
Article
MpFEW RHIZOIDS1 miRNA
-Mediated Lateral
Inhibition Controls Rhizoid Cell Patterning in
Marchantia polymorpha
Graphical Abstract
Highlights
d Lateral inhibition produces the pattern of rhizoid cells in

Marchantia polymorpha

d Modeling predicts a rhizoid cell pattern that would develop

without lateral inhibition

d Mpfrh1 mutants develop a rhizoid cell pattern as predicted

without lateral inhibition

d MpFRH1 (repressor) inhibits MpRSL1 (activator) in patterning

by lateral inhibition
Thamm et al., 2020, Current Biology 30, 1905–1915
May 18, 2020 ª 2020 The Authors. Published by Elsevier Inc.
https://doi.org/10.1016/j.cub.2020.03.032
Authors

Anna Thamm, Timothy E. Saunders,

Liam Dolan

Correspondence
liam.dolan@plants.ox.ac.uk

In Brief

Lateral inhibition patterns cells during the

development of multicellular organisms.

Thamm et al. show that lateral inhibition

patterns rhizoid cells in the Marchantia

polymorpha epidermis using a

combination of modeling and genetics.

MpFRH1 miRNA provides the repressor

activity in this new molecular mechanism

of lateral inhibition.

mailto:liam.dolan@plants.ox.ac.uk
https://doi.org/10.1016/j.cub.2020.03.032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2020.03.032&domain=pdf


Current Biology

Article
MpFEW RHIZOIDS1 miRNA-Mediated
Lateral Inhibition Controls Rhizoid Cell
Patterning in Marchantia polymorpha
Anna Thamm,1 Timothy E. Saunders,2 and Liam Dolan1,3,*
1Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
2Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411 Singapore, Singapore
3Lead Contact
*Correspondence: liam.dolan@plants.ox.ac.uk

https://doi.org/10.1016/j.cub.2020.03.032
SUMMARY

Lateral inhibition patterns differentiated cell types
among equivalent cells during development in bacte-
ria, metazoans, and plants. Tip-growing rhizoid cells
develop among flat epidermal cells in the epidermis
of the early-diverging land plantMarchantia polymor-
pha.We show that themajority of rhizoid cells develop
individually, but some develop in linear, one-dimen-
sional groups (chains) of between 2 and 7 rhizoid cells
inwild-typeplants. The distribution of rhizoid cells can
be accounted for within a simple cellular automata
model of lateral inhibition. The model predicted that
in the absence of lateral inhibition, two-dimensional
rhizoid cell groups (clusters) form. These can be
larger than those formed with lateral inhibition.
M. polymorpha rhizoid differentiation is positively
regulated by the ROOT HAIR DEFECTIVE SIX-LIKE1
(MpRSL1) basic-helix-loop-helix (bHLH) transcription
factor, which is directly repressed by the FEW RHI-
ZOIDS1 (MpFRH1) microRNA (miRNA). To test if
MpFRH1 miRNA acts during lateral inhibition, we
generated loss-of-function (lof) mutants without the
MpFRH1 miRNA. Two-dimensional clusters of rhi-
zoids develop in Mpfrh1lof mutants as predicted by
themodel forplants that lack lateral inhibition.Further-
more, two-dimensional clusters of up to 9 rhizoid cells
developed in the Mpfrh1lof mutants compared to a
maximum number of 7 observed in wild-type groups.
The higher steady-state levels of MpRSL1 mRNA in
Mpfrh1lof mutants indicate that MpFRH1-mediated
lateral inhibition involves the repression of MpRSL1
activity. Together, themodeling and genetic data indi-
cate that MpFRH1 miRNA mediates lateral inhibition
by repressing MpRSL1 during pattern formation in
theM. polymorpha epidermis.

INTRODUCTION

Spatial arrays of diverse cell types develop from populations of

equivalent cells during the development of multicellular
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organisms. The patterning of these different cell types involves

lateral inhibition, a process in which an individual cell instructs

adjacent cells to acquire an identity that is different from the

fate of the instructing cell. In metazoans, lateral inhibition

involves cell-to-cell signaling carried out by the Delta-Notch

ligand-receptor pair (reviewed in [1–3]). Neither Delta nor Notch

proteins are present in plants, and other mechanisms of lateral

inhibition operate in the angiosperm Arabidopsis thaliana [4–6].

Computational modeling suggests that the production of

EPIDERMAL PATTERNING FACTOR2 (EPF2) peptide by meris-

temoids inhibits meristemoid development in adjacent cells dur-

ing guard cell development in leaves [7–9]. The cell-to-cell move-

ment ofMyb transcriptional repressor proteins pattern trichomes

(leaf hair cells) among pavement epidermal cells in theA. thaliana

shoot epidermis [10]. Therefore, lateral inhibition mechanisms

exist in plants where proteins move from one cell to another to

modulate the development of the receiving cell.

Rhizoid cells develop from fields of equivalent cells in the

epidermis of the liverwort Marchantia polymorpha, an early-

diverging land plant. Flat epidermal cells occupy the space be-

tween rhizoid cells. The ROOT HAIR DEFECTIVE SIX-LIKE1

(RSL1) basic-helix-loop-helix transcription factor is necessary

and sufficient for rhizoid cell development [11–13]. Rhizoid cells

do not develop in plants harboring loss-of-function mutations in

MpRSL1 (Mprsl1lof), and flat epidermal cells develop in their

place [13]. Conversely, plants harboring MpRSL1 gain-of-func-

tion mutations develop supernumerary, ectopic rhizoids in place

of flat epidermal cells [13]. MpRSL1 promotes the expression of

MpFEW RHIZOIDS1 (MpFRH1), which encodes a 21-nt micro-

RNA (miRNA) [14]. Evidence that MpFRH1 represses rhizoid

cell development by negatively regulating MpRSL1 activity

includes the observations that (1) MpFRH1 miRNA directly tar-

gets RSL1 mRNA for cleavage and (2) the rhizoidless phenotype

of MpFRH1 overexpression is suppressed by co-expressing an

MpFRH1 miRNA-resistant version of MpRSL1 [14]. Therefore,

MpRSL1 and MpFRH1 act together in a network with negative

feedback in which the transcription factor is an activator of

rhizoid cell development and the miRNA is a repressor of rhizoid

cell development.

SinceMpRSL1 andMpFRH1 constitute an activator-repressor

network with negative feedback, we hypothesized that the

MpFRH1 miRNA could be involved in lateral inhibition during

the patterning of rhizoid cells in the epidermis M. polymorpha

[14]. To test this hypothesis, we first utilized a simple cellular
May 18, 2020 ª 2020 The Authors. Published by Elsevier Inc. 1905
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Figure 1. Organization of Rhizoid Cell Groups in the Wild-Type M. polymorpha Gemma Epidermis

Representative examples of individual rhizoid cells and rhizoid cell groups of between 2 and 7 rhizoid cells on mature gemmae of Tak-1 and Tak-2 wild-type

accessions. Rhizoid groups are generally arranged in one-dimensional, linear arrays that we call chains. Rhizoid cells in chains develop 2 rhizoid cell neighbors,

except when they are located at the end of the chain, where they develop only 1 rhizoid cell neighbor. Exceptionally, two-dimensional clusters were observed, as

indicated in the 7-cell rhizoid group shown here, where a single cell developed 3 rhizoid cell neighbors (yellow asterisk). Images of 1-cell, 3-cell, and 4-cell rhizoid

cell groups are from the same gemma. Chlorophyll autofluorescence is red, and cell walls of rhizoid cells are stained with propidium iodide (green). Tabular

presentation of the frequencies of each rhizoid cell group size class. The values represent the frequency of rhizoid cell groups of each class as a percentage of the

total number of rhizoid cell groups. The mean rhizoid cell neighbor number (RCN) for each size class is presented ± SD (n [Tak-1] = 22 gemmae, n [Tak-2] = 23).

Scale bar, 20 mm; arrowheads indicate the position of oil body cells, which are distinguished from rhizoid cells because of their smaller size and shape. The

asterisks in the 7-cell rhizoid group indicate rhizoid cells. An image of the gemma on which the 7-rhizoid cell cluster developed is shown in Figure S1.
automata model to simulate the effects of lateral inhibition on the

pattern of rhizoid cell spacing based on wild-type conditions

(full model details are in the Results and STAR Methods). This

revealed that the spatial distribution of rhizoid cells in wild type

was consistent with lateral inhibition being involved in patterning.

We then ran the model in the absence of lateral inhibition to

predict the rhizoid cell distribution that would be observed in a

plant in which lateral inhibition did not operate. To test if MpFRH1

miRNAwas involved in lateral inhibition, we characterized rhizoid

cell distribution in Mpfrh1lof mutants. The distribution of rhizoid

cells in Mpfrh1lof mutants was consistent with the predicted dis-

tribution from the model without lateral inhibition. These data

indicate that MpFRH1 miRNA acts in the lateral inhibition of

rhizoid cell development during epidermal development in

M. polymorpha.

RESULTS

One-Dimensional Groups (Chains) of Rhizoid Cells
Developed in Wild-Type M. polymorpha Gemma
Epidermis
The M. polymorpha gemma epidermis comprises flat epidermal

cells that surround rhizoid cells. Rhizoid cells produce a tip-

growing projection that penetrates the growth substrate and

carries out rooting function. To determine if lateral inhibition is

involved in the patterning of rhizoid cells among flat epidermal

cells, we characterized the spatial arrangement of rhizoid cells

in the epidermis of wild-type gemmae (Tak-1 and Tak-2). Rhizoid

cells developed individually and in groups in wild type (Figure 1;

Table 1). The majority (�70%) developed individually, sur-

rounded by flat epidermal cells. In the Tak-2 wild-type back-

ground, e30% of rhizoids developed as groups of between 2

and 6 rhizoid cells (Table 1); 18.8% 7.3%, 2.6%, 1.0%, and

1.0% of rhizoids formed in groups of 2, 3, 4, 5, and 6 rhizoid cells,
1906 Current Biology 30, 1905–1915, May 18, 2020
respectively. Most rhizoid cell groups were arranged in a one-

dimensional linear array, like beads on a string, that we designate

a chain. Rhizoid cells at either end contacted 1 neighboring

rhizoid cell, while internal rhizoid cells contacted 2 rhizoid cells.

Consequently, in a one-dimensional group of 3 rhizoid cells,

there were 2 rhizoid cells on either end of the chain with a single

rhizoid cell between each of these end initials. Therefore, such

a chain of 3 develops an average of 1.33 rhizoid cell neighbors

((1 + 2 + 1)/3 = 1.33). The rhizoid cells in 24 of the 25 3-rhizoid

cell groups were arranged as one-dimensional chains. Rhizoids

were not arranged in a string in one 3-rhizoid cell group. Each of

the adjacent rhizoid cells in this single 3-rhizoid cell group had an

average of 2 rhizoid cell neighbors, making the group two-

dimensional. We designate such a 2-dimensional arrangement

of rhizoid cells a cluster. The average number of rhizoid cell

neighbors in 3-rhizoid cell groups was 1.36 (SD = 0.13; n = 25).

The mean number of rhizoid cell neighbors increases as group

size increases in wild type. For example, in a one-dimensional

group of 4 rhizoid cells, there was an average of 1.5 rhizoid cell

neighbors ((1 + 2 + 2 + 1)/4 = 1.5). Rhizoid cells in 12 of 13

4-rhizoid cell groups were arranged as one-dimensional chains,

while there was a single case of a two-dimensional cluster.

Therefore, the mean rhizoid cell neighbor number in 4-cell

groups is 1.57 (SD = 0.27; n = 13). We observed four 5-rhizoid

cell groups and three 6-cell rhizoid groups, and rhizoid cells

were arranged as one-dimensional chains in each group.

Therefore, the average rhizoid cell neighbor number was 1.60

in 5-cell groups (SD = 0; n = 4) and 1.66 in 6-cell groups (SD =

0; n = 3) (Figure 1). There was a single, two-dimensional, 7-cell

cluster in the Tak-1 background (Figures 1 and S1).

For one-dimensional rhizoid arrays with n cells, the average

rhizoid cell neighbor number is 2(n � 1)/n. The SD is close to

zero, indicating that this pattern is consistent for each rhizoid

cell group size. In total, 93.5% of wild-type rhizoid cell groups



Table 1. Frequency of Individual Rhizoid Cells and Rhizoid Groups in Wild Type and Mpfrh1lof and MpRSL1GOF Mutants

Genotype 1 2 3 4 5 6 7 8 9 R10 Cluster (n) Gemmae (n)

Tak-1 72.5% 18.4% 4.3% 3.1% 0.8% 0.4% 0.4% 255 22

Tak-2 69.1% 18.8% 7.3% 2.6% 1.0% 1.0% 191 23

Mpfrh1lof-7 47.1% 23.2% 12.3% 9.0% 4.5% 1.3% 0.6% 1.9% 155 42

Mpfrh1lof-11 61.4% 23.8% 7.4% 4.8% 1.6% 0.5% 0.5% 189 27

Mpfrh1lof-27 63.2% 23.0% 9.8% 0.6% 1.1% 1.1% 0.6% 0.6% 174 22

Mpfrh1lof-34 48.0% 40.0% 8.0% 4.0% 75 9

Mpfrh1lof-36 69.4% 19.4% 6.9% 1.4% 2.8% 72 8

MpRSL1GOF-1 58.6% 14.1% 13.1% 5.1% 3.0% 1.0% 2.0% 3.0% 99 10
are arranged in one-dimensional chains, and only 6.5% are

arranged in two-dimensional clusters (n = 46). The typical

maximum number of rhizoid cell neighbors is 2, because groups

comprise one-dimensional linear arrays of rhizoid cells. This is

consistent with the hypothesis that lateral inhibition operates in

the patterning of rhizoid cells in the epidermis.

Modeling Predicts that Lateral Inhibition Is Involved in
the Distribution of Rhizoid Cells in Wild-Type Gemma
Epidermis
A simple cellular automata model for the development of rhizoid

cells among flat epidermal cells in the gemma epidermis was

developed to test if lateral inhibition might be involved in

epidermal pattern formation [15, 16]. Suchmodeling approaches

are a powerful method for dissecting biological processes, such

as tumor growth and cell sorting [17, 18]. We initiated a hexago-

nal lattice of cells with seeds for individual and separated rhizoid

cells at a density similar to that measured experimentally

(complete details are presented in STAR Methods), meaning

that at the start of each simulation run, the largest group of

rhizoid cells had a size of 1. The lattice had hard-wall boundary

conditions. Such boundary conditions restrict the size of rhizoid

clusters near the system edge but more accurately reflect the

spatial constraints on the developing tissue. In the following

runs of the simulation, additional rhizoid cells developed by

satisfying two rules. According to rule 1, for each group of rhizoid

cells, at each simulation step, a probability P determined

whether a new neighboring cell becomes part of the rhizoid

group or (1�P) whether the group stops adding new rhizoid cells

(and stays fixed at that rhizoid cell number for remainder of

simulation, i.e., inactive). A unique generated uniform random

number between 0 and 1was used to test this rule for each active

group of rhizoid cells during each iteration of the simulation. To

incorporate new rhizoid cells into a pre-existing group in wild-

type conditions, we then applied rule 2, where the new rhizoid

cell had to be a neighbor to precisely 1 existing rhizoid cell (no

fewer and no more) (Figure 2A, top). The new rhizoid cell was

selected randomly from the neighboring cells that obeyed the

lateral inhibition rule. The simulation ceased when all rhizoid

groups became inactive. No other rules were incorporated into

the model. We ran 1,000 simulations for each condition, and

the results shown are for the average neighbor number across

all simulations (Figure 2). See Figure S2 for examples of the

simulation output during different stages of the simulation.

The only parameter, P = 0.33, was fixed by matching the

simulation to the observed distribution of wild-type rhizoid cell
group sizes (Figure 2B). The simulated rhizoid cell groups were

always one-dimensional chains (i.e., linear) when lateral inhibi-

tion was present (Figure 2C). The model replicated the observed

wild-type distributions of rhizoid cell neighbor frequency (Fig-

ure 2D), with near zero SD because cell groups were almost

always one-dimensional chains (Figure 2C). Thus, simple lateral

inhibition is consistent with our observed patterns of rhizoid cell

development and also with the invariant neighbor number.

We next considered the scenario whereby rule 2 was relaxed

so that a new rhizoid cell can develop next to one or more exist-

ing rhizoid cells; i.e., we remove the lateral inhibition requirement

(Figure 2A, bottom). Once a rhizoid group is selected for expan-

sion, any neighboring cell is randomly chosen to add to the

group. The resulting pattern did not resemble the pattern of

rhizoid cells in wild-type plants (Figure 2E), because the fre-

quency of two-dimensional clusters markedly increased.

Because of the increased frequency of these two-dimensional

clusters, the mean and variability (SD) in the number of rhizoid

cell neighbors was greater than when the model operated with

lateral inhibition (Figure 2F).

Using our given P, groups of 7 or more cells are extremely rare

in the wild-type simulations (0.1% of rhizoid cell groups) where

lateral inhibition is active, which is consistent with what is

observed in wild-type plants (where groups of more than 7 cells

were not observed). However, in our simulations with the relaxed

rule 2, groups can merge; in the absence of lateral inhibition, two

groups of rhizoid cells are not inhibited from adding a linking

rhizoid cell between them. In this case, larger two-dimensional

clusters form, with a maximum cluster size of 12 cells observed

in the model (Figure S2). Such mergers increase the mean and

SD of the rhizoid cell neighbor number. Furthermore, these

clusters are rounder than the elongated, one-dimensional chains

that develop in wild type (Figure 2E).

These modeling results indicate that if lateral inhibition con-

trols the spacing of rhizoid cells in M. polymorpha, then loss of

this mechanism will cause development of two-dimensional

rhizoid cell clusters, including occasional very large clusters.

We emphasize that these quantitative model predictions require

no extra parameters; they are simply dependent on the pres-

ence/absence of lateral inhibition (rule 2). Of course, other

more complex (and realistic) models can be considered, for

example by including dynamics more explicitly. However, our

simple Boolean-like lateral inhibition model is consistent with

the hypothesis that lateral inhibition functions during the

patterning of rhizoid cells; a rhizoid cell can develop next to flat

epidermal cells or a single rhizoid but never more than one
Current Biology 30, 1905–1915, May 18, 2020 1907



Figure 2. Cellular Automata Modeling Indi-

cates that Lateral Inhibition Can Account

for the Patterning of Rhizoid Cells in the

M. polymorpha Gemma

(A) Schematic of lateral inhibition model of rhizoid

development. Top: lateral inhibition restricts the

addition of a new cell to a rhizoid group to those

only neighboring a single rhizoid cell. Bottom: in

the absence of lateral inhibition, any cell can

differentiate as a rhizoid cell. The gray cell repre-

sents a new possible rhizoid cell that has a single

rhizoid neighbor yet is not adjacent to the end of

the rhizoid cluster. We exclude such a possibility in

the simulations for wild type, but including this

does not alter the statistical results.

(B) Validation of lateral inhibition model by

comparing the frequency distribution of rhizoid

cell group size produced by the model (green, n =

1,000 simulations) and those observed in wild-

type gemma epidermis (magenta, ‘‘experiment,’’

n = 45 gemmae).

(C) Output of the lateral inhibition model showing

rhizoid cell distribution (red) and flat epidermal

cells (white) in the gemma epidermis. In the pres-

ence of lateral inhibition, each rhizoid group forms

a one-dimensional chain. A group of 6 rhizoid cells

is highlighted.

(D) Validation of lateral inhibition model by

comparing the relationship between mean rhizoid

cell neighbor number and rhizoid cluster size as

predicted by the model (green) with data from

wild-type gemmae (magenta).

(E) Output of the model without lateral inhibition,

showing the distribution of rhizoid cells (red) and flat

epidermal cells (white) in the gemma epidermis. In

the absence of lateral inhibition, rhizoid groups can

develop into two-dimensional clusters. Groups of 8

and 9 rhizoid cells are highlighted.

(F) Predicted relationship betweenmean rhizoid cell

neighbor number and rhizoid group size in the

presenceand absence of lateral inhibition. The solid

black line represents the output from themodel that

includes lateral inhibition. The diamonds (error bars

represent ± 1 SD, n = 1,000 simulations) represent

the output of the model without lateral inhibition,

with the dashed line representing a best fit to 1 +

1:27½1 � expð� ððN � 2Þ =2:3ÞÞ�. The mean rhizoid

cell neighbor number and the variability in neighbor

number is greater in the absenceof lateral inhibition.

Selected individual steps in the simulation are

shown in Figure S2.
rhizoid cell. The model also provides quantitative predictions for

the variability in cluster size and connectivity in mutants with

defective lateral inhibition.

Two-Dimensional Groups of Rhizoid Cells (Clusters)
Developed in Mpfrh1 Mutants
If MpFRH1 miRNA mediates lateral inhibition during rhizoid cell

development, then the model predicted that two-dimensional

rhizoid groups of rhizoid cells (clusters) would develop in

Mpfrh1lof mutants while one-dimensional groups of rhizoid cells

(chains) would develop in wild type. To determine if MpFRH1

miRNA is involved in lateral inhibition, we generated mutants in

which the entire MpFRH1miRNA coding sequence was deleted.

We used a pair of single guide RNAs (sgRNAs) that were 569 bp
1908 Current Biology 30, 1905–1915, May 18, 2020
apart to delete the MpFRH1 gene using CRISPR/Cas9 technol-

ogy [19]. sgRNA1 was 20 bp long and was complementary to a

sequence between 404 bp and 384 bp 50 of the MpFRH1miRNA

sequence (sgRNA1), and sgRNA2 was 20 bp long and comple-

mentary to a sequence between 164 bp and 184 bp 30 of the
MpFRH1miRNA sequence (Figure 3A). Five independent mutant

lines were identified in which the entire MpFRH1 miRNA

sequence was deleted. There were deletions of 267, 587, 589,

and 573 bp in the MpFRH1 gene of Mpfrh1-7, Mpfrh1-27,

Mpfrh1-34, and Mpfrh1-36 mutants, respectively. In Mpfrh1-

11, a 780-bp deletion, removed the MpFRH1 sequence, and a

202-bp sequence inserted 50 of the MpFRH1 sequence (Fig-

ure 3A; Data S1). MpFRH1 miRNA was not detected (Figure 3B)

in any of the five deletion mutants consistent with the hypothesis



Figure 3. Genomic Organization of Mpfrh1lof Mutants and Expression of MpRSL1 and MpFRH1 in Mpfrh1lof Mutants

(A) Genomic organization of theMpFRH1 gene in wild type (WT) andMpfrh1lofmutants. The sequence for the 1.2-kbMpFRH1 transcript is representedwith a gray

box. The 21 nt corresponding to the MpFRH1 miRNA are indicated in red. The orange arrowheads indicate the position of the two single guide RNAs (sgRNAs)

used to generate deletion mutants. sgRNA1 is complementary to a sequence that is between 384 and 404 bp 50 of the MpFRH1 sequence. sgRNA2 is com-

plementary to a sequence that is 164–184 30 of the MpFRH1 sequence. The entire MpFRH1miRNA sequence was deleted in each of the mutants. In Mpfrh1lof-7,

there was a 267-bp deletion between sgRNA1 and sgRNA2 and a T deletion. In Mpfrh1lof-11, there was a deletion of 780 bp and reverse insertions of 202 bp and

26 bp. In Mpfrh1 lof-27, there was a 587-bp deletion and a G insertion. In Mpfrh1lof-34, there was a 589-bp deletion. In Mpfrh1lof-36, there was a 573-bp deletion and

substitution of T into C at the sgRNA1 target site and a 7 bp insertion.

(B) Amplification of MpFRH1 miRNA (upper row) and MpmiR166 control (lower row) using stem loop PCR on RNA isolated from 7-day-old thalli grown from

gemmae in Mpfrh1lof mutants, Tak-1, Tak-2, and MpFRH1GOF-2 mutant.

(C) Amplification of MpRSL1mRNA from RNA isolated from in 7-day-old thalli grown from gemmae in wild-type (Tak-1 and Tak-2) plants and Mpfrh1lof mutants;

mRNA levels were normalized to the housekeeping gene MpAPT1. There were three biological replicates per genotype, except for Mpfrh1lof-7(n = 2). There were

at least three technical replicates per biological replicate. Error bars represent ± SD. A gray asterisk indicates a significant difference compared with Tak-1, and a

black asterisk indicates a significant difference compared with Tak-2. p < 0.05.

Results for independent verification of qPCR results are presented in Figure S3.
that each harbored complete loss-of-function mutations

in MpFRH1. Consequently, the mutants were designated

Mpfrh1lof-7, Mpfrh1lof-11, Mpfrh1lof-27, Mpfrh1lof-34, and

Mpfrh1lof-36.

To determine if the pattern of rhizoids inMpfrh1lofmutants was

as predicted by the model in the absence of lateral inhibition, the

number of rhizoid cell neighbors was measured in rhizoid cell

groups in each of the mutants. The model predicted that the

number of rhizoid cell neighbors in the absence of lateral inhibi-

tions would be greater than in wild type. As predicted by the

model, the mean rhizoid cell neighbor number was greater in

the Mpfrh1lof mutants than in wild type (Figures 4B and 5). In

all five Mpfrh1lof mutants, the mean number of neighbors in

groups of 3 rhizoid cells was greater than the corresponding

neighbor number in wild type (e.g., 1.36, SD = 0.13). Further-

more, while the SD was close to 0 in wild type, indicating that

there was little variation in the mean number of neighbor cells
per rhizoid group, the SD was always greater than 0 in the mu-

tants. For example, there were on average 1.40 (SD = 0.21)

rhizoid cell neighbors in groups of 3-rhizoid cells in Mpfrh1lof-7,

1.45 (SD = 0.26) rhizoid cell neighbors in Mpfrh1lof-27, 1.48

(SD = 0.28) rhizoid cell neighbors in Mpfrh1lof-11, 1.56 (SD =

0.34) in Mpfrh1lof-34 and 1.60 (SD = 0.37) in Mpfrh1lof-36 (Figures

5A and 5E). The same trend held for groups of 4 rhizoid cells,

where the number of rhizoid cell neighbors was 1.57 (SD =

0.27) in wild type (1.63 for Tak-1 [SD = 0.35] and 1.5 in Tak-2

[SD= 0]). Groups containing 4 rhizoid cells developed an average

of 1.73 (SD= 0.37) rhizoid cell neighbors inMpfrh1lof-7, 1.61 (SD=

0.33) in Mpfrh1lof-11, and 1.67 (SD = 0.29) in Mpfrh1lof-34 mutants

(Figures 5B and 5E). Groups of 5 rhizoid cells in Mpfrh1lof-27

developed 2.20 (SD = 0.28) rhizoid cell neighbors compared to

1.60 (SD = 0) in wild type (Figures 5C and 5E). We conclude

that rhizoid cell clusters groups are frequently arranged in

two-dimensional clusters in Mpfrh1lof mutants rather than
Current Biology 30, 1905–1915, May 18, 2020 1909



Figure 4. Two-Dimensional Rhizoid Cell Clusters Develop in Mpfrh1lof Mutants

(A) Rhizoid patterning in gemmae of wild type (Tak-1 and Tak-2) and Mpfrh1lof-27;pFRH1:FRH1. Upper row shows an overview of representative gemma (scale bar,

100 mm). Lower row shows a higher magnification of the inset highlighted above, showing representative rhizoid chains of wild type and a one-dimensional 5-cell

chain of Mpfrh1lof-27;pFRH1:FRH1 (scale bar, 50 mm). Asterisks indicate a rhizoid cell, x indicates a flat epidermal cell, and the arrowhead indicates an oil body cell.

(B) Rhizoid patterning in gemmae of Mpfrh1lof-7, Mpfrh1lof-11, Mpfrh1lof-27, Mpfrh1lof-34, and Mpfrh1lof-36mutants. Upper row shows an overview of representative

gemma (scale bar, 100 mm). Lower row shows a higher magnification of the highlighted square showing a representative rhizoid cluster (scale bar, 50 mm).

(C) Frequency (in %) of one-dimensional chains and two-dimensional clusters in wild type (Tak-1 and Tak-2) and Mpfrh1lof mutants, respectively. All rhizoid cell

groups larger than 3 cells were combined (n[Tak-1] = 23, n[Tak-2 = 23], n[Mpfrh1lof-7] = 46, n[Mpfrh1lof-11] = 28, n[Mpfrh1lof-27] = 24, n[Mpfrh1lof-34] = 9, and n

[Mpfrh1lof-36] = 8).
one-dimensional chains as in wild type. Remarkably, our simple

model predicted similar shifts in both the mean and SD under

loss of the purported lateral inhibition (Figure 2F).

To confirm that the increased number of rhizoid cell neighbors

resulted in an increased frequency of two-dimensional clusters,

as predicted by the model, we measured the frequency of one-

dimensional and two-dimensional rhizoid groups in Mpfrh1lof

mutants. In wild type, 92%–96% of rhizoid groups are one-

dimensional chains, with only 4%–8% of rhizoid groups forming

two-dimensional clusters. By contrast, 68% of rhizoid groups

are one-dimensional chains and 32% of rhizoid groups are

two-dimensional clusters in Mpfrh1lof mutants. This includes

30% of rhizoid clusters in Mpfrh1lof 7 (14 of 46), 25% in

Mpfrh1lof-11 (7 of 21), 37% in Mpfrh1lof-27 (9 of 24), 33% in

Mpfrh1lof-34 (3 of 9), and 50% in Mpfrh1lof-36 (4 of 8 cluster) (Fig-

ure 4C). The higher frequency of two-dimensional clusters in

Mpfrh1lof than in wild type is consistent with the hypothesis
1910 Current Biology 30, 1905–1915, May 18, 2020
that MpFRH1 activity is required for lateral inhibition during

rhizoid development.

If MpFRH1 miRNA acts as an inhibitor during lateral inhibi-

tion, then the model predicted that rhizoid cell groups could

be larger than 7, which is the largest rhizoid cell group

observed in wild type. Up to 12 rhizoid cells could develop

infrequently in Mpfrh1lof mutants. Such large groups could

form from the merger of adjacent (smaller) rhizoid cell groups,

a process that is inhibited in wild-type conditions. Rhizoid cell

groups with more than 7 cells were found in Mpfrh1lof mutants

(Table 1; Figure 4B). A single 8-rhizoid cell group and three

9-rhizoid cell groups were observed in Mpfrh1lof-7, and a single

8-rhizoid cell group was found in Mpfrh1lof-27. The observation

that rare clusters containing up to 9 rhizoid cells developed in

Mpfrh1lof mutants is consistent with the hypothesis that

MpFRH1 acts as an inhibitor in lateral inhibition during

epidermal development.



Figure 5. More Rhizoid Cell Neighbors Develop in Mpfrh1lof and MpRSL1GOF Mutants

(A–D) Mean rhizoid cell neighbor number in 3-rhizoid cell groups (A), 4-rhizoid cell groups (B), 5-rhizoid cell groups (C), and 6-rhizoid cell groups (D) in wild type

(Tak-1 and Tak-2), Mpfrh1lof-7, Mpfrh1lof-11, Mpfrh1lof-27, Mpfrh1lof-34, Mpfrh1lof-36, and MpRSL1GOF-1. Error bars represent ± SD.

(legend continued on next page)
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MpFRH1-Mediated Lateral Inhibition Acts by Repressing
MpRSL1 Activity
Since MpFRH1 miRNA targets the MpRSL1 mRNA, we hypoth-

esized that the loss of MpFRH1 function would result in an in-

crease in steady-state levels of MpRSL1mRNA. mRNA was iso-

lated from thallus that developed from whole gemmae grown for

7 days. MpRSL1 mRNA abundance was normalized to the

MpAPT1 housekeeping gene [20]. Steady-state levels of

MpRSL1 mRNA were higher in Mpfrh1lof mutants than in wild

type. Steady-state levels of MpRSL1 mRNA were 2–2.5 times

more abundant in Mpfrh1lof-36 and Mpfrh1lof-34 than in wild

type (Figure 3C). Steady-state levels of MpRSL1 mRNA were

�1.5 times higher in Mpfrh1lof-7, Mpfrh1lof-11, and Mpfrh1lof-27

mutants than in wild type. In an independent experiment with

fewer replicates, steady-state levels of MpRSL1 mRNA were

3.7-, 2.7-, 4.23-, 3.77-, and 1.6-fold higher in Mpfrh1lof-7,

Mpfrh1lof-11, Mpfrh1lof-27, Mpfrh1lof-34, and Mpfrh1lof-36, respec-

tively, than in wild type (Figure S3). These higher steady state

levels in MpRSL1 mRNA in Mpfrh1lof mutants than in wild type

is consistent with the hypothesis that MpFRH1 targets MpRSL1

mRNA during lateral inhibition.

If MpFRH1-mediated lateral inhibition operates by repressing

MpRSL1, overexpression of MpRSL1 should overcome the inhib-

itory effect ofMpFRH1. If true, ectopic overexpression ofMpRSL1

would increase the mean number of rhizoid cell neighbors in

rhizoid cell groups compared to wild type and larger groups of

rhizoid cells would develop than in wild type. That is, the rhizoid

cluster phenotypes of the MpRSL1GAIN-OF-FUNCTION (GOF) and

Mpfrh1lofmutants would be similar. A transfer DNA (T-DNA) inser-

tion in the MpRSL1 promoter of the MpRSL1GOF-1 mutant causes

overexpression of MpRSL1 [13]. 3-rhizoid cell clusters in

MpRSL1GOF-1 mutants developed an average of 1.59 (SD =

0.34, n = 13) neighboring rhizoid cells compared to 1.36 neighbors

in wild type (SD = 0.13) (Figure 5A). 4-rhizoid cell clusters in

MpRSL1GOF-1 mutants developed 1.70 (SD = 0.45, n = 5) rhizoid

cell neighbors compared to 1.58 in wild type (SD = 0.28) (Fig-

ure 5B). 5-rhizoid cell clusters in MpRSL1GOF-1 mutants devel-

oped 1.73 (SD = 0.23) neighbors compared to 1.60 in wild type

(SD = 0) (Figure 5C). The larger number and variability of rhizoid

cell neighbors in MpRSL1GOF-1 mutants than in wild type indicate

that ectopic overexpression of MpRSL1 causes similar pheno-

typic defects in the spatial arrangement of rhizoid cells groups

as in Mpfrh1lof mutants. These data are consistent with the hy-

pothesis that MpFRH1 miRNA represses MpRSL1 activity during

lateral inhibition as rhizoids develop. Rhizoids did not develop in

either MpFRH1GOF-2 or Mprsl1lof-1, highlighting the essential func-

tion of MpRSL1 during rhizoid formation and the influence of

MpFRH1 activity during rhizoid formation (Figure 6)

The model predicted that some two-dimensional rhizoid clus-

ters induced by the absence of lateral inhibition would contain

more than 7 cells (the maximum number of cells observed in a

wild-type rhizoid group of cells). Furthermore, overexpression

of MpRSL1 in MpRSL1GOF-1 mutants should overcome the
(E) Comparison of theoretical predictions with experiments for rhizoid neighbor c

imentally observed relationship between mean rhizoid cell neighbor numbers and

red circle, Mpfrh1lof-11 = yellow triangle, Mpfrh1lof-27 = green triangle, Mpfrh1lof-34

open circles on the dashed line represent the simulation results for the model wi

dashed line is the same line as shown in Figure 2F).
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effects of lateral inhibition. We therefore hypothesized that there

would be more than 7 rhizoid cells in some clusters that develop

in plants that ectopically overexpress MpRSL1. There were up to

21 rhizoid cells in a single rhizoid cell cluster in MpRSL1GOF-1

plants (Figure S4). We observed three rhizoid cell clusters with

more than 9 cells (a 10-cell cluster, a 12-cell cluster, and a 21-

cell cluster; summarized as a R10-cell cluster in Table 1). This

confirms that repression of MpRSL1 occurs during lateral inhibi-

tion. Taken together, the data reported here demonstrate that

MpFRH1 is a repressor that acts during lateral inhibition and

that MpFRH1 miRNA-mediated lateral inhibition acts by repres-

sing MpRSL1 during the development of rhizoid cells in the

M. polymorpha epidermis.

DISCUSSION

Wediscovered thatMpFRH1miRNA is a repressor thatmediates

lateral inhibition duringM. polymorpha epidermis pattern forma-

tion. Rhizoid cells develop individually or as one-dimensional

groups of cells of between 2 and 7 rhizoid cells in the wild-type

epidermis in our growth conditions. There is a high frequency

of single rhizoid cells and progressively fewer groups with 2, 3,

4, 5, 6, and 7 rhizoid cells. The spatial arrangement and distribu-

tion of rhizoid cells can be accounted for by a simple cellular au-

tomata model that includes lateral inhibition. This model allowed

us to predict the phenotype of rhizoid cell patterns that would

develop in a mutant in which lateral inhibition was absent. It

predicted that rhizoid cells would develop in two-dimensional

clusters in mutants with defective lateral inhibition compared

to one-dimensional chains in wild type. It also predicted that

the maximum cell number in rhizoid cell groups would be greater

in the mutant than in wild type. We showed that the rhizoid cell

phenotypes that develop in plants that lack the MpFRH1 miRNA

are those predicted by the model for an epidermis developing

without lateral inhibition; there were two-dimensional rhizoid

cell clusters and rhizoid cell groups of up to 9 cells in the largest

mutant rhizoid cell cluster compared to 7 in wild type. These

combined modeling and genetic data indicate that lateral inhibi-

tion mediated by MpFRH1 miRNA is required for the patterning

of rhizoid cells in M. polymorpha.

We propose that the development of rhizoid cells involves two

distinct phases. The first phase involves the specification of indi-

vidual rhizoid cells from a field of equivalent cells. The probability

of a rhizoid cell being specified could be determined by stochas-

tic variation in the expression levels of MpRSL1; higher levels

would favor rhizoid cell development, and relatively lower levels

would favor flat epidermal cell development. MpRSL1 then in-

duces expression of the MpFRH1 miRNA in the developing

rhizoid cell. MpFRH1 activity represses rhizoid cell development

in adjacent cells through lateral inhibition, and these cells

develop as flat epidermal cells. Repeated rounds of rhizoid initi-

ation during a competence period results in the development of

rare adjacent rhizoid cells that form groups of one-dimensional
ell numbers of mutant and wild-type rhizoid cell groups. Shown is the exper-

group size in wild type (filled black square) and Mpfrh1lofmutants (Mpfrh1lof-7 =

= blue diamond, Mpfrh1lof-36 = purple triangle). Error bars represent SD. Black

thout lateral inhibition (error bars represent SD from n = 1,000 simulations; the



Figure 6. Larger Rhizoid Cell Clusters with

Altered Shape Develop in Mpfrh1lof and

MpRSL1GOF Mutants than in Wild Type

Upper row shows the distribution of rhizoid

cells and rhizoid cell groups on representative

mature gemmae of wild type (Tak-2) and

MpRSL1GOF-1, Mpfrh1lof-7, Mprsl1lof-1, and

MpFRH1GOF-2 mutants. Scale bar, 100 mm. The

lower row shows a higher magnification of the

inset highlighted on the image in the row above.

There are 12 rhizoid cells in the MpRSL1GOF-1

rhizoid cell cluster and 8 cells in the Mpfrh1lof-7

rhizoid cell cluster. There are no rhizoids in the

Mprsl1lof-1 mutants. MpFRH1GOF-2 mutants

can rarely develop rhizoids, and one such

rhizoid is indicated with asterisks. Chlororphyll

autofluorescence is red, and cell walls of rhizoids are stained with propidium iodide (green). Scale bar, 50 mm. White arrowhead indicates the location of

oil body cells. An exceptional 21-rhizoid cell cluster that developed in MpRSL1GOF-1 is shown in Figure S6.
chains, and the shape of these rhizoid cell groups is determined

by lateral inhibition.

Our modeling and experimental data suggest that being adja-

cent to 2 rhizoid cells represses rhizoid cell development. By

contrast, being adjacent to a single rhizoid cell is not sufficient

to repress rhizoid development. This suggests that there is a

threshold of repressor activity. Being adjacent to 1 rhizoid cell

exposes an adjacent cell to sub-threshold levels of repressor,

while being adjacent to 2 rhizoid cells exposes a cell to repressor

levels above this threshold and represses differentiation. A

repressive signal from a rhizoid cell to adjacent cells represses

rhizoid cell development if it reaches a threshold level in the

receiving cell. We show that MpFRH1 activity is required for

this repressive signal. There are at least three potential modes

of signaling that could operate in this system. First, the repres-

sive signal could be MpFRH1 miRNA itself. miRNAs can be

mobile, and it has been suggested that movement of miRNAs

can account for the establishment of tissue boundaries in organs

[21]. Second, the repressive signal could be produced as a result

of MpFRH1 miRNA activity. Since MpRSL1 mRNA is the only

confirmed target of MpFRH1, the production of this hypothetical

signal would likely also be MpRSL1 dependent [14]. Third, the

repressive signal could be transmitted by cell contact through

an unknown mechanism. The amount of contact could be

proportional to the total cell-surface area shared between

neighboring cells. Accordingly, sharing a single cell face would

expose the cells to sub-threshold levels of repressor, while

sharing a cell face with 2 rhizoid cells would expose the cell to

repressor levels above this threshold. Since MpRSL1 mRNA is

the only confirmed target of MpFRH1, the production of this hy-

pothetical cell-contact signal would also beMpRSL1 dependent.

While the molecular mechanisms of lateral inhibition are

different between plants (transcriptional regulator, EDP2, and

MpFRH1 dependent) and metazoans (Delta-Notch), there are

similarities in the underlying logic of the process. For example,

the Delta ligand represses neuroblast development during

Notch-Delta signaling in Drosophila (reviewed in [2]). However,

Delta is expressed on future neuroblasts and represses neuro-

blast development in adjacent cells by non-cell-autonomous

signaling mediated by the Notch receptor located on the neigh-

boring cell. That is, the repressor acts at a distance from its site

of synthesis to repress the neuroblast cell identity in adjacent
cells. This logic operates in Myb-repressor- and EDP2-mediated

lateral inhibition of trichomes and guard cells, respectively, in

A. thaliana. Similar logic operates in MpFRH1-mediated lateral

inhibition in M. polymorpha. MpFRH1 is a repressor of rhizoid

cell development that it is expressed in developing rhizoid cells.

Furthermore, our data indicate that MpFRH1 miRNA represses

rhizoid cell identity in adjacent cells that would otherwise differ-

entiate as flat epidermal cells in wild type. This leads to the

hypothesis that MpFRH1 expression in developing rhizoid cells

acts non-cell autonomously to repress rhizoid cell development

in epidermal cells next to rhizoid cells.While themolecularmech-

anismof lateral inhibition is different between plants and animals,

the regulatory similarities suggest that there may be underlying

similarities in control logic.

Mechanisms that pattern different cell types in the epidermis

and do not involve lateral inhibition also exist in plants. These

include the development of pattern in the root epidermis and

giant cells in sepals of A. thaliana. Mobile transcription factors

are involved in the patterning of cells that are not initially equiva-

lent in the root epidermis (reviewed in [22]). The cells that form

root hair cells (trichoblasts) perceive different positional informa-

tion than those that develop as non-hair-bearing epidermal cells

(atrichoblasts) in A. thaliana [23]. Therefore, the intercellular

signaling mechanism that patterns the distribution of root hair

cells and non-root hair cells builds on an existing pattern that

already exists. There is evidence that signaling that leads to posi-

tionally defined development of these two cell types is mediated

by the SCRAMBLED receptor protein and requires the activity of

the JACKDAW transcription factor in subepidermal cells [24–28].

Cell-to-cell signaling is involved in giant cell development of the

sepal epidermis, but there is no evidence for lateral inhibition.

The sepal epidermis comprises a few giant cells distributed

among pavement epidermal cells; e14 giant cells develop on

each sepal, and these can run 20% the length of the entire organ.

The pattern of giant cells among pavement epidermal cells is

determined by relative rates of cell division in the two cell types

during development [29, 30]. As the sepal grows, giant cells stop

dividing but continue to grow while surrounding cells divide.

Activation of an cyclin-dependent kinase (CDK) called LOSS

OF GIANT CELLS FROM ORGANS (LGO) in developing giant

cells promotes endoreduplication and blocks mitosis [29, 31].

The specification of giant cells requires the expression of the
Current Biology 30, 1905–1915, May 18, 2020 1913



MERISTEM LAYER 1 (ML1) transcription factor, while neigh-

boring epidermal cells do not express ML1 [29, 32]. To date,

there is no evidence that the distribution of ML1-expressing

future giant cells requires lateral inhibition. However, giant cell

specification requires the DEFECTIVE KERNAL1 (DEK1) calpain

protease and the ARABIDOPSIS CRINKLY KINASE (ACR4)

receptor, suggesting that cell-to-cell signaling may act early in

the process [29]. It is therefore formally possible that DEK and

ACR4 proteins could mediate lateral inhibition during the

patterning of giant cells. If so, these proteins would likely act

transiently, early in development.

TheMpRSL1-MpFRH1mechanismof lateral inhibition that con-

trols the patterning of rhizoid cells is liverwort specific. MpFRH1 is

a liverwort-specific miRNA, and the miRNA target sequence has

been identified in the RSL genes of many liverwort taxa but has

not been found in RSL genes from any other lineage of land plants

[14]. This indicates that the mechanism of lateral inhibition in the

liverwort lineage is entirely different from the two mechanisms

that havebeendescribed among the angiosperms (Myb repressor

and EPF2). TheMpFRH1-lateral inhibitionmechanism is restricted

to the liverworts, suggesting that different lateral inhibition mech-

anismscontrol the patterning of tip-growing rooting cells, rhizoids,

and root hairs in liverworts and angiosperms, respectively. It also

demonstrates that entirely different mechanisms can operate to

control lateral inhibition in early-diverging groups of land plants

(hornworts and mosses) than in angiosperms. This contrasts

with animals in which the Notch-Deltamechanism of lateral inhibi-

tion is conserved among metazoan lineages. We propose that

different mechanisms of lateral inhibition evolved many times

during the course of land plant evolution, while a single

mechanism has been conserved among metazoans.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Marchantia polymorpha accessions Tagaragaike-1 (Tak-1, male) and Tagaragaike-2 (Tak-2, female) [33] were used as wild-type and

grown on plates that were placed horizontally in a Sanyo growth cabinet at 23�C under continuous white light (56 mE.m-2 .s-1) as

reported in [36]. MpRSL1GOF-1 and Mprsl1lof-1 (ST46-1) were generated by [13]. MpFRH1GOF-2 (ST49-10) was generated by [14].

Mpfrh1lof lines were generated in this study as reported below. For crossing, plants were grown in a growth chamber at 23�C under

16 hours light: 8 hours dark photoperiod on 1:3 mixture of vermiculite and John Innes No. 2 compost. Sexual reproduction was

induced by far-red light irradiation. Spores for transformation were obtained from a cross between the wild-type lines Tak-1

and Tak-2 as reported in [36]. For RNA extraction plants were grown on medium covered with cellulosic cellophane membrane

(AA Packaging Limited, Preston, UK) before harvesting to avoid agar contamination.

METHOD DETAILS

CRISPR/Cas9 knock out
CRISPR/Cas9 mutations were generated following the protocol described in [19]. A new sgRNA construct, called pHB453, using 2

sgRNA for the generation of deletions was generated and kindly provided by Holger Breuninger (University of Tübingen). The sgRNA

designwas based on pMpGE_En03with a second pU6 driven sgRNA scaffold between the att sites. The first sgRNA scaffold harbors

a BbsI restriction site and the second a BsmBI restriction site. Primer oAT110 and oAT111 were used to introduce sgRNA1 into the

BbsI site, primer oAT112 and oAT113 were used to introduce sgRNA2 into BsmBI site to generate the entry vector pAT48. The

expression vector, called pAT54, was generated by LR reaction of the destination vector pMpGE010 and the entry vector pAT48.

Vectors were transformed into Escherichia coli One Shot OmniMAX 2 T1R strains. pAT54 was transformed into Agrobacterium

tumefaciens GV3101. Transformation of haploid M.polymorpha spores was carried out as reported in [36]. Transformed sporelings

were grown on antibiotic selection plates containing Johnson’s medium with 10 mg/l hygromycin to select for plants with a T-DNA

insertion, and 100mg/l cefotaxime to kill the remaining Agrobacterium. To test for deletions at the MpFRH1 locus, the MpFRH1 allele

was amplified using primer oAT135 and pAT136 and subsequentially sequenced by Source BioScience.

Generation of Mpfrh1lof-27pFRH1:FRH1 transgenic line
Mpfrh1lof-27was crossed towild-type to generate a segregating population. First, plants in this segregating population that lacked the

CRISPR.Cas9 transgene were identified. Lines lacking the T-DNA insertion harboring the CRISPR/Cas9 construct were selected by
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screening for hygromycin sensitivity. Plants were cut in 2 and replica plated onto either Hygromicin-containing media or media with

no Hygromycin added. Hygroomycin sensitive plants (grown without hygromycin) were genotyped by PCR using oAT110 and

oAT187 primers which amplify the the CRISPR/Cas9 construct. Second, plants with the Mpfrh1lof-27 deletion were identified from

the hygromycin-sensitive lines that lacked the CRISPR/Cas9 transgenes by genotyping using PCRwith oAT135 abd oAT136 primers

located in the MpFRH1 gene. To construct the transformation vector pAT82 (pFRH1:FRH1 in pCambia) the 1200 bp long MpFRH1

transcript was amplified from the MpFRH1 pri-miRNA overexpression constructs generated in [14] using oAT194 and oAT195. The

backbone of pAT82 harboring the pFRH1 promoter and a Hygromycin resitance cassette from pCAMBIA was amplified from

proMpFRH1:NLS-3xYFP generated in [14] in 2 pieces; the first amplicon was generated by PCR using oAT197 and pAT199 primers

and the second amplicon generated by PCR using oAT196 and oAT198 primers. All 3 amplicons were spliced together using the In-

Fusion HD Cloning Kit, following manufacturer’s instructions. pAT82 was transformed into Agrobacterium tumefaciensGV3101, and

this strain was used to transform Mpfrh1lof-27 mutant plants by thallus transformation as described in [37]. Positive transformants

were selected for Hygromycin resistance and genotyped by PCR using oAT135/oAT136 primers.

qPCR of MpRSL1 and MpAPT
Total RNA was extracted from 7-day old gemmae using Direct-Zol RNA MINIprep kit (Zymo Research) following manufactures in-

structions. For each line 3 biological replicates were extracted unless stated otherwise. To remove DNA, 3ug total RNA were treated

with TURBO DNA-free kit following manufacturers instruction. cDNA synthesis was performed according to the First Strand cDNA

Synthesis protocol fromNEB using ProtoSript II Reverse Transcriptase (#M0368) andMurine RNase Inhibitor (#M0314). MpRSL1 and

MpAPT cDNAwas amplified using the primer oAT173/oAT174 and oAT175/176, respectively (as previously reported in [14, 20]). qRT-

PCT was performed in the Applied Biosystems 7300 Real-Time PCR System (Life Technologies) with SensiMix SYBR Hi-ROX Kit

(Bioline, QT605-05) following manufactures instructions. 3 technical replicates per biological replicate were performed. qPCR

data was first analyzed using LinRegPCR v2012.0 [34]. The average N0 value was calculated. Relative RSL1 mRNA abundance

was calculated by normalizing the N0 of each replicate against the N0 value of the reference gene, MpAPT1.

Stem loop PCR for MpFRH1 and MpmiR166
To amplify MpFRH1 and MpmiR166, RNA was extracted from 19 day old gemmae using miRVana miRNA Isolation Kit following

manufacturer’s instructions. 1ug RNAwas treatedwith DNase according to TURBODNA-free kit followingmanufacturers instruction.

Stem-loop PCR was carried out as described in [38] using a MpFRH1 specific primer (oAT218) or a MpmiR166 specific primer

(oAT219). The reverse transcribed and extended miRNAs were amplified using PCRBIO Ultra Polymerase (PCR Biosystem,

PB10.31-02) with a miRNA specific forward primer (oAT221 for MpFRH1, oAT222 for MpmiR166) and a universal reverse primer

(oAT220). Amplicons were visualized on a 3% agarose gel containing SYBR Safe.

Imaging
Cell walls were stained using propidium iodide (PI). Gemmae were incubated in 5ug/ml PI solution for (5-)10 minutes. PI solution was

removed and gemmaewashed twice withMilliQ water. Gemmaeweremounted on a slide with heated 0.2% agar solution. Once Agar

solidified gemmae were imaged immediately. Images were acquired with a Leica SP5 confocal laser microscope and the Leica

Application Suite (LAS) software using either a Leica HCX PL Fluotar 10x/0.30 or HC PL APO 20x/0.75 IMM CORR CS2 lense. PI

and chlorophyll were excited at 543 nm and emission was collected between 561 and 640 nm for PI and between 680-700nm for

chlorophyll.

Modeling
The cell automata model was implemented as follows. First, a grid of�400 hexagonal cells was defined. A predefined density of cells

were selected as rhizoid precursors (typically 10%–15%). Simulations were performed with hard-wall boundary conditions, similar to

the restrictions in the leaf.

For each iteration of the simulation, a probability P defined the probability for whether a group of rhizoid cells added a new cell to

the group. In this case, we define the group to be active. With probability (1-P) the group becomes inactive. Once inactive, the group

remains inactive for the rest of the simulation. In each iteration of the simulation, each active rhizoid group was tested by drawing a

uniform random number r between 0 and 1 (r < P, the rhizoid group adds a new cell from the neighboring non-rhizoid cell population; if

r>P, then the group becomes inactive). The simulation repeated this process until all rhizoid cell groups finished expansion – i.e., all

groups are inactive. In this simple scenario, the probability of a group having n cells = (1-P)n.

When a group of cells is selected for expansion, two possible rules were considered. (1) No lateral inhibition; in this case, any neigh-

boring cell to the rhizoid cell group can become integrated with the group. (2) With lateral inhibition; only cells neighboring exactly 1

member of the rhizoid group can become integrated within the group. We also considered the restriction that the new rhizoid cell has

to be a neighbor of an end cell of the group. This corresponds to 4 possible configurations: (i) lateral inhibition with only end joining; (ii)

lateral inhibition with new cells allowed so long as only 1 neighbor in the rhizoid group (see hatched cell in Figure 2A); (iii) no lateral

inhibition with only end joining; (iv) no lateral inhibition with new cells allowed so long as only 1 neighbor in the rhizoid group. The

results presented in the paper for wild-type and mutants correspond to cases (i) and (iv) respectively. However, using rules (ii) and

(iii) do not alter the general results, though the wild-type rhizoid group can become more irregular as branching can occur. In

each simulation, once a group is found to expand, then the available possible cells for expansion are identified – this choice is
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restricted by the 4 possible configurations outlined above. The n available cells are labeled 1,2,.,n. A random integer between [1, n]

is then generated by the computer to select the cell that becomes a member of the rhizoid group. Examples of the simulation

iterations are shown in Figure S2.

When lateral inhibition was present, 2 nearby rhizoid cell groups cannot merge; any cell between 2 groups would have a minimum

of 2 rhizoid neighbors and groups of rhizoid cells are arranged in one-dimensional chains. In the absence of lateral inhibition, such a

cell can take on the rhizoid cell fate. Hence, 2 groups can merge to form a larger 2-dimensional cluster. In this way, although P is

unchanged in all simulations, large 2-dimensional clusters are possible in the absence of lateral inhibition.The model was encoded

in MATLAB R2017b. All data is produced from averaging the average cluster distributions for 1000 simulations, each with different

initial distribution of rhizoids.

In Figure 2F, the fit 1+1:27½1�expð�ððN�2Þ =2:3ÞÞ� to the case without lateral inhibition was performed using the MATLAB

function fit.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using Microsoft Office 365/Excel. Statistical details are given in the figure legends. Mean

represents the average value of all samples, e.g., mean = [sum of sample values]/ [sample size]. Generally, plots show the

mean ± standard deviation. Sample size (n) is given in the figure legends for each set. Significance levels are marked as

* p < 0.05, as stated in the figure descriptions.

DATA AND CODE AVAILABILITY

The codes for implementing themodel of lateral inhibition are uploaded to the following public URL: https://store.mbi.nus.edu.sg/tim/

rhizoid_code.zip. This URL is hosted by the Mechanobiology Institute, the host institute for TES.
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