected state. The change between D andU is subject to the decisions
of computer owners (though the precise time of the execution of her intent is noisy)
and the changes between S and I are randomwith distributions depending on the level
of efforts vH of the Herder and the state D or U of the computer.

Let nDI , nDS, nU I , nUS denote the numbers of computers in the corresponding
states with N = nDS + nDI + nU I + nUS the total number of computers. By a
state of the system we shall mean either the 4-vector n = (nDI , nDS, nU I , nUS) or
its normalized version x = (xDI , xDS, xU I , xUS) = n/N . The fraction of defended
computers xDI + xDS represents the analogue of the control parameter vD from [5],
the level of defense of the system, though here it results as a compound effect of
individual decisions of all players.

The control parameter u of each player may have two values, 0 and 1, meaning that
the player is happy with the level of defense (D or I ) or she prefers to switch one to
another. When the updating decision 1 is made, the updating effectively occurs after
some exponential time with the parameter λ (measuring the speed of the response of
the defense system). The limit λ → ∞ corresponds to the immediate execution.

The recovery rates (the rates of change from I to S) are given constants qD
rec and

qUrec for defended and unprotected computers respectively, and the rates of infection
from the direct attacks are vHqD

in f and vHqUin f respectively with constants qD
in f and

qUin f . The rates of infection spreading from infected to susceptible computers are
βUU/N , βUD/N , βDU/N , βDD/N , with numbers βUU , βUD, βDU , βDD , where the
first (resp second) letter in the index refers to the state of the infected (resp. susceptible)
computer (the scaling 1/N is necessary to make the rates of unilateral changes and
binary interactions comparable in the N → ∞ limit).

Thus if all computers use the strategy uDS, uDI , uUS, uU I , u ∈ {0, 1} and the level
of attack is vH , the evolution of the frequencies x in the limit N → ∞ can be described
by the following system of ODE:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋDI = xDSqD
in f vH − xDI qD

rec + xDI xDSβDD + xU I xDSβUD + λ(xU I uU I − xDI uDI ),

ẋDS = −xDSqD
in f vH + xDI qD

rec − xDI xDSβDD − xU I xDSβUD + λ(xUSuUS − xDSuDS),

ẋU I = xUSqUin f vH − xU I qUrec + xDI xUSβDU + xU I xUSβUU − λ(xU I uU I − xDI uDI ),

ẋU S = −xUSqUin f vH + xU I qUrec − xDI xUSβDU − xU I xUSβUU − λ(xUSuUS − xDSuDS).

(1)

Remark 1 If all βUD, βUU , βDU , βUU are equal to some β, qD
in f = qUin f = qin f and

qD
rec = qD

rec = vD , where vD is interpreted as the defender group’s combined defense
effort, then summing up the first and the third equations in (1) leads to the equation

ẋ = qin f vH (1 − x) + βx(1 − x) − vDx, (2)

for the total fraction of infected computers x = xDI + xU I . This equation coincides
(up to some constants) with equation (2) from [5], which is the starting point of the
analysis of paper [5].
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It is instructive to see, how evolution (1) can be deduced rigorously as the limit of
the Markov processes specifying the random dynamics of N players. The generator of
this Markov evolution on the states n is (where the unchanged values in the arguments
of F on the r.h.s are omitted)

LN F(nDI , nDS, nU I , nUS) = nDSq
D
in f vH F(nDS − 1, nDI + 1)

+ nUSq
U
in f vH F(nUS − 1, nU I + 1)

+ nDI q
D
recF(nDI − 1, nDS + 1) + nU I q

U
recF(nU I − 1, nUS + 1)

+ nDI nDSβDDF(nDS − 1, nDI + 1)/N + nDI nUSβDU F(nUS − 1, nU I+1)/N

+ nU I nDSβUDF(nDS − 1, nDI + 1)/N + nU I nUSβUU F(nUS − 1, nU I+1)/N

+ λnDSuDSF(nDS − 1, nUS + 1) + λnUSuUSF(nUS − 1, nDS + 1)

+ λnDI uDI F(nDI − 1, nU I + 1) + λnU I uU I F(nU I − 1, nDI + 1),

or in terms of x as

LN F(xDI , xDS, xU I , xUS) = NxDSq
D
in f vH F(x − eDS/N + eDI /N )

+NxUSq
U
in f vH F((x − eUS/N + eU I /N )

+NxDI q
D
recF(x − eDI /N + eDS/N ) + NxU I q

U
recF(x − eU I /N + eUS/N )

+NxDI xDSβDDF(x − eDS/N + eDI /N )

+NxDI xUSβDU F(x − eUS/N + eU I /N )

+NxU I xDSβUDF(x − eDS/N + eDI /N )

+NxU I xUSβUU F(x − eUS/N + eU I /N )

+NλxDSuDSF(x − eDS/N + eUS/N ) + NλxUSuUSF(x − eUS/N + eDS/N )

+NλxDI uDI F(x − eDI /N + eU I /N ) + NλxU I uU I F(x − eU I /N + eDI /N ),

(3)

where {e j } is the standard basis in R4.
If F is a differentiable function, the generator LN turns to the generator

LF(xDI , xDS, xU I , xUS) = xDSq
D
in f vH

(
∂F

∂xDI
− ∂F

∂xDS

)

+ xUSq
U
in f vH

(
∂F

∂xU I
− ∂F

∂xUS

)

+ xDI q
D
rec

(
∂F

∂xDS
− ∂F

∂xDI

)

+ xU I q
U
rec

(
∂F

∂xUS
− ∂F

∂xU I

)

+ xDI xDSβDD

(
∂F

∂xDI
− ∂F

∂xDS

)

+ xDI xUSβDU

(
∂F

∂xU I
− ∂F

∂xUS

)

+ xU I xDSβUD

(
∂F

∂xDI
− ∂F

∂xDS

)

+ xU I xUSβUU

(
∂F

∂xU I
− ∂F

∂xUS

)
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+ λxDSuDS

(
∂F

∂xUS
− ∂F

∂xDS

)

+ λxUSuUS

(
∂F

∂xDS
− ∂F

∂xUS

)

+ λxDI uDI

(
∂F

∂xU I
− ∂F

∂xDI

)

+ λxU I uU I

(
∂F

∂xDI
− ∂F

∂xU I

)

(4)

in the limit N → ∞. This is a first order partial differential operator. Its characteristics
are given precisely by the ODE (1). A rigorous derivation showing the solutions to (1)
describe the limit of the Markov chain generated by (3) can be found e.g. in [18].

We shall now use the Markov model above to assess the actions of individual
players.

If x(t) and vH (t) are given, the dynamics of each individual player is the Markov
chain on 4 states with the generator

Lindg(DI ) = λuind(DI )(g(U I ) − g(DI )) + qD
rec(g(DS) − g(DI )),

Lindg(DS) = λuind(DS)(g(US) − g(DS)) + qD
in f vH (g(DI ) − g(DS))

+ xDIβDD(g(DI ) − g(DS)) + xU IβUD(g(DI ) − g(DS)),

Lindg(U I ) = λuind(U I )(g(DI ) − g(U I )) + qUrec(g(US) − g(U I )),

Lindg(US) = λuind(US)(g(DS) − g(US)) + qUin f vH (g(U I ) − g(US))

+ xDIβDU (g(U I ) − g(US)) + xU IβUU (g(U I ) − g(US)) (5)

depending on the individual control uind .
Assuming that an individual pays a fee kD per unit of time for the defense system

and kI per unit time for losses resulting from being infected, her cost during a period
of time T , that she tries to minimize, is

∫ T

0
(kD1D + kI1I ) ds, (6)

where 1D (resp. 1I ) is the indicator function of the states DI, DS (resp. of the states
DI , U I ). Assuming that the Herder has to pay kHvH per unit of time using efforts
vH and receive the income f (x) depending on the distribution x of the states of the
computers, her payoff, that she tries to maximize, is

∫ T

0
( fH (x) − kHvH ) ds. (7)

Therefore, starting with some control

ucom = (ucomt (DI ), ucomt (DS), ucomt (U I ), ucomt (US))

theHerder can find his optimal strategy vH (t) solving the deterministic optimal control
problem with dynamics (1) and payoff (7) finding both optimal vH and the trajectory
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x(t). Once x(t) and vH (t) are known, each individual should solve theMarkov control
problem (5) with costs (6) thus finding the individual optimal strategy

uindt = (uindt (DI ), uindt (DS), uindt (U I ), uindt (US)).

Notice that though it looks like a major-minor mean filed game, we do not go so far
in this paper, but consider vH to be frozen throughout the analysis, so that the major
player is not actually a strategic player: he/she just supplies an additional external
parameter.

The basicMFG consistency equation can now be explicitly written as

uindt = ucomt .

Instead of analyzing this rather complicated dynamic problem, we shall look for a
simpler problem of consistent stationary strategies.

There are two standard stationary problems naturally linked with a dynamic one,
one being the search for the average payoff

g = lim
T→∞

1

T

∫ T

0
(kD1D + kI1I ) dt

for long period game, and another the search for discounted optimal payoff. The first
is governed by the solutions of HJB of the form (T − t)μ + g, linear in t (then μ

describing the optimal average payoff), so that g satisfies the stationary HJB equation:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λminu u(g(U I ) − g(DI )) + qD
rec(g(DS) − g(DI )) + kI + kD = μ,

λminu u(g(US) − g(DS)) + qD
in f vH (g(DI ) − g(DS))

+xDIβDD(g(DI ) − g(DS)) + xU IβUD(g(DI ) − g(DS)) + kD = μ,

λminu u(g(DI ) − g(U I )) + qUrec(g(US) − g(U I )) + kI = μ,

λminu u(g(DS) − g(US)) + qUin f vH (g(U I ) − g(US))

+xDIβDU (g(U I ) − g(US)) + xU IβUU (g(U I ) − g(US)) = μ

(8)
where min is over two values {0, 1}. We shall denote u = (uDI , uU I , uDS, uUS) the
argmax in this solution.

The discounted optimal payoff (with the discounting coefficient δ) satisfies the
stationary HJB

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λminu u(g(U I ) − g(DI ) + qD
rec(g(DS) − g(DI )) + kI + kD = δg(DI ),

λminu u(g(US) − g(DS)) + qD
in f vH (g(DI ) − g(DS))

+xDIβDD(g(DI ) − g(DS))+xU IβUD(g(DI ) − g(DS))+ kD =δg(DS),

λminu u(g(DI ) − g(U I )) + qUrec(g(US) − g(U I )) + kI = δg(U I ),
λminu u(g(DS) − g(US)) + qUin f vH (g(U I ) − g(US))

+xDIβDU (g(U I ) − g(US)) + xU IβUU (g(U I ) − g(US)) = δg(US)

(9)
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The analysis of these two settings is mostly analogous. We shall concentrate on the
first one. Introducing the coefficients

α = qD
in f vH + xDIβDD + xU IβUD,

β = qUin f vH + xDIβDU + xU IβUU ,
(10)

the stationary HJB Eq. (8) rewrites as

⎧
⎪⎪⎨

⎪⎪⎩

λmin(g(U I ) − g(DI ), 0) + qD
rec(g(DS) − g(DI )) + kI + kD = μ,

λmin(g(US) − g(DS), 0) + α(g(DI ) − g(DS)) + kD = μ,

λmin(g(DI ) − g(U I ), 0) + qUrec(g(US) − g(U I )) + kI = μ,

λmin(g(DS) − g(US), 0) + β(g(U I ) − g(US)) = μ,

(11)

where the choice of the first term as the infimum in these equations corresponds to the
choice of control u = 1.

The stationary MFG consistency problem is in finding x = (xDI , xDS, xU I , xUS)

and u = (uDI , uDS, uU I , uUS), where x is the stationary point of evolution (1), that
is ⎧

⎪⎪⎨

⎪⎪⎩

xDSα − xDI qD
rec + λ(xU I uU I − xDI uDI ) = 0

−xDSα + xDI qD
rec + λ(xUSuUS − xDSuDS) = 0

xUSβ − xU I qUrec − λ(xU I uU I − xDI uDI ) = 0
−xUSβ + xU I qUrec − λ(xUSuUS − xDSuDS) = 0,

(12)

with u = (uDI , uDS, uU I , uUS) giving minimum in the solution to (8) or (11).
Thus x is a fixed point of the limiting dynamics of the distribution of large num-
ber of agents such that the corresponding stationary control is individually optimal
subject to this distribution. Yet in other words, x = (xDI , xDS, xU I , xUS) and
u = (uDI , uDS, uU I , uUS) solve (11), (12) simultaneously.

Fixed points can practicallymodel a stationary behavior only if they are stable. Thus
we are interested in stable solutions (x, u) to the stationaryMFG consistency problem
(12), (8), where a solution is stable if the corresponding stationary distribution x is a
stable equilibrium to (1) (with u fixed by this solution).

Apart from stability, the fixed points can be classified via their efficiency. Namely,
let us say that a solution to the stationary MFG is efficient (or globally optimal) if the
corresponding average cost μ is minimal among all other solutions.

Talking about strategies, let us reduce the discussion to non-degenerate situations,
where the minima in (11) are achieved on a single value of u only. In principle, there
are 16 possible pure stationary strategies (functions from the state space to {0, 1}).
But not all of them can be realized as solutions to (11). In fact if uDI = 1, then
g(U I ) < g(DI ) (can be equal in degenerate case) and thus uU I = 0. This argument
forbids all but four strategies as possible solutions to (11), namely

⎧
⎪⎪⎨

⎪⎪⎩

(i) g(U I ) ≤ g(DI ), g(US) ≤ g(DS) ⇐⇒ uU I = uUS = 0, uDI = uDS = 1,
(i i) g(U I ) ≥ g(DI ), g(US) ≥ g(DS) ⇐⇒ uDI = uDS = 0, uU I = uUS = 1,
(i i i) g(U I ) ≤ g(DI ), g(US) ≥ g(DS) ⇐⇒ uU I = uDS = 0, uDI = uUS = 1,
(iv) g(U I ) ≥ g(DI ), g(US) ≤ g(DS) ⇐⇒ uDI = uUS = 0, uU I = uDS = 1.

(13)
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The first two strategies, either always choose U or always choose D, are acyclic,
that is the corresponding Markov processes are acyclic in the sense that there does
not exist a cycle in a motion subject to these strategies. Other two strategies choose
between U and D differently if infected or not.

Of course, allowing degenerate strategies, more possibilities arise.
To complete themodel, let us observe that the natural assumptions on the parameters

of the model arising directly from their interpretation are as follows:
⎧
⎨

⎩

qD
rec ≥ qUrec, qD

in f < qUin f ,
βUD ≤ βUU , βDD ≤ βDU ,

kD ≤ kI .
(14)

We shall always assume (14) hold. Two additional natural simplifying assumptions
that we shall use sometimes are the following: the infection rate does not depend on
the level of defense of the computer transferring the infection, but only on the level
of defence of the susceptible computer, that is, instead of four coefficients β one has
only 2 of them

βU = βDU = βUU , βD = βUD = βDD, (15)

and the recovery rate do not depend on whether a computer is protected against the
infection or not:

qrec = qD
rec = qUrec. (16)

As we shall see, a convenient assumption, which is weaker than (16), turns out to
be

qD
rec − qUrec < (qUin f − qD

in f )vH . (17)

Finally, it is reasonable to assume that customers can switch rather quickly their regime
of defence (once they are willing to) meaning that we are effectively interested in the
asymptotic regime of large λ. As we shall show, in this regime the stationary MFG
problem above can be completely solved analytically. In this sense the present model
is more complicated than a related mean-field game model of corruption with three
basic states developed in [20], where a transparent analytic classification of stable
solutions is available already for arbitrary finite λ.

3 Analysis of the Stationary HJB Equation

Let us start by solving HJB Eq. (11).
Consider strategy (i) of (13), so that being unprotected is always optimal. Then

(11) becomes

⎧
⎪⎪⎨

⎪⎪⎩

λ(g(U I ) − g(DI )) + qD
rec(g(DS) − g(DI )) + kI + kD = μ,

λ(g(US) − g(DS)) + α(g(DI ) − g(DS)) + kD = μ,

qUrec(g(US) − g(U I )) + kI = μ,

β(g(U I ) − g(US)) = μ.

(18)

As the solution g is defined up to an additive constant we can set g(US) = 0. Then
(18) becomes
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⎧
⎪⎪⎨

⎪⎪⎩

λ(g(U I ) − g(DI )) + qD
rec(g(DS) − g(DI )) + kI + kD = μ,

−λg(DS) + α(g(DI ) − g(DS)) + kD = μ,

−qUrecg(U I ) + kI = μ,

βg(U I ) = μ.

(19)

From the third and fourth equations we find

g(U I ) = kI
β + qUrec

, μ = βg(U I ) = βkI
β + qUrec

. (20)

Substituting these values in the first and second equations we obtain

⎧
⎨

⎩

g(DS) = kD−μ
λ

+ kI
α(β+λ+qUrec)

λ(β+qUrec)(α+λ+qD
rec)

,

g(DI ) = kD−μ
λ

+ kI
(α+λ)(β+λ+qUrec)

λ(β+qUrec)(α+λ+qD
rec)

,
(21)

and the conditions g(U I ) ≤ g(DI ), g(US) = 0 ≤ g(DS) become

kD(β + qUrec)(α + λ + qD
rec) ≥ kI [(β + λ)qD

rec − (α + λ)qUrec],
kD(β + qUrec)(α + λ + qD

rec) ≥ kI [β(λ + qD
rec) − α(λ + qUrec)] (22)

respectively.
Consider strategy (ii) of (13), so that being defended is optimal. Then (11) becomes

⎧
⎪⎪⎨

⎪⎪⎩

qD
rec(g(DS) − g(DI )) + kI + kD = μ,

α(g(DI ) − g(DS)) + kD = μ,

λ(g(DI ) − g(U I )) + qUrec(g(US) − g(U I )) + kI = μ,

λ(g(DS) − g(US)) + β(g(U I ) − g(US)) = μ.

(23)

Setting g(DS) = 0 yields

⎧
⎪⎪⎨

⎪⎪⎩

−qD
recg(DI )) + kI + kD = μ,

αg(DI ) + kD = μ,

λ(g(DI ) − g(U I )) + qUrec(g(US) − g(U I )) + kI = μ,

−λg(US)) + β(g(U I ) − g(US)) = μ.

(24)

From the first and second equations we find

g(DI ) = kI
α + qD

rec
, μ = kD + αg(DI ) = α(kD + kI ) + kDqD

rec

α + qD
rec

. (25)

Substituting these values in the third and fourth equations we obtain

⎧
⎪⎨

⎪⎩

g(US) = − kD
λ

+ kI
β(λ+qD

rec)−α(λ+qUrec)
λ(α+qD

rec)(β+λ+qUrec)
,

g(U I ) = − kD
λ

+ kI
(β+λ)(λ+qD

rec)−αqUrec
λ(α+qD

rec)(β+λ+qUrec)
.

(26)
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and the conditions g(U I ) ≥ g(DI ), g(US) ≥ g(DS) = 0 turn to

kD(α + qD
rec)(β + λ + qUrec) ≤ kI [(β + λ)qD

rec − (α + λ)qUrec],
kD(α + qD

rec)(β + λ + qUrec) ≤ kI [β(λ + qD
rec) − α(λ + qUrec)] (27)

respectively.
Consider strategy (iii) of (13). Then (11) becomes

⎧
⎪⎪⎨

⎪⎪⎩

λ(g(U I ) − g(DI )) + qD
rec(g(DS) − g(DI )) + kI + kD = μ,

α(g(DI ) − g(DS)) + kD = μ,

qUrec(g(US) − g(U I )) + kI = μ,

λ(g(DS) − g(US)) + β(g(U I ) − g(US)) = μ.

(28)

Setting g(DS) = 0 yields

μ = αg(DI ) + kD

from the second equation, then

λg(U I ) = g(DI )(α + λ + qD
rec) − kI

from the first equation and

g(US) = g(DI )

λqUrec

[
αλ + qUrec

(
α + λ + qD

rec

)]
+ λkD − (

λ + qUrec
)
kI

λqUrec

from the third one. Plugging these expressions in the fourth equation of (28) we find
(after many cancelations) g(DI ) and then the other values of g:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g(DI ) = (β+λ+qUrec)(kI−kD)

α(β+λ+qUrec)+qUrec(α+λ+qD
rec)

,

g(US) = 1
λ

kI [β(λ+qD
rec)−α(λ+qUrec)]−kD(β+qUrec)(α+λ+qD

rec)

α(β+λ+qUrec)+qUrec(α+λ+qD
rec)

,

g(U I ) = 1
λ

kI [(λ+qD
rec)(λ+β)−αqUrec]−kD(β+λ+qUrec)(α+λ+qD

rec)

α(β+λ+qUrec)+qUrec(α+λ+qD
rec)

(29)

Hence

μ = kIα
(
β + λ + qUrec

) + kDqUrec
(
α + λ + qD

rec

)

α
(
β + λ + qUrec

) + qUrec
(
α + λ + qD

rec

) .

The conditions g(U I ) ≤ g(DI ), g(US) ≥ g(DS) rewrite as

{
kD(α + qD

rec)(β + λ + qUrec) ≥ kI [(β + λ)qD
rec − (α + λ)qUrec],

kD(α + λ + qD
rec)(β + qUrec) ≤ kI [β(λ + qD

rec) − α(λ + qUrec)]. (30)
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Consider strategy (iv) of (13). Then (11) becomes

⎧
⎪⎪⎨

⎪⎪⎩

qD
rec(g(DS) − g(DI )) + kI + kD = μ,

λ(g(US) − g(DS)) + α(g(DI ) − g(DS)) + kD = μ,

λ(g(DI ) − g(U I )) + qUrec(g(US) − g(U I )) + kI = μ,

β(g(U I ) − g(US)) = μ.

(31)

Setting g(US) = 0 yields μ = βg(U I ) from the fourth equation, then

λg(DI ) = g(U I )(β + λ + qUrec) − kI

from the third equation and

λqD
recg(DS) = g(U I )

[
βλ + qD

rec

(
β + λ + qUrec

)]
− kDλ − kI

(
λ + qD

rec

)

from the first one. Plugging these expressions in the second equation of (31) we find
g(U I ) and then the other values of g:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g(U I ) = (kD+kI )(α+λ+qD
rec)

β(α+λ+qD
rec)+qD

rec(β+λ+qUrec)
,

g(DS) = 1
λ

kD(β+λ+qUrec)(α+qD
rec)+kI [α(λ+qUrec)−β(λ+qD

rec)]
β(α+λ+qD

rec)+qD
rec(β+λ+qUrec)

,

g(DI ) = 1
λ

kD(β+λ+qUrec)(α+λ+qD
rec)+kI [(α+λ)(λ+qUrec)−βqD

rec]
β(α+λ+qD

rec)+qD
rec(β+λ+qUrec)

.

(32)

Hence the conditions g(U I ) ≥ g(DI ), g(DS) ≥ g(US) = 0 rewrite as

{
kD(α + λ + qD

rec)(β + qUrec) ≤ kI [(β + λ)qD
rec − (α + λ)qUrec],

kD(α + qD
rec)(β + λ + qUrec) ≥ kI [β(λ + qD

rec) − α(λ + qUrec)]. (33)

We are now interested in finding out how many solutions equation (11) may have
for a given x . The first observation in this direction is that the interior of the domain
defined by (22) (that is, with a solution of case (i)) and the interior of the domain
defined by (30) (that is, with a solution of case (iii)) do not intersect, because the first
inequality in (22) contradicts the second inequality in (30) (apart from the boundary).
Similarly, the interior of the domain defined by (22) (that is with a solution of case (i))
and the interior of the domain defined by (33) (that is, with a solution of case (iv)) do
not intersect, and the interior of the domain defined by (27) (that is, with a solution of
case (ii)) does not intersect with the domains having solutions in cases (iii) or (iv).

Next we find that one can distinguish two natural domains of x classifying the
solutions to HJB Eq. (11):

D1 = {x : β + qUrec > α + qD
rec}, D2 = {x : β + qUrec < α + qD

rec}.

More explicitly,

D1 = {x : xDI (βDU − βDD) + xU I (βUU − βUD) > (qD
in f − qUin f )vH + qD

rec − qUrec}.
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By (14) it is seen that under a natural additional simplifying assumptions (16) or
even (17), all positive x belong to D1 (or its boundary), so that D2 is empty.

Under additional assumption (15) the condition x ∈ D1 gets a simpler form

x > x̄ =
(
qD
in f − qUin f

)
vH + qD

rec − qUrec

βU − βD
. (34)

To link with the conditions for cases (i)–(iv) one observes the following equivalent
forms of the main condition of being in D1:

β + qUrec > α + qD
rec ⇐⇒ (β + qUrec)(α + qD

rec + λ) > (α + qD
rec)(β + qUrec + λ)

⇐⇒ β(λ + qD
rec) − α(λ + qUrec) > (β + λ)qD

rec − (α + λ)qUrec. (35)

From here it is seen that if x belongs simultaneously to the interiors of the domains
specified by (22) and (27) (that is, with solutions in cases (i) and (ii) simultaneously),
then necessarily x ∈ D1 (that is, for x ∈ D2 the conditions specifying cases (i) and
(ii) are incompatible). On the other hand, if x belongs simultaneously to the interiors
of the domains specified by (30) and (33) (that is, with solutions in cases (iii) and
(iv) simultaneously), then necessarily x ∈ D2 (that is, for x ∈ D1 the conditions
specifying cases (iii) and (iv) are incompatible).

Denoting � = kD/ki , we can summarize the properties of HJB equation (11) as
follows (uniqueness is always understood up to the shifts in g).

Proposition 3.1 Suppose x ∈ D1.

(1) If

(β + λ) qD
rec − (α + λ) qUrec(

β + qUrec + λ
) (

α + qD
rec

) < � <
β

(
λ + qD

rec

) − α
(
λ + qUrec

)

(
β + qUrec

) (
α + qD

rec + λ
) , (36)

then there exists a unique solution to (11) belonging to case (iii) and there are no
other solutions to (11).

(2) If

β
(
λ + qD

rec

) − α
(
λ + qUrec

)

(
β + qUrec + λ

) (
α + qD

rec

) < � <
(β + λ) qD

rec − (α + λ) qUrec(
β + qUrec

) (
α + qD

rec + λ
) , (37)

then there exists a unique solution to (11) belonging to case (iv) and there are no
other solutions to (11).

(3) A solution belonging to case (i) exists if and only if

� ≥ β
(
λ + qD

rec

) − α
(
λ + qUrec

)

(
β + qUrec

) (
α + qD

rec + λ
) , (38)
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and is unique if this holds. A solution belonging to case (ii) exists if and only if

� ≤ (β + λ) qD
rec − (α + λ) qUrec(

β + qUrec + λ
) (

α + qD
rec

) , (39)

and is unique if this holds. Either of conditions (38) or (39) is incompatible with
either (36) or (37). In particular, equation (11) may have at most two solutions
(if both (38) and (39) hold).

(4) Under (16), one has always

β
(
λ + qD

rec

) − α
(
λ + qUrec

)

(
β + qUrec + λ

) (
α + qD

rec

) ≥ (β + λ) qD
rec − (α + λ) qUrec(

β + qUrec
) (

α + qD
rec + λ

) , (40)

and
(β + λ) qD

rec − (α + λ) qUrec(
β + qUrec + λ

) (
α + qD

rec

) ≤ β
(
λ + qD

rec

) − α
(
λ + qUrec

)

(
β + qUrec

) (
α + qD

rec + λ
) . (41)

Hence (37) becomes impossible and conditions (38) and (39) become incompat-
ible implying the uniqueness of the solution to (11) for any x ∈ D1. This unique
solution belongs to cases (ii), (iii) and (i) respectively for � satisfying (39), (36),
(38) (when equality holds in (38)or (39), two solutions fromdifferent cases become
coinciding).

Proof Statements (1)–(3) follow from the arguments given above. (iv) Under (16),
conditions (41) and (40) rewrite as

qrec(β − α)2 − (β − α)(β + λ + qrec)(α + qrec) ≤ 0

and

qrec(β − α)2 + (β − α)(β + qrec)(α + λ + qrec) ≥ 0,

which obviously hold. 	

Remark 2 (1) When (16) does not hold one can find situations when solutions from
cases (i) and (ii) exist simultaneously. To get simple examples one can assume � = 1.
(2) When two solutions exist simultaneously one can discriminate them by the values
of the average payoff μ. One sees from (20) and (25), that μ arising from cases (i) and
(ii) are different (apart from a single value of �). (3) The uniqueness result under (16)
is quite remarkable, as it does not seem to follow a priori from any intuitive arguments.

Again directly from the argument above one can conclude the following.

Proposition 3.2 Suppose x ∈ D2.

(1) If

� >
(β + λ) qD

rec − (α + λ) qUrec(
β + qUrec

) (
α + qD

rec + λ
) , (42)
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then there exists a unique solution to (11) belonging to case (i) and there are no
other solutions to (11).

(2) If

� <
β

(
λ + qD

rec

) − α
(
λ + qUrec

)

(
β + qUrec + λ

) (
α + qD

rec

) , (43)

then there exists a unique solution to (11) belonging to case (ii) and there are no
other solutions to (11).

(3) A solution belonging to case (iii) exists if and only if

(β + λ) qD
rec − (α + λ) qUrec(

β + qUrec + λ
) (

α + qD
rec

) ≤ � ≤ β
(
λ + qD

rec

) − α
(
λ + qUrec

)

(
β + qUrec

) (
α + qD

rec + λ
) , (44)

and is unique if this holds. A solution belonging to case (iv) exists if and only if

β
(
λ + qD

rec

) − α
(
λ + qUrec

)

(
β + qUrec + λ

) (
α + qD

rec

) ≤ � ≤ (β + λ) qD
rec − (α + λ) qUrec(

β + qUrec
) (

α + qD
rec + λ

) , (45)

and is unique if this holds. Either of conditions (44) or (45) is incompatible with
either (42) or (43). In particular, equation (11) may have at most two solutions
(if (44) and (45) hold simultaneously).

Essential simplifications that allow eventually for a full classification of the station-
ary MFG consistency problem occur in the limit of large λ. For a precise formulation
in case

δ = qD
rec − qUrec > 0 (46)

one needs further decomposition of the domains D1, D2. Namely, for j = 1, 2, let

Dj1 =
{

x ∈ Dj : δ

α + qD
rec

<
β − α

β + qUrec

}

.

Proposition 3.3 The following hold for large λ outside an interval of � of size of
order λ−1:

(1) Under (16) conditions (39), (36), (38) classifying the solutions to theHJB equation
rewrite as

� ≤ 0, 0 < � <
(β − α)

β + q
, � ≥ (β − α)

β + q
, (47)

respectively. In particular, solutions of case (ii) become impossible.
(2) Suppose x ∈ D1 and (46) holds. If x ∈ D11, there exists a unique solution to (11),

which belongs to cases (ii), (iii), (i) for

� <
δ

α + qD
rec

,
δ

α + qD
rec

< � <
β − α

β + qUrec
, � >

β − α

β + qUrec
, (48)
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respectively. If x ∈ D12, solutions from case (iii) do not exist and there exist two
solutions to (11) for

β − α

β + qUrec
< � <

δ

α + qD
rec

, (49)

belonging to cases (i) and (ii), and only one solution otherwise.
(3) Suppose x ∈ D2. If x ∈ D22, solutions from case (iii) do not exist and there is

always a unique solution to (11) belonging to case (ii), (iv) or (i), for

� <
β − α

α + qD
rec

,
β − α

α + qD
rec

< � <
δ

β + qUrec
, � >

δ

β + qUrec
, (50)

respectively. If x ∈ D21, then there are two solutions to (11) for

δ

α + qD
rec

< � <
β − α

β + qUrec
, (51)

which belong to cases (iii) and (iv), and one solution otherwise. This unique
solution belongs to case (ii) or (i) for

� <
β − α

α + qD
rec

, � >
δ

β + qUrec

respectively and to case (iv) otherwise.

Proof Statement (ii) follows from the observation that, for δ > 0 and large λ, condi-
tions (36)–(37) turn to

δ

α + qD
rec

< � <
β − α

β + qUrec
,

β − α

α + qD
rec

< � <
δ

β + qUrec
(52)

respectively, and conditions (38)–(39) turn to

� ≥ β − α

β + qUrec
, � ≤ δ

α + qD
rec

(53)

respectively. Other statements are similar. 	


4 Analysis of the Fixed Points

Next we are solving the fixed point system (12).
In case (i), that is with uU I = uUS = 0, uDI = uDS = 1, equation (12) takes the

form ⎧
⎪⎪⎨

⎪⎪⎩

xDSα − xDI qD
rec − λxDI = 0

−xDSα + xDI qD
rec − λxDS = 0

xUSβ − xU I qUrec + λxDI = 0
−xUSβ + xU I qUrec + λxDS = 0.

(54)
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Adding the first two equations we get xDI = xDS = 0, and the system reduces to the
single equation

xUSβ − xU I q
U
rec = 0.

Substituting the value of β yields

xUS(q
U
in f vH + xU IβUU ) − xU I q

U
rec = 0.

Denoting y = xU I it follows that xUS = 1 − y and thus

QU (y) = βUU y2 + y(qUrec − βUU + qUin f vH ) − qUin f vH = 0.

This equation has a unique solution on the interval (0, 1):

x∗ = x∗
U I = 1

2βUU

[
βUU − qUrec − qUin f vH

+
√

(
βUU + qUin f vH

)2 + (
qUrec

)2 − 2qUrec
(
βUU − qUin f vH

)
]

. (55)

The stability of the fixed point x = (0, 0, x∗, 1 − x∗) means its stability as a fixed
point of the dynamics

⎧
⎪⎪⎨

⎪⎪⎩

ẋDI = xDSα − xDI qD
rec − λxDI

ẋDS = −xDSα + xDI qD
rec − λxDS

ẋU I = xUSβ − xU I qUrec + λxDI

ẋU S = −xUSβ + xU I qUrec + λxDS .

(56)

We rewrite it by shifting the variables by the value of the stationary point, that is,
in terms of xDI , xDS, y = xU I − x∗, z = xUS − (1 − x∗). Since the sum of these
variables is one, we have effectively the system of three equations on the variables
xDI , xDS, y:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋDI = [qD
in f vH + xDIβDD + (x∗ + y)βUD]xDS − (λ + qD

rec)xDI

ẋDS = −[qD
in f vH + xDIβDD + (x∗ + y)βUD]xDS + qD

recxDI − λxDS

ẏ = (1 − x∗ − y − xDI − xDS)[qUin f vH + βDU xDI + βUU (y + x∗)]
−(y + x∗)qUrec + λxDS .

Its linear approximation around the fixed point (0, 0, 0) is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋDI = − (
λ + qD

rec

)
xDI +

(
qD
in f vH + x∗βUD

)
xDS

ẋDS = qD
recxDI −

(
qD
in f vH + x∗βUD + λ

)
xDS

ẏ = (1 − x∗) [βDU xDI + βUU y] − (y + xDI + xDS)
(
qUin f vH + x∗βUU

)

−qUrec y + λxDS,
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and the corresponding characteristic equation for the eigenvalues ξ is

[(1 − x∗)βUU −
(
qUin f vH + x∗βUU

)
− qUrec − ξ ]

×
[(

ξ + λ + qUin f vH +x∗βUU

) (
ξ + λ + qD

rec

)
− qD

rec

(
qUin f vH + x∗βUU

)]
= 0.

The free term cancels in the second multiplier and we get the eigenvalues

⎧
⎨

⎩

ξ1 = (1 − x∗)βUU − qUin f vH − x∗βUU − qUrec
ξ2 = −λ − (qD

rec + qUin f vH + x∗βUU )

ξ3 = −λ.

(57)

The second and the third eigenvalues being negative, the condition of stability is
reduced to the negativity of the first eigenvalue, that is, to the condition

2x∗ > 1 − qUrec + qUin f vH

βUU
. (58)

But it always holds for x∗ of form (55).
Thuswe proved the first part of the following statement and the second is analogous.

Proposition 4.1 (1) There exists a unique solution to system (12) with the strategy U
being individually optimal (that is, with the first acyclic stationary strategy uU I =
uUS = 0, uDI = uDS = 1) and it is stable. It equals x = (0, 0, x∗

U I , 1 − x∗
U I )

with x∗
U I given by (55).

(2) There exists a unique solution to system (12)with the strategy D being individually
optimal (that is, with the second acyclic stationary strategy) and it is stable. It
equals x = (x∗

DI , 1 − x∗
DI , 0, 0) with x∗

DI being the unique solution of equation

QD(y) = βDDy
2 + y

(
qD
rec − βDD + qD

in f vH

)
− qD

in f vH = 0 (59)

on the interval (0, 1), that is

x∗
DI = 1

2βDD

[
βDD − qD

rec − qD
in f vH

+
√

(
βDD + qD

in f vH

)2 + (
qD
rec

)2 − 2qD
rec

(
βDD − qD

in f vH

)
]

.

Let us consider case (iii): uU I = uDS = 0, uDI = uUS = 1. Then (12) takes the
form ⎧

⎪⎪⎨

⎪⎪⎩

xDSα − xDI qD
rec − λxDI = 0

−xDSα + xDI qD
rec + λxUS = 0

xUSβ − xU I qUrec + λxDI = 0
−xUSβ + xU I qUrec − λxUS = 0.

(60)
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By adding thefirst two equationsweget xDI = xUS with two independent equations
left: {

xDSα − (qD
rec + λ)xDI = 0

xDI (β + λ) − xU I qUrec = 0.
(61)

This rewrites as two equations on the two independent variables xDI , xU I as

⎧
⎨

⎩

(1 − xU I − 2xDI )
(
qD
in f vH + βDDxDI + βUDxU I

)
− (

qD
rec + λ

)
xDI = 0

xDI

(
qUin f vH + βDU xDI + βUU xU I + λ

)
− xU I qUrec = 0.

(62)
Solving the second equation with respect to xU I ,

xU I =
xDI

(
qUin f vH + xDIβDU + λ

)

qUrec − βUU xDI
, (63)

and substituting in the first one, leads to a fourth order equation on y = xDI . This
equation does not seem to be much revealing in general. Of course it can be fully
analyzed by numeric methods, but we shall turn now to the large λ asymptotics that
yields more manageable results.

For large λ we get directly from (63) that

xU I = xDIλ

qUrec − βUU xDI

(
1 + O

(
λ−1

))
.

But this implies that xDI is small of order O(λ−1), so that

xU I = xDIλ

qUrec

(
1 + O

(
λ−1

))
, xDI = xU I qUrec

λ

(
1 + O

(
λ−1

))
. (64)

Substituting this in the first equation of (62) yields

βUDx
2
U I + xU I

(
qUrec − βUD + qD

in f vH

)
− qD

in f vH = O
(
λ−1

)
, (65)

which is of the same type as equations (59) up to terms of order λ−1 (and coincides
with it under (15), (16)). Therefore, for large λ, there exists a unique solution to (65)
from the interval (0, 1):

x̄∗
U I = O(λ−1)

+ 1

2βUD

[
βUD − qUrec − qD

in f vH

+
√

(
βUD + qD

in f vH

)2 + (
qUrec

)2 − 2qUrec
(
βUD − qD

in f vH

)
]

. (66)
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The stability of the fixed point x = (x∗
DI , x

∗
DS = 1 − x̄∗

U I − 2x∗
DI , x̄

∗
U I , x

∗
US = x∗

DI )

means its stability as a fixed point of the dynamics

⎧
⎪⎪⎨

⎪⎪⎩

ẋDI = xDSα − xDI qD
rec − λxDI

ẋDS = −xDSα + xDI qD
rec + λxUS

ẋU I = xUSβ − xU I qUrec + λxDI

ẋU S = −xUSβ + xU I qUrec − λxUS .

(67)

In terms of independent variables

x̃DI = xDI − x∗
DI , x̃U S = xUS − x∗

US, y = x̃U I = xU I − x̄∗
U I

this rewrites as
⎧
⎨

⎩

d
dt x̃DI = (1 − y − x̄∗

U I − x̃DI − x̃U S)α − x̃DI qD
rec − λ(x̃DI + x∗

DI ) + O(λ−1)

ẏ = x̃U Sβ − (y + x̄∗
U I )q

U
rec + λ(x̃DI + x∗

DI ) + O(λ−1)
d
dt x̃U S = −x̃U Sβ + (y + x̄∗

U I )q
U
rec − λ(x̃U S + x∗

US) + O(λ−1).

(68)
with

α = qD
in f vH + x̃DIβDD + (y + x̄∗

U I )βUD + O(λ−1),

β = qUin f vH + x̃DIβDU + (y + x̄∗
U I )βUU + O(λ−1).

Linearized around the fixed point (0, 0, 0) system (68) takes the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d
dt x̃DI = −(y + x̃DI + x̃U S)(qD

in f vH + x̄∗
U IβUD)

+(1 − x̄∗
U I )(x̃DIβDD + x̃U IβUD) − x̃DI (qD

rec + λ)

ẏ = x̃U S(qUin f vH + x̄∗
U IβUU ) − x̃U I qUrec + λx̃DI

d
dt x̃U S = −x̃U S(qUin f vH + x̄∗

U IβUU ) + x̃U I qUrec − λx̃U S

up to terms of order O(λ−1). Thus the matrix of the linear approximation divided by
λ is

M(λ) =
⎛

⎝
O(λ−1) − 1 [−qD

recvH + βUD(1 − 2x̄∗
U I )]/λ + O(λ−2) O(λ−1)

O(λ−1) + 1 − qUrec/λ + O(λ−2) O(λ−1)

O(λ−1) O(λ−1) O(λ−1) − 1

⎞

⎠ .

The first order approximation of this matrix in λ−1 is

M0 =
⎛

⎝
−1 0 0
1 0 0
0 0 − 1

⎞

⎠ .

and has eigenvalue −1 of double multiplicity and a zero eigenvalue. Hence all eigen-
values of M(λ) are negative if and only if its determinant det(M(λ)) is negative. As
seen directly
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det(M(λ)) = [−qUrec − qD
recvH + βUD(1 − 2x̄∗

U I )]/λ + O(λ−2),

and is negative for large λ if and only if

βUD(2x̄∗
U I − 1) > qUrec + qD

recvH ,

which always holds by (66). Thus we proved the first part of the following statement
and the second part is analogous.

Proposition 4.2 (1) For large λ there exists a unique solution to system (12) in case
(iii), that is with uU I = uDS = 0, uDI = uUS = 1, and it is stable. It has the
form x = (0, 1− x̄∗

U I , x̄
∗
U I , 0) up to corrections of order λ−1, with x̄∗

U I being the
unique solution of equation (65) on (0, 1) given by (66).

(2) For large λ there exists a unique solution to system (12) in case (iv), that is
with uU I = uDS = 1, uDI = uUS = 0, and it is stable. It has the form x =
(x̄∗

DI , 0, 0, 1 − x̄∗
U I ) up to corrections of order λ−1, with x̄∗

DI being the unique
solution of equation

βDU x
2
DI + xDI (q

U
rec − βDU + qUin f vH ) − qUin f vH = O(λ−1), (69)

on (0, 1).

5 Solutions to the Stationary MFG Problem

Combining Propositions 4.1, 4.2 and 3.3 allows one to fully characterize the solutions
to our stationary MFG consistency problem for large λ.

The most straightforward general conclusion is the following.

Theorem 5.1 For large λ there may exist up to 4 solutions to the stationary MFG
problem, with only one in each of the cases (i) -(iv). All these solutions are stable.

Remark 3 Notice that already this statement is not at all obvious a priori, and may not
be true for finite λ, where solutions to case (iii) or (iv) are found from an equation of
fourth order.

As an example of more precise classification, let us present it under assumption
(17) that ensures that all solutions lie in the domain D1.

Let us introduce the function

�(z) =
(
qUin f − qD

in f

)
vH + z (βUU − βUD)

qUin f vH + zβUU + q
.

First let (16) hold. It is seen from Propositions 4.1 and 4.2 that for large λ, (and apart
from � from negligible intervals of size of order λ−1 that we shall ignore), a solution
of the stationary MFG problem exists in case (i) if

� > �∗ = �(x∗
U I ),
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and a solution of the stationary MFG problem exists in case (iii) if

� < �̄∗ = �(x̄∗
U I ),

where x∗
U I and x̄∗

U I are given by (55) and (66) respectively. Thus one can have up to
two (automatically stable) solutions to the stationary MFG problem. Let us make this
number precise.

Differentiating �(z) we find directly that it is increasing if

βUU

(
qD
in f vH + q

)
> βUD

(
qUin f vH + q

)
, (70)

and decreasing otherwise. Hence the relation �∗ > �̄∗ is equivalent to the same or the
opposite relation for x∗

U I and x̄∗
U I . Thus we are led to the following conclusion.

Theorem 5.2 Let (16) hold.

(1) If (70) holds and x∗
U I > x̄∗

U I , or the opposite to (70) holds and x∗
U I < x̄∗

U I , then
�∗ > �̄∗. Consequently, for � < �̄∗ there exists a unique solution to the stationary
MFG problem, which is stable and belongs to case (iii); for � ∈ (�̄∗, �∗) there
are no solutions to the stationary MFG problem; for � > �∗ there exists a unique
solution to the stationary MFG problem, which is stable and belongs to case (i).

(2) If (70) holds and x∗
U I < x̄∗

U I , or the opposite to (70) holds and x∗
U I > x̄∗

U I , then
�∗ < �̄∗. Consequently, for � < �∗ there exists a unique solution to the stationary
MFG problem, which is stable and belongs to case (iii); for � ∈ (�∗, �̄∗) there
exist two (stable) solutions to the stationaryMFGproblem; for � > �̄∗ there exists
a unique solution to the stationary MFG problem, which is stable and belongs to
case (i).

Thus if one considers the system for all parameters fixed except for � (essentially
specifying the price of the defence service), points �∗ and �̄∗ are the bifurcation points,
where the phase transitions occur.

To deal with case when (16) does not hold let us introduce the numbers

�1 = β − α

β + qUrec
(x∗

U I ), �2 = δ

α + qD
rec

(x∗
DI ), �3 = δ

α + qD
rec

(x̄∗
U I ),

�4 = β − α

β + qUrec
(x̄∗

U I ),

where x∗
U I , x

∗
DI , x̄

∗
U I in brackets mean that α, β defined in (10) are evaluated at the

corresponding solutions given by Propositions 4.1 and 4.2. Since x∗
U I , x

∗
DI , x̄

∗
U I are

expressed in terms of different parameters, any order relation between them are to be
expected in general. Of course, restrictions appear under additional assumptions, for
instance x∗

DI = x̄∗
U I under (15). From Proposition 3.3 we deduce the following.

Theorem 5.3 Let (17) and (46) hold.
Depending on the order relation between x∗

U I , x
∗
DI , x̄

∗
U I , one can have up to 3

solutions to the stationary MFG problem for large λ, the characterization in each
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case being fully explicit, since for � > �1, there exists a unique solution in case (i),
for � < �2, there exists a unique solution in case (ii), for �3 < � < �4, there exists a
unique solution in case (iii).

Thus in this case the points �1, �2, �3, �4 are the bifurcation points, where the phase
transitions occur.

The situation when (17) does not hold is analogous, though there appears an addi-
tional bifurcation relating to x crossing the border between D1 and D2, and the
possibility of having four solutions arises.

6 Discussion

Our model of four basic states is of course the simplest one that takes effective account
of both interaction (infection) and rational decision making. It suggests extensions in
various directions. For instance, it is practically important to allow for the choice
of various competing protection systems, leading to a model with 2d basic states:
i I and i S, where i ∈ {1, · · · , d} denotes the i th defense system available (which
can be alternatively interpreted as the levels of protection provided by a single or
different firms), while S and I denote again susceptible or infected state, with all
other parameters depending on i . On the other hand, in the spirit of papers [19], [18]
that concentrate on modeling myopic behavior (rather than rational optimization) of
players one can consider the set of computer owners consisting of two groups, rational
optimizers and those changing their strategies by copying their neighbors.

Themain theoretical question arising fromour results concerns the rigorous relation
between stationary and dynamicMFGsolutions,which in general is in front of research
in the mean-field game literature. We hope that working with our simple model with
fully solved stationary version can help to get new insights in this direction. In the
present context the question can be formulated as follows. Suppose that, if at some
moment of time N players are distributed according certain frequency vector x among
the four basic state, each player chooses the optimal strategy u arising from the solution
of the stationary problem for fixed x (fully described in Sect. 3), and the Markov
evolution continues according to the generator L . When two solutions are available,
players may be supposed to choose the one with the lowestμ, see Remark 2 (2) (notice
however that there exist cases when the N player game has several equilibria, but the
mean-field game selects those with greater cost, see [10]). The resulting changes in
x induce the corresponding changes of u specifying a well-defined Markov process
on the states of N agents. Intuitively, we would expect this evolution stay near our
stationary MFG solutions for large N and t . Can one prove something like that? A
partial answer to this question is provided in [21].

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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