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Abstract 

The ability of plants to cope with a variety of environmental stresses depends on precise 

modulation of gene expression. Expression of stress related genes, usually, is under the 

control of long-range regulatory elements. In order to understand how gene regulation is 

modulated by these elements, it is important to identify distal regulatory regions and 

characterise them. One way to identify distal regulatory elements is to measure chromatin 

accessibility. We have devised a unique in vivo system (iNOMe-seq), to simultaneously 

measure chromatin accessibility, nucleosome occupancy and methylation profile. Our 

method outperforms current chromatin accessibility methods in identification of important 

genomic features with great accuracy in plants. Using our chromatin accessibility data, we 

identified potential distal regulatory regions (DREs) and a study was carried out to investigate 

their role in gene regulation by targeted epigenetic and genetic modifications at these 

regions. Our data shows that hypermethylation of distal regions leads to the down-regulation 

of gene expression and the phenotypic changes observed after DRE hypermethylation 

/CRISPR deletion were related to those seen in the mutants of their target genes. Our study 

concludes that the gene expression can be modulated by modifying their regulatory regions 

and this approach can be used to modify important crop traits  to improve food security.  
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1.1. General overview  

Plants are incredibly important organisms and account for 80% of human diet, thus, 

are essential for food security (United Nations 2017). The world population is 

increasing at an alarming rate and is likely to reach around 10 billion by 2050 (United 

Nations 2019). To feed an exponentially growing human population, a substantial 

increase in crop production is required. This puts pressure on an already squeezed 

agricultural capacity due to urbanisation of land and severe environmental changes 

such as heat and drought affecting crop production (Fahad et al. 2017). Extreme 

weather conditions negatively affect plant development and plants have to adapt to 

the changes in a physiologically challenging way, which results in lower crop yield 

(Dresselhaus and Hückelhoven 2018). Environmental stresses such as cold, heat, 

drought and salinity make plants more vulnerable to pathogens by altering plant 

physiology and pathogen defence mechanisms (Seherm and Coakley 2003). The 

ability of plants to cope with an array of environmental stresses depends on the 

precise modulation of gene expression (Asensi-Fabado et al. 2017). Gene regulation 

relies not only on regulatory sequences and sequence-specific transcription factors, 

but on a variety of epigenetic processes and chromatin organisation that interplay 

to modulate precise gene expression in response to environmental cues (Ariel et al. 

2014). 

In the introduction, basic gene regulation processes in eukaryotes will be described 

and different ways to study chromatin accessibility and identification of regulatory 

elements and their roles in regulating gene expression in plants will be discussed.  
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1.2. Regulation of gene expression  

Quantitative and qualitative control of gene expression is crucial for all living 

organisms. In multicellular organisms, including plants, spatial and temporal 

regulation is critical to drive cellular differentiation and development, which leads to 

accurate morphogenesis (De Smet and Beeckman 2011). Control of gene expression 

can take place on different levels i.e. transcriptional, post-transcriptional, and 

translational stages (Figure 1.1) (Ohnishi 2012). However, transcriptional regulation 

is the first opportunity to control gene expression and therefore is the most 

important determinant for the expression of any gene (Halbeisen et al. 2007). 

 

 

 

Figure 1.1: Overview of the gene expression regulation at various levels in a cell. 
Regulatory elements control “ON” or “OFF” state of a gene to control the expression 
of the primary transcript. RNA splicing leads to the formation of mRNA, which is later 
transported to the cytosol for protein synthesis.   
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1.3. Transcriptional control of gene expression  

Eukaryotes display extensively elaborated transcriptional control mechanisms 

determined by a complex interplay among regulatory proteins, cis regulatory 

elements, DNA methylation and other epigenetic mechanisms (Alberts et al. 2002). 

In a given moment, in a typical human cell, 10,000-20,000 genes are expressed out 

of approximately 30,000 genes (Alberts et al. 2002). Also, the expression profile 

varies between different cell types and throughout the life cycle of the organism in 

a given cell (Wray et al. 2003). Transcriptional regulation determinants including 

regulatory proteins, cis regulatory elements, epigenetic modification and chromatin 

organisation are discussed as follows.  

1.4. Transcription factors and regulatory proteins  

Various regulatory proteins are involved in regulating chromatin interactions 

through their sequence specific DNA binding, including regulatory proteins forming 

transcription initiation complexes (Lee and Young 2000). Transcription factors are 

key regulatory proteins that work independently or make complexes with other 

proteins, which can either activate or repress the recruitment of RNA Polymerase to 

the promoter (Nikolov and Burley 1997). In eukaryotes, transcription initiation 

requires highly conserved Polymerase II (Pol II) and general transcription factors 

including TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH (Orphanides et al. 1996).  

A variety of transcription factors (TFs) have been identified in eukaryotes. Based on 

the presence of conserved sequences of known DNA binding domains (DBDs), 

around 1500 genes encode TFs in the comparatively small genome of A. thaliana 

(Riechmann et al. 2000). 
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These transcription factors have been further grouped into more than 60 TF families 

in Arabidopsis consisting of more than 100 TFs with MYB, the largest family 

consisting of approximately 200 genes (Qu and Zhu 2006). MYB transcription factors 

have been implicated in many physiological processes, including development and 

morphogenesis, stress signalling and defence mechanisms (Yanhui et al. 2006). The 

MADs box family, which is not a plant-specific family includes genes responsible for 

flower development in Arabidopsis. for example, combinatorial action of floral 

homeotic genes, ABC, results in partial expression of these genes specified in discreet 

domains of the flower leading to accurate transition to flowering development (Irish 

2017).  

Many TFs carry DNA binding domains related to one another e.g. Zinc-finger domain 

which can fold into loop structures hence named ‘fingers’, were initially identified in 

Pol III TFs but are also been identified in Pol II TFs (Krishna et al. 2003). Zinc-finger 

TFs constitute half of the TFs identified in D. melanogaster and C. elegans, but only 

comprise 20% of all the TFs identified so far in Arabidopsis (Riechmann et al. 2000).  

TF binding DNA sequences show various levels of binding specificity, ranging from 

single TF binding to one site, to many TFs recognising the same binding site (Wray et 

al. 2003). ChIP-seq (Chromatin Immuno Precipitation Sequencing) analysis in 

Arabidopsis has revealed that majority of genes (63%) are potentially regulated by 

more than one TFs which indicates the complexity of transcriptional gene regulation 

networks (Heyndrickx et al. 2014). 

Nevertheless, technological advances have helped revolutionise the identification 

hundreds of putative TFs and their binding sites, but the accurate characterisation 

of TF binding sites is a complicated process. Precise characterisation requires input 
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from studying a variety of epigenetic mechanisms such as DNA methylation patterns, 

chromatin accessibility and 3D chromatin organisation studies to predict novel 

regulatory mechanisms in plants.  

1.5. cis-regulatory elements  

Every gene harbors flanking regulatory regions that, in conjunction with regulatory 

proteins, controls expression. These flanking regions are commonly known as cis-

regulatory elements (CREs) (Adrian et al. 2010). CREs are stretches of non- coding 

DNA are normally present in the vicinity of protein-coding genes. Based on their 

position around the gene, CREs can be grouped as either proximal regulatory regions 

or distal regulatory elements (Wittkopp and Kalay 2012). Proximal promoter 

elements include a core promoter, a minimal section of promoter required for 

transcription initiation (Smale and Kadonaga 2003). Core promoters harbor a TSS 

(transcription start site), polymerase binding sites, and general TF binding sites such 

as a TATA box, although there is no such ‘universal element’ sequence that is 

conserved in all promoters (Juven-Gershon and Kadonaga 2010). Other proximal 

promoter elements found approximately 250 bp upstream of the TSS also contain 

primary regulatory elements and allow binding of specific TFs (Smale and Kadonaga 

2003). Transcriptional regulation does not only depend on core promoter and 

proximal promoter elements but also depends on distal regulatory elements present 

far from their target genes. Based on their roles in gene expression, distal regulatory 

elements can be divided into enhancers, silencers or insulators (Heintzman and Ren 

2009). Enhancers and promoters show similarities in possessing DNA biding motifs 

for tissue specific TFs and, contrary to CpG rich promoters, tissue specific promoters 

and enhancers carry DNA binding motifs that are CpG depleted (Taher et al. 2013). 
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Distal regulatory elements in coordination with certain chromatin states regulate 

temporal and tissue specific gene expression. In plants for example, FLOWERING 

LOCUS T (FT) is regulated via a 5kb upstream region by a complex interplay between 

a conserved distal DNA block and dynamic chromatin modifications (Adrian et al. 

2010).  

1.6. Epigenetic modifications and regulation of gene expression  

Gene expression regulation is very dynamic and complex, not only due to the above-

mentioned various elements and the interplay between their associated factors, but 

also due to the role of an array of epigenetic marks. Epigenetic marks are responsible 

for heritable changes in gene expression without involving any changes in DNA 

sequence. Epigenetic modifications can alter chromatin accessibility, which will 

allow modulation of transcription and thus may eventually cause phenotypic 

variation (Seymour and Becker 2017). 

Unlike the genome, where the whole set of genetic information remains largely 

stable throughout the lifetime of an organism, the epigenome exhibits temporal and 

tissue specific variation (Gibney and Nolan 2010). In early stages of development, 

differentiating cells start accumulating epigenetic marks that are different from the 

undifferentiated cells, resulting in different lineages of cells carrying different 

epigenetic marks (Reik 2007). Epigenetic modifications also arise in mature 

organisms under the influence of environmental changes or after sensing 

developmental cues (Jaenisch and Bird 2003). Although the primary DNA sequence 

is not altered, these modifications are maintained through mitotic divisions and may 

remain heritable through many subsequent generations (Pikaard and Mittelsten 
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Scheid 2014). In the model plant A. thaliana, it has been demonstrated that 

epigenetic changes induced by exposure to osmotic stress evade epigenetic 

reprogramming in the subsequent generation and results in ‘priming’ of plants to the 

same type of stress (Wibowo et al. 2016). This indicates that epigenetic marks 

acquired in response to various environmental cues are potentially inherited and 

affect how plants adapt to changing environmental conditions.  

 Three distinct mechanisms are associated with deployment and maintenance of 

epigenetic modifications across the genome: DNA methylation, histone modification 

and RNA based epigenetic control (Henderson and Jacobsen 2007). 

1.6.1.  DNA methylation 

DNA methylation is a covalent modification of DNA, where a methyl (CH3) group is 

added to the fifth carbon atom of the cytosine ring; a process carried out by DNA 

methyltransferases (Moore et al. 2013). It is a highly conserved epigenetic 

phenomenon in both animals and plants, it is vital for transposon silencing, stable 

repression of many genes and also critical for normal development (Chan et al. 

2006).  

In animals, DNA methylation is present only in a CG contexts throughout the 

genome, especially in short CG rich regions called CpG islands that are frequently 

found in gene promoter regions (He et al. 2011). A classic example of gene regulation 

by differential DNA methylation states is of Agouti gene expression in mice. The 

Agouti gene is flanked by a CG rich region at the 5’end, after birth, methylation of 

the CG rich region leads to a brown fur phenotype in developmentally normal mice 

while absence of methylation leads to developmental abnormalities such as yellow 

fur, obesity, and diabetes (Figure 1.2) (Dolinoy et al. 2006). 
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Figure 1.2: DNA methylation dependent regulation of the Agouti gene in mice. The 
Agouti gene is flanked by CG rich regions called CpG islands. Presence of an 
unmethylated CpG region can result in ectopic expression of Agouti, resulting in 
developmental abnormalities such as yellow fur, obesity and diabetes while a 
methylated state of CpG results in controlled expression/silencing of Agouti, leading 
to normal brown fur mice.  
 

In plants, where highest levels of DNA methylation occurs i.e. 50% of cytosine 

methylation in some plant species, the phenomenon is observed in CG, CHG and CHH 

(H= A, C, T) contexts (Suzuki and Bird 2008). 

De novo methylation in plants mainly at CG sites is carried out by a DNA 

METHYLTRANSFERASE 1 (DNMT1) homologue called DOMAINS REARRANGED 

METHYLTRANSFERASE 2 (DRM2), while the maintenance of methylation at CG and 

CHG is carried out by a DNMT1 homologue called MET1 (DNA METHYLTRANSFERASE 

1) and a plant specific methyltransferase known as CMT3 (CHROMOMETHYLASE 3), 

respectively (Pikaard and Mittelsten Scheid 2014). CHH methylation is asymmetric in 

nature and is methylated by DRM2 in a de novo fashion (Goll and Bestor 2005). In 

both plants and animals, methylation is prevalent in centromeric, pericentromeric 

regions as well as in repeat elements such as transposons and is conventionally 
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associated with gene repression (Gibney and Nolan 2010). MET1 is highly conserved 

in plants and met1 mutants in A. thaliana show a range of developmental 

abnormalities due to a lack of methylation at CG sites (Kankel et al. 2003). 

Loss of methylation in plants can lead to epiallelic variation (heritable phenotypic 

changes brought about by epigenetic modification), that if present after meiotic 

transmission can lead to deleterious effects such as flowering time variation, leaf and 

floral defects and other developmental aberrations (Henderson and Jacobsen 2007). 

Hypomethylation also results in enhanced transposon activity, which leads to 

increased insertional mutations with potentially deleterious effects such as changes 

in meristem identity and female sterility (Ronemus 1996).  

The impact of DNA methylation on gene expression in plants is however complex 

due to the fact that correlation of gene expression with DNA methylation differs 

between gene body methylation and methylation of TEs flanking genes. Gene body 

methylation generally results in upregulation of expression, in contrast to TE 

methylation being negatively correlated with gene expression, exceptions in both 

cases, however, are also present (Meng et al. 2016). 

1.6.2.  Histone modifications  

Histones (H1, H2a, H2b, H3 and H4) are a crucial component of chromatin, where 

DNA is packaged around four histone pairs into a chromosomal structural unit called 

nucleosome (Dong and Weng 2013). Histones, mainly, H3 and H4, have long 

polypeptide tails protruding from the nucleosome structure, which are covalently 

modified post-translationally at different amino acid residues (Pfluger and Wagner 

2007). These modifications, which include acetylation, methylation, phosphorylation 
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and ubiquitylation, can repress or activate gene expression by changing chromatin 

configuration (Berger 2007).  

There are many ways in which histone modifications can alter gene expression, and 

predominantly three different phenomena are believed to be involved: i) by directly 

altering the chromatin structure, ii) by interfering with the binding of proteins that 

normally bind chromatin and iii) by facilitating binding of certain other proteins to 

the chromatin (Kouzarides and Berger 2007).  

Acetylation of histones involves modifying the lysine residues of histone amino-

terminal tails and is generally associated with up-regulation of transcription, mainly 

by inhibiting formation of secondary or tertiary chromatin structure. thus enabling 

chromatin to have a more open conformation (Figure 1.3) (Rice and Allis 2001). 

Although originally studied for its role in chromatin compaction during cell cycle, 

phosphorylation of H3 in eukaryotes, has been is found to be involved in chromatin 

remodeling, especially for the relaxation of chromatin to facilitate transcription (Wei 

et al. 1998). Phosphorylation of histone residues is positively correlated with gene 

transcription; for example, phosphorylation of serine 10 and 28 of H3 is involved in 

the regulation of epidermal growth factor (EGF) in mouse (Rossetto et al. 2012). 

Histone methylation, opposite to phosphorylation, was initially thought to be 

associated specifically with gene repression. Although, over the last two decades, 

studies have revealed that histone methylation can have either positive or negative 

effect on gene regulation based on the position of the methylated amino acid 

residues (Zhang and Reinberg 2001). For instance, methylation of H3 at lysine 4, 36 

and 79 is associated with gene activation whereas methylation of lysine residue 9 
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and 27 of H3 (Figure 1.3) are involved in gene repression (Gibney and Nolan 2010; 

Perrone et al. 2014).  

 

 
Figure 1.3: Histone modifications leading to activation or repressive state of 
chromatin in eukaryotes. H3K27Ac3 and H3K4m3 results in an open chromatin state 
leading to activation of genes whereas, H3K27me3, H3K9me2 and H3K9me3 lead to 
compact chromatin states and the repression of genes . Image adapted from (Boland 
Michael et al. 2014) 
 
 
 
1.6.3. Interplay between DNA methylation and histone modification 
  
There is evidence that the DNA methylation machinery and methyl CpG binding 

proteins (MBDs) recruit histone deacetylases (HDACs), reinforcing two layers of gene 

repression (Fuks 2005). However, it is not completely understood exactly how DNA 

methylation and histone acetylation/deacetylation are established during 

development. In plants, there is evidence that plant specific chromodomain methyl 

transferase (CMT3) is involved in gene repression by DNA methylation and by 
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facilitating heterochromatin formation (Liu et al. 2011). CMTs carry a chromo-

domain which can bind to a K9 histone methyl transferase, SUVH4 (Liu et al. 2014; 

Nielsen et al. 2002), which indicates that interplay between histone marks and DNA 

methylation is a conserved phenomenon in eukaryotes.  

 According to the currently accepted model, histone acetylation facilitates an open 

chromatin structure thus allowing the transcriptional machinery to access the 

promoter. Removal of acetylation by HDAC (Histone deacetylase) can induce other 

epigenetic modifications e.g. DNA methylation, leading to gene silencing (Vaissiere 

et al. 2008) (Figure 1.4A). On the other hand, hemi-acetylated histones can recruit 

histone methyltransferase and DNA methyltransferases to enable histone 

methylation and DNA methylation respectively, which leads to compact chromatin 

formation and gene silencing (Figure 1.4B) (Vaissiere et al. 2008).  
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Figure 1.4. Models of histone modification and DNA methylation dynamics during 
gene silencing in eukaryotes (A)Partial methylation of DNA allows MePC2 (Methyl 
binding proteins) to bind to the methylated CpG region and help recruit histone 
deacetylases (HDACs) that deacetylase histones. In the presence of 
methyltransferase (Dnmt1) induced methylation, HDACs amplify gene silencing on 
the target region. (B) Deacetylated chromatin is recognised by Dnmt1, a de novo 
methyl transferase and histone methyltransferase HMT which leads to compact 
chromatin and gene silencing. (Image adapted from Vaissière et al. 2008) 
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1.6.4. RNA-based processes involved in epigenetic regulation 

Non-coding RNAs (ncRNAs) are being recognised as important biological role players 

and are increasingly implicated in the epigenetic regulation of gene expression 

(Mercer et al. 2009). Long non-coding RNAs (lncRNAs) are RNAs longer than 200 

nucleotides, stably repress certain genes by modulating DNA methylation of cytosine 

residues at CpG dinucleotides (Law and Jacobsen 2010). 

 LncRNAs are also implicated in the formation of chromatin modifying complexes by 

interacting with various proteins. In the HOXC (Homeobox C cluster of genes) cluster; 

HOTAIR (HOX transcript antisense RNA- a lncRNA) interacts with PRC2 (Polycomb 

repressive complex2) to repress HOXD genes in trans (Rinn et al. 2007).  

There are also many different types of small non-coding RNAs generally derived from 

lncRNAs. These can be broadly categorised into the micro RNAs (miRNAs) and small 

interfering RNAs (siRNAs) in plants, though PIWI interacting RNAs (associated with 

proteins that harbour PIWI domain) and other lesser known types are found in 

animals. These small RNAs are typically 21-24 nucleotides in length and are actively 

involved in gene regulation at various levels (Gibney and Nolan 2010). In fission 

yeast, small RNAs have been found associated with various chromatin modifying 

complexes, facilitating the delivery of chromatin modifying enzymes to targeted 

regions (Verdel et al. 2004). 

In the model organism, Schizosaccharomyces pombe, small RNAs have been found 

to be associated with chromatin modifying complexes and are implicated in the 

delivery of chromatin modifying enzymes to chromatin (Verdel et al. 2004). Silencing 

of transposons and repetitive sequences in eukaryotes is also mediated by different 

types of non-coding small RNAs, microRNAs and siRNAs that regulate gene 
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expression at different levels, by regulating, for instance, promoter activity, mRNA 

processing and translational interruption (Schwab et al. 2006). siRNAs especially are 

implicated in a number of epigenetic processes in plants i.e. especially their role in 

de novo DNA methylation via the RNA directed DNA methylation (RdDM) pathway 

(Zhang and Zhu 2011). 

1.7. siRNAs directed DNA methylation in plants 

siRNA directed DNA methylation was first discovered in tobacco plants infected with 

viruses (Wassenegger et al. 1994). This work revealed that de novo DNA methylation 

occurs frequently in plants and can be induced by the expression of double stranded 

RNA originating from inverted hairpins. The discovery of RNA interference allowed 

the engineering of plants lacking DNA methylation that could be propagated over 

multiple generations (Teixeira et al. 2009). It is now known that sequence specific 

siRNAs in plants can guide DNA methyltransferases to deposit new DNA methylation 

(Lu 2005; Zilberman et al. 2007) via RdDM. RdDM consists of three distinct 

components: (i) siRNA biogenesis (ii) production of scaffold RNA (iii) formation of 

guiding complex by the interplay of scaffold RNA and ARGONAUTE proteins (Kanhere 

et al. 2010). To achieve this, plants have evolved two atypical DNA polymerases, 

named Pol IV and Pol V, which are implicated in the formation of long non-coding 

RNAs to initiate siRNA biogenesis (Lahmy et al. 2010) and later direct the deposition 

of DNA methylation (Matzke and Mosher 2014).  

The biogenesis of siRNA is initiated by a single stranded RNA (ssRNA) that is 

converted into double stranded RNA (dsRNA) by a RNA DEPENDENT DNA 

POLYMERASE 2 (RDR2) and later, in 24-nucleotide siRNAs by the activity of a DICER 

LIKE 3 (DCL3) protein (Law and Jacobsen 2010). These siRNAs are loaded onto 
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Argonaut 4 (AGO4) and bind to scaffold RNA (generated by the activity of Pol V), via 

sequence complementarity to form a guiding complex (Figure 1.5). The complex 

ultimately mediates de novo methylation by recruiting DNA methyltransferase to the 

target sequence (Figure 1.5) (Zhang and Zhu 2011).  

 

Figure 1.5. Overview of RNA directed DNA methylation (RdDM) pathway in plants. 
Pol IV generates single stranded RNA (ssRNA) and RDR2 converts ssRNA to double- 

stranded RNAs (dsRNA). These dsRNAs are diced by DCL3 into 24 nt siRNAs. Later 

siRNAs are loaded into AGO4 and are guided by PolV transcripts to the target DNA 

sequence where methyltransferases like DRM2 carries out methylation of Cytosine. 

(Image adapted from Blevins et al. 2015) 
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1.8. Chromatin accessibility and gene regulation  

The conformation of chromatin is responsible for highly packaged DNA being able to 

fit into the nucleus of a microscopic cell. This high order chromatin organisation 

offers a physical barrier to DNA access by various transcription factors throughout 

the cell cycle (Biswas et al. 2011) 

In-depth structural analysis has revealed that the nucleosome, which is the smallest 

subunit of chromatin, comprises 8 core histones (2 of each histone H2A, H2B, H3 and 

H4) wrapped with 147bp of DNA and with linker protein H1 sitting at the interface 

of the core proteins and the DNA entry and exit points (Van Holde et al. 1974). The 

core histones are globular in nature but have unstructured tails which are subjected 

to a variety of post translational modifications, mainly at their N terminal extensions 

(See 1.3.2) (Kouzarides 2007). These modifications include methylation, acetylation 

and phosphorylation, which play a key role in genome accessibility (Strahl and Allis 

2000). The combined effect of these modifications along with DNA methylation, 

chromatin re-modelling and the presence of histone variants leads to more or less 

compact chromatin (Figure 3.1), resulting in differential gene expression (Clapier and 

Cairns 2009). 

 Less compact or open chromatin harbours actively transcribing genes which have 

distinct nucleosome depleted regions (NDRs) near transcription start sites, thus 

allowing various transcription factors to bind and initiate transcription (Yuan et al. 

2005). Dynamic permissible chromatin is also characterised by the presence of 

regulatory regions, which carry binding sites for various regulatory proteins. Upon 

interaction with those regulatory proteins, chromatin is remodelled and displays 
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higher accessibility to various transcription factors and Pol II, resulting in up-

regulation of certain genes (Figure 1.6) (Klemm et al. 2019).  

The process that maintains dynamic chromatin is termed as ‘nucleosome turnover’ 

and this allows removal and the replacement of histones (Guillemette et al. 2005).  

Nucleosome turnover is rapid in nucleosome present closer to the promoter regions, 

in gene bodies and in regulatory regions (Deal et al. 2010). 

 

 Heterochromatin   >>>      Euchromatin     >>>          Transcription  

 
 
Figure 1.6: Nucleosome turnover leads to the formation of highly dynamic 
chromatin. Various chromatin remodelling factors such as INO80 and SWR1 
complexes in plants (Wang et al. 2019), lead to decompaction of inaccessible 
chromatin through a process called nucleosome turnover. This leads to exclusion of 
older histones with newer ones, as a result, chromatin is remodelled and displays 
higher accessibility for Pol II and various transcription factors, resulting in up 
regulation of certain genes (Image adapted from Klemm et al. 2019)  
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1.9. Measuring nucleosome occupancy and regulatory landscape  
 
Mapping of nucleosome occupancy or positioning indicates where nucleosomes are 

present in relation to the DNA sequence within the genome. The organisation of 

nucleosomes across the whole genome is not uniform and NDRs often harbour 

binding sites for transcription factors, RNA polymerases or other remodelling 

complexes, to regulate DNA access. Moreover, various studies have revealed that 

regulatory elements, such as enhancers, work independently of the distance of their 

target genes and their promoters. Therefore enhancers can be present several base 

pairs upstream or downstream, in intergenic regions, or even within the gene body 

(Zhu et al. 2015). Generally, the algorithms predict TF binding DNA motifs by 

searching shared cis-regulatory elements. These over-represented sequences are 

used to build position-specific weight matrix (PSWM) that specifies bases for each 

position in the matrix to identify conserved motifs by using statistical methods such 

as Gibbs sampling and expectation maximisation (Karnik and Beer 2015).  

 However, this makes it very challenging to identify non-conventional regulatory 

elements because these algorithms rely on specific DNA sequences (transcription 

binding sites) and distal regulatory elements may not fall within the parameters of 

identification algorithms (Maher et al. 2018). Therefore, it is important to couple 

nucleosome occupancy measurements with the available computational methods to 

make a robust mechanism of identification of regulatory landscape.  

Currently, there are a number of methods available to measure chromatin 

accessibility. These include but are not limited to: DNase I Hypersensitive sites 

sequencing (DNase-seq), Micrococcal Nuclease sequencing (MNase-seq), Assay 
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for Transposase-Accessible Chromatin sequencing (ATAC-seq) and Nucleosome 

Occupancy and Methylome sequencing (NOMe-seq) 

1.9.1.  DNase I Hypersensitive sites Sequencing (DNase-seq) 

Deoxyribonuclease I (DNase I) is an endonuclease encoded by human gene DNASE1 

that non-specifically cuts DNA on nucleosome depleted regions, also known as 

DNase 1 hypersensitive sites. Despite a lot of variation in in DNase-seq applications, 

this is a powerful method to study chromatin accessibility at the whole-genome 

scale. Current work flow which has been adapted from Boyles et al, (2008), involves 

DNase 1 treatment of genomic DNA followed by short read sequencing (Figure 1.7A). 

The genome wide nucleosome occupancy measurements have revealed that only a 

small minority of DHSs to be found in proximal promoter regions i.e the promoter 

itself and the transcription start sites (TSS). The majority (over 80%) of the accessible 

regions have been found in distal regions (Thurman et al. 2012). The method 

however, requires exceptionally large number of nuclei (1-50 million cells) and due 

to the requirement of multiple purification steps, DNA loss can occur, limiting its 

sensitivity (Lu et al. 2016a) 

1.9.2. Micrococcal Nuclease Sequencing (MNase-seq) 
 
Micrococcal nuclease (MNase) was the first DNA digestion enzyme used to study 

accessible chromatin and was initially isolated in the 1960s from Staphylococcus 

aureus (Heins et al. 1967). Nucleosome depleted DNA is sensitive to MNase 

digestion, in contrast to Nucleosome associated DNA, which makes it suitable to 

carry out genome wide nucleosome occupancy profiling (Pajoro A. et al. 2018). 

MNase acts as both exonuclease and endonuclease which has the ability to make a 

single stranded break followed by a double stranded break if the DNA is not 
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protected by the nucleosome or other DNA binding proteins (Heins et al. 1967). Like 

DNAse-seq, this method involves digestion of DNA with micrococcal nuclease 

coupled with high throughput sequencing, which can be analysed to reveal NDRs on 

a whole genome level (Figure 1.7B). MNase-seq generated reads have been found 

to be highly enriched at active regulatory regions i.e TSS, and proximal promoters 

but not at the 3’ end of active genes or within gene bodies (Mieczkowski et al. 2016). 

This method also requires to have large number of cell nuclei (1-10 million) and its 

aggressive nuclease activity can lead to problems with the optimisation of digestion 

time and conditions (Chereji et al. 2019). 

1.9.3. Assay for Transposase-Accessible Chromatin Sequencing (ATAC-seq) 
 
MNase-seq and DNase-seq are time consuming, require sensitive enzymatic 

treatment, and pose a challenge of complicated sample preparations (Tsompana et 

al. 2104). Both methods also require millions of cells for nuclei isolation, which poses 

challenges such as heterogenicity of input material, meaning that some cell types 

which are rare will fail to meet the requirement of minimum input material for 

chromatin mapping.  

A gold standard method to map genome accessibility, that addresses all of the above 

problems is an assay of transposase accessible chromatin (ATAC-seq) which employs 

an enzyme called hyperactive Tn5 transposase. Tn5 transposase is preloaded with 

sequencing adapters and can simultaneously cut DNA and ligate adapters to the 

fragmented DNA, a process called tagmentation, followed by next generation 

sequencing (Figure 1.7C) (Buenrostro et al. 2015). The method requires an average 

sample size of 50,000 cells in comparison to a million cells required for the other two 
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previously discussed methods. ATAC-seq works in different cell types and species 

and is also becoming popular in single cell analysis (Buenrostro et al. 2015).  

 1.9.4. Nucleosome Occupancy and Methylome Sequencing (NOMe-seq) 

NOMe-seq is a unique assay which is different to the above-mentioned methods in 

that it does not involve any digestion or breakage of DNA fragments. This technique 

employs a viral methyltransferase M.CViPI that can methylate GpC motifs 

throughout the whole genome. MCViPI induces methylation, and when coupled with 

bisulfite sequencing, reveals the methylation status of the genome, which indicates 

the location of accessible sites as determined by the methylation status of GpC 

motifs (Figure 1.7D) (Kelly et al. 2012). 

 This method offers many advantages over other methods as NOMe-seq can identify 

nucleosome occupancy and the epigenetic state of the genome simultaneously. It 

requires fewer cells and is suitable for single cell chromatin analysis (Pott 2017), and 

is much less time consuming than other methods(Lay et al. 2018). However, the 

biggest disadvantage of NOMe-seq, which prevents its effective application in plants, 

is the requirement to isolate nuclei prior to enzymatic treatment. Due to the 

presence of cell wall, plant tissue poses a challenge for nuclei isolation. Therefore, it 

is important to devise new methods for chromatin accessibility in plant tissues. 
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Figure 1.7: Various methods to study chromatin accessibility. (A) DNase-seq involves 
DNase 1 treatment of genomic DNA followed by short read sequencing (B) MNase seq 
requires digestion of DNA with micrococcal nuclease coupled with high throughput 
sequencing to obtain lots of short sequence reads which can be analysed to determine 
chromatin accessibility. (C) ATAC-seq employs a hyperactive Tn5 transposase that can 
simultaneously cut DNA and ligate adapters to the fragmented DNA- a process called 
tagmentation, which is followed by next generation sequencing. (D) NOMe-seq relies on a 
methyltransferase M.CViPI to methylate GpC motifs throughout the genome followed by 
bisulfite sequencing to reveal methylation profile and accessible chromatin simultaneously 
(Image adapted from Klemm et al. 2019) 
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Because of the current limitations of the available methodologies to study chromatin 

function, it can be hypothesised that there are many distal regulatory elements yet 

to be discovered and functionally characterised in plants.  

1.10. Project aims 

The aim of this thesis is to develop a method based on NOMe-seq to effectively map 

chromatin accessibility in plants. Furthermore, using this technique in A. thaliana, it 

would enable the identification and functional characterisation of known and novel 

long-range regulatory sequences, and to determine how these regions are 

influenced by epigenetic modification. Collectively, this work will shed light on the 

complex regulatory landscape of plant genomes 
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2. Materials and methods 
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2.1. Plant lines used in the study 

For chromatin accessibility analysis, we generated ß-estradiol inducible transgenic 

lines for the controlled ectopic expression of MCViPI (M.CViPI-pMDC7-OLE1). To 

study role of the distal regulatory region in gene regulation, two hypermethylated 

lines, MeC_DRE-NAC82 (Me_DRE-NAC82-pJaw-OLE1) and MeC_DRE-HRGP1 

(Me_DRE-HRGP1-pJaw-OLE1) were generated from root origin (RO) clonal plants 

(Wibowo et al. 2016). To carry out functional characterisation of the HRGP1 gene, 

RNAi line, RNAi_HRGP1 (RNAi_HRGP1-pJaw-OLE1) was generated in the Col-0 

background. To assess the function of regulatory elements, apoloCR-1, apoloCR-2 and 

DRE_HRGP1CR-1 were generated using CRISPR/Cas9 system (Durr et al. 2018). 

2.2. Growth conditions   

A. thaliana plants were grown under long day conditions (16h/8h; day/night) with 

temperature set at 22oC. Wild type Col-0 plants for protoplast generation were 

grown under short day conditions (12h/12h; day/night). For in vitro grown plants, 

seeds were sterilised in with 10% of sodium hypochlorite (V/V) for 5 minutes and 

washed in sterile water thoroughly 3 times. Plant growth media was prepared with 

half-strength MS (Murashige and Skoog (MS) salts) (Duchefa Biochemie), 1% sucrose 

(Sigma-Aldrich) and 0.8% Phyto agar (Duchefa Biochemie).  

2.3. Bacterial strains and vectors  

Escherichia coli (DH5α) was used for replicating different vectors. To stably 

transform A. thaliana lines, we used A. tumefaciens strain GV3103. For stable 
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transformation of plant lines with an inverted RNAi hairpin, we used A. tumefaciens 

strain GV3101:: pMP90RK . Vectors used in study are as follows; 

     

Table 2.1 List of vectors used in the study  

Vector   Description  

pDONOR-207 A gateway entry vector (Figure 2.1) used for initial cloning 

of M.CViPI construct (Table 7.1) and hairpin sequences 

(Table 7.2)   

pEN-chimera-2x A donor vector for cloning two sgRNAs in one vector under 

the U6 promoter (Figure 7.1)  

pUbi-cas9 A vector expressing Cas9 under the Ubiquitin promoter. 

Used for protoplast transfection to test the efficiency of 

synthetic sgRNAs. (Figure 7.2)  

pJaw-OLE1 A binary vector, capable of expressing an inverted RNAi 

hairpin (Figure 7.3) 

pMDC7-OLE1 A binary vector with an XVE based inducible expression 

system using ß-estradiol (Figure 2.1B) 

pEC1-Cas9-OLE1 A binary vector expressing Cas9 under an egg cell specific 

promoter (EC1) (Figure 7.4) 
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2.4.  Generation of M.CViPI construct  

The M.CViPI sequence (Figure7.1) was codon optimised for Arabidopsis and 

chemically synthesized (Genesys). We added a nuclear localisation signal at the N-

terminal end of the protein and a HA-tag was added at the C terminus. The construct 

was cloned into pDNOR207 and then cloned into binary vector pMDC7-OLE1 by 

gateway recombination (Figure 2.1). 

 

Figure 2.1 Cloning of M.CViPI sequence into gateway vectors. A) Synthetically 
designed sequence, NLS-MCViP1-3HA was engineered into an entry vector, 
pDONOR207. B) The M.CViPI construct from the entry vector was engineered into 
binary vector pMDC7-OE1 by LR cloning. A synthetic constitutive promoter G10-90 
drives expression of a chimeric transcription factor, XVE, which consists of DNA-
binding domain of the bacterial repressor LexA (X), a transactivating domain of VP16 
(V) regulatory region of estrogen receptor (E). XVE controls activity of lexA promoter 
under influence of chemical induction by ß-estradiol. 
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2.5. Cloning reactions 

BP and LR cloning was carried out according to the manufacturer’s instructions 

(Invitrogen) and 5ul of reaction mixture was use to transform ccdB survival E.coli 

competent cells (TOP 10). 100-200ul of the transformed culture was plated on 

suitable selection media and incubated at 37oC overnight. Cloning of sgRNAs for 

CRISPR/Cas9 system was carried out by restriction cloning. Initially, to clone sgRNA 

‘A’, a gateway entry vector, pEN-2X-Chimera, was digested with restriction 

endonuclease BpiI (New England Biolabs) following manufacturer’s instructions. 

After confirmation of accurate insertion of the first sgRNA, the plasmid carrying 

sgRNA ‘A’ was digested with BsmBI followed by cloning of sgRNA ‘B’. 

2.6. E. coli transformation  

E. Coli strain DH5α was transformed by heat shock at 42oC for 45 seconds and then 

plated on agar medium containing suitable selection antibiotic left overnight at 37oC. 

The colonies growing on selection media were screened via colony PCR and 

sequencing. 

2.7. Plasmid DNA extraction 

Bacterial colonies were picked and inoculated into 5ml of LB overnight at 37 oC in 

suitable antibiotic selection. The bacterial cells were centrifuged at 5000g for 5 

minutes and plasmid DNA extraction was carried out using Qiaprep Spin Miniprep 

Kit (Qiagen) following the manufacturer’s manual. The plasmid DNA was stored at  

-20 oC for subsequent use. 

2.8. PCR amplification of DNA 

All PCR reactions were carried out in a MJ Research, PTC-225 Peltier thermal cycler. 

For genotyping of CRISPR deletions, 200ng of extracted DNA (in 2ul of TE buffer) was 
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used as a template. For colony PCR, multiple transformants from each construct 

were picked and re-suspended in 20ul of sterile water. 2ul from the mixture was 

used as DNA template in 25ul PCR mixture. PCR reaction mixture contained 0.15 

units of Kapa Taq (KAPA biosystems), 2.5ul 10X PCR buffer, 0.3ul of 10mM dNTP 

mixture and 1ul of 5uM of each primer. The programme was set at 95oC for 2 minutes 

initially for denaturation followed by 30 cycles at 95 oC for 30 seconds, 58oC for 30 

seconds and 72oC with varied extension time depending on the length of target 

sequence (1kb per minute) followed by a final extension at 72oC for 5 minutes. The 

amplified fragments were checked via gel electrophoresis.  

2.9. Transformation of A. tumefaciens 

Agrobacterium cells were transformed with the binary vector carrying DNA fragment 

of interest via electroporation. The procedure was performed in 0.1 cm cuvette at 

2.2 kV with a Bio-Rad micropulser. 40ul of electro-competent cells of A. tumefaciens 

GV3131 were mixed with the binary vector by gently tapping the tube. After 

electroporation transformed competent cells were transferred into low-salt liquid 

LB medium and left for 1 hour at 28oC. The cells were then spread on LB agar plates 

with suitable antibiotics and incubated at 28oC for 48 hours. 

2.10. Stable transformation of A. thaliana  

A single colony from transformed A. tumefaciens strain that carries each DNA 

construct in a binary vector was inoculated in 5ml of low salt LB containing 

appropriate antibiotics. The overnight culture was used to inoculate 500ml low-salt 

liquid culture with appropriate antibiotics and grown overnight at 28oC. Arabidopsis 

plants were transformed using the floral dip method described previously (Zhang et 

al. 2006). T0 seeds (RFP positive) were selected and grown to the T1 generation. The 
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subsequent lines that showed 3:1 RFP+ to non-RFP seeds were selected as likely lines 

to carry a single insertion of the construct and they were grown to the T2 generation. 

In the T2 progeny, homozygous lines (lines with 100% RFP+ seeds) were selected and 

propagated as stably expressing lines. 

2.11. Heritable phenotypic analysis in M.CViP1-1a 

Sterile M.CViPI-1a seeds were grown on ½ MS for 8 days. Seedlings were then 

transferred to ½ MS with 40uM ß-estradiol. The seedlings were grown for 4 days 

(termed as I1 seedlings) and transferred to soil. The seeds from I1 were grown to the 

I2 generation and phenotypically analysed. Seeds from the I2 progeny were grown to 

the I3 generation and phenotypically analysed. Selected plants from I2 were crossed 

with parental WT and the F1 generation was grown on soil for further phenotypic 

and molecular analysis. 

2.12. Genomic DNA extraction 

For genotyping of transgenic plants, high throughput DNA extraction was performed. 

Leaf samples of approximately 1cm2 were collected in a 96 well block with a 2mm 

diameter metal bead in each well. Samples were flash frozen and were ground at 18 

revolutions per second for I minute. Then the block was centrifuged to allow tissue 

to settle in the bottom of each well. 300ul of DNA extraction buffer (100 mM Tris-Cl, 

pH 8.0; 50 mM EDTA, pH 8.0; 500 mM NaCl; 10 mM β-mercaptoethanol) was added 

in each well using a multi-channel pipette. After adding 40ul of 10% SDS, samples 

were mixed by vortexing and incubated at 65oC for 20 minutes. Later, samples were 

then incubated on ice for 5 minutes before adding 100ul of 5M potassium acetate. 

Samples were further incubated for at least 20 minutes at ice. Samples were 

centrifuged at maximum speed for 20 minutes and 125 ul of supernatant was 
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transferred to a well in a fresh 96 well block. After adding 200ul of isopropanol, 

samples were incubated at -20 oC for at least 30 minutes. Samples were centrifuged 

at max speed for 15 minutes; isopropanol was removed and the pellet was washed 

with 70% ethanol. The DNA pellet was dried after removing 70% ethanol. Samples 

were resuspended in 100ul of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0 with 

20ug/ul RNAse A (Invitrogen, UK). 

For whole genome bisulfite sequencing, after ß-estradiol or mock treatment seedling 

root and leaf samples were collected from 20-30 seedlings at each treatment time. 

Root and leaf tissues were separated by cutting the seedlings in two at the lower 

part of the hypocotyl with a scalpel blade. The tissue samples were collected in 1.5ml 

Eppendorf tubes and are flash frozen in liquid nitrogen. DNA extraction was carried 

out using the Qiagen Plant DNeasy kit (Qiagen) and DNA was quantified using Qubit 

dsDNA HS assay kit (Invitrogen) 

2.13. RNA extraction  

Leaf tissue samples (50mg) were collected in 1.5ml Eppendorf tubes and flash frozen 

in liquid nitrogen and stored at -80oC. Frozen samples were ground with an electrical 

pulveriser. Total RNA was extracted using the RNeasy Plant Mini Kit (Qiagen) 

according to manufacturer’s instructions. Quantification of total RNA was done using 

NanoDrop (Thermo Scientific). The quality of total RNA was analysed using gel 

electrophoresis. 

2.14. qRT-PCR 

Total RNA was treated a with TURBO DNA-free Kit (Invitrogen) according to 

manufacturer’s instructions. 1ug of DNase treated RNA was used for cDNA synthesis. 
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cDNA was synthesised using the RevertAid First Strand cDNA Synthesis Kit (Thermo 

Scientific) according to manufacturer’s instructions. For qRT-PCR, analysis was 

performed using a MyiQ System (BIO-RAD). qPCR primers were designed using the 

NCBI primer blast tool (Table 7.2) qPCR mixture was prepared to a final volume of 

12.5μl containing 2.5μl of cDNA template, 0.2μM of each primer and 6.25μl of 

2×MESA Blue qPCR MasterMix (Eurogentec Headquarters). All reactions were run in 

three technical replicates and a negative control was also run without DNA template. 

The thermal cycler programme included 95°C for 10 min then 40 cycles of 95°C for 

10s, 60°C for 15s, and 72°C for 15s. A melting curve was calculated in the range of 

60–95°C with a temperature increase of 0.01°C/s. Initial data BIORAD MyiQ System 

were exported in an excel file. Analysis of absolute expression of M.CViPI was 

performed according to according to the ΔCT method while relative expression 

analysis of NAC82 was performed with ΔΔCT method (Schmittgen and Livak 2008) 

using PP2AA3 (At1g13320) as a house keeping gene for data normalisation.  

2.15. Chromatin accessibility assay using iNOMe-seq 

2.15.1. ß-estradiol induction of seedlings  

Seedlings of MCViPI transgenic and control plants were subjected to ß-estradiol 

induction and mock treatment for 6, 12 and 24 hours, the stock of ß-estradiol was 

10mM in DMSO, with mock being DMSO in water. 8 days old seedlings were 

transferred to a Whatman paper soaked wet with a film, so that the plants were in 

contact with the solution and to avoid drought stress. Approximately 30 seedlings 

were placed on one plate in two rows. Plates were wrapped with cling film before 

being moved to a growth cabinet.  
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2.15.2. BSeq library preparation  

Approximately 100ng of genomic DNA in total 100ul volume was sonicated using a 

Bioruptor (Diagenode Inc.) with 30sec ON and 30 second OFF at a “low” settings to 

generate 350bp DNA fragments. The libraries were generated using the Illumina 

TruSeq Nano kit (Illumina, CA, U.S.A) according to the manufacturer’s manual. Size-

selected and adapter-ligated DNA was subjected to bisulfite treatment using an 

Epitect Plus DNA Bisulfite Conversion Kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s manual. PCR amplification was performed using Kapa Hifi Uracil+ 

DNA polymerase (Kapa Biosystem, MA, U.S.A) according to the manufacturer’s 

instructions. To check size distribution of DNA fragments at each stage especially 

before library preparation of sonicated samples as well as after final library 

preparation, selected samples were run on bioanalyzer (Agilent 2100) for size 

distribution analysis after each stage.  

2.15.3. Bisulfite sequencing  

Indexed bisulfite treated libraries were sequenced with 2 × 150-bp paired-end reads 

on an Illumina HiSeq2000 instrument. Maximum of 16 different indexed libraries 

were pooled in a single lane run. The Illumina Real Time Analysis 1.13.48. software 

was used for image analysis and to extract sequence data.  

2.15.4. Processing of iNOMe data and quality control   

Before in depth analysis of regions identified as differentially methylated (DMRs), 

the quality of raw iNOMe data was analysed using FastQC (v0.11.5) (Andrews 2010). 

Raw reads were trimmed using Trimmomatic v0.36 (Bolger et al. 2014) to remove 
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adapter sequences and poor quality reads. Using Bismark v0.15.0 (Krueger and 

Andrews 2011) and bowtie2 v2.2.6 (Langmead and Salzberg 2012), trimmed reads 

were aligned to the reference genome with parameters ‘-N 1 -L 20 -X 1000 –score 

min L,0-0.6’.	 

2.16. iNOMe-seq VS ATAC-seq Analysis  

 
A bins method was used to compute Differentially Methylated Regions (DMRs). 

Initially, DMRs from iNOMe-seq data were computed with varying methylation 

differences (10-100%) and bin sizes (50-5000 bp). After selecting optimal bin size and 

methylation difference, we computed DMRs based on the methylation difference 

between control and the test samples that is statistically significant with an adjusted 

P-value ≤ 0.05.  

To compare these DMRs with ATAC-seq identified accessible regions, precision, 

recall and F score was calculated. Each set of the identified DMRs was compared to 

the ATAC-seq accessible regions and for each of them the proportion of true 

positives (TP - regions detected by both NOME- seq and ATAC-seq), false positives 

(FP - regions detected only by NOME-seq) and false negatives (FN - regions detected 

only by ATAC-seq) was calculated. We assumed that the regions detected by ATAC-

seq were true positives. Using these calculated proportions, we computed the recall 

(TP/(TP+FN)), precision (TP/(TP+FP)) and F-score (2T P/ (2T P + F P + F N)). Finally, we 

selected the methylation difference threshold and bin size that lead to the highest 

F-score. Based on calculation the precision, recall and F-score, the value of 30% for 

methylation difference and 700 bp were found to be the optimum bin size for the 

comparison of accessible chromatin regions by both methods. To compare 
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accessible regions between iNOMe-seq and ATAC-seq, Venn diagrams were then 

created using the draw.pairwise.venn function from the VennDiagram package 

v1.6.19 (Chen and and Boutros 2011).  

Differentially methylated regions/Accessible regions identified by NOME-seq were 

compared to accessible open chromatin identified by ATAC-seq. Any difference in 

accessibility observed in control and induced samples around the targeted features 

was compared to accessibility of these features by ATAC-seq data. In order to carry 

out iNOMe signal detection around targeted features, the proportion of methylation 

percentage at each individual cytosine was used to compute a moving average with 

a window size of 500 bp for all samples. The moving averages were then used to 

determine the methylation difference between control and treatment samples. The 

difference was calculated by subtracting the moving average of control samples from 

the moving average of treatment samples.  

2.17. Calculation of genome wide distribution of accessible chromatin regions 

As iNOMe-seq detects a larger amount of accessible DNA than ATAC-seq, the 

distribution of iNOMe peaks throughout the genome was checked. To do this the R 

package ChIPpeakAnno (Zhu, 2013; Zhu et al., 2010) was used to annotate DMRs and 

to identify the closest gene associated with each differentially methylated region. 

This package also calculated the distance between genes and DMRs; these distances 

were used to determine the distribution of iNOMe peaks around genes. By 

comparing these data to various features, the iNOMe peaks were separated into 

different categories, these categories included genes, transposable elements, 

upstream, downstream and intergenic regions. 
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2.18. Hypermethylation of targeted genomic regions 

For the targeted hypermethylation of genomic regions (Table 7.2), we used a RNAi 

haipin vector (Figure 7.3). This vector can be used to generate short inverted repeat 

hairpins directing de novo methylation to the targeted genomic sequences via the 

RdDM pathway (Law et al. 2013). 

2.19. Designing guide RNAs for deletion of DMRs via CRISPR/Cas9 

To design guide RNAs (protospacer), we used the online tool Breaking Cas 

(http://bioinfogp.cnb.csic.es/tools/breakingcas/. A 20nt protospacer sequence 5’ of 

NGG was selected, on each side of the region targeted for the deletion (DMR), to 

generate a sequence specific sgRNA. A reverse complementary sequence for each of 

the protospacer was also designed to generate double stranded sgRNAs after 

annealing opposite strands. The sgRNAs were later cloned into pEN-2X-Chimera, to 

enable both sgRNAs to be expressed under individual U6 promoter (Figure 7.1). For 

each targeted region, two pairs of gRNAs were designed on each flanking side. The 

sgRNA on 5’ of the target region was named as ‘A’ and the one on the 3’ of the target 

region was named as ‘B’ sgRNA. 

2.20. Protoplast isolation  

Protoplast isolation was carried out according to protocol published by Yoo et al. 

(Yoo et al. 2007). A. thaliana, Col-0 plants were grown for four weeks at 20-22oC 

under short day conditions (12-hour light). Well-expanded leaves were picked and 

sliced into 1mm wide strips. The finely cut leaf strips were transferred into 5ml of 

enzyme solution (20mM MES PH 5.7,0.4M mannitol,20mM KCl,1.5% (w/v) cellulose 

R10, 0.4%(w/v) macerozyme R10, 10mMCaCl2 and 0.1% BSA) in a petri dish, with 

vacuum infiltration of leaf strips twice for 5 min. The leaf material was left at 25oC 
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for 2.5 hours. Next, the tissue was filtered through a 70 µm nylon cell strainer and 

rinsed with the enzyme/protoplast solution with an equal volume of W5 solution 

(2mM MES PH5.7, 154mM NaCl, 125mM CaCl2, 5mM KCl). The flow through was 

centrifuged at 100g for 1-2 minutes and the pellet was washed twice with W5 

solution. The cells were resuspended in 5 ml of MMG solution (4 mM MES pH 5.7, 

0.4 M mannitol and 15 mM MgCl2) and counted using a Fuchs-Rosenthal 

haemocytometer. The volume was adjusted by adding MMG at 400,000 

protoplasts/ml and cells were keep on ice.   

2.21. Transfection of protoplasts and determination of the efficiency of sgRNAs 

Approximately 80,000 cells were used for transfection with sgRNA carrying plasmid 

(pEN-2x-chimera) and a CRISPR/Cas9 (pUbi-Cas9) vector (Figure 7.1, 7.2). For 200ul 

of leaf protoplasts, 8ug of each of the plasmid was added. A total of 216ul of freshly 

prepared PEG solution (40% v/w PEG4000, 0.2M mannitol, 100mM CaCl2) was added 

to each reaction and mixed gently by flicking the bottom of the tube with fingertips. 

Protoplasts were then incubated at room temperature for 30 min for transfection. 

500ul of W5 was added to stop the transfection process. The samples were mixed 

gently and centrifuged at 100g for two min. The supernatant was removed and 500ul 

of WI solution (4mM MES PH 5.7, 0.5 M Mannitol, 20mM KCl) was added. 

Transfected protoplasts were left in the growth cabinet at 21 oC for 36-48 hours in 

long day conditions. 

2.22. Selection of efficient sgRNAs and stable transformation of plants  

Transfected protoplasts were used for genomic DNA extraction. Confirmation of the 

deletion was carried out by PCR using flanking oligos (Table 7.3). The sgRNA 

combinations, with higher efficiency were cloned into pEC1-Cas9-OLE1 by Gateway. 
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A tumefaciens mediated transformation of A. thaliana was carried out by floral 

dipping (Zhang et al. 2006). 

2.23.  Identification of heritable deletions  

We selected T0 seeds expressing RFP and screened individual plants by PCR to detect 

somatic deletions. To isolate heritable deletions, we grew T2 plants that did not carry 

the Cas9 construct (RFP negative) and screened for deletions by PCR. Those plants 

were propagated to maturity and T3 seeds were used to identify homozygous 

deletions (Figure 7.5). 
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3. In vivo nucleosome occupancy and methylome sequencing (iNOMe-seq) 
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3.1. Introduction 
 

Eukaryotes have highly compact chromatin organisation, owing to the presence of 

highly conserved proteins called histones. DNA wrapped around 4 pairs of histones 

makes a basic structural unit of chromatin, called the nucleosome (Luger et al. 1997). 

Nucleosomes, which seem to be present unevenly throughout the genome are in 

fact, not located randomly, instead their position is determined by the DNA 

sequence and other chromatin modifications (Chereji and Clark 2018). 

Accessibly of genomic DNA is altered due to its packaging into nucleosomes meaning 

that many DNA binding proteins are prevented from reaching targeted DNA 

sequences. On the other hand many distal sequences can interact together due to 

the optimal positioning of distal nucleosomes. (Anderson and Widom 2000).  

The significance of nucleosome occupancy and positioning in eukaryotic gene 

regulation has been illustrated by many studies. It has been established that the 

chromatin at promoters and known transcription binding sites was more accessible 

with DNase treatment (Hsiung et al. 2015). In another study, in the model yeast 

Saccharomyces cerevisiae, it was demonstrated that active regulatory genomic 

regions are depleted of nucleosomes at the whole genome level and especially 

during mitotic growth of the organism. Moreover, nucleosome occupancy was 

greatly reduced at active gene promoters (Lee et al. 2004). Other findings have also 

confirmed that nucleosome can be moved, displaced or even lost during active gene 

expression (Guillemette et al. 2005; Schones et al. 2008a), indicating that 
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nucleosome occupancy is a dynamic feature and it goes hand in hand with other 

chromatin modifications.  

To understand the relationship between the physical and functional genome, it is 

important to discover regulatory landscapes in relation to chromatin accessibility. 

Various regulatory elements such as proximal promoters, enhancers and other long 

distance regulatory elements possess binding sites for various transcription factors 

and other regulatory proteins (Bell et al. 2011). These binding sites are characterised 

by nucleosome-depleted regions flanked by a phased nucleosome on either side 

(Schones et al. 2008b). 

Currently, there are various methods available to map nucleosome occupancy and 

subsequently identify accessible genomic regions. These methods include DNase-

seq, MNase-seq, ATAC-seq and NOMe-seq, although other variants of some of these 

methods also exist. The first two methods involve intense enzyme titrations and 

require incredibly large amount nuclei (~ 1,000,000 cells) while ATAC-seq, which is 

currently a gold standard method requires a fewer number of cells (~ 50,000) to 

measure chromatin accessibility is also a most widely used method in eukaryotes 

(Tsompana et al. 2104). ATAC-seq employs a Tn5 a hyperactive transposase to cut 

and simultaneously ligate adaptors to accessible DNA regions.  

The technique is relatively robust and offers many advantages over other 

techniques, however, there are certain limitations to the applicability of this 

technique to uncover regulatory regions in comparatively lower accessibility regions 

due to its inherent bias toward accessible active promotor sites such as TSS and other 

AT rich regions (Meyer and Liu 2014).  
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The Nucleosome Occupancy and Methylome sequencing (NOMe-seq) technique is a 

unique method to measure chromatin accessibility as well as its relationship with 

the epigenetic state of the genome. The technique employs M.CViPI, a 

methyltransferase from Chlorella virus that can methylate GpCs in accessible 

chromatin. When coupled with next generation sequencing, it can simultaneously 

reveal methylation profiles and chromatin accessibility (Kelly et al. 2012).  

The M.CViPI methyltransferase encoded by Paramecium bursaria Chlorella virus (Xu 

et al. 1998) is a nucleic acid methyltransferases which use s-adenosyl methionine 

(SAM) as a methyl donor to methylate a substrate after transferring methyl group 

(CH3) to the substrate (Martin and McMillan 2002). M.CViPI has the potential to 

methylate all available GpC dinucleotides (present in high abundance in the 

eukaryotic genome), creating an unbiased nucleosome occupancy footprint, which 

makes it a powerful, high-resolution nucleosome positioning identification method 

(Pott 2017).  

The current method published by Kelly et al (2012) works by treating isolated nuclei 

with M.CViPI GpC methyltransferase to methylate GpCs present in nucleosome-free 

regions followed by bisulfite sequencing to reveal chromatin accessibility. Bisulfite 

sequencing involves treatment of DNA with bisulfite to convert all non-methylated 

cytosines to uracil. Uracil residues are then recognised as thymine during PCR 

amplification and are thus distinguished from methylated cytosines (Li and Tollefsbol 

2011). M.CViPI induced methylation is distinguished from endogenous methylation 

profile when compared to non-treated samples (Figure 3.1).  
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Figure 3.1: NOMe-seq can simultaneously reveal nucleosome occupancy and 
methylation profile. NOMe-seq coupled with bisulfite sequencing reveals whole 
genome methylation profile and nucleosome position, which can be confirmed by 
identifying M.CViPI inaccessible sites through their distinct methylation profiles.  
 
 
Since the technique does not involve having to fragment DNA either by enzyme 

digestion or transposon insertion, there is less bias towards AT rich regions, and thus 

it can be relatively straightforward method to study chromatin accessibility.  

NOMe-seq has been extensively used in mammalian cells and its employment has 

offered a valuable insight into complex tissues as well single cells chromatin profiling 

(Pott 2017).  

In plants, however, there are certain barriers to the effective application of NOMe-

seq. Plant tissues pose a huge challenge for effective M.CViP I treatment due to their 

rigid cell walls, making it problematic to carry out cell nuclei sorting without 

extensive cell preparation. In mammals, DNA methylation occurs only in CG 

dinucleotide contexts whereas in plans methylation occurs in three different 
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contexts i.e. CG, CHG, and CHH. Due to the presence of complex methylation 

contexts, ATAC-seq has been a preferred method by plant researchers to avoid 

confusion in plant methylome DNA analysis. ATAC-seq is, however, quite challenging 

to scale down sample input while single cell bisulfite sequencing is a widely used 

technique (Smallwood et al. 2014). It is imperative to devise an improved strategy 

for NOMe-seq specifically applied for studying chromatin accessibility in plants. 

Effective application of this method in plants will not only give information about the 

chromatin accessibility and methylation profile of the plant genome but also help 

reveal nucleosome position across the whole genome. Moreover, the method needs 

to be scalable and be effective in enabling of cell specific chromatin accessibility and 

methylation profile in different physical environmental conditions.  

3.1.1. Chapter aims 
 
This chapter described the development of a new methodology- in vivo NOMe-seq 

(iNOMe-seq) to investigate the regulatory DNA landscape in plants. This technique 

is based on the capacity of MCViPI to methylate open chromatin thus enabling the 

combined analysis of accessible chromatin and DNA methylation to reveal the 

regulatory regions of plant genomes. 
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3.2. Results  
 
3.2.1. Experimental design  
 
To study the chromatin regulatory landscape of different Arabidopsis tissues, we 

generated chemically inducible M.CViPI transgenic system. The controlled 

expression of methyltransferase M.CViPI enables the labelling of GpC motifs present 

in regions of the chromatin that are accessible and open to transcription. The 

genomic DNA was analysed by next generation bisulfite sequencing (Bseq) to identify 

the methylation profile compare this between induced and control samples. The 

genomic regions with open chromatin conformation were expected to show a 

distinct methylation profile when compared to control (Figure 3.2). 

 
 
Figure 3.2: Experimental design to identify open regions of chromatin in A. thaliana 
by iNOMe-seq. The transgenic plants were subjected to MCViPI induction for certain 
length of time to mark open chromatin followed by BSeq to analysis. 
 
 
 
 
 
 
 

M.CViPI 

Control 
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3.2.2. Construction of inducible M.CViPI transgenic system 
 
The M.CViPI transgene was cloned in a strictly regulated chemical inducible system 

that uses the chimeric transcription activator XVE (Zuo et al. 2000). XVE is a fusion 

gene that encodes a DNA binding domain of a bacterial repressor LexA (X) (Brent and 

& Ptashne 1980), the acidic transactivating domain VP16(V) (Cress et al. 1991) and 

the carboxyl region of human oestrogen receptor(E). Chemically inducible 

expression systems are commonly used to tightly regulate the expression of proteins 

that cause toxicity when expressed constitutively (Greene et al. 1986). XVE is 

normally expressed under a strong constitutive promoter (Ishige et al. 1999) and 

binds to lexA operator in presence of ß-estradiol thus resulting in transcriptional 

activation of the M.CViPI methyltransferase (Figure 3.3).  

 

 
 
Figure 3.3: Controlled expression of M.CViPI using XVE: a chemically inducible 
system. A synthetic constitutive promoter G10-90 drives expression of a chimeric 
transcription factor, XVE (LexA-VP16-ER). XVE controls activity of the lexA promoter 
under influence of chemical induction by ß-estradiol. In absence of ß-estradiol, XVE 
cannot bind to lexA and M.CViP expression cannot be initiated. When ß-estradiol 
binds to XVE, it can activate lexA to promote M.CViPI expression. 
 
  
 
 
                                                                                           

Methyltransferase a chimeric TF 
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3.2.3. Testing Expression of M.CViPI transgenic line  
 
The inducible M.CViPI transgenic system (Figure 3.3) was engineered into a binary 

vector with seed specific RFP reporter (pMDC7-OLE1) and Arabidopsis transgenic 

lines were generated. To identify Arabidopsis M.CViPI transgenic lines suitable for 

analysis, we selected 20 T0 transgenic seeds (RFP positive) and propagated these to 

the T1 generation. Seeds from T1 generation were screened for single copy 

Mendelian segregation ratio (3:1 RFP+ to non-RFP) and 4 independent transgenic 

lines that were further propagated to generate homozygous lines (100% RFP seeds) 

(Figure 3.4).  

To select a responsive and tightly controlled M.CViPI line, homozygous lines were 

subjected to prolonged ß-estradiol induction (two weeks) and monitored for growth 

and developmental differences to control plants. Plants were grown in a growth 

chamber for two weeks. WT lines were developmentally normal in presence or the 

absence of ß-estradiol (Figure 3.5). The M.CViPI transgenic lines that showed 

pleiotropic growth and developmental abnormalities (Figure 3.5) in the presence of 

ß-estradiol but were normal in absence of ß-estradiol, were selected for a molecular 

analysis.  

To identify the most responsive M.CViPI line, we selected 4 independent 

homozygous lines (M.CViPI-1a, M.CViPI-2a, M.CViPI-5a and M.CViPI-10a) and 

analysed changes in DNA methylation after ß-estradiol induction. The selected lines 

were grown on media supplemented with 40uM ß-estradiol for 48 hours and BSeq 

analysis was performed. After initial methylation analysis, we found a line (M.CViPI-

1a) that showed the highest level of CpG methylation (35.9%) compared to 
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endogenous CpG methylation (9.1%) observed in control plants. Other lines were 

also responsive to ß-estradiol treatment and showed high CpG methylation levels 

(25-30%) (Figure 3.6). Since, M.CViPI-1a exhibited maximum change in % CpG 

methylation, we selected this line for the expression analysis and optimisation of 

induction time. 

 

 

  

Figure 3.4: Strategy for the generation and selection of M.CViPI transgenic lines. 
The M.CViPI transgene was cloned under XVE inducible system. Transgenic plants 
were selected with RFP seed selection through T1 and T2 generation. Transgenic lines 
were tested for MCViPI expression by ß-estradiol induced phenotypic analysis 
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(viability assay) and methylation assay to select a tightly controlled and highly 
responsive T3 line. 
 
 
 
 
 
 

 
Figure 3.5 Identification of tightly controlled ß-estradiol responsive M.CViPI 
transgenic line through viability assay. Seeds from multiple homozygous lines were 
grown on media prepared with final concentration of 40uM ß-estradiol and ½ MS 

(only 
!
"MS for control). WT lines showed no growth or developmental abnormalities 

in presence or absence of ß-estradiol. M.CViPI transgenic lines, which exhibited 
severe growth abnormalities in presence of ß-estradiol (M.CViPI-1a only shown here) 

and showed normal development in 
!
"MS were selected for initial methylome 

analysis. 
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Figure 3.6: Percentage CpG methylation in M.CViPI lines after 48h ß-estradiol 
induction. 4 independent M.CViPI lines were subjected to methylome analysis to 
test %methylation after ß-estradiol induction for 48 hours. Root tissue was collected 
after 40um ß-estradiol treatment and a methylation assay was performed. MCViPI-
1a showed highest % of methylation increase hence it was selected for iNOMe-seq 
analysis.  
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3.2.4. Expression Analysis of the M.CViPI-1a 
 
After identification of MCViPI transgenic lines through phenotypic and methylation 

analysis, we selected M.CViPI-1a for iNOMe-seq analysis. To determine an optimal 

induction time, we carried out an expression analysis of MCViPI expression by qRT-

PCR. We induced M.CViPI expression for various lengths of time (0h, 6h, 9h, 12h, 

24h, 36h and 48h) and compared the absolute expression of M.CViPI to mock treated 

plants. A significant increase in expression was observed at 3h and 6h (p-value ≤	

0.05), however no substantial change in M.CViPI expression was observed between 

6h and 12h. M.CViPI expression then gradually increased at 24h, 36h and 48h (Figure 

3.7). M.CViPI expression in WT and MCViPI mock (0h) treatment remained 

undetectable (Figure 3.7). This indicated that M.CViPI expression in this line is tightly 

controlled (does not show any expression in the absence of ß-estradiol) and rapidly 

activated after chemical induction.  
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Figure 3.7: M.CViPI expression at different induction times. The qRT-PCR was done 
to quantify the absolute expression of M.CViPI transgene at various induction times 
in M.CViPI-1a (after addition of 40uM ß-estradiol) and WT control in 8 days old 
seedlings. The expression was normalised using PP2A (At1g13320) and expression 
data was analysed using ΔCT method (Schmittgen and Livak 2008). Difference in 
expression between 0H vs 3H/6H was statistically significant (3 technical replicates, 
t-test and p-value ≤ 0.05). 
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3.2.5. Heritable phenotypic changes induced by M.CViPI expression  

During the screening process, we observed pleiotropic growth and development 

phenotypes with prolonged induction with ß-estradiol (Figure 3.5). Analysis of the 

methylation assay also revealed that the percentage of DNA methylation increased 

after M.CViPI induction (Figure 3.6). Previous studies have revealed that induced 

DNA methylation in Arabidopsis can be heritable over generations (Hofmeister et al. 

2017). Stress induced DNA methylation has been shown to result in epigenetic 

inheritance, as indicated by the fact that progenies of stress induced plants show 

better stress tolerance (Paszkowski and Grossniklaus 2011). 

We proposed that phenotypic changes resulting from M.CViPI induced methylation 

changes may be heritable, thus their progeny will inherit some of these phenotypes. 

We also hypothesised that M.CViPI induced phenotypes could be reversed by 

backcrossing with WT plants. 

To test our first hypothesis, we treated 8 days old M.CViPI-1a and WT seedlings for 

4 days with ß-estradiol (I1)to ensure plants accumulate DNA methylation without 

affecting the plant survival. The plants did not seem to show growth or 

developmental defects in I1 generation (data not shown here). We transferred these 

plants to soil under normal growth conditions. We collected seeds that were grown 

to produce next generation (I2 generation). These plants displayed variety of growth 

and development phenotypes compared to control plants (qualitative data only). 

The plants appeared to have disorganised leaf rosette and flower development 

delays (Figure 3.8). We grew plants from the I3 generation and observed similar 
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developmental abnormalities (Figure 3.8). To test the second hypothesis, we crossed 

I2 plants with WT and grew the F1 generation in soil under normal growth conditions. 

We found that these plants were similar to WT but they still displayed differences in 

growth (Figure3.8). 

 

Figure 3.8. Heritable phenotypic changes induced by M.CViPI induction. 8 days old 
M.CViPI-1a seedlings were induced for 4 days with 40um ß-estradiol in ½ MS. 
Phenotypic changes in I2 (second generation after induction) and I3(third generation 
after induction) were observed. (a) WT plant. (b,c) MCViP1-I-1a I2 plants showing 
disorganised leaf rosette and failing to develop flower. (d,e) MCViPI-1a I3 plants seem 
to inherit asymmetrical rosette and flower development. (f) Phenotypic changes 
were reversed substantially in F1 when M.CViPI-1a I2 plants were crossed with WT. 
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3.2.6. iNOMe-seq successfully induced global methylation in plant genome  
 
Since M.CViPI only methylates cytosines sites in a GpC context, we split GpC and non 

GpC methyaltion across the whole genome and only methylation in GpC context was 

computed for the analysis. In order to test if M.CViPI-1a has any effects on the DNA 

methylome due to leaky expression of M.CViPI, we compared Col-0 mock (Martin 

and McMillan) with MCViPI mock (MM) plants. We did not find any difference in DNA 

methylation between these samples (Figure 7.6). We, then treated WT plants with 

ß-estradiol (CE) to see any accumulation of DNA methylation changes and again, we 

did not observe any significant differences (Figure 7.6). We, then continued the 

analysis with MCViPI-1a plants by inducing with 20uM ß-estradiol and comparing to 

WT treated plants (CE).  

Nucleosome distribution varies across the genome with regions of uniform 

distribution interrupted by regions of non-uniform distribution of nucleosome 

(Szerlong and Hansen 2010). Centromeric regions are distinctly marked by highly 

methylated repeat DNA sequences and display a highly compact chromatin and 

significantly less accessibility as compared to chromosomal arms (Koo et al. 2011). 

NOMe-seq has been used to reveal distinct nucleosome occupancy pattern and 

methylation profile simultaneously across whole chromosome length (Kelly et al. 2012). 

So, to visualize the distribution of iNOMe-seq (iNOMe) mediated DNA methylation 

across the whole genome, we analysed the profile on all chromosomes for leaf and 

root tissues. Overall, the data showed that DNA methylation increased in all non-

centromeric regions across all chromosomes in both organs (Figure 3.9, 3.10, only 

chromosome 1 shown here). No significant changes in DNA methylation were 
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observed in centromeric regions of root or leaf tissues in GpCG and GpCHG contexts, 

while GpCHH methylation showed increase centromeric regions especially at 12-

hour and 24-hour ß-estradiol induction time (Figure 3.9, 3.10, Figure 7.7-7.12). 

Comparing methylation changes with various induction times between root and leaf 

tissue, we found that iNOMe mediated DNA methylation increase in root tissue was 

generally higher than that of leaf tissue (Figure 3.9, 3.10). For instance, there was no 

difference in methylation between mock and 6-hour induced samples in shoot 

tissues in GCG context (Figure 3.9) but on the other hand, approximately 20% 

increase in methylation (GCG context) was observed in root samples after 6-hours 

induction (Figure 3.10). Similarly after 24-hour induction, 20% methylation increase 

was observed in shoot tissues (Figure 3.9) in GCG context compared to 35% increase 

in root samples (Figure 3.10). The difference recorded in methylation increase may 

be due to differences in ß-estradiol transport in different plant organs. 

The iNOMe mediated DNA methylation difference for leaves were visible only after 

12h treatment and highest value was observed after 24 hours induction (Figure 3.9).  

In roots, iNOMe mediated DNA methylation was apparent 6h after induction reading 

the highest value 12h after treatment (Figure 3.10). Therefore, our analysis 

established optimal time points for the chromatin analysis using iNOMe in 

Arabidopsis transgenic line. 
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Figure 3.9: Methylation profile of A. thaliana chromosome 1 in leaf tissue in GpCG, 
GpCHG and GpCHH contexts with 6, 12 and 24-hour ß-estradiol induction. Cytosine 
methylation increased in all contexts in induced plants with increasing induction 
time compared to control plants. The black line indicates methylation profile of CE 
samples (Control) and red line represents methylation profile of ME (M.CViPI 
induced line).  
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Figure 3.10: Methylation profile of A. thaliana chromosome 1 in root tissue in 
GpCG, GpCHG and GpCHH contexts with 6, 12 and 24-hour ß-estradiol induction. 
Cytosine methylation increased in all contexts in induced plants with increasing 
induction time compared to control plants. The black line indicates methylation 
profile of CE samples (Control) and red line represents methylation profile of ME 
(M.CViPI induced line).  
 
 
 
 
 
 
 
 
 

Chr1
G

C
G

0 1 2 3

0

0.2

0.4

0.6

0.8

1

Chr2

0 1 2

0

0.2

0.4

0.6

0.8

1

Chr3

0 1 2

0

0.2

0.4

0.6

0.8

1

Chr4

0 1 2

0

0.2

0.4

0.6

0.8

1

Chr5

0 1 2 3

0

0.2

0.4

0.6

0.8

1

G
C

H
G

0 1 2 3

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2 3

0

0.2

0.4

0.6

0.8

1

G
C

H
H

0 1 2 3

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2 3

0

0.2

0.4

0.6

0.8

1

M
et

hy
la

tio
n 

Pr
op

or
tio

n

Genomic Coordinate (mb)

6h

CE_6h
ME_6h

Chr1

G
C

G
0 1 2 3

0

0.2

0.4

0.6

0.8

1

Chr2

0 1 2

0

0.2

0.4

0.6

0.8

1

Chr3

0 1 2

0

0.2

0.4

0.6

0.8

1

Chr4

0 1 2

0

0.2

0.4

0.6

0.8

1

Chr5

0 1 2 3

0

0.2

0.4

0.6

0.8

1

G
C

H
G

0 1 2 3

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2 3

0

0.2

0.4

0.6

0.8

1

G
C

H
H

0 1 2 3

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2 3

0

0.2

0.4

0.6

0.8

1

M
et

hy
la

tio
n 

Pr
op

or
tio

n

Genomic Coordinate (mb)

12h

CE_12h
ME_12h

Chr1

G
C

G

0 1 2 3

0

0.2

0.4

0.6

0.8

1

Chr2

0 1 2

0

0.2

0.4

0.6

0.8

1

Chr3

0 1 2

0

0.2

0.4

0.6

0.8

1

Chr4

0 1 2

0

0.2

0.4

0.6

0.8

1

Chr5

0 1 2 3

0

0.2

0.4

0.6

0.8

1

G
C

H
G

0 1 2 3

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2 3

0

0.2

0.4

0.6

0.8

1

G
C

H
H

0 1 2 3

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2

0

0.2

0.4

0.6

0.8

1

0 1 2 3

0

0.2

0.4

0.6

0.8

1

M
et

hy
la

tio
n 

Pr
op

or
tio

n

Genomic Coordinate (mb)

24h

CE_24h
ME_24h

6-hour 12-hour 24-hour 

35% 
increase 

20% 
increase 



 61 

3.2.7. Identification of accessible regions using iNOMe 

Differentially methylated regions (M.CViPI induced methylation vs endogenous 

methylation of control) from iNOMe data were computed. To compare these DMRs 

with ATAC-seq identified accessible regions, precision, recall and F score was 

calculated (methods 2.16). In order to decide which time point was optimal to 

determine accessibility of the chromatin across the genome, we compared iNOMe 

accessible regions with genomic regions identified by ATAC-seq: a method to be the 

gold standard for chromatin accessibility (Buenrostro et al. 2015). ATAC-seq data 

analysis relies on peak callers where mapped reads are used to detect accessible 

chromatin shown as “peaks” (Chang et al. 2018). On the other hand, iNOMe data is 

generated by computing methylation difference for a bin (a fixed size window) 

averaged from quantitative readout for each cytosine ectopically methylated in the 

bin (Nordström et al. 2019). 

The aggregate length of iNOMe regions at different time points in roots was 

compared to length of open chromatin regions detected by ATAC (methods 2.16). 

We found that the accessible regions found by iNOMe in GpCG context were higher 

in 6h treated roots vs shoots. However, the length of accessible regions in 12- 24h 

treated roots were similar in all DNA methylation contexts (Figure 3.11). Our data 

also show that the length of accessible chromatin regions identified by ATAC, (21.6 

M bp) was similar to that found by iNOMe (23MMbp) (Figure 3.11). Only half of these 

regions were identified by both methods. Notably, iNOMe found additional 14 Mb 

in GpCG context, not detected by ATAC (Figure 3.11). In order to test if longer 

induction of M.CViPI would increase the overlap between both methods, we 



 62 

compared iNOMe from 12 and 24h treated root samples. Our data show that iNOMe 

signal in 12 h treated roots was 75Mb covering the vast majority of regions identified 

by ATAC (Figure 7.15). Moreover, the overlap between both methods did not differ 

significantly in 24h treated roots (Figure 7.16). Our data shows that the chromatin 

regions marked by iNOMe in leaf were much shorter than those were found in roots. 

iNOMe identified 14.6Mb in 12h after induction in shoots and only 5.6M bp of DNA 

was found to be accessible by both methods (Figure 3.12).  
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GpCG GpCHG GpCHH 

   

Figure 3.11: Accessible chromatin regions found by iNOMe compared to ATAC in 
root samples with 6-hour ß-estradiol induction. The orange circle indicates the 
length of accessible chromatin detected by iNOMe only (Mb) whereas the turquoise 
indicates accessible chromatin regions (Mb) identified by ATAC only. The overlap of 
both circles shows the length of accessible chromatin found by both methods.  

 

 

GpCG            GpCHG         GpCHH 

   

Figure 3.12: Accessible chromatin regions found by iNOMe compared to ATAC in 
leaf samples with 12 hour ß-estradiol induction. The orange circle indicates the 
length of accessible chromatin detected by iNOMe only (Mb) whereas the turquoise 
indicates accessible chromatin identified by ATAC only (Mb). The overlap of both 
circles shows the length of accessible chromatin found by both methods.  
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3.2.8. iNOMe signals around features detected by ATAC 

To calculate the iNOMe signal we used a moving average of the difference in 

methylation between control ß-estradiol treated samples (methods 2.19). Since, 

iNOMe detects global DNA methylation values of the genome (i.e. methylation 

added by M.CViPI as well as endogenous methylation), we calculated the 

methylation differences between control and ß-estradiol samples to define the open 

chromatin region.  

Once accessible chromatin regions were identified by iNOMe, we intersected these 

data with different genomic features (i.e genes, transposable elements, 

Transcription Start Sites (TSS) and Pol II occupancy). Ours data shows that iNOMe 

successfully detected signals around features detected by ATAC (Figure 3.13, 3.14 

and 3.15) 

Gene promoters and gene bodies show lower nucleosome occupancy and lower 

endogenous methylation (Thurman et al. 2012). Chromatin accessibility assays have 

confirmed that transcription levels are negatively correlated with the methylation of 

TF binding site (Stadler et al. 2011). We hypothesised that lower DNA methylation 

levels and higher chromatin accessibility at transcription binding sites would 

enhance the sensitivity of iNOMe and difference between endogenous methylation 

and M.CViPI-induced methylation is important indicator of chromatin accessibility 

with greater accuracy than other methods.  

To test this hypothesis, we investigated the distribution of iNOMe signal (indicated 

as highlighted peaks see Figure 3.16) around genes and (upstream and downstream) 

flanking region. Signal for all annotated genes was distributed according their 
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expression. We found that as for ATAC, the signal detected by iNOMe was enriched 

near the transcription start sites of highly expressed genes (Figure 3.13).  

The iNOMe signal was very similar to ATAC, increased at TSS and gradually decreased 

across the whole gene body and increased back again at TES (Figure 3.13). However, 

ATAC signal at TSS was more pronounced than that in iNOMe. These differences are 

likely due the selective amplification of sequence marked by ATAC (Meyer and Liu 

2014).  
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Figure 3.13: Whole genome heat map showing iNOMe and ATAC signal between 
2kb upstream and downstream of genes in roots. (A) iNOMe-seq signal around 
genes after 6-hour induction compared to control (B) iNOMe-seq signal around 
genes after 12-hour induction compared to control (C) iNOMe-seq signal around 
genes afte 24-hour induction. (D) ATAC signal around genes. (E) The expression for 
each gene shown from the whole genome expression data. Each heatmap is ordered 
by gene expression with highly expressed genes at the top and low expressed genes 
at the bottom. The metaplot above each heatmap shows the average signal for each 
location around each gene.  
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Active transcription is dependent on the binding of Pol II to promoter sequence, 

however nucleosome hinder the accessibility of Pol II, therefore, nucleosome 

depleted regions (NDRs) are usually associated with RNA polymerase II binding 

(Maehara and Ohkawa 2016). An in vitro study has revealed that nucleosomes act as 

a physical barrier to Pol II binding in a variety of ways such as pausing, backtracking 

and arresting of Pol II (Kulaeva et al. 2013). We computed nucleosome occupancy at 

Pol II binding sites to compare their accessibility by ATAC-seq and iNOMe. Our data 

shows a periodic iNOMe signal downstream of the Pol II binding site, thus indicating 

that this new methodology could be also used to reveal nucleosome occupancy in 

plants (Figure 3.19). Our data also showed that methylation at Pol II peaks negatively 

correlated with endogenous methylation signal in control sample (Figure 3.14) 

supporting the view that DNA methylation imposes a repressive state in chromatin.  

We, then analysed the iNOMe at transposable elements (TEs) because they 

constitute large portion of eukaryotic genomes, are generally transcriptionally 

inactive and heavily methylated (Lander 2001; Xie et al. 2013). TEs are abundant in 

heterochromatin regions, such as centromeres and have been implicated in tissue 

specific gene regulation as well in creating making physical boundaries to hinder 

spreading of gene silencing (Slotkin and Martienssen 2007). Since TEs are generally 

found in comparatively less open chromatin regions, we anticipated that iNOMe may 

detect more signal around TEs than other methods to profile chromatin accessibility.  

To test this hypothesis, we compared the iNOMe and ATAC signal around TEs. Our 

data shows that both methods detect open chromatin at TE flanking regions but 

almost none at the transposon body (Figure 3.15). Collectively, our analysis has 
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revealed that iNOMe detects genomic features such as genes, Pol II binding sites and 

TEs with great accuracy when compared to ATAC-seq. 

 
 
 

 

Figure 3.14: Whole genome heat map showing iNOMe and ATAC signal between 
2kb upstream and downstream of pol II binding sites in roots. (A) Heatmap shows 
ATAC-seq signal around pol II peaks (B) iNOMe-seq signal around Pol II sites after 6-
hour induction(C) iNOMe-seq signal around Pol II sites after 12-hour induction (D) 
iNOMe-seq signal around Pol II sites after 24-hour induction. (E) Heatmap shows 
methylation from a control sample around pol II sites. The metaplot above each 
heatmap shows the average signal for each location around each Pol II sites.  
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Figure 3.15: Whole genome heat map showing iNOMe and ATAC signal between 
2kb upstream and downstream of transposable elements (TEs) in roots. (A) iNOMe-
seq signal around TEs after 6-hour induction(C) iNOMe-seq signal TEs after 12-hour 
induction (D) iNOMe-seq signal around TEs after 24-hour induction. (D) ATAC signal 
around TEs. (E) heatmap shows methylation from a control sample around TEs. The 
metaplot above each heatmap shows the average signal for each location around 
each TE.  
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To determine the accuracy of iNOMe in chromatin analysis, we compared our data 

with other chromatin accessibility methods focusing on specific genomic regions. To 

accelerate this analysis we displayed all the genome wide data in an Integrative 

Genome Viewer (IGV) (Robinson et al. 2017) We found that iNOMe could detect all 

the genome regions marked by ATAC (Figure 3.16A). However, we also found out 

that some of the genomic regions were identified by our method only (Figure 3.16B) 

indicating that iNOMe can detect extra regions which other method fail to detect. 

This corroborates with the data previously discussed in section 3.2.7, where total 

number of regions identified by iNOMe were greater than ATAC (Figure 3.11).  

   

 

Figure 3.16: The iNOMe signal in a selected region in root tissue compared to other 
commonly used methods. (A) iNOMe accurately detects regions identified by other 
accessibility methods with great sensitivity. (B) iNOMe can detect some regions from 
the genome which other methods do not. The green tracks represent the iNOMe 
signal, the orange track shows the ATAC signal, the blue track represents the DNase-
seq signal and the red track shows gene expression obtained using RNA-seq.  

A 

B 
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As iNOMe detects a larger fraction of accessible genomic regions than ATAC, we 

investigated the iNOMe signal throughout the genome. We separated iNOMe signal 

into different genomic features (genes, transposable elements, upstream, 

downstream and intergenic regions) and found that in all methylation contexts, 

iNOMe signal was detected primarily in genes but a significant fraction was also 

found associated with flanking intergenic regions (Figure 3.17).  

When we plotted the distribution of iNOMe signal near genes, we found that most 

of the open chromatin regions detected were located within 2kb upstream regions. 

However, iNOMe also identified accessible regions located more than 2.5 kb 

upstream of expressed genes (Figure 3.18). This indicates that the accessible regions 

identified by iNOMe in intergenic regions present 2.5 kb upstream of the genes could 

potentially harbour distal regulatory elements.  

Finally, to see if our method identifies accurate position of the nucleosome, we 

plotted iNOMe signal around genes. Nucleosome core particles wrap 147 bp of DNA 

fragments separated by varying lengths of linker DNA depending on the level of 

nucleosome compaction (Schones et al. 2008a). Measuring the precise distance 

between nucleosome positions indicates the level of chromatin compaction in 

certain genomic regions (Schones et al. 2008b). To determine whether iNOMe can 

measure the linker length accurately, we plotted iNOMe signal in a comparatively 

narrow window of 1000bp around genes that are being actively transcribed. We 

observed around 6 oscillatory peaks of iNOMe signal (Figure 3.19), which correspond 

to the predicted nucleosome positions around genes (i.e. ~200bp/oscillation). Our 
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data shows that iNOMe signal precisely detected nucleosomes at their estimated 

position around actively transcribing genes. 

 
 

 
Figure 3.17: Distribution of iNOMe DMRs throughout the genome in relation to 
different features. By comparing DMRs to various features the DMRs were 
separated into different categories, these categories included genes, transposable 
elements, upstream, downstream and intergenic.  
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Figure 3.18: Distribution of DMRs upstream and downstream of genes. iNOMe 
signal near genes was plotted to see distribution of DMRs near genes. A large 
number of DMRs are distributed within 2.5 kb upstream of the genes. iNOMe also 
identified DMRs more than 2kb upstream and downstream of genes.  
 
 

 
 
Figure 3.19 iNOMe detects nucleosome position with accuracy. iNOMe signal was 
plotted near genes to see nucleosome positions at 6h, 12h and 24h after treatment 
in root samples. The oscillations represent position of single nucleosome in 1000kb 
after TSS. 
  
 
Taken together, our data shows that iNOMe is a simple and highly sensitive 

methodology for the study of chromatin accessibility, nucleosome positioning and 

DNA methylation in plants. 
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3.3. Discussion  
 
Nucleosome occupancy is thought to be a principle determinant of genome 

accessibility and is dynamic in nature (Klemm et al. 2019). A small shift in nucleosome 

position can not only occlude regulatory DNA motifs but can potentially change 

chromatin structure (Brogaard et al. 2012). Measuring nucleosome occupancy allows 

researchers to identify regulatory elements, which cannot be characterised by 

conventional methods. A unique property of accessible chromatin is sensitivity of 

nucleosome depleted regions to DNA cleavage by nucleases such as micrococcal 

nuclease (MNase) and deoxyribonuclease I (DNase I) (Chereji et al. 2017; Boyle et al. 

2008). MNase determines nucleosome occupancy while DNase primarily identifies 

TF binding sites situated in accessible chromatin regions (Cui and Zhao 2012; 

Hesselberth et al. 2009).  

Another DNA cleavage-based method is ATAC-seq, which employs a hyperactive 

transposase to simultaneously cut and insert adapters preferentially at nucleosome 

depleted regions to create sequencing libraries (Buenrostro et al. 2015). ATAC-seq is 

considered the gold standard method for the identification of cis-regulatory 

elements in accessible chromatin regions in plants (Lu et al. 2016b), however, the 

efficiency of this method is limited due to its inherent bias towards AT-rich regions 

and the requirement for large amounts of purified nuclei (Meyer and Liu 2014; Lu et 

al. 2016b). All of the above-mentioned methods to map chromatin accessibility rely 

on DNA cleavage, which can potentially damage important functional DNA 

sequences and disrupt chromatin structure.  

DNA methylation foot-printing is a better alternative to harsh enzymatic DNA 

treatments and a new strategy that employs a GpC methyltransferase added in vitro 
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to purified nuclei, has been developed to address these limitations and to uncover 

all accessible genome regions with accurate mapping of nucleosome occupancy (Lay 

et al. 2018). This methodology known as NOMe-seq has been recently used in 

mammalian single-cell epigenomic studies, however, it has not yet been 

implemented in other organisms. Here, we have devised an in vivo nucleosome 

positioning method (iNOMe-seq) based on the controlled expression of recombinant 

GpC methyltransferase, M.CViPI in A. thaliana.  

The constitutive induction of M.CViPI resulted in plant lethality and controlled 

expression lead to heritable phenotypic defects, likely caused by the ectopic 

accumulation of epigenetic marks. Optimum methylation level is important for 

normal plant development and aberrations in methylation pattern can cause 

multiple growth and development changes (Kankel et al. 2003).  

Our iNOMe data suggests that the accessible chromatin is located at transcribed 

genomic regions. Centromeric regions are known to be highly methylated and 

chromatin is highly compact, hindering access to chromatin modifying complexes 

and other regulatory proteins (Heslop-Harrison and Schwarzacher 2013). Overall, 

the regions marked by iNOMe in leaf are less abundant than those found in roots 

which is in line with the previous reports from ATAC-seq studies (Tannenbaum et al. 

2018).  

We found an increase in iNOMe signal near the transcription start sites of expressed 

genes correlated with nucleosome depletion, usually found in promoter regions 

(Yuan et al. 2005). The regions detected by iNOMe had a good overlap with RNA 

polymerase II binding sites, thus suggesting that iNOMe can uncover chromatin 

regions that are accessible and are in a potentially active transcriptional state. 
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However, not all genes marked by Pol II are actively transcribed (Levine 2011). In 

fact, a large proportion of genes both in plants and mammals, are associated with 

polymerase pausing (Gaertner and Zeitlinger 2014). Pol II pausing has been 

extensively studied in several higher organisms (Kujirai et al. 2018), and have been 

recently studied in Arabidopsis (Zhu et al. 2018). 

When comparing iNOMe and ATAC in Arabidopsis we found that both methods 

efficiently discovered accessible chromatin regions. However, iNOMe was able to 

discover more regions than ATAC. The number of iNOMe regions increased 

significantly with an increase in induction of M.CViPI expression. This is likely due to 

the fact that iNOMe has the potential to mark regions of the genome that are 

dynamic in terms of their chromatin states over the time of M.CViPI induction. Live 

cell imaging techniques has previously revealed that many TFs and regulatory 

proteins transiently bind to regulatory regions, suggesting that chromatin 

organisation is not static. Its dynamic state allows access to various regulatory 

proteins to modulate gene expression (Voss and Hager 2008).  

Nucleosomes organised into higher order structures of varying degree, which adds 

another level of complexity to gene regulatory mechanisms (Lorch et al. 1987). To 

detect nucleosome position, standard methods such as ATAC-seq and MNase-seq 

produce inaccurate data, which makes very challenging the analysis of nucleosome 

positioning in different samples (Chereji et al. 2017; Flores et al. 2014). Compared 

to these methods, iNOMe is able to accurately detect nucleosome positioning. This 

was confirmed by identifying iNOMe signal oscillations at estimated distance around 

highly expressed genes, which suggests that iNOMe can not only detect different 
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features detected by other chromatin accessibility methods accurately, but also 

nucleosome positioning with great accuracy. 

3.4. Summary  

Our study shows that iNOMe-seq is powerful technique for the study of chromatin 

accessibility in plants without involving lengthy and laborious procedures of 

cell/nuclei isolation or enzymatic optimisation that are required for current 

chromatin profiling techniques (Buenrostro et al. 2015; Cumbie et al. 2015; 

Mieczkowski et al. 2016). Our data shows that iNOMe-seq is more sensitive than 

ATAC-seq, thus could be used to identify accessible regions linked to long- range 

gene regulation. Taken together, we propose iNOMe-seq as a new gold standard 

methodology for chromatin accessibility and nucleosome occupancy profiling at 

cellular resolution in Arabidopsis and other plants amenable to genetic 

modifications.  
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4. Functional characterisation of distal regulatory elements  
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4.1. Introduction 

Gene expression in eukaryotes is tightly regulated and selective gene expression is 

vital for accurate cell differentiation and development of an organism (Jaenisch and 

Bird 2003). Gene regulation can occur at various levels, however regulation at 

transcriptional level is of key importance and is dependent on the interaction of a 

variety of transacting proteins and genomic and epigenetic regulatory mechanisms 

(Mitchell and Tjian 1989).  

Transcriptional regulatory elements are gene flanking DNA sequences that are 

involved in gene regulation and enable a complex interplay between regulatory 

proteins, genetic and epigenetic mechanisms. There are several kinds of regulatory 

elements that are recognized by regulatory proteins to either activate or repress 

gene expression (Narlikar and Ovcharenko 2009b). These include proximal promoter 

elements and distal regulatory elements named based on their position in relation 

to the target gene. 

 A typical CRE known as the promoter in eukaryotes is a collection of cis-regulatory 

elements, spanning the transcription start site (TSS) and extending a few hundred 

base pairs (bp) upstream and downstream of the TSS (Shahmuradov 2003; Jaenisch 

and Bird 2003). A eukaryotic promoter is further distinguished into a core promoter 

region and a proximal promoter region; both regions consist of various elements 

involved in transcriptional regulation (Smale and Kadonaga 2003). A core promoter 

is a minimal stretch of DNA required to drive the initiation of transcription by RNA 

polymerase and its associated machinery (Doerks et al. 2002). Core promoters 
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harbor various elements or functional motifs termed as ‘core promoter elements’  

which add diversity to the functionality of the core promoter and contribute to the 

combinatorial regulation of expression (Smale and Kadonaga 2003). Some examples 

of the core promoter elements include: (i) The TATA box was the first ever core 

element identified and is generally present 25-30 bp upstream of the TSS 

(Breathnach and Chambon 1981) (Figure 4.1). The TATA box has not only been 

reported to be involved in RNA Pol II transcription but also in RNA Pol III related 

transcription (Wang et al. 1996) (ii) The Initiator (Inr) spans 6bp upstream and 11bp 

downstream of the TSS and like the TATA box, it facilitates binding of transcription 

factor IIB (TFIIB) (Xi et al. 2007) and can also trigger transcription initiation on its own 

or together with other core elements (O'Shea-Greenfield and Smale 1992). (iii) TFIIB 

recognition elements (BRE) are located upstream of the TATA box, where TFIIB binds 

in a sequence specific manner (Lagrange et al. 1998). (iv) CpG Islands are un-

methylated CG rich regions and typically lack typical core promoter elements such 

as the TATA box (Brandeis et al. 1994). However, they do include downstream 

promoter elements (DPE) generally found in TATA-less promoters and located +28 

to +32 to Inr (Burke and Kadonaga 1997). (v) Proximal promoter elements lie within 

≈ 200bp upstream of TSS (Figure 1), do not always act like activators or repressors 

but rather facilitate contact between enhancers and the core promoter (Su et al. 

1991). 

Some cis-regulatory elements can also be present distal from the promoter i.e. a few 

thousand base pairs away from the transcription initiation site (Chandler 2001). 

These CREs are termed as distal regulatory elements (Figure 4.1) and are responsible 
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for transcriptional regulation after being recognised by different activators or 

repressors (Narlikar and Ovcharenko 2009a). 

 

 

Figure 4.1: Schematic representation of eukaryotic cis-regulatory elements. 
Proximal promoter elements are present in close proximity to the core promoter, 
normally within 1 kb upstream of the gene whereas distal regulatory elements 
include enhancers, silencers, insulators and locus control regions are situated farther 
away from the core promoter (Maston et al. 2006). 
 
 
Based on their specific role in transcriptional regulation, distal elements are 

generally classified as enhancers, silencers and insulators. Enhancers are DNA motifs 

located at a great distance either upstream, downstream or even inside the intron 

of the target gene (Levine 2010). They regulate cell functions such as stem cell multi-

potency and chromosomal organisation as well as influence human evolution and 

disease (Anger et al. 2014). For instance, an enhancer region of POU3F4 gene located 

on X chromosome is responsible for X-linked deafness in humans characterised by 

conductive hearing loss. Microdeletions have been found in a region present many 

hundred kb upstream of POU3F4 gene, show similar hear loss phenotype suggesting 
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presence of enhancers in this region (Anger et al. 2014). Insulators on the other 

hand, act like ‘barriers’ between different chromosomal domains harboring protein-

coding genes thus physically separating enhancers from the genes (Kellum and 

Schedl 1991). This suggests that any chromosomal deletions or inversions where 

these insulator elements reside can potentially lead to activation by an enhancer 

present in a separate domain resulting in altered expression of the targeted genes 

(Levine 2010). Silencers are short, specific stretches of DNA normally present 

upstream of the associated gene and are capable of repressing transcription 

(Ogbourne and Antalis 1998). Silencers are involved in many aspects of negative 

gene regulation such as affecting the activity of transcription factors, chromatin 

structure and 3’ upstream un-translated region signal recognition (Clark and 

Docherty 1993). There are other distant elements other than enhancers, repressors 

or silencers, which can be involved in long distance regulation of the expression. B-

globin genes in mammals, for example, are regulated by a set of elements located 

20-30kb upstream of the gene cluster. This specific set of elements is termed as locus 

control region (LCR) and is significantly conserved in mammals (Kim and Dean 2012).  

There are only a few well characterised examples of DREs in plants. In maize, for 

instance, a quantitative trait locus, vegetative to generative transition1 (Vgt1) acts 

as major flowering time locus and is located 70 kb upstream of a transcription factor 

encoding gene, Ap2-like, involved in flowering time regulation (Salvi et al. 2007). 

Another study on maize found that the B’ region required for paramutation 

(interaction between alleles resulting in heritable changes in expression level) , is 

controlled by long-distance regulatory elements ~200 kb away (Stam 2002).  
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4.1.1. Mechanisms involved in long distance regulation   
 
 How do long distance regulatory elements physically interact with their target genes 

to regulate their expression? To answer this complex question, various models have 

been proposed to explain the physical interaction between distant genome regions. 

Due to the advancement of chromatin assay techniques, long range chromosomal 

interactions have been examined suggesting a loop configuration model (Figure 4.2), 

which is responsible for most of the distal physical interactions in the genome 

(Kadauke and Blobel 2009).   

For instance, interplay among distant and proximal regulatory elements facilitated 

by nuclear transcription factor Y (NF-Y) and a floral regulator CONSTANTS (CO) 

results in regulation of FLOWERING LOCUS T (FT) expression in A. thaliana (Cao et al. 

2014; Tiwari et al. 2010). Chromatin conformational capture (3C) assay has 

confirmed a physical interaction between FT promotor and far distant regulatory 

region called block C through chromatin loop formation (Cao et al. 2014). 
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Figure 4.2: In A. thaliana, FT transcriptional activation by a chromatin looping by 
long distance interactions. A distal enhancer block C allows recruitment of a trimeric 
complex comprising NF-Y transcription factors (NF-Y A, B and C) through CCAAT 
boxes. This results in stable interaction of CO with its DNA binding site and bound 
NF-Y trimeric complex leading to FT activation in long day conditions (Cao et al. 
2014). 
 

Similarly, in mammals, a highly conserved TF, the CTCF (CCCTC-binding factor), has 

ability to make homodimers and facilitates chromatin looping (Filippova et al. 1996). 

CTCF has been has been found colocalised with cohesins (protein complexes that 

mediate chromosomal interactions) in chromatin immune-precipitation sequencing 

assay (ChIP-seq) indicating its ability to facilitate physical interactions with distal 

genomic regions (Lee and Iyer 2012).  
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4.1.2. Epigenetic modification of long-range regulatory regions 

Recent genome-wide studies in plants have revealed that the expression of key 

developmental regulators is usually under the control of long-range regulatory 

sequences (Priest et al. 2009). Intriguingly, some of these regulatory sequences are 

modified epigenetically in response to an environmental stress, primarily by changes 

in DNA methylation. DNA methylation acquired during the stress response is 

“remembered” and transmitted to the next generation, which in most cases allow 

plants to respond efficiently to repeated exposure to the same stress, a process 

known as “priming” (Thiebaut et al. 2019; Crisp et al. 2016). 

A study has revealed that RdDM might be involved in the alteration of chromosomal 

interactions between methylated sites and distal genes, thus altering the expression 

of associated genes (Rowley et al. 2017). Ago4 mutants, which are defective in RdDM 

have higher rates of chromosomal looping, resulting in enhanced expression of 

certain genes (Rowley et al. 2017). DNA methylation of distant regions can 

contribute to dynamic reversible changes to chromatin topology, resulting in varied 

expression patterns (Ariel et al. 2014). Some of the known regulatory elements are 

long non coding RNAs (lncRNAs), which influence gene expression in a variety of 

ways, including direct interference with RNA polymerase binding and blocking 

transcription initiation (De Lucia and Dean 2011). LncRNAs can also recruit and guide 

chromatin modifying complexes to different chromosomal regions in trans (Rinn et 

al. 2007). In Arabidopsis, a long noncoding intergenic RNA coding region, APOLO 

(AUXIN REGULATED PROMOTER LOOP), which is generally highly methylated via the 

RdDM pathway regulates the expression of a distal gene PINOID, a kinase involved 

in auxin response (Ariel et al. 2014).   
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By unravelling multiple layers of transcriptional regulation, gene function can be 

modulated ectopically without any genetic change. Although in plants, some of the 

regulatory mechanisms have been uncovered through genetic analyses, the function 

of far-distant controlling elements is still poorly understood. A significant factor is 

that the annotation of these cis-regulatory regions is extremely challenging, 

primarily due to their unpredictable position from their target promoters. In chapter 

3, we devised a method for identification of regulatory elements by mapping 

chromatin accessibility and epigenetic modification. Identified accessible regions can 

be intersected with epigenomic data to predict the sequence of novel distal 

regulatory elements.  

Since, the regulation of genes by these elements is also modulated by epigenetic 

marks, ectopic modification of these elements can be used to enable a direct 

functional characterisation of the associated genes. One way to modify chromatin in 

plants is to target de novo DNA methylation to the regulatory region using RdDM 

pathway, an endogenous de novo methylation pathway unique to plants (Li et al. 

2015). Methylation can be targeted by generating an inverted hairpin to produce 

double stranded RNAs recognized by the RdDM pathway (Figure 1.7) (Dupre et al. 

2015). 

4.2. Chapter aims  

The aim of this chapter is to identify and characterise the function of long-range 

regulatory sequences in plants. Using A. thaliana, work was carried out to investigate 

how these regions are influenced by epigenetic modifications and elucidate their 

function. 
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4.3. Results  

4.3.1. Selection of tissue specific DREs  

Multiple studies have confirmed that distal regulatory elements, such as enhancers 

and silencers, are predominantly found in accessible chromatin regions distal from 

the genes that they regulate (Shlyueva et al. 2014; Zhang et al. 2012; Pajoro et al. 

2014). A recent study in maize has found 50% of the distal regulatory elements in 

intergenic regions are present in accessible regions of chromatin (Li et al. 2019).  

To identify DREs in Arabidopsis, we intersected whole genome methylome and 

transcriptome data with our iNOMe data. We started this analysis by identifying 670 

CG DMRs that were hypo-methylated in roots compared to shoots. First, we selected 

all genes which are located within 5000bp upstream or downstream of the DMRs 

(1566 genes). To analyse the expression pattern of these genes during 

developmental stages and tissues, the developmental series of “the AtGenExpress 

project” (Schmid et al. 2005) was employed. Data was available for 898/1566 genes, 

for which k-means clustering analysis was performed using a Pearson correlation 

coefficient as distance measurement (using the software Genesis, Sturn et al. 2003). 

We focused on genes especially expressed or repressed in root tissue. K=10 yielded 

sufficiently diverse clusters and we could identify one cluster with genes up-

regulated in root tissues compared to other tissues (92 genes) and one with genes 

down-regulated in roots compared to other tissues (91 genes). These genes were 

then further characterised according to their known functions, DNA methylation 

pattern, expression values in wild type and methylation mutants (met1 and rdd; 

information taken from http://neomorph.salk.edu/epigenome/epigenome.html) 

and the location of the DMR relative to the gene. We favoured genes that displayed 



 88 

a defined methylation region and selected them according to their proximity (≤5kb 

upstream) to the transcription start site. Genes with a known function in 

development, response to hormones or stress were preferred. Using this strategy, 

we initially selected 7 candidates showing a good correlation between intergenic 

DMR, other epigenetic modifications and expression between tissues.  

To narrow our list further, we compared the tissue specific DNA methylation created 

during cloning using different tissues (Wibowo et al. 2016). We selected (172) 

differentially methylated regions created during cloning and determined genes 

linked to them. We used K-means clustering of expression data (Schmid et al. 2005) 

We identified four distinct clusters. We selected gene clusters displaying higher 

expression in roots (54) and found three candidate intergenic regions that 

overlapped with the regions identified in the differential methylation analysis. 

Overall, the analysis has identified 12 intergenic regions that could act as distal 

regulatory elements including a previously characterised long-distance regulatory 

lncRNA, APOLO (Ariel et al. 2014)(Table 4.1) . However, for the proof of concept, the 

study will focus on the analysis on the first three regions from identified list of DREs. 

These DREs will be epigenetically (by RNAi hypermethylation) and genetically (by 

CRISPR/Cas9) modified, followed by phenotypic/molecular characterisation of the 

modified lines.  
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Table 4.1: List of selected genes and their associated DMRs  
 

No. Gene Gene description Chromosome Coordinate 

1 At5g09330 NAC domain containing 
protein 82 (NAC82) 

 

Chr5:2,898,643-2,898,792 

2 At3g54590 Proline rich extensin-like 
family protein (HRGP1) 

 

Chr 3: 20209297-20209566 

3 (APOLO) 
 

AT2G34650 
 

Auxin signalling (PINOID) Chr2:14,596,565-14,597,543 
 

4 At2g28720 Histone superfamily protein, 
DNA binding function 

Chr2:12,324,429-12,324,628 

5 At2g01620 RNI-like superfamily protein, 
protein binding function 

 

Chr2:276,760-276,959 

6 At5g02360 DC1 domain-containing 
protein 

 

Chr5:503064-503316  

7 At1g43040 SAUR-like auxin-responsive 
protein family 

 

Chr1:16,184,300-16,184,599 

8 At3g28220 TRAF-like family protein 
 

Chr3:10,526,110-10,526,269 

9 At3g14640 Putative cytochrome P450 
 

Chr3:4918629-4918659 

10 At2g04025 Root Meristem Growth factor 
3 
 

Chr2:1,279,755-1,279,994 

11 At1g51190 Encodes a member of the 
AINTEGUMENTA-like (AIL) 
subclass of the AP2/EREBP 

family of transcription factors 
 

Chr1:18,982,110-18,982,359 

12 At4g12980 Auxin-responsive family 
protein 

 

Chr4:7,592,720-7,592,969 
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4.3.2. DRE_NAC82 is a putative distal regulatory element 

The first region identified with the potential of acting as a putative distal regulatory 

element, was a 150 bp long stretch of DNA present 3kb downstream of NAC82 

(DRE_NAC82). The accessibility of the region was confirmed by iNOMe assay, as well 

as with other chromatin accessibility datasets (Figure 4.3). The region seems to have 

high signal for both iNOMe and ATAC data sets but lower signal for DNase-seq data 

(Figure 4.3). This might be due to the sequence preference of each of the chromatin 

accessibility methods, for instance, DNase hypersensitive sites are mostly in proximal 

promoter regions and associated mainly with active gene expression (Pascoe et al. 

2017) .   

Tissue specific DNA methylation plays an essential regulatory role in plants, for 

instance, in the endosperm, DNA methylation regulates imprinted gene expression 

and crucial for normal embryonic development (Zhang et al. 2011). This indicates 

that the presence of tissue specific DNA methylation is an important indicator of the 

regulatory role of the DNA sequence. The DRE_NAC82 region displays tissue specific 

differences in DNA methylation in all methylation contexts (Figure 4.3B).  

We also looked at presence of histone modification marks at this region to establish 

a link between chromatin accessibility, histone methylation and gene expression. 

H3K27me3 is required for the tight regulation of different transcriptional regulators 

expressed at different stages of development (Köhler and Makarevich 2006). In 

Arabidopsis, this modification is present at the 5’ end of the transcribed genes, 

indicating that regulatory regions are the main targets of H3K27me3 (Zhang et al. 

2007). Post-translational modifications of histones also play an important role in 

chromatin organisation and methylation of H3K27me3 is well characterised histone 
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modification involved in regulation of gene expression by generating ‘closed’ 

chromatin (Li et al. 2008). The decrease in H3K27me3 methylation facilitates 

decompaction of the ‘closed’ chromatin and increase the accessibility of DNA 

sequence for DNA binding proteins (Pan et al. 2018). This genomic region lacks 

H3K27me3 but there is a strong enrichment of H3H27me1 in this region as well as 

flanking regions (Figure 4.3A). Differences in epigenetic modifications indicate that 

this region is dynamically accessible, thus could act putatively functional element. 

Tissue specific DRE_NAC82 is linked to NAC82, which is a transcriptional regulator 

implicated in stress response (Nuruzzaman et al. 2010). It is ubiquitously expressed 

in all tissue types but its expression is significantly high in inflorescence shoot apex 

and in tissues undergoing senescence (Figure 4.4) (Schmid et al. 2005). Since the 

expression of NAC82 is temporally and spatially regulated and associated with 

epigenetic variability of flanking sequences, we hypothesised that NAC82 may be 

regulated via distal regulatory sequence binding.  
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Figure 4.3: Chromatin accessibility and epigenomic profile of regions flanking 
NAC82. (A) iNOMe data compared with other accessibility methods shows that 
NAC_82 is present in an accessible region identified by different chromatin 
accessibility methods. The DMR is highlighted by a black rectangle and the associated 
gene is highlighted by a red rectangle. The orange track represents the ATAC signal, 
the blue track represents DNase signal, the green track represents iNOMe signal, 
while the gene expression is highlighted in the maroon peaks (B) Methylation status 
of DRE_NAC82 in different methylation contexts and tissue types (Wibowo et al. 
2016) along epigenetic marks such as H3K27me3 and H3K27me1 (Data from Jose 
Marcos’s lab, unpublished). The DMR shows higher methylation in roots than shoots 
(Differentially methylated) and is H3K27me3 depleted. The DMR is highlighted by a 
black rectangle and the associated gene is highlighted by a red rectangle. The red 
track indicates methylation in CG context, the green indicates CHG context and the 
blue track indicated CHH methylation. RNA expression, HeK27me3 and H3K27me1 
are shown by the maroon, the grey and the dark green tracks respectively. Both 
images have been created by integrative genome viewer (IGV) (Robinson et al. 2011)  
 

 

 

NAC82 DRE_NAC82 

DRE_NAC82 
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Figure 4.4: NAC82 displays temporal spatial differences in gene expression. A 
snapshot of expression pattern of NAC domain containing protein 82 expression 
during various stages in A. thaliana published by AtGeneExpression (Schmid et al. 
2005). NAC82 is ubiquitously expressed in all tissue types, however, the expression 
is very high in shoot apex inflorescence and at the leaf senescence stage. Image 
modified from http://bar.utoronto.ca/eplant/. 
 

 

 

 

 

 

 

 

 

 



 94 

4.3.2.1. Hypermethylation of DRE-NAC82 leads to pleiotropic developmental 

phenotypes  

RdDM mediated targeted methylation using dsRNA has already been used for 

transcriptional gene silencing in plants (Kasai and Kanazawa 2013). RdDM induced 

methylation can also be used modify the epigenetic state of the targeted genomic 

regions. Modified epigenetic state of the targeted region established by RdDM 

pathway is maintained in successive generations by endogenous methyltransferases 

(Chan et al. 2005). There is evidence that tissue specific differences in cytosine 

methylation result in phenotypic variation (Angers et al. 2010). This indicates that 

phenotypic traits can be controlled by altering the epigenetic state of the DNA. To 

test if epigenetic modification of a distal regulatory element may result in phenotypic 

or molecular changes, we hypermethylated DRE_NAC82 by using a RNAi hairpin 

(2.19). Analysis of the transgenic plants carrying a DRE_NAC82 inverted repeat 

hairpin revealed that the targeted methylation of this region resulted in phenotypic 

abnormalities (Figure 4.5). Hypermethylation of DRE-NAC82 resulted in significantly 

reduced rosette size and late flowering (n=30, t-test, p-value ≤ 0.05) (Figure 4.5B, 

4.5C). The leaves appeared necrotic in 3/10 plants and asymmetrical rosette was 

observed in 6/10 hypermethylated plants (quantitative data not included) (Figure 

4.5A).  
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Figure 4.5: Hypermethylation of DRE_NAC82 leads to various growth and 
developmental phenotypes (A) Hypermethylation of DRE_NAC82 resulted in 
pleiotropic growth abnormalities (necrotic leaves, asymmetrical rosette appearance) 
in hypermethylated line (MeC_DRE-NAC82) vs control (WT). (B) Flowering is 
significantly delayed (n=30, t-test, p-value ≤ 0.05) in hypermethylated line 
(MeC_DRE-NAC82) compared to control (WT). (C) Rosette size is significantly smaller 
(n=30, t-test, p-value  ≤ 0.05) in MeC_DRE-NAC82 compared with the control (WT). 
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4.3.2.2. Hypermethylation of DRE-NAC82 leads to downregulation of NAC82  

The phenotypic abnormalities observed in DRE_NAC82 lines indicate underlying 

molecular changes. We hypothesise that these molecular changes are related to 

NAC82 expression, the gene flanking DRE_NAC82.  

NAC domain TFs are conserved in many plant species and have been implicated in a 

variety of abiotic stresses such as cold and drought (Nakashima et al., 2012, (Aida et 

al. 1997). A number of studies have revealed that the NAC proteins family are also 

involved in range of developmental stages such as apical meristem, seed and embryo 

development and a variety of other physiological processes (Duval et al. 2002; Kim 

et al. 2007; Kim et al. 2008). In Arabidopsis, NAC82 has been found to mediate 

environmental stress response by reversing the proliferation defects caused by 

perturbation in ribosomal biogenesis (Ohbayashi et al. 2017).  

Since the NAC82 is highly expressed in inflorescence shoot apex, the delayed 

flowering in hypermethylated DRE_NAC82 line, is likely to be caused by mis-

regulation of NAC82. To test this hypothesis, DRE-NAC82 hypermethylated and WT 

lines were subjected to RT-qPCR analysis using two independent lines. The data 

supports the view that NAC82 is downregulated in DRE_NAC82 hypermethylated 

lines (Figure 4.6). This supports our hypothesis that NAC82 expression is regulated 

by a distal regulatory element and that the expression of this gene is modulated 

epigenetically. To carry out functional characterisation of the region genetically, we 

attempted to generate a targeted deletion of DRE_NAC82 by CRISPR/Cas9. 

Unfortunately, due to the presence of tRNA in the close proximity of DRE-NAC82, we 

could not find highly efficient sgRNAs in the available intergenic region to generate 

the deletion lines. 
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Figure 4.6: NAC82 expression can be regulated by hypermethylation of 
DRE_NAC82. Hypermethylation of DRE_NAC82 leads to downregulation of NAC82. 
Expression analysis of NAC82 was carried out in 2 independent MeC_DRE_NAC82 
lines with two replicates compared to control (WT) expression. 
 
 
 
 
 
 
 
 
Figure 4.6: NAC82 expression is regulated by hypermethylation of DRE_NAC82. 
Hypermethylation of DRE_NAC82 leads to significant downregulation (one-way 
ANOVA, p-value  ≤ 0.05) of NAC82. Expression analysis of NAC82 was carried out in 
2 independent MeC_DRE_NAC82 lines (only MeC_DRE_NAC82-1 is shown in Figure 
4.5A) compared to control (WT) expression. 
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4.3.3. DRE_HRGP1 is a putative distal regualtory element  

A second potential regulatory region that could be epigentically controlled is a 270bp 

DNA sequence present approximately 1kb downstream of a proline-rich extensin-

like gene hydroxyproline-rich glycoprotein (HRGP1). The accessibility of DRE_HRGP1 

was confirmed by our iNOMe data but was not detected by other chromatin 

accessibilty datasets (Figure 4.7A). This region shows tissue specific diffrences in 

DNA methylation and also enriched for both H3K27me3 and H3K27me1 methylation 

(Figure 4.7B). The dynamic epigentic state of the region indicates that it might be 

involved in regualtion of tissue-specific gene expression. The gene flanking this 

region, HRGP1 belongs to the extensin-like protein family, members of which are 

important components of the primary cell wall and crucial for cell wall strength and 

flexibility (Lamport and Northcote 1960). Gene expression data by Schmid et al 

(2005) has revealed that HRGP1 is highly expressed in mature pollen and embryonic 

roots (Figure 4.8). Since the expression of HRGP1 is temporally and spatially 

regulated and associated with epigenetic variability of flanking sequences, we 

hypothesised that it may be regulated by distal regulatory sequence.  
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Figure 4.7: Chromatin accessibility and epigenomic profile of regions flanking 
DRE_HRGP1 region iNOMe data compared with other accessibility methods shows 
that DRE_HRGP1 is present in an accessible region identified by iNOMe only. The 
DMR is highlighted by a black rectangle and the associated gene is highlighted by a 
red rectangle. The orange track represents the ATAC signal, the blue track represents 
DNase signal, the green track represents iNOMe signal, while the gene expression is 
highlighted in the maroon peaks (B) Methylation status of DRE_HRGP1 in different 
methylation contexts and tissue types (Wibowo et al. 2016) along epigenetic marks 
such as H3K27me3 and H3K27me1 (Data from Jose Marcos’s lab, unpublished). The 
DMR shows higher methylation in leaves than roots (Differentially methylated) and 
is moderately enriched for both H3K27me3 and H3K27me1. The DMR is highlighted 
by a black rectangle and the associated gene is highlighted by a red rectangle. The 
red track indicates methylation in CG context, the green indicates CHG context and 
the blue track indicated CHH methylation. RNA expression, HeK27me3 and 
H3K27me1 are shown by the maroon, the grey and the dark green tracks 
respectively. Both images have been created by integrative genome viewer (IGV) 
(Robinson et al. 2011)  
 

HRGP1 DRE_HRGP1 

HRGP1 DRE_HRGP1 
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Figure 4.8: HRGP1 is spatially expressed in roots and pollen. A snapshot of 
expression pattern proline-rich extension-like gene encoding hydroxyproline-rich 
glycoprotein (HRGP1) during various stages in A. thaliana, published by 
AtGeneExpression (Schmid et al. 2005). HRGP1 is highly expressed in mature pollen 
and embryonic root. Image modified from http://bar.utoronto.ca/eplant/. 
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4.3.3.1. Hypermethylation of DRE_HRGP1 leads to growth and reproductive 

abnormalities   

To assess if the DRE_HRGP1 region acts as a regualtory element, we genetrated a 

targeted hypermethylated line using a RNAi inverted repeat hairpin (2.19). We found 

that hypermethyalted DRE_HRGP1 lines displayed pleitropic developmental 

abnormalities, from plants failing to reach fertility that was associated with 

abnormal anther development and reduced silique size (Figure 4.9A, 4.9B, 4.9C).  

 

Figure 4.9: Targeted hypermethylation of DRE_HRGP1 leads to pleiotropic growth 
and reproductive defects. (A) DRE-HRGP1, the plants show rounded leaves and 
developmental delays as compared to WT. (B) DRE-HRGP1 plants show shorter 
anther size (qualitative data only included). (C) DRE-HRGP1 plants show shorter 
silique phenotype (qualitative data only included) compared to WT plants. 
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We, then decided to carry out targeted deletion of the DRE linked to HRGP1 to see 

if it affects regulation of its expression. We employed the CRISPR/Cas9 system for 

the targeted deletion of the DRE. Cas9 is RNA guided endonuclease associated with 

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), involved in 

defense mechanism of Streptococcus pyogenes against certain viruses (Deltcheva et 

al. 2011). Due to its ability to cut DNA, it has been heavily used in genome 

modification in different organisms.  

For the targeted deletion of HRGP1, sgRNAs were designed both upstream and 

downstream of DRE_HRGP1 flanking regions (Figure 4.11A). Targeted deletion was 

confirmed by PCR analysis of the region (Figure 4.11B). Sequencing of the 

DRE_HRGP1CR lines confirmed a 420bp deletion (Figure 4.11C). Surprisingly, DRE-

HRGP1CR line did not exhibit any obvious developmental or reproductive 

abnormalities (Figure 4.12 A, 4.12B, 4.12C). 

We, then predicted that the developmental abnormalities observed in 

hypermethylated DRE_HRGP1 may have been caused by mis-regulation of HRGP1. 

To test this hypothesis, DRE-HRGP1 hypermethylated and WT lines were subjected 

qRT-PCR analysis. However, due to the highly repetitive nature of the sequence of 

this gene, we could not design suitable assays.  
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Figure 4.10: CRISPR/Cas9 targeted deletions for DRE_HRGP1 (A) Schematic 
representation of the DRE_HRGP1 region: sgRNAs were designed on the flanking 
regions upstream and downstream of DRE_HRGP1 (indicted by the position of Cas9). 
Genotyping oligos were designed outside of each flanking region (indicated by blue 
arrows). (B) PCR analysis to confirm deletion: expected size of PCR band is 
approximately 450 bp: WT control was run in lane 1 and in lane 2-6 test samples 
were run (positive deletion in lane 2,5 and 6) (C) Sequencing results for DRE_HRGP1 
deletion. sgRNA sequence shown on the top highlighted in grey. 
 
 
 
 
 
 
 

Cas9 Cas9 
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Figure 4.11: Phenotypic characterisation of DRE_HRGP1 deletion. Targeted 
deletion of DRE-HRGP1 was carried out by CRISPR cas9 and phenotypes were 
analysed (qualitatively). (A) Developmentally normal plants after targeted deletion 
of DRE-HRGP1. (B) No changes in anther development in DRE-HRGP1CR-1 compared 
to WT plants (C) No differences in silique size in DRE_HRGP1CR-1 compared to WT 
plants. 
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4.3.3.2. Functional characterisation of HRGP1 

Although we were unable to carryout expression assay to establish that HRGP1 is 

regulated by a distal regulatory element. Since this gene is highly expressed at pollen 

development stage, the fertility-related abnormalities observed in hypermethylated 

DRE_HRGP1 lines strongly suggested mis-regulation of HRGP1.  

To test the hypothesis that HRGP1 expression is regulated by a distal regulatory 

element, we generated RNAi lines by expressing inverted hairpins targeting the 

coding region of HRGP1 (2.19). Our data shows that knocking down HRGP1 

expression resulted in similar developmental abnormalities (shorter anther and 

silique size) to those observed in DRE_HRGP1 hypermethylated lines (Figure 4.10 B, 

4.10C). HRGP1-RNAi line exhibited defects in anther development, reduced silique 

size and poor sed production (Figure 4.10 B, 4.10C). Our data (only qualitative data 

included here) suggests that HRGP1 is regulated by a distal regulatory element and 

is potentially involved in regualtion of develomental patways. 
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Figure 4.12 HRGP1_RNAi line show reproductive defects. (A) RNAi_HRGP1 showing 
visibly shorter siliques compared to WT plant (B) RNAi_HRGP1) exhibit abnormal 
anther development (image kindly sent by our collaborator Cora MacAlister, 
University of Michigan (C) (RNAi_HRGP1 plants show shorter silique size compared 
to WT plants. (Only qualitative data was collected for this experiment) 
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4.3.4. APOLO acts as distal regulator of PID 
 
Our chromatin accessibility assay iNOMe identified APOLO, a lncRNA present 5kb 

upstream of PINOID (PID), encoding a kinase which regulates polar localisation of 

auxin in roots (Huang et al. 2010). Intriguingly, APOLO was identified as accessible 

by iNOMe, but not by other chromatin accessibility datasets (Figure 4.13A). This 

genomic region also shows tissue specific differences in DNA methylation in all 

contexts and is enriched for H3K27me1 marks (Figure 4.13B). Differences in 

epigenetic modifications also indicate that the region is dynamically accessible and 

a good candidate for long-distance regulation of the flanking genes.  

APOLO expression is regulated in response to auxin, a phytochrome involved in 

primary axis formation, trophic movements of roots and shoots and root meristen 

patterning (Vanneste and Friml 2009). Expression data by Schmid et al (2005) 

showed that APOLO is highly expressed in inflorescence shoot apex (Figure 4.14). 

Impaired auxin transport in roots results in root hair abnormalities and gravitropic 

defects (Ganguly et al. 2010). A previous study has shown that hypermethylation of 

APOLO, dynamicallly controls PID and downregulation of APOLO results in altered 

root growth similar to pid mutants (Ariel et al., 2014). The study also revealed that 

the H3K27me3 in this region is dynamically regulatedted which results in dynamic 

regualtion of chromatin loop formation encompassing the PID promotor.  
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Figure 4.13. Chromatin accessibility and methylation profile at APOLO region (A)  
iNOMe data compared with other accessibility methods shows that APOLO is present 
in an accessible region identified by iNOMe only. The DMR is highlighted by a black 
rectangle and the associated gene is highlighted by a red rectangle. The orange track 
represents the ATAC signal, the blue track represents DNase signal, the green track 
represents iNOMe signal, while the gene expression is highlighted in the maroon 
peaks (B) Methylation status of APOLO in different methylation contexts (Wibowo 
et al. 2016) and tissue types along epigenetic marks such as H3K27me3 and 
H3K27me1 (Data from Jose Marcos’s lab, unpublished). The DMR shows higher 
methylation in roots than leaves (Differentially methylated) and is enriched for both 
H3K27me3 and H3K27me1. The DMR is highlighted by a black rectangle and the 
associated gene is highlighted by a red rectangle. The red track indicates methylation 
in CG context, the green indicates CHG context and the blue track indicated CHH 
methylation. RNA expression, HeK27me3 and H3K27me1 are shown by the maroon, 
the grey and the dark green tracks respectively. Both images have been created by 
integrative genome viewer (IGV) (Robinson et al. 2011) 
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Figure 4.14: PINOID (PID) is differentially expressed spatially and temporally. A 
snapshot of expression pattern of PID (At2g34650) during various stages in A. 
thaliana published by AtGeneExpression (Schmid et al. 2005). The data shows that 
APOLO is highly expressed in inflorescence shoot apex. Image modified from 
http://bar.utoronto.ca/eplant/. 
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4.3.4.1. Targeted deletion of APOLO leads to changes in root hair growth  

Since the the fuction of APOLO has already been established by RNAi 

hypermethylation, we focused our efforts on generating genetic lesion at APOLO. To 

do this, we carried out targeted deletions of APOLO using CRISPR/cas9. sgRNAs were 

designed both upstream and downstream flanking regions (Figure 4.15A). PCR 

analysis confirmed that apoloCR lines had heritable deletions (Figure 4.15B) and 

sequencing validated our results by confirming a ~450bp deletion of the APOLO locus 

(Figure 4.15C). Once APOLO deletion was confirmed, we carried out a phenotypic 

analysis. Because APOLO regulates PID expression, we focused our analysis on root 

growth phenotypes. Our data shows that compared to WT, two independent apoloCR 

lines displayed longer hair root hair length. Notably, PID overexpression results in 

suppressed root-hair growth (Lee and Cho 2006) and therefore, this data was in line 

with the known rule. This indicated that the APOLO region plays a crucial role in 

regulating root hair growth.  
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Figure 4.15: CRISPR/Cas9 targeted deletions for APOLO. (A) Schematic 
representation of APOLO region. sgRNAs were designed on the flanking regions 
upstream and downstream of APOLO (indicated by the position of Cas9). Genotyping 
oligos were designed outside of each flanking region (indicated by blue arrows). (B) 
PCR analysis to confirm deletion: expected size of PCR band is approximately 450 bp. 
WT band is shown in lane 1 apoloCR-1 deletion lines are shown in band 2-8 and 
apoloCR-2 lines are shown in lane 9-16. (C) Sequencing results for two independent 
deletion lines, both lines share same sgRNA sequence on the upstream (‘A’ sgRNA) 
of the APOLO region but downstream (‘B’ sgRNA) is different for each line.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cas9 Cas9 
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Figure 4.16 Longer root hair length in APOLO CRISPR deletion lines (A)Root hair 
length of Two APOLO mutants, apoloCR-1 and apoloCR-2 was compared with WT Col-
0 plants. Both CRISPR deletion lines show significantly longer root hair length 
compared to WT (n=40, t-test and p-value  ≤ 0.05) (B) apoloCR-1, apoloCR-2 and WT 
root images showing longer root hair length (scale bar is set at 1000um).  
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4.4. Discussion  
 
Long range regulation gene expression is very complex and it is dependent on many 

factors including transacting proteins, epigenetic mechanisms and spatial 

organisation of chromatin (Narlikar and Ovcharenko 2009a). Long-range regulatory 

elements, especially enhancers have been studied to some extent in animals, and 

they have been found to regulate a variety of functions (Kleinjan and van Heyningen 

2005). However, long-range regulatory elements in plants are poorly understood as 

spatial organisation of functional elements remains unclear due to presence of an 

extra layer of epigenetic regulation through the RdDM pathway (Matzke et al. 2015). 

Chromatin accessibility is an important genomic feature and has been used to 

characterise the regulatory landscape in a variety of organisms (Bell et al. 2011).   

Intergenic sequences generally have stable DNA methylation, but some regulatory 

regions show cell-specific differences in methylation, suggesting that cell specific 

gene expression can be regulated by the epigenetic regulation of these regions 

(Weber and Schübeler 2007). DNA methylation at intergenic regions is found to be 

dynamically regulated by other epigenetic marks and plays an important role in gene 

expression regulation (Wu et al. 2010). Taking the above facts into consideration, we 

have intersected our iNOMe chromatin accessibility data with whole-genome -omics 

data to identify putative intergenic functional elements. Through genetic and 

epigenetic manipulation of the identified genomic regions, we corroborated a direct 

regulatory relationship between genes and putative regulatory elements present in 

the flanking regions.  

Hypermethylation of a distal regulatory element of NAC82, resulted in pleiotropic 

growth and developmental defects. A previous study has revealed that NAC82 is 
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involved in mitigating ribosomal stress and cell proliferation defects in plants. 

(Ohbayashi et al. 2017). The epigenetic modification of the identified regulatory 

region resulted in downregulation of NAC82. These findings demonstrated the 

functional role of this DRE in NAC82-related regulation.  

Another putative regulatory element was found in the regions flanking a proline-rich 

extension-like gene encoding hydroxyproline-rich glycoprotein (HRGP1). Epigenetic 

modification of this region resulted in reproductive organ defects and fertility. We 

observed similar phenotypic defects in knockdown plant lines of HRGP1. Previous 

studies have found extensin-like proteins to be associated with the regulation of 

reproductive organ development (Goldman et al. 1992). Thus, our data shows that 

the regulatory region flanking HRGP1 is has a functional significance in reproductive 

development regulatory pathways. What mechanisms underpins crosstalk between 

these regions is not yet known. One possible explanation is that methylation of DRE 

can allow the recruitment of histone methyltransferases. Histone methyl 

transferases such as KRYTONITE(KYP) can epigenetically modify histones, which 

results in chromatin compaction, making it inaccessible for TF recruitment (Du et al. 

2015). Another study also confirmed the formation of heterochromatin due to 

hypermethylation of the distal enhance region of FLOWERING LOCUS T (FT), which 

lead to significant delayed flowering (Zicola et al. 2019b).  

Regulatory regions generally harbour binding sites for multiple transcription factors 

and enhancers have been shown to interact with their target genes by making 

physical contacts (Krivega and Dean 2012). Deletion of the regulatory region can 

directly affect gene expression (Adrian et al. 2010). Targeted deletion allows 

functional characterisation of distal regulatory elements either by removing of TFs 
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binding sites or by disrupting 3D chromatin loop structures. Along these lines, we 

carried out targeted deletion of a regulatory lncRNA implicated in the auxin 

transport regulatory pathway. Our data shows that deletion of this regulatory region 

lead to phenotypic changes related to those seen with mis-regulation of auxin 

transport. APOLO influences 3D chromatin topology of the region by forming a loop 

by RdDM induced methylation resulting in dynamic control of auxin regulator, PID 

(Ariel et al., 2014). Targeted deletion of the region may have disrupted its loop 

structure, resulting in mis-regulation of the flanking gene PID. Studying 3D chromatin 

organisation is gaining more focus to help explain the role of long-distance 

interactions. A recent study employing this technique in maize has revealed that 

thousands of genes interact with intergenic regions and that some regulatory regions 

are gene-specific while others can regulate multiple targets (Peng et al. 2019). This 

indicates that distal regulation is a more prevalent in plant genomes than previously 

thought and characterising the role of distal regulatory is vital to help explain 

complex expression patterns in plants. 

4.5. Conclusion 

Our study concludes that gene expression can be modulated through modification 

of distal regulatory elements. Targeted methylation and genetic modification are 

efficient tools to characterise functional elements. However, to precisely elucidate 

interplay between the gene and its distal element, input from high resolution 

chromatin visualisation is vital. We anticipate that this approach could be used to 

modify traits related to stress tolerance in crops to improve food security. 
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5. General Discussion 
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5.1. Mapping chromatin accessibility in Arabidopsis using iNOMe-seq  

In this study we have demonstrated that iNOMe is a powerful technique to 

simultaneously map chromatin accessibility, nucleosome occupancy and DNA 

methylation in plants (Figure 5.1) without relying on lengthy cell/nuclei isolation or 

enzymatic optimization processes (Chereji et al. 2017; Buenrostro et al. 2015). Like 

other chromatin accessibility methods previously developed, iNOMe is suited to 

identify accessible regions of chromatin where non canonical regulatory regions can 

be searched for. These regulatory regions are critical to understand the dynamics of 

transcriptional control that underline biological processes such as differentiation, 

growth, development and response to environmental signals (Adrian et al. 2010; 

Gibney and Nolan 2010). Regulatory sequences can be accessible or hindered based 

on the temporal or spatial organisation of the chromatin state of the cell (Allis and 

Jenuwein 2016). Mapping accessibility can be very powerful technique to identify 

distal regulatory elements that do not necessarily display any constraints in their 

direction, position or sequence and that are very challenging otherwise to identify 

based on comparative genomic analysis (Dickmeis and Müller 2005).  

Current methods employed for chromatin accessibility rely on DNA fragmentation 

or transposase insertion, which requires optimisation and poses bias towards 

specific sequences. On the other hand iNOMe relies only on the presence of GpC 

dinucleotides, thus is technically simpler and does not show bias towards specific 

sequences (Rhie et al. 2018). 
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Figure 5.1 Schematic illustration of iNOMe-seq (A) MCViPI was cloned into a ß-
estradiol based inducible system to generate in vivo expression line in A. thaliana (B) 
GC motifs in the regions of accessible chromatin are methylated, whilst MCViPI 
access in areas of condensed chromatin is restricted hence no methylation in those 
regions. (C) Methylated DNA is detected to generate chromatin accessibility profiles.  
 

5.1.1. iNOMe-seq vs other methodologies  

When we compared iNOMe-seq to other methodologies used to map chromatin 

accessibility, we found that iNOMe outperformed all the other because of its 

sensitivity but also because it can be used to detect chromatin, nucleosome 

occupancy and methylome in a single step. iNOMe efficiently discovered accessible 

regions that overlap with genes, TSS and Pol II binding sites. Since these regions are 

marked by nucleosome depletion, the identification is more straightforward than 

using other chromatin accessibility methods.  

iNOMe is also able to estimate nucleosome positioning and determine nucleosome 

phasing, which adds another layer of information about the level of accessibility at 

particular regulatory regions (Kelly et al. 2012). Nucleosome positioning has a strong 

correlation with chromatin folding, thus iNOMe data could also aid in the 
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identification of differences in DNA topology for different chromatin compartments 

in the genome (Blank and Becker 1996). How the basic nucleosome structure is 

organised in a higher order structure remains unknown, however, differences in 

nucleosome positioning can be compared between different cell types to reveal the 

transition between active and silent chromatin (Iyer 2012). For example, chromatin 

accessibility at the regulatory lincRNA APOLO, was only detectable by iNOMe but not 

with other chromatin accessibility methods.The genomic region where APOLO is 

located has been shown to have dynamic accessibility due to the formation of 

chromatin loop after deposition of repressive histone marks (Ariel et al. 2014). It is 

thus possible that iNOMe allows to mark chromatin over a period of time, this will 

enable to detect highly dynamic changes in chromatin which contrast with other 

methodologies used for chromatin profiling.   

5.1.2. Single cell analyses 

Plant tissues, like in other eukaryotes, are complex in nature and consist of 

numerous cell types. Each cell type has a distinct epigenetic and transcriptional state 

owing to the specialized role of that cell in particular tissue. Therefore, single cell 

genomic analysis are critical to fully understand the molecular complexity present in 

different tissues (Schwartzman and Tanay 2015). DNA methylome analyses have 

been recently used for single cell epigenomic analyses in isolated mouse and human 

cells (Guo et al. 2015; Schwartzman and Tanay 2015). Single cell iNOMe analysis 

could reveal the relationship between DNA methylation and chromatin accessibility, 

but more importantly the link between epigenetic and transcriptional dynamics in 

response to developmental and environmental cues. Recent single-cell studies in 

mammals combining chromatin accessibility, DNA methylation and transcriptional 
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data have revealed novel associations between different layers of gene regulation 

(Clark et al. 2018). Therefore, the use of iNOMe-seq in plant cells for the combined 

analysis of chromatin accessibility and epigenetic analysis should be straightforward. 

5.1.3. Application to other ecotypes and species 

Plants grow in a variety of habitats and has gone through evolutionary process to 

adapt to a variety of environmental conditions over many generations (Bouchabke 

et al. 2008). Arabidopsis genotypes collected from different habitats show 

remarkable genetic and phenotypic variation (Koornneef et al. 2004). iNOMe could 

be used for comparative epigenomic analyses, using different Arabidopsis 

genotypes, to decipher mechanisms underpinning adaptive responses under 

different environments. Plants are sessile organisms, thus their response to 

environmental fluctuations is underpinned by dynamic changes in chromatin (Lämke 

and Bäurle 2017). Chromatin regulation relies on dynamic changes in nucleosome 

positioning, either through displacement or removal, as a result of the accumulation 

of epigenetic marks in response to environmental signals (Crisp et al. 2016; Zentner 

and Henikoff 2013). Therefore, a methodology such as iNOMe is capable of 

simultaneously quantifying different components of chromatin regulation is 

fundamental to understand the role of chromatin dynamics in plant adaptation to 

environmental stress. This methodology could be translated to economically 

valuable crops to identify regulatory elements implicated in valuable traits, thus 

enabling genomic assisted selection or to modify these genomic regions by targeted 

genetic/epigenetic manipulation.  
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5.2. Functional characterisation of distal regulatory elements  

Eukaryotic genomes exhibit highly complex and tightly regulated gene expression, 

which largely depends on the effective interaction between regulatory elements and 

associated transcription factors (McBryant et al. 2006). Generally, proximal 

promoter elements are sufficient for the binding of transcriptional machinery and to 

initiate gene expression, however the involvement of distal regulatory elements can 

enhance or suppress gene expression through unknown mechanisms (Marand et al. 

2017).   

There has been growing interest in recent years to understand the mechanism(s) 

implicated in long-range gene regulation due to the rapid development in high 

throughput genome sequencing, genome and epigenome editing techniques and a 

growing realisation of the crucial role played by three-dimensional chromatin 

organisation (Long et al. 2016). Distal regulatory elements, especially enhancers, 

tend to exhibit sequence conservation and have been primarily identified following 

the study of TF binding sites (He et al. 2009). However, this approach is not sufficient 

to predict all enhancers and/or other regulatory elements such as suppressors and 

insulators. Several studies have identified a variety of regulatory elements in plants, 

most of them implicated in the regulation of development and stress responses 

(Adrian et al. 2010). Distal regulatory elements in plants have been predominantly 

found in open chromatin regions sensitive to DNase I treatment (Shlyueva et al. 

2014). Another important genomic feature that offers functional contribution to 

regulatory activity is the presence of DNA methylation and/or post-translational 

histone modifications at regulatory sequences (Taberlay et al. 2014, Kouzarides, 
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2007). Although enhancers are generally present in nucleosome depleted regions 

(NDRs), nucleosomes in regions flanking NDRs are post-translationally modified by 

methyl or acetyl transferases (Kouzarides and Berger 2007). Recent genome-wide 

analyses using these defined chromatin features have identified thousands of long-

distance functional regions in mammal, however their functional characterisation 

remains challenging (Hwang et al. 2013; Eveland et al. 2014). It is now well-

acknowledged that the dynamic relationship between epigenetic modifications and 

distal regulatory elements is critical for fine transcriptional regulation (Rowley et al. 

2017). 

In this study we have identified putative distal regulatory elements by intersecting 

chromatin accessibility, whole genome DNA methylation and expression data. We 

have employed targeted genetic and epigenetic modifications to define the function 

of the identified regulatory elements. We have taken advantage of the RNA directed 

DNA methylation (RdDM) pathway that exists in Arabidopsis (Chan 2008) using RNA 

hairpins (RNAi) for the targeted hypermethylation of genome target sequences.  

RNAi-induced methylation has been similarly used in Arabidopsis to elucidate the 

role of distal regulatory elements (Zicola et al. 2019a). Study of the transcriptional 

profile of genes linked to newly identified DREs revealed that they are involved in 

long-distance modulation of gene expression. We also found that the genetic and/or 

epigenetic modification of these DREs resulted in developmental and reproductive 

differences, thus suggesting that targeted modification of these genomic regions 

could be an efficient tool to generate phenotypic variability in plants. Although our 

study strongly supports that gene expression in plants is influenced by the genetic 

and epigenetic status of DREs, the precise mechanisms underlying this regulation 
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remains unknown. Recent insights in to three dimensional chromatin organization in 

eukaryotes has revealed that chromosomes are present in dynamic topological 

domains where distal interactions take place between enhancers and their target 

genes (Li et al. 2018). By integrating chromosome capture data with our iNOMe data, 

it could be possible to enhance our understanding of regulatory mechanisms. Recent 

work in plants has shown that single distal regulatory element can regulate multiple 

target genes (Zhu et al. 2015) and that plants with complex genomes and that have 

undergone human domestication are rich in DREs (Li et al. 2019) The regulatory 

function of the candidate DREs identified in plant could be easily tested using 

reporter assays similar to ß-glucuronidase (GUS) assay, used to validate the enhancer 

function (Yan et al. 2019).  

Distal regulatory elements are also present as redundant elements, acting as buffers 

to lethal effects of genetic variation (Wittkopp and Kalay 2012). Functional 

characterisation of long-distance regulatory elements could unravel the evolutionary 

forces that drives differences between plant genotypes. We foresee that the 

targeted genetic/epigenetic modification of conserved distal regulatory sequences 

will be fundamental to understand and manipulate these processes. 

5.3. Future Work 

Future work could be directed to applying iNOMe-seq in different Arabidopsis 

ecotypes and hybrids, which may pave the way to translating this methodology to 

other plant species. Using iNOMe-seq to investigate the dynamics in chromatin 

organisation between ecotypes or species would allow the identification of 

regulatory regions that are evolutionary conserved.  
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In addition, developing high throughput methodologies for the targeted genetic and 

epigenetic manipulation of potential regulatory elements will be critical for the 

functional characterisation of these genomic regions and to ascertain their role in 

plant development. 

5.4. Conclusion  

In this study we have developed in Arabidopsis, a novel method (iNOMe) to 

simultaneously map chromatin accessibility, DNA methylation and nucleosome 

positioning. iNOMe is a versatile technique, which can be used to gain a better 

understanding of chromatin accessibility in variety of cell/specie types and aid with 

the identification of genomic regions involved in development and responses to 

environmental conditions. Moreover, our iNOMe method could be used to reveal 

the dynamics of chromatin organisation during the developmental transition from 

undifferentiated to highly specialised cells (Figure 5.2).  

 

 

 

 

 

 

 

 

Figure 5.2: Applications of iNOMe-seq. iNOMEe-seq allows us to examine chromatin in 
number of cell/tissue types and species. Boxes highlighted in blue are related iNOMe-seq 
application to single-cell based analyses, the green boxes highlight iNOMe applications in 
different species and ecotypes and the white boxes highlight application in different 
settings/environments. 
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Our study also confirmed that the distal regulatory regions can be modified 

genetically and epigenetically to finely tune gene expression that might result in 

phenotypic variability. Identifying functional elements and their associated 

epigenetic signatures then characterising them will shed light on the regulatory 

components underpinning developmental decisions. The ability to epigenetically 

modify accessible chromatin identified with iNOMe could aid in the generation of 

novel epimutations that could be stably inherited over generations. These novel 

epimutations could be linked to beneficial phenotypes and therefore selected to 

enhance valuable traits in economically crop plants.  
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Appendix for chapter 2 
 

Table 7.1 DNA and protein sequence for M.CViP1 

 
DNA 
Sequence 
Nuclear 
localisation 
signal (NLS) 
M.CViPI 
sequence  
3xHA tag 
 

ATGGCCCCCAAAAAGAAACGAAAAGTGATGACATTGAAAGCATTAGAACTTTTT
GCTGGGATTGCAGGCATTACGCATGGCCTACGAGGCTTCGTAGAGCCCGTCGCG
TTTGTTGAGATCAATAAGGATGCGCAGGAATTCCTTTCAACCAAATTTCCAGACA
AGCCAGTCTTCGATGACGTAACTAAATTCAGTAAGCGTGACTTCGACGAGCCTA
TTGATATGATCACAGGAGGGTTTCCGTGCACAGGTTTCTCAATCGCCGGGAAGA
GGAACGGCTTTGAGCATGCCGAGAGTGGTCTATTTGGTGAGGTAGTAAGAATT
ACCAAAGAATATATGCCCAAGATGGTCTTTCTAGAAAACTCTGGCATGCTCTCAC
ATAAGTACAACCTGGACATCGTGATCAGGAGTATGGACAGCTTGGGTTACGATT
GTCGATGGGTAACGTTACGTGCAACGGTCGTGGGGGCATTACATACCCGTCATA
GGTGGTTCTGTCTGTGCACACGAAAAGATCACATACGTGAAACTCTAATCTGCG
ACAGGGAAGTAACAAAATTCGACTGGGAGAATGACAGGCCTCCAATTCAAGTT
GACAGCCGATCATACGAGAATAGTAGGTTGGTAAGATTTGCCGGTTACAGTGT
GGTCCCAGATCAGATCAGATATGCATTCACCGGCCTATATACAGGAAATTTTTCA
CCGAGTTTCAGTAAAACGCTTGTCCCTGGCAGTTTAGAGGGTAGTATATGCTTCA
ACGAGGACAAAATTACAAATGGTTACTACAAAGATGGCGTGTATTACGAATTCG
TCAGGACAGAAACGCACCGAGAACCCGTTAATATTTTGCTCACGCCGAGGGAGA
TACCCAATAAGCATAACGGTAAGAAACTGCTGACTTTGCCGGTGACCAAGAGGT
ATTGGTGCACGCCTTGTGCAAGCTATGGTAAAGGTACAGCAGGAGGGAGAGTG
CTAACAGACCGAAGCAGTCACAGCTTGCCGACGCAGGTTAAATTTTCCCCTGAG
GGCGAAGACGGTAAACACCTCTCTGGCAAATTCTGCGCTTGGTTAATGGGCTAC
GATAAGGAGTATCTGGGAAACTTACTGGAGTATTACCCTTACGATGTGCCCGAC
TACGCATATCCATATGACGTCCCAGATTACGCCTATCCTTATGACGTGCCAGACT
ATGCCTAG  
 

Protein 
sequence  
Nuclear 
localisation 
signal (NLS) 
M.CViPI 
sequence  
3xHA tag 
 

MAPKKKRKVMTLKALELFAGIAGITHGLRGFVEPVAFVEINKDAQEFLSTKFPDKPV
FDDVTKFSKRDFDEPIDMITGGFPCTGFSIAGKRNGFEHAESGLFGEVVRITKEYMP
KMVFLENSGMLSHKYNLDIVIRSMDSLGYDCRWVTLRATVVGALHTRHRWFCLCT
RKDHIRETLICDREVTKFDWENDRPPIQVDSRSYENSRLVRFAGYSVVPDQIRYAFT
GLYTGNFSPSFSKTLVPGSLEGSICFNEDKITNGYYKDGVYYEFVRTETHREPVNILLT
PREIPNKHNGKKLLTLPVTKRYWCTPCASYGKGTAGGRVLTDRSSHSLPTQVKFSPE
GEDGKHLSGKFCAWLMGYDKEYLGNLLEYYPYDVPDYAYPYDVPDYAYPYDVPDY
AStop 
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Table 7.2: Hairpin sequences for hypermethylated lines and RNAi lines 
 

Plant line  Hairpin sequence 
NAC82-DRE CACTACTGGTACCCATTTTTTTTTGAAAATGCAAAACTCAAAAGTCCC

TCGCTGGGTTAACGACGACGATTCAATTGCACGAATCCAATAAACTTT
GATCCCGAAAGGAACATGATTCAAACATTAAGCAATCTTATCACAAA
TTCAAAA 

 
HRGP1-DRE CAAAACTTTCGCGAGCCCGAACTTTCTTAGCTAAACAAAAAGAA

ATCTAATATAAAAATAAGAAGAAGAAACAACCAAGGAACGATA
AGAGGTAATTATGCTATAAAAAGCGGTCACTTGTCTTGGTTCTC
GAGGATAGAAATCAAGTTTGCACAATCGGAAGCGAAAATACCA
AACATCTTGCCGGTAGAGATCATGCATTAATTCCATTGCCCATA
ACAGATAATCAAATTCTGCATGGAGCGACAATAAACTCCGACG
GCTACTTCT 
 
 

HRGP1_RNAi CCTCTCCGCCACCGTTGTATTCTTCACCGCTTCCTGAAGTTGAATACA
AGACTCCTCCACTACCATACGTCGACAGTTCCCCACCACCAACTTACA
CACCAGCTCCTGAAGTGGAATACAAGTCTCCACCACCACCATATGTCT
ATAGTTCTCCACCCCCACCAACATA 
CTCCCCATCTCCAAAGGTTG 
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Figure 7.1: pEN-2x-Chimera to clone two sgRNAs in a single vector, each gRNA 
expressed under a separate U6 promoter. 
 

 
Figure 7.2: pUbi-cas9, A vector expressing Cas9 under Ubiquitin promoter. Used for 
protoplast transfection to test the efficiency of synthetic sgRNAs.  
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Figure 7.3: pJaw-OLE1, A binary vector, capable of generating an inverted RNAi 
hairpin   
 
 
 
 
 
 
 
 

 
 
Figure 7.4: pEC1-Cas9, a binary vector expressing Cas9 under an egg cell specific 
promoter (EC1) 
 
 

 

 

 

 

 

Table 7.3 List of oligos used in study 
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Oligo name Sequence (5’-3’) 

 

Description 

MCViP1_RT_fw 
 

ACAGACCGAAGCAGTCACAG 
 

M.CViPI expression 

analysis  MCViPI_RT_rev TAGCCCATTAACCAAGCGCA 
 

 

AT5g09330-qPCR-F   GACGACAAAGTACTGACGCAG NAC82 Expression 

analysis  AT5g09330-qPCR-R   AGTCCTCTTCCTTAAACGGAGC  

PP2AA3.FP  TAACGTGGCCAAAATGATGC 

 

qPCR Housekeeping 

Primer for qPCR PP2AA3.RP  GTTCTCCACAACCGCTTGGT 

 

 

NH-AP-CR F AGGTCCACATCATCGGCTAAA APOLO genotyping 

NH-AP-CR R TGCAGATTGTATTGACTGCGT  

NH9-CR F TATGAGACGACAATTCCCAAAGA DRE_HRGP1 

genotyping NH9-CR R TGTAGTGCGCTTGCGACAT  

NH-AT2g34655-A1 F ATTGGTCCACACGATCTCACATGT SgRNA-A1 for APOLO 
deletion 

NH-AT2g34655-A1 R AAACACATGTGAGATCGTGTGGAC  

NH-AT2g34655-A2 F ATTGGATTTACACACACTATTCGT SgRNA-A2 for APOLO 
deletion 

NH-AT2g34655-A2 R AAACACGAATAGTGTGTGTAAATC  

NH-AT2g34655-B1 F ATTGACCTAGAGACAGCATATTAA SgRNA-B1 for APOLO 
deletion 

NH-AT2g34655-B1 R AAACTTAATATGCTGTCTCTAGGT  

NH-AT2g34655-B2 F ATTGCATAGTGGTAAACCCTATAA SgRNA-B2 for APOLO 
deletion 

NH-AT2g34655-B2 R AAACTTATAGGGTTTACCACTATG  

NH-At3g54590-A1 F ATTGCGTAAGGGACAAAAATATTT 
 

SgRNA-A1 for 
DRE_HRGP1 

deletion NH-At3g54590-A1 R AAATAAATATTTTTGTCCCTTACG  

NH-At3g54590-B1 F ATTGGGCTCTGAGCGGATATAGTT 
 

S RNA-B1 for 
DRE_HRGP1 

deletion NH-At3g54590-B1 R AAACAACTATATCCGCTCAGAGCC  

NH-At3g54590-B2 F ATTGGATCTCTGTTTAATGCGCCT 
 

SgRNA-B2 for 
DRE_HRGP1 

deletion NH-At3g54590-B2 R AAACAGGCGCATTAAACAGAGATC  
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Figure 7.5: Basic strategy of gene editing in Arabidopsis via CRISPR/cas9 system. 
For each region to be deleted, sgRNAs were designed and cloned into a binary vector 
carrying CRISPR/cas9 system. The constructs were delivered into plants via 
Agrobacterium transformation after testing them in protoplast. T1 generation is 
screened for somatic deletions through PCR and the in the second generation the 
plants lacking Cas9 activity are screened for heritable changes and propagated to 
generate homozygous lines with stable deletions.  
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Appendix for chapter 3 
 
 
 

 
Figure 7.6 Methylation across chromosome 1 in root tissues in GCG, GCHG and 
GCHH contexts with 24-hour ß-estradiol induction. Black line represents Control 
plants with ß-estradiol treatments. Green line represents with mock treatment. Red 
line represents M.CViPI-1a plants with ß-estradiol treatment and orange line 
represents M.CViPI-1a plants with mock treatment. 
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Figure 7.7.: Methylation profile of all chromosome in leaf tissue in GCG, GCHG 
and GCHH contexts with 6-hour ß-estradiol induction. No detectable differences 
in cytosine methylation in all contexts in induced plants at 6-hour induction time 
compared to control plants. The red line indicates methylation profile of CE 
samples (Control) and black line represents methylation profile of ß-estradiol 
induced line.   
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Figure 7.8: Methylation profile of all chromosome in leaf tissue in GCG, GCHG and 
GCHH contexts with 12-hour ß-estradiol induction. Cytosine methylation increased 
in all contexts at 12-hour induction time compared to control plants. The red line 
indicates methylation profile of CE samples (Control) and black line represents 
methylation profile of ß-estradiol induced line.   
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Figure 7.9: Methylation profile of all chromosome in leaf tissue in GCG, GCHG and 
GCHH contexts with 24-hour ß-estradiol induction. Cytosine methylation increased 
in all contexts at 24-hour induction time compared to control plants. The red line 
indicates methylation profile of CE samples (Control) and black line represents 
methylation profile of ß-estradiol induced line.   
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Figure 7.10: Methylation profile of all chromosome in root tissue in GCG, GCHG and 
GCHH contexts with 6-hour ß-estradiol induction. Cytosine methylation increased 
in all contexts at 6-hour induction time compared to control plants. The red line 
indicates methylation profile of CE samples (Control) and black line represents 
methylation profile of ß-estradiol induced line.   
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Figure 7.11: Methylation profile of all chromosome in root tissue in GCG, GCHG and 
GCHH contexts with 12-hour ß-estradiol induction. Cytosine methylation increased 
in all contexts at 12-hour induction time compared to control plants. The red line 
indicates methylation profile of CE samples (Control) and black line represents 
methylation profile of ß-estradiol induced line.   
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Figure 7.12: Methylation profile of all chromosome in root tissue in GCG, GCHG and 
GCHH contexts with 24-hour ß-estradiol induction. Cytosine methylation increased 
in all contexts at 24-hour induction time compared to control plants. The red line 
indicates methylation profile of CE samples (Control) and black line represents 
methylation profile of ß-estradiol induced line.   
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Figure 7.13: Accessible chromatin regions found by iNOMe compared to ATAC in 
leaf samples with 12-hour ß-estradiol induction. The orange circle indicates the 
length of accessible chromatin detected by iNOMe only (Mb) whereas the 
turquoise indicates accessible chromatin identified by ATAC only (Mb). The overlap 
of both circles shows the length of accessible chromatin found by both methods.  
 
 
 
 
 
 
 
 
 
 

Figure 7.14: Accessible chromatin regions found by iNOMe compared to ATAC- in 
root samples with 6-hour ß-estradiol induction. The orange circle indicates the 
length of accessible chromatin detected by iNOMe only (Mb) whereas the turquoise 
indicates accessible chromatin identified by ATAC only (Mb). The overlap of both 
circles shows the length of accessible chromatin found by both methods.  

 

 

 
 
 
 

Figure 7.15: Accessible chromatin regions found by iNOMe compared to ATAC in 
root samples with 12-hour ß-estradiol induction. The orange circle indicates the 
length of accessible chromatin detected by iNOMe only (Mb) whereas the turquoise 
indicates accessible chromatin identified by ATAC only (Mb). The overlap of both 
circles shows the length of accessible chromatin found by both methods.  
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Figure 7.16: Accessible chromatin regions found by iNOMe compared to ATAC in 
root samples with 24-hour ß-estradiol induction. The orange circle indicates the 
length of accessible chromatin detected by iNOMe only (Mb) whereas the turquoise 
indicates accessible chromatin identified by ATAC only (Mb). The overlap of both 
circles shows the length of accessible chromatin found by both methods.  
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