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Rent Extraction With Securities Plus Cash

TINGJUN LIU and DAN BERNHARDT∗

ABSTRACT

In our target-initiated theory of takeovers, a target approaches potential acquirers that

privately know their standalone values and merger synergies, where higher synergy ac-

quirers tend to have larger standalone values. Despite their information disadvantage,

targets can extract all surplus when synergies and standalone values are concavely re-

lated by offering payment choices that are combinations of cash and equity. Targets

exploit the reluctance of high-valuation acquirers to cede equity claims, inducing them

to bid more cash. When synergies and standalone values are not concavely related,

sellers can gain by combining cash with securities that are more information-sensitive

than equities.
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Most empirical and theoretical research on takeovers starts with the premise that they

are initiated by bidders. However, in recent work, Eckbo, Norli, and Thorburn (2020)

establish that “about one half of takeover bids for public targets are initiated by the target,

organizing an auction-like process to solicit potential bids.” Our paper derives the optimal

design of such auctions, including the specifications of the cash-equity composition of

bids. We show that this optimal design reconciles a set of empirical regularities that are

elusive to explain within a single unified framework: (1) multiple public bidders emerge

in few control contests (under 10%) for publicly-traded targets; (2) despite this seeming

lack of competition, on average almost all of the combined takeover gains accrue to target

shareholders; (3) greater use of cash in bids is associated with higher returns for both

acquirer and target; (4) cash acquisitions are more likely with multiple bidders; and (5)

acquirers of public targets earn lower returns than acquirers of private targets. Our analysis

suggests that empirical patterns in target and acquirer returns will vary according to

whether takeovers are target or acquirer initiated; and that empirical work should control

for this to avoid confounding identification of the true primitive relationships.

Our model features a target that recognizes the possibility of synergies that would obtain

from a merger. The target’s problem is that each potential acquirer (bidder) i is privately

informed about its standalone value Vi and the synergy si(Vi) (net value added) associated

with a merger, where potential acquirer types with higher standalone values also tend to

generate higher synergies. When acquirers pay with shares of the merged firm’s equity, their

private information about their standalone values can lead to an adverse selection problem

(Myers and Majluf (1984); Che and Kim (2010)). The monetary value of an equity offer is

proportional to the value of the combined firm, which is the sum of the target’s value under

the bidder’s control plus the bidder’s standalone value. When a bidder type with a lower

synergy (NPV) also has a lower standalone value, it may be willing to offer a higher equity

share—outbidding bidder types that would provide higher NPVs, for the combined firm—

which would drive down the potential revenues that the target can extract. This adverse
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selection problem is especially severe when synergies rise gradually with standalone values, so

that the extent of information asymmetry with respect to standalone values is high relative

to that for synergy gains. In such instances, a higher-synergy-type bidder would offer a lower

equity share because its standalone value—a share of which it forgoes if it wins—is too high.

Our paper shows how a target can solve this adverse selection problem by having bidders

submit bids that involve combinations of securities with different levels of information

sensitivity. The sensitivity of a security’s value to the underlying cash flows is captured by its

steepness (DeMarzo, Kremer, and Skrzpacz (2005, DKS)), where call options are steeper than

equities, and equities, in turn, are steeper than cash. We show that by combining securities of

differing steepness, a seller can obtain high revenues despite adverse selection, as combining

different securities allows a target to exploit a reluctance of high-valuation acquirers to pay

with security claims whose payments are tied more tightly to their valuations, and thereby

overcome its information disadvantage by separating different acquirer types. Moreover, the

greater the difference in steepness between the securities, the better it is for the seller.

Indeed, we establish that optimally designed combinations of cash and equity can

sometimes allow the target to achieve the first-best outcome, that is, to extract full rents,

with the highest-NPV bidder winning and receiving zero rent. When this is so, the seller

obtains the same revenues as if it knew the private information of all bidders perfectly and

simply made a single take-it-or-leave-it offer to the highest-type bidder. The seller exploits

the fact that low and high bidder types value cash and equity differently. In particular, high

bidder types care more about giving up equity claims to their high standalone values. This

allows the seller to screen lower types with high equity offers and screen higher types with

high cash offers. The seller constructs its menu of payments so that (1) higher types choose

a less steep mix that requires them to pay more cash but give up a smaller equity claim,

while (2) lower types choose steeper mixes. When synergies si(Vi) increase concavely with

standalone valuations, a seller can screen bidders by choosing cash-equity combinations that

drive the differential rents between high and low types to zero, extracting all synergy gains,
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while ensuring global incentive compatibility.

The mechanism is dominant-strategy incentive compatible—if a bidder misreports and

wins, its profit is negative, regardless of how the other bidders bid. The mechanism also

has the first-price auction property that a winner’s payment depends on its own report but

not on those of other bidders. The combination of these properties is a novel feature of our

mechanism1 that has important implications. First, the mechanism extracts full rents, even

from a single bidder, absent the competition that Crémer and McLean (1985, 1988) exploit

when bidders have correlated signals. Second, bidders submit bids that reveal their true

types and the seller extracts full rents even when the auction is decentralized so that a seller

approaches each bidder privately and bidders do not know how many rivals they face. Later,

we discuss how these features reconcile a host of empirical regularities related to takeovers.

When si(Vi) is concave, the full-extraction mechanism can be implemented by having

bidders bid cash plus an equity component that declines with the cash bid. The mechanism

is robust in the sense that a seller can extract almost all of the rents when it only knows the

approximate form of si(Vi). When si(Vi) is convex, full extraction via cash plus equity is not

possible. Nonetheless, we identify the optimal cash-plus-equity mechanism in a single-bidder

setting, proving that it takes a simple form: a seller offers a single contract that consists of a

fixed equity share plus cash.2 The intuition for how the curvature of si(Vi) affects outcomes

reflects the facts that (1) the payoff function from a cash-plus-equity contract is linear, (2)

when offered multiple contracts, an optimizing bidder will select from the (convex) upper

envelope of contract payoffs, and (3) when si(Vi) is concave, a bidder’s standalone value,

which is its opportunity cost of winning, is a convex function of the merged firm’s total

value. When si(Vi) is concave, the upper envelope of contract payoffs can be designed to

match the convex curvature of the opportunity cost–total value relationship, separating all

1In a standard second-price auction, bidders have dominant strategies but the winner’s payment depends
on a losing bidder’s bid; and in a standard first-price auction, the winner’s payment depends on its own bid
but bidders do not have dominant strategies.

2Payments in the form of a fixed royalty rate plus cash are used in many economic transactions (e.g.,
off-shore oil leases or timber lease auctions (see Gorbenko and Malenko (2011) and Skrzypacz (2013)).
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types and extracting all rents. In contrast, under a convex synergy relationship, the two

curvatures go in opposite directions and the best a seller can do is to offer a single contract

that pools all participating types.

We next show that under a convex synergy relationship, a seller can combine cash with

securities that are steeper than equity to do better. The intuition is that greater separation

in steepness makes the combination of cash and a security a more effective screening device,

because higher-type bidders are even more reluctant to pay with steeper securities.

Our work provides a framework for understanding a host of empirical regularities

associated with takeovers. First, our full-extraction mechanism reconciles the observed

distribution of returns between a target and its acquirer. Using different time periods and

samples, previous researchers consistently find that the target’s abnormal return is high and

significant while the average acquirer’s return is very low. Indeed, as Dessaint, Eckbo, and

Golubov (2019, p1) observe: “an expansive literature benefitting from access to large-scale

electronic databases confirms that...target shareholders capture the lion’s share of combined

takeover gains.”

Second, our model provides a framework for understanding the observation that a target

often privately approaches multiple potential acquirers but few bidders make public bids

(Boone and Mulherin (2007)). Eckbo, Malenko, and Thorburn (2020, EMT) summarize the

broad finding that public bids from multiple bidders occur in less than 10% of takeovers.

Indeed, only 3.4% of all control contests for publicly traded U.S. targets between 1980 and

2005 had multiple public bidders (Betton, Eckbo and Thorburn (2008, BETa)). Our model

explains this rarity. The optimal design has the following properties: (1) each potential

acquirer has a dominant strategy, and (2) the winner’s payment depends only on its own

bid. Taken together, these features imply that neither a potential acquirer’s bid nor its

payment if it wins depends on what other bidders do. Our model is therefore consistent

with a decentralized takeover process in which a target privately approaches each potential

bidder, sets the terms of payment contingent on that bidder winning, and then selects the
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bidder that would increase the target’s value by the most, with the target extracting all

synergy gains. As such, our work enhances our understanding of auctions versus negotiation.

In particular, while Bulow and Klemperer (1996) point to tradeoffs between auctions and

negotiation, our work highlights ways in which the two approaches need not conflict.

Third, in our optimal mechanism, the cash-equity composition3 of an offer is tailored

to different bidder types, generating predictions consistent with the asset composition of

bids and with the returns of targets and acquirers found in the data. In particular, both

target and acquirer returns increase with the cash share of an offer, as does their combined

return (Betton, Eckbo, and Thorburn (BETa, 2008, p328), EMT, Betton et al. (2014), and

Andrade, Mitchell, and Stafford (2001)). Finally, the target’s rent-extracting ability depends

on the curvature of the relationship between synergies and standalone values. Our paper

can reconcile differences in abnormal returns in acquisitions of public versus private targets

when the synergy–valuation relationship varies systematically with target characteristics.

Many researchers have proposed theories of takeovers in which the acquirer has the bar-

gaining power to explain some of these empirical patterns. However, these theories cannot

reconcile key features of the data. First, theories in which rational bidders have substantial

bargaining power (e.g., making take-it-or-leave-it offers) have difficulty explaining why,

unconditionally, acquirer abnormal returns are so low. Second, it is difficult to reconcile the

rarity of public bidders (BETa) with existing theories, even with preemptive bidding in which

a single-bidder contest results when an initial bidder has a high valuation. The extreme rarity

of contests with multiple public bidders means that costly preemption would occur even if an

initial bidder has a low valuation (so that the distribution of preempting types is similar to the

unconditional distribution). In contrast, a single public bidder and an unbalanced division

of surplus between target and acquirer arise naturally in the decentralized target-designed

takeover process described by Boone and Mulherin (2007) and Eckbo, Norli, and Thorburn

3See BETa, p328, who write that “mixed cash-stock offers are pervasive across the entire (1980 to 2005)
sample period,” or the survey by EMT (2020)) documenting the wide-spread use of such mixes.
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(2020), which our model can capture. In this formulation, a target privately negotiates with

potential bidders and extracts all synergy gains even though only one public bid is observed.

A key element of our model is that it is the target that has the bargaining power. To

connect our model with the data, we posit that empirically one can approximate “who has

bargaining power” with “who initiates the contest.” In essence, our premise is that if a

target decides to sell itself, then its board runs the process and, consistent with its fiduciary

duty, it selects the mechanism that maximizes value. Sections A.2 and B motivate this

approximation, detail empirical implications that differentiate our theory from others, and

document evidence consistent with our predictions. Together, they demonstrate that target-

and acquirer-initiated takeovers reflect different economic forces.4 In turn, this means that

empirical researchers need to account for which party initiates a takeover and the asset

composition of an offer in order to extract the true primitive relationships.

A. Security-bid literature

DKS provide a comprehensive analysis of security-bid auctions in which payments are

made using securities whose values are tied to the cash flows generated by the bidder. The

authors show how the steepness of the security used for payment affects a seller’s revenue.

In particular, they establish that if bidders have private information about the asset’s value

but their opportunity costs of winning (e.g., standalone values in takeover auctions) are

equal and common knowledge, then auctions using steeper securities yield the seller greater

expected revenues.5

Che and Kim (2010) consider the possibility that opportunity costs are increasing in

synergies. They show that if this increase is sufficiently fast then a severe form of adverse

selection obtains when bids are in securities: bidders with higher synergies—and thus

4Gorbenko and Malenko (2019) develop the first model that seeks to endogenize the initiator of takeovers.
5Work on rent extraction and securities auctions/security design includes Hansen (1985, 1987), Fishman

(1988), Dasgupta and Tsui (2004), Board (2007), Povel and Singh (2010), Kogan and Morgan (2010),
Gorbenko and Malenko (2011), Liu (2012, 2016), Skrzypacz (2013), Burkart and Lee (2015), Sogo,
Bernhardt, and Liu (2016), and Lee and Rajan (2020).
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higher NPVs—bid less because they care more about retaining claims to their standalone

values, so that steeper securities lead to lower seller revenues. The insight of our paper is

that sellers can exploit this adverse selection by combining securities of differing steepness.

Under severe adverse selection, the differential rents of high over low bidder types change

sign between sets of securities with sufficiently differing steepness. Positive mixtures of

different sets of securities can balance those differential rents to zero and yield full surplus

extraction. Consider the combination of cash plus equity. When bidding strategies are

decreasing in pure-equity auctions, low-NPV bidders may extract more rents with equity

payments than high-NPV bidders. By contrast, all bidders value cash identically, so that,

with cash, a bidder’s rent always rises with its NPV. Starting from pure equity, one can

reduce the equity payment and increase the cash payment so that the differential rent of a

low type over a high type falls, crossing zero at some point.

Combining cash with securities that are steeper than equity can further facilitate the

separation of types because higher-valuation types are even less willing to give up securities

whose payoffs are tied more tightly to their valuations. The wider spread in steepness better

balances bidders’ differential rents to zero and helps ensure global incentive compatibility.

Taken together, our findings reveal how the insights of DKS on the advantages of steeper

securities extend to settings with adverse selection when a seller can combine auction design

with security design.

Crémer (1987) shows that when a bidder’s opportunity cost is constant and common

knowledge, a seller can extract full rents by reimbursing the bidder for its opportunity cost,

and demanding all of the equity. Crémer’s mechanism has no screening—the seller’s one

payment choice leaves each bidder type indifferent between truthful reporting and deviating.

In contrast, our mechanism relies on the ability to screen lower types with high equity

offers and higher types with high cash offers. Conceptually, a further difference exists.

Crémer’s construction reflects the insight that with constant opportunity costs, equity bids

generate more revenues than cash, so a seller should “leverage” by shorting the “inferior”
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cash component and demanding all of the “superior” equity component. Applying this logic

to a setting with severe adverse selection where equity auctions generate less revenues than

cash auctions, one might posit that a seller should “leverage” by shorting the “inferior”

equity component. In fact, our mechanism uses strictly positive combinations of equity and

cash, reflecting the intuition that positive mixtures of cash and equity can balance bidders’

differential rents to zero when severe adverse selection obtains.6

Ekmekci, Kos, and Vohra (2016) consider the sale of a firm to a single buyer who is

privately informed about cash flows and the benefits of control. The seller can offer a menu

of cash-equity mixtures, and the buyer must obtain a minimum equity stake to gain control.

They identify conditions under which it is optimal to have the buyer acquire either the

minimum stake or all shares. In contrast, we show how offering different mixes of equity

and cash increases seller revenues, and how and when using steeper-than-equity securities

helps further.

Our work also provides a counterpoint to Deb and Mishra (2014). They show that

if utility is contractible and the type space is finite, then any dominant-strategy imple-

mentable social choice rule can be implemented via a combination of cash transfers and

equity transfers of utility. This result does not hold in our setting in which opportunity

costs (standalone values) are not contractible. That is, focusing on cash plus equity is not

without loss of generality: we identify settings with finite types where full extraction is

impossible using equity plus cash, but the seller can still extract full rents using steeper

securities plus cash, and the mechanism is dominant-strategy incentive compatible.

I. The Model

A group of n ≥ 1 risk-neutral bidders (i.e., acquiring firms) competes to acquire an

indivisible asset—a target firm. Each bidder i (i = 1, ..., n) privately observes its standalone

6We also extend this intuition to settings in which full extraction via cash plus equity is impossible. We
derive the optimal mix and provide insights into the advantages of steeper-than-equity securities.
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valuation Vi, which is independently distributed according to a continuous and strictly posi-

tive probability density fi with support
[
V i, V̄i

]
, where 0 ≤ V i < V̄i <∞. If bidder i acquires

the target, this creates a synergy in the combined firm. The synergy is stochastic, with a

distribution that can depend on the bidder’s identity and the bidder’s standalone valuation

type Vi. The expected value of the synergy, si, is an increasing, continuous, and twice-

differentiable function of Vi. Hence, conditional on the winner’s type Vi, the expected value

of the joint firm is Vi+VT +si (Vi), where VT is the target’s standalone value. The standalone

value VT and the functional forms of fi and si(·) are assumed to be common knowledge.

Our base model assumes that the target is sold via mechanisms in which the winner

pays with combinations of equity and cash.7 Without loss of generality, we consider

direct-revelation mechanisms. Let z ≡ (z1, ...zn) be the vector of reported bidder types; let

Wi(z) be the probability that bidder i wins, where ΣiWi (z) ≤ 1; and when bidder i wins, let

Qi(z) ∈ [0, 1] be the equity share that bidder i retains, and let Mi(z) be its cash payment,

which comes out of the revenues of the combined firm.8

Let f (V) ≡ Πn
i=1fi (Vi) denote the joint density of V ≡ (V1, V2, ..., Vn), and define

f−i (V−i) ≡ Πk 6=ifk (Vk), where V−i≡ (V1, ..., Vi−1, Vi+1, ..., Vn). Let Gi(zi) be the probability

that bidder i wins when it reports having standalone value zi and all other bidders report

truthfully:

Gi(zi) ≡
∫
Wi(zi,V−i)f−i(V−i)dv−i. (1)

Similarly, define qi(zi) to be the expected equity share that bidder i retains conditional on

winning by reporting that it has standalone value zi when all others report truthfully,

qi(zi)Gi(zi) ≡
∫
Qi(zi,V−i)Wi(zi,V−i)f−i(V−i)dV−i, (2)

7This assumption is without loss of generality when si(·) is concave, as we show that this mechanism
extracts all surplus.

8Cash payments in takeovers typically come out of corporate resources. An earlier version of this paper
studied settings in which the cash payment comes out of a winner’s personal funds. All general results extend.
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and define ωi (zi) to be bidder i’s unconditional expected cash payment when it reports zi,

ωi(zi) ≡
∫
Mi(zi,V−i)Wi(zi,V−i)f−i(V−i)dV−i. (3)

Let hi(Vi, zi) be bidder i’s expected profit when it has standalone value Vi but reports

zi, and all other bidders report truthfully,

hi(Vi, zi) ≡ [(Vi + si(Vi) + VT ) qi(zi)− Vi]Gi(zi)− ωi(zi)qi(zi). (4)

Bidder i’s equilibrium expected profit is given by hi (Vi, Vi). Individual rationality requires

that

hi (Vi, Vi) ≥ 0, for all i and Vi. (5)

Incentive compatibility requires that

hi(Vi, Vi) = max
zi

hi(Vi, zi), for all i and Vi. (6)

A seller’s expected profit is the increase in expected social surplus minus the profits of all

bidders,

πT =

∫ ( n∑
i=1

Wi (V) si(Vi)
)
f (V) dV−

n∑
i=1

∫
hi (Vi, Vi) fi (Vi) dVi. (7)

The seller seeks to design Wi(·), Qi(·), and Mi(·) to maximize its expected profit (7) subject

to the individual rationality (5) and incentive compatibility (6) requirements for bidders.

Discussion. Although we pose the model in a takeover context, the analysis applies more

generally, for example, to oil and gas lease or timber lease auctions that feature cash

payments plus equity payments in the form of royalties.9 One can reformulate our model

as an auction in which, rather than there being merger synergies, each bidder has an

opportunity cost of winning, Vi, that increases with the bidder’s expected total valuation

9In such settings, a seller (government) typically has commitment power but no private information.
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of the asset, vi. Because opportunity costs enter bidder payoffs negatively, the curvature

restrictions on Vi(vi) required for full extraction are the opposite of those needed on si(Vi),

but the analysis is otherwise identical.

We first provide an example to illustrate our mechanism.

EXAMPLE 1: There are n ≥ 1 ex-ante identical bidders, who have standalone valuations

V distributed on [1, 2] and expected synergy s(V ) = 1 + V − 0.1V 2. The seller’s standalone

value is zero.

We show that the following mechanism extracts full rents: (1) each bidder reports a type

z ∈ [1, 2], where the highest reported type wins (ties are broken randomly), and (2) the win-

ner pays a fraction 1−0.2z
2−0.2z

of equity that decreases in z plus a cash payment of 1 + 0.1z2 that

increases in z. Later, we show how one can exploit the monotonicity of the payment compo-

nents in z to implement the mechanism using cash payments rather than reports about type.

In this mechanism, the winner retains equity claim 1− 1−0.2z
2−0.2z

to the firm’s residual com-

bined value V + s(V )− (1 + 0.1z2) after making its cash payment and it forgoes its value V

as a standalone entity. To derive the bidding strategy of a type V bidder, let h(V ; z) denote

its expected profit (in excess of its standalone value) conditional on winning. We then have

h(V ; z) =

(
1− 1− 0.2z

2− 0.2z

)(
V + s(V )−

(
1 + 0.1z2

))
− V

=
1

2− 0.2z

(
1 + 2V − 0.1V 2 −

(
1 + 0.1z2

))
− V

=
1

2− 0.2z

(
−0.1V 2 − 0.1z2 + 0.2zV

)
= − 0.1

2− 0.2z
(V − z)2 . (8)

By (8), for all V , the maximized value of h(V ; z) is zero, which obtains when a bidder

truthfully reports z = V ; and h(V ; z) < 0 for all other values of z. Because a bidder’s profit

is zero when it loses, truthful bidding is optimal regardless of how the other bidders bid.

That is, truthful bidding is a weakly dominant strategy. In equilibrium, all bidders receive
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zero rent, the highest NPV (synergy) bidder wins, and the seller extracts full rents.

A. Analysis

We now show how combining cash and equity helps rent extraction in general. We deter-

mine the optimal combination, and identify necessary and sufficient conditions under which

full extraction via equity plus cash is possible. We then examine what a seller can do to maxi-

mize revenue when these conditions do not hold. We first allow cash payments to be negative.

We then identify the conditions needed for full extraction with positive cash payments.

By the Envelope Theorem, bidder i’s equilibrium payoff is

hi(Vi, Vi) = hi(V i, V i) +

∫ vi

vi

(qi(t) +
dsi(t)

dt
qi(t)− 1)Gi(t)dt,

and its derivative is

dhi(Vi, Vi)

dVi
= (qi(Vi) +

dsi(Vi)

dVi
qi(Vi)− 1)Gi(Vi). (9)

Define

Si ≡ {Vi|si(Vi) > sj(V j) for all j 6= i and si(Vi) > 0}

to be the set of types Vi such that having bidder i win control of the target can increase ex-

pected social surplus relative to having any other bidder win or having the target remain as

a standalone entity. That is, if bidder i’s type is not in Si, it is not socially optimal to have i

win. If a mechanism using combinations of equity and cash exists that extracts full rents, then

hi(Vi, Vi) = 0, for all i and Vi, (10)

where Gi(Vi) > 0 if Vi ∈ Si, and Gi(Vi) = 0 if Vi /∈ Si.
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For zi ∈ Si, divide both sides of (4) by Gi(zi) to define

ĥi(Vi, zi) ≡
hi(Vi, zi)

Gi(zi)
= (Vi + si(Vi) + VT )qi(zi)− Vi −

ωi(zi)qi(zi)

Gi(zi)
. (11)

Here, ĥi(Vi, zi) is bidder i’s expected profit conditional on winning when it has standalone

value Vi but reports zi and all other bidders report truthfully. Equations (10) and (11) yield

ĥi (Vi, Vi) = 0, for all i and Vi. (12)

Equation (10) and the incentive compatibility condition (6) yield hi(Vi, zi) ≤ 0 for all zi,

and hence ĥi(Vi, zi) ≤ 0, for all zi ∈ Si. Thus, for all Vi ∈ Si, we have

ĥi (Vi, Vi) = max
zi∈Si

ĥi(Vi, zi) = max
zi∈Si

(
(Vi + si (Vi) + VT ) qi(zi)− Vi −

ωi(zi)qi(zi)

Gi(zi)

)
. (13)

Let vi be the total value of the merged firm under bidder i’s control, as a function of Vi:

vi (Vi) ≡ Vi + si(Vi) + VT . (14)

Because vi strictly increases in Vi, it is invertible. As a result, we can express Vi as a

function of vi. We use this to write (13) as

ĥi(Vi(vi), Vi(vi)) = max
zi∈Si

ĥi(Vi(vi), zi) = max
zi∈Si

(
viqi(zi)− Vi(vi)−

ωi (zi) qi(zi)

Gi(zi)

)
. (15)

Adding Vi(vi) to both sides yields that, for all Vi(vi) ∈ Si,

ĥi(Vi(vi), Vi(vi)) + Vi(vi) = max
zi∈Si

(
viqi(zi)−

ωi (zi) qi(zi)

Gi(zi)

)
. (16)

By (16), ĥi(Vi(vi), Vi(vi)) + Vi(vi) is the maximum of a family of affine functions of

vi, so it is weakly convex for Vi(vi) ∈ Si. Because ĥi (Vi(vi), Vi(vi)) = 0, Vi(vi) must be
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weakly convex in vi, or equivalently vi must be weakly concave in Vi, for Vi ∈ Si. In turn,

inspection of the definition of vi in (14) reveals that si(Vi) must be weakly concave in Vi.
10

We therefore have the following result.

LEMMA 1 If si(Vi) is not weakly concave over Vi ∈ Si for all i, then combinations of equity

plus cash cannot extract all surplus, even if the cash component is allowed to be negative.

We now provide all necessary conditions for the existence of a mechanism using

combinations of equity and cash that extracts full rents. These conditions are also sufficient.

THEOREM 1 A mechanism using combinations of equity and (possibly negative) cash

exists that extracts full rents if and only if for all bidders i: (i) if Vi ∈ Si, then si(Vi) is

weakly concave in Vi; and (ii) if Vi /∈ Si, then si(Vi) ≤ si(zi) + s′i(zi)(Vi − zi) for zi ∈ Si.

PROPOSITION 1 When conditions (i) and (ii) in Theorem 1 hold, the following

dominant-strategy incentive compatible mechanism extracts full rents (i.e., the highest

synergy bidder wins and receives zero expected profit):

• The winning rule is Wi(Vi,V−i) =

 1 if Vi ∈ Si and si(Vi) > maxj 6=i sj(Vj)

0 otherwise

and ties are broken arbitrarily.

• The winning bidder retains equity share

Qi(Vi,V−i) =
1

1 + dsi(Vi)
dVi

, (17)

and makes cash payment

Mi(Vi,V−i) = si(Vi) + VT − Vi
dsi(Vi)

dVi
. (18)

10If the set Si is not connected, then the requirement translates to requiring that a weakly concave
function of Vi go through

(
si, si(Vi)

)
for all Vi ∈ Si.
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We leave a formal proof of Theorem 1 and Proposition 1 to the appendix. Here, we

provide intuition graphically using Figure 1 for some bidder i.

Figure 1: Arc ABCDE plots bidder i’s standalone value Vi as a function of its total valuation
vi, where points on CDE∈ Si. The tangent line through each point on CDE is the winning
payoff from the contract offered to the bidder type associated with that point. The upper
envelope of the tangent lines coincides with CDE and lies below ABC.

The horizontal axis is the total valuation vi in (14). Arc ABCDE depicts bidder i’s

possible types, plotting Vi as a function of vi. Points in arc ABC /∈ Si and points in arc CDE

∈ Si. The winning profit of a type with total valuation vi from reporting total valuation zi is

h∗i (vi, zi) ≡ ĥi(Vi(vi), Vi(zi)) =

[
viqi(Vi(zi))−

ωi (Vi(zi)) qi(Vi(zi))

Gi(Vi(zi))

]
− Vi(vi). (19)

The expression inside the brackets is the contractual payoff to a bidder i with total valuation

vi when it takes the contract meant for type zi. This payoff is a straight line with slope

qi(Vi(zi)). The last term on the right-hand side is bidder i’s standalone value, which

represents its opportunity cost of winning. The difference is i’s winning profit. Thus, any

type point above this straight payoff line would lose profit from this contract, while any

type point below the line would realize a positive profit.
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Consider the contract offered to some type D on arc CDE. Again the payoff associated

with this contract is a straight line. Because type D receives zero profit given full extraction,

this line goes through point D. In addition, full extraction at all points in Si plus the incentive

compatibility condition (15) yield h∗i (vi, zi) ≤ 0 for all Vi(vi) ∈ Si and all zi. Hence, all other

type points (including point A) must be above this line. Because this must hold when point

D is replaced by any other point on arc CDE, this arc must be convex (i.e., si(·) must be con-

cave, as in part (i) of the theorem), and the line must be a tangent line. The slope of this line

is qi(Vi(zi)) by the payoff condition established earlier, and the slope is dV
dv

by the tangency

condition. Thus, qi(Vi(zi)) = dV
dv

, which yields (17) after reversing the transformation (14).

Next, consider any point on arc ABC, which is not in Si. Full extraction requires that

the associated type not take any contract offered to types on arc CDE. Thus, all points

on arc ABC must be above any tangent line of arc CDE. This delivers condition (ii) of

the theorem after reversing the transformation (14). Observe that arc ABC need not be

convex—to achieve full extraction, part (i) of the theorem does not need to hold for types

outside Si. The difference in the restrictiveness of the two conditions reflects the fact that

for any type in Si, one must ensure that no other type wants to mimic it, but mimicking

types not in Si always loses.

COROLLARY 1 In the full-extraction mechanism (Proposition 1), higher types choose a

flatter mix, paying with less equity and more cash:

d

dVi
(1−Qi(Vi,V−i)) =

1

(1 + dsi(Vi)
dVi

)2

ds2
i (Vi)

dVi
≤ 0 and

dMi(Vi,V−i)

dVi
= −Vi

ds2
i (Vi)

dVi
≥ 0.

This corollary reveals the general principle underlying the gains from mixing cash and

equity: a seller can tailor its menu of possible cash-equity payments so that (1) higher types

that expect to generate higher synergies (and have higher standalone values) choose a less

steep mix that requires them to give up a smaller equity claim to those standalone values in
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return for a higher cash payment,11 while (2) lower types choose steeper mixes because they

care less about giving up greater equity claims to their lower standalone values, and more

about the cash payment. The net effect is to reduce the differential rents between high and

low types.12 The mechanism in Proposition 1 is dominant-strategy incentive compatible. A

bidder’s winning payment depends only on its own report and not on those of other bidders;

and if a bidder misreports and wins, its profit is nonpositive. Thus, the mechanism extracts

full rents even from a single bidder absent any competition, and bidders would not deviate

even in a complete information setting with multiple bidders. Moreover, if si(Vi) is strictly

concave over
[
V i, V̄i

]
, then the equilibrium enforces itself in a strict sense: bidder i would

receive a strictly negative expected profit if it deviated and won.

The cash payments needed in Proposition 1 to extract all rents could be negative. As

DKS highlight, mechanisms with negative cash payments can have moral hazard issues. We

now provide the additional necessary and sufficient condition for the optimal mechanism to

specify that ωi(Vi) > 0 for all Vi ∈ Si, that is, for the winner’s cash payment to necessarily

be positive.

COROLLARY 2 Suppose that conditions (i) and (ii) in Theorem 1 hold. Then, if, for all i,

d

dVi

si(Vi) + VT
Vi

< 0 for all Vi ∈ Si, (20)

then the mechanism specified in Proposition 1 uses strictly positive combinations of equity

and cash and extracts all rents, generating strictly higher expected revenues than either pure

equity or pure cash. In contrast, if these conditions do not hold, then no mechanism can

extract full rents using combinations of equity and strictly positive cash.

Equation (20) is equivalent to the elasticity condition d ln(si(Vi)+VT )
d lnVi

< 1, that is, the

11In contrast, in equity auctions in which standalone values (or opportunity costs or investment costs)
are constant, a higher type always gives up a larger claim to outbid lower types.

12The prediction in Corollary 1 holds for both single- and multiple-bidder contests. This is one way in which
our model differs from the single-bidder signaling model of Eckbo, Giammarino and Heinkel (1990). Section B
presents additional empirical implications that further differentiate our model from bidder-initiated theories.
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bidder’s valuation of the asset, si(Vi) + VT , increases in the bidder’s standalone value Vi

less than unit elastically. It is the necessary and sufficient condition for bidding strategies

in second-price equity auctions to be decreasing in the total valuation of the combined firm

si(Vi) + VT + Vi (Che and Kim (2010)).13 This condition implies that adverse selection is

severe if bidders only pay with equity, but Corollary 2 shows that this condition in fact

allows the seller to extract full rents with equity plus strictly positive cash. That is, the

seller can exploit the adverse selection to its advantage. When adverse selection is severe,

high bidder-types expect to earn less rents than low bidder-types when they pay with

equity—so strictly positive mixtures of cash and equity can balance bidders’ differential

rents to zero. Thus, our mechanism allows the seller to more than costlessly overcome the

adverse-selection problem: the seller does strictly better than in settings without adverse

selection, where positive mixtures of cash and equity cannot extract full rents.

Implementation: The full-extraction mechanism can be implemented via cash plus a

decreasing equity share. By Corollary 1, the equity share paid falls with Vi and the cash

payment rises with Vi. Therefore, the equity share paid can be expressed as a strictly

decreasing function of the cash payment. This means that the full-extraction mechanism

can be implemented by having each bidder i bid in cash and setting a reserve price of

ri ≡ si(V
∗
i ) + VT − V ∗i

dsi(V
∗
i )

dVi
, (21)

which is the cash payment in (18) for type V ∗i , where V ∗i is the zero-synergy type (V ∗i ≡ V i

if all types have positive synergies). The bidder with the highest bid exceeding the reserve

wins (given ex-ante identical bidders; the approach generalizes) and pays its own bid.

However, for each cash bid made, a bidder must pay an additional equity share that

13This decreasing property follows because (1) the bidding strategy in second-price equity auctions

is si(Vi)+VT

Vi+si(Vi)+VT
=

si(Vi)+VT
Vi

1+
si(Vi)+VT

Vi

, which decreases in si(Vi)+VT

Vi+si(Vi)+VT
if and only if si(Vi)+VT

Vi
decreases in

Vi + si(Vi) + VT ; and (2) Vi + si(Vi) + VT increases in Vi.
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is uniquely determined by its cash bid via the function determined above. As with the

mechanism in Proposition 1, this implementation is dominant-strategy incentive compatible.

To illustrate this implementation, we revisit Example 1. Consider a first-price auction

in which a bidder offers cash c plus an associated equity share

e (c) =

 1− 1
2−0.2

√
10c−10

if c ≤ 3.5

0 if c > 3.5
. (22)

The cash bid must weakly exceed a reserve price of 1.1, the highest cash bid wins, and

the winning bidder pays that bid plus the associated equity.

Let π(c;V ) be type V ’s expected profit conditional on winning. Then

π (c;V ) = (1− e (c)) (V + s (V )− c)− V

= (1− e (c))
(
1 + 2V − 0.1V 2 − c

)
− V .

Direct calculation yields that for all V ∈ [1, 2], the maximum value of π (c;V ) is zero, which

obtains at

c = 1 + 0.1V 2, (23)

and that π(c;V ) < 0 for all other values of c.14

Because a bidder that loses earns zero profit, bidding according to (23) is optimal

regardless of how the other bidders bid. In equilibrium, all bidders receive zero rent.

Because (23) strictly increases in V , the highest-valuation bidder wins and the NPV is

strictly positive—the seller extracts full rents. This example highlights how, in our first-price

auction, optimal combinations of cash with an equity share that declines in the cash bid

14When c ∈ [1.1, 3.5], π (c;V ) = 1
2−0.2

√
10c−10

(
1 + 2V − 0.1V 2 − c

)
− V . Equation (23) is the unique

solution to the first-order condition ∂π(c;V )
∂c = 0 for c ∈ [1.1, 3.5], which yields π (c;V ) = 0 for all V .

Furthermore, ∂π(c;V )
∂c > 0 for c ∈ [1.1, 1 + 0.1V 2), and ∂π(c;V )

∂c < 0 for c ∈ (1 + 0.1V 2, 3.5]. When c > 3.5,
π (c;V ) = 1 + V − 0.1V 2 − c < 0 for all V ∈ [1, 2].
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yield an equilibrium in which bidders employ dominant strategies.15

In fact, to extract full rent, it suffices for a seller to be able to commit to reserve

prices—the equity share paid falls with the cash payment, so the cash payment by bidder i

can be expressed as a decreasing function κi(·) of the equity share. The following first-price

auction with a decreasing reserve extracts full rents: each bidder i offers a cash-plus-equity

combination, and there is an ei-dependent reserve price for the minimum cash bid:

max
{
κi(ei), ri

}
, where ri is given in (21). This reserve price falls with the share ei offered.

The bidder with the highest cash bid exceeding the reserve wins (with ex-ante identical

bidders, but the approach generalizes to ex-ante heterogeneous bidders). In Example 1, this

equity-dependent reserve price is max
{

0.1
(
10− 5

1−e

)2
+ 1, 1.1

}
. The first term inside the

max operator is κ(e), which is the inverse function of (22).

Robustness: Samuelson (1987) observes that existing mechanisms that extract all (or nearly

all) surplus via contingent payments face two robustness concerns. First, in such mechanisms

bidders earn zero (or close to zero) rents regardless of whether they report truthfully, render-

ing them almost indifferent to reporting any values. But then any added factor (even pure

white noise) can result in an inefficient bidder type being selected as the winner. Second,

such mechanisms require the winning bidder to retain zero equity share, leaving the winner

prone to moral hazard, with no incentive to take actions ex post that maximize firm value.

Our full-extraction mechanism addresses both of these concerns. First, if si(Vi) is

strictly concave, a bidder would receive a strictly negative expected profit from deviating

and winning. This makes selection of the “right” bidder robust to small noise. Second, our

mechanism almost never requires the winning bidder to give up all equity, mitigating moral

hazard concerns. We now establish a third robustness property, deriving a lower bound on

seller revenues when full extraction is impossible via combinations of cash and equity. We

show that if si(Vi) is not quite weakly concave, or if there is slight uncertainty about the value

15In contrast, if bidders pay with pure cash, pure equity, or cash plus a constant equity share, a first-price
auction does not have a dominant-strategy equilibrium.
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of si conditional on Vi, then combining equity and cash can still extract almost all surplus.

We establish a simple lower bound on a seller’s revenue for the case of a single bidder

that would generate positive synergies, that is, s(V ) > 0 for all V . It follows that it is

socially optimal to sell to any bidder type, and the maximum social welfare gain is

Π ≡
∫ V̄

V

s(V )f(V )dV .

We now define what it means for the synergy function to be close to a (weakly concave)

function, and then bound the revenue loss vis-‘a-vis basing the mechanism on that function.

Definition: Consider a strictly increasing function s(·) defined over V ∈ [V , V̄ ], and a strictly

increasing function y(·) defined over V ∈ [V −
√

2
2
ε, V̄ +

√
2

2
ε], where ε > 0. Then s(·) is in

the ε-neighborhood of y(·) if, for V1 ∈ [V − ε, V̄ + ε] and V2 ∈ [V , V̄ ], V1 +y (V1) = V2 +s (V2)

implies that (V1 − V2)2 + (y (V1)− s (V2))2 ≤ ε2.

PROPOSITION 2 If the expected synergy function s(V ) is in an ε-neighborhood of a

weakly concave function y(V ), then an equity-plus-cash mechanism exists that generates

expected profit of at least

Π−
√

2ε.

The bidder reports a type V ∈ [V −
√

2
2
ε, V̄ +

√
2

2
ε], wins the asset, retains equity share

Q(V ) =
1

1 + dy(V )
dV

, (24)

and makes cash payment

M(V ) = y(V ) + VT − V
dy(V )

dV
−
√

2

2
ε

(
1 +

dy(V )

dV

)
. (25)

Proof: See the appendix.

Intuitively, for any bidder type with standalone value V and expected synergy y(V ), in
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the prescribed mechanism in Proposition 2 (with ε = 0 in (25)), the bidder’s expected profit

is weakly higher reporting V than reporting anything else. The proof shows that if another

type has the same total valuation (i.e., standalone value plus expected synergy equals

V + y (V )), then that other type is also better off reporting V than reporting anything else.

This leaves only to guarantee that individual rationality holds. Reducing the cash payment

M(V ) by a constant only affects individual rationality constraints and not the incentive

compatibility constraints. Thus, by properly choosing this constant (setting it to
√

2
2
ε), both

the incentive compatibility and individual rationality constraints can be satisfied.

Proposition 2 implies that when s(V ) is “almost” weakly concave, a seller can extract

almost all surplus. Moreover, this result holds even if s does not evolve deterministically with

V . Thus, even if the seller only knows approximately how s is related to V , our mechanism

still delivers close to full extraction. With multiple bidders, an additional complication may

arise because, with a misspecified model (yi(·) differs from si(·)), the highest-synergy bidder

may not always be selected. However, as noted earlier, concavity helps our mechanism offset

this selection effect, and the mechanism will still extract close to full rents when ε is small.

A.1. Optimal Equity-Plus-Cash Mechanism When s(V ) is Not Concave

We next characterize how the optimal mechanism is affected when synergies are not a

concave function of standalone values. To illustrate, we first consider a single bidder with

three possible types (Vi, si), i = 1, 2, 3, where 0 < V1 < V2 < V3 and 0 < s1 < s2 < s3. Let

fi > 0 be the probability of a type i bidder, where f1 + f2 + f3 = 1. When

τ ≡ s3 − s2

V3 − V2

− s2 − s1

V2 − V1

> 0, (26)

concavity is violated, rendering full extraction via equity plus cash impossible. Here τ > 0

measures the convexity of the synergy–value relationship. Note that τ approaches zero as

s3−s2
V3−V2 →

s2−s1
V2−V1 , making the relationship almost linear. To solve for the profit-maximizing
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equity-plus-cash mechanism, without loss of generality, let the seller offer three contract

choices {ci, ei; pi}. A bidder that selects contract i wins with probability pi ∈ [0, 1], in which

case it pays cash ci and equity share ei ∈ [0, 1]. Denote by πi,j a type i bidder’s profit when

it chooses contract j and wins,

πi,j = (1− ej) (Vi + si + VT − cj)− Vi. (27)

To obtain type i’s unconditional expected profit if it picks contract j, multiply by pj,

Πi,j = pjπi,j, for all i and j. (28)

Incentive compatibility requires that

Πi,i ≥ Πi,j, for all i and j 6= i. (29)

Individual rationality requires that

Πi,i ≥ 0, for all i. (30)

The seller’s expected profit is then

Πs =
3∑
i=1

fipi (ei (Vi + si + VT − cj) + cj − VT ) . (31)

The seller’s problem is to identify the three contracts {ci, ei; pi} for i = 1, 2, 3 that

maximize its expected profit (31) subject to (29) and (30).

LEMMA 2 If the synergy–valuation relationship is convex so that τ > 0, then it is optimal

to offer a single contract that consists of a fixed equity share e ∈ (0, 1) and fixed cash, with

p = 1.
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(i) If f2s2
τ

is small so that there are sufficiently few intermediate type 2s, then it is

optimal to exclude type 2s and extract all surplus from types 1 and 3.

(ii) If f2s2
τ

is bigger than in (i), then it is optimal to extract full rents from type 2 and

either type 1 or type 3, which necessitates giving rents to the other type.

COROLLARY 3 When s(V ) is convex, it is optimal to make a take-it-or-leave-it offer

with a fixed equity share plus a fixed cash payment.

An Internet Appendix provides the details on the construction and properties of the

optimal contract. The Internet Appendix is available in the online version of the article at

the Journal of Finance website. When f2s2
τ

is small, the expected rent gains from type 2 are

small relative to the degree of convexity, making it optimal to extract full rents from types

1 and 3, at the cost of excluding type 2, to earn profits of Πs = f1s1 + f3s3. The convex

synergy–valuation relationship means that any contract that satisfies type 2’s individual

rationality condition would leave either type 1 or type 3 with strictly positive rents that

exceed what the seller could extract from type 2, making it optimal to exclude type 2.

Once f2s2
τ

is large enough, it ceases to be optimal to exclude type 2. The optimal design

is then either to extract full rents from types 1 and 2, but obtain reduced rents from type

3; or, instead, to extract full rents from types 2 and 3, but obtain reduced rents from type

1. When f3/f1 is relatively small, it is optimal to leave rents for type 3; and when f3/f1 is

larger, it is optimal to leave rents for type 1. In all three cases, the shortfall in seller profits

from full extraction approaches zero as τ → 0.

With three types, the seller can always implement the optimal mechanism with a single

contract.16 We now show that this property extends to a continuum of types as in our main

model. With three types, we identified the optimal mechanism in the space of all feasible con-

tracts. In particular, we allow for any pi between zero and one, and show that in the optimal

16In the Internet Appendix we show that the optimal mechanism can also be implemented by multiple
contracts. Such contracts have the feature that higher types pay (weakly) higher cash and less equity.
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mechanism, pi ∈ {0; 1}. That is, with three types, a bidder type is either always excluded

or always included in the optimal mechanism. With a continuum of types, to ease analysis

we restrict attention to the space of contracts with this feature, that is, with pV ∈ {0; 1}

for all V . We show that it remains optimal to offer a single contract when s(V ) is convex.

PROPOSITION 3 Suppose s(V ) is strictly convex over
[
V , V̄

]
and the contract space is

pV ∈ {0; 1} for all V . The optimal mechanism has the following features:

(i) There exist two bidder types V1, V2 with V ≤ V1 ≤ V2 ≤ V̄ , such that all types in

[V , V1] ∪
[
V2, V̄

]
participate but intermediate types in (V1, V2) are excluded. If V1 = V2, then

all bidder types participate. Full rents are extracted from bidder types V1 and V2. All other

participating types earn strictly positive rents.

(ii) The optimal mechanism is implemented by a single contract with

e =
k

1 + k
and c = VT + s (V1)− kV1, (32)

where

k ≡ s (V2)− s (V1)

V2 − V1

if V1 < V2; and k ≡ ds(V )

dV
|V=V1 if V1 = V2. (33)

Proposition 3 characterizes the optimal mechanism when the synergy valuation rela-

tionship is convex. It establishes that the key features of the optimal mechanism in the

three-type case are general in nature, reinforcing the result that the optimal mechanism has

a simple implementation in which the seller makes a take-it-or-leave-it offer with a fixed

equity share plus cash.

In sum, if s(V ) is concave, then a seller can extract all surplus using the optimal

cash-equity menu; while if s(V ) is convex, then full extraction using cash and equity is not

possible,17 but the optimal mechanism takes a simple form. To understand why the optimal

17In Section II we show that even if s(V ) is convex, a seller may still be able to extract full rents by
combining cash with steeper-than-equity securities: the convexity of steeper-than-equity security payments
can offset convexity in the synergy–standalone valuation relationship.
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mechanism takes the form of a menu when s(V ) is concave but is a single contract when

s(V ) is convex, consider Figure 2. As in Figure 1, the horizontal axis is the total valuation

vi of the combined firm under the bidder’s control, but now the arc ABCDE depicting the

bidder’s possible types (plotting standalone values Vi as a function of vi) is concave.
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Figure 2: Arc ABCDE plots the bidder’s standalone value V as a function of v. Line
segments FG and GH are the upper envelope of the winning payoffs from two contracts.

Recall from (19) that the winning contractual payoff to a bidder is a straight line on this V

versus v figure. Suppose now that it is optimal for the seller to offer two contracts, illustrated

here by lines FG and GH. Because each bidder type selects the contract that maximizes its

payoffs, the bidder will select from the upper envelope of these two lines, FGH. In this case,

types on curve BCD will not participate, and other types participate and earn positive profit.

For example, the profit of type A is the distance between point A and point A′ that is verti-

cally above A on line FB. Now, replace the two contracts by the single contract that extracts

full rents from points B and D. The payoff line is the straight line BD. Points on arc BCD still

do not participate, but all other points continue to participate and they receive lower rents.

To summarize Figures 1 and 2: when V (v) is convex (i.e., s(V ) is concave), one can find

a menu of contracts such that the upper envelope of the straight payoff lines associated with
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the contracts exactly coincides with the V (v) curve, perfectly separating types and leaving

each bidder type’s winning payoff just equal to its opportunity cost, hence extracting all

rents. In contrast, when V (v) is concave (i.e., s(V ) is convex), the weakly convex upper

envelope of contract payoff lines cannot coincide with V (v). To minimize the bidder’s

rents—to minimize the vertical distance between the upper envelope and the V (v) curve at

places where the former is above the latter—the seller offers a single contract, whose straight

payoff line minimizes the convexity of the upper envelope, pooling all participating types.

We now show that if s(V ) is approximately affine in V—if s(V ) is “close” to being

both concave and convex—then a seller can extract almost all surplus by complementing a

standard cash auction design with an added fixed equity share payment.

LEMMA 3 Consider n > 1 ex-ante identical bidders with standalone valuations distributed

according to F (V ) on [V , V̄ ] with associated synergies s(V ) > 0. The maximum social

welfare gain is Π =
∫ V̄
V
s(V )d (F n(V )). Suppose s(·) is in an ε-neighborhood of an affine

function y(V ) = c + bV , with b < ds(V )
dV

at all V . Then in a second-price auction in which

bidders bid with fixed equity share α plus cash, expected seller profit increases in α ∈
[
0, b

1+b

]
and is no less than Π−

√
2ε at α = b

1+b
.

Proof: See the Appendix.

Even if a seller can only commit to rejecting offers that do not include a minimal equity

share α ∈
(
0, b

1+b

)
, the mechanism still generates more revenues than pure cash—being able

to commit to even a small amount of equity improves the seller’s revenue because it reduces

the differential rent of a high type over a low type.

A.2. Commitment and Informal Auctions

Our model presumes that a seller has full commitment power so that it is able to reject

any offer outside its designed menu. In essence, our premise is that if a target decides to sell

itself, then its board runs the process and commits to the mechanism that maximizes value.
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A target board’s “Revlon duties”18 mandate that its role is to be “auctioneers charged with

getting the best price for the stockholders at a sale of the company.” We interpret this rule

as requiring the board to select the mechanism that maximizes the ex-ante expected sale

price. Consistent with this view, Boone and Mulherin (2007) document that public targets

often privately contact potential bidders to solicit bids, and that many public transactions

are seller-initiated. The data further suggest that public targets have extensive commitment

power, as indicated by the minimal rents obtained by acquiring firms.

Above, we show that when a seller has complete commitment power, the full-extraction

mechanism can be implemented by having bidders bid with cash and pay an associated equity

share that declines with the cash bid. Moreover, as the alternative solution to Example 1

illustrates, a seller only needs to be able to commit to reserve prices to extract full rents: the

seller can use a first-price auction in which a bidder bids cash plus a fixed equity share, where

the reserve price on the cash bid decreases with the equity share and the highest cash bid

wins. In practice, sellers in auctions do set reserve prices, committing not to sell unless a bid is

sufficiently high. Indeed, widespread adoption of strong takeover defenses such as poison pills

in the 1980s have endowed targets with considerable commitment power, “halt[ing] the use

of hostile bids” (BETa, p298). As Povel and Singh (2006, p1399) observe, “Deal protection

devices can be used to enhance a target’s commitment to the [optimal selling] procedure.”19

Still, a private target or a subsidiary of an acquirer may have less commitment power.

This leads us to consider the extreme scenario often assumed by bidder-initiated theories

in which the target lacks all commitment power and hence is unable even to set a reserve

price. That is, we suppose that the acquirer has complete freedom to select the cash–equity

mix to offer, and the target cannot reject any offer that leaves it with non-negative expected

profit. Outcomes are sharply altered. A target’s complete inability to commit results in an

informal auction, as in DKS, in which bidders are free to offer any cash–equity combination,

18Revlon versus MacAndrews and Forbes Holdings, 506 A.2d 173 (Del. 1986).
19Ahern (2012) suggests that a target also has extensive bargaining power in a customer-supply situation

when the acquirer relies more on the target as a supplier or customer than the converse.

28



and the seller chooses the most attractive bid combination ex post. DKS show in their

setting that bidders will use the flattest security possible. Lemma IA1 in the Internet

Appendix shows that the logic of their argument extends to our setting, leading bidders to

offer cash only with no equity component.

In the single-bidder setting often seen in mergers, a complete inability to commit

generates the counterfactual implication that the acquiring firm extracts all surplus. The

single acquirer now has both an information advantage (it is privately informed) and all

bargaining power, so it can ensure winning and extracting full rents by offering a cash bid of

VT , leaving the target with zero profit. With the added freedom to choose any cash–equity

combination, it will do no worse; but it can do no better either because in equilibrium the

target correctly infers an offer’s monetary value and hence will not earn a negative profit.20

Indeed, if the target cannot set a reserve price, then it cannot do better even if it can

commit to a particular equity valuation. That is, suppose a target evaluates an offer {c, e}

by c + f (c, e) e, where c is the cash amount and e is the share of equity to be paid, and

f (c, e) ≥ 0 is a function that can potentially depend on c and e, accepting an offer as long

as its valuation of the offer c + f (c, e) e ≥ VT . Once again, because offering a cash bid of

VT ensures full rent extraction, a bidder will do no worse than full extraction.

Nonetheless, as we derived, a target may need only a little commitment to do well. A tar-

get that can commit to a fixed equity share plus cash can extract close to full rents when s(V )

is approximately affine. Further, when synergies are a convex function of standalone values,

a seller cannot extract all surplus, but it can do as well as it possibly can by committing to a

fixed equity share (royalty rate) plus cash, a mechanism used in many economic transactions.

20The key feature of our model is that one side (the bidders) has private information and the other side
(the seller) has full bargaining/commitment power. We show that commitment power alone can completely
eliminate the other side’s information advantage. Reversing the analysis yields that the acquirer can extract
full rents via our mechanism if it has the bargaining power, even if only the target has private information.
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A.3. Two-sided Private Information

In the Internet Appendix, we analyze a simple setting in which both the seller and the

buyer have private information about their standalone values. We consider a scenario with

two possible bidder valuations and two possible seller valuations, where a larger spread in

the possible valuations represents an increase in asymmetric information.

With two-sided private information, the menu of contracts that a seller offers may signal

information to a buyer about a seller’s standalone value. The seller cannot extract all

surplus in a separating equilibrium, that is, when different seller types offer distinct menus,

revealing their types. Were it possible, then each seller type would earn the associated

expected synergy as rent. But then it would be profitable for a low-standalone-valuation

type to mimic a high-standalone-valuation type to earn more rents, a contradiction.

However, full extraction is possible in a pooling equilibrium in which both seller types offer

the same menu of contracts, provided that information asymmetry about a seller’s standalone

value is not large: the seller uses the mechanism in Theorem 1 and Proposition 1, with the

seller’s expected standalone value replacing VT . The seller’s expected profit is the expected

synergy. However, rents differ conditional on seller type: a low type earns more than full

extraction, while a high type earns less. Once information asymmetry about a seller’s stan-

dalone value is sufficiently high, full extraction ceases to be possible: a high-type seller’s rents

would be too low, giving it incentives to deviate and leading to strictly positive bidder rents.

Thus, increased information asymmetry about a target, for example, when the target is

private rather than public, can lead to increased acquirer rents, consistent with the data.21

However, in contrast to this prediction of our target-initiated model, when the acquirer

has the bargaining power, increased information asymmetry about the target increases the

target’s information advantage, counterfactually reducing the acquirer’s return.

21This fact can also be reconciled by public targets having more bargaining power than private targets.
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B. Empirical Implications and Relationship to the Literature

In this section, we expand upon how our model reconciles a wide range of empirical

regularities associated with takeovers that collectively are difficult for models in which

acquiring firms have significant bargaining power to explain. We first list important

empirical regularities associated with takeovers. We then show our model can reconcile

them. Finally, we contrast our theory with existing theories of takeovers, showing how they

can explain only a subset of these regularities.

Empirical Regularity 1: Multiple public bidders for firms are rare (see EMT’s summary

of the evidence). Indeed, of all contests for publicly traded U.S. targets between 1980 and

2005, only 3.4% had multiple public bidders (BETa).

Empirical Regularity 2: On average, the target grasps almost all gains associated with

takeovers of publicly-traded firms. In particular, EMT’s review article reports that mean

CARs to the target amount to 29% including pre-announcement run-ups due to information

leakage, while Dessaint, Eckbo, and Golubov (2019, p3) summarize evidence that “average

acquirer returns over the last four decades have remained close to zero and largely flat—both

unconditionally and after controlling for the usual observable firm- and deal-specific effects.”

Empirical Regularity 3: Abnormal returns to both the target and acquirer rise in the cash

amount of an offer, as does their combined return (Andrade, Mitchell and Stafford (2001),

Table 4). EMT summarize the evidence for bidders, “Bidder abnormal announcement

returns are on average highest in all-cash offers, lowest in all-stock offers, and with mixed

cash-stock offers in between” (p36); and BETa, p355, summarize the evidence that CARs

to targets are greater for cash offers than equity offers. Betton et al. (2014, Table VII) find

a strong positive correlation between target and acquirer CARs.

Empirical Regularity 4: Multiple bidders raise the probability of cash use (Betton, Eckbo,

and Thorburn (2008b, BETb, Table 1)). Boone and Mulherin (2007, derived from Table

IV) find that acquisitions involving equity are twice as likely as pure cash acquisitions to
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have one bidder.

Empirical Regularity 5: Bidders appear rational, maximizing profits. More specifically,

equity-financed takeovers are not associated with poor long-run performance. EMT, citing

Eckbo, Makaew and Thorburn (2018), Rhodes-Kropf, Robinson, and Viswanathan (2005),

and Li, Taylor, and Wang (2018), summarize the state of knowledge as follows: “Recent

empirical evidence indicates that targets do not receive overpriced bidder shares” (p2-3),

and “there is little systematic evidence of poor post-acquisition long-run performance of

stock-financed takeovers.”(p39)

Empirical Regularity 6: Acquirers of public targets earn lower returns than acquirers of

private targets. BETa’s analysis finds that, on average, public targets extract all synergy

gains,22 whereas in acquisitions of private targets, the acquirer’s return are positive.23

Similarly, Faccio, McConnell, and Stolin (2006, FMS) examine returns to acquisitions of

listed and unlisted targets in 17 Western European countries, and find that acquirers of

listed targets earn an insignificant average abnormal return of -0.38%, while acquirers of

un-listed targets earn a significant average abnormal return of 1.48%.

Our model reconciles all of these observations. In the optimal design each potential ac-

quirer has a dominant strategy, and the winner’s payment depends only on its own bid. Thus,

our model is consistent with the takeover process identified by Boone and Mulherin (2007),

whereby a target privately approaches multiple potential acquirers, sets the terms of payment

contingent on that bidder winning, and then selects the bidder that would most increase its

value, extracting all surplus despite only one public bid. Thus, the rarity of public bids and

the unbalanced division of surplus between target and acquirer arise naturally in our setting.

Our model delivers the patterns regarding the asset composition of bids and returns

22BETa calculate combined bidder and target abnormal returns by weighting bidder and target abnormal
returns by their associated market capitalizations on day -42. For a publicly-traded target and acquirer, the
estimated combined CAR (-41,2) is 1.78%, but the estimated acquirer CAR (-41,2) is an insignificant -0.22%.

23Fuller, Netter, and Stegemoller (2002) similarly find that acquirer returns in windows around bids are
lower for public targets (insignificantly negative) than for private targets (positive and significant). See also
Sundaram (2006), Moeller, Schlingemann, and Stulz (2007), or Bargeron et al. (2007).
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because greater cash components reveal (1) higher synergies, from which only the target

benefits, and (2) more positive information about the acquirer’s standalone value, causing

the acquirer to experience greater abnormal returns. Thus, a higher cash component in the

offer leads to higher abnormal returns for both the target and the acquirer. The observation

that multiple bidders raise the probability that cash is used follows from a simple first-order

statistic logic in our model: more bidders increase the probability that the winning bidder

has a high synergy, and bidders with higher synergies use more cash.

Finally, the possibility that the nature of the synergy–standalone valuation relationship

depends in systematic ways on target characteristics can reconcile the puzzling24 listing

effect: acquirers of publicly-traded targets earn lower returns than acquirers of private-

targets. More specifically, a risky start-up or growth firm might succeed hugely with a high

quality merger acquirer (associated with higher privately-known standalone values). As a

result, the percentage upside synergy gains from acquisitions of younger and smaller target

firms might be far higher than those for a mature target, whose value creation might depend

less sensitively on its acquirer’s quality. This could give rise to a convex synergy-valuation

relation for start-ups and growth firms, but a concave one for larger, publicly-traded firms.

Our analysis suggests that this can underlie the listing effect: a concave synergy relationship

for public targets facilitates full extraction, whereas a convex synergy relationship for

private targets leaves rents for the acquirer.25

Existing theories of takeovers in which the acquirer has the bargaining power can

explain some of these empirical patterns, but they cannot reconcile others. Fishman (1989)

develops a bidder-initiated theory of takeovers in which an initial bidder who is privately

informed about its valuation can offer either cash or debt. He shows that a high-valuation

bidder offers cash to discourage rivals from acquiring information about their valuations

24For example, FMS’s abstract notes that “The fundamental reason for this listing effect...remains elusive.”
25In addition, there may also be materially more informational asymmetries about private targets than

public targets, and private targets may have less bargaining power. Our analysis of such scenarios shows
how they can also contribute to the listing effect.
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and then competing for the target. As in our model, his model predicts that the use of more

cash is associated with higher acquirer returns. However, it does not predict that higher

cash components are associated with higher target returns (since cash use discourages

competition for the target even though it provides an initial premium). His model also

implies that cash is less likely to be used when there are multiple bids, contrary to the

predictions of our model and the findings in BETb and Boone and Mulherin (2007).

Eckbo, Giammarino, and Heinkel (1990) study a signaling model of takeovers in which a

single bidder and the seller are both privately informed of their valuations.26 They identify a

separating equilibrium in which the cash-equity composition of the bidder’s offer reveals the

bidder’s type. As in our paper, a higher bidder type offers more cash, and is associated with

higher CARs for the acquirer. However, in their model a seller accepts an offer as long as it

breaks even and the acquirer extracts a large share of the surplus, in contrast to our model

and the data. In addition, our model predicts that the target CAR increases in cash, but

their model does not. Finally, their single-bidder model is silent on the impact of multiple

bidders, whereas ours predicts that multi-bidder settings are more likely to have cash offers.

Researchers have also posited behavioral and agency explanations for both the observed

lopsided sharing of takeover synergies and the higher CARs for cash offers than equity

offers, including bidder agency costs, managerial hubris and theories based on market

misvaluation (leading to bidder opportunism, with bidders paying a mis-informed target

with overpriced bidder stocks), but EMT’s summary of the evidence (citing Eckbo, Makaew,

and Thorburn (2018), Rhodes-Kropf, Robinson, and Viswanathan (2005), and Li, Taylor,

and Wang (2018)) is at odds with such theories. In addition, EMT find that cash-rich and

cash-poor bidders are equally likely to use equity, suggesting that cash limitations are not

a fundamental determinant of these patterns.

26See also Gorbenko and Malenko (2018), where cash–equity compositions reflect signaling and financial
constraint considerations.
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II. Combining Cash with General Securities

We next allow a seller to combine cash with general securities, focusing on a single

bidder.27 We show that combining cash with steeper-than-equity securities can be even

more effective at extracting rents than combining cash with equity.

We first illustrate how a dominant-strategy incentive compatible mechanism that

employs combinations of call options and cash can extract all surplus when equity plus cash

cannot, underscoring how steeper securities can help in the rent extraction.

Example 2. A single bidder has possible standalone values V ∈ {2, 2.6, 3}, each with

strictly positive probability, with associated expected synergies of s(2) = 4, s(2.6) = 4.4,

and s(3) = 5. Expected synergies are thus a convex function of standalone values. The

realized synergy of a type with expected synergy s is uniformly distributed on [s− 1, s+ 1].

The target’s standalone value is zero.

By Theorem 1, the convex synergy relationship means that full extraction is impossible

using equity plus cash. We now show that the seller can extract full rents by combining even

steeper securities with cash, using call options plus cash. The payment by a bidder who

• reports V = 2 consists of a call option with strike 2.25 plus 3.75 in cash;

• reports V = 2.6 consists of a call option with strike 2.85 plus 4.15 in cash;

• reports V = 3 consists of a call option with strike 3.25 plus 4.75 in cash.

When cash flow is uniformly distributed over [v − 1, v + 1], where v > 1, the expected

payment for a call option with strike k is v−k if k ≤ v−1, 1
4

(v + 1− k)2 if k ∈ (v − 1, v + 1),

and zero if k ≥ v+ 1. Substitution into a bidder’s expected profits reveals that truth-telling

results in zero payoffs and deviating results in strictly negative payoffs.28

27The optimal mechanism generalizes to allow the seller to extract full rents from multiple bidders, while
maintaining dominant-strategy incentive compatibility.

28For instance, consider a type V = 2.6 bidder. If it truthfully reports V = 2.6, then after paying 4.15 in
cash, the total cash flow of the combined firm is uniformly distributed over [2.85− 1, 2.85 + 1]. The value of

35



Thus, the mechanism is incentive compatible and all rents are extracted. In the example,

were a bidder cash-constrained and only able to pay with securities, the cash payment

could be replaced by a debt payment.29 The result is a hybrid security of debt plus call

option: when cash flow is low it is debt, and when cash flow is high it is a call option. Thus,

paying “a call option with strike 2.25 plus 3.75 in cash” can be replaced by a combination

of debt with face value 3.75 and a call option with strike 6, S(y) = g(y) + h(y), where

g(y) = min{y, 3.75} and h(y) = max{0, y − 6}; paying “a call option with strike 2.85 plus

4.15 in cash” can be replaced by a combination of debt with face value 4.15 and a call

option with strike 7; and paying “a call option with strike 3.25 plus 4.75 in cash” can be

replaced by a combination of debt with face value 4.75 and a call option with strike 8.30

We now turn to our general analysis. With equity payments, only expected cash flows

matter. With general securities, the payment’s value depends on the details of the cash flow

distribution, so more structure is needed. We assume that a type V bidder has expected

synergy s(V ), but the realized synergy s̃ is stochastic. Thus, the cash flows generated by

the merged firm, y ≡ s̃+ V + VT , are stochastic with an expected value of s(V ) + V + VT .

It eases analysis to use a transformation. The expected cash flow of the target under the

bidder’s control, v(V ) = E [y|v] = V +s(V )+VT , is strictly increasing in V and hence invert-

ible. Thus, V can be expressed as a function of v, which we denote by V (v), and we use v

instead of V to denote bidder type. Note that ds(V )
dV

> 0 implies dv
dV

> 1, so dV (v)
dv
∈ (0, 1) for all

v, and the concavity of s(V ) is equivalent to the convexity of V (v). Define v ≡ V +s(V )+VT

the call option is 0.25, so the payoff of 2.85-0.25=2.6 just covers the bidder’s standalone valuation. If it reports
V = 2, then after paying 3.75 in cash, total cash flow is uniformly distributed over [3.25− 1, 3.25 + 1]. The
call option has a value of one, so the bidder’s payoff of 3.25-1<2.6 fails to cover its standalone valuation. If it
reports V = 3, then after paying 4.75 in cash, total cash flow is uniformly distributed over [2.25− 1, 2.25 + 1].
The call option has a value of zero, so the payoff of 2.25<2.6 fails to cover the bidder’s standalone valuation.

29In this example the face value of the debt equals the corresponding cash payment, because the dispersion
in the distribution of cash flows is not too great. With more dispersed cash flows, the face value of the debt
or the strike value of the call may need to be adjusted to achieve full extraction.

30Such securities are piece-wise linear. Payments in the form of piece-wise linear securities are often used
in takeovers of private targets. Cain, Denis and Denis (2011) report that “The typical earnout payment is
a linear or a stepwise function of the target’s performance (subject to a maximum) over the subsequent one
to three years. The earnout payments are potentially quite large; on average, if the maximum earnout is
paid, it would amount to 33% of the total transaction value.”
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and v̄ ≡ V̄ + s(V̄ ) +VT . We assume that expected synergies are positive for all bidder types.

ASSUMPTION 1 The cash flow is y = θ (v − v̂) + v̂, where θ is distributed over

(0,∞) with a mean of one and independent of v, log(θ) has a log-concave density, and

v̂ ∈ [s(V̄ ) + VT , v) is a constant.

This structure has the properties that E(y) = v and that a higher type v is associ-

ated with a (stochastically) better distribution of cash flows y. In DKS, v̂ = 0. Here,

v̂ ≥ VT + s(V̄ ) ensures that cash flows are high enough that, after the cash payment, the

residual cash flows remain nonnegative. The condition v̂ ≤ v ensures that cash flows for all

bidder types are positive (such a v̂ exists as long as V ≥ S(V̄ )− S(V )).

As in DKS, we consider an ordered set of securities,
{
S(t, ·); t ∈ (t, t)

}
. Each security in

such a set is indexed by t: for each t, S(t, ·) gives the security’s payoff as a function of the re-

alized cash flows. For example, with equity, the index t is the equity fraction and S(t, y) =ty.

ASSUMPTION 2 (i) for all t and y ∈ [0,∞), both S(t, y) and y−S(t, y) weakly increase

in y with 0 ≤ S(t, y) ≤ y.

(ii) If t1 > t2, then S (t1, y) ≥ S (t2, y) for all y ∈ (0,∞), and S (t1, y)− S (t2, y) weakly

increases in y ∈ (0,∞).

Part (ii) says that payments increase in the security index and that the difference in

payments widens as cash flows rise. For instance, for call options, a higher index corresponds

to a lower strike price.

The bidder pays with combinations of cash and the security. The security payment is

nonnegative, so we can assume without loss of generality that cash payments do not exceed

s
(
V̄
)

+ VT—a bidder that paid more than this would earn negative profits.

When a type v bidder pays cash M plus security S(t, ·), let ES(t, v;M) ≡

E [S(t, y −M)|v] denote its expected security payment, where y(v) is the (before

cash payment) stochastic cash flow of the combined firm. Under Assumptions 1 and 2,
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ES(t, v;M) is strictly increasing in the security index t, differentiable in t, and twice

differentiable in v (DKS, Lemma 1). We denote the first and second partial derivatives

with respect to v by ESv(t, v;M) and ESvv(t, v;M). We assume a full range in the security

index. Thus, t corresponds to zero payment and t̄ corresponds to full payment.31

We consider direct-revelation mechanisms. We first leave the sign of cash unrestricted.

Given our focus on full-extraction mechanisms and the fact that all bidder types have positive

NPVs, we assume without loss of generality that the single bidder wins regardless of the type

that it reports. If the bidder reports being type z, let t(z) be the index of the security paid

and let M(z) be the cash payment. A type v bidder’s expected profit when it reports z is

h (v, z) = v − V (v)− ES (t(z), v;M(z))−M(z). (34)

Full extraction implies that

h(v, v) = 0, for all v. (35)

Incentive compatibility yields

v ∈ arg max
z
h(v, z), for all v. (36)

A mechanism extracts full rents if and only if (35) and (36) hold. It eases analysis

to reverse the maximization problem in (36). That is, by (35) and (36), h(z, z) = 0 and

h(v, z) ≤ 0 for all v and z, so we can rewrite (36) as

z ∈ arg max
v
h(v, z), for all z. (37)

LEMMA 4 A mechanism extracts full rents if and only if (35) and (37) hold.

Lemma 4 replaces the incentive compatibility condition (36) by a reverse-optimization

31That is, for any v, any M , and any ε > 0, we requre (i) a t∗ > t to exist with ES (t∗, v;M) < ε and
ESv (t∗, v;M) < ε, and (ii) a t∗∗ < t̄ to exist with ES (t∗∗, v;M) > v − ε and ESv (t∗∗, v;M) > 1− ε.
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condition (37). This replacement is valid when a mechanism extracts full rents (or more

generally when all bidder types receive the same rent). It simplifies analysis because,

although the first-order condition of (37) is the same as the standard envelope condition,

its second-order condition is more tractable than that of (36).

Equation (34) and the first-order condition for (37), ∂h(v,z)
∂v
|v=z = 0, yield (after

substituting v for z)

1− V ′(v)− ESv(t(v), v;M(v)) = 0, for all v. (38)

The second-order condition of (37) gives

∂2h(v, z)

∂v2
|v=z = −d

2V (z)

dz2
− ESvv(t(z), z;M(z)) ≤ 0,

which, after replacing z with v, yields a necessary condition for full extraction:

d2V (v)

dv2
≥ −ESvv(t(v), v;M(v)), for all v. (39)

When the security is equity, the right-hand side of (39) is zero; (39) just says that V (v)

must be weakly convex (i.e., s(V ) is weakly concave). By Theorem 1, this is also sufficient

for full extraction via equity plus cash. With equities, each security can be expressed as a

“fraction” of a base-security. For a general set of ordered securities, such as the family of

call options indexed by different strikes, securities cannot be expressed as fractions of each

other, complicating analysis. This leads us to identify necessary and sufficient conditions

separately and then derive their implications.

Equation (39) yields the following necessary condition.

COROLLARY 4 Suppose that the payoff function of each security S(t, ·) is strictly

concave. Then V (v) must be strictly convex (dV
dv
> 0 for all v) for combinations of (possibly
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negative) cash and security to extract full rent.

Proof: See the Appendix.

From Lemma 5 in DKS, if every security in an ordered set has a concave payoff function,

then the set is less steep than equity. Corollary 4 shows that such securities tighten the

curvature requirement on V (v) for full extraction vis-à-vis equity.

We now identify sufficient conditions for full extraction. Specifically, we show that even if

V (v) is concave, then as long as it is not “too” concave, combinations of steeper-than-equity

securities plus cash can extract full rents, even though cash plus equity cannot. We focus

on the set A of steeper-than-equity ordered securities that consists of the set of call options

plus sets of securities S(t, ·) with strictly convex payoff functions over (0,∞).

LEMMA 5 For all v ∈ [v, v̄], the system of equations (35) and (38) has at least one

solution for (t;M).

Proof: See the Appendix.

To ensure global incentive compatibility of the mechanism, we define a measure of the

minimum average second derivative of expected revenues by the security indexed by t(z),

where the average is taken over any two distinct points z and v ∈ [v, v̄]:

K ≡ min
z,v∈[v,v̄],z 6=v

∫ z
v
ESvv (t(z), ṽ;M(z)) dṽ

z − v
, (40)

where (t(z);M (z)) solves (35) and (38) for type z.

LEMMA 6 Consider any ordered set of securities in A. Then K > 0 for any mechanism

that combines cash and these securities and satisfies (35) and (38).

Proof: See the Appendix.

From DKS, if each security in an ordered set has a convex payoff function, then the

set is steeper than equity. The steeper is the security, the larger is K. This facilitates full

extraction.
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THEOREM 2 Consider any ordered set of securities in A. If V ′′(v) ≥ −K, ∀v, then the

mechanism that combines cash with these securities and satisfies (35) and (38) is globally

incentive compatible. Thus, there exists a mechanism that extracts full rents.

COROLLARY 5 Suppose bidding strategies would be strictly decreasing in a pure

second-price security-bid auction (without cash payment) for the ordered set of securities in

Theorem 2. Then the mechanism in Theorem 2 features strictly positive cash payments and

securities, and generates strictly higher revenues than pure cash or pure securities.

Proof: See appendix.

The condition in Theorem 2 that V ′′(v) ≥ −K for all v is sufficient for full extraction

via security plus cash. Equity has a linear payoff function, so K = 0. Thus, with equity,

the condition requires V ′′(v) ≥ 0, which is precisely condition (i) in our equity analysis in

Theorem 1. When the set of securities is steeper than equities, K is positive by Lemma 6,

relaxing the convexity requirement on V (·) needed for full extraction. Intuitively, greater

curvature in a security’s expected payoff compensates for a lack of convexity in V (·) (i.e.,

concavity in s(V )). That is, the security payment and opportunity cost together comprise

a bidder’s costs, and convexity in a security’s expected payoff can compensate for a lack of

convexity in V (·) (i.e., concavity in s(V )).32

The greater curvature in the securities also relaxes the requirement in Corollary 5 for full

extraction with positive cash, which requires bidding strategies to decrease. Steeper securities

facilitate this: Che and Kim (2010) show that if equilibrium bidding strategies are decreasing

for one class of ordered securities, then they are decreasing for all steeper securities.

Taken together, these findings indicate that a seller does best by combining cash (or

debt if the bidder is cash constrained) with the steepest security. Tailored to different

types, the mix creates wider variation in steepness, which helps reduce the differential rents

32Put differently, the bidder’s payoff from steeper-than-equity securities is concave in the total valuation,
and the upper envelope of concave functions is no longer restricted to be convex, facilitating rent extraction.
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between bidder types, ensuring both the global incentive compatibility of the mechanism

and a positive cash payment.

III. Conclusion

Returns to target and acquiring firms in takeovers offer puzzles. Multiple public bidders

are rare, but targets receive almost all rents, and mean acquirer returns are very low. The

cash-equity mix also matters: acquirer and target returns increase with the cash share of an

offer. Our theory of target-initiated takeover processes reconciles these and other empirical

regularities.

We consider a setting in which potential merger partners are privately informed of their

standalone values and merger synergies, and those with higher standalone values also tend

to generate higher expected synergies. We show that despite its information disadvantage,

a target can design a payment scheme with combinations of cash and equity that extracts

all rents if synergies are concavely-related to standalone values, exploiting a reluctance of

high-valuation acquirers to give up equity claims that leads them to bid more cash. Our

model delivers the result that both acquirer and target returns rise with the cash share of

an offer because greater cash components reveal (1) higher synergies from which only the

target benefits and (2) more positive information about the acquirer’s standalone value,

causing the acquirer to experience greater abnormal returns.

Our mechanism applies to decentralized processes in which a target privately approaches

each potential acquirer, sets the terms of payment contingent on that bidder winning, and

then selects the bidder that would most increase the target’s value. As a result, multiple

public bidders can be rare. The robust selling mechanism is dominant-strategy incentive

compatible—bidders need not know anything about rivals—and a target extracts almost

all rents if the synergy–valuation relationship is only approximately concave. When the

synergy-valuation relationship is convex, the optimal design of the cash–equity combination
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is simple: bidders bid cash plus a fixed equity share. Moreover, in such instances, we show

that combining cash with even steeper securities like call options can help the seller further.
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Crémer, Jacques, 1987, Auctions with contingent payments: Comment, American Economic

Review 77, 746-746.
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V. Appendix

Proof of Theorem 1 and Proposition 1: We first prove that when the conditions in Theorem

1 hold, the mechanism in Proposition 1 extracts full rents. If bidding is truthful, then

substituting for Mi(vi,v−i) and qi(vi) in equation (4) reveals that a bidder’s equilibrium

payoff is zero regardless of his valuation,. That is,

[(Vi + si(Vi) + VT −Mi(Vi,V−i))Qi(Vi,V−i)− Vi]Gi(Vi) = 0.

To see that truthful bidding is an equilibrium, suppose that type Vi bids as if it is type zi.

If zi /∈ Si, the bidder would lose, so the deviation is not optimal. If zi ∈ Si, then by (17)

and (18),

qi(zi) =
1

1 + dsi(zi)
dzi

(A1)

and

ωi(zi) =

[
si(zi) + VT − zi

dsi(zi)

dzi

]
Gi(zi). (A2)

Then by (4),

hi(Vi, zi) =

[
Vi + si (Vi) + VT

1 + dsi(zi)
dzi

− Vi

]
Gi(zi)−

[
si(zi) + VT − zi dsi(zi)dzi

1 + dsi(zi)
dzi

]
Gi(zi)

=

[
si(Vi)− si(zi)−

dsi(zi)

dzi
(Vi − zi)

]
Gi(zi)

1 + dsi(zi)
dzi

(A3)

≤ 0. (A4)

Inequality (A4) holds for all Vi ∈
[
V i, V̄i

]
. If Vi ∈ Si, the inequality follows because the weak

concavity of si(·) in condition (i) of Theorem 1 implies that si(Vi)−si(zi)− dsi(zi)
dzi

(Vi − zi) ≤ 0

regardless of whether Vi ≥ zi or Vi < zi. If, instead, Vi /∈ Si, the inequality follows from part

(ii) of Theorem 1. Thus, deviation is not profitable for all bidder types. Note also that (17)

satisfies Qi(z) ∈ [0, 1]. Hence, Proposition 1 and the “if” part of Theorem 1 are established.
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To prove the “only if” part of Theorem 1, assume that a full-extraction mechanism

exists. The necessity of condition (i) was proved in the text. To see that (ii) must hold,

we first consider Vi ∈ Si. Note that full extraction implies (12), and hence dĥi(Vi,Vi)
dVi

= 0. By

(13) and the Envelope Theorem, this yields (17). In turn, (12) yields (18). Thus, (A3) holds

for Vi ∈ Si. Because full extraction also implies that for all types Vi /∈ Si, bidding as if the

bidder’s type is z ∈ Si must render a nonpositive profit; by (A3), Gi(zi) > 0 and dsi(zi)
dzi
≥ 0,

and hence we have (ii).

Proof of Corollary 2: Observe that when the conditions in Theorem 1 and (20) hold,

the mechanism specified in Proposition 1 extracts full rents. Further, by (20), the cash

component in (18), si(Vi) + VT − Vi dsi(Vi)dVi
= −V 2

i
d
dVi

si(Vi)+VT
Vi

, is strictly positive. Moreover,

a seller must use strictly positive amounts of both cash and equity to extract full rents.

To prove the converse part of Corollary 2, suppose a full-extraction mechanism exists

that employs strictly positive cash. For all Vi ∈ Si, full extraction implies Gi(vi) > 0 and

dhi(Vi,Vi)
dVi

= 0, which yields qi(Vi) = 1

1+
dsi(Vi)

dVi

by (9). By hi(Vi, Vi) = 0 and (4),

ωi(Vi) =

(
1 +

dsi(Vi)

dVi

)[
(Vi + si(Vi) + VT )

1

1 + dsi(Vi)
dVi

− Vi

]
Gi(Vi).

Since the cash component is positive, ωi (Vi) > 0, and hence

(Vi + si(Vi) + VT )
1

1 + dsi(Vi)
dVi

− Vi > 0,

which yields (20).

Proof of Proposition 2: By (24) and (25), the expected profit of a type V bidder that

reports itself to be a type z is

h(V, z) =
1

1 + dy(z)
dz

(
V + s(V )−

(
y(z)− zdy(z)

dz
−
√

2

2
ε
(

1 +
dy(z)

dz

)))
− V (A5)

= h∗ (V ∗, z) + δ,
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where

h∗ (V ∗, z) ≡ (V ∗ + y(V ∗))− (y(z) + z)

1 + dy(z)
dz

+ z − V ∗,

V ∗ is the solution to V ∗ + y (V ∗) = V + s(V ), and δ ≡ V ∗ − V +
√

2
2
ε is independent

of z. The same steps as in the proof of inequality (A3) in the proof of Theorem 1 and

Proposition 1 yield that for any given V ∗, we have that (1) z = V ∗ maximizes h∗ (V ∗, z),

and (2) h∗ (V ∗, z = V ∗) = 0. Hence, reporting z = V ∗ maximizes h(V, z). Further, (A5)

yields h (V, z = V ∗) = δ, and δ ∈
[
0,
√

2ε
]

by the premise that s(V ) is in an ε-neighborhood

of y(V ). Hence, reporting z = V ∗ satisfies individual rationality (h (V, z = V ∗) ≥ 0) and

leaves each bidder type with rents no greater than
√

2ε.

Proof of Proposition 3: Consider an optimal mechanism, {e(V ), c(V ); p(V )}. Let κ be the

set of V for which pV = 1. Let h(V, z) be the expected profit of a bidder with standalone

value V that reports z ∈ κ:

h(V, z) = (1− e(z)) (V + s(V ) + VT − c(z))− V

= s(V ) + VT − (e(z) (V + s(V ) + VT ) + (1− e(z)) c(z)) . (A6)

Define

h∗(V ) ≡ max
z∈κ

h (V, z) = s(V ) + VT −min
z∈κ

(e(z) (V + s(V ) + VT ) + (1− e(z)) c(z)) .

A type V bidder type accepts a contract if and only if h∗ (V ) ≥ 0.

To simplify solution, we exploit the fact that the bidder’s total (gross of cash payment)

valuation of the target, v(V ) ≡ V + s(V ) + VT , is strictly increasing in V and hence

invertible. Thus, we can express V as a function of v, where the strict convexity of s(V ) is

equivalent to the strict concavity of V (v). Define v ≡ V +s (V )+VT and v̄ ≡ V̄ +s
(
V̄
)

+VT .
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Using s(V ) = v − V (v)− VT , we express h∗(V ) as a function of v:

h∗∗(v) ≡ h∗ (V (v)) = ηa(v)− ηb(v),

where

ηa(v) ≡ v − V (v) and ηb(v) ≡ min
z∈κ

(e(z)v + (1− e(z)) c(z)) . (A7)

Bidder type v participates if and only if h∗∗(v) ≥ 0, and its expected profit when it

partipates is h∗∗(v). Denote the set of bidder types that participate by κ∗, which is a subset

of κ (the two sets may or may not coincide). Then the seller’s expected profit is

πs =

∫
κ

s(V )f(V )dv −
∫
κ

h∗∗ (v(V )) f(V )dv, (A8)

where the first term is the social welfare gain and the second term is the bidder’s rents.

Next we show that a single contract can deliver the seller an expected profit of at least

(A8). The function V (v) is strictly concave, so ηa(v) is strictly convex in v. Further, ηb(v)

is weakly concave because it is the minimum of a family of affine functions. Thus, h∗∗(v) is

strictly convex, so there are at most two solutions to h∗∗(v) = 0 over v ∈ [v, v̄]. There are

three possible cases.

Case 1: h∗∗(v) = 0 has two solutions v1 and v2 in [v, v̄], where v1 < v2. That is,

ηa(vi) = ηb(vi) for i = 1, 2. Then strict convexity of h∗∗(v) yields

h∗∗(v) < 0 for v ∈ (v1, v2) ; and h∗∗(v) > 0 for v < v1 and v > v2. (A9)

Consider the single contract that takes the form specified in (32), with Vi = V (vi) (i = 1, 2)

in (33). Denote the expected profit of a type v bidder from this contract by ĥ(v). Then

ĥ(v) = ηa(v)− η̂b(v), (A10)

51



where η̂b(v) is given by the right-hand side of (A7) with the contracts in the posited optimal

mechanism replaced by the single contract:

η̂b(v) =
s (V2)− s (V1)

V2 − V1 + s (V2)− s (V1)
(v − V1 − VT − s (V1)) + VT + s (V1) .

Recall that vi = Vi + si(Vi) + VT . Substituting yields

η̂b(vi) = ηa(vi) for i = 1, 2. (A11)

Thus, ĥ(vi) = 0 and

η̂b(vi) = ηb(vi) for i = 1, 2. (A12)

We now use the property that η̂b(v) is affine, and hence both weakly concave and weakly

convex. The strict convexity of ηa(v) and (A11) yield

η̂b(v) > ηa(v) for v ∈ (v1, v2) ; and η̂b(v) < ηa(v) for v < v1 or v > v2. (A13)

Comparing (A13) and (A9) reveals that the participation decision of any bidder type under

the single contract is the same as that with the posited optimal contracts. Hence, analogous

to (A8), the seller’s expected profit under the single contract is

π̂s =

∫
κ

s(V )f(V )dv −
∫
κ

(ηa (v)− η̂b(v)) f(V )dv, (A14)

which, by (A8), yields

π̂s − πs =

∫
κ

(η̂b(v)− ηb(v)) f(V )dv. (A15)

The weak concavity of ηb(v), the weak convexity of η̂b(v), and (A12) yield

η̂b(v)− ηb(v) ≥ 0 for v < v1 or v > v2,
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which, upon plugging into (A15) and noticing that κ is the union of v < v1 and v > v2,

yields π̂s ≥ πs. This proves the proposition for Case 1.

Case 2: h∗∗(v) = 0 has one solution over [v, v̄]. Denote the solution by v1, i.e.,

ηa (v1) = ηb (v1). Consider three scenarios.

Scenario 1: dh∗∗(v)
dv
|v=v1 = 0. Then dηa(v)

dv
|v=v1 = dηb(v)

dv
|v=v1 . The convexity of h∗∗(v) yields

h∗∗(v) ≥ 0, or, equivalently, ηa (v1) ≥ ηb (v1), for all v. Thus, all bidder types participate.

Consider the single contract of the form given in (32) with e = dηb(v1)
dv

. Denote the expected

profit of a type v bidder from this contract by ĥ(v). Then (A10) holds with η̂b(v) given by the

right-hand side of (A7) in which the original contract(s) are replaced by the single contract:

η̂b(v) =
dηb (v1)

dv
(v − V1 − VT − s (V1)) + VT + s (V1) , (A16)

which, by (14), yields η̂b (v1) = ηa (v1). Hence, η̂b (v1) = ηb (v1). Further, note that

dη̂b(v)
dv

= dηb(v1)
dv

, and hence dη̂b(v)
dv

= dηa(v1)
dv

. Using the facts that η̂b(v) is affine, ηa(v) is convex,

η̂b (v1) = ηa (v1), and dη̂b(v1)
dv

= dηa(v1)
dv

, we have ηa(v) ≥ η̂b(v) for all v. Thus, all bidder types

participate given this single contract, just as with the original contract(s). Further, because

ηb(v) is concave, η̂b (v1) = ηb (v1), and dη̂b(v1)
dv

= dηb(v1)
dv

, we have ηb(v) ≤ η̂b(v) for all v. Thus,

the seller’s expected profit is weakly higher under the single contract. Next, e = dηb(v1)
dv

=

dηa(v1)
dv

yields, by (14), e = 1 − dV
dv

= 1 − 1
dv
dV

=
ds
dV
|V =V1

1+ ds
dV
|V =V1

, where V1 = V (v1). By e = k
1+k

((32)), we have k = ds(V1)
dV

, consistent with (33). This proves the proposition for Scenario 1.

Scenario 2: dh∗∗(v)
dv
|v=v1 < 0. Then dηa(v1)

dv
< dηb(v1)

dv
. Because h∗∗(v) = 0 has one solution over

[v, v̄], h∗∗(v) < 0 for all v > v1 and h∗∗(v) > 0 for all v < v1. Thus, only bidder types v ≤ v1

participate. Then v1 > v, else no bidder type participates, a contradiction to the premise

that the mechanism is optimal. We next consider two sub-cases that show that Scenario 2

cannot arise in optimal mechanism.

Sub-case 1: v1 < v̄. Consider the single contract that takes the form given in (32) with

V1 = V (v1) and V2 = V (v2), where v2 ≡ v̄, in (33). Let ĥ(v) be the expected profit of a
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type v bidder from this contract. Then (A10) holds with η̂b(v) given by (A16). Similar

arguments as in Case 1 yield that ηa(vi) = η̂b(vi) for i = 1, 2, and that ĥ(v) < 0 if and only

if v ∈ (v1, v̄). Thus, bidder types v ≤ v1 participate given this contract, just as they did

with the original contracts. The only difference is that, with the single contract, bidder

type v̄ (of measure zero) participates with rents fully extracted, which weakly increases

the seller’s expected profit. Now consider types v ≤ v1. Because ηa (v̄) < ηb (v̄), we have

η̂b (v̄) < ηb (v̄). Further, (i) η̂b (v1) = ηb (v1), (ii) ηb(v) weakly concave, and (iii) η̂b(v) affine,

together yield dη̂b(v)
dv

< dηb(v1)
dv

and η̂b(v) > ηb(v) for all v < v1. Thus, the seller’s expected

revenue is strictly higher than with the posited optimal contract(s), a contradiction.

Sub-case 2: v1 = v̄. Consider the single contract that takes the form given in (32) with e =

dηa(v1)
dv

. A similar argument shows that the seller’s expected revenue is strictly higher with this

contract. Thus, Scenario 2 contradicts the premise that the original contract(s) were optimal.

Scenario 3: dh∗∗(v)
dv
|v=v1 > 0. We can show that Scenario 3 contradicts the premise of

optimality of the mechanism via similar arguments as for Scenario 2, using the single

contract taking the form specified in (32), where if v1 = v then e = dηa(v1)
dv

, and if v1 > v

then k = s(V (v1))−s(V (v))
V (v1)−V (v)

in (33). These results prove the proposition for Case 2.

Case 3: h∗∗(v) = 0 has no solution over [v, v̄]. To see that Case 3 cannot arise in the

optimal mechanism, observe that it would imply either (1) h∗∗(v) < 0 for all v ∈ [v, v̄], or

(2) h∗∗(v) > 0 for all v ∈ [v, v̄]. Neither scenario can be optimal: in (1) no bidder type

participates; and in (2) one can add a small positive cash payment to all contracts so that

all bidder types still participate but earn strictly less rents. This completes the proof.

Proof of Lemma 3: Let β(V ) denote the cash bid in the second-price auction by type V ,

β(V ) = s(V ) + VT −
α

1− α
V,

which strictly increases in V , so the highest bidder type wins. The lowest type V earns no

rents, and the differential rent of a high type over a low type (by (9)) is positive and strictly
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decreasing in α ∈
(
0, b

1+b

)
. Denote the highest and second-highest bidder types by V1 and

V2. Consider α = b
1+b

. The winner’s profit is

π =
1

1 + b
(s (V1)− s (V2))− b

1 + b
(V1 − V2) .

For i = 1, 2 define V ∗i such that s (Vi) + Vi = y (V ∗i ) + V ∗i . Because

1
1+b

(y (V ∗1 )− y (V ∗2 ))− b
1+b

(V ∗1 − V ∗2 ) = 0, we can rewrite π as

π =

(
1

1 + b
(s (V1)− y (V ∗1 ))− b

1 + b
(V1 − V ∗1 )

)
+

(
b

1 + b
(V2 − V ∗2 )

)
− 1

1 + b
(s (V2)− y (V ∗2 )) .

For the first term on the right-hand side,

1

1 + b
(s (V1)− y (V ∗1 ))− b

1 + b
(V1 − V ∗1 ) = (s (V1)− y (V ∗1 )) ≤

√
2

2
ε.

Similarly, the second term is also no greater than
√

2
2
ε. Therefore, π ≤

√
2ε, proving the

result.

Proof of Corollary 4: For a security with index t(z), denote its payoff function S (t(z), ·) by

Ŝ (·) for notational ease. Denote the distribution of θ by fθ(·). Then

ES(t(z), v;M(z)) =

∫ ∞
0

Ŝ(θ (v − v̂) + v̂ −M(z))fθ(θ)dθ.

Hence,

ESvv(t(z), v;M(z)) =

∫ ∞
0

θ2Ŝ ′′(θ (v − v̂) + v̂ −M(z))fθ(θ)dθ.

If Ŝ(·) is strictly concave, then ESvv(t(z), v;M(z)) < 0 for all v, z. Then the necessary

condition (39) establishes the corollary.

Proof of Lemma 5:

55



Claim 1: At any v, for any M < v − V (v), there is a t∗(M ; v) that solves

v − V (v)− ES(t, v;M)−M = 0. (A17)

Furthermore, t∗(M ; v) decreases in M .

Proof of Claim 1: From the assumption that the security index has a sufficient range, the

left-hand side of (A17) approaches v−V (v)−M > 0 when t is low enough; and the left-hand

side approaches v − V (v)− (v −M)−M = −V (v) < 0 when t is high enough. Thus, there

exists a smallest t that satisfies (A17), which we denote by t∗(M ; v) (ES(t, v;M) could be

flat at t∗). Because ∂ES(t(v),v;M)
∂M

∈ [−1, 0], ∂(v−V (v)−ES(t,v;M)−M)
∂M

≤ 0. Because ES(t, v;M)

increases in t, t∗(M ; v) decreases in M .

For any y ≥ 0, by Claim 1 and Assumption 2, S(t∗(M ; v), y) decreases in M . Be-

cause S(t∗(M ; v), y) is bounded between zero and y, S(t∗(M ; v), y) reaches a limit as

M → v − V (v). Define S∗(y) ≡ limM→v−V (v) S(t∗(M ; v), y).

Claim 2: S∗(y) = 0 at all y ≥ 0.

Proof of Claim 2: Suppose that S∗(y∗) = δ > 0 at some y∗. Then S∗(y) ≥ δ for all y ≥ y∗.

Then S(t∗(M ; v), y) ≥ δ for all M and y ≥ y∗. We then have

ES (t∗(M), v;M) ≥ δE
[
Pr obability

(
ỹ(v) ≥ y∗ +M

)]
≥ δE

[
Pr obability

(
ỹ(v) ≥ y∗ + v − V (v)

)]
> 0,

where ỹ(v) is the stochastic (before cash payment) cash flow of bidder type v. It follows

that as M approaches v − V (v), the left-hand side of (A17) becomes strictly negative, a

contradiction.

Claim 3: limM→v−V (v) 1− V ′(v)− ESv (t∗(M), v;M) > 0.

Proof: Define κ ≡ 1 − V ′(v) > 0. By the assumption of sufficient range in index, for any

M ∈ [v − V (v)− 1, v − V (v)], there exists a t̂ such that ESv(t̂, v;M) < κ. By Claim 2, as
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M approaches v − V (v), t∗(M ; v) must become less than t̂.

For any y ≥ 0, by Claim 1 and Assumption 2, the right-derivative of S (t∗(M ; v), y) with

respect to y decreases in M . Because this derivative is bounded between zero and one, it

reaches a limit as M approaches −∞. Denote this limiting value by function d(y). Because

security payoffs are convex, d(y) is nondecreasing and cannot exceed ine. Hence, when y

goes to infinity, d(y) approaches a limit, which we denote by d∗.

Claim 4: d∗ =1.

Proof: Suppose, instead, that d∗ < 1. Then by Assumption 2, Claim 1, and convexity in

security payoffs, for all M and y, S(t∗ (M ; v), y) is no greater than d∗y. Then the left-hand

side of (A17) is strictly positive for M sufficiently negative, a contradiction.

By Claim 4, there exists a y∗ > 0 such that d (y∗) > 1 − V ′(v)
3

. Thus, there exists M∗

such that the right-derivative of S (t∗(M ; v), ·), evaluated at y∗, exceeds 1 − V ′(v)
2

for all

M < M∗. From the convexity of the payoff function, the right-derivative of S(t∗(M ; v), ·)

exceeds 1− V ′(v)
2

for all M < M∗ and all y > y∗.

For M < min {M∗,−y∗}, we have

ES (t∗(M), v;M) = E
[
S(t∗(M),

(
ỹ (v)−M

)
)
]

and

ES (t∗(M), v + ∆v;M) = E
[
S(t∗(M),

(
˜y (v + ∆v)−M

)
)
]
,

where ∆v > 0. Because the distribution of ˜y (v + ∆v) first-order stochastically dominates

that of ỹ(v), it follows that ˜y (v + ∆v) can be expressed as the sum of random variable ỹ(v)
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plus another random variable ε̃, where ε̃ is nonnegative and E[ε̃] = ∆v. Thus,

ES (t∗(M), v + ∆v;M) = E
[
S(t∗(M),

(
ỹ (v) + ε̃−M

)
)
]

≥ E

[
S(t∗(M),

(
ỹ (v)−M

)
) +

(
1− V ′(v)

2

)
ε̃

]
= ES (t∗(M), v;M) +

(
1− V ′(v)

2

)
∆v.

It follows that ESv (t∗(M), v;M) ≥
(

1− V ′(v)
2

)
., and hence 1−V ′(v)−ESv (t∗(M), v;M) <

0. Thus, by Claim 3, there exists M such that 1 − V ′(v) − ESv (t∗(M), v;M) = 0. This

proves Lemma 5.

Proof of Lemma 6: By a similar argument as in the proof of Corollary 4, if Ŝ(·) is strictly

convex, then ESvv(t(z), v;M(z)) > 0 for all v, z. It follows that K > 0.

Now consider call options. Let t(z) > 0 denote the strike price (abusing notation slightly

as a higher strike price corresponds to a lower payoff). If t(z)− v̂ +M(z) > 0, then

ES(t(z), v;M(z)) =

∫ ∞
t(z)+M(z)−v̂

v−v̂

(θ (v − v̂) + v̂ −M(z)− t(z))fθ(θ)dθ.

Therefore,

ESv(t(z), v;M(z)) =

∫ ∞
t(z)+M(z)−v̂

v−v̂

θfθ(θ)dθ

and

ESvv(t(z), v;M(z)) =
(t(z) +M(z)− v̂)2

(v − v̂)3 fθ(
t(z) +M(z)− v̂

v − v̂
) > 0.

If t(z) − v̂ + M(z) ≤ 0, we have ESv(t(z), v;M(z)) = 1 and ESvv(t(z), v;M(z)) = 0.

When z = v, we must have t(z) − v̂ + M(z) > 0, or else the left-hand side of (38)

would be −V ′(v) < 0, a contradiction. Thus, ESvv (t(z), z;M(z)) > 0 for all z. Because

ESvv (t(z), v;M(z)) is continuous in v, ESvv (t(z), v;M(z)) > 0 if |z − v| is small. Because

ESvv (t(z), v;M(z)) is nonnegative for all z and v, its average over z and v must be strictly

positive, so (40) yields K > 0.
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Proof of Theorem 2: By the premise that the mechanism satisfies (35) and (38) (Lemma

5 guarantees the existence of such mechanism), we only need to establish global incentive

compatibility. It suffices to show that ∂h(v,z)
∂v
≥ 0 for v < z and that ∂h(v,z)

∂v
≤ 0 for v > z.

We have ∂h(v,z)
∂v

= l(v, z), where

l(v, z) ≡ 1− V ′(v)− ESv (t(z), v;M(z)) ,

and (38) yields l (z, z) = 0. Thus, for z 6= v,

l(v, z) = l(v, z)− l(z, z)

= −V ′(v)− ESv (t(z), v;M(z)) + V ′(z) + ESv (t(z), z;M(z))

=

∫ z

v

V ′′(x)dx+
ESv (t(z), z;M(z))− ESv (t(z), v;M(z))

z − v
(z − v)

=

∫ z

v

V ′′(x)dx+

∫ z
v
ESvv(t(z), x;M(z))dx

z − v
(z − v)

If z > v, then by (40) we have

l(v, z) ≥
∫ z

v

V ′′(x)dx+K (z − v) =

∫ z

v

(V ′′(x) +K) dx ≥ 0,

and if z < v, then

l(v, z) ≤
∫ z

v

V ′′(v)dv +K (z − v) =

∫ z

v

(V ′′(x) +K) dx ≤ 0.

Thus, ∂h(v,z)
∂v

≥ 0 for v < z and ∂h(v,z)
∂v

≤ 0 for v > z. We therefore have h (v, z) ≤ 0,

∀z 6= v.

Proof of Corollary 5:

Claim 1: ESv(t, v;M) is increasing in t for all v.
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Proof: For t1 > t2, we have

ESv(t1, v;M)− ESv(t2, v;M) =

∫
[S (t1, y −M)− S (t2, y −M)]gv(y|v))dy,

where g(·|v) is the pdf of cash flows by bidder type v and gv is its derivative. Because gv

integrates to zero, there exists a y∗ such that gv(y
∗|v) = 0. The expression gv(y|v)

g(y|v)
strictly

increases in y by the strict monotone likelihood ratio property that holds given Assumption

1. Thus, for y < y∗, gv(y|v)
g(y|v)

< 0 and hence gv(y|v) < 0; and for y > y∗, gv(y|v)
g(y|v)

> 0 and hence

gv(y|v) > 0. Since [S (t1, y −M)− S (t2, y −M)] is weakly increasing by Assumption 2,

∫
y<y∗

[S (t1, y −M)−S (t2, y −M)]gv(y|v)dy ≥
∫
y<y∗

[S (t1, y
∗ −M)−S (t2, y

∗ −M)]gv(y|v)dy

and

∫
y>y∗

[S (t1, y −M)−S (t2, y −M)]gv(y|v)dy ≥
∫
y>y∗

[S (t1, y
∗ −M)−S (t2, y

∗ −M)]gv(y|v)dy.

Adding yields Claim 1: ESv(t1, v;M)− ESv(t2, v;M)

≥
∫
y<y∗

[S(t1, y
∗−M)−S(t2, y

∗−M)]gv(y|v)dy+

∫
y>y∗

[S(t1, y
∗−M)−S(t2, y

∗−M)]gv(y|v)dy = 0.

Next, consider any v∗. To show that M(v∗) is strictly positive, suppose that M(v∗) ≤ 0.

Then by (A17), ES (t(v∗), v∗;M(v∗)) ≥ v∗ − V (v∗). By Assumption 2 and v∗ − V (v∗) > 0,

there exists a t̂ ≤ t(v∗) such that ES
(
t̂, v∗;M(v∗)

)
= v∗ − V (v∗). If bidding strategies in

a second-price security-bid auction are strictly decreasing, they are still strictly decreasing

when the stochastic cash flows for all types v are shifted up by the same amount |M(v∗)|.

Thus, by the premise of the corollary on the decreasing bidding strategy, ES
(
t̂, v∗;M(v∗)

)
=

v∗ − V (v∗) implies ESv
(
t̂, v∗;M(v∗)

)
> 1 − V ′(v∗) (Lemma 1, Che and Kim 2010). By

t̂ ≤ t (v∗) and Claim 1, ESv (t (v∗) , v∗;M(v∗)) > 1 − V ′(v∗), contradicting (38). Thus,
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M(v∗) > 0. Moreover, pure security or pure cash cannot extract full rents because when a

seller can combine them, it must use strictly positive amounts of both to extract full rents.
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