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Superconductor/semiconductor-nanowire hybrid structures can serve as versatile building blocks
to realize Majorana circuits or superconducting qubits based on quantized levels such as Andreev
qubits. For all these applications it is essential that the superconductor-semiconductor interface
is as clean as possible. Furthermore, the shape and dimensions of the superconducting electrodes
needs to be precisely controlled. We fabricated self-defined InAs/Al core/shell nanowire junctions
by a fully in-situ approach, which meet all these criteria. Transmission electron microscopy mea-
surements confirm the sharp and clean interface between the nanowire and the in-situ deposited Al
electrodes which were formed by means of shadow evaporation. Furthermore, we report on tunnel
spectroscopy, gate and magnetic field-dependent transport measurements. The achievable short
junction lengths,the observed hard-gap and the magnetic field robustness make this new hybrid
structure very attractive for applications which rely on a precise control of the number of sub-gap
states, like Andreev qubits or topological systems.

I. INTRODUCTION

Over the last decade, superconductor-semiconductor
nanowire hybrid structures have experienced growing in-
terest as building blocks in circuits based on various
novel physical phenomena. In superconducting transmon
quantum bits Josephson junctions featuring a semicon-
ductor nanowire weak link between two superconducting
electrodes allow for gate control instead of flux control
as employed in conventional Josephson junctions [1–4].
This makes the circuit layout much more compact. In
addition, one can also make use of the relatively large
Fermi wavelength in the semiconductor being comparable
with the nanowire dimensions. As a consequence, well-
distinguished quantized levels are formed, which might
be used to realize an Andreev quantum bit [5–8].

One of the most exciting properties of such nanowire-
superconductor hybrid structures is the access to the
mesoscopic regime, in which the behavior of the real-
ized Josephson junction is fully-determined by the co-
herent bound states inside the semiconductor. Due to
the presence of spin-orbit coupling in III-V semiconduc-
tor nanowires, it is also possible to observe exotic phe-
nomena beyond the classical Andreev spectrum [6, 7, 9–
11]. After the first observation of signatures of Majorana
fermions in nanowire-superconductor hybrid structures
[12–15], the interest has extended towards realizing topo-
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logical quantum bits [16, 17]. One reason is that owing
to the non-local nature of Majorana states, topological
quantum circuits are less prone to errors [18].

The performance of nanowire-based Josephson junc-
tions depends to a large extent on the properties of the
superconductor-semiconductor interface. In most cases,
the superconductor is deposited ex-situ after the growth
of the nanowire. This makes it necessary to carry out
some surface cleaning steps, e.g. wet chemical etching or
Ar+ sputtering, before superconductor deposition [19].
However, this procedure often results in a non-ideal in-
terface. In order to circumvent this problem, efforts
were undertaken to deposit the superconductor in-situ,
i.e. without breaking the vacuum after the growth of the
nanowires [20–24]. Another crucial issue is the length of
the weak link junction, since it determines the number of
Andreev levels involved in the Josephson supercurrent.
The conventional method to define a junction in an in-
situ deposited superconducting shell wire has been to use
electron beam lithography and wet chemical etching [1],
which puts constraints on the minimum attainable junc-
tion length due to the isotropic nature of chemical etches.
In order to tackle this issue, very recently, new fabrica-
tion schemes were developed where the junction length is
geometrically defined by shadow evaporation [23, 25, 26].

We fabricated fully in-situ InAs nanowire-based
Josephson junctions, which utilizes shadow evaporation
of Al to define the closely spaced superconducting elec-
trodes. In this processing scheme the shadow mask
is provided by a nanowire crossing an underlying one
in close proximity. The structural properties of the
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FIG. 1: (a) False-color scanning electron beam microscopy
image of the as-grown InAs nanowires (orange) covered with
an Al half-shell (blue). The in-situ junction is formed due
to the shadow imposed by the upper nanowire. (b) A sin-
gle Al/InAs nanowire junction contacted by NbTi electrodes.
The junction was placed on a Ti/Au bottom gate electrode
by means of a micromanipulator. A stack of Al2O3/HfO2 was
used as gate dielectric.

InAs-Al core-halfshell nanowires were investigated us-
ing transmission electron microscopy. In the transport
experiments, we were able to tune the junction from
the fully depleted regime, i.e. Coulomb blockade, to a
well-developed Josephson supercurrent range by biasing
a lithographically defined bottom gate finger. Further-
more, we present voltage-driven measurements, which are
sensitive to the density of states in the nanowire and the
structure of the superconducting gap. Finally, we present
an analysis of the junction behavior for externally applied
magnetic fields parallel to the nanowire axis and out-of-
plane.

With the novel fabrication scheme established here our
junctions are very well suited for various applications.
Since the junction length is determined by the nanowire
diameter, very short junctions with a low density of states
in the semiconductor can in principle be realized. This
allows access the regime where the supercurrent is carried
by only one (or a few) Andreev bound states, which is an
important prerequisite for Andreev qubits. Furthermore,
the clean Al/InAs interface makes our structures very
interesting for realizing Majorana states.

II. GROWTH AND DEVICE FABRICATION

The fully in-situ Josephson junctions were fabricated
by using the following procedure: In order to achieve ad-
jacent Si(111) surfaces, anisotropic etching is employed
with Tetramethyl ammonium hydroxide (TMAH) on
a pre-patterned Si(100) substrate with arrays of 3µm
squares. The resulted tilted planes have an angle of
54.7 ◦ with respect to the unetched Si(100) surface. These
Si(111) facets form the basis for the subsequent InAs
nanowire growth by means of catalyst-free molecular
beam epitaxy (MBE).

Before the NW growth, a 23 nm thick SiO2 layer is
formed on the Si substrate by thermal oxidation. Then,
80 nm wide holes are defined in the oxide layer over adja-
cent Si(111) facets using electron beam (E-beam) lithog-
raphy, reactive ion etching (RIE: CHF3+O2) and wet
chemical etching (HF). The holes are positioned so that
the grown NWs cross each other closely, but do not
merge. The InAs NWs are grown in two steps: First, at a
substrate temperature of 480 ◦C with an In growth rate of
0.08µm/h (determined as the growth rate of In(100) pla-
nar layers) and an As4 beam equivalent pressure (BEP)
of approx. 4·10−5 mbar for 10 min to sustain an optimal
growth window and then decreasing the substrate tem-
perature to 460 ◦C with an In growth rate of 0.03µm/h
and an As4 BEP of approx. 3·10−5 mbar for 3.5 h, re-
sulting in 4-5µm long and 80 nm wide NWs. After the
growth of the InAs nanowires, the substrate undergoes
an arsenic desorption at 400 ◦C for 20 min and at 450 ◦C
for 5 min. By doing so, we suppress the formation of
parasitic heterostructures like AlAs during the deposi-
tion of the Al, which ensures a pristine interface without
any barriers. Subsequently, the sample is transferred to
the metal MBE and is cooled down to −6 ◦C, followed
by the evaporation of a 25 nm thick layer of Al onto the
nanowires at this temperature [20, 22]. During the metal
evaporation process, an elevated angle of 87◦ is main-
tained between the metal flux and the nanowire axis,
which ensures that the metal deposition is smooth and
highly crystalline. In Fig. 1(a) a scanning electron beam
microscopy (SEM) image of an as-grown in-situ Al/InAs-
nanowire Josephson junction with a junction length of
approximately 80 nm is shown. It can be clearly seen,
that the junction length is directly related to the diam-
eter of the upper nanowire, which acts as the shadow
mask.

The devices were fabricated on commercially available
highly resistive Si substrates (ρ > 100 kΩcm). All etching
and metal-deposition steps were realized using standard
e-beam lithography techniques. At first, a single Ti/Au
(5 nm/10 nm) gate electrode surrounded by a set of elec-
trically unconnected metal stripes for mechanical sup-
port were deposited, together with a small bonding pad
and a single lead between the gate and the pad. This is
followed by another Ti/Au deposition (60 nm/70 nm) to
form a larger bonding pad on top of the smaller one as
well as additional, positive e-beam markers. The whole
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FIG. 2: (a) A low magnification bright field (BF) scanning transmission electron microscope (STEM) image from the region
indicated in the core-halfshell nanowire shown in the inset. Zone axis for imaging is WZ 〈1120〉 (ZB 〈110〉 equivalent) of InAs
and the red arrows mark the grain boundaries. (b) A BF STEM image of a nanowire cross-section along WZ InAs 〈0001〉 (or ZB
〈111〉) direction showing the Al half-shell and red arrows indicating the grain boundaries. (c) A false color high magnification
cross sectional image of the InAs-Al interface. The broken line marks the interface from a different nanowire to (b). (d)
An annular dark field (ADF) STEM image and the corresponding EDX map of an InAs-Al junction showing the elemental
distribution. The red arrows in the ADF image indicate the isolated oxidised Al droplets within the gap. The zone axis for (d)
is WZ InAs 〈1100〉 (ZB 〈112〉).

substrate was subsequently covered by an 3 nm/12 nm
thick Al2O3/HfO2 dielectric layer by means of atomic
layer deposition. As the circuits are intended to work for
both AC and DC measurements, we use a transmission
line to form the source contact of the device. The lat-
ter is terminated by an on-chip bias tee, consisting out
of an interdigital capacitor and a planar coil. All three
elements, together with the surrounding ground plane,
were fabricated out of reactively sputtered titanium ni-
tride (80 nm thick, deposited at room temperature).

Subsequently, the nanowires were then transfered onto
the electrostatic gates by means of an SEM-based micro-
manipulator setup. To ensure an ohmic coupling between
the contacts, made out of NbTi, and the Al shell, we
used a combination of a 5 s long wet chemical etch in
Transene-D, followed by an in-situ Ar+ dry etch. The
contact separation is chosen to be at least 1.5µm in order
to reduce the effect of the wide-gap superconductor NbTi
on the actual junction characteristics. Figure 1(b) shows
one of the final Josephson junctions on top of a bottom
gate electrode (yellow).

III. RESULTS

A. Structural characterisation

The structural properties of the InAs-Al core-half-shell
nanowires were examined using scanning transmission
electron microscopy (STEM). For this, the nanowires
were transferred to holey carbon Cu grids by simply
sweeping the arrays with the grid. The InAs nanowires
grown by the current catalyst-free method showed poly-
typic crystal structure containing thin, defective wurtzite
(WZ) and zincblende (ZB) segments.

Figure 2 (a) shows a low magnification image of a
core-halfshell nanowire. The Al layer is uniform along
the nanowires and has a smooth surface with no sig-
nificant faceting [20]. Cross-sections prepared by fo-
cused ion beam revealed that the Al thickness is not
uniform around the half-shell as shown in Fig. 2 (b).
The balling up is related to the relative high deposi-
tion temperature (−6◦ C). A similar tendency although
less pronounced is observed at −30◦ C (Suppl Inf. of
Ref. [20] and only decreasing the temperature even
more, −120◦ C in Ref. [23], a conformal deposition
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FIG. 3: Conductance G vs. gate voltage measured in a voltage-driven setup with a constant voltage drop of 400µeV. Four
different transport regimes can be distinguished (negative to positive gate voltage): Pinch-off, Coulomb blockade, tunnel-
dominated transport, and classical Josephson junction behaviour. The inset shows the current voltage (IV ) characteristics
at zero gate voltage, with a supercurrent of approx. 21 nA and signatures of subharmonic gap structures in the differential
resistance. (b) IV curves at gate voltages of −0.5, −1.4, and −2.2 V, respectively. The black arrow indicates the sweep direction.
The small asymmetry can be attributed to thermal effects, e.g. overheating, or an underdamped junction behavior.

(c) Current-voltage characteristics at Vg = 0 V up to large bias voltages. By fitting and extending the linear and ohmic
behavior of the normal state an excess current Iexc of 72.6 nA is extracted.

can be obtained. The maximum thicknesses of the Al
layers in these nanowires are between 30–50 nm. The
Al half-shell is formed of large grains (> 25 nm) with
different orientations. These differently oriented grains
can be seen in the two viewing direction with grain
boundaries marked by red arrows in Figs. 2 (a) and
(b). Some of the observed grain orientations include
([110]Al || [0001]InAs)|| × ([1 − 12]Al || [11 − 20]InAs)⊥ and
([110]Al || [0001]InAs)||×([1−10]Al || [11−20]InAs)⊥ (using
WZ notation for InAs). These orientations are different
to those shown in some of the previous works [20, 26, 27],
but consistent with some of those seen in our prior re-
sults [22]. It should also be noted that the size of the Al
grains is much larger than the width of a single crystal
type region in the polytypic nanowire (which is generally
less than 10 mono-layers), and these grains span multiple
phase changes and defects. This means that change in
phase of the nanowire does not directly induce change in
metal grain orientation.

The interface between the Al and InAs was analysed
using the cross sections, as this viewing angle avoids
simultaneous contribution to the projection from Al
growth on multiple facets. Fig. 2 (c) shows a falsely
colorized higher magnification image of the InAs-Al in-
terface from a nanowire cross section (different to Fig. 2
(b)). It can be seen that the interface is sharp and smooth
with no amorphous material in between crystalline InAs
and Al, as a result of fully in-situ deposition of the elec-
trodes and absence of processing steps such as Ar+ sput-
tering. Edge dislocations which have been previously at-
tributed to AlAs formation [20, 22], were observed in the
side view of these nanowires. Dislocations were placed
∼ 2.5 nm from the interface within InAs. Evidence sup-
porting an AlAs layer as thick as 2.5 nm was not seen
in energy dispersive x-ray (EDX) data or lattice spac-
ings of high resolution images, although a smaller lattice
spacing (d{11−20}) was observed between the edge-most

lattice planes in some nanowire facets, accounting to a
possible AlAs or AlInAs formation of thickness less than
0.5 nm. This shows that almost all of the As on the entire
nanowire surface has been desorbed prior to Al deposi-
tion and it is consistent with transport measurements
(shown later) which show no evidence for the presence of
a significant intermediate AlAs layer. Figure 2 (d) shows
an annular dark field (ADF) image and the correspond-
ing EDX map of an InAs-Al junction. A clear sharp gap
in Al layer is formed in the shadowed region with a junc-
tion width of 75 nm. Few small, oxidised and isolated
droplets of Al, which appears to have formed during its
deposition are seen within the junction (indicated by red
arrows in the ADF image). However, these seem to get
etched-off during the subsequent device processing steps
as no evidence of parallel metallic bypass is observed in
the transport measurements.

B. Basic junction characteristics

All presented measurements were performed in a
He3/He4 dilution refrigerator at a base temperature of
15 mK equipped with a superconducting magnet coil.
I − V traces are measured using a current bias supplied
from a battery-powered current source and measured us-
ing a battery-powered differential voltage amplifier. The
measurement lines within the refrigerator are heavily fil-
tered with thermocoax, low-temperature copper powder
filters and custom low pass filters in addition to room
temperature ’pi’-filters.

The efficiency of the gate response is one of the key
properties of a nanowire junction. Therefore, we mea-
sured the conductance of the junction in a voltage-biased
configuration. In Fig. 3 (a) a gate sweep for one of the in-
situ devices is shown. For these measurements a constant
voltage drop of 400µeV is maintained across the junction,
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i.e. above the induced proximity gap. Depending on the
applied gate voltage Vg, four different regimes can be dis-
tinguished. For gate voltages below −6.7 V, the nanowire
is completely pinched off. Above this value, the current is
mediated by single electron transport through an intrin-
sic quantum dot. For gate voltages larger than −5 V, the
nanowire opens up, but the conductance is still limited
by a low-transparency tunnel coupling to the electron
reservoirs in the contacts. This results in a conductance
increase of just 2e2/h over a gate voltage range of 2 V
and just a weakly pronounced superconducting branch.
For the last section, i.e. voltages above −3 V, the current
voltage (IV ) characteristics shows a classical Josephson
junction response (cf. Fig. 3 (a) (inset)) with a clear su-
percurrent. In addition, signatures of subharmonic gap
structures are found in the differential resistance [28, 29].

Figure 3 (b) shows a set of IV curves at three differ-
ent gate voltages within the Josephson-junction-regime.
It can be seen, that the switching current of the de-
vice can be tuned between 3 nA and 10 nA. The ad-
ditional constant-voltage-sections are related to self-
induced Shapiro steps, caused by the transmission-line
circuit on the sample. At Vg = −0.5 V we obtained a
critical current of Ic = 11 nA and a normal state resis-
tance of RN = 6.33 kΩ, which results in an IcRN prod-
uct of 70µV. We would like to stress that the presented
IcRN value just holds for the given gate voltage. For the
other two IV curves we obtained IcRN (−1.4V)=72µV
and IcRN (−2.2V)=75µV with RN = 8.7 kΩ and 11.8 kΩ,
respectively. Although the normal state resistances are
quite different for the three gate voltages the IcRN prod-
uct varies only slightly. A similar behaviour was observed
before in nanowire-based Josephson junctions [30, 31].
Here, it was found that the critical current changes essen-
tially in the same way as the normal state conductance.
Owing to the mesoscopic nature of nanowire bridging the
superconducting electrodes RN is affected by interfer-
ence effects such as universal conductance fluctuations.
As indicated in Fig. 5(c), by extrapolating the current
voltage characteristics at the normal state in the range
V > 400µV a finite excess current Iexc of 72.6 nA is ex-
tracted. The excess current can be used to get an estima-
tion of the dominating type of transport within the chan-
nel by comparing the IexcRN product with the supercon-
ducting gap ∆. Following the framework of the corrected
Octavio–Tinkham–Blonder–Klapwijk theory [28, 29], we
obtain a ratio of eIexcRN/∆ = 1.31 at zero gate volt-
age. This value can be converted to the barrier strength
parameter Z = 0.38 and a corresponding contact trans-
parency T = 0.88 [29, 32]. This transparency is compara-
ble to values obtained for hydrogen cleaned superconduc-
tor/nanowire junctions, i.e. Al/InSb [23] or NbTiN/InSb
[15].
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FIG. 4: Voltage-driven tunnel spectroscopy measurement of
an InAs/Al nanowire junction at Vg = −4 V: Current as a
function of voltage (red) and corresponding differential con-
ductance in units of e2/h (blue). The four peaks correspond
to (1) the superconducting state, (2) (3) sub-gap structures
and (4) the induced proximity gap.

C. Hard gap spectroscopy and Yu–Shiba–Rusinov
states

The second benchmark of a superconductor-
semiconductor hybrid structure is the hardness of
the induced proximity gap, i.e. the coupling strength
between the nanowire and the metal shell, in the
single-channel or tunneling limit. Previous experiments
on similar systems used tunnel spectroscopy between
one superconducting and one normal conducting contact
to detect the strong change in the density of states of
the device close to the gap edge [21]. Even though our
structure is slightly different in terms of the contact
setup, we can obtain comparable conditions by applying
a negative gate voltage which sets the device into the
tunnel-limited regime [19]. Figure 4 shows a typical
spectroscopy-like measurement of a self-defined InAs/Al
nanowire Josephson junction. As indicated in the figure,
four pronounced peaks are identified. Feature (1) is
thereby related to the superconducting state, while (2)
and (3) correspond to sub-gap structures. Finally, the
dominating peak (4) marks the edge of the induced
proximity gap 2∆ = 380µeV. Similar to the tunneling
experiments of Chang et al. [21] the density of states in
the nanowire segments underneath the superconducting
electrodes is probed by our measurements. Due to
the proximity effect an induced gap is created in the
InAs nanowire. However, in our structure two prox-
imitized nanowire segments are separated by tunnel
barriers forming the quantum dot, therefore 2∆ is
measured. The value of ∆ is close to the bulk Al gap
(∆Al = 200µeV) indicating a good coupling between
Al and InAs. An important figure of merit is the ratio
of the conductance for in- and out-of-gap transport, i.e.
G/GN . Between (4) and (2), the conductance drops
to G/GN ≈ 0.02, with a further reduction between (2)
and (1) to G/GN < 0.001. Such a strong decrease of
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FIG. 5: (a) Full gate response for gate voltages between −8 and −4 V, showing a set of Coulomb diamonds (indicated by
the black dashed lines) which are related to a single quantum dot, with a charging energy of Ec = 11.6 meV≈ 60 ∆ and
Ec = 8.5 meV≈ 44 ∆, respectively. (b) Differential conductance vs. bias voltage measurements with a high resolution gate
voltage stepping for Vg = −6.4 · · · − 1.4 V. The measurement covers the in- and inter-diamond section as well as the open-
junction-regime. Within the Coulomb diamonds found in the range of Vg < 5.5 V, the only visible feature is related to the edge
of the proximity gap. However, for voltage values close to the section in which the quantum dot is open, Yu–Shiba–Rusinov
states are observable. (c) Differential conductance vs. bias voltage traces at different gate voltages, depicting the evolution of
the sub-gap structure in and out of the Coulomb diamonds. For −5.8 V (dark blue), there are only two peaks which are related
to the edge of the proximity gap. At −5.655 V (light red), multiple sub-gap states become visible. For −5.545 V (dark red), the
spectrum completely changes, ending up in a trace with a 7 times larger conductance and a pronounced peak at zero energy.
We attribute this behavior to a mixture of both multiple Andreev reflections and Yu–Shiba–Rusinov states.

the conductance is an indication that our devices host a
so-called hard gap [19, 21, 26].

As already shown in Fig. 3, the actual junction behav-
ior is strongly correlated with the applied gate voltage.
Thus, we performed a gate batch measurement between
−8 and 0 V in steps of 29 mV, which covers both the
tunnel-limited regime as well as the range in which the
transport is dominated by multiple Andreev reflections.
Figure 5 (a) shows the stability diagram of the junction
for gate voltages between −8 and −4 V. Here, the trans-
port is dominated by single electron tunneling, which re-
sults in pronounced Coulomb diamonds. By mapping out

the size of the diamonds in terms of their individual gate
and bias voltage, we obtain a lever arm α = 0.095 and
charging energy Ec = 11.6 meV for the large diamond
in Fig. 5 (a) and α = 0.021 and Ec = 8.5 meV for the
small one. The large values of Ec indicate that the corre-
sponding quantum dot has to be rather small and is most
likely caused by twinning defects or lattice-type changes
in the nanowire junction area. Based on these values,
especially due to ∆ < Ec [33], we assume that the trans-
port, in the sections in which the quantum dot is open,
is mediated by Yu–Shiba–Rusinov (YSR) states rather
than by conventional Andreev bound states [34–36].
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In order to probe the actual state structure, we per-
formed differential conductance vs. bias voltage mea-
surements at a high resolution gate voltage stepping
in the range of −6.4 to −1.4 V, which is shown in
Fig. 5 (b).[43] We can distinguish between three differ-
ent regimes. For less negative gate voltages, i.e. values
above −4.3 V, (multiple) sub-gap states arise. However,
for more negative gate voltages and, especially inside of
the Coulomb diamonds, the sub-gap transport is com-
pletely suppressed. Nevertheless, the edges of the in-
duced proximity gap are still present, represented by two
straight light-blue lines at a constant voltage of ±375µV.
On the other hand, for certain gate voltage ranges, in
which the quantum dot is open, several sub-gap features
arise. In Fig. 5 (c) three exemplary curves in the range
around −5.7 V are shown. For a gate voltage of −5.8 V,
the junction characteristics exhibit a clear hard-gap with-
out any sub-gap features. If the voltage increases, i.e.
up to −5.565V , a single state moves into the gap and
additional peaks appear, which are probably related to
coherent reflection events of the same state. For a gate
voltage of −5.545V , the state reaches zero energy, which,
together with the onset of single electron tunneling, re-
sults in a 4 times increase of the in- and out-of-gap con-
ductance as well as the emergence of a pronounced zero
bias peak, probably caused by the interplay of multi-
ple Andreev reflections and a single Yu–Shiba–Rusinov
state. Based on the strong gate asymmetry, as well as
due to the relatively large charging energy of Ec ≈ 60∆,
this behavior could be an indication for a quantum phase
transition from a singlet into a doublet state, which ef-
fectively changes the nature of the junction from ”0”
to ”π” [11, 37–39]. However, due to the fact that the
junction does not carry a real, non-dissipative current
in this specific gate voltage range and is not embed-
ded in a phase-sensitive device like a superconducting
quantum interference device, there is no direct way to
probe the resulting reversal of the supercurrent. Nev-
ertheless, these states could still offer some advantages
for devices based on mesoscopic Josephson junctions by
adding an additional energy-tunability of the states be-
sides the superconductor-semiconductor interface trans-
parency.

D. In-plane and out-of-plane magnetic field
transport measurements

The common requirement for all devices based on An-
dreev bound states is the manipulation of the phase
across the junction in order to move along the disper-
sion relation and set the system to a fixed operational
point. This is normally achieved by means of a super-
conducting loop connecting the junction and applying a
small external out-of-plane magnetic field which gener-
ates a flux-induced phase shift. In the case of semicon-
ductor nanowires, and more specifically for materials like
InAs or InSb, the strong spin-orbit coupling as well as the

large g-factor can be used as an additional way to manip-
ulate the state structure both in energy and momentum
space. Here, an additional in-plane field is required to
induce a Zeeman splitting, with field values which can
easily overcome the bulk critical field of Al by one or
two orders of magnitude. Both things together make the
magnetic field sustainability the second key benchmark
of a nanowire Josephson junction.

In order to probe the magnetic field stability of the
in-situ junctions we performed voltage-driven measure-
ments at a gate voltage of −4.3 V, i.e. close to, but out-
side of the regime which is dominated by the quantum
dot. Figure 6 (a) and (b) show the conductance vs. bias
voltage for an out-of-plane field as well as for a magnetic
field which is applied parallel to the nanowire axis, re-
spectively.

As can be seen, both measurements show the typi-
cal damping and smearing out effect of the gap edge
peaks, which is related to the continuous closing of the
induced proximity gap if the magnetic field is increased.
The field-induced changes in the normal-state conduc-
tance are most likely related to quantum fluctuations
in the nanowire, i.e. the previously mentioned univer-
sal conductance fluctuations, induced by the superposi-
tion of multiple, flux-penetrated scattering loops. How-
ever, these should just affect the background conductance
rather than the transport below the superconducting gap.
By using the first derivative of the differential conduc-
tance, it is possible to extract the actual gap width for
each trace. Even though this method underestimates the
gap width for small magnetic fields, it makes it possible
to find reliable values when the actual gap edge peaks
are already completely suppressed. Figure 6 (c) sum-
marizes the field-dependent gap width in terms of en-
ergy for both the in-plane (blue) as well as the out-of-
plane (red) field. For the latter one, we obtain a crit-
ical field of Bc = 130 mT, while the first one is almost
two times larger, with Bc = 250 mT. These comparably
small values of Bc with respect to other works can be at-
tributed to the much thicker Al shell of 25 nm in our case
[20, 40]. Additionally, both traces shown in Fig 6 (c) devi-
ate from the conventional BCS-behaviour, resulting in a
much weaker field-dependency of ∆. However, we would
like to stress that the closing of the gap is not necessarily
coupled to a softening of the gap, as can be seen in Figure
6 (d) (for a logarithmic depiction of the conductance see
Appendix B). Here, we analyzed the change of the ratio
between the averaged field-dependent zero bias conduc-
tance GS(B0) and the conductance above Bc, GN (B0),
as a function of fractions of the critical field. As long as
the applied in-plane field is smaller than 0.9Bc, GS(B0) is
mainly limited by the noise floor of the system. However,
above this value, the conductance increases continuously,
until it reaches GN (B0). We interpret this as another
proof for the hardness of the induced proximity gap in
our system, which is not disturbed by parasitic sub-gap
states even for comparably large magnetic fields.

Finally we present differential conductance measure-



8

(a)

(b)

(c) (d)
B┴

B||

FIG. 6: Differential conductance traces as a function of bias voltage for various magnetic fields both perpendicular (a) and
parallel (b) to the nanowire axis. For larger field values, the peaks corresponding to the edge of the proximity gap are damped
and move closer to zero energy. (c) Width of the proximity gap 2∆ for an increasing magnetic field between 0 and 250 mT.
The energies were extracted by using the first derivative of the differential conductance. For an out-of-plane orientation, we
find a critical field of Bc =130 mT, while for the in-plane field we obtain Bc =250 mT. (d) Ratio of the averaged in-plane-field-
dependent zero bias conductance relative to the conductance above the critical field. As long as the field is less than 90% of the
critical field, the zero bias conductance is mainly determined by the noise floor of the system, without any parasitic sub-gap
states, which is another proof for the hard-gap behavior of the junction.

ment where the gate bias is set to zero, i.e. the nanowire
bridge is conductive and no tunnel barrier is present. In
Fig. 7 (a) the differential resistance vs. bias voltage is
measured as a function of a parallel magnetic field. The
conductance modulations for bias voltages in the range
of ±300µV can be attributed to subharmonic gap struc-
tures due to multiple Andreev reflections [28, 29, 32].
The differential conductance trace at zero magnetic field
is shown in Fig. 7 (b). We assign the feature found at
about 280µV to 2∆/e. The value for ∆ extracted here is
smaller than the bulk gap of Al. We attribute the lower
value to the fact that instead of the bulk gap of Al the
induced proximity gap in InAs is relevant. In contrast to
the previously discussed measurements in the tunneling
regime, here the induced gap is probably weakened to-
ward the center of the junction, since no tunnel barrier
is blocking the diffusion of carriers. In addition to the
structure at 2∆/e, higher order subharmonic gap struc-
tures are also identified, i.e. at 2∆/ne with n = 2, 3,
and 4. We attribute the sharp feature at around 500µV
to some parasitic junction in series presumably at the
boundary between the NbTi contact fingers and the Al
shell. Upon increasing the magnetic field the positions of
the subharmonic gap structures move towards zero bias
reflecting the decrease of the superconducting gap with
increasing field. At the critical field of 250 mT the sub-
harmonic gap structures vanish. The critical field found
here is in accordance to the value determined from the

measurements in the tunneling regime.

In order to find out how the magnetic field orientation
affects the junction characteristics, the differential con-
ductance as a function of bias voltage was recorded for
a full rotation of magnetic field within the plane defined
by the nanowire axis and the normal to the substrate
(cf. Fig. 7(c)). Here, the magnitude of the magnetic
field was fixed at 100 mT. The trace of the differential
conductance at 0◦, parallel to the nanowire, is indicated
by the orange line in Fig. 7 (a). When rotating the mag-
netic field out-of-plane and perpendicular to the wire the
sequence of subharmonic gap features shift towards zero
bias. This can be attributed to the fact, that the gap of
the Al film is more strongly suppressed for a perpendicu-
lar magnetic field than for a fields aligned along the thin
superconducting layer. The positions of these features
scale with the superconducting gap.

To find out whether the magnetic field orientation
changes the pattern of the differential conductance
tracks, we compared the characteristics at a perpendic-
ular field (90◦) with the curve at a parallel field (0◦) at
correspondingly higher field strength (cf. dashed blue
line in Fig. 7 (a)) to provide the same superconducting
gap energy. As can be seen in Fig. 7 (c), both curves are
matching very well, no significant difference is observed.

Although the general conductance pattern varies
smoothly with the magnetic field direction, some distinct
features are found, as indicated by the dashed black lines
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(c)

(a) (b)

n=1

2

3
4

FIG. 7: (a) Differential conductance as a function of bias voltage and magnetic field at zero gate voltage. The field is oriented
in-plane and parallel to the nanowire axis. The data along the orange dashed line correspond to the data at 0◦ in (c). (b)
Traces of the differential conductance vs. bias voltage. The green curve shows the differential conductance at zero field. The
red curve corresponds to the data along the red line in (c) for B⊥ = 100 mT, while the blue trace corresponds to the differential
conductance along the blue dashed line in (a) at B|| = 215 mT, respectively. The curves were chosen so that the gap energy
match. (c) Differential conductance as a function of bias voltage and of the magnetic field orientation. The magnitude of
the magnetic field was kept fixed to 100 mT and the gate voltage was set to zero. Zero angle corresponds a magnetic field
orientation along the nanowire axis. At 90◦ the field is perpendicular to the substrate. The dashed black lines border some
irregular features observed in the differential conductance.

in Fig. 7 (c). These features are reproducible since they
appear again after a field rotation by 180◦. So far, we
have not yet been able to assign the exact cause of these
structures. However, we speculate that they are related
to magnetic field dependent states moving in and out of
the superconducting gap, e. g. controlled by an angle-
dependent g-factor [41] or are induced by the orientation-
dependent vortex dynamics within the NbTi or Al layer.

IV. CONCLUSION

We have demonstrated that mesoscopic Josephson
junctions based on nanowires with shadow-mask-defined
weak links show state-of-the-art properties in terms of

gap-hardness, gate tunability of the switching current,
interface transparency, and magnetic field resilience. In
fact, in contrast to conventional nanowire junctions with
epitaxial Al full or half shells, they provide much more
flexibility for the usable superconductors due to the
avoidance of a wet or dry chemical etching step. Addi-
tionally, caused by the coupling between the actual junc-
tion length and the nanowire diameter, they ease the fab-
rication of short junctions, i.e. systems with just a single
Andreev bound state. Thus, these novel junctions can
potentially act as a building block for quantum devices
based on excitations, like the Andreev qubit or topolog-
ical systems with Majorana zero modes, which require a
precise control of the internal state structure of the junc-
tion. Last but not least, our fabrication scheme can also
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be employed for more complex junction structures, e.g.
for a sequence of Josephson junctions by using multiple
wires as shadow masks or for the formation of Josephson
junction networks by means of merged nanowires (Some
examples are shown in Appendix C).
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Appendix A: Circuit layout

A schematic illustration of the device layout of the cir-
cuit for dc- and rf-measurements is depicted in Fig. 8.
The circuit was fabricated on a high-resistive Si sub-
strate. For the bias-tee consisting of an interdigital ca-
pacitor and a planar coil superconducting TiN is used,
while for the bottom gate structure a Ti/Au layer is em-
ployed. The signal from the bias-tee is transferred via a
transmission line to the junction.

Appendix B: Determination of the gap hardness

In order to futher illustrate the gap-hardness at various
magnetic fields applied along the nanowire axis the loga-
rithm of differential conductance is plotted as a function
of bias voltage in Fig. 9.

Appendix C: Growth of multiple junctions in series
and nanowire networks

Our fabrication scheme can also extended to more
complex structures. By using the shadow of more than
one nanowire crossing an underlying nanowire multiple

FIG. 8: Schematic overview and optical micrograph of the
device layout. The bottom gate (orange) is fabricated out
of Ti/Au and ends in a single electrode below the junction.
The interdigital capacitor (red) and the planar coil (green)
act as a bias tee. Thus, it is possible to supply the nanowire
Josephson junction with a superposition of an AC and DC
signal by means of the common transmission line (blue).

FIG. 9: Voltage-dependent and logarithmic differential con-
ductance traces for increasing magnetic fields. The field was
applied parallel to the nanowire axis.

Josephson junctions in series can be created. In Fig. ex-
emplary scanning electron microscopy images are shown.
Although in the present case parasitic growth is respon-
sible for the presence of multiple nanowires it is in prin-
ciple possible to determine the position of the shadowing
nanowires precisely by selective area growth. In that case
the position of the holes on the Si(111) side facets deter-
mine the location of the junctions in the underlying wire.

In addition, it is also possible that nanowires which
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FIG. 10: (a) - (c) Scanning electron micrographs showing
examples of multiple junctions in series obtained by employing
more than one nanowire for shadow evaporation.

have been grown from two adjacent Si(111) side facets
merge, as shown in Fig. 11. One finds that the nanowires
maintain their original diameter at the crossing point
rather than forming a ”blob”. By this means nanowire

1µm 200nm

(a) (b)

FIG. 11: (a), (b) Scanning electron micrographs showing an
example for two merged nanowires.

networks can be created with well-defined and constant
dimensions. Ultimately, the formation of multiple junc-
tions can be combined with the growth of networks,
which would be very interesting for the realization for
circuits for topological quantum computation based on
Majorana modes.
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[22] N. A. Güsken, T. Rieger, P. Zellekens, B. Benne-
mann, E. Neumann, M. I. Lepsa, T. Schäpers, and
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