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Abstract: In this short communication, we investigate whether the intensity of the second wave of
infection from SARS-CoV-2 that hit Italy in October–November–December 2020 is related to the
intensity of the first wave, which took place in March–April 2020. We exploit the variation of the wave
intensities across the 107 Italian provinces. Since the first wave has affected not only different regions,
but also different provinces of the same region, at a heterogenous degree, this comparison allows
useful insights to be drawn about the characteristics of the virus. We estimate a strong negative
correlation between the new daily infections among provinces during the first and second waves and
show that this result is robust to different specifications. This empirical result can be of inspiration to
biologists on the nature of collective immunity underlying COVID-19.

Keywords: COVID-19; correlation between waves; undetected infections

1. Introduction

Italy, the first country in Europe after those in Asia, underwent a severe outbreak of
Coronavirus Disease 2019 (COVID-19) during late winter 2020. The first detected cases
were reported on 21 February 2020 in two Italian towns: Vo’ in the province of Padova, in
the Veneto region, and Codogno, in the province of Lodi, in Lombardia. In the following
weeks the epidemic spread quickly across Italy, but not uniformly. The most affected
regions were Lombardia, Piemonte, Veneto and Emilia-Romagna in the north, and its
neighbour central region, Marche.

In response to the epidemic spread, the Italian Government applied containment
measures in three steps: first, some municipalities in Lombardia and Veneto went into
quarantine (red zone); then, the entire Lombardia and some provinces in other northern
and central regions (Veneto, Piemonte, Emilia-Romagna and Marche) were isolated from
the rest of the country; finally, starting from 9 March, the whole of Italy was subjected to a
hard, complete lockdown. Bertuzzo et al. modeled the spread of the COVID-19 epidemic
in Italy in space and time, in which the progress of the wave of infections showed a
spatial framework characterized by the radiation of the epidemic along highways and
transportation infrastructures. Following similar studies, authors agree that Italy’s hard
lockdown avoided the spread of the disease to the Centre and South of the peninsula [1–3].
As a result, and importantly for this study, in this first wave there was a large heterogeneity
in the epidemic intensity of COVID-19 across regions and even across provinces of the
same regions.

When in May and June 2020, the number of new daily cases and hospitalized ones
drastically decreased, restrictive measures were weakened and then canceled. Thus, the
first wave of COVID-19 in Italy displayed the standard phases: first, an initial outbreak
phase with exponentially growing infections; second, a phase characterized by strong
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measures of social distancing; finally, a phase involving the reduction of the epidemic
spread associated to weakened containment measures [4]. As a result, during summer
people could travel and go on holiday, both at home and abroad, while the virus was
not openly present, probably because of the seasonal characteristics of most respiratory
diseases.

Since October, Italy has been experiencing a second severe wave of COVID-19 in
which the reproduction number Rt is changing over time heterogeneously across regions,
although with some important common features, including a minimum value observed
in mid-September, a mid-October peak and a decline during November [5]. The Italian
government re-enforced, progressively, new restrictive measures starting from 13 October.
Such measures were initially quite mild, but strengthened over time, until the establishment
of “coloured zones”, yellow, orange and red, on 4 November, on the basis of 21 indexes
highlighting the impact of the epidemic on the national health service. At the end of
November this second wave experienced an evident decline in its intensity, with the
reproduction number Rt decreasing to values very close to the threshold of 1 and below
almost everywhere [6]; however, in December the contagion curve visibly slowed its decay
[7]. Clearly, even this second wave is characterized by a large heterogeneity of intensity
across regions [7] and across provinces.

The main goal of this short communication is then to analyse, by exploiting the spatial
COVID-19 incidence heterogeneity, whether there is a consistent link between the intensity
of the first wave and the second wave. The epidemiological reasons why the COVID-19
epidemic has risen up again in autumn, and with such a strength, is not within the scope
of this contribution. We provide evidence that the intensity of contagion in Italy during
the first wave is geographically negatively correlated to the contagion during the second
wave, and we show that this negative correlation is strong and statistically significant,
not only for the worst-hit provinces in springtime, but also for larger areas and even for
the whole country. Specifically, we study the incidence of SARS-CoV-2 infections between
the two waves in Italy, referring to each of its 107 provinces. We take into consideration the
number of daily new positive cases throughout the time starting from the first available
data (24 February) to 28 December, subdividing such a time window into two parts: from
21 February to 16 July (first wave) and from 17 July to 28 December (second wave, not yet
over). Importantly, in our analysis we control for regional effects, as lockdown policies
have been implemented at that level; this way, exploiting the variation of provinces in the
same region means the analysis is free from potential effects driven by different lockdown
policies. Our results are robust to using different time windows to identify the two waves,
as well as accounting for a different intensity of tracking when comparing the two waves.

The reason why we consider the rather unprecise number of daily new infections,
and not, for example, the hospitalised or the deceased, is that, unfortunately, such param-
eters are not publicly available at the province level. The issue of undetected infections,
thus, could become crucial in the evaluation of the incidence of the two outbreaks in
same provinces. We also account for this possible issue in one of our robustness checks,
in which we follow estimates in the literature [8–11] to differently weight the number of
cases reported in the first wave and in the second wave: even in this case, the negative
correlation of the intensity of the two waves remains strong.

2. Negative Correlation between Waves: Empirical Evidence

In this section, we document an important stylized fact about the intensity of the
epidemic in Italy in the two waves. We provide evidence that the provinces in Italy that
were more affected during the first wave in spring 2020, in terms of number of cases per
100 thousand people, were less affected in the second wave of fall 2020, and viceversa.
While this negative correlation across waves is striking in some regions, for example
Marche and Lombardia, it is strongly statistically significant when including all the regions
and provinces.
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Let us start by describing the data. We consider the number of official cases reported
by the minister of health as a measure of epidemic intensity for each province (https:
//github.com/pcm-dpc/COVID-19). This is the only official statistics reported at the
province level. As Italian provinces differ enormously in size, ranging from 4.3 million of
residents in Rome to 83 thousand in Isernia, we scale the number of cases by population.
The population by province was provided by the Italian statistical agency ISTAT and
updated on the 31 December 2019 (All the results, figures and tables in this paper were
produced using our own codes written in Matlab R2019b environment. The estimations
were computed using the Matlab routine fitlm.m.).

The left panel of Figure 1 displays the evolution of the daily number of cases in Marche
(solid blue line) and Lombardia (red dashed line), two of the regions most affected by
COVID-19. To eliminate the daily variations, we show a 7-day moving average. While the
second wave appears to be more intense than the first one, there is quite strong hetero-
geneity across different provinces. In fact, in the right panel, we report the evolution of
cases in Ascoli Piceno (dash-dotted light blue line) and Pesaro-Urbino (dotted dark blue
line) for Marche, and in Bergamo (dashed dark red line) and Varese (solid orange line) for
Lombardia. Notice that while Ascoli Piceno and Varese confirm the severity of the second
wave with respect to the first one, on the contrary, Bergamo and Pesaro-Urbino experienced
a second wave not particularly stronger than the first one. We would like to investigate the
robustness of this negative correlation across waves.
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Figure 1. Daily cases per 100k people in Marche and Lombardia. Note: the left panel shows the evolution of daily COVID-19
cases per 100 thousand people in Marche (solid blue line) and Lombardia (dashed red line). The right panel displays the
same variables for two provinces of Marche (Ascoli Piceno and Pesaro-Urbino, respectively, in light and dark blue lines)
and of Lombardia (Varese and Bergamo, respectively, in light and dark red lines).

Our strategy is to construct a measure of the intensity of the two waves across
provinces. In our benchmark definition of a wave, we define W1st

ij as the intensity of
the first wave in province i in region j, measured as the total number of cases per 100 thou-
sand people, from 24 February 2020, the first day in which data are available, to 16 July
2020. Similarly, we define W2nd

ij as the intensity of the second wave from 17 July 2020 to
28 December 2020. While the date of separation between the two waves is arbitrary, it does
not affect the main empirical facts, as we will show later.

https://github.com/pcm-dpc/COVID-19
https://github.com/pcm-dpc/COVID-19
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The left panel of Figure 2 shows the cross-correlation between the first and second
wave intensities in the provinces of Marche (blue dots) and Lombardia (red squares). Con-
ditioned on being in the same region, the provinces display a strong negative correlation of
the two wave intensities, as illustrated by the regression lines (solid black lines).

One might wonder whether the negative correlation holds only for Marche and
Lombardia. The central panel displays the same scatter plot for the 51 provinces in the
6 Italian regions most affected by the COVID-19 disease (Lombardia, Emilia-Romagna,
Veneto, Piemonte, Marche and Toscana). These six regions account for 61% of the infections
registered in Italy. Provinces in the same region share the same color and visually confirm
the negative correlation across waves, conditioned on being in the same region. Finally, the
right panel shows the scatter plot for all 107 provinces of the 20 Italian regions. As many
southern regions have been less exposed to COVID-19 during springtime, these additional
provinces lie in the bottom left region of the graph. The negative correlation remains strong,
and, to formalize it, we will next move to a more formal regression analysis.
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Figure 2. Daily cases per 100k people in Marche and Lombardia. Note: this figure displays the correlation between
intensity of the COVID-19 first wave, measured as cumulative number of daily cases per 100 thousand people between
24 February 2020 and 16 July 2020, and the second wave, measured as cumulative number of daily cases per 100 thousand
people between 17 July to 28 December. The left panel reports the correlation for the provinces in Marche (blue dots) and
Lombardia (red squadred), and the two regression lines. The central panel reports the correlation for the provinces in the six
most infected regions (Lombardia, Emilia-Romagna, Veneto, Piemonte, Marche and Toscana). The right panel reports the
correlation for all the Italian provinces. Provinces of the same region share the same color.

To formally confirm the existence of a negative correlation between wave intensities
across the Italian provinces, we estimate the following regression:

W2nd
ij = αj + βW1st

ij + εij, (1)

where αj are region fixed-effects, i.e., intercepts that are allowed to vary across regions, and
εij are regression errors. Notice that here we are interested in only one slope parameter,
β, which should therefore be interpreted as a country-wide relationship between wave
intensities. As already hinted in the visual analysis above, it is important to control for
region fixed effects because there is a strong heterogeneity in the degree by which COVID-
19 has hit different areas in Italy. Controlling for being in the same region is crucial for two
reasons. First, it allows for a more meaningful comparison of our effect of interest, that is the
difference between the first and second wave in the same local area. Second, since lockdown
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policies have been implemented at the regional level, exploiting the variation of provinces
in the same region means the analysis is free from potential effects driven by different
lockdown policies.

Table 1 reports our estimation results. The first specification (1) includes all the 107 Italian
provinces. The negative correlation between the two waves is strong and statistically
significant at 1%. The adjusted R2 is quite large, and equal to 0.54: this is not surprising as
the regions’ fixed effects help the fit. The strong negative correlation is confirmed when
reducing the sample size. The second specification (2) includes only the 51 provinces
in the 6 Italian regions most affected by COVID-19, consistently with what is shown in
the central panel of Figure 2. The size and precision of the estimate for our parameter of
interest, β, are quite unaffected, which confirms that including the southern regions does
not alter the nature of the correlation across waves. The third specification (3) includes
only Lombardia and Marche, consistently with what is shown in the left panel of Figure 2.
The negative correlation, as expected, is even stronger and strongly significant. The fourth
specification (4) uses a different definition of first and second wave, which excludes
summer. In this case, the first wave is measured as the number of cases in the first three
months of our observation, that is from 24 February to 23 May, while the second wave
is measured as the number of cases in the last three months of our time window, that is
from 2 September to 28 December. Hence, we have excluded the summer period in which
the epidemic had a very low incidence. The negative correlation is basically unaffected
by eliminating the summer period. Finally, the fifth specification (5) scales the number
of cases in the first and second waves by different multiplying factors aiming to control
for the possibility of different tracking strategies which might have affected the number
of official cases. However, even when accounting for this possibility, the strong negative
correlation between waves remains large and highly significant.

It is important to justify the use of these different tracking factors to scale the daily
new positive in the two waves. During the first wave, the testing capacity of countries,
and of Italy in particular, was insufficient and largely conditioned, at least in the early
stages, by focusing on individuals related to China or to Chinese people. This point was
highlighted by Li et al. [8], who inferred the proportion of early infections in China that
went undetected and their contribution to virus spread worldwide. They estimated that
around 86% of cases were undocumented before travel restrictions were put in place.
Additionally, Bommel and Vollmer [9] estimated that up to 16 March, the detected new
daily positive were just 6% of the total amount of infections, whereas, up to 31 March,
this percentage became 9% of the total. In a different work, Kuniya [10] assumed that the
detected cases are only 1% to 10% of the total infection cases, while Phypps et al. [11],
using a backcasting approach coupled with Monte Carlo methods, estimated that the true
number of people infected across 15 countries for which reliable data were available was
18.2 (5–95% CI: 11.9–39.0) times greater than the reported number of cases. In particular,
the true number of cases exceeds that of detected cases by factors that range from 1.7
(95% CI: 1.1–3.6) for Australia to 35.6 (95% CI: 23.2–76.3) for Belgium. From the above
considerations, due to the lack of specific information for Italian data, we assume that the
official number of daily new positives should be multiplied by factors ranging from 10
up to 32. In the figures that follow, we used the value of 19 as an arbitrary choice that is
reasonably located in the middle of the interval [10, 32], but our simulations show that
significance is not affected by any other value in the assumed range. For the second wave,
we have to consider two windows of time: from mid July to mid October approximately,
when the contact tracing was similar to the reality, with the spread of the virus being low,
and from the second half of October to now (29 December), when any possibility of tracing
was lost due to the huge amount of new daily positive cases. For the first part of the
observation, we consider the results of the massive testing of the population of Vo’ (Veneto)
during March 2020, showing that 42.5% (95% CI: 31.5–54.6%) of the confirmed SARS-CoV-2
infections were asymptomatic (they did not have symptoms at the time of swab testing
nor did they develop symptoms afterwards, i.e., they were truly asymptomatic, not pre-
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symptomatic) [12]. For the second window, we refer in part to the results of the 3-day mass
screening (20–22 November) that was performed in the Bolzano-Alto Adige autonomous
province, to which the 63.9% of the population adhered [13]. The asymptomatic cases were
22.5% of the total positive cases referred to 22 November, the last day of the testing. If
we extend this percentage to the population of the different Italian regions, we obtain a
mean 33% of undetected cases in Italy, ranging from the minimum 22.5% of Bolzano to the
maximum 58% of the autonomous province of Trento. Considering that a certain amount of
undetected cases could be included in the almost 40% of citizens who did not adhere to the
screening, we assume that the undetected proportion may be as high as 50%.Unfortunately,
due to the huge number of cases across all Italian regions, at the end of October, the close
contacts of positive people, if not symptomatic, were just quarantined without any testing,
apart from the leaving swab after 14 or 21 days. This suggests that for each positive case,
there may have been at least 7 or 8 undetected cases, in particular, among asymptomatic
children or adults. For similar reasons as those inspiring the multiplicative factor used
for the first wave data, we assume that official numbers in the second wave should be
multiplied by a factors ranging from 2 to 8. We chose an intermediate value of 6, but our
simulations confirm that significance remains for any other value in the assumed range.

Table 1. Regression results.

(1) (2) (3) (4) (5)
All Regions Top 6 Regions Marche and Lombardia Different Sample Tracking Factor

β̂ −0.941 *** −0.860 ** −2.29 *** −0.872 ** −0.297 ***
std. error 0.361 0.432 0.493 0.374 0.114
p-value 0.010 0.050 0.000 0.022 0.010

Observations 107 51 17 107 107
Degree of Freedom 86 44 14 86 86
Adjusted R2 0.54 0.32 0.65 0.53 0.54

Region Fixed Effects Yes Yes Yes Yes Yes
All regions Yes No No Yes Yes
Top 6 regions No Yes No No No
Lombardia and Marche No No Yes No No
Break between waves No No No Yes No
Tracking Factor No No No No Yes

Note: This table displays the estimates of the regression in Equation (1) with different specifications. Regression (1) considers all
107 provinces. Regression (2) considers the 6 Italian regions most affected by the COVID-19 disease (Lombardia, Emilia-Romagna, Veneto,
Piemonte, Marche and Toscana). Regression (3) considers only provinces in Marche and Lombardia. Regression (4) ignores the data during
the summer. Regression (5) scales the cases in the first wave by a factor of 19 and the cases in the second waves by a factor of 6, to account
for the infections that remain undetected due to the inadequate (or impossible) tracking strategies. ** denotes statistical significance at
5 percent, while *** denotes statistical significance at 1 percent.

Region-Specific Estimation

Our main result concerns an estimated negative correlation between the intensities
of the first and second wave for the Italian provinces. By exploiting the variation across
provinces within each region, as displayed in regression (1), we are able to estimate our
parameter of interest, β, which is a country-wide estimate of such correlation. A different
approach would be to estimate such a correlation for each region. This approach has the
drawback that, since in many regions there are only very few provinces, the resulting
estimates might be rather imprecise. Nevertheless, in this section, we conduct that exercise
and we compute the region-specific estimation of the correlation of the wave intensity β j
resulting from the following regression:

W2nd
ij = αj + β jW1st

ij + εij. (2)

Table 2 reports the estimates of β j, their standard error and p-value, together with
the Adjusted R2 for the top 6 most affected regions (Lombardia, Marche, Veneto, Emilia-
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Romagna, Piemonte, and Toscana). There are two main points to highlight. First, the
estimates are quite heterogenous across regions: while some regions, such as Lombardia
and Marche, display a strong negative correlation, Veneto exhibits a different pattern.
Second, because of the small number of provinces within a region, the region-specific
parameters are not precisely estimated, as it can be seen by the quite large standard
deviations and the rather low R2. Accordingly, while Piemonte and Toscana, respectively,
display a negative and positive point estimate, the uncertainty regarding such a parameter
is too large to draw any inference.

Obviously, we can estimate the parameters for 19 of the 20 Italian regions (because
Val d’Aosta has only one province, regression (2) cannot be estimated for that region),
thus obtaining a distribution of the region-specific slope parameters. We now report some
statistics of that distribution: the average β j is equal to −1.30, the median β j is equal to
−1.06, while the standard deviation of the distribution is 4.99. These statistics confirm the
fact that, although there is quite a large heterogeneity across regions, the overall number of
regions with negative correlations is quite high, thus rationalizing the results we obtained
for the country-wide estimates. In Figure 3, we display the relationship between the first
and second wave intensities for each of the twenty regions: the solid black line corresponds
to the regression line, whose slope is the estimated parameter β j.
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Figure 3. Daily Cases per 100k people in Marche and Lombardia. Note: this figure displays the correlation between
intensity of the COVID-19 first wave, measured as cumulative number of daily cases per 100 thousand people between
24 February 2020 and 16 July 2020, and second wave, measured as cumulative number of daily cases per 100 thousand
people between 17 July to 28 December for the twenty Italian regions. The solid line is the region-specific regression line.
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Table 2. Region-specific estimation.

βj Std. Error p-Value Adjusted R2 Observations

Lombardia −2.43 0.59 0.002 0.59 12
Marche −1.06 0.42 0.09 0.56 5
Veneto 5.52 2.14 0.05 0.49 7
Emilia-Romagna 0.60 0.54 0.29 0.03 9
Piemonte −1.19 0.70 0.14 0.21 6
Toscana 2.55 2.00 0.23 0.06 10

Note: this table reports the estimates of the parameter β j in regression (2), first column, for the 6 regions that were
most affected by COVID-19, the corresponding standard error, p-value, and Adjusted R2 of the regression.

3. Discussion

The Italian provinces that were worst hit by COVID-19 in Spring 2020 (Bergamo,
Brescia, Cremona, Lodi, Piacenza, Pesaro-Urbino) appear to be the least hit in the second
wave in fall and viceversa (Milano, Monza, Como, Varese, Ascoli Piceno, . . . ). How can
this negative correlation be explained? One hypothesis is biological. It is likely that the
worst hit provinces in the first wave have acquainted a collective immunity due to several
factors that are being revealed by studies on the biological features of SARS-CoV-2. It is
known, for example, that in some towns of Val Seriana (province of Bergamo) 40–50%
of the population developed antibodies against the virus after the spring outbreak [14].
Prevalence in the entire province of Bergamo reached 38.5% [15]. Despite how long these
antibodies remain present in the blood, cellular mediated immunity could protect the
population. Fontanet [16] reports that the first epidemic wave (not only in Italy) resulted in
higher levels of immunity across the population than measured through cross-sectional an-
tibody surveys. Grifoni et al. [17] detected SARS-CoV-2-reactive CD4+ T cells in 40–60% of
unexposed individuals, suggesting crossreactive T cell recognition between coronaviruses
responsible of commonly circulating colds and SARS-CoV-2. However, whether T cells
can prevent SARS- CoV-2 infection or protect against severe disease is still an open ques-
tion [18]. There is also a second hypothesis explaining the different rate of infection in the
same areas and it is rather sociological. People having undergone a dramatic situation in
earlier times could have developed a much higher sensibility to avoid risks than people
living in areas where COVID-19 did not spread before. During summer, containment
measures were relaxed but people who experienced contagion and deaths in spring were
probably more careful than people who did not. On the other hand, Lombardy as a whole
region, was hit in spring and is being hit even now, highlighting the strength of this new
coronavirus and suggesting that we cannot let our guard down. Certainly, after the first
epidemic wave, the population living in central and southern Italy was much more sus-
ceptible, since there were few areas in which any kind of collective immunity had been
developed to slow down the virus boost. We conclude with the following observation due
to Villa [19,20] on the basis of reported data from ISPI [21]. The total number of people
truly infected by SARS-CoV-2 since February 2020 in Italy, by 28 December, is estimated
to be about 6.7 million, two thirds of which occurred during the second epidemic wave.
This number corresponds to slightly more than 11% of the population, a proportion that
is far from herd immunity. On 11 and 18 December, the FDA issued an Emergency Use
Authorisation (EUA) for the Pfizer–Biontech and Moderna vaccines. Results of phase III of
the AstraZeneca and Pfizer–Biontech vaccines have recently been published in [22,23]. On
8 and 14 December, the United Kingdom and the United States, respectively, began their
vaccine campaigns. The EMA recommended granting a conditional marketing authorisa-
tion for the Pfizer–Biontech vaccine on 21 December and EU member countries began their
vaccination campaigns on 27 December 2020. With the optimism that comes from science,
we think we are almost at the end of the line and that 2021 could be the year when we get
out of the pandemic, hopefully, worldwide.
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