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Abstract. Finitary Idealized Concurrent Algol (FICA) is a prototypical
programming language combining functional, imperative, and concurrent
computation. There exists a fully abstract game model of FICA, which in
principle can be used to prove equivalence and safety of FICA programs.
Unfortunately, the problems are undecidable for the whole language, and
only very rudimentary decidable sub-languages are known.

We propose leafy automata as a dedicated automata-theoretic formalism
for representing the game semantics of FICA. The automata use an infi-
nite alphabet with a tree structure. We show that the game semantics of
any FICA term can be represented by traces of a leafy automaton. Con-
versely, the traces of any leafy automaton can be represented by a FICA
term. Because of the close match with FICA, we view leafy automata as
a promising starting point for finding decidable subclasses of the lan-
guage and, more generally, to provide a new perspective on models of
higher-order concurrent computation.

Moreover, we identify a fragment of FICA that is amenable to verification
by translation into a particular class of leafy automata. Using a locality
property of the latter class, where communication between levels is re-
stricted and every other level is bounded, we show that their emptiness
problem is decidable by reduction to Petri net reachability.

Keywords: Finitary Idealized Concurrent Algol, Higher-Order Concur-
rency, Automata over Infinite Alphabets, Game Semantics

1 Introduction

Game semantics is a versatile paradigm for giving semantics to a wide spectrum
of programming languages [3,35]. It is well-suited for studying the observational
equivalence of programs and, more generally, the behaviour of a program in an
arbitrary context. About 20 years ago, it was discovered that the game semantics
of a program can sometimes be expressed by a finite automaton or another simple
computational model [20]. This led to algorithmic uses of game semantics for
program analysis and verification [1,15,21,5,27,26,28,34,16,17]. Thus far, these
advances concerned mostly languages without concurrency.
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In this work, we consider Finitary Idealized Concurrent Algol (FICA) and its
fully abstract game semantics [22]. It is a call-by-name language with higher-
order features, side-effects, and concurrency implemented by a parallel composi-
tion operator and semaphores. It is finitary since, as it is common in this context,
base types are restricted to finite domains. Quite surprisingly, the game seman-
tics of this language is arguably simpler than that for the language without
concurrency. The challenge comes from algorithmic considerations.

Following the successful approach from the sequential case [20,37,33,36,11],
the first step is to find an automaton model abstracting the phenomena ap-
pearing in the semantics. The second step is to obtain program fragments from
structural restrictions on the automaton model. In this paper we take both steps.

We propose leafy automata: an automaton model working on nested data.
Data are used to represent pointers in plays, while the nesting of data reflects
structural dependencies in the use of pointers. Interestingly, the structural de-
pendencies in plays boil down to imposing a tree structure on the data. We show
a close correspondence between the automaton model and the game semantics of
FICA. For every program, there is a leafy automaton whose traces (data words)
represent precisely the plays in the semantics of the program (Theorem 3). Con-
versely, for every leafy automaton, there is a program whose semantics consists
of plays representing the traces of the automaton (Theorem 5). (The latter result
holds modulo a saturation condition we explain later.) This equivalence shows
that leafy automata are a suitable model for studying decidability questions for
FICA.

Not surprisingly, due to their close connection to FICA, leafy automata turn
out to have an undecidable emptiness problem. We use the undecidability ar-
gument to identify the source, namely communication across several unbounded
levels, i.e., levels in which nodes can produce an unbounded number of children
during the lifetime of the automaton. To eliminate the problem, we introduce
a restricted variant of leafy automata, called local, in which every other level
is bounded and communication is allowed to cross only one unbounded node.
Emptiness for such automata can be decided via reduction to a number of in-
stances of Petri net reachability problem.

We also identify a fragment of FICA, dubbed local FICA (LFICA), which
maps onto local leafy automata. It is based on restricting the distance between
semaphore and variable declarations and their uses inside the term. This is a
first non-rudimentary fragment of FICA for which some verification tasks are
decidable. Overall, this makes it possible to use local leafy automata to analyse
LFICA terms and decide associated verification tasks.

Related work Concurrency, even with only first-order recursion, leads to unde-
cidability [39]. Intuitively, one can encode the intersection of languages of two
pushdown automata. From the automata side, much research on decidable cases
has concentrated on bounding interactions between stacks representing different
threads of the program [38,30,4]. From the game semantics side, the only known
decidable fragment of FICA is Syntactic Control of Concurrency (SCC) [23],
which imposes bounds on the number of threads in which arguments can be used.
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This restriction makes it possible to represent the game semantics of programs
by finite automata. In our work, we propose automata models that correspond
to unbounded interactions with arbitrary FICA contexts, and importantly that
remains true also when we restrict the terms to LFICA. Leafy automata are a
model of computation over an infinite alphabet. This area has been explored ex-
tensively, partly motivated by applications to database theory, notably XML [41].
In this context, nested data first appeared in [7], where the authors considered
shuffle expressions as the defining formalism. Later on, data automata [9] and
class memory automata [8] have been adapted to nested data in [14,12]. They are
similar to leafy automata in that the automaton is allowed to access states re-
lated to previous uses of data values at various depths. What distinguishes leafy
automata is that the lifetime of a data value is precisely defined and follows a
question and answer discipline in correspondence with game semantics. Leafy
automata also feature run-time “zero-tests”, activated when reading answers.

For most models over nested data, the emptiness problem is undecidable. To
achieve decidability, the authors in [14,12] relax the acceptance conditions so
that the emptiness problem can eventually be recast as a coverability problem
for a well-structured transition system. In [10], this result was used to show
decidability of equivalence for a first-order (sequential) fragment of Reduced
ML. On the other hand, in [7] the authors relax the order of letters in words,
which leads to an analysis based on semi-linear sets. Both of these restrictions
are too strong to permit the semantics of FICA, because of the game-semantic
WAIT condition, which corresponds to waiting until all sub-processes terminate.

Another orthogonal strand of work on concurrent higher-order programs is
based on higher-order recursion schemes [24,29]. Unlike FICA, they feature re-
cursion but the computation is purely functional over a single atomic type o.

Structure of the paper: In the next two sections we recall FICA and its game
semantics from [22]. The following sections introduce leafy automata (LA) and
their local variant (LLA), where we also analyse the associated decision problems
and, in particular, show that the non-emptiness problem for LLA is decidable.
Subsequently, we give a translation from FICA to LA (and back) and define a
fragment LFICA of FICA which can be translated into LLA. We will occasionally
refer the reader to the full paper [18] which includes appendices with proof details
and worked examples.

2 Finitary Idealized Concurrent Algol (FICA)

Idealized Concurrent Algol [22] is a paradigmatic language combining higher-
order with imperative computation in the style of Reynolds [40], extended to
concurrency with parallel composition (||) and binary semaphores. We consider
its finitary variant FICA over the finite datatype {0, . . . ,max} (max ≥ 0) with
loops but no recursion. Its types θ are generated by the grammar

θ ::= β | θ → θ β ::= com | exp | var | sem
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Γ � skip : com Γ � divθ : θ Γ � i : exp

Γ � M : exp

Γ � op(M) : exp

Γ � M : com Γ � N : β

Γ � M ;N : β

Γ � M : com Γ � N : com
Γ � M ||N : com

Γ � M : exp Γ � N1, N2 : β

Γ � if M thenN1 elseN2 : β

Γ � M : exp Γ � N : com

Γ � whileM doN : com

Γ, x : θ � x : θ

Γ, x : θ � M : θ′

Γ � λx.M : θ → θ′
Γ � M : θ → θ′ Γ � N : θ

Γ � MN : θ′

Γ � M : var Γ � N : exp

Γ � M :=N : com

Γ � M : var
Γ �!M : exp

Γ � M : sem
Γ � release(M) : com

Γ � M : sem
Γ � grab(M) : com

Γ, x : var � M : com, exp

Γ � newvarx := i inM : com, exp

Γ, x : sem � M : com, exp

Γ � newsemx := i inM : com, exp

Fig. 1: FICA typing rules

where com is the type of commands; exp that of {0, . . . ,max}-valued expres-
sions; var that of assignable variables; and sem that of semaphores. The typing
judgments are displayed in Figure 1. skip and divθ are constants representing
termination and divergence respectively, i ranges over {0, · · · , max}, and op
represents unary arithmetic operations, such as successor or predecessor (since
we work over a finite datatype, operations of bigger arity can be defined using
conditionals). Variables and semaphores can be declared locally via newvar and
newsem. Variables are dereferenced using !M , and semaphores are manipulated
using two (blocking) primitives, grab(s) and release(s), which grab and release
the semaphore respectively. The small-step operational semantics of FICA is re-
produced in the full paper [18, Appendix A]. We shall write div for divcom.

We are interested in contextual equivalence of terms. Two terms are contex-
tually equivalent if there is no context that can distinguish them with respect to
may-termination. More formally, a term � M : com is said to terminate, writ-
ten M ⇓, if there exists a terminating evaluation sequence from M to skip. Then
contextual (may-)equivalence (Γ � M1

∼= M2) is defined by: for all contexts C
such that � C[M ] : com, C[M1]⇓ if and only if C[M2]⇓. The force of this notion
is quantification over all contexts.

Since contextual equivalence becomes undecidable for FICA very quickly [23],
we will look at the special case of testing equivalence with terms that always
diverge, e.g. given Γ � M : θ, is it the case that Γ � M ∼= divθ? Intuitively,
equivalence with an always-divergent term means that C[M ] will never converge
(must diverge) if C uses M . At the level of automata, this will turn out to
correspond to the emptiness problem.
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In verification tasks, with the above equivalence test, we can check whether
uses of M can ever lead to undesirable states. For example, for a given term
x : var � M : θ, the term

f : θ → com � newvarx := 0 in (f(M) || if !x = 13 then skip else div)

will be equivalent to div only when x is never set to 13 during a terminating
execution. Note that, because of quantification over all contexts, f may use M
an arbitrary number of times, also concurrently or in nested fashion, which is a
very expressive form of quantification.

3 Game semantics

Game semantics for programming languages involves two players, called Oppo-
nent (O) and Proponent (P), and the sequences of moves made by them can be
viewed as interactions between a program (P) and a surrounding context (O). In
this section, we briefly present the fully abstract game model for FICA from [22],
which we rely on in the paper. The games are defined using an auxiliary concept
of an arena.

Definition 1. An arena A is a triple 〈MA, λA,�A〉 where:

– MA is a set of moves;
– λA : MA → {O,P} × {Q,A} is a function determining for each m ∈ MA

whether it is an Opponent or a Proponent move, and a question or an
answer; we write λOP

A , λQA
A for the composite of λA with respectively the first

and second projections;
– �A is a binary relation on MA, called enabling, satisfying: if m �A n for no

m then λA(n) = (O,Q), if m �A n then λOP
A (m) 
= λOP

A (n), and if m �A n

then λQA
A (m) = Q.

We shall write IA for the set of all moves of A which have no enabler; such moves
are called initial. Note that an initial move must be an Opponent question.
In arenas used to interpret base types all questions are initial and P-moves
answering them are detailed in the table below, where i ∈ {0, · · · ,max}.

Arena O-question P-answers Arena O-question P-answers
�com� run done �exp� q i

�var� read i �sem� grb ok
write(i) ok rls ok

More complicated types are interpreted inductively using the product (A × B)
and arrow (A ⇒ B) constructions, given below.

MA×B = MA +MB

λA×B = [λA, λB]
�A×B = �A + �B

MA⇒B = MA +MB

λA⇒B = [〈λPO
A , λQA

A 〉, λB ]
�A⇒B = �A + �B +{ (b, a) | b ∈ IB and a ∈ IA}
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where λPO
A (m) = O iff λOP

A (m) = P . We write �θ� for the arena corresponding to
type θ. Below we draw (the enabling relations of) A1 = �com → com → com�
and A2 = �(var → com) → com� respectively, using superscripts to distinguish
copies of the same move (the use of superscripts is consistent with our future
use of tags in Definition 9).

O run
������

����
��

P run2 run1 done

O done2 done1

O run
���

P run1
���

����
����

����
done

O read11 write(i)11 done1

P i11 ok11

Given an arena A, we specify next what it means to be a legal play in A. For
a start, the moves that players exchange will have to form a justified sequence,
which is a finite sequence of moves of A equipped with pointers. Its first move
is always initial and has no pointer, but each subsequent move n must have a
unique pointer to an earlier occurrence of a move m such that m �A n. We say
that n is (explicitly) justified by m or, when n is an answer, that n answers m.
If a question does not have an answer in a justified sequence, we say that it is
pending in that sequence. Below we give two justified sequences from A1 and A2

respectively.

run run1 run2 done1 done2 done run run1 read11 011 write(1)11 ok11 read11 111

Not all justified sequences are valid. In order to constitute a legal play, a justi-
fied sequence must satisfy a well-formedness condition that reflects the “static”
style of concurrency of our programming language: any started sub-processes
must end before the parent process terminates. This is formalised as follows,
where the letters q and a to refer to question- and answer-moves respectively,
while m denotes arbitrary moves.

Definition 2. The set PA of plays over A consists of the justified sequences s
over A that satisfy the two conditions below.

FORK : In any prefix s′ = · · · q · · ·m of s, the question q must be pending when
m is played.

WAIT : In any prefix s′ = · · · q · · ·a of s, all questions justified by q must be
answered.

It is easy to check that the justified sequences given above are plays. A subset σ
of PA is O-complete if s ∈ σ and so ∈ PA imply so ∈ σ, when o is an O-move.

Definition 3. A strategy on A, written σ : A, is a prefix-closed O-complete
subset of PA.

Suppose Γ = {x1 : θ1, · · · , xl : θl} and Γ � M : θ is a FICA-term. Let us
write �Γ � θ� for the arena �θ1� × · · · × �θl� ⇒ �θ�. In [22] it is shown how to
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assign a strategy on �Γ � θ� to any FICA-term Γ � M : θ. We write �Γ � M�
to refer to that strategy. For example, �Γ � div� = {ε, run} and �Γ � skip� =
{ε, run, run done}. Given a strategy σ, we denote by comp(σ) the set of non-
empty complete plays of σ, i.e. those in which all questions have been answered.
The game-semantic interpretation �· · ·� turns out to provide a fully abstract
model in the following sense.

Theorem 1 ([22]). Γ � M1
∼= M2 iff comp(�Γ � M1�) = comp(�Γ � M2�).

In particular, since we have comp(�Γ � divθ�) = ∅, Γ � M : θ is equivalent to
divθ iff comp(�Γ � M�) = ∅.

4 Leafy automata

Wewould like to be able to represent the game semantics of FICA using automata.
To that end, we introduce leafy automata (LA). They are a variant of automata
over nested data, i.e. a type of automata that read finite sequences of letters of
the form (t, d0d1 · · · dj) (j ∈ N), where t is a tag from a finite set Σ and each di
(0 ≤ i ≤ j) is a data value from an infinite set D.

In our case, D will have the structure of a countably infinite forest and
the sequences d0 · · · dj will correspond to branches of a tree. Thus, instead of
d0 · · · dj , we can simply write dj , because dj uniquely determines its ancestors:
d0, . . . , dj−1. The following definition captures the technical assumptions on D.

Definition 4. D is a countably infinite set equipped with a function pred : D →
D ∪ {⊥} (the parent function) such that the following conditions hold.

– Infinite branching: pred−1({d⊥}) is infinite for any d⊥ ∈ D ∪ {⊥}.
– Well-foundedness: for any d ∈ D, there exists i ∈ N, called the level of d,

such that pred i+1(d) = ⊥. Level-0 data values will be called roots.

In order to define configurations of leafy automata, we will rely on finite subtrees
of D, whose nodes will be labelled with states. We say that T ⊆ D is a subtree of
D iff T is closed (∀x ∈ T : pred(x) ∈ T∪{⊥}) and rooted (∃!x ∈ T : pred(x) = ⊥).

Next we give the formal definition of a level-k leafy automaton. Its set of
states Q will be divided into layers, written Q(i) (0 ≤ i ≤ k), which will be used
to label level-i nodes. We will write Q(i1,··· ,ik) to abbreviate Q(i1) × · · · ×Q(ik),
excluding any components Q(ij) where ij < 0. We distinguish Q(0,−1) = {†}.

Definition 5. A level-k leafy automaton (k-LA) is a tuple A = 〈Σ, k,Q, δ〉,
where

– Σ = ΣQ +ΣA is a finite alphabet, partitioned into questions and answers;
– k ≥ 0 is the level parameter;
– Q =

∑k
i=0 Q

(i) is a finite set of states, partitioned into sets Q(i) of level-i
states;

– δ = δQ + δA is a finite transition function, partitioned into question- and
answer-related transitions;
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– δQ =
∑k

i=0 δ
(i)
Q , where δ

(i)
Q ⊆ Q(0,1,··· ,i−1) ×ΣQ ×Q(0,1,··· ,i) for 0 ≤ i ≤ k;

– δA =
∑k

i=0 δ
(i)
A , where δ

(i)
A ⊆ Q(0,1,··· ,i) ×ΣA ×Q(0,1,··· ,i−1) for 0 ≤ i ≤ k.

Configurations of LA are of the form (D,E, f), where D is a finite subset of D
(consisting of data values that have been encountered so far), E is a finite subtree
of D, and f : E → Q is a level-preserving function, i.e. if d is a level-i data
value then f(d) ∈ Q(i). A leafy automaton starts from the empty configuration
κ0 = (∅, ∅, ∅) and proceeds according to δ, making two kinds of transitions. Each
kind manipulates a single leaf: for questions one new leaf is added, for answers
one leaf is removed. Let the current configuration be κ = (D,E, f).

– On reading a letter (t, d) with t ∈ ΣQ and d 
∈ D a fresh level-i data, the
automaton adds a new leaf d in a configuration and updates the states on
the branch to d. So it changes its configuration to κ′ = (D∪{d}, E∪{d}, f ′)
provided that pred(d) ∈ E and f ′ satisfies:

(f(pred i(d)), · · · , f(pred(d)), t, f ′(pred i(d)), · · · , f ′(pred(d)), f ′(d)) ∈ δ
(i)
Q ,

dom(f ′) = dom(f)∪{d}, and f ′(x) = f(x) for all x 
∈ {pred(d), · · ·, pred i(d)}.
– On reading a letter (t, d) with t ∈ ΣA and d ∈ E a level-i data which is a

leaf, the automaton deletes d and updates the states on the branch to d. So
it changes its configuration to κ′ = (D,E \ {d}, f ′) where f ′ satisfies:

(f(pred i(d)), · · · , f(pred(d)), f(d), t, f ′(pred i(d)), · · · , f ′(pred(d))) ∈ δ
(i)
A ,

dom(f ′) = dom(f)\{d} and f ′(x) = f(x) for all x 
∈ {pred(d), · · · , pred i(d)}.
– Initially D,E, and f are empty; we proceed to κ′ = ({d}, {d}, {d �→ q(0)}) if

(t, d) is read where †
t

−−→q(0) ∈ δ
(0)
Q . The last move is treated symmetrically.

In all cases, we write κ
(t,d)
−−−→κ′. Note that a single transition can only change

states on the branch ending in d. Other parts of the tree remain unchanged.

Example 1. Below we illustrate the effect of LA transitions. Let D1 = {d0, d1, d′1}
and d2 
∈ D1. Let κ1 = (D1, E1, f1), κ2 = (D1 ∪ {d2}, E2, f2), κ3 = (D1 ∪
{d2}, E1, f1), where the trees E1, E2 are displayed below and node annotations
of the form (q) correspond to values of f1, f2, e.g. f1(d0) = q(0).

d0(q
(0))

��
� ���

E1, f1 : d′1(q) d1(q
(1))

d0(r
(0))

��
�� 		

		

E2, f2 : d′1(q) d1(r
(1))

d2(r
(2))

For κ1 to evolve into κ2 (on (t, d2)), we need (q(0), q(1), t, r(0), r(1), r(2)) ∈ δ
(2)
Q .

On the other hand, to go from κ2 to κ3 (on (t, d2)), we want (r(0), r(1), r(2), t,

q(0), q(1)) ∈ δ
(2)
A .
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Definition 6. A trace of a leafy automaton A is a sequence w = l1 · · · lh ∈

(Σ ×D)∗ such that κ0
l1−−→κ1 . . . κh−1

lh−−→κh where κ0 = (∅, ∅, ∅). A configuration
κ = (D,E, f) is accepting if E and f are empty. A trace w is accepted by A if
there is a non-empty sequence of transitions as above with κh accepting. The set
of traces (resp. accepted traces) of A is denoted by Tr(A) (resp. L(A)).

Remark 1. When writing states, we will often use superscripts (i) to indicate the

intended level. So (q(0), · · · , q(i−1))
t

−−→(r(0), · · · , r(i)) refers to (q(0), · · · , q(i−1), t,

r(0), · · · , r(i)) ∈ δ
(i)
Q ; similarly for δ

(i)
A transitions. For i = 0, this degenerates to

†
t

−−→r(0) and r(0)
t

−−→†.

Example 2. Consider the 1-LA over ΣQ = {start, inc}, ΣA = {dec, end}. Let

Q(0) = {0}, Q(1) = {0} and define δ by: †
start
−−−→0, 0

inc
−−→(0, 0), (0, 0)

dec
−−→0,

0
end
−−→†. The accepted traces of this 1-LA have the form (start, d0) (||ni=0(inc, d

i
1)

(dec, di1)) (end, d0), i.e. they are valid histories of a single non-negative counter
(histories such that the counter starts and ends at 0). In this case, all traces are
simply prefixes of such words.

Remark 2. Note that, whenever a leafy automaton reads (t, d) (t ∈ ΣQ) and the
level of d is greater than 0, then it must have read a unique question (t′, pred(d))
earlier. Also, observe that an LA trace contains at most two occurrences of the
same data value, such that the first is paired with a question and the second
is paired with an answer. Because the question and the answer share the same
data value, we can think of the answer as answering the question, like in game
semantics. Indeed, justification pointers from answers to questions will be rep-
resented in this way in Theorem 3. Finally, we note that LA traces are invariant
under tree automorphisms of D.

Lemma 1. The emptiness problem for 2-LA is undecidable. For 1-LA, it is re-
ducible to the reachability problem for VASS in polynomial time and there is a re-
verse reduction in exponential time, so it is decidable in Ackermannian time [32]
but not elementary [13].

Proof. For 2-LA we reduce from the halting problem on two-counter-machines.
Two counters can be simulated using configurations of the form

q









��
��

�

c1
�� 



c2
�� 



��
��

�

� � � � � � �

where there are two level-1 nodes, one for each counter. The number of children
at level 2 encodes the counter value. Zero tests can be implemented by removing
the corresponding level-1 node and creating a new one. This is possible only
when the node is a leaf, i.e., it does not have children at level 2. The state of the
2-counter machine can be maintained at level 0, the states at level 1 indicate the
name of the counter, and the level-2 states are irrelevant.
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The translation from 1-LA to VASS is straightforward and based on repre-
senting 1-LA configurations by the state at level 0 and, for each state at level 1,
the count of its occurrences. The reverse translation is based on the same idea
and extends the encoding of a non-negative counter in Example 2, where the
exponential blow up is simply due to the fact that vector updates in VASS are
given in binary whereas 1-LA transitions operate on single branches. ��

Lemma 2. 1-LA equivalence is undecidable.

Proof. We provide a direct reduction from the halting problem for 2-counter
machines, where both counters are required to be zero initially as well as finally.
The main obstacle is that implementing zero tests as in the proof of the first
part of Lemma 1 is not available because we are restricted to leafy automata
with levels 0 and 1 only. To overcome it, we exploit the power of the equivalence
problem where one of the 1-LA will have the task not of correctly simulating
zero tests but recognising zero tests that are incorrect. The complete argument
can be found in the full paper [18, Appendix B]. ��

5 Local leafy automata (LLA)

Here we identify a restricted variant of LA for which the emptiness problem is
decidable. We start with a technical definition.

Definition 7. A k-LA is bounded at level i (0 ≤ i ≤ k) if there is a bound b
such that each node at level i can create at most b children during a run. We
refer to b as the branching bound.

Note that we are defining a “global” bound on the number of children that a
node at level i may create across a whole run, rather than a “local” bound on
the number of children a node may have in a given configuration.

To motivate the design of LLA, we observe that the undecidability argument
(for the emptiness problem) for 2-LA used two consecutive levels (0 and 1) that
are not bounded. For the node at level 0, this corresponded to the number of zero
tests, while an unbounded counter is simulated at level 1. In the following we will
eliminate consecutive unbounded levels by introducing an alternating pattern
of bounded and unbounded levels. Even-numbered layers (i = 0, 2, ...) will be
bounded, while odd-numbered layers will be unbounded. Observe in particular
that the root (layer 0) is bounded. As we will see later, this alternation reflects the
term/context distinction in game semantics: the levels corresponding to terms
are bounded, and the levels coresponding to contexts are unbounded.

With this restriction alone, it is possible to reconstruct the undecidability
argument for 4-LA, as two unbounded levels may still communicate. Thus we
introduce a restriction on how many levels a transition can read and modify.

– when adding or removing a leaf at an odd level 2i + 1, the automaton will
be able to access levels 2i, 2i− 1 and 2i− 2; while
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– when adding or removing a leaf at an even level 2i, the automaton will be
able to access levels 2i− 1 and 2i− 2.

In particular, when an odd level produces a leaf, it will not be able to see the
previous odd level. The above constraints mean that the transition functions

δ
(i)
Q , δ

(i)
Q can be presented in a more concise form, given below.

δ
(i)
Q ⊆

{

Q(i−2,i−1) ×ΣQ ×Q(i−2,i−1,i) if i is even

Q(i−3,i−2,i−1) ×ΣQ ×Q(i−3,i−2,i−1,i) if i is odd

δ
(i)
A ⊆

{

Q(i−2,i−1,i) ×ΣA ×Q(i−2,i−1) if i is even

Q(i−3,i−2,i−1,i) ×ΣA ×Q(i−3,i−2,i−1) if i is odd

In terms of the previous notation used for LA, (q(i−2), q(i−1), x, r(i−2), r(i−1),

r(i)) ∈ δ
(i)
Q denotes all tuples of the form (�q, q(i−2), q(i−1), x, �q, r(i−2), r(i−1), r(i)),

where �q ranges over Q(0,··· ,i−3).

Definition 8. A level-k local leafy automaton (k-LLA) is a k-LA whose transi-
tion function admits the above-mentioned presentation and which is bounded at
all even levels.

Theorem 2. The emptiness problem for LLA is decidable.

Proof (Sketch). Let b be a bound on the number of children created by each
even node during a run.

The critical observation is that, once a node d at even level 2i has been
created, all subsequent actions of descendants of d access (read and/or write)
the states at levels 2i−1 and 2i−2 at most 2b times. The shape of the transition
function dictates that this can happen only when child nodes at level 2i+ 1 are
added or removed. In addition, the locality property ensures that the automaton
will never access levels < 2i− 2 at the same time as node d or its descendants.

We will make use of these facts to construct summaries for nodes on even
levels which completely describe such a node’s lifetime, from its creation as a
leaf until its removal, and in between performing at most 2b reads-writes of the
parent and grandparent states. A summary is a sequence quadruples of states:
two pairs of states of levels 2i − 2 and 2i − 1. The first pair are the states we
expect to find on these levels, while the second are the states to which we update
these levels. Hence a summary at level 2i is a complete record of a valid sequence
of read-writes and stateful changes during the lifetime of a node on level 2i.

We proceed by induction and show how to calculate the complete set of
summaries at level 2i given the complete set of summaries at level 2i + 2. We
construct a program for deciding whether a given sequence is a summary at level
2i. This program can be evaluated via Vector Addition Systems with States
(VASS). Since we can finitely enumerate all candidate summaries at level 2i,
this gives us a way to compute summaries at level 2i. Proceeding this way, we
finally calculate summaries at level 2. At this stage, we can reduce the emptiness
problem for the given LLA to a reachability test on a VASS.

The complete argument is given in the full paper [18, Appendix C]. ��
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Let us remark also that the problem becomes undecidable if we remove either
boundedness restriction, or allow transitions to look one level further.

6 From FICA to LA

Recall from Section 3 that, to interpret base types, game semantics uses moves
from the set

M = M�com� ∪M�exp� ∪M�var� ∪M�sem�

= { run, done, q, read, grb, rls, ok } ∪ { i, write(i) | 0 ≤ i ≤ max }.

The game semantic interpretation of a term-in-context Γ � M : θ is a strategy
over the arena �Γ � θ�, which is obtained through product and arrow construc-
tions, starting from arenas corresponding to base types. As both constructions
rely on the disjoint sum, the moves from �Γ � θ� are derived from the base types
present in types inside Γ and θ. To indicate the exact occurrence of a base type
from which each move originates, we will annotate elements of M with a spe-
cially crafted scheme of superscripts. Suppose Γ = {x1 : θ1, · · · , xl : θl}. The
superscripts will have one of the two forms, where �i ∈ N∗ and ρ ∈ N:

– (�i, ρ) will be used to represent moves from θ;
– (xv

�i, ρ) will be used to represent moves from θv (1 ≤ v ≤ l).

The annotated moves will be written as m(�i,ρ) or m(xv
�i,ρ), where m ∈ M. We

will sometimes omit ρ on the understanding that this represents ρ = 0. Similarly,
when �i is omitted, the intended value is ε. Thus, m stands for m(ε,0).

The next definition explains how the �i superscripts are linked to moves from

�θ�. Given X ⊆ {m(�i,ρ) |�i ∈ N∗, ρ ∈ N} and y ∈ N ∪ {x1, · · · , xl}, we let

yX = {m(y�i,ρ) |m(�i,ρ) ∈ X}.

Definition 9. Given a type θ, the corresponding alphabet Tθ is defined as follows

Tβ = {m(ε,ρ) |m ∈ M�β�, ρ ∈ N } β = com, exp,var, sem

Tθh→...→θ1→β =
⋃h

u=1(uTθu) ∪ Tβ

For Γ = {x1 : θ1, · · · , xl : θl}, the alphabet TΓ�θ is defined to be TΓ�θ =
⋃l

v=1(xvTθv) ∪ Tθ.

Example 3. The alphabet Tf :com→com,x:com�com is {run(f1,ρ), done(f1,ρ),

run(f,ρ), done(f,ρ), run(x,ρ), done(x,ρ), run(ε,ρ), done(ε,ρ) | ρ ∈ N}.

To represent the game semantics of terms-in-context, of the form Γ � M : θ,
we are going to use finite subsets of TΓ�θ as alphabets in leafy automata. The
subsets will be finite, because ρ will be bounded. Note that Tθ admits a natural
partitioning into questions and answers, depending on whether the underlying
move is a question or answer.

We will represent plays using data words in which the underpinning sequence
of tags will come from an alphabet as defined above. Superscripts and data are
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used to represent justification pointers. Intuitively, we represent occurrences of
questions with data values. Pointers from answers to questions just refer to these
values. Pointers from questions use bounded indexing with the help of ρ.

Initial question-moves do not have a pointer and to represent such questions
we simply use ρ = 0. For non-initial questions, we rely on the tree structure
of D and use ρ to indicate the ancestor of the currently read data value that
we mean to point at. Consider a trace w(ti, di) ending in a non-initial question,
where di is a level-i data value and i > 0. In our case, we will have ti ∈ TΓ�θ ,
i.e. ti = m(··· ,ρ). By Remark 2, trace w contains unique occurrences of questions
(t0, d0), · · · , (ti−1, di−1) such that pred(dj) = dj−1 for j = 1, · · · , i. The pointer
from (ti, di) goes to one of these questions, and we use ρ to represent the scenario
in which the pointer goes to (ti−(1+ρ), di−(1+ρ)).

Pointers from answer-moves to question-moves are represented simply by
using the same data value in both moves (in this case we use ρ = 0).

We will also use ε-tags εQ (question) and εA (answer), which do not contribute
moves to the represented play. Each εQ will always be answered with εA. Note
that the use of ρ, εQ, εA means that several data words may represent the same
play (see Examples 4, 6).

Example 4. Suppose d0 = pred(d1), d1 = pred(d2) = pred(d′2), d2 = pred(d3),
and d′2 = pred(d′3). Then the data word (run, d0) (run

f , d1) (run
f1, d2) (run

f1, d′2)
(run(x,2), d3) (run

(x,2), d′3) (done
x, d3), which is short for (run(ε,0), d0) (run

(f,0), d1)

(run(f1,0), d2) (run(f1,0), d′2) (run(x,2), d3) (run(x,2), d′3) (done(x,0), d3), represents
the play

run runf runf1 runf1 runx runx donex

O P O O P P O.

Example 5. Consider the LAA = 〈Q, 3, Σ, δ〉, whereQ(0) = {0, 1, 2},Q(1) = {0},
Q(2) = {0, 1, 2}, Q(3) = {0}, ΣQ = {run, runf , runf1, run(x,2)}, ΣA = {done,
donef , donef1, donex}, and δ is given by

†
run
−−→0 0

runf
−−−→(1, 0) (1, 0)

donef
−−−−→2 2

done
−−−→ † (1, 0)

runf1

−−−→(1, 0, 0)

(1, 0, 0)
run(x,2)

−−−−−→(1, 0, 1, 0) (1, 0, 1, 0)
done(x,0)

−−−−−−→(1, 0, 2) (1, 0, 2)
donef1

−−−−→(1, 0)

Then traces from Tr(A) represent all plays from σ = �f : com → com, x :
com � fx�, including the play from Example 4, and L(A) represents comp(σ).

Example 6. One might wish to represent plays of σ from the previous Exam-
ple using data values d0, d1, d

′
1, d

′′
1 , d2, d

′
2 such that d0 = pred(d1) = pred(d′1) =

pred(d′′1 ), d1 = pred(d2) = pred(d′2), so that the play from Example 4 is rep-
resented by (run(ε,0), d0) (run(f,0), d1) (run(f1,0), d2) (run(f1,0), d′2) (run(x,0), d′1)

(run(x,0), d′′1) (done(x,0), d′1). Unfortunately, it is impossible to construct a 2-LA
that would accept all representations of such plays. To achieve this, the automa-
ton would have to make sure that the number of runf1s is the same as that of
runxs. Because the former are labelled with level-2 values and the latter with in-
comparable level-1 values, the only point of communication (that could be used
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for comparison) is the root. However, the root cannot accommodate unbounded
information, while plays of σ can feature an unbounded number of runf1s, which
could well be consecutive.

Before we state the main result linking FICA with leafy automata, we note
some structural properties of the automata. Questions will create a leaf, and
answers will remove a leaf. P-moves add leaves at odd levels (questions) and
remove leaves at even levels (answers), while O-moves have the opposite effect
at each level. Finally, when removing nodes at even levels we will not need to
check if a node is a leaf. We call the last property even-readiness.

Even-readiness is a consequence of the WAIT condition in the game seman-
tics. The condition captures well-nestedness of concurrent interactions – a term
can terminate only after subterms terminate. In the leafy automata setting, this
is captured by the requirement that only leaf nodes can be removed, i.e. a node
can be removed only if all of its children have been removed beforehand. It turns
out that, for P-answers only, this property will come for free. Formally, whenever
the automaton arrives at a configuration κ = (D,E, f), where d ∈ E and there
is a transition

(f(pred (2i)(d)), · · · , f(pred(d)), f(d), t, f ′(pred (2i)(d)), · · · , f ′(pred(d))) ∈ δ
(2i)
A ,

then d is a leaf. In contrast, our automata will not satisfy the same property
for O-answers (the environment) and for such transitions it is crucial that the
automaton actually checks that only leaves can be removed.

Theorem 3. For any FICA-term Γ � M : θ, there exists an even-ready leafy au-
tomaton AM over a finite subset of TΓ�θ+{εQ, εA} such that the set of plays rep-
resented by data words from Tr (AM ) is exactly �Γ � M : θ�. Moreover, L(AM )
represents comp(�Γ � M : θ�) in the same sense.

Proof (Sketch). Because every FICA-term can be converted to βη-normal form,
we use induction on the structure of such normal forms. The base cases are:
Γ � skip : com (Q(0) = {0}; †

run
−−→0, 0

done
−−−→†), Γ � div : com (Q(0) = {0};

†
run
−−→0), and Γ � i : exp (Q(0) = {0}; †

q
−−→0, 0

i
−−→†).

The remaining cases are inductive. When referring to the inductive hypoth-
esis for a subterm Mi, we shall use subscripts i to refer to the automata com-

ponents, e.g. Q
(j)
i ,

m
−−→i etc. In contrast, Q(j),

m
−−→ will refer to the automaton

that is being constructed. Inference lines will indicate that the transitions
listed under the line should be added to the new automaton provided the tran-
sitions listed above the line are present in the automaton obtained via induction
hypothesis. We discuss a selection of technical cases below.

Γ � M1||M2 In this case we need to run the automata for M1 and M2 concur-

rently. To this end, their level-0 states will be combined (Q(0) = Q
(0)
1 ×Q

(0)
2 ), but

not deeper states (Q(j) = Q
(j)
1 +Q

(j)
2 , 1 ≤ j ≤ k). The first group of transitions

activate and terminate the two components respectively:
†

run
−−→1q

(0)
1 †

run
−−→2q

(0)
2

†
run−−→(q

(0)
1 ,q

(0)
2 )

,
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q
(0)
1

done−−−→1† q
(0)
2

done−−−→2†

(q
(0)
1 ,q

(0)
2 )

done−−−→†
. The remaining transitions advance each component:

(q
(0)
1 ,··· ,q

(j)
1 )

m−−→1(r
(0)
1 ,··· ,r

(j′)
1 ) q

(0)
2 ∈Q

(0)
2

((q
(0)
1 ,q

(0)
2 ),··· ,q

(j)
1 )

m−−→((r
(0)
1 ,q

(0)
2 ),··· ,r

(j′)
1 )

q
(0)
1 ∈Q

(0)
1 (q

(0)
2 ,··· ,q

(j)
2 )

m−−→2(r
(0)
2 ,··· ,r

(j′)
2 )

((q
(0)
1 ,q

(0)
2 ),··· ,q

(j)
2 )

m−−→((q
(0)
1 ,r

(0)
2 ),··· ,r

(j′)
2 )

where m 
= run, done.

Γ � newvar x := i inM1 By [22], the semantics of this term is obtained from
the semantics of �Γ, x � M1� by

1. restricting to plays in which the moves readx, write(n)x are followed imme-
diately by answers,

2. selecting those plays in which each answer to a readx-move is consistent with
the preceding write(n)x-move (or equal to i, if no write(n)x was made),

3. erasing all moves related to x, e.g. those of the form m(x,ρ).

To implement 1., we will lock the automaton after each readx- or write(n)x-move,
so that only an answer to that move can be played next. Technically, this will be
done by adding an extra bit (lock) to the level-0 state. To deal with 2., we keep
track of the current value of x, also at level 0. This makes it possible to ensure
that answers to readx are consistent with the stored value and that write(n)x

transitions cause the right change. Erasing from condition 3 is implemented by
replacing all moves with the x subscript with εQ, εA-tags.

Accordingly, we have Q(0) = (Q
(0)
1 + (Q

(0)
1 × {lock})) × {0, · · · ,max} and

Q(j) = Q
(j)
1 (1 ≤ j ≤ k). As an example of a transition, we give the transition

related to writing:
(q

(0)
1 ,··· ,q

(j)
1 )

write(z)(x,ρ)

−−−−−−−−→1(r
(0)
1 ,··· ,r

(j′)
1 ) 0≤n,z≤max

((q
(0)
1 ,n),··· ,q

(j)
1 )

εQ−−→((r
(0)
1 ,lock,z),··· ,r

(j′)
1 )

.

Γ � fMh · · ·M1 : com with (f : θh → · · · → θ1 → com) Here we will need

Q(0) = {0, 1, 2}, Q(1) = {0}, Q(j+2) =
∑h

u=1 Q
(j)
u (0 ≤ j ≤ k). The first group of

transitions corresponding to calling and returning from f : †
run
−−→0, 0

runf
−−−→(1, 0),

(1, 0)
donef
−−−−→2, 2

done
−−−→†. Additionally, in state (1, 0) we want to enable the en-

vironment to spawn an unbounded number of copies of each of Γ � Mu : θu
(1 ≤ u ≤ h). This is done through rules that embed the actions of the automata
for Mu while (possibly) relabelling the moves in line with our convention for rep-
resenting moves from game semantics. Such transitions have the general form

(q(0)u ,··· ,q(j)u )
m(t,ρ)

−−−−→u(q
(0)
u ,··· ,q(j

′)
u )

(1,0,q
(0)
u ,··· ,q

(j)
u )

m(t′ ,ρ′)

−−−−−→(1,0,q
(0)
u ,··· ,q

(j′)
u )

. Note that this case also covers f : com

(h = 0).

More details and the remaining cases are covered in the full paper [18, Ap-
pendix D], along with an example of a term and the corresponding LA. ��
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7 Local FICA

In this section we identify a family of FICA terms that can be translated into
LLA rather than LA. To achieve boundedness at even levels, we remove while5.
To achieve restricted communication, we will constrain the distance between a
variable declaration and its use. Note that in the translation, the application of
function-type variables increases LA depth. So in LFICA we will allow the link
between the binder newvar/newsemx and each use of x to “cross” at most
one occurrence of a free variable. For example, the following terms

– newvarx := 0 inx := 1 || f(x := 2),
– newvarx := 0 in f(newvar y in f(y := 1) ||x :=!y)

will be allowed, but not newvarx := 0 in f(f(x := 1)).
To define the fragment formally, given a term Q in βη-normal form, we use

a notion of the applicative depth of a variable x : β (β = var, sem) inside Q,
written adx(Q) and defined inductively by the table below. The applicative depth
is increased whenever a functional identifier is applied to a term containing x.

shape of Q adx(Q)
x 1
y (y 
= x), skip, div, i 0
op(M), !M, release(M), grab(M) adx(M)
M ;N, M ||N, M :=N, whileM doN max(adx(M), adx(N))
if M thenN1 elseN2 max(adx(M), adx(N1), adx(N2))
λy.M,newvar/newsem y := i inM adx(M [z/y]),where z is fresh
fM1 · · ·Mk 1 + max(adx(M1), · · · , adx(Mk))

Note that in our examples above, in the first two cases the applicative depth
of x is 2; and in the third case it is 3.

Definition 10 (Local FICA). A FICA-term Γ � M : θ is local if its βη-normal
form does not contain any occurrences of while and, for every subterm of the
normal form of the shape newvar /newsemx := i inN , we have adx(N) ≤ 2.
We write LFICA for the set of local FICA terms.

Theorem 4. For any LFICA-term Γ � M : θ, the automaton AM obtained from
the translation in Theorem 3 can be presented as a LLA.

Proof (Sketch). We argue by induction that the constructions from Theorem 3
preserve presentability as a LLA.

The case of parallel composition involves running copies of M1 and M2 in
parallel without communication, with their root states stored as a pair at level 0.
Note, though, that each of the automata transitions independently of the state
of the other automaton. In consequence, if the automata M1 and M2 are LLA, so

5 The automaton for whileM doN may repeatedly visit the automata for M and N ,
generating an unbounded number of children at level 0 in the process.
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will be the automaton for M1||M2. The branching bound after the construction
is the sum of the two bounds for M1 and M2.

For Γ � newvarx := i inM , because the term is in LFICA, so is Γ, x : var �
M and we have adx(M) ≤ 2. Then we observe that in the translation of Theo-
rem 3 (Γ, x : var � M : θ) the questions related to x, (namely write(i)(x,ρ) and

read(x,ρ)) correspond to creating leaves at levels 1 or 3, while the corresponding

answers (ok(x,ρ) and i(x,ρ) respectively) correspond to removing such leaves. In
the construction for Γ � newvarx inM , such transitions need access to the root
(to read/update the current state) and the root is indeed within the allowable
range: in an LLA transitions creating/destroying leaves at level 3 can read/write
at level 0. All other transitions (not labelled by x) proceed as in M and need
not consult the root for additional information about the current state, as it
is propagated. Consequently, if M is represented by a LLA then the interpreta-
tion of newvarx := i inM is also a LLA. The construction does not affect the
branching bound, because the resultant runs can be viewed as a subset of runs
of the automaton for M , i.e. those in which reads and writes are related.

For fMh · · ·M1, we observe that the construction first creates two nodes at
levels 0 and 1, and the node at level 1 is used to run an unbounded number of
copies of (the automaton for) Mi. The copies do not need access to the states
stored at levels 0 and 1, because they are never modified when the copies are
running. Consequently, if each Mi can be translated into a LLA, the outcome
of the construction in Theorem 3 is also a LLA. The new branching bound is
the maximum over bounds from M1, · · · ,Mh, because at even levels children are
produced as in Mi and level 0 produces only 1 child. ��

Corollary 1. For any LFICA-term Γ � M : θ, the problem of determining
whether comp(�Γ � M�) is empty is decidable.

Theorems 1 and 2 imply the above. Thanks to Theorem 1, it is decidable if
a LFICA term is equivalent to a term that always diverges (cf. example on
page 187). In case of inequivalence, our results could also be applied to ex-
tract the distinguishing context, first by extracting the witnessing trace from
the argument underpinning Theorem 2 and then feeding it to the Definabil-
ity Theorem (Theorem 41 [22]). This is a valuable property given that in the
concurrent setting bugs are difficult to replicate.

8 From LA to FICA

In this section, we show how to represent leafy automata in FICA. Let A =
〈Σ, k,Q, δ〉 be a leafy automaton. We shall assume that Σ,Q ⊆ {0, · · · ,max} so
that we can encode the alphabet and states using type exp. We will represent
a trace w generated by A by a play play(w), which simulates each transition
with two moves, by O and P respectively. The child-parent links in D will be
represented by justification pointers. We refer the reader to [18, Appendix F] for
details. Below we just state the lemma that identifies the types that correspond
to our encoding, where we write θmax+1 → β for θ → · · · → θ

︸ ︷︷ ︸

max+1

→ β.
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Lemma 3. Let A be a k-LA and w ∈ Tr(A). Then play(w) is a play in �θk�,
where θ0 = commax+1 → exp and θi+1 = (θi → com)max+1 → exp (i ≥ 0).

Before we state the main result, we recall from [22] that strategies corresponding
to FICA terms satisfy a closure condition known as saturation: swapping two
adjacent moves in a play belonging to such a strategy yields another play from
the same strategy, as long as the swap yields a play and it is not the case that
the first move is by O and the second one by P. Thus, saturated strategies
express causal dependencies of P-moves on O-moves. Consequently, one cannot
expect to find a FICA-term such that the corresponding strategy is the smallest
strategy containing { play(w) |w ∈ Tr(A) }. Instead, the best one can aim for is
the following result.

Theorem 5. Given a k-LA A, there exists a FICA term � MA : θk such that
� � MA : θk� is the smallest saturated strategy containing { play(w) |w ∈ Tr(A) }.

Proof (Sketch). Our assumption Q ⊆ {0, · · · ,max} allows us to maintain A-
states in the memory of FICA-terms. To achieve k-fold nesting, we use the higher-
order structure of the term: λf (0).f (0)(λf (1).f (1)(λf (2).f (2)(· · ·λf (k).f (k)))). In

fact, instead of the single variables f (i), we shall use sequences f
(i)
0 · · · f

(i)
max , so

that a question t
(i)
Q read by A at level i can be simulated by using variable

f
(i)

t
(i)
Q

(using our assumption Σ ⊆ {0, · · · ,max}). Additionally, the term contains

state-manipulating code that enables moves only if they are consistent with the
transition function of A. ��

9 Conclusion and further work

We have introduced leafy automata, LA, and shown that they correspond to the
game semantics of Finitary Idealized Concurrent Algol (FICA). The automata
formulation makes combinatorial challenges posed by the equivalence problem
explicit. This is exemplified by a very transparent undecidability proof of the
emptiness problem for LA. Our hope is that LA will allow to discover interesting
fragments of FICA for which some variant of the equivalence problem is decid-
able. We have identified one such instance, namely local leafy automata (LLA),
and a fragment of FICA that can be translated to them. The decidability of the
emptiness problem for LLA implies decidability of a simple instance of the equiv-
alence problem. This in turn allows to decide some verification questions as in
the example on page 187. Since these types of questions involve quantification
over all contexts, the use of a fully-abstract semantics appears essential to solve
them.

The obvious line of future work is to find some other subclasses of LA with
decidable emptiness problem. Another interesting target is to find an automaton
model for the call-by-value setting, where answers enable questions [2,25]. It
would also be worth comparing our results with abstract machines [19], the
Geometry of Interaction [31], and the π-calculus [6].



202 A. Dixon et al.

References

1. Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, C.H.L.: Applying game semantics
to compositional software modelling and verification. In: Proceedings of TACAS,
Lecture Notes in Computer Science, vol. 2988, pp. 421–435. Springer-Verlag (2004)

2. Abramsky, S., McCusker, G.: Call-by-value games. In: Proceedings of CSL. Lecture
Notes in Computer Science, vol. 1414, pp. 1–17. Springer-Verlag (1997)

3. Abramsky, S., McCusker, G.: Game semantics. In: Schwichtenberg, H., Berger, U.
(eds.) Logic and Computation. Springer-Verlag (1998), proceedings of the NATO
Advanced Study Institute, Marktoberdorf

4. Aiswarya, C., Gastin, P., Kumar, K.N.: Verifying communicating multi-pushdown
systems via split-width. In: Automated Technology for Verification and Analysis -
12th International Symposium, ATVA 2014. Lecture Notes in Computer Science,
vol. 8837, pp. 1–17. Springer (2014)

5. Bakewell, A., Ghica, D.R.: On-the-fly techniques for games-based software model
checking. In: Proceedings of TACAS, Lecture Notes in Computer Science, vol. 4963,
pp. 78–92. Springer (2008)

6. Berger, M., Honda, K., Yoshida, N.: Sequentiality and the pi-calculus. In: Proceed-
ings of TLCA, Lecture Notes in Computer Science, vol. 2044, pp. 29–45. Springer-
Verlag (2001)
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