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ABSTRACT

When a planet transits its host star, it blocks regions of the stellar surface from view; this causes a distortion of the spectral lines and
a change in the line-of-sight (LOS) velocities, known as the Rossiter-McLaughlin (RM) effect. Since the LOS velocities depend, in
part, on the stellar rotation, the RM waveform is sensitive to the star-planet alignment (which provides information on the system’s
dynamical history). We present a new RM modelling technique that directly measures the spatially-resolved stellar spectrum behind
the planet. This is done by scaling the continuum flux of the (HARPS) spectra by the transit light curve, and then subtracting the in-
from the out-of-transit spectra to isolate the starlight behind the planet. This technique does not assume any shape for the intrinsic
local profiles. In it, we also allow for differential stellar rotation and centre-to-limb variations in the convective blueshift. We apply
this technique to HD 189733 and compare to 3D magnetohydrodynamic (MHD) simulations. We reject rigid body rotation with high
confidence (>99% probability), which allows us to determine the occulted stellar latitudes and measure the stellar inclination. In turn,
we determine both the sky-projected (λ ≈ −0.4 ± 0.2◦) and true 3D obliquity (ψ ≈ 7+12

−4
◦). We also find good agreement with the

MHD simulations, with no significant centre-to-limb variations detectable in the local profiles. Hence, this technique provides a new
powerful tool that can probe stellar photospheres, differential rotation, determine 3D obliquities, and remove sky-projection biases
in planet migration theories. This technique can be implemented with existing instrumentation, but will become even more powerful
with the next generation of high-precision radial velocity spectrographs.

Key words. convection – methods: data analysis – planets and satellites: dynamical evolution and stability – stars: rotation –
techniques: radial velocities – techniques: spectroscopic

1. Introduction

Amongst the numerous confirmed exoplanets, those that transit
bright stars are the most highly prized. This is primarily because
these targets can be observed both photometrically and spectro-
scopically; and the combination of the light curve and the ra-
dial velocity (RV) curve provides a more complete characteri-
sation of the exoplanet system (e.g. obtaining both planet mass
and radius). One additional, and extremely important, benefit of
spectroscopically observing transiting planets is they allow us to
measure the Rossiter-McLaughlin (RM) effect. The RM effect
describes the RV anomaly that originates from the planet cover-
ing up regions of the stellar photosphere as it transits across the
stellar disc. As the planet moves in front of the hemisphere that is
rotating towards the observer, we observe a net redshift because
the planet is obscuring a region of the star that is blueshifted due
to the line-of-sight (LOS) component of the stellar rotation; and
vice-versa as the planet transits the hemisphere rotating away
from the observer. As such, the RM waveform is sensitive to the
stellar rotation along the transit chord and therefore also sensi-
tive to the alignment between the planet’s orbital plane and the
stellar spin-axis.

Measuring this spin-orbit alignment is particularly important
as it can feed into theories on planetary migration and evolution,

which in turn underpins our understanding of planetary sys-
tems as a whole. For example, planets in aligned orbits may
be indicative of a dynamically gentle planet-disc migration his-
tory, whereas misaligned planets may have experienced a more
violent migration, such as planet-planet or star-planet scatter-
ing via the Kozai-Lidov mechanism. Such migration histories
may in turn feed back into formation theories as some planets,
such as hot Jupiters, are unlikely to have formed in their cur-
rent observed locations. At present, there is evidence to sug-
gest most cool stars (Teff < 6250 K) host planets in aligned
orbits, whereas hot stars may host planets with random align-
ments (e.g. Winn et al. 2010; Albrecht et al. 2013; Brothwell
et al. 2014, and references therein). There is also tentative ev-
idence that the star-planet misalignment may decrease with in-
creasing system age (Triaud 2011). Some authors argue that this
dichotomy arises because stars with sufficient mass (and age)
have a large enough convective envelope (and have had enough
time) to realign planetary orbits through tidal dissipation (see
Brothwell et al. 2014, for more discussions on potential star-
planet dynamics). At present, additional obliquity measurements
are needed to inform theories on the planet formation, evolution
and migration for a variety of star-planet systems.

Hence, correct modelling of the RM waveform is of critical
importance to the exoplanet community. However, the current
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modelling of the RM waveform typically ignores any veloc-
ity source emanating from the stellar surface other than rigid
body rotation. This is contradictory to our knowledge of stellar
photospheres and may significantly impact our ability to accu-
rately measure high precision RM observations. For example, we
know that solar-type stars may exhibit differential rotation, that
the intrinsic line profiles (and also observed cross-correlation
functions, hereafter CCFs) are asymmetric due to stellar surface
granulation, and that these line profiles/CCFs experience veloc-
ity shifts due to both stellar oscillations and granulation.

To date, a number of analytical and numerical RM mod-
els have been constructed. Hirano et al. (2010, 2011) and Boué
et al. (2013) constructed analytical expressions for the RM wave-
form for non-stabilised and stabilised spectrographs, respec-
tively. However, in each case they neglected to account for differ-
ential rotation1, and assumed constant, symmetric intrinsic line
profiles/CCFs. Additionally, Oshagh et al. (2013) and Shporer
& Brown (2011) both constructed model stars in attempts to nu-
merically model the RM effect. Again, these authors assumed
a rigidly rotating stellar surface with the stellar photospheric
lines approximated by constant Gaussian functions. However,
Shporer & Brown (2011) did account for the local convective
blueshift to first order by treating the net convective velocity
as a constant that varies across the stellar disc due to projected
area (but neglected dependences on the centre-to-limb position);
these authors were able to show this effect impacted the RV
anomaly on the m s−1 level. There have also been attempts
to directly analyse the distortions in the stellar spectra/CCFs
caused by the planet occulting the stellar surface (rather than
the disc-integrated RVs used in the previous models). Collier
Cameron et al. (2010) and Albrecht et al. (2013) have pioneered
these techniques for star-planet studies with stabilised and non-
stabilised spectrographs, respectively. In practice, both authors
assumed the stellar photosphere produces constant, symmetric
line profiles/CCFs and rotates rigidly; though, Albrecht et al.
(2013) did attempt to account for the convection effects follow-
ing the Shporer & Brown (2011) approximation. Furthermore,
the residuals for current RM models sometimes have a strange
wave-like form that may indicate a more detailed modelling is
warranted (see e.g. Triaud et al. 2009; Brown et al. 2015).

More recently, Cegla et al. (2016) have shown that ignor-
ing the centre-to-limb convective variations (in net blueshift and
intrinsic profile asymmetry) across the stellar disc of a rigidly
rotating Sun-like star may result in residuals (between observed
and fitted data) with amplitudes of 10s of cm s−1 to ∼10 m s−1 for
stars with veq sin i of 1−10 km s−1 (in the case of an aligned sys-
tem with a 4 d hot Jupiter and an impact factor of 0). They also
reported that neglecting these effects may cause observers to un-
derestimate their errors on the projected obliquity by 10-20◦, and
that incorrectly modelling the intrinsic profile asymmetry for a
moderately rapidly rotating star (with a veq sin i� = 6 km s−1)
may cause systematic errors on the measured obliquities that are
incorrect by ∼20−30◦. Consequently, for systems where the stel-
lar photospheric lines cannot be approximated by a Gaussian
and/or the centre-to-limb convective variations cannot be ig-
nored, the typical RM modelling may systematically bias our
interpretations of the RM waveform.

Additionally, ignoring significant (solar-like) differential
stellar rotation could lead to an underestimation of the veq sin i�
reported through RM modelling. This could potentially con-
tribute to the known discrepancy between the veq sin i� reported

1 Though Hirano et al. (2011) did demonstrate that this effect can be
significant, at least for fast rotating stars.

by spectral line broadening and that reported by RM modelling
(see e.g. Triaud et al. 2015). For systems with a star-planet
misalignment, neglecting differential rotation could also lead to
biases in the derived obliquities; this is because a latitudinal de-
pendency on rotation could be misinterpreted as a difference in
star-planet alignment. Furthermore, if rigid-body rotation can be
excluded at high confidence and the system is even slightly mis-
aligned, then accounting for differential rotation allows us to lift
the degeneracy between the equatorial velocity and the stellar in-
clination. This is because the transit is then sensitive to the stel-
lar latitudes occulted by the planet (as noted by Gaudi & Winn
2007), which allows us to directly measure the stellar inclination.
If we can lift the veq sin i� degeneracy, we can measure the true
3D spin-orbit geometry of the star-planet system. This in turn
can help remove biases introduced by studying the sky-projected
obliquities in planet migration theories.

For these reasons, in this paper, we seek a RM modelling
technique that allows for differential stellar rotation, does not
assume any particular function for the shape of the intrinsic stel-
lar photospheric lines, and allows the centre-to-limb convective
variation to contribute to the observed RV anomaly. Throughout
this paper, we apply a new RM modelling technique to high pre-
cision HARPS observations of the transit of HD 189733 b. We
also compare these empirical results to radiative 3D magneto-
hydrodynamic (MHD) simulations of a K dwarf (in a manner
similar to Dravins et al. 2015); such a comparison allows us to
test the realism of 3D MHD simulations for non-solar main se-
quence stars for the first time and can provide insight into the
underlying physics of the observed stellar photosphere.

In Sect. 2, we describe how transiting planets can be used to
probe (and effectively resolve) the stellar photosphere by isolat-
ing the light behind the planet along the transit chord. Here, we
present the observed and simulated data, as well as an overview
of the “planet-as-a-probe” technique. In Sect. 3, we provide
measurements on the differential stellar rotational velocity, 3D
spin-orbit geometry, and the net convective velocity shifts for
HD 189733; we also present our findings on the observed CCF
and simulated line profile changes across the stellar disc. We
conclude and discuss the significance of these findings in Sect. 5.

2. Planet-as-a-probe: resolving the stellar surface

When a planet transits its host star, the stellar photosphere be-
hind the planet is blocked from the line-of-sight (LOS). We
can isolate the starlight from these occulted regions by sub-
tracting in-transit spectroscopic observations from those taken
out-of-transit. This technique is currently used in line profile to-
mography, pioneered for exoplanet studies by Collier Cameron
et al. (2010). For a stabilised spectrograph, this analysis is per-
formed on the observed CCF. The out-of-transit CCF (CCFout) is
modelled by a rotationally-broadened, limb-darkened Gaussian
convolved with the spectrograph’s instrumental profile. The in-
transit CCF (CCFin) is then modelled by the addition of a travel-
ling Gaussian “bump” (due to the planet presence) to the out-of-
transit profile. The spectral position of this “bump” depends on
the planet position on the stellar disc (as seen by the observer),
and its amplitude is proportional to the fraction of starlight ob-
scured by the planet; while the Gaussian itself represents the av-
erage stellar photospheric CCF behind the planet. Hence, this
technique allows one to model the missing starlight using the
planet-as-a-probe and provides a way to resolve the stellar sur-
face along the transit chord (see Collier Cameron et al. (2010)
for more details).
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Table 1. Fixed parameters for HD 189733.

Parameters Value Reference

T0 2 454 279.436714 ± 0.000015 d Agol et al. (2010)
P 2.21857567 ± 0.00000015 d Agol et al. (2010)
ip 85.710 ± 0.024◦ Agol et al. (2010)
R� 0.805 ± 0.016 R� Boyajian et al. (2015)
Rp 0.15667 ± 0.00012 R� Sing et al. (2011)

a/R� 8.863 ± 0.020 Agol et al. (2010)
Tdur 1.827 h Torres et al. (2008)
K 200.56 ± 0.88 m s−1 Boisse et al. (2009)
e 0
ω 90◦
u1 0.816 ± 0.019 Sing et al. (2011)
u2 0 Sing et al. (2011)
u1 0.548 simulationa

u2 0.213 simulationa

Teff 4875 ± 43 K Boyajian et al. (2015)
log g 4.56 ± 0.03 Boyajian et al. (2015)

Notes. (a) The radiative MHD simulations naturally include limb dark-
ening, and as a result these values were obtained by fitting the limb
darkening function to the simulated line profiles.

In this paper, we employ a similar technique to isolate the
starlight behind the planet (described in detail in Sect. 2.2), but
we do not assume a particular function for the local CCF in order
to model its impact on the disc-integrated CCF. Instead, we anal-
yse directly the local CCF occulted by the planet. This means we
do not have to assume any particular shape for the local CCF.
We also go further and allow for both differential rotation and
centre-to-limb net convective variations.

2.1. Observational data

In order to use the planet-as-a-probe to resolve the stellar sur-
face, we required a bright target, with high signal to noise, ob-
served on a highly stabilised spectrograph. The obvious first
choice was HD 189733 due to the availability of archival obser-
vations from the HARPS (High-Accuracy Radial-velocity Planet
Searcher) echelle spectrograph on the ESO 3.6 m telescope in La
Silla, Chile. In total, there are four nights of data: two from 2006
(July 29/30 and September 7/8) and two from 2007 (July 19/20
and August 28/29). This data set, and subsets of it, have been
studied a number of times and further details on the observa-
tions can be found in Triaud et al. (2009), Collier Cameron et al.
(2010), and Wyttenbach et al. (2015). The exposure times range
from 300−900 s (highest in-transit exposure is 600 s) and the
signal-to-noise ratio extracted per pixel ranges from 100−170 in
the continuum near 590 nm (Wyttenbach et al. 2015). Only half
a transit was observed on July 29, 2006 due to poor weather in
the second half of the night. In total, there are 111 CCFs, with
roughly half the CCFs observed in-transit. Throughout our anal-
ysis, we operate on the CCF output by the HARPS pipeline, cre-
ated by an order-by-order cross-correlation of the stellar spec-
trum with a standard mask function; the mask function was
weighted by the depth of the lines, wherein the lines were de-
rived from those observable in the spectrum of Arcturus (ex-
cluding telluric regions). Since HD 189733 has been observed
extensively, beyond RM measurements, we fix many system pa-
rameters to their literature values; these can be found in Table 1.

Fig. 1. Top: residual CCF profiles; colours chosen for viewing ease.
Bottom: residual map of (a subset of) the time series CCFs, colour-
coded by residual flux. Dotted lines at 0 phase and 0 km s−1 are shown
to guide the eye. The travelling “bump” in the CCFin profiles is evident
as a bright streak, as the planet traverses the stellar disc. The transit
centre occurs at ∼0 km s−1 in both plots because the orbital motion and
systemic RVs were removed.

2.2. Technique overview

To begin, we removed the Doppler-reflex motion induced by
the presence of the planetary companion; this was done as-
suming a circular orbit with a semi-amplitude provided by
Boisse et al. (2009), who modelled the full RV curve. We then
created four master out-of-transit CCFout by co-adding all the
out-of-transit CCFs together for each given night. Separating the
CCFout for each run allowed us to directly account for nightly
offsets in the instrumental, atmospheric, and astrophysical noise.
In-line with this, the RV from each master CCFout was removed
from all the individual CCFs, on a night-by-night basis.

Since the HARPS observations are not calibrated photomet-
rically, the continuum flux of the individual CCFs is on an ar-
bitrary scale. To compare in- and out-of-transit CCFs, we first
scaled the continuum flux according to a Mandel & Agol transit
light curve with a quadratic limb darkening law (using the input
values given in Table 1 – note the limb darkening coefficients
for the observations were chosen following the white light HST
STIS light curve fit from Sing et al. (2011); however, we did test
the impact of assuming the limb darkening coefficients for the R
and B bands, but found no significant difference in the final re-
sults2). This scaling allowed us to directly subtract all the CCFin
from their respective master CCFout to isolate the starlight be-
hind the planet. Directly subtracting the in-transit from the out-
of-transit means we do not have to assume any shape for the
residual CCFs (i.e. the local regions of stellar photosphere oc-
culted by the planet).

The residual CCFs are shown in Fig. 1 (different colours
used for viewing ease); as a reminder these are set in the stellar
rest frame because the nightly systemic velocities of the mas-
ter CCFout have been removed. The stellar rotational velocity is
clearly evident in the residual CCFs. Residual CCFs near the
limb have lower continuum flux due to the assumed limb dark-
ening (profiles at ingress/egress have an additional drop in flux
since the planet is only partially on the stellar disc) and higher
velocity shifts due to stellar rotation. The velocity shifts of the
profiles nearest the limb are ∼3 km s−1; this is in agreement

2 The best-fit parameters agreed within 1−2σ with those in Sect. 3.
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Fig. 2. Top: net velocitiy shifts of the in-transit residual CCF profiles (i.e. CCFs of the regions occulated by the planet) as a function phase (bottom
axis) and stellar disc position defined in units of stellar radii (top axis), with an inset illustrating the planet positions across the star; the data are
colour-coded by the disc position in units of the brightness-weighted 〈μ〉 (where μ = cos θ) behind the planet, while the colour of the error bar
indicates the observation date. Bottom: same velocities, but plotted against 〈μ〉 and colour-coded by phase.

with the veq sin i� reported in the literature, which ranges from
∼2.9−3.5 km s−1 (see Table 4).

Throughout the paper, RVs were determined from the mean
of a Gaussian fit to the CCFs, as this one of the most standard RV
determination techniques for data taken with a stabilised spec-
trograph. We performed the fit on one in four points, due to the
over-sampling of the CCF output by the HARPS pipeline, using
a Levenberg-Marquardt least-squares minimisation (Markwardt
2009, and references therein). The flux errors assigned to the
CCFs were derived from the standard deviation in the continuum
flux; the error from the Gaussian fit corresponds to the one sigma
statistical errors calculated from the square root of the diagonal

elements of the covariance matrix (output from the minimisa-
tion). The total velocity shifts of the CCFs are directly measured
and therefore include contributions from both the stellar rotation
and any net convective velocities (as well as any other velocity
sources that may originate on the stellar surface).

The net velocity shifts of the in-transit residual CCFs are
shown in Fig. 2; in the top plot they are plotted against phase
and in the bottom plot they are plotted against the stellar disc po-
sition, defined as the brightness-weighted 〈μ〉 behind the planet.
This was computed numerically as

〈μ〉 =
∑

I μ∑
I
, (1)
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where μ = cos θ (θ is the centre-to-limb angle) and I is the
intensity determined from the aforementioned quadratic limb
darkening. To compute 〈μ〉 numerically, we constructed a stel-
lar grid that is transited by the planet (see Sect. 2.2.1 for more
details on this grid). The summation over the μ behind the planet
is performed over a square grid, defined with an origin at the
planet centre, in 51 equal steps in the vertical and horizontal di-
rection (note we varied the number of steps used to compute
the average and found no major difference when using more
pairs). Contributions from steps that do not lie beneath the planet
and/or on the stellar disc were excluded. We removed CCFs with
〈μ〉 < 0.25 from our analysis as profiles close to the limb were
very noisy. The data points are colour-coded by phase, while
the colour of the error bars indicates the observation date. In
the bottom of Fig. 2, these velocities are plotted against phase
(colour-coded by 〈μ〉, with same error bars) and shown along-
side a schematic of the transit to further illustrate the location
and velocities of the residual CCFs.

As can be seen in Fig. 2, many points in the July 19 data are
shifted relative to the other nights at similar stellar disc positions
(e.g. the data on the first half of the transit and a datum near
disc centre do not follow the RV trends seen in the rest of the
data). The most likely culprit for the offset July 19 data is that
during this night the planet transits regions of different magnetic
field strength. For example, an increased magnetic field strength
will inhibit the convective flows and therefore may affect the net
convective blueshift. To explore the potential level of magnetic
activity for each night, we examined the observed log RHK for
each in-transit data point. Unfortunately, the precision of the
log RHK was not sufficient to draw succinct conclusions; how-
ever, the log RHK does potentially suggest that on July 19 the
star may be less magnetically active (with a log RHK ≈ −4.53,
compared to the other nights with log RHK ≈ −4.52 to −4.48).
Additionally, comparing to the trends in MHD simulations sug-
gests that some of the shifted July 19 data may actually be due
to the planet occulting regions of less magnetic activity (see
Sect. 4.1 for more details on the relationship between magnetic
field and centre-to-limb convective variations). Nonetheless, re-
gardless of the origin of this trend, we excluded all of the July
19 data to avoid biasing the final results.

We add a cautionary note that stellar activity may have bi-
ased previous RM measurements, especially if the planet oc-
cults regions of vastly different activity (whether that be of in-
creased or decreased magnetic field). However, our technique
may have the advantage of making variations in the stellar ac-
tivity more apparent since we analyse directly the local phop-
tophseric CCFs. Hence, this technique may present a unique op-
portunity to study the properties of active regions and localised
surface flows on other stars.

2.2.1. Modelling the Doppler-shifts of the residual CCFs

In order to model the RM waveform, we account for the
Doppler-shifts of the residual CCF profiles due to the stellar
rotation behind the planet and allow for additional shifts from
centre-to-limb convective variations. An assumption of rigid
body stellar rotation could systematically bias the rotation con-
tribution across the stellar disc if significant differential rotation
is present. For HD 189733, Fares et al. (2010) report a latitu-
dinal angular velocity shear of dΩ = 0.146 ± 0.049 rad d−1.
Combining this with their reported equatorial rotation, Ωeq =

0.526 ± 0.007 rad d−1, yields a relative differential rotation rate
of α = 0.278 ± 0.093 (where α = dΩ/Ωeq). A differential

Fig. 3. Schematics of the coordinate system. Main: 2D projection of the
system, illustrating the observed planet centre (xp, yp), the orthogonal
distances from the stellar spin-axis and equator (x⊥, y′⊥ – respectively),
and the projected obliquity (λ); the stellar pole is indicated by a star.
Insets a) and b) are adapted from Fabrycky & Winn (2009), to illus-
trate the 3D observer-oriented and orbit-oriented reference frames, re-
spectively. Inset a): illustrates the projected obliquity in relation to the
orbital inclination (ip), stellar inclination (i�), and the normals to the or-
bital plane (np) and stellar rotation (n�). Inset b): (XYZ)′′ obtained after
a rotation of the observer-oriented frame about the x axis by π/2 − ip,
illustrates the 3D obliquity (ψ) and the azimuthal angle (Ω′ – not to be
confused with the angular rotation denoted earlier as Ω).

rotation of this magnitude would differ from rigid body rota-
tion on the 100s of m s−1 level. Additionally, Beeck et al. (2013)
reported centre-to-limb convective velocity shifts for Fe i line
profile cores from 3D MHD simulations of a K0V dwarf on the
order of ≤100 m s−1. Hence, allowing for differential rotation
may be the only way for us to determine the convective contri-
bution to the measured RVs of the residual CCFs; moreover, it
may also be the only way for us to directly determine the stellar
latitudes transited and hence disentangle the true 3D spin-orbit
geometry from projection effects.

To model the stellar rotation contribution to the residual CCF
velocities, we computed the brightness-weighted average differ-
ential rotation behind the planet for each observational epoch
(v〈stel〉). The centre of the planet at any given orbital phase, φ,
can be described as

xp =
a

R�
sin(2πφ), (2)

yp = − a
R�

cos(2πφ) cos(ip), (3)

for a circular orbit, where a is the orbital semi-major axis, R� is
the stellar radius, and ip is the orbital inclination (with the y-axis
parallel to the projected direction of the orbital axis, and +z-axis
pointing towards the observer – see Fig. 3). For differential rota-
tion, we are interested in the orthogonal distances from the stel-
lar spin-axis and equator. The orthogonal distance from the spin-
axis (x⊥) can be determined by rotating our coordinate system in
the plane of the sky by the projected obliquity, λ, yielding

x⊥ = xp cos(λ) − yp sin(λ), (4)

y⊥ = xp sin(λ) + yp cos(λ), (5)
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for the centre of the planet; the orthogonal distances for any
given point can be calculated by replacing xp and yp with a given
x and y. However, this rotation does not guarantee alignment be-
tween the coordinate reference system equator and stellar spin
equator, unless i� = 90◦. This is important as we need the or-
thogonal distance from the stellar equator in order to calculate
the differential rotation. To obtain this (y′⊥), we then further ro-
tated our coordinate system about the x⊥ axis (in the z⊥y⊥ plane)
by an angle β = π/2 − i�:

z′⊥ = z⊥ cos(β) − y⊥ sin(β), (6)

y′⊥ = z⊥ sin(β) + y⊥ cos(β), (7)

where z⊥ =
√

1 − x2⊥ − y2⊥ (note x′⊥ = x⊥ since we rotate about
the x⊥ axis), since we defined our coordinate system in units
of R�.

Then by assuming a differential rotation law derived from
the Sun (Ω = Ωeq (1 − α sin2 θ)), the stellar rotational velocity
for a given position is defined as

vstel = x⊥veq sin i�(1 − α y′2⊥ ), (8)

since y′⊥ = sin(θlat), where θlat is the latitude relative to the stel-
lar equator and α is the aforementioned differential rotation rate.
From the planet centres, we were also able to compute x⊥ and
y′⊥ for any number of x, y positions on the stellar disc and be-
hind the planet. We then used these in numerically determining
the brightness-weighted average value stellar rotational velocity
occulted by the planet:

v〈stel〉 =
∑

I vstel∑
I
· (9)

Similar to Eq. (1), the summation is performed over 51 equal
steps in x and y, centred on xp, yp (and contributions from steps
that do not lie beneath the planet and/or on the stellar disc were
set to 0). Note we also tested including the effect of finite ex-
posure time in v〈stel〉 by averaging together the v〈stel〉 at the start,
middle, and end of the exposure. However, including this effect
resulted in differences which were significantly less than the er-
rors on the RVs of the residual profiles. Hence, we proceeded
to use only the average values calculated at the time of mid-
exposure. Additionally, we also tested the rigid body stellar ro-
tation assumption by fixing i� = 90◦ and α = 0 in Eq. (8).

Note that the total velocity that we measure for the CCF be-
hind the planet also includes velocity shifts due to stellar sur-
face magneto-convection. For this paper, we exclude the tempo-
ral variability induced by granulation as the precision of the data
does not allows us to constrain this small-scale phenomenon.
Instead, we include only the larger centre-to-limb variability, due
to the corrugated nature of granulation. Hence, the total mea-
sured velocity is

vtot = v〈stel〉 + vconv, (10)

where vconv is the net convective velocity shifts. We do not know
an exact formulation for the convective contribution, vconv. To
circumvent this, we approximate the convective contribution us-
ing a polynomial; we tried a variety of polynomials, from zeroth
to second order (note we did attempt a third order polynomial,
but found the data was insufficient to constrain such a high or-
der polynomial). Due to the corrugated nature of granulation on
the spherical host star, vconv will be radially symmetric about the

disc centre. Hence the centre-to-limb convective velocity contri-
bution is defined as

vconv =

i= n∑
i= 0

ci 〈μ〉i , (11)

where n is the polynomial order. However, because we previ-
ously removed the RVs from the master out-of-transit CCFs
we effectively removed, from our in-transit data points, the
brightness-weighted net convective velocity of the whole stellar
disc. Hence, when fitting the vconv polynomial to our in-transit
data, the coefficients of the polynomial must be such that the
brightness-weighted net CB integrated over the stellar disc is
equal to zero, i.e.
∫ π

0
2
∫ π/2

0
I(θ) vconv(θ) R2

� sin(θ) dθdφ
∫ π

0

∫ π/2
0

I(θ) R2
� sin(θ) dθdφ

= 0, (12)

where the surface element dS R�
= R2

� sin(θ)dθdφ. The integra-
tion is performed from φ from 0 to π because we are only inter-
ested in the half of the sphere facing us, and the integration over
θ can be written as twice the integral from 0 to π/2 because both
halves of the stellar disc are considered equal (since the centre-
to-limb variation is radially symmetric). By rewriting Eq. (12) in
terms of μ, inserting Eq. (11), and solving for the constant offset
(c0) in vconv, we find:

c0 = −
∑i=n

i=1 ci

∫ 1

0
I(μ) μi+1 dμ

∫ 1

o
I(μ) μ dμ

· (13)

Hence, any vconv polynomial determined herein must satisfy
Eq. (13) (since we previously removed the nightly net out-of-
transit convective velocity shift).

It is very probable that any transiting planet suitable for
the analysis described herein will also have high precision light
curves from which a/R�, ip, and Rp/R� can be determined more
accurately and precisely than from the Rossiter-McLaughlin
measurements alone. This is the case for HD 189733 (see
Table 1), which we utilised in order to compute xp and yp for
each in-transit epoch. To compute the brightness-weighted av-
erage rotational velocity behind the planet also requires veq, i�,
λ, and α. We fit for these quantities using a Metropolis-Hasting
Markov chain Monte Carlo (MCMC) algorithm. Allowing for a
non-zero vconv contribution also means our MCMC must fit for
each of the coefficients given in Eq. (11). We do not presume any
a priori knowledge of vconv, except that it must satisfy Eq. (13).

There are a variety of values for veq sin i� and λ in the liter-
ature that could in principle be used as priors. Keeping in mind
our aim to include the effects of differential rotation, we opted
not to use veq sin i� and λ measurements calculated under the as-
sumption of rigid body rotation as priors. As a result, we set
no prior for λ. We also opted not to include priors based on
the Fares et al. (2010) values for veq or α since they are based
on the assumption that ip = i� and that the local stellar photo-
spheric absorption line profiles (Stokes I) can be approximated
by a Gaussian function. In the end, we set a uniform prior on α to
constrain it to 0−1, where values outside of this region were for-
bidden (we excluded negative values as no single main-sequence
star to date has been detected with anti-solar differential rota-
tion3); we also constrain ip, i�, and λ to 0−90◦, 0−180◦, and
−180−180◦, respectively, to avoid degenerate alignments.

3 We did explore allowing negative values, but only to confirm that an
α = 0 boundary condition does not impact the results.
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Table 2. Parameters reported from the VALD database for our Fe i lines
(assuming solar abundances and the stellar parameters in Table 1).

Line Depth Landé factor Excit. potential (eV)

610.8 nm 0.071 1.48 4.956
616.5 nm 0.463 0.69 4.143
617.3 nm 0.682 2.5 2.223

An adaptive principal component analysis was applied to
the chains, which required step jumps to take place in an un-
correlated space; this allowed us to better sample the posterior
distribution when non-linear correlations were present between
parameters (Bourrier et al. 2015, and references therein). The
system was analysed with ∼20 chains for each vconv formulation,
leading to a total of 5 × 106 accepted steps (for each formula-
tion). Each chain was started at random points near the expected
values from the literature. All chains converged to the same so-
lution, and the converged sub-chains were thinned using the cor-
relation length. Finally, we merged the thinned chains, leaving
>105 independent samples of the posterior distribution.

Once the MCMC analysis is complete, the recovered stel-
lar inclination and projected obliquity can be combined with the
known orbital inclination to determine the true 3D obliquity (ψ)
as follows:

ψ = cos
(
sin i� cosλ sin ip + cos i� cos ip

)−1
. (14)

Note that Eq. (14) can be obtained from the normal vector to
the stellar spin-axis in a reference frame created by taking the
original XYZ coordinate frame and rotating it about the x-axis
by an angle π/2 − ip (as is shown in Inset (b) in Fig. 3 – see
Fabrycky & Winn 2009, for more details).

2.3. Simulation data

We applied this same technique to model stars created using sim-
ulated line profiles. For a forward modelling of spectral line pro-
files, we considered local-box 3D MHD simulations of the stellar
near-surface layers with different average magnetic field strength
obtained with the MURaM code (Vögler 2003; Vögler et al. 2005;
Rempel et al. 2009). The MHD simulations were created for
a representative K dwarf with average magnetic field strengths
of 20, 100, and 500 G, an effective temperature between 4858
and 4901 K, and a log g = 4.609 (Beeck et al. 2015a). The
solar abundances by Anders & Grevesse (1989) were assumed
for the simulations, but the more recent iron abundance of
log εFe = 7.45 was used (cf. Asplund et al. 2005). Effective tem-
perature and surface gravity of the simulations are very close to
the observationally determined parameters of HD 189733.

The 3D atmosphere structure provided by the MHD simula-
tions was used to generate synthetic profiles of three Fe i lines –
see Table 2 for line parameters from the VALD database (Kupka
et al. 2000, and references therein); these lines were chosen as
they have been well studied in the literature, they vary in line
depth (an indicator of formation height), and are present in the
HARPS spectrum. This was done for ten different evenly spaced
viewing angles, μ = cos θ, applying the Spinor code (Frutiger
2000; Frutiger et al. 2000). The spatially resolved synthetic spec-
tral line profiles were averaged over six snapshots of the simu-
lation, resulting in a mean profile of an area that is large com-
pared to the granulation scale but small compared to the size
of the star. These local average profiles were used as input for

a numerical disc integration, applying the same method as de-
scribed in Beeck et al. (2013). In this method, the visible stellar
disc is decomposed into stripes along contours of constant lo-
cal rotational velocity, v, and rings along contours of constant
μ (assuming a perfect sphere). The segments of the (projected)
areas are identified by a representative rotational velocity vi and
a representative μ j, and their (projected) areas w(μi, v j) =: wi j

are numerically approximated. The line profile Fμ,v(λ), which is
given as function of μ and v is assumed constant within each of
these areas and a superposition

∑
i, j wi jFμi ,v j(λ)/

∑
i, j wi j of the

line profiles with wi j as weights results in a disc-integrated spec-
tral line profile. This method can handle differential rotation (the
rotational input values for the simulation were determined by the
MCMC analysis performed on the observed data in Sect. 2.2.1)
and was modified to also include a transiting planet at arbitrary
positions, partially covering the visible stellar disc.

Accordingly, we injected a transiting planet with parameters
matching those in Table 1 into the stellar disc integrations. We
considered each combination of a single Fe i line and magnetic
field strength as separate model stars. The transit was sampled
from phase −0.017 to +0.017, in steps of 0.001.

Note, since we simulated only three Fe i lines, it is en-
tirely possible that our observed CCFs may not capture and pre-
serve the behaviour of these individual lines. If this is the case,
then a comparison between simulation and observation is fu-
tile. Consequently, we examined CCFs created from a variety
of template masks, in addition to the standard HARPS pipeline
mask mentioned in Sect. 2.1. Unfortunately, the reduction in the
number of lines in these template masks significantly decreased
the overall RV precision. This led to increased scatter in the
observed data that prevented conclusive analysis; as such, we
do not discuss alternate template masks in the remainder of the
paper.

3. Empirical rotation and obliquity results

3.1. MCMC posterior probability distributions

We ran four sets of MCMC chains to model the vtot, correspond-
ing to the three polynomial configurations for the vconv compo-
nent (0th−2nd order) and one rigid body configuration for vstel
(note because we subtracted off the out-of-transit master CCF
RVs, the zeroth order scenario may represent either no convec-
tive contribution or a convective contribution that does not vary
across the stellar disc). The model with rigid body stellar rota-
tion followed the same vconv formulation as the best-fit model
with differential rotation.

These four sets were composed of ∼20 MCMC chains each,
with ∼105 accepted steps and an acceptance rate of ∼20−30%.
The best-fit values for the vtot model parameters were inferred
from the medians of the posterior probability distributions and
are given in Table 3, alongside the derived 3D spin-orbit obliq-
uity (ψ) and 1σ errors that were evaluated by taking limits at
34.1% on either side of the median. Note that because the pos-
terior probability distributions for α were broad and relatively
flat, we present only the 1σ ranges and refrain from quoting a
best-fit value. The posterior probability distributions for the vtot
model parameters, when considering a zeroth order polynomial
vconv are shown in Fig. 4, along with the marginalised 1D dis-
tributions. The posterior probability distributions for the higher
order vconv formulations can be found in Appendix A. To distin-
guish between the different vconv models we calculated the χ2 and
the Bayesian information criterion (BIC), shown in Table 3. We
found the improvement in the χ2 for the linear and quadratic vconv
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Table 3. MCMC observational results for HD 189733 and the dervied 3D spin-orbit obliquity.

veq (km s−1) i� (◦) a α λ (◦) c1 (km s−1) c2 (km s−1) BIC χ2 ψ (◦)

3.25 ± 0.02b 90b 0b −0.45 ± 0.17 – – 76.0 69.0 –b

4.45+0.53
−0.40 92.5+12.2

−4.1 0.28–0.85c −0.42+0.14
−0.15 – – 70.1 56.2 6.8+12.0

−4.1

4.50+0.51
−0.49 92.0+11.0

−3.8 0.30–0.86c −0.44 ± 0.21 −0.01+0.08
−0.07 – 71.4 54.0 6.3+12.0

−3.4

4.46+0.54
−0.40 92.3+12.0

−4.1 0.29–0.85c −1.7+0.89
−0.86 1.0+0.71

−0.71 −0.95+0.67
−0.62 74.5 53.7 6.9+11.0

−3.7

Notes. (a) i� is constrained to 0–180◦ , and values >90◦ indicate the star’s rotation axis is pointig away from the LOS. (b) Fixed under the assumption
of rigid body rotation; note this means the value in the veq column for this row corresponds to veq sin i� and that we are unable to determine the 3D
obliquity, ψ. (c) We present only the 1σ ranges as α is largely unconstrained by the data; however, we did find α is > 0.1 with 99.2% confidence.

was not enough to offset the increase in the BIC, and therefore
conclude the best fit for this data is the constant vconv formula-
tion. The χ2 and the BIC also both indicated that the model with
differential stellar rotation was a better fit to the data than the
model with rigid body rotation.

Regardless of the vconv formulation (best-fits shown in Fig. 6
and discussed in Sect. 4.1.), the recovered stellar rotation pa-
rameters (veq, i�, α, λ, and derived ψ) were consistent with
one another (within 1−2σ), with strong correlations between veq
and α (there were also correlations between ψ and i�, but this
is because ψ depends directly on i� – see Eq. (14)). However,
correlations between the equatorial velocity and the differential
rotation rate are expected for systems that are closely aligned
because the planet does not transit enough stellar latitudes to in-
dependently determine these quantities.

3.2. Comparisons to the literature

Due to the α − veq degeneracies in this dataset, it is more appro-
priate to compare the product veq sin i�(1 − α y′2⊥ ) to the previ-
ous veq sin i� quoted for HD 189733 in the literature (rather than
medians of the veq or α distributions). For example, if we substi-
tute y′⊥ with the known impact factor, b, (which will be reason-
ably close to y′⊥ since the true obliquity is close to zero) we find
veq sin i�(1 − α b2) ≈ 3.3 km s−1; remarkably, this value is equal
to the veq sin i� recovered by Triaud et al. (2009) before they ad-
justed their RM model to try to account for underlying trends in
their residuals. This is also consistent with the veq sin i� reported
in the literature for line broadening and spectropolarimetric tech-
niques (see Table 4), but is greater than the values reported from
line profile tomography and model stars that have been adjusted
to reduce the residuals. Hence, the assumption of rigid body stel-
lar rotation may be biasing veq sin i� towards lower values (note
this is indeed found in our results under the rigid body assump-
tion, though to a lesser extent than in the literature – perhaps
because we analyse the local residual CCF RVs directly).

We remind the reader that due to the degeneracies in this
system, the median of the α posterior probability distribution is
unlikely to give the true differential rotation rate for this star.
Indeed, the posterior distributions demonstrate that α is rela-
tively unconstrained by the data, but we can effectively rule out
rigid body rotation as α is >0.1 with 99.2% confidence (and >0.2
with 91.7% confidence). This is in agreement with the results
from Fares et al. (2010) that indicate α ≈ 0.278 ± 0.093.

Moreover, the sky-projected obliquities are also inline
with previously reported values in the literature (−1.4 ± 1.1◦
to −0.35 ± 0.25◦; Winn et al. 2006; Triaud et al. 2009; Collier
Cameron et al. 2010). A small misalignment in the sky-projected
obliquities indicates that the stellar inclination is statistically

Table 4. Previous veq sin i� reported for HD 189733.

veq sin i� (km s−1) Method Reference

3.5 ± 1 Line Broadening Bouchy et al. (2005)
2.97 ± 0.22 Model Star Winn et al. (2006)

3.2 ± 0.7 Line Broadening Winn et al. (2006)a

3.316+0.017
−0.067 Model Star Triaud et al. (2009)

3.05 Model Starb Triaud et al. (2009)
3.08−3.1 ± 0.02c Tomography Collier Cameron et al. (2010)

3.41 ± 0.02 d Polarimetry Fares et al. (2010)

Notes. (a) D. Fischer (2006). (b) Adjusted to reduce trend in residuals.
(c) Exact result was limb darkening and transit dependent. (d) Converted
from their reported equotorial period, under their assumption i� ≈ ip.

most likely to be near the orbital inclination. This is indeed
what we found (i� ≈ 92+12

−4
◦, indicating the star is point-

ing slightly away from the LOS), with the stellar inclination
constrained with good precision. The combination of both the
sky-projected obliquity and the stellar inclination, allowed us
to self-consistently recover, for the first time, the true 3D spin-
orbit geometry of the HD 189733 system. We found ψ ≈ 7+12

−4
◦,

which indicates that the orbit of HD 189733 b is indeed (mostly)
aligned with its host star’s stellar spin-axis. Note, this is in agree-
ment with the 3D obliquity of ψ = 4+18

−4
◦ obtained by Dumusque

(2014), where they analysed starspot signatures in conjunction
with the projected obliquity from the Triaud et al. (2009) RM
modelling.

From the vtot model fits in Fig. 5, we also found that with this
new technique and accounting for differential rotation, we did
not see the wave-like pattern displayed in the residuals as pre-
vious authors have reported (e.g. Triaud et al. 2009). However,
when we assumed rigid body stellar rotation, we did see a hint
of a wave-like pattern in our residuals; therefore such a pattern
in the residuals may indicate non-negligible differential stellar
rotation is contributing to the observed RVs.

3.3. Robustness of the best-fit models

We also analysed each night independently for our best-fit model
(i.e. with differential rotation and constant vconv), to ensure that
the results were not dominated from a single night. We found
that all the fitted parameters agreed well within 1σ, and that each
night strongly favoured α > 0. However, we note that the α dis-
tribution, while still broad, did have a stronger peak closer to 0.2
in the Sept. 7 and Aug. 28 data as compared to the July 29 data.
This difference could potentially be linked to the level of mag-
netic activity; for a stronger magnetic field, we would expect
less convective induced redshift near the limb (see Sect. 4.1) and
therefore more blueshifted RVs at ingress.
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Fig. 4. Correlation diagrams for the probability distributions of the vtot model parameters, when the vconv contribution is set to 0. Green and blue
lines show the 1 and 2σ simultaneous 2D confidence regions that contain respectively 39.3% and 86.5% of the accepted steps. 1D histograms
correspond to the distributions projected on the space of each line parameter. The red line and white point show median values. Note ψ is derived
from Eq. (14) and is not an MCMC jump parameter.

Additionally, we also tested the impact of imposing stricter μ
cuts (note we did not relax the cuts to values <0.25 due to the
SNR therein). We found that because stricter limb cuts limit the
analysis to fewer stellar latitudes (see inset in Fig. 5) it pushed
the solutions closer to rigid body rotation. For example, we
found with a μ cut of 0.5 we could no longer distinguish between
rigid body and differential stellar rotation. Hence we argue, at
least for nearly aligned systems, that the μ constraints should be
as relaxed as possible.

As mentioned in Sect. 2.2, we also explored the impact of
limb darkening by testing extremes based off the R and B bands
and found all fit parameters agreed with our best-fit model within
1−2σ. However, we note here that there was a slight trend for
larger RVs near the limb when stronger limb darkening was con-
sidered; such a trend could potentially affect observations with
more precise future instruments and/or stars with different stellar
rotation properties.

4. Empirical and simulated local photospheric
profile variation results

4.1. Convective blueshift across the stellar limb

We are also interested in how the net convective blueshift (CB)
varies across the stellar limb. This is because solar observations
(and simulations) indicate the net CB decreases from disc cen-
tre to limb (on the 100s of m s−1 level; Dravins 1982), and can
even result in a net redshift. As stated in Sect. 1, such a varia-
tion is expected due to geometrical effects; towards the stellar
limb different aspects of the granulation fall along our LOS (e.g.
near the limb, the granular walls become visible and the granule
peaks and bottoms of the lanes are hidden). The result is differ-
ent brightness ratios and LOS RVs (e.g. flows orthogonal to the
granular peaks have a LOS component). The decrease in CB to-
wards the limb arises because the redshifted flows are more often
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Fig. 5. Top: net velocity shifts of the in-transit residual CCFs as a func-
tion of phase, alonside the best-fit models (i.e. constant vconv) for rigid
body (red) and differential (black) rotation. Middle and Bottom: residu-
als (local RV − model vstel) for differential and rigid body stellar ro-
tation, respectively (horizontal lines at 0 to guide the eye); note the
point at phase = −0.15 with the large error is not displayed in order to
better view the remaining points. The colour-coding of the data points
indicates the stellar disc position (brightness-weighted 〈μ〉 behind the
planet), while the colour of the error bar indicates the observation date.
Inset: occulted stellar latitudes determined by the best-fit differential
rotation model.

observed in front of the hotter plasma above the intergranular
lanes (see Balthasar 1985; Asplund et al. 2000, and references
therein, for more details). This centre-to-limb CB variation is
also expected in K dwarfs. Since the granule to intergranular lane
contrast is less and the flow velocities are lower in K dwarfs, this
variation may be lower in HD 189733 than the Sun.

To measure the net convective velocity shift of the resid-
ual CCFs (and simulated line profiles), we first removed the
stellar rotation contribution from the measured RVs. This was
done by calculating vstel in Eq. (8) using the veq, i�, α, and
λ obtained through the MCMC analysis in Sect. 3. In Fig. 6
we show these results for each vconv formulation, alongside the
best-fit vconv polynomials (one point at 〈μ〉 ≈ 0.26, and vconv ≈
−0.54−− 0.62 km s−1 with a large error is excluded from view).
Note, the observed RVs are relative to the net CB of the out-of-
transit CCFs, and therefore we cannot comment on the absolute
blue- or redshift.

As shown in Table 3, with increasing polynomial order, the
χ2 decreased, but the BIC increased. Hence, the improvement in
the fit for the higher order vconv is not sufficient enough to justify
the extra free parameters. Hence, the best fit is a constant offset
and any CB variation is not significantly larger than the error on
the residual CCF RVs (∼50 m s−1). Nonetheless, we note that
both the linear and quadratic vconv fits predict a slight decrease in
CB away from mid-transit positions; however, the quadratic fit
also indicates an increase in CB near the limb, primarily due a
single outlier with high blueshift (and high error) at 〈μ〉 ≈ 0.26.

We also compared the observed net convective shifts (for the
constant vconv) to the MHD simulations in Fig. 7. We remind the
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Fig. 7. Net convective velocities of the residual CCF/line profiles. The
Fe i 610.8 nm, 616.5 nm, and 617.3 nm simulated data are plotted as
grey, brown, and pink lines, respectively; line style indicates the aver-
age magnetic field strength, with solid, dotted, and dashed lines repre-
senting 20, 100, and 500 G simulations, respectively. HD 189733 data
are colour-coded by phase, with error bars colour-coded by observa-
tion night. Black horizontal bars represent the estimated error on the
observed 〈μ〉 at different locations. Inset displays the reduced χ2.

reader that the residual CCFs are relative to the master out-of-
transit CCFs; to put the simulations on the same scale, we sub-
tracted the RVs from the out-of-transit model stars. Since, the
planet covers a large range of μ during a given exposure there is
not a one-to-one relationship between observation and simula-
tion. To illustrate this, we plotted three representative error bars
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based on the range of brightness weighted μ covered during a
450 s exposure. This includes a very strong assumption that the
residual profiles vary close to linearly in μ during an exposure;
which may not be the case, but serves as our best approximation.

The data exhibited no CB variation, but was consistent with
the radiative 3D MHD simulations. It is important to note that
since HD 189733 is an active star, the planet may have transited
regions of different magnetic field strength, which could be re-
sponsible for some of the scatter seen in the observed data. Due
to this scatter, the best reduced χ2 is ∼ 2. Overall, the simulated
data predicts (for a K dwarf) a redshift near the limb that in-
creases with increasing line depth and decreasing magnetic field.
Note that the simulations with the highest magnetic field either
experience no variation or a slight blueshift until 〈μ〉 ≈ 0.25,
before they start to redshift. These results indicate that convec-
tion effects may be negligible for magnetically active K dwarfs
with HARPS-level precision. However, these effects grow with
decreasing magnetic field, and (from our knowledge of the Sun)
we also expect these effects to be larger in G dwarfs. Hence, such
effects may not be negligible with future instrumentation and/or
for hotter, less active stars.

4.2. Local CCF shape across the stellar limb

We also analysed the centre-to-limb shape changes of the lo-
cal CCFs/line profiles by examining the FWHM, contrast, and
area of a Gaussian fit to the residual profiles (this approach was
taken to match the analysis of typical exoplanet observations);
these are shown in Fig. 8. The comparison between observed
and simulated data serves to check the validity of the 3D MHD
simulations and provide insight into the origin of any observed
variations. We remind the reader that the simulated data origi-
nate from a single line profile, while the observations consist of
a CCF. Accordingly, the absolute values of the shape diagnos-
tics will not be the same for the simulated and observed resid-
ual profiles. Instead, it is the variation in the shape across the
stellar limb that should be consistent (if the CCF preserves the
behaviour of these Fe i lines). For this reason, the shape diag-
nostics from the simulated data were shifted to minimise the χ2

with the observations. Since the simulated transits were sampled
more finely (and evenly) in 〈μ〉, we fit a second order polynomial
to them to calculate the χ2.

For the simulated star, we include the stellar rotation of
HD 189733 from the best-fit MCMC analysis. However, because
the region behind the planet is small, the impact of stellar rota-
tion is minimal; hence, even if our (degenerate) recovered α is
high, this does not significantly alter the conclusions about the
centre-to-limb shape variations as they are primarily dominated
by the convective properties. The observational data is indepen-
dent of our modelling of the stellar rotation.

There are many reasons to expect a centre-to-limb shape
variation in the local profile/CCF. For example, towards the
limb some convective flows will be be hidden behind granules,
which may result in a reduction in the line broadening induced
by the LOS velocities and could decrease the FWHM (Beeck
et al. 2015b). However, one could also expect an increase in the
FWHM because of an increasing contribution of the flows or-
thogonal to the granule peaks, since these flows have a higher
variability than those parallel (Beeck et al. 2013).

Additionally, the area and contrast could decrease towards
the stellar limb as granules in the forefront obscure the back-
ground granules and intergranular lanes. Naively, one might ex-
pect lines with a deeper formation height to have a larger de-
crease in area and contrast across the stellar limb as they may
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Fig. 8. FWHM (Top), contrast (Middle), and area (Bottom) of a
Gaussian fit to the residual profiles. The Fe i 610.8 nm, 616.5 nm, and
617.3 nm simulated data are plotted as grey, brown, and pink lines, re-
spectively; line style indicates the average magnetic field strength, with
solid, dotted, and dashed lines representing 20, 100, and 500 G simu-
lations, respectively. HD 189733 data are colour-coded by phase, with
error bars colour-coded by observation night. Black horizontal bars rep-
resent the estimated error on the observed 〈μ〉 at different locations.
Inset displays the reduced χ2.

be more affected by the granulation geometry; however, this is a
very simplistic view as the line behaviour depends on more than
the formation height (e.g. magnetic and temperature sensitivity,
ionisation/excitation potential etc.).
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Interestingly, the observed data exhibits little shape variation
across the stellar disc; however, given the error, this is roughly
consistent the MHD-based model stars. For example, both the
FWHM and area diagnostics achieve reduced χ2 ≈ 1 between
the observed data and at least one simulated line. The compari-
son with contrast is more discrepant, but still achieves a reduced
χ2 ≈ 2 for many cases. Moreover, this discrepancy may arise be-
cause the construction of the CCF does not preserve the effective
line depth of the stellar spectrum and therefore may not preserve
the expected variation in contrast across the stellar limb.

Overall, the simulated lines showed a decrease in FWHM
gradient for both shallower lines and higher magnetic field
strength. The simulated lines also showed trends in contrast and
area; wherein an increase in line depth and magnetic field led
to a decrease in the absolute value of gradient, which eventually
reached ∼0 for the weakest line. Consequently, the lack of varia-
tions seen in the observed data are likely because HD 189733 is a
magnetically active K dwarf. Furthermore, larger centre-to-limb
variations are expected for both less active stars and for hotter
spectral types.

5. Concluding remarks

To date, planetary migration still remains an open question
within the exoplanet community. To solve this, exoplanetary
migration theories must be empirically validated. One of the
best ways to distinguish between such theories is by determin-
ing the alignment between a planet’s orbital plane and the host
star’s rotation axis. This can be done by modelling the observed
RM effect during a planetary transit. However, we must be care-
ful to include all the relevant physics in the RM modelling in
order to avoid introducing signifiant biases into our analysis.
Additionally, we must disentangle the true 3D obliquity from the
sky-projected obliquity traditionally measured through the RM
effect, lest we introduce additional biases.

Throughout this paper, we have presented a new RM mod-
elling technique that directly measures the local CCF and RV of
the stellar surface occulted during a planetary transit. Moreover,
it circumvents many assumptions on the behaviour of the stel-
lar photosphere and is capable of directly determining the 3D
obliquity for many star-planet systems. The highlights of this
new technique are summarised below:

– Since the local photospheric CCF is directly measured no
assumptions are made on the shape of local profile or the
disc-integrated profile.

– Convective contributions from the stellar photosphere can be
accounted for, including centre-to-limb variations in the lo-
cal profile shape and net convective blueshift.

– If the planetary orbit is even slightly misaligned with the
rotation axis, then we can directly probe differential stellar
rotation.

– Hence, for numerous systems we can model the differential
rotation, solve for the stellar inclination, lift the veq sin i� de-
generacy, and determine the true 3D obliquity (without the
need for complementary techniques).

– It is efficient and requires few free parameters as many terms
can be fixed from a high precision transit light curve.

We note that this technique is currently limited to systems with
high precision spectrographic observations (both in terms of
high spectral resolution and precise RVs). It also requires a num-
ber of parameters from a transit light curve (a/R�, ip, Rp/R�,

and limb darkening coefficients) and the planetary orbital mo-
tion from modelling sufficient out-of-transit RVs (though these
could be added as extra free parameters in the model); however,
any systems that would be suitable for this analysis will likely
have these readily available.

Herein, we have applied this new technique to the transit of
HD 189733 b and compared the results to 3D MHD simulations.
We summarise these findings below:

– Rigid body rotation can be excluded at high confidence
(>99% probability that α > 0.1).

– The rigid body rotation assumption biases the projected
equatorial velocity towards lower values.

– Modelling the stellar rotation as rigid-body may be the cul-
prit behind the wave-like residuals seen in previous RM
modelling of this system.

– The stellar rotation modelling is largely independent of con-
vection for this system. However, we note that the vconv poly-
nomial coefficients were all highly correlated with one an-
other and with the projected obliquity, which suggests a po-
tential degeneracy between these parameters.

– We recovered a sky-projected obliquity of λ ≈ −0.4 ± 0.2◦
and a 3D obliquity of ψ ≈ 7+12

−4
◦.

– This is the first time the 3D obliquity has been self-
consistently measured for HD 189733 b, and only the four-
teenth 3D obliquity measured in exoplanet systems4.

– The observed local CCFs exhibit no significant shape change
or convective blueshift variations across the stellar disc.
Within the error, this is in agreement with predictions from
3D MHD simulations for a magnetically active K dwarf.

– The 3D MHD simulations predict various trends based on
the average magnetic field strength and the depths of the line
profiles. Such as, a decrease in the centre-to-limb variation of
the convective blueshift with increasing magnetic field and
decreasing line depth.

In forthcoming publications we aim to apply this new technique
to a variety of (bright) stars with transiting planets. In partic-
ular, we will target systems with higher predicted star-planet
misalignments as misaligned systems will allow us to better con-
strain the differential rotation. Preliminary simulations also indi-
cate a decrease in the degeneracy of the recovered vconv polyno-
mial and projected obliquity. We will also target stars of varying
spectral type and magnetic activity, as current 3D MHD simu-
lations predict stellar surface magnetoconvection will have an
larger impact on the RM modelling for both hotter stars and less
active stars.

Throughout this paper we have shown that with HARPS-
level precision, we have the ability to directly measure the stellar
photosphere at multiple centre-to-limb positions and that this in-
formation can be used to more accurately model the RM effect.
Such improved accuracy will only become more important as fu-
ture instruments promise even higher precision (i.e. ESPRESSO
on the VLT and EPDS on the WIYN telescope), and will there-
fore require a more detailed modelling of the stellar surface than
previous instruments.

4 TEPCAT catalogue (http://www.astro.keele.ac.uk/jkt/
tepcat/rossiter.html).
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Appendix A: Additional posterior probability distributions

Fig. A.1. Correlation diagrams for the probability distributions of the vtot model parameters, for the first order vconv function. Green and blue lines
show the 1 and 2σ simultaneous 2D confidence regions that contain respectively 39.3% and 86.5% of the accepted steps. 1D histograms correspond
to the distributions projected on the space of each line parameter. The red line and white point show median values. Note ψ is derived from Eq. (14)
and is not an MCMC jump parameter.
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Fig. A.2. Correlation diagrams for the probability distributions of the vtot model parameters, for the second order vconv polynomial. Green and blue
lines show the 1 and 2σ simultaneous 2D confidence regions that contain respectively 39.3% and 86.5% of the accepted steps. 1D histograms
correspond to the distributions projected on the space of each line parameter. The red line and white point show median values. Note ψ is derived
from Eq. (14) and is not an MCMC jump parameter.
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