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Abstract

We introduce the probabilistic sequential ma-
trix factorization (PSMF) method for factoriz-
ing time-varying and non-stationary datasets
consisting of high-dimensional time-series. In
particular, we consider nonlinear Gaussian
state-space models where sequential approx-
imate inference results in the factorization
of a data matrix into a dictionary and time-
varying coefficients with potentially nonlin-
ear Markovian dependencies. The assumed
Markovian structure on the coefficients en-
ables us to encode temporal dependencies
into a low-dimensional feature space. The
proposed inference method is solely based on
an approximate extended Kalman filtering
scheme, which makes the resulting method
particularly efficient. PSMF can account
for temporal nonlinearities and, more impor-
tantly, can be used to calibrate and estimate
generic differentiable nonlinear subspace mod-
els. We also introduce a robust version of
PSMF, called rPSMF, which uses Student-t
filters to handle model misspecification. We
show that PSMF can be used in multiple con-
texts: modeling time series with a periodic
subspace, robustifying changepoint detection
methods, and imputing missing data in several
high-dimensional time-series, such as measure-
ments of pollutants across London.
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1 INTRODUCTION

The problem of r-rank factorization of a data matrix
Y ∈ Rd×n as

Y ≈ CX (1)

with C ∈ Rd×r the dictionary matrix and X ∈ Rr×n
the coefficients, has received significant attention in
past decades in multimedia signal processing and ma-
chine learning under the umbrella term of matrix fac-
torization (MF) (Lee and Seung, 1999, 2001; Mairal
et al., 2010). The classical method for solving prob-
lems of the form (1) is nonnegative matrix factorization
(NMF) (Lee and Seung, 1999), which is proposed for
nonnegative data matrices and obtains nonnegative
factors. NMF and similar methods (e.g., singular value
decomposition (SVD)) have been the focus of intensive
research (Lin, 2007; Berry et al., 2007; Ding et al., 2008;
Cai et al., 2010; Févotte and Idier, 2011) and has found
applications in several fields, such as document cluster-
ing (Shahnaz et al., 2006), audio analysis (Smaragdis
and Brown, 2003; Ozerov and Févotte, 2009), and video
analysis (Bucak and Günsel, 2009). This work was ex-
tended to general MF problems for real-valued data
and factors, which found many applications including
collaborative filtering (Rennie and Srebro, 2005) and
drug-target prediction (Zheng et al., 2013).

The problem in (1) was originally tackled from an opti-
mization perspective, i.e., minimizing a cost d(Y,CX)
over C and X (Lee and Seung, 1999, 2001; Lin, 2007;
Mairal et al., 2010). Another promising approach has
been through a probabilistic model by defining priors
on C and X. This was explored by, e.g., Cemgil (2009)
with a Poisson-based model solved using variational
inference (which reproduces NMF when the cost func-
tion is the Kullback-Leibler divergence) and in, e.g.,
Mnih and Salakhutdinov (2008) and Salakhutdinov and
Mnih (2008) with a Gaussian model for the real-valued
case solved via Markov chain Monte Carlo (MCMC).
Naturally, online versions of these methods have re-
ceived significant attention as they enable scaling up to
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larger datasets. On this front, a number of algorithms
have been proposed that are based either on stochastic
optimization (e.g., Bucak and Günsel, 2009; Mairal
et al., 2010; Gemulla et al., 2011; Mensch et al., 2016)
or on a probabilistic model for online inference (Wang
et al., 2012; Paisley et al., 2014; Akyildiz and Míguez,
2019). However, these methods are generally for i.i.d.
data and cannot exploit the case where the columns of
Y possess time dependency.

The success of MF in the i.i.d. data case motivated
the development of matrix factorization methods for
time-dependent data. In this case, the problem can be
formulated as inferring parameters of a dynamical sys-
tem or a state-space model (SSM), with a linear obser-
vation model C. This problem is also known as system
identification (Katayama, 2006). When the columns of
X (i.e. the hidden signal) also evolve linearly the prob-
lem reduces to that of inferring parameters of a linear
SSM. This can be solved by maximum-likelihood esti-
mation (MLE) through, e.g., expectation-maximization
(EM) either offline (Ghahramani and Hinton, 1996; El-
liott and Krishnamurthy, 1999) or online (Cappé and
Moulines, 2009; Cappé, 2011), or with gradient-based
methods (Andrieu et al., 2005; Kantas et al., 2015).
In this vein, Yildirim et al. (2012) address the NMF
problem by introducing a SSM with a Poisson likeli-
hood where the inference is carried out with sequential
Monte Carlo (SMC). In a similar manner Sun et al.
(2012) propose an SSM-based approach where the dic-
tionary is estimated using the EM algorithm. Similar
MLE-based nonnegative schemes that also use SSMs at-
tracted significant attention (e.g. Mohammadiha et al.,
2013, 2014).

Although MLE estimates are consistent in the infinite
data limit for general SSMs (Douc et al., 2011), EM-
based methods are prone to get stuck in local minima
(Katayama, 2006) and provide only point estimates
rather than full posterior distributions. As an alterna-
tive to the EM-based approaches, optimization-based
methods were also explored (e.g. Boots et al., 2008;
Karami et al., 2017; White et al., 2015) which again
result in point estimates. If the transition model for
the coefficients X exhibits nonlinear dynamics while
the observation model is linear (by the nature of MF),
the problem reduces to parameter estimation in nonlin-
ear SSMs (Särkkä, 2013). The MLE approach is again
prominent in this setting using EM or gradient meth-
ods (Kantas et al., 2015). However, when inference
cannot be done analytically this results in the use of
SMC (Doucet et al., 2000) or particle MCMC methods
(Andrieu et al., 2010) (see Kantas et al. (2015) for an
overview). Unfortunately, these methods suffer in the
high-dimensional case (Bengtsson et al., 2008; Snyder
et al., 2008) which makes Monte Carlo-based methods

unsuitable for solving the MF problem. Optimization-
based approaches that formulate a cost function with
temporal regularizers have also been studied (e.g. Yu
et al., 2016; Shi et al., 2016; Liu and Hauskrecht, 2016;
Ayed et al., 2019).

An alternative to the MLE or optimization-based ap-
proaches is to follow a Bayesian approach where a
prior distribution is constructed over the parameters
of the SSM, see, e.g., Särkkä (2013). The goal is then
to obtain the posterior distributions of the columns of
X and of C. This is also of interest when priors are
used as regularizers to enforce useful properties such as
sparsity (Cemgil, 2009; Schmidt et al., 2009). In this
context, an extension of the NMF-like decompositions
to the dynamic setting was considered by Févotte et al.
(2013), where the authors followed a maximum-a poste-
riori (MAP) approach. We refer to Févotte et al. (2018)
for a literature review of temporal NMF methods. How-
ever, these methods are batch (offline) schemes and do
not return a probability distribution over the dictionary
or the coefficients. Joint posterior inference of C and
X in a fully Bayesian setting is difficult as it usually
requires sampling schemes (Salakhutdinov and Mnih,
2008). To the best of our knowledge, a fully Bayesian
approach for sequential (online) inference for matrix
factorization that also scales well with the problem
dimension has not been proposed in the literature.

Contribution. In this work, we propose the proba-
bilistic sequential matrix factorization (PSMF) method
by framing our matrix factorization model as a nonlin-
ear Gaussian SSM. Our formulation is fully probabilis-
tic in the sense that we place a matrix-variate Gaussian
prior on the dictionary and use a general Markov model
for the evolution of the coefficients. We then derive a
novel approximate inference procedure that is based
on extended Kalman filtering (Kalman, 1960; McLean
et al., 1962) and results in a fast and efficient scheme.
Our method is derived using numerical approximations
to the optimal inference scheme and leverages highly
efficient filtering techniques.

In particular, we derive analytical approximations and
do not require a sampling procedure to approximate
the posterior distributions. The inference method we
provide is explicit and the update rules can be easily
implemented without further consideration on the prac-
titioner’s side. We also provide a robust extension of
our model, called rPSMF, for the case where the model
is misspecified and derive a corresponding inference
scheme that adopts Student’s t-filters (Girón and Ro-
jano, 1994; Tronarp et al., 2019). Our methods can be
easily tailored to the application at hand by modifying
the subspace model, as the necessary derivatives can
be easily computed through automatic differentiation.
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This work is structured as follows. In Sec. 2 we in-
troduce our probabilistic state-space model and the
robust extension. Next we develop our tractable in-
ference and estimation method in Sec. 3. In Sec. 4,
our method is empirically evaluated in different scenar-
ios such as learning structured subspaces, multivariate
changepoint detection, and missing data imputation.
Sec. 5 concludes the paper.

Notation We denote the d× d identity matrix by Id
and write N (x;µ,Σ) for the Gaussian density over
x with mean µ and covariance matrix Σ. Simi-
larly, T (x;µ,Σ, λ) is the multivariate t distribution
with mean µ, scale matrix Σ, and λ degrees of free-
dom, and IG(s;α, β) is the inverse gamma distribu-
tion over s with shape and scale parameters α and
β. Further, MN (X;M,U, V ) denotes the matrix-
variate Gaussian with mean-matrix M , row-covariance
U , and column-covariance V . Sequences are writ-
ten as x1:n = {x1, . . . , xn} and for a matrix Z, z =
vec(Z) denotes vectorization of Z. Recall that if
C ∼MN (C;M,U, V ), then c ∼ N (c; vec(M), V ⊗ U)
where c = vec(C) and ⊗ the Kronecker product (Gupta
and Nagar, 1999). With yk and xk we respectively de-
note the k-th column of the matrices Y and X.

2 THE PROBABILISTIC MODEL

We first describe the SSM, which consists of observa-
tions (yk)k≥1 ∈ Rd, latent coefficients (xk)k≥0 ∈ Rr,
and a latent dictionary matrix C ∈ Rd×r, as follows

p(C) =MN (C;C0, Id, V0), (2)
p(x0) = N (x0;µ0, P0), (3)

pθ(xk|xk−1) = N (xk; fθ(xk−1), Qk), (4)
p(yk|xk, C) = N (yk;Cxk, Rk). (5)

Here, fθ : Rr × Θ → Rr is a nonlinear mapping that
defines the dynamics of the coefficients with Θ ⊂ Rdθ
the parameter space, and (Qk, Rk)k≥1 are respectively
the noise covariances of the coefficient dynamics (4)
and the observation model (5). The initial covariances
of the coefficients and the dictionary are denoted by
P0 and V0, respectively.

Intuitively, the model (2)–(5) is a dimensionality re-
duction model where the dynamical structure of the
learned subspace is explicitly modeled via the tran-
sition density (4). This means that inferring C and
(xk)k≥0 will lead to a probabilistic dimensionality re-
duction scheme where the dynamical structure in the
data will manifest itself in the dynamics of the co-
efficients (xk)k≥0. One main difficulty for applying
standard schemes in this case is that we assume C
to be an unknown and random matrix, therefore, the
(extended) Kalman filter cannot be applied directly

for inference. To alleviate this problem, we formulate
the prior in (2) with a Kronecker covariance structure,
which enables us to update (conditional on xk) the
posterior distribution of C analytically (Akyildiz and
Míguez, 2019).

2.1 The case of the misspecified model

In the model (2)–(5), when the practitioner does not
have a good idea of how to set the hyperparameters
or when they are misspecified, the resulting inference
scheme may perform suboptimally. To remedy this sit-
uation and to demonstrate the flexibility of our frame-
work, we additionally propose a robust version of our
model by introducing an inverse-gamma-distributed
scale variable, s, and the model

p(s) = IG(s;λ0/2, λ0/2) (6)
p(C | s) =MN (C;C0, Id, sV0)), (7)
p(x0 | s) = N (x0;µ0, sP0), (8)

pθ(xk |xk−1, s) = N (xk; fθ(xk−1), sQ0), (9)
p(yk |xk, C, s) = N (yk;Cxk, sR0), (10)

Note that in this model only the initial noise co-
variances Q0 and R0 need to be specified, in con-
trast to the model in (2)–(5). By marginalizing
out the scale variable s in the multivariate normal
distributions we obtain multivariate t distributions
(e.g., p(x0) =

∫
N (x0;µ0, sP0)IG(s;λ0/2, λ0/2) ds =

T (x0;µ0, P0, λ0), see Bishop (2006)). This technique
has previously been used for robust versions of the
Kalman filter (Girón and Rojano, 1994; Basu and Das,
1994; Roth et al., 2017, 2013; Tronarp et al., 2019). We
follow the approach of Tronarp et al. (2019) to update
Qk and Rk at every iteration. These updates to the
noise covariances lead to robustness in light of model
misspecification, as discussed in Tronarp et al. (2019).

3 INFERENCE AND ESTIMATION

Here we derive the algorithm for performing sequential
inference in the model (2)–(5). Inference in the ro-
bust model (6)–(10) is largely analogous, but necessary
modifications are given in Sec. 3.2.3. We first present
the optimal inference recursions and then describe our
approximate inference scheme.

3.1 Optimal sequential inference

We give the optimal inference recursions for our model
when θ is assumed to be fixed, and thus drop θ for
notational clarity (parameter estimation is revisited
in Sec. 3.2.4). To define a recursive one-step ahead
procedure we assume that we are given the filters
p(xk−1|y1:k−1) and p(c|y1:k−1) at time k − 1.



Probabilistic Sequential Matrix Factorization

Prediction. Using the model (2)–(5) we compute
the predictive distribution as

p(xk|y1:k−1) =

∫
p(xk−1|y1:k−1)p(xk|xk−1) dxk−1.

(11)

We note that given p(xk−1|y1:k−1) this step is indepen-
dent of the dictionary.

Update. Given this predictive distribution of xk, we
can now define the update steps of the method. In
contrast to the Kalman filter, we have two quantities
to update: xk and c. We first define the incremental
marginal likelihood as

p(yk|y1:k−1) =

∫∫
p(yk|c, xk)p(xk|y1:k−1)

p(c|y1:k−1) dxk dc. (12)

Next, we define the optimal recursions for updating
the dictionary C and coefficients (xk)k≥1.
Dictionary Update: Given p(yk|y1:k−1), we can first
update the dictionary as follows

p(c|y1:k) = p(c|y1:k−1)
p(yk|c, y1:k−1)

p(yk|y1:k−1)
(13)

where

p(yk|c, y1:k−1) =

∫
p(yk|c, xk)p(xk|y1:k−1) dxk. (14)

Coefficient Update: We also update the coefficients at
time k (independent of the dictionary) as:

p(xk|y1:k) = p(xk|y1:k−1)
p(yk|xk, y1:k−1)

p(yk|y1:k−1)
(15)

where

p(yk|xk, y1:k−1) =

∫
p(yk|xk, c)p(c|y1:k−1) dc. (16)

Unfortunately, these exact recursions are intractable.
In the next section, we make these steps tractable by
introducing approximations and obtain an efficient and
explicit inference algorithm.

3.2 Approximate sequential inference

We start by assuming a special structure on the model.
First, we note that the matrix-Gaussian prior in (2)
can be written as p(c) = N (c; c0, V0 ⊗ Id). The
Kronecker structure in the covariance will be key to
obtain an approximate and tractable posterior dis-
tribution with the same covariance structure. To
describe our inference scheme we assume that we
are given p(c|y1:k−1) = N (c; ck−1, Vk−1 ⊗ Id) and

p(xk−1|y1:k−1) = N (xk−1;µk−1, Pk−1). Departing
from these two distributions it is not possible to ex-
actly update p(c|y1:k) and p(xk|y1:k). As we introduce
several approximations we will denote approximate den-
sities with the symbol p̃(·) instead of p(·) to indicate
that the distribution is not exact.

3.2.1 Prediction

In the prediction step, we need to compute
(11). This is analytically tractable for fθ(x) =
Ax. More specifically, when fθ(x) = Ax, given
p(xk−1|y1:k−1) = N (xk−1;µk−1, Pk−1), we obtain
p(xk|y1:k−1) = N (xk; µ̄k, P̄k) where µ̄k = Aµk−1 and
P̄k = APk−1A

> +Qk. However, if fθ(x) is a nonlinear
function, no solution exists and the integral in (11) is
intractable. In this case, we can use the well-known ex-
tended Kalman update (EKF). This update is based on
the local linearization of the transition model (McLean
et al., 1962; Anderson and Moore, 1979), which gives
p̃(xk|y1:k−1) = N (xk; µ̄k, P̄k) with µ̄k = fθ(µk−1) and
P̄k = FkPk−1F

>
k + Qk where Fk = ∂fθ(x)

∂x

∣∣
x=µ̄k−1

is a
Jacobian matrix associated with fθ. The unscented
Kalman filter of Julier and Uhlmann (1997) can also
be used in this step when it is not possible to compute
Fk or when fθ is highly nonlinear. However, since fθ
is a modelling choice (analogous to choosing a kernel
function in Gaussian Processes) this scenario is unlikely
in practice and the EKF will generally suffice.

3.2.2 Update

For the update step, we are interested in updating both
xk and C. Given the approximate predictive distribu-
tion p̃(xk|y1:k−1), we would like to obtain p̃(c|y1:k) and
p̃(xk|y1:k). We first describe the update rule for the
dictionary C, then derive the approximate posterior of
xk. Given the prediction, update steps of C and xk
are independent to avoid the repeated use of the data
point yk.

Dictionary Update. To obtain p̃(c|y1:k), we note
the integral (14) can be computed as

p(yk|c, y1:k−1) = N (yk;Cµ̄k, Rk + CP̄kC
>). (17)

This closed form is not helpful to us since this distribu-
tion plays the role of the likelihood in (13). Since both
the mean and the covariance depend on C, the update
(13) is intractable. To solve this problem, we first re-
place CP̄kC> ≈ Ck−1P̄kC

>
k−1 in (17). This enables a

tractable update where the likelihood is of the form
N (yk;Cµ̄k, Rk +Ck−1P̄kC

>
k−1). Finally, we choose the

Gaussian with a constant diagonal covariance that is
closest in terms of KL-divergence and obtain (see, e.g.,
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Fernandez-Bes et al. (2015))

p̃(yk|c, y1:k−1) = N (yk;Cµ̄k, ηk ⊗ Id), (18)

where ηk = Tr(Rk + Ck−1P̄kC
>
k−1)/d. With this ap-

proximation the update for the new posterior p̃(c|y1:k)
can be computed analytically, given formally in the
following proposition based on Akyildiz and Míguez
(2019).

Proposition 1. Given p̃(c|y1:k−1) =
N (c; ck−1, Vk−1 ⊗ Id) and the likelihood
p̃(yk|c, y1:k−1) = N (yk;Cµ̄k, ηk ⊗ Id) the approximate
posterior distribution is p̃(c|y1:k) = N (c; ck, Vk ⊗ Id),
where ck = vec(Ck) and the posterior column-
covariance matrix Vk is given by

Vk = Vk−1 −
Vk−1µ̄kµ̄

>
k Vk−1

µ̄>k Vk−1µ̄k + ηk
for k ≥ 1, (19)

and the posterior mean Ck of the dictionary C can be
obtained in matrix-form as

Ck = Ck−1 +
(yk − Ck−1µ̄k)µ̄>k V

>
k−1

µ̄>k Vk−1µ̄k + ηk
for k ≥ 1.

(20)

Proof. See Supp. B. �

We note the main gain of this result is that we obtain
matrix-variate update rules for the sufficient statistics
of the posterior distribution. This is key to an efficient
implementation of the method.

Coefficient Update. To update the posterior den-
sity of coefficients, we derive the approximation of
p(yk|y1:k−1, xk) by integrating out c, as in (16). First,
we have the following result.

Proposition 2. Given p(yk|c, xk) as in (5) and
p(c|y1:k−1) = N (c; ck−1, Vk−1 ⊗ Id), we obtain

p(yk|y1:k−1, xk) = N (yk;Ck−1xk, Rk + x>k Vk−1xk ⊗ Id).
(21)

Proof. See Supp. C. �

We note that in practice this quantity will be approx-
imate as, e.g., p̃(c|y1:k−1) (and other quantities) will
be approximate. However, the likelihood in (21) with
its current form is not amenable to exact inference in
(15), as it contains xk in both mean and covariance.
Therefore, we approximate (21) by

p̃(yk|y1:k−1, xk) = N (yk;Ck−1xk, R̄k), (22)

where R̄k = Rk + µ̄>k Vk−1µ̄k⊗ Id. With this likelihood,
we can obtain the approximate posterior using (15) by

an application of the Kalman update (Anderson and
Moore, 1979), as p̃(xk|y1:k) = N (xk;µk, Pk) with

µk = µ̄k + P̄kC
>
k−1(Ck−1P̄kC

>
k−1 + R̄k)−1(yk − Ck−1µ̄k),

(23)

Pk = P̄k − P̄kC>k−1(Ck−1P̄kC
>
k−1 + R̄k)−1Ck−1P̄k.

(24)

Thus we see that the update equations for both the dic-
tionary and the coefficients can be easily implemented
by straightforward matrix operations.

Remark 1. When R̄k is diagonal the Woodbury ma-
trix identity (Woodbury, 1950) can be used to accel-
erate the computation of (Ck−1P̄kC

>
k−1 + R̄k)−1. We

apply this technique in our experiments in Section 4.4.

3.2.3 Inference in the robust model

For the robust model in (6)–(10) inference and es-
timation proceeds analogously. We provide the full
derivation in Supp. F. As a consequence of the multi-
variate t distribution the degrees of freedom in the
update equations increase by d at every iteration,
which we write as λk = λk−1 + d. Let ∆2

1,k =

(yk − Ck−1µ̄k)>(Ck−1P̄kC
>
k−1 + R̄k)−1(yk − Ck−1µ̄k)

and ωk = (λk−1 +∆2
1,k)/(λk−1 +d). Then the reparam-

eterization of the scale variable introduced in Tronarp
et al. (2019) results in s0 = s and sk = ω−1

k sk−1, as
well as the updates Qk = ωkQk−1 and Rk = ωkRk−1

for the noise covariances. While the mean updates for
the coefficients and the dictionary remain unchanged in
the robust model, the update of the coefficient covari-
ance Pk and the dictionary column-covariance Vk are
affected. The Student’s t update for Pk results in multi-
plication of the right-hand side of (24) by ωk. Now let
ρ̄k = µ̄>k Vk−1µ̄k + ηk and ∆2

2,k = ‖yk − Ck−1µ̄k‖2/ρ̄k.
Analogously, the right-hand side of (19) is multiplied by
a factor ϕk = (λk−1 + ∆2

2,k)/(λk−1 + d). See Supp. F
for full details.

3.2.4 Parameter estimation

To estimate the parameters of fθ in (4), we need to
solve

θ? ∈ argmax
θ∈Θ

log pθ(y1:n), (25)

using gradient-based schemes (Kantas et al., 2015). We
first present an offline gradient ascent scheme for when
the number of observations is relatively small and then
introduce a recursive variant that can be used in a
streaming setting.

Iterative estimation. When the number of data
points is limited, it is possible to employ an iterative
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Algorithm 1 Iterative and recursive PSMF
1: Initialize γ, θ0, C0, V0, µ0, P0, (Q)k≥1, (R)k≥1.
2: for i ≥ 1 do . iterative version
3: C0 = Cn, µ0 = µn, P0 = Pn, V0 = Vn.
4: for 1 ≤ k ≤ n do
5: Compute predictive mean of xk:

µ̄k = fθi−1(µk−1) or µ̄k = fθk−1(µk−1)
6: Compute predictive covariance of xk:

P̄k = FkPk−1F
>
k +Qk, with Fk = ∂f(x)

∂x

∣∣
x=µ̄k−1

7: Update dictionary mean Ck using (20)
8: Update dictionary covariance Vk with (19)
9: Update coefficient mean µk using (23)
10: Update coefficient covariance Pk with (24)
11: Update parameters with (27) . recursive version
12: Update parameters with (26) . iterative version

procedure using multiple passes over data by imple-
menting

θi = θi−1 + γ∇ log p̃θ(y1:n)
∣∣∣
θ=θi−1

, (26)

at the i’th iteration. We refer to this approach as iter-
ative PSMF. Since computing ∇ log pθ(y1:n) is not pos-
sible due to the intractability, we propose to use an ap-
proximation ∇ log p̃θ(y1:n) =

∑n
k=1∇ log p̃θ(yk|y1:k−1)

that can be computed during forward filtering and
removes the need to store all gradients. We remark
that it is possible to obtain two approximations of the
incremental marginal likelihood pθ(yk|y1:k−1) by either
integrating out c in (18) or xk in (22). However, the
resulting quantities are closely related and we choose
the former path for computational reasons. We re-
fer to Sec. 3.2.5 for the derivation of the approximate
log-marginal likelihood log p̃θ(yk|y1:k−1).

Recursive estimation. For long sequences, it is in-
efficient to perform (26). Instead, the parameter can
be updated online during filtering by fixing θ = θk−1

and updating

θk = θk−1 + γ∇ log p̃θ(yk|y1:k−1)
∣∣∣
θ=θk−1

. (27)

We call this approach recursive PSMF. This is an ap-
proximate recursive MLE procedure for SSMs (Kantas
et al., 2015). This procedure has guarantees for finite-
state space HMMs, but its convergence for general
SSMs is an open problem (Kantas et al., 2015). The
description of iterative and recursive PSMF is given in
Algorithm 1.

Remark 2. The gradient steps in (26) and (27) can
be replaced by modern optimizers to improve conver-
gence, such as Adam (Kingma and Ba, 2015). We take
advantage of this in Section 4.1 below.

Figure 1: Fitting rPSMF on synthetic data with t-
distributed noise. Observed time series (blue) with
unobserved future data (yellow) and the reconstruction
from the model (red).

3.2.5 Approximating the marginal likelihood

Consider the likelihood (18) which equals
p̃θ(yk|y1:k−1, c) = N (yk;Cfθ(µk−1), ηk ⊗ Id). Given
p̃(c|y1:k−1) = N (c; ck−1, Vk−1 ⊗ Id), the negative
log-likelihood is given by (see Supp. D)

− log p̃θ(yk|y1:k−1)
c
=
d

2
log
(
‖fθ(µk−1)‖2Vk−1

+ ηk

)
+

1

2

‖yk − Ck−1fθ(µk−1)‖2

ηk + ‖fθ(µk−1)‖2Vk−1

(28)

where c
= denotes equality up to some constants that are

independent of θ, hence irrelevant for the optimization.
Eq. (28) can be seen as an optimization objective that
arises from our model. We can compute the gradi-
ents of (28) using automatic differentiation for generic
coefficient dynamics fθ.

4 EXPERIMENTS

We evaluate our method in several experiments. In the
first two experiments, we show how PSMF can simul-
taneously learn the dictionary and the parameters of a
nonlinear subspace model on synthetic and real data.
The third experiment illustrates how our method can
be beneficial for change point detection. Finally, our
fourth experiment highlights how our method outper-
forms other MF methods for missing value imputation
(modifications to handle missing data in our method
are given in Supp. E). Additionally, in Supp. H and
Supp. I we present experiments on the convergence of
our method and recursive parameter estimation, respec-
tively. Code to reproduce our experiments is available
in an online repository.1

1See: https://github.com/alan-turing-institute/
rPSMF.

https://github.com/alan-turing-institute/rPSMF
https://github.com/alan-turing-institute/rPSMF
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4.1 A synthetic nonlinear periodic subspace

To demonstrate the ability of the algorithm to learn
a dictionary and a structured subspace jointly, we
choose x0 = µ0 and P0 = 0 and use xk = fθ(xk−1) =
cos(2πθk + xk−1), where θ ∈ Rr+ and Qk = 0 for all
k ≥ 1. This defines a deterministic subspace with
highly periodic structure. We choose d = 20 and
r = 6 and generate the data from the model with
θ? = 10−3 · [1, 2, 3, 4, 5, 6]. We explore both Gaussian
and t-distributed measurement noise (the latter using
3 degrees of freedom) and both PMSF and rPSMF. We
initialize C0 randomly and draw θ0 from a uniform dis-
tribution on [0, 0.1]r. We set V0 = v0⊗Ir with v0 = 0.1
and use λ0 = 1.8 for rPSMF. We furthermore use iter-
ative parameter estimation using the Adam optimizer
(Kingma and Ba, 2015) with standard parameteriza-
tion, and re-initialize V0, R0, and Q0 at every (outer)
iteration (see Supp. G.1 for details). The generated
data can be seen in Fig. 1. The task is thus to identify
the correct subspace structure by estimating θ as well
as to learn the dictionary matrix C.

Fig. 1 shows a run with t-distributed noise fitted by
rPSMF. We can see that even though the data ex-
hibits clear outliers the model successfully learns both
the underlying generative model and its parameters.
Expanded results for PSMF are available in Supp. G.1.

4.2 Forecasting real-world data using a
nonlinear subspace

To illustrate the advantage of specifying an appropriate
subspace model, we explore weather-related features in
a dataset on air quality in Beijing (Liang et al., 2015),
obtained from the UCI repository (Bache and Lichman,
2013). To simplify the problem the dataset is sampled
at every 100 steps, resulting in n = 439 observations
and d = 3 variables (dew point, temperature, and
atmospheric pressure). We compare PSMF using a
random walk subspace model, xk = f(xk−1) = xk−1,
against a periodic subspace model xk = fθ(xk−1) =
θ1 sin(2πθ2k+θ3xk−1)+θ4 cos(2πθ5k+θ6xk−1). In both
settings we use r = 1, run iterative PSMF with 100
iterations, and withhold 20% of the data for prediction.
Fig. 2 illustrates the benefit of an appropriate subspace
model on forecasting performance and confirms that
PSMF can recover nonlinear subspace dynamics in
real-world datasets.

4.3 Learning representations for robust
multivariate changepoint detection

We generate time series with d = 20 dimensions where
only 3 exhibit a structural change. In addition to
standard Gaussian noise we contaminate 5% of the

(a) Random walk subspace model.

(b) Periodic subspace model.

Figure 2: Comparison of random walk and periodic
subspace models on a time series of weather measure-
ments in Beijing. This shows that with the appropriate
subspace model, PSMF correctly identifies the nonlin-
ear dynamics of the data and accurately extrapolates
into the future. Colors as in Fig. 1.

Table 1: Detection accuracy of a changepoint within
a window of length 30 using data and GP features,
against the degrees of freedom of the t-distributed
noise on ±5% of measurements. Averaged over 1000
different synthetic datasets with r = 10.

Degrees of freedom of t-contamination

1.5 1.6 1.7 1.8 1.9

PELT-PSMF 85% 89% 92% 94% 95%
PELT-Data 76% 81% 83% 85% 85%
MBOCPD 54% 58% 61% 69% 72%

entries on average using heavy-tailed t-distributed noise
with degrees of freedom varying from 1.5 to 1.9. To
learn the structural changes and be robust against the
heavy-tailed noise, we design a smooth subspace model
(xi(t))t≥0 for i = 1, . . . , r in continuous-time using a
Gaussian process (GP) prior, xi(t) ∼ GP(0, kν(t, t′)),
with Matérn-3/2 kernel with ν = 3/2 (Williams and
Rasmussen, 2006). This particular GP admits a state-
space representation amenable to filtering (Hartikainen
and Särkkä, 2010) as it can be recast (Särkkä et al.,
2013) as the stochastic differential equation (SDE):

dxi(t)

dt
=

[
0 1
−κ2 −2κ

]
xi(t) +

[
0
1

]
wi(t) (29)

where xi(t) = [xi(t), dxi(t)/dt] and κ =
√

2ν/`. We
choose σ2 = 0.1 and ` = 0.1 and discretize equation (29)
with the step-size γ = 0.001. We discretize the SDEs
for i = 1, . . . , r and construct a joint state which leads
to a linear dynamical system in 2r dimensions for which
we can run PSMF. The details of the discretization and
the corresponding PSMF model are given in Supp. G.2,
along with an illustration of the learned GP features.



Probabilistic Sequential Matrix Factorization

Table 2: Imputation error and runtime on several datasets using 30% missing values, averaged over 100 random
repetitions. An asterisk marks offline methods.

Imputation RMSE Runtime (s)

NO2 PM10 PM25 S&P500 Gas NO2 PM10 PM25 S&P500 Gas

PSMF 5.72
(0.13)

7.44
(0.31)

3.55
(0.23)

11.56
(2.42)

6.16
(1.07)

2.76 2.61 1.91 9.37 96.75

rPSMF 5.73
(0.22)

7.54
(0.45)

3.50
(0.21)

10.24
(1.67)

6.18
(1.51)

2.93 2.03 2.02 13.06 111.89

MLE-SMF 11.17
(0.58)

9.50
(0.31)

4.90
(0.36)

30.20
(0.83)

111.16
(19.95)

2.54 2.38 1.69 9.72 87.22

TMF 7.73
(0.14)

8.08
(0.22)

4.65
(0.31)

34.90
(0.79)

74.80
(8.64)

1.03 0.97 0.65 4.19 34.23

PMF* 10.51
(0.06)

10.49
(0.18)

4.05
(0.18)

40.69
(1.43)

23.77
(0.05)

1.96 1.72 0.61 2.79 28.35

BPMF* 9.22
(0.20)

8.50
(0.20)

3.68
(0.18)

27.64
(0.65)

18.31
(0.28)

2.89 2.71 1.61 3.68 91.30

Table 3: Average coverage proportion of the missing
data by the 2σ uncertainty bars of the posterior pre-
dictive estimates, averaged over 100 repetitions.

NO2 PM10 PM25 S&P500 Gas

PSMF 0.76 0.76 0.92 0.83 0.89
rPSMF 0.85 0.89 0.87 0.83 0.86
MLE-SMF 0.43 0.56 0.80 0.48 0.56

We run PSMF with the discretized GP subspace model
with r = 10. We note that the goal is to obtain a
representation that is helpful for changepoint detection.
We first employ PELT (Killick et al., 2012) as an ex-
ample changepoint detection method directly on the
time-series to create a baseline. Then, we estimate a
smooth GP subspace with PSMF and run PELT on
that subspace (i.e., the columns of X). We addition-
ally compare against a multivariate implementation of
Bayesian online CPD (MBOCPD, Adams and MacKay,
2007). The results in Table 1 clearly show the improved
performance and robustness of PSMF.

4.4 Missing Value Imputation

Finally, we test our method on imputation of miss-
ing values in time-series data. We consider data from
various domains, including three time series of air pol-
lutants measured across London2, a gas-sensor dataset
by Burgués et al. (2018) obtained from the UCI reposi-
tory (Bache and Lichman, 2013), and five years of daily
closing prices of stocks in the S&P500 index.3 The air
pollution series contain hourly measurements between
2018-06-01 and 2018-12-01 (n = 4393) and consist of
NO2 measured at d = 83 sites, PM10 from d = 74 sites,
and PM25 measured at d = 26 sites. For the gas sensor
dataset (Gas) we have n = 295, 719 and d = 19 and for
the S&P500 dataset we have n = 1259 and d = 505.

2Data collected from https://londonair.org.uk.
3See: https://www.kaggle.com/camnugent/sandp500.

The air pollution datasets contain a high number of
missing values due to sensor failures and maintenance,
and the stock price dataset contains missing values due
to stocks being added to the index.

To test the accuracy of imputations, we randomly re-
move segments of length 20 and thereby construct
datasets with 30% missing data. We compare our
methods against four baselines. The first is an MLE
approach to online probabilistic matrix factorization
(Yildirim et al., 2012; Sun et al., 2012; Févotte et al.,
2013) where we construct an SSM where C is constant,
denoted as MLE-SMF. The second is temporal ma-
trix factorization (TMF) which is an adaptation of the
optimisation-based method of Yu et al. (2016). We also
add two popular offline methods that can only operate
on the entire data matrix at once: PMF (Mnih and
Salakhutdinov, 2008) and BPMF (Salakhutdinov and
Mnih, 2008).

We assume the subspace model to be a random walk,
fθ(x) = x, thus avoiding the parameter estimation
problem, and we use the final estimates of C and X for
data imputation. We formulate TMF with the weight
matrix set to identity for tractability. We set r = 10
for all methods and datasets. For PSMF and MLE-
SMF we set Rk := R = ρ ⊗ Ir with ρ = 10, P0 = Ir,
Qk := Q = q ⊗ Ir with q = 0.1. For rPSMF we use
R0 = R and Q0 = Q and set λ0 = 1.8. For PSMF and
rPSMF we let V0 = v0 ⊗ Ir where v0 = 2. All methods
are run for two iterations (epochs) over the data to
limit run-times, and we repeat the experiments 100
times with different initializations and missing data
patterns. In Table 2 we see that PSMF and rPSMF
attain lower RMSEs compared to all other methods
and that they are competitive in terms of running time.
The advantage of our method is especially noticeable
on the NO2, SP500, and Gas datasets.

We can also measure the proportion of missing values
that lie within a 2σ coverage interval of the approx-
imate posterior distribution. Table 3 shows how our

https://londonair.org.uk
https://www.kaggle.com/camnugent/sandp500
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method improves over the uncertainty quantification
of MLE-SMF (the other methods do not provide a pos-
terior distribution). This illustrates the added value of
the matrix-variate prior on C, as well as our inference
scheme. Note that rPSMF obtains a higher coverage
percentage than PSMF on three of the datasets, which
is due to the sequential updating of the noise covari-
ances. Additional results with 20% and 40% missing
data are available in Supp. G.3.

5 CONCLUSION

We have recast the problem of probabilistic dimension-
ality reduction for time-series as a joint state filtering
and parameter estimation problem in a state-space
model. Our model is fully probabilistic and we provide
a tractable sequential inference algorithm to run the
method with linear computational complexity with re-
spect to the number of data points. Our algorithm is
purely recursive and can be used in streaming settings.
In particular, the batch algorithms that we compare to
(such as PMF and BPMF) would incur the full runtime
costs when a new sample arrives. This would likely be
prohibitive in practice (e.g. BPMF takes 90 seconds for
the Gas dataset) and would increase significantly with
the dataset size. By contrast, our method only requires
incremental computation to process a new sample (e.g.
on the order of milliseconds for the Gas dataset).

We have also extended our initial model into a robust
version to handle model misspecification and datasets
contaminated with outliers. The robust version of our
method has been shown to be advantageous in light of
model misspecification.

The state-space formulation of the problem opens many
directions for future research such as (i) the use of gen-
eral models for fθ or non-Gaussian likelihoods, (ii) the
exploration of the use of switching SSMs, and (iii) the
integration of more advanced inference techniques such
as ensemble Kalman filters or Monte Carlo-based meth-
ods for nonlinear and non-Gaussian generalizations of
our model.
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