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Abstract

How are resources allocated across different R&D areas, i.e. prob-

lems to be solved? As a result of dynamic congestion externalities, the

competitive market allocates excessive resources into those of high re-

turn, being those with higher private (and social) payoffs. Good prob-

lems are tackled too soon, and as a result the distribution of open

research problems in the socially optimal solution stochastically domi-

nates that of the competitive equilibrium. A severe form of rent dissi-

pation occurs in the latter, where the total value of R&D activity equals

the value of allocating all resources to the least valuable problem solved.

Resulting losses can be substantial.

∗Economics Department, UCLA, Bunche Hall 9353, UCLA Box 951477, Los Angeles,
CA 90095-1477, USA. I acknowledge support from NSF grant # 1757134
†Economics Department, University of Warwick, Coventry CV4 7L, United Kingdom

1



1 Introduction

Innovation resources are quite unequally distributed across different research

areas. This is true not only in the case of commercial innovations but also

in our own fields of research. Some areas become more fashionable (“hot”)

than others and attract more attention. A quick look at the distribution

of patenting by different classes since the 80’s reveals significant changes in

the distribution of patent applications: while early on the leading sector was

the chemical industry followed closely by others, starting 1995 the areas of

computing and electronics surpassed by an order of magnitude all other areas

in patent filings. The so-called dot-com bubble is an example of what many

considered excessive concentration in the related field of internet startups.

This example suggests that innovation resources might be misallocated across

different areas and perhaps too concentrated on some, yet to date almost no

economic theory has been devoted to this question.

This shift in innovative activity is likely the result of technological, demo-

graphic, and other changes that introduce new sets of opportunities to exploit

and problems to solve. As new opportunities arise, firms compete by allocat-

ing innovation resources across these opportunities, solving new open problems

and thus creating value. The process continues as new opportunities and prob-

lems arise over time, and innovation resources get reallocated. We model this

process, and characterize the competitive equilibrium, as well as the socially

optimal allocations. Our main finding is that the market allocates researchers

disproportionately to hot R&D lines, characterized by higher expected rates

of return per unit of research input, and leads to an excessive turnover of
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researchers.1

We model this process as follows. At any point in time, there is a set

of open problems (research opportunities) that upon being solved generate

some social and private value v. This value is known at the time research

inputs are allocated, and is the main source of heterogeneity in the model.

The research side of the economy is as follows. There is a fixed endowment—

inelastically supplied—of a research input to be allocated across problems,

that for simplicity we call researchers. The innovation technology specifies

probabilities of discovery (i.e. problem solution) as a function of the number

of researchers involved. Ex-ante, the expected value of solving a problem is

split equally among the researchers engaged, consistently with a winner-take-

all rule as in patent races, or with an equal sharing rule. Once a problem is

solved, the researchers involved are reallocated to other problems at some cost.

We consider both an environment where the set of problems is fixed, as well

as a steady state with exogenous arrival of new problems. Firms compete by

allocating researchers to the alternative research opportunities, to maximize

value per unit input. As there is a large number of firms, we can equivalently

assume that each researcher maximizes her value by choosing a research line.

As a result, the value of joining any active research line is equalized.

The key source driving market inefficiency is differential rent dissipation

resulting from competitive entry into research. This is due to the pecuniary

externality imposed by a marginal entrant to all others involved in her research

line. It is useful to contrast our results to models of patent races where there

is a perfectly elastic supply of potential entrants in the race, and competitive

1Hot R&D lines need not correspond to high-value innovations, because high value may
often be associated with a low probability of success. Hot R&D may take the form of
incremental innovations in a highly fertile R&D area.
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forces drive average value down to the entry cost. With a concave discovery

function, the average value exceeds the marginal value of an entrant, thus

resulting in excessive entry. The gap between the average and marginal value

is a reflection of the fact that part of the return to an entrant comes from a

decrease in the expected returns of the remaining participants, the pecuniary

externality.

In contrast, in our model we assume that the total research endowment

to be allocated is inelastically supplied, and entry costs are the same across

all research lines, so there cannot be excessive entry overall. But as we find,

there will be excessive entry in some areas and too little in others, as well as

excessive turnover.

It is useful to divide the sources of this misallocation between static and

dynamic ones. The static source of misallocation arises as the pecuniary exter-

nality changes with the number of researchers in a research line. To illustrate

this, consider the case where the probability of innovation is linear up to a

certain number of researchers m and constant thereafter, and there are two

research lines: a “hot” one with high value, and one with low value. Further-

more, suppose that given the total endowment of researchers, more than m

enter into the former while less than m in the latter one, so the average values

are equalized. It follows immediately that there is excessive entry into the hot

area, where there are negative pecuniary externalities, and too little in the low

value one, where there are none.

This example suggests that the extent of pecuniary externalities can vary

with scale, and will do so in general. As total discovery probability is bounded,

the results described in the example will occur in some parameter region, and
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as a result there will be excessive entry into the higher value R&D areas.

As we show in the paper, this distortion holds globally (there is excessive

entry above a value threshold and too little below) for a canonical model of

innovation considered in the literature.

We now turn to the dynamic sources of misallocation that can be orders

of magnitude more important, as illustrated by our back-of-the-envelope cal-

culations. The first dynamic source of misallocation arises from the cost of

reallocation. When a researcher joins a research line and succeeds, this gener-

ates a capital loss to the remaining researchers, that must incur a new entry

cost in order to switch to a new, equally valuable, research line. This exter-

nality grows with the number of researchers affected, and thus with the value

v of innovation, leading to excessive entry into hot areas. The second source

is more subtle. As a consequence of rent dissipation the value of entering any

innovation line is equalized in the competitive equilibrium. In the eyes of com-

petitors, there is no distinction between different open problems in the future,

as they all give the same value. In contrast, a planner recognizes that better

problems (i.e., those with higher v) have higher residual value, and thus carry

a higher future option value if they are not immediately solved; the planner is

less rushed to solve them.

We analyze a steady state allocation with an exogenous arrival of new prob-

lems and endogenous exit of existing ones, resulting from the allocation of re-

searchers. These two forces determine a stationary distribution for open prob-

lems. High value problems are solved faster in the competitive equilibrium,

due to the biases indicated above, so the corresponding stationary distribution

has a lower fraction of good open problems. In addition, as the distribution of

innovators is more skewed than in the optimal allocation, turnover is higher
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and so are reallocation costs. This leads to a severe form of rent dissipation,

where in a competitive equilibrium the total value of R&D activity equals the

value of allocating all resources to the least valuable problem solved. The

magnitude of this distortion can be extremely severe, leading to very large

welfare effects as shown by our simple calculations.

Throughout our analysis we assume that the private and social value of

innovations is the same across research lines, or likewise that the ratio of

private to total value is identical. We do this to abstract from some other

important but more obvious sources of misallocation. As patents attempt to

align private incentives with social value, they are of no use in solving the

distortions that we consider. The source of market failure in our model is the

absence of property rights on problems to be solved, which are the source of

R&D value. Patents and intellectual property are no direct solutions to this

problem as they entitle innovators to value once problems have been solved.

Our research suggests that there might be an important role for the allocation

of property rights at an earlier stage.2

The paper is organized as follows. The related literature is discussed in

the next section. Section 3 provides a simple example to illustrate the main

ideas in the paper. Section 4 describes the model and analyzes the static

forces of misallocation. Section 5 considers the reallocation of researchers and

2As for policy considerations, our finding suggests the desirability of non-market based
incentives that rebalance remuneration across R&D lines, so as to subsidize R&D lines
with less profitable or less feasible innovations. Existing R&D funding mechanisms include
research grants, fiscal incentives on innovations or ongoing research, research prizes, and
procurement. While often State-funded, R&D subsidization can also be funded by private
consortia or donors (especially, when taking the form of research grants and prizes), and the
tenure system in academic institutions also entails R&D subsidization. Because subsidies
can be at least partially funded with levies collected on patent monopoly profits, the kind
of policy intervention suggested here contains elements of cross-subsidization across R&D
areas.
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the dynamic sources of misallocation for a fixed set of problems. Section 6

considers the steady state with continuous arrival of new problems. Section 7

concludes.

2 Literature Review

Early literature (e.g., Schumpeter, 1911; Arrow, 1962; and Nelson, 1959)

pointed at limited appropriability of the innovations’ social value by inno-

vators and at limited access to finances as the main distorting forces in R&D

markets, both leading to the implication that market investment in R&D is

insufficient relative to first best.3 A large academic literature has developed to

provide policy remedies, often advocating strong innovation protection rights

and the subsidization of R&D, trading off against the distortions resulting

from market power.4

Another known source of market inefficiency is caused by the sequential,

cumulative nature of innovations. This so-called “sequential spillover” problem

arises when, without a “first” innovation, the idea for follow-on innovations

3According to Bloom et al. (2013) the social return to innovations is estimated to be
twice as large as the private returns to innovators. Evidence of a funding gap for investment
innovation has been documented, for example, by Hall and Lerner (2010), especially in
countries where public equity markets for venture capitalist exit are not highly developed.

4Wright (1983) compares patents, prizes, and procurement as three alternative mecha-
nisms to fund R&D. Patents provide incentives so that they exert R&D effort efficiently,
as they delegate R&D investment decisions to innovators (i.e., to the “informed parties”),
but they burden the market with the IP monopoly welfare loss. Kremer (1998) suggests
an ingenious mechanism based on the idea of patent buyout, to design a prize system that
provide efficient R&D investment incentives. Cornelli and Schankerman (1999) show that
optimality can be achieved using either an up-front menu of patent lengths and fees, or
a renewal fee scheme. Boldrin and Levine (2008) provocatively challenge the views that
patents are needed to remunerate R&D activity, when innovations are embodied in costly
replicable capital or human capital.
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cannot exist, and the follow-on innovators are distinct from the first innovator

(see Horstmann et al., 1985, and Scotchmer, 1991). An innovation in the

sequence will typically reduce the rents of previous innovators, hence having a

negative competitive effect, and contribute to the value of future ones, as well

as that of consumers, hence having a positive spillover effect. In the absence of

direct transfers, patent-like mechanisms can be used to trade off innovations

at different points in the ladder.5

More generally, the misalingment between an innovation’s private and so-

cial returns is the result of negative competitive effects (“rent stealing”) and

positive spillover effects to other innovators, firms and consumers.6 Bloom et

al. (2013) show that technological positive spillovers tend to dominate, and

as a result social rates of return are twice as high compared to private ones.

This implies that, on average, innovations are underprovided by the market,

and this has been the driving concern of innovation policy discussions.

These inefficiencies notwithstanding, these forces can also lead to biases in

the direction of innovations, because of differences in the degree of appropri-

ability or financial needs, as argued by some recent papers in the literature.

Most of these have centered on the scope of the innovations pursued, basic

vs applied, or extensive vs. incremental. An early paper by Jovanovic and

Rob (1990) considers the role of intensive and extensive search. Budish et

al. (2015) investigate whether private research investments are distorted away

5For discussions about patent design in these settings see Green and Scotchmer (1995),
Scotchmer (1996), O’Donoghue et al. (1998), O’Donoghue (1998), Denicoló (2000). For a
mechanism design approach ,see Hopenhayn et al. (2006). Sequential innovations can also
make the timing of innovation disclosure inefficient (see, for example, Matutes et al., 1996,
and Hopenhayn and Squintani, 2016).

6For example, these can also arise as a result of “horizontal” market value complemen-
tarities or substitutabilities among innovations (see Cardon and Sasaki, 1998, and Lemley
and Shapiro, 2007, for example).
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from long-term projects. Akcigit et al. (2020) consider the tradeoff between

basic and applied research in a general equilibrium model of technical change,

while Akcigit and Kerr (2018) consider the tradeoff between internal inno-

vation by incumbents and external innovation of new entrants. Hopenhayn

and Mitchell (2001) examine the case where innovations differ in terms of the

prospects for follow-up innovations.

These considerations are obviously very important, however our paper fo-

cuses on a different source of inefficiency, that holds even when innovators

receive the full social value of their innovations. This inefficiency arises from

the fact that innovators pursue their research simultaneously, so the success

of one crowds out the potential success of others. Our paper is thus closer to

the literature on patent races (e.g., Lowry, 1979, and Reinganum, 1982).

A general conclusion from this literature is that there is excessive entry

into innovation as a result of this negative spillover, driving to zero the rents

of potential innovators (“rent dissipation”). Our research differs from this

literature in two important ways. First, we focus on the allocation of a fixed

set of innovators to alternative patent races, as opposed to a perfectly elastic

supply of resources on a single race. Secondly, we examine sequences of patent

races, as in the sequential innovation case. Our focus, of course, is on the

allocation of these resources across different patent races. In line with the

results of rent dissipation, we find that competition drives all rents to that

of the marginal innovations, or what we call “differential rent dissipation,”as

a result of overcrowding in certain areas of research and undercrowding in
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others.7,8

Our paper is also related to the literature on congestion. Our static misal-

location force can be related to the study of the so-called “price of anarchy”

in the congestion games developed by Rosenthal (1973). These games model

a traffic net, in which drivers can take different routes to reach a destination,

and routes get easily congested. In the optimal outcome, the drivers coordi-

nate in taking different routes, whereas in equilibrium they excessively take

routes that would be faster if they were not congested by suboptimal driv-

ing choices.9 Models of search with frictions have also focused on the role of

congestion, mostly in connection to the single market case. Directed search

models (e.g., Shimer, 1996, and Moen, 1997) consider the allocation of work-

ers to heterogeneous firms with different productivities, which is closer to our

setting. In contrast to our setting, the competitive equilibrium allocation is

efficient. The key difference is that while firms have property rights for pro-

ductive positions in models of directed search, there are no property rights for

open problems in our setting.10

Bryan and Lemus (2017) provide a valuable general framework on the direc-

7The idea of rent dissipation leading to excessive entry in models of product differenti-
ation was considered in the seminal by Spence (1976) and Dixit and Stiglitz (1977), in a
paper by Mankiw and Whinston (1986) and more recently by Dhingra and Morrow (2019).
The latter paper examines also the role of selection on productivity, which is somewhat
related to the determination of the extensive margin of research areas that we also consider.

8Further distantly related to our work, there is also a literature studying the welfare ef-
fects of complementarities and substitutabilities among different research approaches to
achieve the same innovation (e.g., Bhattacharya and Mookherjee, 1986; Dasgupta and
Maskin, 1987; Letina, 2016). Of course, this is different from the analysis of this paper,
which considers several innovations, without distinguishing different approaches to achieve
any of them.

9Similar results are obtained for the allocation of parking space in Anderson and De
Palma (2004).

10Mortensen (1982) had already proven the efficiency of allocations in the case of a single
patent race, when property rights over the innovation opportunity are assigned.
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tion of innovation that encompasses the models cited here, as well as models of

horizontal spillovers and of sequential innovation. Building on the interaction

across these different kinds of spillovers, they use their framework to assess

when it is optimal to achieve incremental innovations versus large step innova-

tions, and show that granting strong IP rights to “pioneer patents” may lead

to distortions in the direction of R&D. They also identify market distortions

that are distinct from the market inefficiency identified here.11

Finally, there are some papers that build on our paper’s insights. Lee (2020)

considers n innovators and two research lines to show that if the high value

innovation is more difficult, it may attract fewer researchers than in the first

best. This is analogous to our results for the case of heterogeneous arrival rates

in a model of Poisson arrival that we derive in the Online Appendix. Moraga-

Gonzàlez et al. (2019) consider a market with a leader and n challengers.

Each challenger attempts to become the market leader by achieving a quality

innovation. Each allocates R&D effort between two projects, that differ in

terms of profits, difficulty and social value. The winner of the challengers’

R&D race is determined according to a contest success function. They find

that competitive equilibrium is inefficient for two reasons: (i) firms overinvest

in the project with higher expected profitability, and (ii) they underinvest in

the more socially desirable project. A merger alleviates the former distortion,

but not the latter.

Also Chen et al. (2018) consider an incumbent and n challengers. They

11These distortions are demonstrated in a model with costless switching of researchers
across R&D lines, and without duplication of efforts in R&D races, so that it is optimal
to concentrate all R&D resources on the most valuable R&D line, to then move on to the
second most valuable one after the first innovation is discovered, and so on and so forth.
Under these assumptions, our paper’s market inefficiency that innovators overinvest in the
most valuable R&D line may not arise.
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study the effect of patentability standards on R&D efforts, entry decisions, and

direction of innovation. Each challenger allocates effort between two possible

R&D lines, one of known returns, and one of uncertain returns. The winner of

the challengers’ race is determined by the first arrival of independent Poisson

processes with arrival rates function of each firm’s effort. They find that

R&D efforts and the number of entrants are too low in equilibrium, relative to

the first best. Interestingly, they find that firms are biased toward (against)

innovation in the risky direction when the patentability standard is below

(above) some threshold.

3 A simple example

There are two problems with private and social values zH > zL, and two

researchers to be allocated to finding their solution. In any of the problems,

the probability of success with one researcher is p and with two is q > p.

We assume that q − p < p, capturing the idea that there is congestion or

superfluous duplication of efforts. This assumption holds with slack in the

case of independence, where q = 2p − p2 < 2p.12 We examine optimal and

competitive allocations with one and two periods.

12Our assumptions on congestion do not rule out correlation across innovation arrival
rates, nor technological spillovers across R&D firms. We only assume that the probability
of innovation with two competitors is less than twice the probability of success with one
innovator. In other terms, a researcher is unhappy that a competitor starts researching on
her same R&D project, turning her investigation into a race.
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3.1 One Period Case

Consider first the optimal allocation. Both researchers are allocated to H iff

qzH ≥ p(zL + zH) or likewise:

(q − p)zH ≥ pzL, (1)

with a straightforward interpretation.

For the competitive case, we assume that if two researchers are allocated to

H, then expected payoffs for each are 1
2
qzH . This would happen, for instance,

in a patent race where all value accrues to the first to solve the problem.

The necessary and sufficient condition for both researchers to work on the H

problem is that
1

2
qzH ≥ pzL. (2)

It is easy to verify that condition (43) implies (44), so the competitive alloca-

tion will always assign both researchers to H when it is optimal, but might do

so also when it is not.13

The difference between these two conditions can be related to the pecuniary

externality (“market stealing effect”) caused by entry into the H problem, that

equals (p−q/2)zH . Note that here the externality is not present when entering

into the L problem, since there will be at most one researcher there. In the

more general setting that we examine below with multiple research inputs,

this externality will occur for more than one research line, and its relative

strength is a key factor in determining the nature of the bias in the competitive

13We show in the Online Appendix that this result generalizes if researchers’ ability is
heterogeneous. This finding may be suggestive for future research on mergers and the
direction of innovation, because mergers usually lead to improved economies of scale and
efficiency.
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allocation.

Another interpretation of this external effect is value burning. In the more

general setup with many researchers that we examine below, the expected

value of solving different research problems is equalized to the least attractive

active one. All differential rents from solving more attractive problems are

dissipated.

3.2 Two Period Case

As above, in each period researchers can be allocated to the unsolved problems.

In case both succeed in the first period, then there are no more problems to

solve. If one problem is solved in the first period, then in the optimal as

well as in the competitive allocation both researchers are assigned to solve the

remaining one.

To compare the equilibrium and optimal allocations, it is convenient to de-

compose total payoffs of the alternative strategies into first and second period

payoffs. The second period problem is a static one. If only one problem is left,

then the two researchers will be assigned to it. If the two problems remain to

be solved, we will assume for simplicity that condition (43) holds, so that both

researchers are assigned to the H problem. Denote by wnt the total expected

payoffs in each period t = 1, 2, when assigning n ∈ {1, 2} researchers to the H

problem in period one. We can write

w21 = qzH , w22 = q[(1− q)zH + qzL],

w11 = p(zH + zL), w12 = q[(1− p)zH + pzL − p2zL].

The difference in first period payoffs is identical to the calculation in the static
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case. Consider now second period payoffs. The terms in brackets represent

the expected value of the problems that remain to be solved. We call this the

option value effect: as the planner has the option of solving problems in the

second period, the planner recognizes that if they are not solved in the first

period, then there is a residual value. This value is higher when the problem

that remains to be solved is H. Ignoring the quadratic term (which becomes

irrelevant in the continuous time Poisson specification that follows), it is the

case that w12 > w22, so the incentives for allocating initially both researchers

to H is weaker than in the static case.

Consider now the competitive allocation. Assuming one player chooses H,

and letting v2t represent expected payoffs in period t for the other player when

also choosing H and v1t when choosing L, it follows that

v21 =
1

2
qzH , v22 =

1

2
q[(1− q)zH + qzL] =

1

2
w22,

v11 = pzL, w12 = q[(1− p)zH + pzL − p2zL] =
1

2
w12.

Again we are assuming here that in the second period if both problems remain,

then the two players will choose H. The difference v21 − v11 is identical to the

one for the one period allocation. As shown above, and ignoring the quadratic

term, the difference w22−w12 is negative, mitigating the gain from choosing H

in the first period as in the optimal allocation. However, this difference here

is divided by two. The reason is that the deviating agent does not internalize

the value that leaving a better mix of problems to be solved for the second

period has for the other researcher, while the planner does. In the more general

setting that follows, as the number of players gets large, the dynamic effect

vanishes from the competitive allocation condition, while it remains essentially
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unchanged in the planner’s problem. The dynamic effect tilts the incentives in

the competitive case towards the problem H, relative to the optimal allocation.

It is straightforward to find parameter values where: (1) In the static

allocation it is optimal to allocate both researchers to the H problem; (2) In

the two period case it is optimal to diversify, while specialization occurs in the

competitive allocation. As an example, this will happen when zH = 3, zL = 1,

p = 3/8 and q = 1/2.

The static allocation problem considered in Section 3.1 can be reinterpreted

as a multi-period problem where researchers are fully specialized, so no reallo-

cation takes place. Probabilities q and p should then be interpreted as those

corresponding to final success.

4 Assignment without Reallocation

In this section, we lay out the basic model used in the rest of the paper. and

consider a general form of the static allocation problem discussed in Section

3.1.

There is a continuum of problems or R&D lines, with one potential inno-

vation each. Upon discovery, an innovation delivers value z that is distributed

across research lines with cumulative distribution function F, which we as-

sume to be twice differentiable. To isolate the findings of this paper from

the well-known effects discussed earlier, we assume that the social value of

an innovation coincides with the private value z.14 There is a mass M > 0

14The expected present discounted value zj of the patented innovation j does not neces-
sarily equal the market profit for the patented product, net of development and marketing
costs. It may also include the expected license fees paid by other firms which market im-
provements in the future, or the profit for innovations covered by continuation patents.

15



of researchers, who are allocated to the different R&D lines according to a

measurable function m. For each innovation of value z, we denote by m(z) the

mass of researchers competing for the discovery of that innovation. Hence, the

following resource constraint needs to be satisfied:∫ ∞
0

m(z)dF (z) ≤M. (3)

For each innovation z, the probability of discovery is P (m(z)). The function P

is strictly increasing, concave, and such that P (0) = 0. The assumption that

P is concave is the continuum analog of the congestion assumption q < 2p of

the example with two firms and two innovations of the previous section.15

The expected payoff of participating in an R&D line with value z and

a total of m(z) researchers is given by U(z,m(z)) = P (m(z))z/m(z). As

we show below, these payoffs can be interpreted as a winner-take-all patent

race where all participating researchers have equal probability of being first to

innovate. Our model can thus be interpreted as an extension of the standard

patent race to multiple lines. While that literature considers a single race with

a perfectly elastic supply of researchers/firms with some entry/opportunity

cost, we consider here the opposite extreme where a fixed supply of research

inputs M must be allocated across multiple innovations.16

Thus, our model is compatible with standard sequential models of innovation, both those
assuming that new innovations do not displace earlier ones from the market, as in the models
following Green and Scotchmer (1995), and those assuming the opposite, as in the quality
ladder models that follow Aghion and Howitt (1992).

15We conjecture that our results generalize to an S-shaped function P with a convex
region, by taking the concave envelope. Our equilibria would select allocations in the concave
part of the original function P , eliminating other sources of potential coordination failure
that might lead to zero entry.

16Obviously, with perfectly elastic supply the problem trivializes, as there would be no
connection between entry decisions into different research areas. We consider the opposite
extreme to emphasize the tradeoff in allocating research inputs across different research
lines, but our results should also hold for intermediate cases.
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In a competitive equilibrium, expected payoffs P (m(z))z/m(z) are equal-

ized among all active lines, where m(z) > 0. We call this differential rent

dissipation in analogy to absolute rent dissipation in the standard patent

race literature. In contrast, in the optimal allocation m̃ that maximizes

W (m̃) =
∫∞
0
zP (m̃(z))dF (z), the marginal contributions P ′(m̃(z))z are equal-

ized for all active lines.

In a competitive equilibrium, a marginal researcher contributes P ′(m)z to

total value but gets a return P (m)z/m which is greater, as a result of the

concavity of P. The difference P (m)z/m − P ′(m)z is the pecuniary exter-

nality inflicted on competing innovators. Relative to the value created, this

externality is given by:

P (m(z))

P ′(m(z))m(z)
− 1 =

1

εPm
− 1, (4)

where the first term corresponds to the inverse of the elasticity of discovery

with respect to the number of researchers. It is immediate to see that the

competitive allocation is optimal if and only if this external effect is the same

across research lines. Given that differential rent dissipation implies an increas-

ing function m(z), this condition holds only when the elasticity of discovery

is independent of m, i.e., when the discovery function P (m) = Amθ, for some

constant A.17

When this condition does not hold, the direction of the bias depends on

how this external effect varies with m. Intuitively, when it increases (i.e., the

elasticity of the discovery function is decreasing in m), there is excessive con-

centration in high z areas, as we show below. We say that the competitive

17Note, however, that since P is bounded by 1, this function can only hold for a range
where mθ ≤ 1/A, and beyond this range the elasticity must be zero.
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Figure 1: Bias to High z areas
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equilibrium is biased to higher z (“hot”) research lines when the competitive

and optimal allocations m and m̃ satisfy the single crossing condition shown in

Figure 1. Formally, there exists a threshold z̄ such that m(z) < m̃(z) for z < z̄

and m(z) > m̃(z) for z > z̄. Further, when this condition holds, it is also the

case that the smallest active R&D line innovation value is higher in equilibrium

than in the first best; i.e., that z̃0 = infz{m̃(z) > 0} ≤ z0 = infz{m(z) > 0}.

The following Proposition gives conditions for this to hold.

Proposition 1. In the absence of reallocation, the competitive equilibrium is

biased to higher z areas when the elasticity of discovery is decreasing in m.

Proof. See the Appendix.

While the condition in this Proposition might appear somewhat restrictive,

it holds in the canonical model of innovation used in the patent race literature,

as we show below. Moreover, as P (m)/m is bounded by 1, the elasticity must

converge to zero as m→∞, so it must decrease in some region.
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Stationary Innovation Process

The above setting can be embedded in a dynamic environment as follows. Let

t denote the random time of discovery and p(t;m) the corresponding density

when m researchers are assigned from time zero to a research line of value z.

The expected utility for each of them is given by

U(z;m) =

∫ ∞
0

( z
m

)
e−rtp(t;m)dt.

Expected payoffs are divided by m since each innovator is equally likely to win

the race and there are m researchers engaged in the race, p(t;m) denotes the

density of discovery at time t. Letting P (m) ≡ E[e−rt;m] =
∫∞
0
e−rtp(t;m)dt,

we can write U(z;m) = zP (m)/m, which is identical to the formulation given

above. It is important to emphasize that, while time is involved in the deter-

mination of payoffs, we are assuming here that, once the discovery z is made,

the m researchers involved become idle, and cannot be reallocated to other

research lines. The following sections relax this assumption, and considers

explicitly the problem of reallocation.

We specialize now the setting to a stationary environment that is stan-

dard in the canonical models discussed in the introduction. Let λ(m)m de-

note the hazard rate for discovery at any moment of time, so that p(t;m) =

λ(m)me−λ(m)mt. Assume that λ(m)m is increasing and concave, and that

λ(0) = 0. It follows easily that

P (m) =
λ(m)m

r + λ(m)m
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is concave, and that the elasticity of P with respect to m is

εPm =

(
r

r + λ(m)m

)
(1− ελm),

where ελm denotes the elasticity of λ with respect to m, −λ′(m)m/λ(m). Then,

Proposition 2 immediately follows:

Proposition 2. If the elasticity ελm is weakly increasing in m, then the com-

petitive allocation is biased to high z lines.

We can interpret the elasticity ελm as the market stealing externality per

unit of value created: λ(m)m/λ′(m). The condition given in Proposition 2

then states that this externality increases with z. Note also that this is a

sufficient but not necessary condition, as the first term is decreasing in m.

Proposition 2 applies to the canonical R&D models such as the ones discussed

in the literature, where λ(m) = λm (i.e., discovery is independent across

participants in a patent race), and the elasticity ελm = 1. Each active research

line can be thus interpreted as a patent race, where arrival rates are given by

independent Poisson processes with rate λ, and the first to innovate gets the

rights to the full payoff z. More generally, the result applies for the constant

elasticity case where λ(m) = λm−θ, for 0 ≤ θ < 1. For the canonical model of

patent races where θ = 0, an explicit solution for the equilibrium and optimal

allocations is given below.

Proposition 3. Suppose that there is a continuum of R&D lines, whose inno-

vation discoveries are independent events, equally likely among each engaged

researcher, with time constant hazard rate λ. Then, the equilibrium and optimal
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allocation functions are

m(z) =
z − z0
π

, for all z ≥ z0 = rπ/λ (5)

m̃(z) =
r

λ

(√
z

z̃0
− 1

)
, for z ≥ z̃0 = rµ/λ, (6)

where π is the equilibrium profit of each R&D line, and µ is the Lagrange

multiplier of the resource constraint. In equilibrium, innovators over-invest in

the hot R&D lines relative to the optimal allocation of researchers: there exists

a threshold z̄ such that m(z) < m̃(z) for z < z̄ and m(z) > m̃(z) for z > z̄.

Proof. See the Appendix.

Importantly, this result demonstrates the market bias that is theme of this

paper (that competing firms over-invest in hot R&D lines) within a canonical

dynamic model that may be related with the many R&D models since Loury

(1979) and Reinganum (1981) that are built on the assumption of exponential

arrival of innovation discoveries.18

To get a sense of the possible size of this distortion, we perform a sim-

ple back-of-the-envelope calculation. Suppose that innovation values are dis-

tributed according to a Pareto distribution of parameter η > 1, so that

F (z) = 1 − z−η for z ≥ 1. As proved in the Appendix, when λ(m) = λ

and η > 1, in an interior allocation where z̃0 > 1, the welfare gap is:

18Specifically, it is possible to formulate an “oligoplistic” version of our dynamic model
with n R&D firms, and each firm i hiring a mass mi(z) of researchers to allocate to an
R&D line z. This results in an arrival rate of λmi(z) for each innovation z to each firm i.
The hiring choices of each firm i reproduce the same functional forms of the effort choices
in Loury (1979) and subsequent papers built on the assumption of exponential arrival of
innovations. Our model with a continuum of atomistic competitors can be understood as
the limit case for n→∞ of this oligopolistic game.
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Figure 2: Plot of the welfare wedge W (m)/W (m̃) .

Figure 3: Equilibrium and Optimal Allocation (η = 1.35)

W (m̃)

W (m)
=

η

η − 1

(
η − 1

2η − 1

)1/η

.

This ratio is plotted in Figure 2. It is negligible for η close to 1, but quickly

increases as η grows, so that W (m̃)/W (m̃)− 1 reaches its maximum of about

20% for η close to 1.35 to then slowly decrease and disappear asymptotically as

η →∞. Figure 3 gives the corresponding equilibrium and optimal allocations.

The solid line corresponds to the optimal allocation and the dashed line to the

equilibrium.
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Heterogeneous arrival rates and flow costs

We have assumed here that arrival rates are the same for all research lines. Our

results can be extended for heterogeneity where the attractiveness of R&D lines

is not determined only by the innovations’ expected market values, but also by

the ease of discovery. Letting λj be the discovery arrival rate of an innovation j

with value zj, we obtain Pj(mj) = mjλj/[r+mjλj]. Ordering innovations j by

the product λjzj, it follows that the competitive equilibrium is biased to higher

values, as shown in the Online Appendix. In particular, this implies that if

all R&D lines j have the same value z but differ in ease of innovation, there

will be excessive entry into those with high λj. Further, the Online Appendix

shows how to generalize the analysis to allow for heterogeneous flow research

costs κj across innovations. This allows us to provide a general definition of

“hot” R&D areas, which includes easy problems or those that require a lower

cost to solve. In that sense, our model is also consistent with a bias to smaller

innovations or the low-hanging fruit. In sum, we say that the bias with which

we are concerned is to high return R&D lines, i.e., lines j with high flow

expected return λjzj − κj.

Quality Ladders

Starting with the work of Grossman and Helpman (1991) and Aghion and

Howitt (1992), and the subsequent model by Klette and Kortum (2004), qual-

ity ladders have been a workhorse model in the literature on sequential in-

novation. We show that our previous model can be easily inscribed in the

context of a quality ladder. Suppose goods/quality ladders are indexed by i

in the unit interval, and that for each good i there is an outstanding qual-
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ity q(i) interpreted as its social value flow. In addition, each quality ladder

i has an opportunity of improvement z(i) distributed according to F (z) that

when attained increases quality q(i) by rz(i), where r is the common rate of

discount. Given the cumulative nature of innovation, the present discounted

social value of this improvement is z(i). The technology for innovation is as

described above, where each innovator assigned to a quality ladder makes the

discovery with Poisson intensity λ, and obtains a value αz(i), where 0 < α ≤ 1.

An allocation of innovators is an assignment m(z), as a function of the qual-

ity of the innovation, where
∫
m(z)dF (z) = M, with an average arrival rate

per quality ladder λM. If we further assume that step increases are i.i.d., set-

ting α = r
r+λM

corresponds to the case where innovators appropriate the flow

of surplus created rz(i) only until a new innovation occurs, as is commonly

assumed in this literature.

5 Dynamic Allocation

We extend our previous analysis by allowing the mobility of researchers once

a research line is completed. As before, we assume there is a unit mass of

research areas (the problems to be solved) with continuous distribution F (z),

and there is an inelastic supply M of researchers. While here the set of prob-

lems is fixed, Section 6 considers a steady state with entry of new problems.

Throughout this section, we assume that λ(m) is twice continuously differen-

tiable, λ(m)m is strictly increasing and strictly concave, and λ(0) = 0. These

assumptions imply that the arrival rate per researcher λ(m) is decreasing, i.e.,

there is instantaneous congestion.19 Researchers are free to move across dif-

19Strict concavity implies that the arrival rate does not scale linearly with innovation,
which can also capture duplication of innovation effort. In the process of achieving a
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ferent problems, so the equilibrium and optimal allocations determine at any

time t the number of researchers m(t, z) assigned to each line of research z.

This assignment, together with the results of discovery, implies an evolution

for the distribution of open problems G(t, z), where

∂G(t, z)/∂z = −
∫ z

λ(m(t, s))m(t, s)G(t, ds) (7)

with G(0, z) = F (z). An allocation is feasible if at all times the resource

constraint: ∫
m(t, z)G(t, dz) ≤M (8)

is satisfied.

Equilibrium

Because the set of undiscovered innovations shrinks over time, it is never the

case that innovators choose to move across R&D lines in equilibrium, nor

that it is optimal to do so, unless the R&D line in which the researchers are

engaged is exhausted as a consequence of innovation discovery. Indeed, the

mass of researchers assigned to a particular line or research z will increase over

time. Because mobility is free, the value of participating in any research line

z at time t is equated to some value w(t) whenever m(t, z) > 0. The value

v(t, z) of joining research line z at time t follows the Bellman equation:

rv(t, z) = λ(m)m
( z
m

+ w(t)− v(t, z)
)

+ vt(t, z). (9)

patentable innovation, competing innovators often need to go through the same intermedi-
ate steps (see, for example the models of Fudenberg et al., 1983, and Harris and Vickers,
1985), and this occurs independently of every other innovators’ intermediate results, which
are jealously kept secret. Hence, the arrival rate of an innovation usually does not double if
twice as many innovators compete in the same R&D race.
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The first term represents the result of discovery which gives the researcher

the value z with probability 1/m, and the change in value w(t)− v(t, z). The

second term represents the change in value that occurs over time as the number

of researchers allocated to every line increases. An equilibrium is given by an

allocation m(t, z) and distribution of open problems G(t, z), together with

values v(t, z) and w(t) such that:

1. The allocation m and distribution G satisfy equations (7) and (8);

2. The value function v(t, z) satisfies the functional equation (9) and v(t, z) ≤

w(t) with strict equality when m(t, z) > 0.

Because the value of active research lines is equalized, v(t, z) = w(t) and

vt(t.z) = w′(t). As a result, equation (9) simplifies to:

rv(t, z) = λ(m)m
( z
m

)
+ w′(t), (10)

and since this value is equated across active research lines, it follows that

λ(m(t, z))z must be equal, too. This corresponds to the instantaneous value

of participating in research line z, and because of free mobility, it must be

the same across all active research lines. Differentiating this expression with

respect to z, it follows that

mz(t, z) = − λ(m(t, z))

λ′(m(t, z))z
. (11)

This equation can be integrated starting at a value z0(t) where m(t, z0(t)) = 0,

and z0(t) is the unique threshold where the resource constraint∫
z0(t)

m(t, z(t))G(t, dz) = M (12)
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is satisfied. As the mass of G decreases over time, it also follows that the

threshold z0(t) decreases. We have proved the following result.

Proposition 4. The equilibrium allocation is the unique solution m(t, z) of

equation (11), and is such that m(t, z) > 0 if and only if z > z0(t), where the

threshold z0(t) is determined by equation (12).

Optimal Allocation

Consider an allocation m̃(t, z). At time t, this gives a flow of value λ(m̃(t, z))z.

Integrated over all active research lines and time periods, it gives the objective

function:

U = max
m̃

∫
e−rt

∫
λ(m̃(t, z))m̃(t, z)zG(t, dz)dt. (13)

The optimal allocation maximizes (13) subject to the resource constraint (8)

and the law of motion (7). The latter is more conveniently expressed by the

change in the density:

∂g(t, z)/∂t = −λ(m(t, z))m(t, z).

The formal expressions for the Hamiltonian are given in the Online Appendix.

Letting u(t) denote the multiplier of the resource constraint and v(t, z) the

one corresponding to this law of motion, we can write the functional equation:

rṽ(t, z) = max
m̃

λ(m̃)m̃[z − ṽ(t, z)]− u(t)m̃+ ṽt(t, z), for all z ≥ z̃0(t). (14)

Equation (14) represents the value of an unsolved problem of type z at time t.

It emphasizes that problems are indeed an input to innovation, and as can be

easily shown the value of an open problem increases with z. Note the contrast
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to the private value v(t, z), which is equal for all z as a result of the differential

rent dissipation: in the eyes of competing innovators, all problems become

equally attractive and valuable. The value function defined by (14) can also

be interpreted as part of a decentralization scheme where property rights are

assigned for each problem z, and the owner of each open problem chooses

the number of researchers to hire at a rental price u(t). This interpretation

highlights the source of market failure in our model precisely due to the lack

of such property rights.20

The solution to the maximization problem in equation (14) gives:

[λ′(m̃(t, z))m̃(t, z) + λ(m̃(t, z))][z − ṽ(t, z)] = u(t). (15)

Comparing to the equilibrium condition where λ(m(t, z))z is equalized reveals

the two key sources of market failure that were illustrated in our simple ex-

ample in Section 3. The first one is that the planner internalizes congestion

(i.e., the market stealing effect), which is why payoffs are multiplied not just

20This formulation can also be used to establish a connection with directed search. Con-
sider the following market mechanism. A firm with value z offers a prize p(z) to whomever
develops first its research opportunity z. Joining this race gives a researcher the flow value
λ(m(z))p(z), which in equilibrium is equated at time t across all active areas to a value u(t).
This equivalence defines implicitly m(p, t) by

λ(m(p, t))p = u(t).

The owner of research opportunity solves:

rv(z, t) = max
p

λ(m(p, t))m(p, t)(z − p− v(z, t)) + vt(z, t).

Substituting for m(p, t) gives

rv(z, t) = max
p

λ(m(p, t))m(p, t)(z − v(z, t))−m(p, t)u(t) + vt(z, t),

which is equivalent to functional equation (14). It follows immediately that the first order
conditions of this problem are identical to (15).
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by the arrival rate λ. It is useful to rewrite the term in brackets as:

λ(m̃(t, z))[1− ελm]. (16)

Note the parallel to the results in the case without reallocation considered in

Section 4, where the term in brackets corresponds to the wedge between the

optimal and competitive allocation. The second term in brackets in equation

(15) captures the fact that the payoff for discovery is smaller for the social

planner, because it internalizes the fact that a valuable problem is lost as a

consequence, as we found in our simple example. Taking the ratio of the two

conditions gives:

λ(m(t, z))

λ(m̃(t, z))
= (1− ελm(m̃(t, z)))

(
z − v(t, z)

z

)
v(t)

u(t)
.

For fixed t, the allocation functions cross when λ(m̃(t, z)) = λ(m(t, z)). Since

the λ function is decreasing, a sufficient condition for m(t, z) to remain higher

after crossing is that this ratio decreases with z. This is the composition of

two effects, represented by the two terms in brackets above. The first term

is decreasing if the elasticity is increasing in z, i.e., if the market stealing

effect increasing. Because the value function is convex in z, the second term

decreases in z. This corresponds to the option value effect that we found in

our simple example. We have proved the following Proposition.

Proposition 5. Consider the model with free research mobility with individual

arrival rate λ(m). Suppose that the elasticity ελm is weakly increasing in m.

Then, in equilibrium, innovators over-invest in the hot R&D lines: there exists

a twice differentiable threshold function z̄ such that m(t, z) < m̃(t, z) for z <

z̄(t) and m(t, z) > m̃(t, z) for z > z̄(t).
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Note that even abstracting from the first effect (e.g., when the elasticity is

constant) the competitive bias to hot areas still holds.

A borderline case occurs in the absence of instantaneous congestion, i.e.,

when λ(m) = λ and total arrival is linear in λ. Since there is no force to equalize

rents in the competitive case, the solution is extreme and all researchers join

the highest remaining payoff line at any point in time. The same turns out to

be true in the optimal allocation, so in this knife-edge case the equilibrium is

efficient. Reallocation costs provide an alternative rent-equalizing force that

can lead to a non-degenerate equilibrium. These are examined in the following

section.

Costly Reallocation

Assume that λ(m) = λ in the stationary dynamic model presented above. Sup-

pose that, at any point in time, each researcher can be moved across research

lines by paying an entry cost c > 0. For every innovation of value z and time t,

we denote the mass of engaged researchers as m(t, z), and let z0(t) be the small-

est active R&D line innovation value at time t; i.e., z0(t) = infz{m(t, z) > 0}.

An equilibrium is defined in the same way as done in the previous section.

Because the set of undiscovered innovations shrinks over time, there is

positive entry into any active line of research, so it is never the case that

innovators choose to move resources across R&D lines in equilibrium, nor

that it is optimal to do so, unless the R&D line in which the researchers are

engaged is exhausted as a consequence of innovation discovery.21 So, we can

21Further, as we show in Proposition 6 below, there exists a time T after which researchers
are not redeployed into other R&D lines, even when their research line is exhausted due to
innovation discovery.
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approach again the problem using standard dynamic programming techniques.

We express the equilibrium value v(t, z) of a researcher engaged in a R&D line

of innovation value z at t through the Bellman equation:

rv(t, z) = λm(t, z)

[
z

m(t, z)
+ w(t)− v(t, z)

]
+
d

dt
v(t, z). (17)

The flow equilibrium value rv(t, z) includes two terms. The first one is the

expected net benefit due to the possibility of innovation discovery. The hazard

rate of this event is λm(t, z); if it happens, each researcher gains z with prob-

ability 1/m(t, z) and experiences a change in value w(t)− v(t, z), where w(t)

represents the value of being unmatched. The second term, d
dt
v(t, z), is the

time value change due to the redeployment of researchers into the considered

R&D line from exhausted research lines with discovered innovations.

For any time t, both the equilibrium value v(t, z) and its derivative d
dt
v(t, z)

are constant across all active R&D lines of innovation value z ≥ z0(t).
22 Let

v(t) and v′(t) denote these values. In addition, note that since an unmatched

researcher can join any research line at cost c, it follows that v(t) = w(t) + c.

Substituting in (17) we obtain the no-arbitrage equilibrium condition:

λ[z −m(t, z)c] = rv(t)− v′(t), for all z ≥ z0(t), (18)

implying that z − m(t, z)c is equated across all active research lines. Given

that m(t, z) ↓ 0 as z ↓ z0, it follows that payoffs of all active lines z −m(t, z)

are equated to z0: differential rents are dissipated through higher entry rates

22These conditions are akin to value matching and smooth pasting conditions in stopping
problems (for example, see Dixit and Pindyck, 1994). Because R&D firms are competitive,
and labor is a continuous factor, the equilibrium dissipates all value differences from dis-
covery of different innovations, through congestion and costly redeployment of researchers.
This is similar to the phenomenon of rent dissipation in models of patent races with costly
entry.

31



in higher return areas, being all equated to the lowest active value line. Notice

the parallel to the results in the patent race literature, where all rents are

dissipated through entry. It follows that the flow value in the economy at time

t is λMz0(t).

Solving for m(t, z) using the above gives:

m(t, z) = [z − z0(t)]/c, for all z ≥ z0(t). (19)

When the resource constraint
∫∞
z0(t)

m(t, z)dG(t, z) ≤M binds, the initial con-

dition z0(t) is pinned down by the equation:

cM = c

∫ ∞
z0(t)

m(t, z)dG(t, z) =

∫ ∞
z0(t)

(z − z0(t))dG(t, z), (20)

where G(t, z) is again the cumulative distribution function of innovations not

discovered yet at time t.

We also note that, because active R&D lines with innovation value z ≥ z0(t)

get exhausted over time, more researchers engage in the remaining lines, i.e.,

mt(t, z) > 0 for all z ≥ z0(t); less valuable lines become active, i.e., z′0(t) < 0,

and each active research line becomes less valuable, i.e., v′(t) < 0. Indeed, the

value v(t) decreases over time until the time T such that v(T ) = c. At that

time, redeployment of researchers stops at the end of the R&D race in which

they are engaged. By then, active research lines have become so crowded that

their value is not sufficient to recover the entry cost c any longer.23

23The characterization of the allocation m(t, z) of researchers on undiscovered R&D lines
at any time t ≥ T is covered by the earlier analysis of the canonical dynamic model without
redeployment of researchers (cf. Proposition 3). In our set up with a continuum of R&D
lines distributed according to the twice differentiable function G, arguments invoking laws of
large number suggest that the allocation m(t, z) would smoothly converge to the allocation
m(t) described in Proposition 3.
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The next Proposition summarizes the above equilibrium analysis.

Proposition 6. Assume that λ(m) = λ, and that researchers can be moved

across R&D lines at cost c > 0. The equilibrium allocation is:

m(t, z) =
z − z0(t)

c
, for all z ≥ z0(t), (21)

where the boundary z0(t) solves equation (20). Researchers are redeployed into

different active R&D lines until the time T such that z0(T ) = rc/λ, and only

if their research line is exhausted due to innovation discovery. The flow value

in the economy at time t is λMz0(t).

We now consider the optimal allocation that is defined as in the previous

section, after subtracting total entry costs. Following the same approach, we

solve for the optimal allocation m̃ using the Bellman equation defined by the

co-state dynamic condition in the Hamiltonian. The details are provided in

the Online Appendix. The value of a research line z at time t satisfies

rṽ(t, z, 0) = max
m̃∈R

λm̃[z−ṽ(t, z, m̃)]−rm̃c−u(t)m̃+ṽt(t, z, m̃), for all z ≥ z̃0(t).

(22)

There are several comments to make about this equation. First, due to the

irreversible entry cost c, the value function has as an additional argument the

number of researchers m̃. On the left hand side, we consider the flow value of

an empty research line with m̃ = 0. On the right hand side, we consider the

optimal choice of m̃. The entry cost m̃c is expressed in flow terms consistently

with the formulation of the value function. As before u(t) is the multiplier for

the resource constraint. Finally note that ṽ(t, z, m̃(t, z)) = ṽ(t, z, 0)+m̃(t, z)c,

at the optimal choice. This also implies that vt(t, z, m̃) is independent of m̃,
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which is used below. Substituting in (22) we obtain:

rṽ(t, z, 0) = max
m̃∈R

λm̃[z−ṽ(t, z, 0)−m̃c]−rm̃c−u(t)m̃+ṽt(t, z, m̃), for all z ≥ z̃0(t).

(23)

This can be also interpreted as the Bellman equation for a firm that is assigned

the property rights to a problem z at time t, and needs to choose the initial

amount of researchers to hire, paying the initial entry cost m̃c and rental price

u(t). The solution of program (22) leads to the first order conditions:

λ[z − ṽ(t, z, 0)− 2m̃(t, z)c] = rc+ u(t), for every z ≥ z̃0(t). (24)

Equating these first order conditions leads to the differential equation

m̃z(t, z) =
1− ṽz(t, z, 0)

2c
. (25)

By comparison, the differential equation for the equilibrium allocation ob-

tained by differentiating (19) gives:

mz(t, z) =
1

c
. (26)

It follows immediately that the derivative m̃z of the optimal allocation function

m̃ is smaller than mz, the derivative of the equilibrium allocation function m.24

Because both functions m and m̃ need to satisfy the same resource allocation

constraint, this implies that the competitive equilibrium is biased towards

high-return areas.

Further, the comparison of equations (25) and (26) allows us to single out

two separate effects that lead to this result. The first one is the option value

24We prove in the the Appendix that 0 < ṽz(t, z) < 1.
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effect described earlier, where the marginal value of a better research line is

1−vz which is less than one, the marginal value in the competitive equilibrium.

The derivative vz captures the fact that a better problem has also more value

in the future, in contrast to the equalization due to rent dissipation that occurs

in the competitive case. As a result, when engaging in a R&D line of value z,

competing firms do not internalize the negative externality ṽz(t, z), the change

in the continuation value due to the reduced likelihood of discovering the

innovation later. This leads the competing firms to sub-optimally anticipate

investment in the hot R&D lines, leading to over-investment at every time t.

To see the second effect, note that the additional social marginal cost

for engaging an additional researcher in a marginally more profitable line,

2m̃z(t, z)c, is twice the private additional expected cost mz(t, z)c incurred by

the individual researcher. On top of this private cost, the society suffers also

an additional redeployment cost. This cost is incurred in expectation by all

researchers already engaged in the more profitable R&D line, in case the addi-

tional researcher wins the R&D race. This additional redeployment cost is not

internalized by the competing firms, and it also pushes towards equilibrium

over-investment in the hot R&D lines.25

Proposition 7. Assume λ(m) = λ and there is a cost of entry c > 0 to

engage in any new problem. Then, in the competitive equilibrium, innovators

over-invest in high return R&D lines at every time t: there exists a threshold

function z̄(t) such that m(t, z) < m̃(t, z) for z < z̄(t) and m(z) > m̃(t, z) for

25The result that R&D firms overinvest in hot R&D lines fails to hold only when c = 0
(the case of perfectly costless redeployment of researchers). In this case, assuming that the
innovation value distribution has bounded support, all researchers will be first engaged in
the most valuable R&D lines. When these innovation are discovered, the researchers will
be redeployed to marginally less valuable research lines, until also these innovations are
discovered, and so on and so forth. This unique equilibrium outcome is socially optimal.
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z > z̄(t).

This result completes our analysis of the stationary dynamic model in which

the set of available problems to solve is fixed over time. The following section

extends this model by considering the arrival of new R&D lines.

6 Steady State Economy

Consider the model analyzed in the last section, and suppose in addition that

new problems arrive with Poisson intensity α and returns z distributed accord-

ing to an exogenous distribution F (z). We focus on the R&D line replacement

that keeps the economy in steady state.26

In steady state, the equilibrium allocation m is independent of time t, and

thus calculated with obvious modifications of the analysis presented earlier in

this section. The expression λ[z − m(z)c] is constant for all z ≥ z0, so that

the equilibrium solves the differential equation m′(z) = 1/c, which gives the

solution

m(z) = (z − z0)/c, for every z ≥ z0. (27)

Likewise, obvious modifications of the Bellman equations (22) show that the

social planner problem takes the following form, in steady state:

rṽ(z) = max
m̂∈R

λm̃[z − ṽ(z)− m̃c]− rm̃c− um̃, for all z ≥ z0, (28)

under the constraint that u satisfies the resource constraint. The associated

26For simplicity, we assume that when an innovation is discovered, the cost c for redeploy-
ing researchers is the same for all R&D lines, including the follow up lines of the innovation
discovery. Our results would extend to a more complicated model in which the redeployment
cost is smaller for these lines as long as they are not exactly equal to zero.
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first-order conditions are:

λ[z − ṽ(z)− 2m̃(z)c] = rc+ u, for every z ≥ z0. (29)

Inspection of the equilibrium condition and equation (28) reveal the same

two forces identified earlier, leading to excessive equilibrium investment in hot

areas, so there exists a threshold z̄ such that m(z) < m̃(z) for z < z̄ and

m(z) > m̃(z) for z > z̄.

With simple manipulations presented in the Appendix, we obtain:

λ

[
z − cλm̃(z)2

r
− 2m̃(z)c

]
= rc+ u, for every z ≥ z0. (30)

These equations are analogous to the ones obtained in the first-order conditions

(24) for the model redeployment that we solved earlier. The only difference

is that the term ṽ(z) takes the constant form λm̃(z)2c/r, here, which is the

discounted cost of all future redeployment of the mass m̃(z) of researchers

engaged in the considered R&D line —the term λm̃(z)c/r is the individual

discounted cost. So, we can identify as λm̃(z)2c/r+ m̃(z)c, the “redeployment

cost externality” that an additional researcher imposes on the m̃(z) researchers

engaged in the R&D line. As shown in the Appendix, equation (30) can be

used to obtain an explicit solution for the optimal allocation as a function of

z0:

m̃(z) =
r

λ

(√
λ
z − z̃0
rc

+ 1− 1

)
, for all z ≥ z0.

27 (31)

27The net benefit of an additional researcher in the R&D line equals this researcher’s
discovery hazard rate λ, multiplied by the innovation value z, minus the current and future
discounted switching costs m̃(z)c+ λm̃(z)2c/r borne by the other m̃(z) researchers, minus
the cost of m̃(z)c of redeploying this marginal researcher. The latter, grouped with z, gives
the expression λ[z − m̃(z)]c which is the private marginal net benefit of researchers in the
R&D line, as reported earlier.
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To further the comparison between the equilibrium and first best allocation

functions m and m̃, we continue the analysis under the assumption that, in

the steady state economy, the value distribution of the new R&D lines is

independent of the values of the R&D lines that they replace. Under this

assumption, both allocation functions m and m̃ satisfy the simple steady state

conditions:

λm(z)g(z) = αf(z), for all z ≥ z0, (32)

λm̃(z)g̃(z) = αf(z), for all z ≥ z̃0, (33)

where g and g̃ denote the stationary equilibrium densities of undiscovered

innovation values associated with m and m̃ respectively, f denotes the density

of the innovation values of the new R&D lines, and α ≤ λM is the flow

arrival rate of R&D lines. The equilibrium densities are defined for values of z

above the respective thresholds. The R&D lines below the threshold become

untouched and thus grow unboundedly.28

Conditions (32) and (33) imply that, for any innovation value z with ac-

tive R&D lines, the total mass of researchers allocated in the steady state

equilibrium and optimal allocations, respectively m(z)g(z) and m̃(z)g̃(z), are

both equal to (α/λ)f(z), the net inflow of R&D lines of innovation value z.

Of course, this does not mean that also the mass of researchers engaged in

each R&D line is the same: it need not be that m(z) = m̃(z) for any active

28In the Online Appendix, we consider the general case in which the values distribution
of new R&D lines is not independent of the values of the discovered innovations. Unless
also the R&D line value distribution support changes with the values of the discovered
innovations, there exists an equilibrium that also satisfies equations (32) and (33). In the
extreme case in which each discovery leads to a R&D line with the same innovation value,
the option value effect identified comparing program (22) with equation (17) disappears,
but our main result that competing researchers overinvest in the hot R&D lines persists. In
every other case, both the option value effect and our main result persist.

38



R&D line of innovation value z because the stationary distributions g and g̃

will differ.

We now turn to the determination of the thresholds. Assuming that the

resource feasibility constraint
∫ +∞
z0

m(z)g(z)dz ≤M binds in both allocations,

the threshold z0 is pinned down by plugging the stationarity condition (32)

into the binding resource constraint, so as to obtain the equation:

α(1− F (z0)) = λM. (34)

Again λM is the outflow of solved problems, which must equal the inflow of

new relevant problems, in steady state. Remarkably, this implies that the

threshold z0 is determined independently of the allocation function m, so in

particular z̃0 = z0. Equations (27), (31), and (34) can be used to solve for the

equilibrium and optimal allocations.29

Because the thresholds z0 and z̃0 coincide, mz > m̃z, and limz↓z0 m(z) =

limz↓z0 m̃(z) = 0, it follows that m(z) > m̃(z) for all z > z0. This is consistent

with both allocations integrating to total resources M precisely because the

stationary distribution of open problems G̃ in the optimal allocation stochas-

tically dominates G, the one in the stationary competitive equilibrium.

In words, the density of the R&D lines with undiscovered innovations is

very large for small innovation values, very few researchers are engaged on

these R&D lines, and hence innovation discoveries arrive with a very low rate.

As the innovation value grows larger, the density of R&D lines with undiscov-

ered innovations decreases. The rate of decrease is larger for the competitive

29If the resource constraint is satisfied with a strict inequality,
∫∞
z0
m(z)dG(z) < M, then

the economy cannot support entry by all firms, the participation constraint v̄ ≥ c binds and
pins down z0 through the equality c = v̄ = (λ/r)z0.
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equilibrium than for the optimal allocation function. So, the market sub-

optimally exhausts too many high value R&D lines too early, and leaves too

few for future discovery. As a consequence of this, the number of researchers

per project is always higher in equilibrium than in the social optimum, be-

cause there are more high-value R&D lines in the social optimum, and these

high-value R&D lines take up more researchers than low value R&D lines.

Welfare

In any allocation m(z), the flow of value is

rV = λ

∫
z0

m(z)(z −m(z)c)g(z)dz

= α

∫
z0

zf(z)dz − αc
∫
z0

m(z)f(z)dz, (35)

because of the steady-condition λm(z)g(z) = αf(z).

The first term in equation (35) is the same in any allocation, and it is

precisely the value of the outflow of problems solved that in a stationary equi-

librium equals the corresponding inflow. Since the latter is independent of the

allocation, so is the former. The second term corresponds to the total flow

costs of redeployment, that differs across the two allocations. In the competi-

tive allocation, cm(z) = (z − z0). Substituting in equation (35) gives:

rV = α

∫
z0

zf(z)dz − α
∫
z0

(z − z0)f(z)dz

= αz0(1− F (z0)) = λMz0.

This represents a value equivalent to the flow of all innovations equalized to

the lowest value one, reflecting again differential rent dissipation. Note that
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as z0 is independent of c, this value is the same for all c, within a range

where all researchers are employed in the steady state. In particular, it holds

surprisingly even as c ↓ 0 due to an unboundedly increasing concentration in

high return areas.

Consider now the flow value of the optimal allocation. Using (31), it follows

that

αm̃(z)f(z)c =
rα

λ

(√
cλ

(z − z̃0)
r

+ c2 − c

)
f(z).

Substituting in (35) and using our previous result proves the following Propo-

sition.

Proposition 8. When λ(m) = λ, the cost of entry is c > 0 and the flow

of entry of new problems α with density f, aggregate equilibrium and optimal

welfare are given, respectively by:

W (m) = (λ/r)z0M, (36)

W (m̃) =
α

r

∫ ∞
z0

zf(z)dz + cM − α

λ

∫ ∞
z0

√
cλ

r
(z − z0) + c2 · f(z)dz. (37)

These closed-form expressions make welfare assessments simple and pre-

cise. Welfare is dissipated in the equilibrium allocation with excess researcher

turnover to equal the flow of the lowest active research area. The welfare is

not dissipated in the optimal solution, because the social planner spreads out

researchers more evenly and leaves a larger number of hot R&D lines for later,

so that the society does not pay as much in terms of relocation costs.

When the switching costs are small, the optimal welfare expression simpli-
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fies further:

lim
c→0+

W (m̃) = (α/r)

∫ ∞
z0

zf(z)dz = (α/r)E(z|z ≥ z0)[1− F (z0)]

= (λ/r)E(z|z ≥ z0)M.

Comparing this expression to the one derived above makes transparent the

extent of rent dissipation in the competitive equilibrium allocation. For small

switching cost c, the welfare ratio W (m)/W (m̃) takes the form:

lim
c→0+

W (m)

W (m̃)
=

z0
E(z|z ≥ z0)

.

In words, the welfare ratio converges to the innovation value of the smallest

active R&D line z0, divided by the average innovation value. This ratio can be

very small for empirically plausible cumulative distributions F of innovation

values.30

7 Final Remarks

Research on the efficiency of innovation markets is usually concerned with

whether the level of innovator investment is socially optimal. This paper has

asked a distinct, important question: Does R&D go in the right direction? In

a simple dynamic model, we have demonstrated that R&D competition pushes

firms to disproportionately engage in areas with higher expected rates of re-

turn. As far as we can tell, the identification of this form of market failure is a

30We performed a back-of-the-envelope calculation of the welfare ratio W (m)/W (m̃),
under the assumption that the distribution F is lognormal with mean equal to 7 and standard
deviation equal to 1.5, consistently with the estimates provided by Schankerman (1998).
With cost c = 1 million, the welfare ratio W (m)/W (m̃) is approximately 0.28. As the cost
c vanishes, the ratio W (m)/W (m̃) converges to 0.17 approximately.
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novel result. The competitive bias towards high return areas comes from three

distortions: (1) The cannibalization of returns of competing innovators; (2)

excessive turnover and duplication costs; (3) excessive entry into high-return

areas because the market does not take into account the future value of an

unsolved problem, while a social planner does. In our steady state analysis,

the allocation of resources to problem solving leads to a stationary distribution

over open problems. The distribution of the socially optimal solution stochas-

tically dominates that of the competitive equilibrium. A severe form of rent

dissipation occurs in the latter, where the total value of R&D activity equals

the value of allocating all resources to the least valuable problem solved.

The source of market failure in our model is the lack of property rights

on problems. Standard forms of intellectual protection are not the immediate

solution as they grant property rights over the solutions and not the original

problems. However, patent policy and other ways of rewarding innovation

might still serve indirectly to offset the distortion we identified, by reducing

private appropriation in the high return areas.

The main sources of research funding are grants and fiscal incentives in

the form of subsidies or tax breaks. Prizes, procurements, and the funding of

academia also serve to subsidize R&D. These funding sources could serve to

mitigate the bias to high-return areas, when considerations other than return

are taken into account. Indeed, prizes and direct subsidies have been used

in the past to stimulate research into areas with lower returns, such as the

development of orphan drugs to treat rare diseases. However, it is still possible

that some prize, procurement, and career concerns in academia exacerbate the

market inefficiency singled out in this paper. Plausibly, they may bias the

incentives of individual researchers so that they disproportionately compete
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on a small set of high-profile breakthroughs, instead of spreading their efforts

more evenly across valuable innovations.31

The modeling framework we present in this paper can be elaborated in

several directions. In this paper, we have taken the arrival of innovation op-

portunities (problems) as an exogenous process, as we focused our attention on

the market allocation of resources to solve the problems. But its quite natural

that new questions can arise in the process of solving older ones, so that the two

processes are interrelated. One of the inefficiencies we find in our steady state

analysis is that good ideas are exhausted too fast in the market allocation,

leading to a poor distribution of outstanding problems to solve in the steady

state. This could be mitigated in part if in the process of solving problems,

new ones arise that are positively correlated with the quality of those being

solved. Moreover, while we have assumed that the set of open problems are

a public good, the discovery of some of these opportunities might be private

and remain protected through secrecy by the firms or agents involved in this

R&D process. We leave the investigation of these elaborations of our model

to future research.
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Appendix: Omitted Proofs

Proof of Proposition 1. In a competitive equilibrium, the average payoff per
researcher P (m(z))z/m(z) is constant for all m(z) > 0. Differentiation with
respect to z yields [P ′(m(z))m′(z)z+P (m(z))]m(z)−P (m(z))zm′(z) = 0 for
all m(z) > 0. Rearranging, the slope of the competitive allocation m is:

m′(z) =
P (m(z))m(z)

z[P (m(z))−m(z)P ′(m(z))]
.

This derivative is strictly positive because P is positive and concave, so the
set of z over which m(z) > 0 is connected.

In the optimal allocation m̃, the marginal payoff P ′(m̃(z))z is constant for
all m̃(z) > 0. Differentiating with respect to z and rearranging, we obtain:

m̃′(z) = − P ′(m̃(z))

zP ′′(m̃(z))
> 0.

By concavity of P , this derivative is positive: also the set of z over which
m(z) > 0 is connected.

If the allocation functions m and m̃ cross at any point z̄, then, letting
m = m(z̄) = m̃(z̄),

m′(z̄)− m̃′(z̄) ∝ P (m)mP ′′(m) + P ′(m)P (m)−m[P ′(m)]2.

This quantity is proportional to the derivative of the elasticity of discovery
εP (m) with respect to m calculated at P (m), and it is thus negative if the
elasticity of discovery decreases in m. Hence, there is at most a single crossing
point z̄ for the allocation functions m and m̃, and at such a z̄, the competitive
allocation function m is steeper than m̃.

Because both functions m and m̃ are subject to the same resource con-
straint

∫∞
0
m(z)dF (z) ≤ M, the functions m and m̃ cross exactly once, at z̄.

It is then the case that m(z) < m̃(z) for all z < z̄, that m(z) > m̃(z) for all
z > z̄, and that z̃0 = infz{m̃(z) > 0} ≤ z0 = infz{m(z) > 0}.

Proof of Proposition 3. For all innovation values z with active R&D lines, the
equilibrium no-arbitrage conditions are

z
P (m)

m
= z

λ

r +mλ
= π.
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Solving out, we obtain

m(z) = max{0, z/π − r/λ} = r/λmax{0, z/z0 − 1},

where z0 = rπ/λ is the smallest-value R&D line z such that m(z) > 0, thus
obtaining expression (5).

A social planner chooses m̃(·) to maximize the social welfare:

W (m̃(·)) =

∫ ∞
0

z
m̃(z)λ

r + m̃(z)λ
f(z)dz s.t.

∫ ∞
0

m̃(z)f(z)dz = M.

Hence, the Euler conditions are that, for all z,

z
rλ

(r + m̃(z))λ)2
= µ,

where µ is the Lagrange multiplier of the resource constraint.
Solving out, we get

m̃(z) = max{0,
√

(z/µ)(r/λ)− r/λ} = max{0,
√
z/z̃0 − 1}r/λ,

where z̃0 = rµ/λ is the smallest-value R&D line z such that m̃(z) > 0, thus
obtaining expression (6).

The proof that there exists a threshold z̄ such that m(z) < m̃(z) for z < z̄
and m(z) > m̃(z) for z > z̄ is analogous to the proof of Proposition 1 above,
once realized that the generalized inverse hazard rate Γ(m̂) = r/(r + m̂λ)
strictly decreases in m̂.

Derivation of Welfare Ratio for Pareto Distribution. Returning to expression
(5) for the equilibrium allocation m, we note that, here, z0 is pinned down by
the resource constraint:

M =

∫ ∞
0

m(z)f(z)dz =
r

λ

∫ ∞
z0

(
z

z0
− 1

)
1

zη+1
ηdz =

r

λ

z−η0

η − 1
.

Hence, the equilibrium welfare is simply:

W (m) = Mπ =
z1−η0

η − 1
,

as each researcher earns the value π, and there is a continuum of mass M of
researchers.
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Returning to expression (6) for the optimal allocation m̃, we see that z̃0 is
pinned down by the resource constraint

M =

∫ ∞
1

m̃(z)dF (z) =
r

λ

∫ ∞
z̃0

(√
z

z̃0
− 1

)
1

zη+1
ηdz =

r

λ

z̃−η0

2η − 1
.

Because the expected social value of employing m̃(z) researchers in any R&D
line of value z is

zP (m̃(z)) = z
m̃(z)λ

r + m̃(z)λ
= z

r
λ

(√
z
z̃0
− 1
)
λ

r + r
λ

(√
z
z̃0
− 1
)
λ

= z −
√
zz̃0,

integrating over z, we obtain that the optimal welfare is:

W (m̃) =

∫ ∞
z̃0

zP (m̃(z))dF (z) =

∫ ∞
z̃0

(
z −

√
zz̃0

) 1

zη+1
ηdz

= η

[
z̃1−η0

(η − 1)(2η − 1)

]
.

Dividing W (m) by W (m̃), we obtain expression given in Section 4.

Completion of Proof of Proposition 6. From equation (20) and since the mass
of G is decreasing at all times above point z0(t), it follows that z0 must decrease
over time.

Once concluded that z′0(t) < 0, it immediately follows that mt(t, z) > 0 for
all z ≥ z0(t), and this implies that v′(t) < 0. Now, let v̄(z, m̂) = λ

r+λm̂
z be

the per-researcher expected discounted value of an innovation of value z, when
a mass m̂ of researchers are permanently engaged on the R&D line. When
c < v̄(z, m̂), The cost of deploying an additional researcher on the considered
R&D line cannot be recovered. Because mt(t, z) > 0, it follows that the
value v̄(z,m(t, z)) decreases in t. Hence, there exists a time T (z), after which
innovators do not engage researchers in any R&D line of innovation value z any
longer. Solving the equation c = λ

r+λm(t,z)
z, with m(t, z) = z−z0(t)

c
, we obtain

the expression z0(T ) = rc/λ, reported in the statement of the Proposition. At
that time T, it is also the case that v(T ) = v̄(z,m(t, z)): the equilibrium value
function v is smoothly pasted with the function v̄(z,m(z, ·)) for any innovation
value z ≥ z0(T ).
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Proof of Proposition 7. To complete the proof, we only need to show that
ṽz(t, z) > 0, i.e., that the optimal social value of researching undiscovered
innovations increases in their value z. Written in “forward form,” the optimal
social value is:

ṽ(t, z) = max
m(·,z)

∫ ∞
t

λeλ(s−t)[e−rs(z −m(s, z))−
∫ s

0

e−rτm(τ, z)u(τ)dτ ],

where u(τ) is the equilibrium researcher wage at time τ, in the decentralized
implementation of the first best. It is immediate to verify that this expression
of ṽ is linear and increasing in z.

Proof that v̄ = (λ/r)z0, and derivation of expressions (30) and (31). In order
to prove that v̄ = (λ/r)z0, we consider the expression:

v̄ =

∫ ∞
0

e−rt
[

z

m(z)
+ v̄ − c

]
m(z)λe−m(z)λtdt =

λm(z)

r + λm(z)

(
z

m(z)
+ v̄ − c

)
,

where v̄ − c is the value for redeploying researchers once the innovation is
discovered. Simplifying, we obtain: v̄ = (λ/r)[z − m(z)c] = (λ/r)z0, for all
z ≥ z0.

Plugging the solution m̃(z) in the program (28), we solve for the optimal
value ṽ(z) and obtain:

ṽ(z) =
λm̃(z)[z − m̃(z)c]− m̃(z)u

r + λm̃(z)
. (39)

Substituting this optimal value ṽ(z) into the first-order conditions (29), we
obtain

λ

[
z − λm̃(z)[z − m̃(z)c]− m̃(z)u

r + λm̃(z)
− 2m̃(z)c

]
= u.

Solving for u and simplifying, we derive expression (30).
Expression (31) follows by first solving equation (30) for m̃(z) to obtain

that:

m̃(z) = (r/λ)

(√
λz − u
rc

+ 1− 1

)
, for all z ≥ z0,

and then by noting that researchers are a perfectly divisible factor in our
model, so that m̃(z) = 0 at z = z0, and, hence, u = λz0.

52



Proof of Proposition 8. We begin by calculating the aggregated welfare W (m)
associated with any allocation function m and associated density g.

The flow of aggregate welfare is expressed as:

rW (m) =

∫ ∞
z0

λm(z)[z −m(z)c]g(z)dz.

Each innovation of value z is discovered at arrival rate λm(z), upon discovery
it accrues value z to the aggregate welfare, but induces the aggregate cost
m(z)c, as m(z) researchers need to be allocated to different R&D lines.

Substituting in the expression m(z)g(z) = (α/λ)f(z), and rearranging, we
obtain:

rW (m) = α

∫ ∞
z0

zf(z)dz − αc
∫ ∞
z0

m(z)f(z)dz. (40)

Now, we consider the equilibrium allocation function m(z) = (z−z0)/c, so the
second term in the expression (40) takes the form:

αc

∫ ∞
z0

m(z)f(z)dz = α

∫ ∞
z0

(z − z0)f(z)dz,

which, substituted back into the expression (40), gives

rW (m) = αz0[1− F (z0)]. (41)

Integrating condition (32) across z, we obtain the expression λM = α[1 −
F (z0)], that we substitute into expression (41), so as to obtain expression (36)
for the aggregate equilibrium welfare.

We now consider the aggregate welfare W (m̃) associated with the opti-
mal allocation m̃. Substituting the expression (31) of m̃ in the second term
expression (40), and using λM = α[1− F (z0)], we obtain:

αc

∫ ∞
z0

m(z)f(z)dz = (α/λ)

∫ ∞
z0

√
cλr(z − z0) + c2r2 · f(z)dz − rcM.

Further simplification leads to the aggregate optimal welfare expression (37).
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Online Appendix A: Extensions

Two R&D Lines and Two Heterogeneous Researchers There are two
problems with private and social values zH > zL, and 2 researchers, A and
B, to be allocated to finding their solution. The probabilities of success of
researcher A are pAL and pAH , and the probabilities of success of researcher
B are pBL and pBH . With two researchers engaged on the same project, the
probabilities of success are qAL, qBL, qAH and qBH . We assume that qALzL <
qAHzH , qBLzL < qBHzH , pALzL < pAHzH , pBLzL < pBHzH , the prospect of
problem H is higher than the prospect of problem L.

After researchers are allocated, and problems are either solved or not, the
game ends. There is no reallocation of researchers.

We assume that

qAH < pAH , qBH < pBH ,

qAL < pAL, qBL < pBL, (42)

capturing the idea that there is congestion or superfluous duplication of efforts.
This holds in case of independence, where qA· = pA· − 1

2
pB·pA·, and qB· =

pB· − 1
2
pB·pA· We examine optimal and competitive allocations.

Consider first the optimal allocation. Both researchers are allocated to H
iff (qAH + qBH)zH ≥ pALzL + pBHzH and (qAH + qBH)zH ≥ pAHzH + pBLzL, or:

qAHzH − pALzL ≥ (pBH − qBH) zH ,

qBHzH − pBLzL ≥ (pAH − qAH) zH . (43)

In the competitive case, the necessary and sufficient condition for both re-
searchers to work on the H problem is that

qAHzH − pALzL ≥ 0,

qBHzH − pBLzL ≥ 0. (44)

It is immediate that conditions (43) and (42) imply (44).

Heterogenous Arrival Rates and Flow R&D costs Here, we allow for
the possibility that the arrival rates of innovations and R&D flow costs differ
across R&D lines. Let λj be the constant discovery arrival rate and κj be the
R&D flow cost of an innovation j with value zj. In the competitive equilibrium
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m, the expected utility for each researcher to investigate innovation j is:

U(mj; zj, λj, κj) =

∫ ∞
0

[
zj
mj

e−rt − cj
∫ t

0

e−rsds

]
p(t; j)dt

=

∫ ∞
0

(
zj
mj

e−rt − κj
1− e−rt

r

)
λjmje

−λjmjtdt

=
zjλj − κj
λjmj + r

The equilibrium condition is that, for every pair of active R&D lines j = 1, 2,

z1λ1 − κ1
λ1m1 + r

=
z2λ2 − κ2
λ2m2 + r

. (45)

The aggregate payoff in the optimal allocation m̃ is:

W (m̃) =

∫
J

∫ ∞
0

(
zje
−rt − m̃jκj

1− e−rt

r

)
λjm̃je

−λjm̃jtdtdj

=

∫
J

m̃j
zjλj − κj
λjmj + r

dj

The optimality condition is ∂W (m̃)
∂m̃1

= ∂W (m̃)
∂m̃2

for every pair of active R&D lines
j = 1, 2, yields:

r(λ1z1 − κ1)
(r +mλ1)2

=
r(λ2z2 − κ2)
(r +mλ2)2

. (46)

The same arguments that lead to Proposition 3 imply that again, innovators
over-invest in the hot, most attractive, research lines, in equilibrium. Here,
however, the attractiveness of an R&D line j is not determined by its innova-
tion value zj alone, but by the expected flow value zjλj − κj of engaging in
the R&D line. So, we can reformulate and extend Proposition 3 as follows.

Proposition A.3. Consider the canonical dynamic model with time-constant
discovery arrival rate of innovations. Suppose that the innovation arrival rate
and R&D flow cost differ across innocations. In equilibrium, firms over-invest
in the R&D lines j with the highest expected flow value zjλj−cj: there exists a
threshold z̄ such that mj < m̃j for zjλj−cj < z̄ and mj > m̃j for zjλj−cj > z̄.

Proof. Here, the equilibrium arbitrage conditions require that the expression
zjλj−κj
λjmj+r

is constant for all active R&D lines j. Likewise, equating the first-

order conditions to find the optimal allocation m̃ implies that the expression
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r(λjzj−κj)
(r+m̃λj)2

is constant for all active R&D lines j.

Take any two innovations j = 1, 2 and say without loss of generality that
z2λ2−κ2 > z1λ1−κ1. Because the function r

(r+m̃λ)2
decreases in m̃λ, it follows

that m̃2λ2 > m̃1λ1. Dividing the no arbitrage condition (45) by the social
planner’s solution condition (46), we obtain:

(r + m̃1λ1)
2

r(r +m1λ1)
=

(r + m̃2λ2)
2

r(r +m2λ2)
.

Now suppose, by contradiction, that m2 ≤ m̃2 and that m1 ≥ m̃1. Then, we
obtain the contradiction:

(r + m̃1λ1)
2

r(r +m1λ1)
≤ (r + m̃1λ1)

2

r(r + m̃1λ1)
<

(r + m̃2λ2)
2

r(r + m̃2λ2)
≤ (r + m̃2λ2)

2

r(r +m2λ2)
,

using the fact that the function (r+m̃λ)2

r(r+m̃λ)
increases in m̃λ.

This result provides a useful generalization of our finding that competing
firms overinvest in hot R&D lines. In most applications, R&D lines differ
both in terms of the expected rate of returns and the expected feasibility
of innovations. Because of the canonical nature of exponential arrivals, this
generalized result can be taken to industry datasets.

Proposition A.3 can be further generalized to broader classes of arrival
densities p(t, j), beyond the canonical exponential class in which p(t; j) =
mjλje

−mjλjt, whenever an appropriate parametrization is suitable.

Heterogeneous Redeployment Costs Let us consider a Poisson arrival
model with two research lines of values z1 and z2, with z1 < z2. There is a con-
tinuum of atomistic researchers of mass M. Innovation j = 1, 2 arrives to any
researcher that investigates j, according to a Poisson arrival process of rate
λ > 0. Arrivals are independent across researchers. Researchers engaged in the
exhausted R&D line can redeploy immediately after first arrival. The cost of
redeployment into R&D line j is denoted by cj, and we suppose that c1 < c2:
the most valuable R&D line also bears a higher entry cost. The common dis-
count rate is r ≥ 0. We are interested in the allocation of researchers (m1,m2)
until the first arrival. Immediately after the first arrival, all M researchers are
employed in the other innovation.

We begin by computing the competitive equilibrium. The analysis proceeds
backwards. Suppose an innovation j = 1, 2 arrives. Then all M researchers
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are engaged in R&D line k 6= j, and each researcher’s expected value from the
second arrival is:

v̂k =

(
Mλ

r +Mλ

)
zk/M =

λzk
r +Mλ

.

In fact, the innovation arrives at rate Mλ, and when it arrives the researcher’s
expected payoff is zk/M : because of symmetry, her probability of being the
winner is 1/M .

Before the first innovation arrives, each researcher’s expected value for
engaging in R&D line j = 1, 2 is:

v1(m1) =
m1λ

r +Mλ
(z1/m1 + v̂2 − c2) +

m2λ

r +Mλ
v̂1,

v2(m2) =
m2λ

r +Mλ
(z2/m2 + v̂1 − c1) +

m1λ

r +Mλ
v̂2.

Innovation j arrives at rate mjλ, when it arrives each researcher’s expected
payoff is composed of zj/mj, the expected value for innovation j, plus the
continuation value v̂k−ck that consists of the expected value v̂k of investigating
k minus the switching cost ck.

At an interior solution v1(m1) = v2(m2). Subtracting both equations, we
obtain

z1 +m1(v̂2 − c2) +m2v̂1 = z2 +m2(v̂1 − c1) +m1v̂2,

and hence:
z2 − z1 = m2c1 −m1c2. (47)

We now move on to calculating the first best outcome. Aggregating across
researchers, the value after the first innovation j = 1, 2 arrives is

ŵk =
Mλ

r +Mλ
zk.

The innovation k arrives at rate Mλ and when it arrives it yields value zk.
Before the first innovation arrives, the aggregate reseachers’ value of en-

gaging a measure m̃1 of researchers in R&D line 1, and m̃2 in line 2 is:

W (m̃1, m̃2) =
m̃1λ

r +Mλ
(z1 + ŵ2 − m̃1c2) +

m̃2λ

r +Mλ
(z1 + ŵ1 − m̃2c1).

Each innovation j arrives at rate m̃jλ, when it arrives the aggregate re-
searchers’ expected payoff is composed of zj, plus the continuation value ŵk−
m̃jck that consists of the expected value v̂k of investigating k minus cost m̃jck
of switching m̃j researchers from the exhausted R&D line j to the remaining
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R&D line k.
Taking first-order conditions, and simplifying, we obtain:

z1 +
Mλ

r +Mλ
z2 = 2m̃1c2

z2 +
Mλ

r +Mλ
z1 = 2m̃2c1

Subtracting the first from the second equation, we obtain

(z2 − z1)
(

1− Mλ

r +Mλ

)
= 2(m̃2c1 − m̃1c2) (48)

We are now ready to compare the first best outcome and competitive equi-
librium as the costs c1 and c2 change. Let us rewrite c1 = c− ε and c2 = c+ ε.
I.e., starting from a situation of homogeneous costs, let us suppose to increase
c2 by the same amount as we decrease c1. Then we can rewrite (47) and (48)
as follows:

z2 − z1 = m2(c− ε)− (M −m2)(c+ ε)

= (2m2 −M)c−Mε,

(z2 − z1)
(

1− λM

r + λM

)
= 2(m̃2(c− ε)− (M − m̃2)(c+ ε))

= 2((2m̃2 −M)c−Mε).

It follows that ∂m̃2/∂ε = ∂m2/∂ε = M/2c > 0, so while both m̃2 and m2

increase, their difference does not change.
To prove the result that m̃2 < m2, there is overinvestment in the hot R&D

line 2, we only need to consider the case c2 = c1. Then, indeed, (47) and (48)
take the forms:

z2 − z1 = (2m2 −M)c,

(z2 − z1)
(

1− λM

r + λM

)
= 2((2m̃2 −M)c),

and solving out:

m̃2 =
1

2c

[
1

2

(
1− λM

r +Mλ

)
(z2 − z1) +Mc

]
< m2 =

1

2c
[(z2 − z1) +Mc] .
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Steady State Economy with Innovation Value Dependence Across
Vintages We here stipulate that, when an innovation of value z′ is discov-
ered, it generates R&D lines whose value z is distributed according to the
probability density f(z|z′). Denoting by α the flow arrival rate of R&D lines,
the steady state conditions (32) and (33) now take the forms:

λm(z)g(z) =

∫ ∞
z0

λαf(z|z′)m(z′)g(z′)dz′, for all z ≥ z0,

λm̃(z)g̃(z) =

∫ ∞
z̃0

λαf(z|z′)m̃(z′)g̃(z′)dz′, for all z ≥ z̃0.

When it is the case that z0 = z̃0 and that m(z)g(z) = m̃(z)g̃(z) for any
z ≥ z0, it is easy to extend all our earlier results on the comparison of m and
m̃, derived for the case in which the density f(z|z′) is independent of z′.

Indeed, letting the overall density of new innovation opportunity values be
f(z) ≡

∫∞
z0
λf(z|z′)m(z′)g(z′)dz′ =

∫∞
z̃0
λαf(z|z′)m̃(z′)g̃(z′)dz′, and substitut-

ing in the above steady state conditions, we recover the precise expressions
(32) and (33). Hence, we have concluded that the steady state economy with
innovation value dependence across vintages has a solution pair m, m̃ for which
all our earlier results generalize.

Online Appendix B: Hamiltonians

Dynamic Problem with no Entry Cost The objective is∫
e−rt

∫
λ(m(t, z))zg(t, dz)dzdt.

The law of motion for g(t, z) is:

ġ(t, z) = −λ(m(t, z))g(t, z),

and the constraint for the controls m(t, z) are given by:∫
m(t, z)g(t, z)dz ≤M.

The Hamiltonian is

H =

∫
e−rt

∫
λ(m(t, z))zg(t, dz)dzdt−

∫
w(t, z)(λ(m(t, z))g(t, z))dz,
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and the Lagrangian:

L(t,m, g, w, µ) = H(t,m, g, w)− µ(t)(m(t, z)g(t, z)dz −M).

Using the Pontryagin principle of optimal control we first find:

ẇ(t, z) =
∂L

∂g(t, z)
= λ(m(t, z))(e−rtz − w(t, z))− µ(t)m(t, z).

Letting v(t, z) = ertw(t, z), so that ẇ(t.z) = −re−rtv(t, z) + e−rtvt(t, z), and
also letting u(t) = ertµ(t), we get our equation for the value of a problem:

rv(t, z) = λ(m(t, z))(z − v(t, z))− u(t)m(t, z) + vt(t, z).

Using the principle for the optimal control m(t, z) by setting ∂L/∂m(z, t) = 0,
gives:

λ′(m(t, z))(e−rtz − w(t, z))− µ(t) = 0,

and substituting this gives

λ′(m(t, z))(z − v(t, z)) = u(t),

which is also the expression we displayed in the paper.

Dynamic Problem with Entry Cost Here, we define the control variable
x(t, z) = ∂m(t, z)/∂t, taking c to be a cost of entry. Now, we have two state
variable/functions g(t, z) and m(t, z).

The objective is∫
e−rt

∫
(λm(t, z)z − x(t, z)c)g(t, dz)dzdt.

The law of motion for g(t, z) is:

ġ(t, z) = −λm(t, z)g(t, z),

the law of motion for m(t, z) is:

ṁ(t, z) = x(t, z),
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and the resource constraint is given by:∫
m(t, z)g(t, z)dz ≤M.

Using the Pontryagin principle of optimal control we find:

ẇ(t, z,m) =
∂L

∂g(t, z)
= e−rt(λm(t, z)(z − w(t, z,m))− x(t, z)c)− µ(t)m(t, z)

(49)

ρ̇(t, z, g) =
∂L

∂m(t, z)
= e−rtλzg(t, z)− λw(t, z,m)g(t, z)− µ(t)g(t, z). (50)

Differentiating the equation ρ(t, z) = −e−rtcg(t, z), we obtain:

ρ̇(t, z, g) = re−rtcg(t, z)− e−rtcġ(t, z)

= re−rtcg(t, z) + e−rtcλm(t, z)g(t, z).

Substituting in (50) we get:

(r + λm)e−rtc = e−rtλz − λw(t, z,m)− µ(t),

and with our previous definitions of v and u this simplifies to:

λ(z − v(t, z,m)−mc) = u(t) + rc. (51)

Rewriting the co-state condition (49) by using our definitions of v and u gives:

rv(t, z,m) = λm(t, z)(z − v(t, z,m))− ṁ(t, z)c− u(t)m(t, z) + vt(t, z,m)

+vm(t, z,m)ṁ(t, z).

Here, we are using v̇(t, z,m(z, t)) = vt(t, z,m) + vm(t, z,m)ṁ.
Note that at the optimal m(t, z), it must be the case that vm(t, z,m) = c,

and this equation simplifies to:

rv(t, z,m) = λm(t, z)(z − v(t, z,m))− u(t)m(t, z) + vt(t, z,m).

Moreover, given the linear entry technology, v(t, z,m) = v(t, z, 0) + cm, we
can substitute in the above equation:

r(v(t, z, 0)+m(t, z)c) = λm(t, z)(z−v(t, z, 0)−m(t, z)c)−u(t)m(t, z)+vt(t, z,m)
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or

rv(t, z, 0) = λm(t, z)(z−v(t, z, 0)−m(t, z)c)−u(t)m(t, z)−rm(t, z)c+vt(t, z, 0)

The last term is justified given that v(t, z,m) = v(t, z, 0) + mc whenever
m ≤ m(t, c). Redefining u(t) to include also the term rc gives the exact
equation in the paper, and the same first order conditions for the choice of
m. This can be seen doing the substitution v(t, z,m) = v(t, z, 0) +mc in (51),
which gives:

λ(z − v(t, z, 0)− 2mc) = u(t) + rc.
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