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Abstract

Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) is

currently the state-of-the-art instrument in terms of resolving power and accuracy for

mass spectrometry and is able to resolve an unprecedented number of components

in complex chemical mixtures, such as petroleum. The data analysis tools necessary

struggle to keep pace with advancing instrument capabilities and the ever-increasing

quantities of data generated. The existing workflows rely on combining different tools,

not necessarily compatible between them and often generate a significant amount

of manual repetitive tasks. A first issue is that the current standard practice does

not utilise replicates to improve the reliability of an analysis. A second issue is that

spectral stitching methods to combine data from multiple experiments performed

for a single sample are not automated, and hence generate substantial manual

work that precludes the routine applications of these experiments. Hyphenated

ultra-high resolution, can provide structural information but the data analysis tools

are lacking leading to loss retention time precision and labour-intensive workflows.

A final issue explored in this thesis is that molecular assignments are performed

using commercial software or in-house algorithms but currently no evaluation of the

false positive assignments has been performed. During this PhD, algorithms were

developed to address those needs and implemented using the R language. The tools

needed to be accessible to a wide audience, not necessarily comfortable using scripted

languages so interactive interfaces were created using the Shiny framework. Overall,

the work presented in the thesis brings improved reliability when analysing complex

mixture using Fourier transform mass spectrometry thanks to combining replicates

or stitching multiple experiments, and assessing reproducibility. Further, it helps

accelerate analyse hyphenated ultra-high-resolution mass spectrometry decreasing

the time necessary from days to hours while bringing a deeper and more accurate

insight into the data also capable to analyse and compare molecular assignments for

petroleum related samples.
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Chapter 1

Introduction

1.1 Mass spectrometry

1.1.1 Theory & Terminology

Mass spectrometry (MS) is the measuring of the mass-to-charge ratio (m/z) of

charged molecules. In order to measure the m/z, we need to ionise the sample.

Previously charged molecules are not frequently found, hence the development of

several ionisation methods that will be described in section 1.2. Following the

ionisation process, the resulting ions (positively or negatively charged) are analysed

and detected, and the signal’s intensity for a specific m/z will vary according to

a number of parameters, including their abundance within the analysed sample.

Several methods to detect those charged molecules have been developed over time,

each with their own specificities and will be covered in section 1.3. Isotopes can also

be detected if their presence is high enough to pass the limit of detection and can

be resolved by the instrument. The combination of all the m/z measured by the

detector with its corresponding intensity is called a mass spectrum.

A mass spectrometer needs an ionisation source and a mass analyser, but

in order to gain structural information about the molecules detected, it is possible

to separate a mixture of molecules according to their physical properties before
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being ionised and detected by the mass spectrometer. The most common techniques

used for separation coupled with MS are liquid chromatography (LC) and gas

chromatography (GC) and will be described in section 1.4. MS is extensively used

to analyse pharmaceuticals, biomolecules, environmental samples, crude oil and

nowadays can detect analytes at very low concentration and with a mass error within

the part-per-billion (ppb). However, while MS progressed and was able to chronically

analyse very complex mixtures, the data analysis tools have struggled to keep pace.

1.1.2 History

The history of mass spectrometry starts in 1897 when J.J. Thomson discovered the

electron and its mass-to-charge ratio (m/z). This discovery was rewarded with a

Nobel prize in 1906. A first mass spectrometer was built in 1912 by J.J. Thomson.

That year he succeeded in generating the first mass spectrum for O2, N2, CO, CO2

and COCl2 molecules [8]. In 1919, F.W. Aston built the first mass spectrometer

with velocity focusing [9]. J. Beynon showed the first use of high resolution and

exact mass determination in 1956 [10], and that same year, F.W. McLafferty and

R.S. Gohlke presented the first mass spectrometer coupled with gas chromatography

[11, 12]. A few years later, in 1967, collision-induced dissociation was introduced by

F.W. McLafferty and K.R. Jennings [13, 14]. In 1974, several new advances were

presented. Atmospheric-pressure chemical ionisation (APCI) was developed by E.C.

Horning, D.I. Carroll, I. Dzidic, K.D. Haegele, M.D. Horning and R.N. Stillwell [15],

the first high performance liquid chromatography coupled with a mass spectrometer

is presented by P.J. Arpino, M.A. Baldwin and F.W. McLafferty [16] and finally,

the Fourier transform ion cyclotron resonance mass spectrometer was presented

by M.B. Comisarow and A.G. Marshall [17]. In 1978, the triple quadrupole mass

spectrometer was developed by R.A. Yost and C.G. Enke [18]. In 1993, R.K. Julian

and R.G. Cooks presented the stored-waveform inverse Fourier Transform (SWIFT)

[19]. The nano electrospray ionisation source was developed in 1994 by M. Wilm

2



and M.Mann [20]. Finally, in 1999, the high performance ion trap with electrostatic

quadro-logarithmic field, commonly called Orbitrap, was invented by A.A. Makarov

[21] based on the Kingdon trap [22].

1.2 Ionisation methods

Since mass spectrometers can only detect charged particles, to avoid limiting MS to

molecules that are naturally charged, the first step of any analysis is the ionisation.

A large variety of methods have been developed over the years to make a neutral

molecule a charged one, and each method has its own specificities and affinities for

different types of molecules. Pioneering methods such as electron ionisation (EI)

[23] and chemical ionisation (CI) [24–26] require a volatile sample and often leads to

bond breakage, particularly in presence of big molecules. Newer methods such as

atmospheric pressure ionisation (API) [27–30] including electrospray ionisation (ESI)

[31] are called soft ionisation as they were developed to overcome the fragmentation

issue of the EI and CI.

1.2.1 Electron ionisation (EI)

Electron ionisation (EI) is one of the classical ionisation method which uses gas

molecules with energetic electrons (usually 70 eV) to create ions [23]. EI was first

designed by Dempster and later improved by Bleakney [32] and Nier [33]. The

reaction describing the electron ionisation process is M + e– −−→ M+·+ 2 e–. The

generated beam of electrons will then expel an electron from the analyte and cause it

to go from neutral to a radical cation (M+·). This generates an unstable radical ion,

which tends to fragment to form more stable radical elements along with some neutral

species, and the fragments generated by this technique can be used to determine the

structure of the molecule. Electron ionisation is a simple and stable technique but

the original M+· cannot always be observed, complicating the characterisation task.

3



The methods can also generate a high number of fragments, leading to numerous

peaks being observed and complicating the analysis.

1.2.2 Chemical ionisation (CI)

Chemical ionisation [26] was introduced by Talrose [25] and further developed by

Munson and Field [24]. This ionisation method consists of the collision between

analyte and a gas, such as methane or ammonia. While an electron transfer occurs

in electron ionisation, this method relies on proton transfer. This method generates

[M + H]+ molecules which are more stables and result in less fragmentation than EI.

The EI reaction pathway when methane is used is CH4 +e– −−→ CH4
+·+2 e–.

The ion created will then fragment following two main pathways CH4
+· −−→ CH3

+ +

H· or CH4
+· −−→ CH2

+·+ H2 but will mostly react with other methane molecules

to yield CH4
+·+ CH4 −−→ CH5

+ + CH3·.

CI is a useful technique to obtain information about the molecules but it

requires volatile and stable samples [24, 34] and works best with polar and semi-polar

species [24]. The inconvenience is that molecules can only be single charged and that

this method is not suitable for large biomolecules.

1.2.3 Electrospray ionisation (ESI)

Electrospray ionisation was developed by Fenn et al. in 1989 [31] and is a soft

ionisation method, particularly suitable for large molecules.

ESI uses the potential difference between a capillary and a counter electrode

charged between 3000 to 6000 V. The difference leads to a charge accumulation at

the surface of the liquid that will be analysed at the end of the capillary. When the

liquid exits the needle, it forms a Taylor cone before breaking into charged droplets

creating what is called the ESI plume. The flow of the ESI plume is oriented using

a gas, and a heated capillary is responsible for the final evaporation of the solvent

remaining within the droplets [35]. To minimise the radial dispersion of the spray,
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Figure 1.1: Photograph of Taylor cone and its ESI plume. Reproduced from
www.newobjective.com (accessed 02/07/2019)

a so-called sheath gas can be applied coaxially. [36] ESI can operate in positive

and negative mode in order to generate either positively and negatively charged

ions. The ions formed are usually resulting from the addition of a hydrogen cation

which are denoted [M + H]+ but other cations like a sodium ion can be formed

([M + Na]+). The removal of a proton is also possible in which case [M−H]– ions

are formed. Multiply-charged ions can be observed and will be denoted [M + nH]n+.

A mixture of solvent such as 50/50 methanol/water or toluene/methanol is often

employed, with acid added such as 1% formic acid to help protonation or a base

such as 0.1% ammonium hydroxide for deprotonation. Electrospray ionisation was

first applied in 1968 to polymers [37] then rapidly expanded to proteins, biopolymers

and complex mixtures [38–41].

1.2.4 Nano electrospray Ionisation (Nano-ESI)

Nano electrospray ionisation is a variation of the ESI described previously [42]. The

objective behind nano-ESI is to use less sample while producing a sufficient signal:

it uses a very thin capillary with a diameter between 10 to 100 µm and a flow rate

around ∼ 1nL/min. The fluid is not expelled thanks to the mechanical movement

of a syringe like in ESI, as it uses capillary traction to move the fluid within the
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Figure 1.2: Schematic for electrospray ionisation source. Adapted from solariX
training manual, Bruker Daltonik GmbH, Bremen, Germany.
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Figure 1.3: Picture of a nano electrospray ionisation source coupled to an FTICR
MS.

thin capillary. As a consequence of the very thin capillary, the plume generated is

invisible to the eye because of the 100 nm size of the droplets.

1.2.5 Atmospheric pressure chemical ionisation (APCI)

Atmospheric pressure chemical ionisation (APCI) [27, 28] shares similarities with CI,

since it uses gas phase ion-molecule reaction at atmospheric pressure. This ionisation

technique is particularly suited to polar and relatively non-polar molecules, usually

with a molecular size up to 1500 Da, and yields singly charged ions. APCI is regularly

used to analyse petroleum related samples [43] but also biological samples [44] and

food samples [45, 46].
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Figure 1.4: Schematic for atmospheric pressure chemical ionisation source (APCI).
Adapted from solariX training manual, Bruker Daltonik GmbH, Bremen, Germany.
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1.2.6 Atmospheric pressure photoionisation (APPI)

Atmospheric pressure photoionisation (APPI) [29, 30] is based on a modified APCI

as it uses a discharge high-energy UV lamp (often krypton) instead of protons and

electrons. The plume is exposed to the high-energy UV lamp and causes the analyte

and solvent to turn into an electronically excited state so an electron transfer can

occur to create ions.

The mass spectra obtained with positive mode APPI mostly contains two

types of ions: the radical cation M+· and the protonated molecule [M+H]+. The main

reaction leading to the formation of cations is M + hv −−→ M+·+ e– but the major

presence of protonated molecules suggest the abstraction by a molecular ion of an

hydrogen atom from a solvent molecule: M+·+S −−→ [M+H]++(S−H)·. In positive

ionisation mode, a dopant can be used and the first step of the ionisation process is

D + hv −−→ D+·+ e– which creates a radical ion from the dopant. The radical cation

created will then interact with the solvent D+·+S −−→ [S+H]+ +(D−H)· which will

then boost the formation of protonated molecules M + [S + H]+ −−→ [M + H]+ + S.

The radical cation of the dopant can also directly interact with the analyte if the

ionisation energy of the analyte is lower than the one of the dopant leading to the

reaction D+·+ M −−→ M+·+ D.

APPI is typically used for the ionisation of non-polar compounds, but it can

also work for polar species. It can be employed to ionise a wide range of compounds

such as complex mixtures including petroleum [47], but since APPI allows observation

of both protonated molecules and radical cation, it often generates a more complex

spectrum.

1.3 Mass Analysers

After the ionisation step described earlier, the ions need to be separated according

to their mass-to-charge ratio.
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Figure 1.5: Schematic for atmospheric pressure photoionisation source (APPI).
Adapted from solariX training manual, Bruker Daltonik GmbH, Bremen, Germany.
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Just like the ionisation techniques, several different types of mass analysers

have been developed over time, each with their own specificities. It is even possible

to combine different types of mass analysers in order to achieve higher performances

or improve capabilities (ex Q-TOF).

1.3.1 Time-of-flight

The time-of-flight (TOF) technique relies on the calculation of the m/z based on

the flight time through a field-free flight tube [48, 49], kept under vacuum to avoid

any collision with a background gas during the flight. Ions from the ion source are

directed through the flight tube using electric fields. Separation will occur based on

mass, as molecules of different masses will have different flight times, directly linked

to their m/z values as light ions will travel faster through the flight tube than heavy

ones. Equation 1.1 shows that the flight time t is obtained using the length of the

flight L tube multiplied by the velocity v.

t =
L

v
(1.1)

The flight time is usually under 1 ms which allows for a fast scan rate, making

TOF analysers particularly suitable for LC and GC coupling. TOF analysers do not

have limits to the size of the molecules they can analyse [50]. Recently, a maximum

resolving power (RP) of about 90 000 was achieved using a physical tube length of 6

m and an effective length of 14 m [51] while mass accuracies below 2 ppm are being

reported [52].

1.3.2 Quadrupole

The quadrupole analyser takes its origins in the 1950s [53, 54] and was later adapted

to be suitable for use with ESI. It has the advantages of being robust and cheap,

functioning well under high vacuums and of being fairly low cost [55]. It is also able
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Figure 1.6: Schematic of a Time-of-flight (TOF) mass analyser. Adapted from
www.shimadzu.com (02/07/2019)

to cope with a wide m/z range (4 kDa) [56–58]. They are used for ion selection as

only those with a stable trajectory pass through and can later be detected, which

allows analysts to select specific m/z, but the accuracy is variable.

The quadrupole consists of four charged, alternating-polarity rods and the

opposite pairs are connected. The ions’ trajectory is controlled using a combination

of radio frequency (RF), voltage (V) and direct current (DC) applied to each pair of

rods. The sign of the potential of the rods change periodically, in consequence the ions

are alternatively attracted and repulsed, creating an ion oscillation. The movement

of ions inside a multipole is defined by the Mathieu equation which includes a and

q which are dimensionless trapping parameters. The resulting stability diagram is

presented in Figure 1.7. If the ion oscillation is stable, the ion can pass through and

be detected later.

Quadrupole refers to the use of four rods but more rods can be added to

create hexapoles and octupoles. While quadrupoles are most often employed for

transport and filtration, hexapoles, octupoles are great tools for the transport and

transmission of ions but are rarely used for filtration. In FTICR MS, multipole

helped to dramatically improve the transport of the ions to the ICR cell.
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Figure 1.7: Stability diagram for a quadrupole ion trap depending of the a and q
parameters which are controlled by the frequency and voltage applied to each rods.
From Patent 5399857 [59].

Figure 1.8: Schematic of a quadrupole. Selected ions are depicted in blue while the
non-selected are in red. Reproduced from [60]
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1.3.3 Ion traps

Ion traps are devices which use an oscillating electric field to store ions. Ions can

be trapped in either 2 or 3 dimensions logically leading to two types of ion traps:

2D and 3D. Historically, 3D ion traps were first invented while 2D traps are more

recent, we will focus on the more widespread 3D ion traps.

3D ion traps were first created by Paul and Steinwedel 1960 [61] and later

improved by Stafford Jr et al. 1984 [62] from Finnigan Company into an exploitable

mass spectrometer. Paul received the Physics Nobel Prize in 1989 for his invention.

The principles behind 3D-traps are similar to the ones behind the quadrupole mass

analyser but instead of simply passing through, the ions are trapped.

A 3D-trap is composed of a so-called “ring” and end-cap electrodes. The

“ring” electrodes get an oscillating RF voltage while the end-cap electrodes get a

static DC voltage. By changing the electric field of the end-cap electrodes, it is

possible to eject the ions from the trap and to send them for detection [63].

The performances are closer to the ones of the quadrupole, with a low accuracy

and resolving power but they are cheap and work well inside a vacuum. What makes

the 3D traps stand out is that they can be more sensitive than the quadrupole as

they can accumulate ions.

1.3.4 Orbitrap

The high performance ion trap with electrostatic quadro-logarithmic field, also

called Orbitrap, uses a Fourier transform (FT) [21] and has two patents associated

[64, 65]. The Orbitrap was based on the Kingdon trap [66] which was later modified

[67, 68] before being adapted for mass spectrometry. The first commercial instrument

utilising this new mass analysers was made available by Thermo Electron Corporation

in 2005. The instrument is composed of a central electrode shaped like a spindle and

surrounded by a barrel-like shaped electrode. The electrode is cut into two equal

parts with a small space in between them. Ions are injected through the external
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Figure 1.9: Diagram of Ion-Trap mass spectrometer. Adapted from
www.shimadzu.com (02/07/2019)
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Figure 1.10: Cross-section of the C-trap and Orbitrap ana-
lyzer. Artwork courtesy of Thermo Fisher Scientific (com-
mons.wikimedia.org/wiki/File:OrbitrapMA%26Injector.png)

electrode using a little hole with the energy of a few kilovolts. They immediately

start to oscillate in the cell around the internal electrode. The oscillation of the

ions is measured and transformed by Fourier transform into the frequency domain

and then onto an m/z mass spectrum. The Orbitrap present the advantages of

providing ultra-high resolution and of being low maintenance, as it doesn’t use a

superconducting magnet and so does not need liquid helium fills for example.

1.3.5 FTICR

Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) was first

developed in 1974 by Comisarow and Marshall [17, 69, 70].

FTICR MS is state-of-the-art technology, with ultra-high resolving power

going from 100 000 to over 20 000 000 [71]. The ions are kept in orbit using the

Lorentz force, which is a centripetal force, and then the ions are separated by their

frequency [72, 73]. Each ion orbits inside the magnetic field at a unique frequency

inversely proportional to their m/z and the force of the magnetic field. The equation
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Figure 1.11: Picture of a 12 T FTICR MS.

Figure 1.12: Representation of the forces applied on both positive and negatively
charged ions within a magnetic field. Reproduced from Marshall et al. [73]
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Figure 1.13: Illustration of the excitation (A) and detection (B) of a ion within an
ICR cell. Courtesy of Bruker Daltonik GmbH, Bremen, Germany.

1.2 defines the cyclotron frequency f in Hz where q is expressed in coulomb (C), B

is the strength of the magnetic field expressed in tesla (T ) and m is the mass in kg.

f =
qB

2πm
(1.2)

Equation 1.2 is sometimes expressed in ωc, giving equation 1.3 where ωc is expressed

in rad.s−1.

ωc =
qB

m
(1.3)

In order to measure the frequency of the orbiting ions, they need to be trapped

in an ICR cell. Currently the main design is composed of a total of six electrodes

divided into three groups of two. There are two trapping electrodes, two detection

electrodes and two excitation electrodes. Each pair of electrodes is disposed opposite

to each other. Because the detected signal is very low, an amplifier is necessary

to amplify the signal so it can be transmitted and analysed. Thanks to such a

configuration, the ions are trapped, and the frequency can be measured.

The ions in the ICR cell are also subject to a magnetron motion. As described
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magnetron
motion

cyclotron
motion

Figure 1.14: Representation of the ions moving along a cyclotron motion itself turning
around a central point represented by a dot, this movement is called the magnetron
motion.

in Figure 1.13, the ions move in an orbit called the cyclotron motion but this orbit

itself precesses the centre in a magnetron motion as depicted in Figure 1.14. The

magnetron motion is more important than the cyclotron motion and causes losses of

resolution at high m/z. Thanks to the application of a quadrupolar RF field, the

movement can be eliminated.

In reality, the frequency at which the ions are moving is affected by the

electric field from the two trapping plates, along with the electric field of the other

ions present within the cell. The ions within the cell will see their electric field

interact between each other’s due to the Coulombic repulsion force causing what is

called a “space charge” [74] which will hamper the performance of the instrument.

The measured frequency of the ions will reduce as Coulombic repulsion increases,

causing the measured m/z to be higher than the true value.

Hence, the frequency measured ωmeasured needs to be corrected using a

calibration function in order to obtain an accurate m/z. The recorded time domain

signal is converted using the Fourier transform into a frequency spectrum. Finally,

a mass spectrum is obtained by applying one of the calibration functions. The

resolution of FTICR MS can be increased with bigger magnets as the mass accuracy

is proportional to the square of the magnetic field. Hence, with the availability of

bigger magnets the performances of FTICR MS will increase. Other parameters

such as longer acquisition time, better data processing, and segmentation can help
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to push the performance of existing instruments. Indeed, a 12 T FTICR MS was

recently used to obtain a constant resolving power of 3 million FWHM across a

broad m/z range ( m/z 260-1500) and 244,779 compositional assignments without

using chromatography or fragmentation [3].

1.4 Chromatography

Chromatography is defined by the IUPAC as “a physical method of separation in

which the components to be separated are distributed between two phases, one of

which is stationary (stationary phase) while the other (the mobile phase) moves in

a definite direction”. It originated in the early 20th century with work by M. S.

Tswett [75]. Chromatography and mass spectrometry have been associated since

very early on and used extensively in tandem. The objective is to separate mixtures

of chemical components into either pure isolated species or less complex mixtures,

before being sent to the mass spectrometer for characterisation. Chromatography

is based on the interactions between a mobile phase and a stationary phase as it

moves through a column. Depending on the interaction between the two phases, the

chemical species are separated based on their structures and chemical properties.

The product eluting can be either analysed online (directly as it elutes) or off-line

(fractions collected and analysed).

As researchers wanted to obtain more information, and thanks to the versatility

of the FTMS instruments, the coupling with chromatography techniques enabled

analysts to obtain structural insights into complex mixtures. Below, the focus will be

on liquid chromatography and gas chromatography as those were the two techniques

employed during this PhD, but other techniques exist and can be coupled with mass

spectrometry.
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1.4.1 Gas chromatography (GC)

Gas chromatography (GC) is the most straightforward technique for mass spectro-

metry coupling, since the ions need to be in a gas phase to be analysed in MS [76].

The columns employed are usually extremely long and the interior, coated with

functionalised silica, will be used as the stationary phase. An inert gas will be used

as the mobile phase and molecules elution through the column will be controlled by

the column temperature. The column is placed inside an oven in order to control its

temperature. A specific program to slowly elute will be set up, usually making use of

one or several “heat ramps” to ensure an ideal separation. Since it is easier to control

heating rather than cooling, the programs will always start at low temperatures

and then increase. The temperatures employed can go up to 300 degrees Celsius for

molecules with a strong affinity with the column. This technique generally provides

fast elution in comparison to other techniques, which is why, when it is coupled with

MS, a high scan rate is necessary to keep up with the speed of elution. GC-MS is

a very widespread technique when coupled with low to average resolution MS, and

has a wide range of applications. It is also possible to perform two GC back-to-back

to obtain a GC/GC-MS acquisition. As the eluant is already in gas phase, it is

compatible with many ionisation sources. GC-MS was successfully used with complex

mixtures [77], petroleum [43, 78] environmental samples [79], pharmaceutical [80],

pesticides [81], and forensic samples [82].

1.4.2 Liquid chromatography (LC)

Liquid chromatography was initiated by the invention of partition chromatography

by A. J. P. Martin and R. L. M. Synge in 1941 [83] for which they obtained the

Nobel Prize in 1953. Liquid chromatography (LC), unlike GC, is based on liquid

rather than gas [84], following a similar principle with both a mobile phase and

a stationary phase. The columns used for LC are often shorter in comparison to

the GC’s with a length typically between 10 - 30 cm, but this is not always the
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Figure 1.15: Total ion chromatogram of petroleum related sample analysed by
GC-FTICR MS.
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case. The elution period tends to be long, with experiments lasting between 30

to 120 minutes. Due to the advances of the field, columns packed with smaller

particles able to withstand ultra high pressures have led to reductions in elution

times. This time the elution gradient does not rely on temperature but on solvent

mixtures which changes their ratio over time. A wide variety of stationary phases

are available to the user depending on the sample being analysed. One of the most

popular solvent mixtures is water with acetonitrile (ACN); this is due to the low

UV absorbance of the ACN along with a lower pressure on the column. The elution

usually starts with a high percentage of water and will decrease over time, until

reaching a majority percentage of acetonitrile. The user will decide on an appropriate

gradient to change the percentages of each solvent, with the possibility keeping the

ratio stable for periods of time. The challenging part of an online LC-MS experiment

is that the solvent needs to be evaporated as fast as it elutes through the column.

For this reason, ionisation techniques such as ESI, APCI, APPI are best suited as

they can handle the flow rate. LC-MS was successfully employed to analyse a wide

range of samples such as small molecules [85], metal complexes [86], polymers [87],

biomolecules [88] and dissolved organic matter [89].

1.5 Data analysis

1.5.1 Signal processing

The free induction decay (FID) is the signal obtained directly from the instrument

when ions’ frequencies are being measured in the ICR cell by electrodes. A Fourier

transform is applied to the FID signal and an operation called zero filling is performed.

Since the resolving power of the FTMS signal is proportional to the length of the

time duration of transient (TD), any increase in TD will be beneficial to the quality

of the signal. Unfortunately, increasing TD is not always experimentally possible.

Instead, TD can be mathematically doubled by adding as many 0 as necessary at the
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end of the FID signal to double the size [90]. This technique is called zero-filling and

allows to increase the number of data points measured without changing the peak

shape and resolution but will yield better centroids for the peak picking. Finally a

calibration equation is used to convert the frequency domain spectrum to the m/z

domain.

1.5.2 Resolving power

The resolving power is, with mass accuracy, one of the two metrics widely used to

evaluate the performance of an MS instrument. It determines the capability of an

instrument to separate two peaks very close to each other on the m/z scale. This is

calculated using equation 1.4 where m is the m/z and δm is the full width at half

maximum (FWHM). The highest the resolving power number, the better.

Resolving power =
m

δm
(1.4)

For reference, FTICR MS can routinely achieve resolving powers over 1 million

[91–94] while the Orbitrap can achieve resolving powers between 100 000 and 600

000 [95]. The highest resolving power ever achieved was about 47 million [71]. For

FTICR, the resolving power is inversely proportional to m/z and, for example the

resolving power at m/z 400 is twice higher than at m/z 800 [73, 96]. In FTICR MS,

the resolving power increases with the strength of the magnetic field. This means

that a higher resolving power is achievable per second which is a useful feature for

time sensitive acquisitions such as with chromatography. Another method to increase

the resolving power is to have longer acquisition times.

1.5.3 Mass accuracy

The mass accuracy is defined by the deviation of a measured m/z value from the

theoretically calculated m/z value and is expressed in parts-per-million (ppm) and,
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recently started to be expressed in parts-per-billion (ppb). Equation 1.5 defines how

the mass accuracy is calculated.

Mass Accuracy (ppm) =
(Measured m

z − Exact mz )

Exact mz
× 1000000 (1.5)

Mass spectrometry is able to provide accurate error calculation since the theoretical

mass of molecules can be precisely calculated by using the exact mass of the atoms

it is composed of. The highly accurate mass obtained using ultra-high resolution

mass spectrometer enables us to assign formulae to unknown molecules which is

a particularly desirable capability to analyse complex mixtures. The accuracy for

FTICR MS instruments is proportional to the square of the magnetic field.

1.5.4 Apodisation

The apodisation is a signal processing technique which helps to improve the peaks’

shape. While FTICR MS produces ultra-high resolution and narrow peaks, the base

of those peaks can get quite broad. On either side of the peaks, it is common to

observe smaller peaks often called “wiggles”. For some high intensity peaks, the

height of those “wiggles” can take over smaller genuine peaks.

In order to improve the signal, an apodisation method can be applied with

the objective to iron out the “wiggles”. The apodisation consists of decreasing the

contribution of the extremities of the FID which are often of lower quality, and giving

more weight to the centre of the FID. The apodisation can be optimised by using

different functions to suit the needs of the user by giving different weights to different

parts of the FID. Currently, users can choose between exponential, gaussian, sine,

sine 2, half-sine, shifted-sine and Kilgour methods when using an FTICR from Bruker

but more methods exist such as Hanning and half-Hanning [96]. The drawback of the

apodisation is that it will decrease the resolving power, but it can also dramatically

improve the peaks’ shapes. This leads to a cascade of improvements: as a result, the
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centroids will be improved, causing the peak picking algorithm to perform better,

which in turns leads to improved molecular assignments. The apodisation is currently

applied by default to most FTICR MS data as the benefits outweigh the costs but

this remains under the user’s control.

1.5.5 Absorption mode

FTICR MS data is able to produce an absorption-mode spectrum which has the

advantage of an improved peak shape compared to the regular magnitude mode

spectra. Due to the complexity of the phase-wrapping [97], this problem was solved

recently and has since yielded major research on this topic. Phasing or phase

correction is a signal-processing technique developed recently for FTICR MS data

where the signal will be converted from the magnitude mode to the absorption mode

[97–99]. An absorption mode spectrum presents several advantages such as a superior

mass resolving power up to two fold, an increased mass accuracy and an increased

sensitivity. The method was used recently in combination with other techniques to

obtain the highest number of molecular assignments ever obtained [3].

1.5.6 Calibration

As mentioned earlier in the signal processing section, the instrument actually records

a time domain spectrum which is then converted into a frequency spectrum which is

theoretically directly converted into m/z thanks to the cyclotron frequency equation.

In practise, only the reduced cyclotron frequencies are detected due to perturbations

caused by electric fields and space-charge effects which affect the measurements. For

this reason, it becomes necessary to perform a calibration in order to obtain an

accurate mass spectrum. Many different calibration equations have been established

over the years [100]. External calibration methods are not particularly suitable for

FTICR MS as they do not take into account the differences in electric field, space

charge and magnetron motion. It is commonly accepted that a FTICR MS spectrum
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Figure 1.16: Example showing the complexity of the mass spectrum of a petroleum
sample.

will be accurate within 1-2 ppm maximum while an Orbitrap spectra will be slightly

higher [101]. It is sometimes necessary to perform an internal calibration using

known molecular series.

1.6 Petroleomics

“Petroleomics” is the word used to designate the characterization of petroleum and

its products by mass spectrometry [102, 102–113].

1.6.1 Petroleum

Petroleum is a resource created by heating and compressing over millions of years

of plants and animal remains. It is an essential resource in our modern world even

though efforts are made to reduce dependence upon it. Petroleum and its derivatives

yield some of the most complex mass spectra observed to date, Figure 1.16 shows an

example of the level of complexity and peak density that can currently be obtained.
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1.6.2 Motivations

Any improvements in the characterisation methods of petroleum are needed for

better understanding of petroleum composition, in order to solve the challenges

posed by its production and refining [114, 115].

Today, the desirable light and sweet crude oils are becoming rarer, making

the more complex and challenging varieties of crude oils more prominent as the lower

quality heavy crude oils are more expensive and difficult to process. As a consequence

more and more important to be able to process these crude oils as well as possible

by improving the knowledge of their composition. Crude oil has a very wide range

of use in everyday life. It is mostly used as a source of energy as a fuel for planes,

cars, boats, etc. However, it is also used in solvents, plastics, dyes, waxes, lubricants,

pharmaceuticals etc. [105]. Crude oils contain heteroatoms such as nitrogen, oxygen

and sulfur but also metals that are toxic for the environment and decrease stability

of the crude oil. [116]. The presence of molecules such as asphaltenes that tend to

precipitate and cause blockages in the pipelines, leading to high maintenance costs

[117].

Due to the complexity of the samples, petroleomics relies heavily on the

ultra-high resolution mass spectrometry, particularly the high resolving power which

can be obtained. In order to assign a molecular composition to the peaks detected,

a low ppm mass error is necessary, ideally well below 1 ppm. The large varieties of

molecules present in the petroleum samples generates the need for a large panel of

ionisation methods in order to obtain a more complete picture of the composition

of those samples due to the affinity of certain classes of molecules with particular

ionisation methods. Finally, in order to obtain structural information from those

samples, techniques such as chromatography needs to be employed.
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1.6.3 Data analysis and visualisation

The petroleomics field currently employs three main criteria to classify the molecules

observed in crude oils and more widely in any petroleum-related samples. Over the

years, these criteria were used to create several plots and visualisation techniques to

help cope with the complexity of petroleum samples.

Categorisation

Heteroatom class

The first category used to categorise the molecules of a crude oil is the

heteroatom class. If a molecule only contains C and H atoms, it will be considered

to belong to the CH class. But from the moment the molecule contains different

additional atoms, the C and H will be ignored: for example, if the molecule only

contains a N1 in addition to the C and H, it will be classified in the N1 class. Similarly,

if the molecule contains a N1 and an S in addition to the C and H, it will be classified

in the NS class.

Double bond equivalents (DBE)

The second category is the double bond equivalents (DBE), also called

hydrogen deficiency, which defines the degree of unsaturation of a molecule. This

value is calculated by applying the following equation 1.6 to its molecular composition

CcHhNnOoSs.

DBE = c− h

2
+
n

2
+ 1 (1.6)

This criterion is necessary as the long CH chains are naturally forming rings and

double bonds inducing a loss of hydrogen atoms.

Carbon Number

Finally, the number of carbons atoms present within the molecule’s formula

assigned is used as a criterion to classify the molecules.
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Visualisation

Due to the complexity of petroleum-related samples, there is a need for visualising

the large amount of data generated. It quickly became necessary to find visualisation

techniques in order to easily grasp the chemical composition of the samples and

compare them. Several plots are extensively used in petroleomics and these popular

plots have been summarised below.

DBE plot

The double bond equivalents (DBE) plot is probably the most common plot

for petroleum related samples. The plot will usually focus on a specific heteroatom

class and then represent the carbon number and DBE number on the axis. The

dimension of the dot can be proportional to total intensity of all the peaks sharing

the same DBE and carbon number. A colour scale can also be used to reflect the

intensity in addition or in replacement of the dot size scale.

Class distribution

A bar plot with the relative intensity of each molecular class present in the

sample is a useful representation to get a sense of the composition of a particular

sample but also compare samples compositions. The relative intensity of all the

samples being investigated will be displayed side by side for each class. The order

of the molecular classes is also of crucial importance as they can display specific

patterns as shown in figure 1.18.

Kendrick Mass Defect

The Kendrick mass defect (KMD) is a normalised mass scale unit using the

CH2 as unit instead of 12C and is based on Kendrick’s work [118, 119]. The Kendrick

mass of each molecule is calculated using equation 1.7 while the KMD is calculated

using equation 1.8.

Kendrick mass = IUPAC mass× 14.00000

14.01565
(1.7)
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Kendrick mass defect = Nominal Kendrick mass− Exact Kendrick mass

(1.8)

The KMD has since been used to provide a new way to look into petroleomics

data analysed with ultra-high resolution MS and help with molecular assignments

[120]. Following the calculation of the KMD and using the nominal mass, a new

type of 2D plot can be done which will allows to display a lot of information in

a compact and clear figure. Thanks to this visual representation, outliers can be

easily observed while it becomes possible to use the observed patterns to obtain more

reliable assignments towards high masses.

van Krevelen

The van Krevelen diagram was introduced by Kim et al. [121] in 2003. It is a

popular figure to visualise complex MS data and since it was first introduced many

scientific publications analysing complex mixtures with ultra-high resolution MS

have made use of it. The assigned molecules are distributed on a scatter plot with

the H/C ratio vs O/C ratio as the axis. Other atoms can be used, often replacing the

O/C ratio by the S/C or N/C. The dot’s size is proportional to the total intensity

of the molecules. Further analysis has shown that regions of the diagram can be

attributed to specific compound classes.

1.6.4 Molecular assignments

Theory

In 2007, Kind and Fiehn [66] described seven golden rules which today remain a

reference and are regularly used for molecular assignments in ultra-high resolution

mass spectrometry and often implemented into molecular assignment software for

FTICR MS [122]. The scope of each rule is listed below:

• Rule 1: Restrictions for element numbers to minimise computational time and
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Figure 1.19: Example of a van Krevelen diagram for a dissolved organic matter
sample analysed using an Orbitrap MS.
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disk space

• Rule 2: LEWIS and SENIOR check

• Rule 3: Isotopic pattern filter

• Rule 4: Hydrogen/Carbon element ratio check

• Rule 5: Heteroatom ratio check

• Rule 6: Element probability check

• Rule 7: TMS (trimethylsilyl) check

Those rules are regularly used for petroleomics [105, 123–125], although not all

are applicable for the molecular assignments of complex mixtures. Sometimes extra

rules need to be added to take into account petroleum related samples characteristics

such as the CH2 series or, as reported by Leefmann et al. [126], forcing the DBE to

be an integer value and specific H/C ratios.

Software

The molecular assignments of petroleum related samples can be performed using

several methods listed below.

• In-house algorithms [43, 89]

• PetroOrg (Florida State University, Tallahassee, FL, U.S.A.) [127, 128]

• Composer (Sierra Analytics, Modesto, CA, U.S.A.) [77, 129]

To date there has not been a study comparing these different methods and

currently only cost and personal experience drive the user to favour one or the other.

Indeed, the price tag to use commercial software can be problematic for certain

research groups who will then prefer to develop an in-house method.

35



1.6.5 Current challenges

Having appropriate, advanced and accurate tools to perform different analysis steps

is important but for these to be fully practical it is also crucial that all these pieces fit

well together. Issues such as data formatting, merging and transferring data can be

time consuming, and can limit both the reliability and practical applicability of each

existing tool. For instance, any change upstream will have to be manually repeated

all along the chain. This is particularly true when analysing complex mixtures with

FTICR MS, whose processing typically involved numerous steps from acquisition

to the final conclusions. Four bottlenecks were identified and addressed, where new

algorithms and workflows were developed as part of the research.

• In situations where a single sample is measured several replicated times, the

standard was to analyse them separately and look for differences manually

to ensure the conclusions were reliable and not due to acquisition variability.

Most the time, only a single spectrum would be used to conclude, hence the

lack of reliability.

• When acquiring multiple mass spectra of narrow ranges to improve the resolu-

tion of a single sample, the standard was to stitch segments by hand, manually

trim the extremities of each mass spectrum which overlap and be forced to use

a large overlap between segments to account for the “edge effect”.

• When performing hyphenated ultra-high resolution of complex mixtures, the

users had to manually divide a data set into as many time windows as desired

and analyse each one separately resulting in a labour-intensive and error-prone

task.

• After performing the molecular assignments, a number of standard figures had

to be created within the molecular assignment software, the data of the figure

exported, plotted again using a different software and often the figure needed
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to be improved with software like Inkscape or Illustrator.

1.6.6 Statistical challenges

The application of statistical methods to real world data comes with numerous

challenges, even more so when working at the edge of instrumentation capabilities

and ultra complex samples.

The multiple testing concept states that if we compare two samples based

on many different criteria, at least one of them is bound to be different. This is

particularly important to take into account as the complex mixtures studied have

several thousand different molecules and a direct comparison for each of them would

be the source of numerous false results. It then becomes necessary to find different

ways of comparing such samples.

In mass spectrometry the intensity measured can be considered at best semi-

quantitative and can vary greatly between acquisitions due to instrumental variations.

As a consequence normalisation becomes necessary to adjust the range of the datasets

we want to compare so that they are on a common scale.

Finally, ultra-high resolution mass spectrometry is used to analyse samples

of an extreme level of complexity and a single ionisation method alone is insufficient

to get the full picture of a sample. Each observer will obtain slightly different

results depending of their instrumentation, parameters, sample preparation etc. Any

progress in the field will likely result in seeing a little more information and it is

not known if it will ever be possible to know the complete composition of a complex

mixture sample with absolute certainty. Hence, developing data processing methods

in such situations can prove to be very challenging in the absence of a gold standard

to refer to and can only be as meticulous as possible to get as close as possible to

the truth.
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1.7 Statistical methods

Several statistical concepts were used throughout this thesis and will be briefly

explained below.

1.7.1 Central Limit Theorem

Let us sample n independent observations from a population of mean µ and standard

deviation σ, where µ and σ are finite. Let Xn =
∑n

i=1
Xi
n be a random variable

representing the sample mean of the n independent observations.

The central limit theorem (CLT) says that for independent and identically

distributed random variables then Xn−µ
σ tends to N(0, 1) as the number of n inde-

pendent observations tends to infinity, even if the original variables are not normally

distributed [130]. The CLT is important in statistics as it can be used to describe

how a sample can be used to learn about the population it has been drawn from.

The CLT implies that the mean of the distribution of the sample mean µXn
will tend

towards the population mean µ as n tends to infinity. Also, the standard deviation

of the sampling distribution of Xn, σXn
will tend towards satisfy

√
nσX → σ as

n tends to ∞. A common practical guideline is that Xn can often be taken to be

approximately normally distributed for n ≥ 30, although of course the actual n can

change significantly from one application to another.

1.7.2 Quantile normalisation

Originally called quantile standardisation [131] and later renamed quantile normalisa-

tion [132], it is a technique extensively used to normalise the measured intensity when

comparing microarray experiments. It is named “quantile normalisation” because

the goal is that the measurements obtained in each sample have the same quantiles

across samples, i.e. all samples have the same empirical distribution. Microarrays

measure how active a particular gene is within a sample by measuring the intensity

38



of different colours of light. The measurement of those intensities can be affected by

experimental technical variations thus making the intensities of one microarray not

comparable to another. Quantile normalisation is necessary to account for technical

variabilities between experiments. This technique was adapted in this thesis to mass

spectrometry in order to ensure comparable intensities across several mass spectra,

e.g. multiple replicates obtained for a single sample.

Quantile normalisation was originally designed for microarrays, a type of data

where there is an identical number of intensity measurements in each sample. The

method proceeds as follows. First, the mean of the most intense value of each sample

is calculated and used to replace the original intensity values within each sample.

Then, the same procedure is applied for the 2nd most intense value. The process is

repeated until reaching the lowest intensity value.

Quantile normalisation was applied to LC-FTICR MS data by Callister

et al. [133] for peptide abundance measurement and compared to other normalisation

techniques, namely central tendency [134], linear regression [135] and locally weighted

regression [136]. The comparison relied on sufficient peak separation that allowed

reliable matching of peaks between experiments and showed that while all methods

reduced systematic bias there was a lack in definitive trend among the techniques.

Due to the extremely high peak density and number of intensities measured

when analysing complex mixtures with ultra-high resolution mass spectrometry

along with the variable number of peaks between replicates, the method had to

be adapted. In order to address these issues, the intensities from all samples were

combined and binned into 1000 quantiles. Then, the intensities of each sample were

also divided into 1000 quantiles. A correction function was created by mapping the

1,000 quantiles from each sample to the 1,000 quantiles from the pooled data, and

interpolating the resulting discrete map with the R function approxfun. Finally,

individual measurements in each sample were adjusted by applying the interpolated

map.
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1.7.3 Clustering and mixture models

Cluster analysis or more commonly called clustering, consists of grouping a set of

objects such that all the objects within the same group (cluster) are more similar

to each other than the objects from other groups. In different terms, the goal is

to distinguish subpopulations within a larger population. We can distinguish two

main categories of clustering methods, hard clustering and soft clustering. Hard

clustering methods apply when there is no overlap between the groups, they either

belong to the group or they do not so that the clusters are distinct. Soft clustering

methods allow for some overlap between the groups; the strength of association for

each object to each cluster is calculated.

The choice of the type of distance used can have a big influence on the results,

hence it is important to choose it carefully. For most methods, the default is the

Euclidean distance but Manhattan distance (also called taxicab distance) is also

used. Depending on the type of data, correlation-based distances may be preferable,

for example, gene expression data. When using a correlation-based distance, two

objects will be considered similar if their features are heavily correlated, even if

when using an Euclidean distance, these two objects are very far apart. The Pearson

correlation distance is the most commonly used but can give too much weight to

outliers. Using the Spearman correlation distance can help mitigate the effect of

outliers. Others such as Eisen cosine (a special case of the Pearson correlation) and

Kendal correlation distance can also be used.

Many different algorithms exists to perform clustering. They have different

specificities and will perform differently depending of the data analysed. Hence it is

important to be able to pick the appropriate method. We can distinguish four main

algorithms for clustering but many more exist. The K-means algorithm is a fast

method which requires a user defined number of clusters to identify and can yield

different results between runs as the initialisation of the clusters centres is random.

The Mean-Shift clustering method is a sliding-window based algorithm which uses
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points with a set radius that will converge towards high density regions. Unlike the

K-means algorithm there is no need to define the number of clusters, but determining

the best radius can be challenging. Agglomerative Hierarchical Clustering can be

either agglomerative (bottom-up) or divisive (top-down). In the first case, each data

point is a cluster and the clusters that are most similar are merged successively until

all have been merged into a single cluster while in the second case, all the points begin

in a single cluster and the clusters are successively divided into the most different

clusters until each point is a cluster. Gaussian Mixture Model clustering is the method

employed in this thesis due to the advantages it offers in terms of the flexibility of the

clusters covariance as well as supporting mixed membership by using probabilities

to define which cluster a point belongs to. Indeed, mixture models are probabilistic

models aimed at representing subpopulations within an overall population without

prior information regarding the identity of any individual observation. Gaussian

mixture models, also called mixture of Gaussians, are probability distributions

which consists of observations drawn from a combination of Gaussians. By fitting

a mixture of Gaussians to the data it becomes possible to estimate the probability

of each data point of belonging to each component of the mixture of Gaussians.

This allows mixture models to be used as a soft clustering method [137]. While

sometimes the number of subpopulations and their characteristics (mean, variance)

can be known, making the task of identifying to which population belong each

objects easier, these characteristics are not necessarily required a priori when using

a probabilistic model. Mixture models can be used to determine the characteristics

of some subpopulations within a larger population. In this case, we do not need

to know to which subpopulation a single observation belong to, the mixture model

will yield a probability of each data point of belonging to a certain subpopulation.

Expectation maximisation (EM) [138] is a commonly used algorithm to estimate the

parameters.

The number of populations p to consider can either be set by the user or
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calculated. Two common strategies of choosing p are splitting the data into a

training and validation set or using a criterion that balances goodness of fit against

model complexity, for instance the Akaike information criterion (AIC) and the Bayes

information criterion (BIC). The latter was used in this thesis. The Bayes information

criterion (BIC) is also known as the Schwarz Criterion [139]. We considered a range

of values for p, and compared each using the BIC. The BIC is calculated with

k log(n)− 2 log(L(θ̂)) where n is the sample size/the number of observations, k is

the number of parameters estimated, θ is the vector of all parameters and L(θ̂) is

the maximized value of the likelihood function of the model. The value of p is found

by choosing the model with the smallest BIC.

1.7.4 Piecewise function

A piecewise function is defined by several sub-functions with each of them applying

only to a specific part of the definition interval. They allow a function to be defined

from a combination of several simple functions instead of using a single complicated

function. Figure 1.20 illustrate the application of a piecewise function to isolate the

central region from the edges needing intensity correction.

1.7.5 Data handling

The R programming language [140] is a free software environment first released in

1993 and originally aimed at statistical computing and graphics. A large number of

packages have been developed in R to address a wide variety of needs around but not

exclusively involving computation, visualisation and data manipulation. R recently

benefited from a high pace of development due to the growing popularity of data

science. Some of these packages have been made available under the umbrella name

of tidyverse packages [141]. This is a collection of R packages with a distinctive

design philosophy aimed at data science. Tidyverse packages share a similar design

philosophy, grammar and data structure enabling an ultra-fast learning curve. They
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Figure 1.20: Example of the application of a piecewise function.

were crucial in giving the capability to rapidly import, clean, transform, model and

visualise the vast amount of data generated during this thesis.

Finally, the Shiny package [142] made it possible to turn all the algorithms

developed in this thesis into web-based interfaces, enabling users without any R

knowledge to make use of the algorithms. Shiny was designed to work perfectly with

the tidyverse packages.

1.8 Main software contributions

• Chapter 1: The Themis algorithm was first implemented into an R script. For

ease of use, the script was combined with Rwui to provide an interface online

to submit tasks by external users.

• Chapter 2: For the study, building on the previous experiences, Themis was

recoded to use Tidyverse packages and optimised before being implemented

into a Shiny app to provide for a higher level of interactivity.
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• Chapter 3: The Rhapso algorithm was implemented into an R script before

being paired with Rwui to provide an interface online to submit tasks by

external users. Rhapso was later on, recoded to make use of the Tidyverse

packages and optimised. Rwui was replaced by Shiny in order to provide

interactivity with the user during the workflow along with visualisations of the

process.

• Chapter 4: Firstly, the algorithm was developed, implemented in R and some

basic visualisation capabilities were implemented. Later on, the code was

implemented into a shiny app called XC-FTMS to process the raw data and

obtain basic interactive visualisations. The capability to export the processed

data was added and another Shiny app called CompareR was created to

compare multiple datasets after processing with XC-FTMS. A derivative of

compareR called PetRo-ExploreR was created to explore and compare molecular

assignments from Composer without chromatography and processing with XC-

FTMS. For simplicity, CompareR and PetRo-ExploreR were merged by using

the implementation of Shiny modules and asynchronous computing. Finally,

KairosMS was created after the merging of all the previously developed Shiny

apps before being implemented on a server and used daily by Barrow’s research

group.
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Chapter 2

Themis: Batch Preprocessing

for Ultrahigh-Resolution Mass

Spectra of Complex Mixtures

2.1 Context

The objective of this chapter is to better understand instrumental variability between

acquisitions and to develop a method to increase the downstream reliability. It is

particularly important to improve the reliability of the analysis upon which decisions

can be taken. A new algorithm named Themis was developed and implemented

using the R language [140]. Themis uses replicate measurement of the same sample

in order to identify a consistent spectrum before molecular assignment. Themis

will first identify similar peaks across the replicates prior to combining them using

peak alignment and an adaptive mixture model-based strategy to separate consistent

peaks from the unreliable ones. A new peak list combining all the replicates will be

returned to the user which can be used for molecular assignment. The results showed

that at high intensity, similar molecular assignments were obtained with and without

Themis but at lower intensity, an improvement in the quality of the assignments was
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observed as the molecular series observed were more consistent and the RMS mass

errors was smaller. Themis was demonstrated using petroleum-related samples but

is expected to be applicable to a wide range of samples.

This chapter was published as an article in Analytical Chemistry. The research

for this project was initiated during the MSc research project of the author and

later improved during the PhD studies. All the code was written by the author,

with advice from David Rossell, Simon E. F. Spencer and Mark P. Barrow. The

NIST data was acquired by the author under Mark P. Barrow supervision while the

South American crude oil data was acquired by Diana Catalina Palacio Lozano. The

manuscript was written by the author.

2.2 Publication
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ABSTRACT: Fourier transform ion cyclotron resonance mass
spectrometry affords the resolving power to determine an
unprecedented number of components in complex mixtures,
such as petroleum. The software tools required to also analyze
these data struggle to keep pace with advancing instrument
capabilities and increasing quantities of data, particularly in
terms of combining information efficiently across multiple
replicates. Improved confidence in data and the use of
replicates is particularly important where strategic decisions
will be based upon the analysis. We present a new algorithm
named Themis, developed using R, to jointly preprocess
replicate measurements of a sample with the aim of improving
consistency as a preliminary step to assigning peaks to chemical
compositions. The main features of the algorithm are quality control criteria to detect failed runs, ensuring comparable
magnitudes across replicates, peak alignment, and the use of an adaptive mixture model-based strategy to help distinguish true
peaks from noise. The algorithm outputs a list of peaks reliably observed across replicates and facilitates data handling by
preprocessing all replicates in a single step. The processed data produced by our algorithm can subsequently be analyzed by use
of relevant specialized software. While Themis has been demonstrated with petroleum as an example of a complex mixture, its
basic framework will be useful for complex samples arising from a variety of other applications.

Fourier transform ion cyclotron resonance mass spectrom-
etry (FTICRMS)1−6 represents a state-of-the-art technique

for the study of complex mixtures that provides significant
advantages in terms of ultrahigh resolving power and mass
accuracy.7 As a result of these performance advantages, FTICR
MS affords the ability to distinguish molecules with very similar
mass-to-charge ratios (m/z) on the basis of mass defects. Given
the complexity of petroleum composition, these advantages are
particularly relevant for the characterization of petroleum and its
products by mass spectrometry,8−14 an area of research that has
become known as petroleomics. The following discussion will
use application to this field as a suitable example, but it should be
made clear that our methodology remains applicable to other
complex samples. A variety of analytical approaches have been
applied for the characterization of petroleum,15 as well as
environmental samples associated with alternative sources of
oil.16−19 Although high-field Orbitrap mass spectrometers are
showing promising results for light and medium petroleum
fractions, FTICR MS remains state-of-the-art for heavy
fractions.20−24 In order to address the challenges of producing
and refining crude oil, one needs to develop a more detailed
understanding of its composition through improvements in
characterization methods.25,26 Petroleomics is a field of growing
importance because the most desirable varieties of crude oil are

becoming more scarce. At the same time, the derivatives of crude
oil are in everyday use and include products such as fuels,
solvents, plastics, dyes, waxes, lubricants, and pharmaceuticals,
among others.27

As the capabilities of FTICR MS have increased and produce
larger and richer data sets, there has been an accompanying need
for the development of more advanced software for data
analysis.28 Peak detection is a fundamental step as part of a data
analysis workflow, regardless of application and instrument type.
Reflecting this, a large variety of methods have been developed
over time to improve peak picking.29−37 Thus far, the
development of data analysis methodologies for mass spectrom-
etry have focused upon the characterization of biomolecules,
such as peptides and proteins. In 2003, Patterson38 argued in
relation to the study of biomolecules that “data analysis is the
Achilles heel of proteomics and our ability to generate data now
outstrips our ability to analyze it”. Today, the ability to analyze
proteomics data is considerably improved, with many software
tools available. The analysis of data from complex mix-
tures29−31,39−42 is different from that of proteomics, metab-
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olomics, or polymer data, for example, given the higher peak
density (15−30 peaks in a 0.5 m/z window)10,12,35 and different
patterns within the data. While proteomics has typically involved
lower resolution instrumentation and higher throughput
techniques (automated systems analyzing many samples per
day), of greatest need when analyzing petroleomic samples is
ultrahigh resolution, making FTICR MS the tool of choice.
Another difference is that software tools for biomolecule
characterization are designed to match protein or peptide
sequences by use of online data banks. For complex mixtures
such as petroleum, the strategy is to determine series of
heteroatom-containing organic components, with thousands of
possible compositions (CcHhNnOoSs).
One example of data analysis software is Mass-Up,43,44 an

open source mass spectrometry program that gathers functions
such as normalization, peak detection and peak matching of
replicated samples. It was developed specifically for proteomics
matrix-assisted laser desorption/ionization (MALDI) data,45−47

when typically a lower resolution mass analyzer was used, such as
time-of-flight mass spectrometry. While a software tool designed
for other varieties of mass analyzers and other sample types can
be invaluable for their intended purposes, they are not
appropriate for analysis of complex mixtures due to their design
for use with lower resolution data and wider mass error
tolerances (e.g., hundreds of parts per million, ppm). There is
an emerging need for improved data analysis strategies for
complex mixtures, such as for petroleomics applications, that are
designed for the resolution of tens of thousands of peaks.15

Currently, a typical workflow for analysis using FTICR MS
may consist of acquiring one spectrum per sample and processing
each individual sample with specialized petroleomics software,
such as Composer (Sierra Analytics, Modesto, CA)16,20 or
PetroOrg (Florida State University, Tallahassee, FL).48 The
results from individual samples can then be recalibrated with
respect to m/z to compensate for electric field effects (including
space-charge due to the presence of the ions) within FTICR
cells.13,49−51 As the field becomes more mature, increasing
numbers of samples need to be analyzed within a practical time
frame, including multiple experiments to ensure repeatability of
results. A fundamental concern is to ensure that the data are
reliable and false assignments are reduced by removing as much
noise as possible before performing in-depth data analysis.36

To improve the reliability of analysis of crude oil spectra, Hur
et al.52,53 have previously highlighted the importance of the use of
replicates. The need for replicates was demonstrated for FTICR
MS-based metabolomics data,54 and recently replicates were
used to generate an averaged mass spectrum.55 Our approach is
based on the idea that, to fully capitalize on the advantages
brought by repeat measurements, replicates should be processed
together instead of separately. The first challenge is that complex
mixture data sets present a high density of peaks of interest,
hampering the identification of those that are consistent across
replicates. A second challenge is that of the peak magnitudes:
some peaks are similar in magnitude to the noise level, and it is
also possible that peak magnitudes can differ significantly across
replicates.
A simple strategy to avoid false positives is to use stringent

parameters when making peak assignments, for example, setting
a higher minimal signal-to-noise (S/N) ratio when picking peaks,
or a narrower tolerance of mass error (more limited deviation on
the m/z axis). There are advantages in working with such peak
lists rather than full mass spectra in terms of simplicity and
reduced computational cost. The problem with these strategies is

that they may, at an early stage, discard low-magnitude peaks that
provide valuable information and are consistently observed
across replicates. That is, they may be too aggressive in reducing
the number of peaks, with consequences for subsequent
interpretation. In contrast, using settings that are too permissive
risks including a high number of false positives. Furthermore, the
fundamental issue remains that applying thresholds to individual
spectra loses the opportunity to share information across
samples. Ideally, one would like to preserve all potential peaks
in individual samples and then use information across replicates
to identify which peaks are truly reliable. Traditionally, denoising
methods are based on signal magnitude, using either the shape of
the peaks or their magnitudes to discriminate between noise and
reliable peaks. By contrast, we propose to denoise the spectra by
focusing upon the consistency on the m/z scale, with peak
magnitude being used as a secondary criterion. Our algorithm
ensures reproducibility of the peak list extracted from a sample
and produces a single consensus list. Figure 1 provides a

schematic representation. The first stage is to extract a peak list
from each replicate, with a permissive S/N ratio. The second step
is to detect anomalous replicates by use of quality control
statistics based upon their molecular weight distributions. The
third stage is the use of quantile normalization to ensure that
magnitudes are comparable across replicates. Finally, the fourth
step uses a statistical mixture modeling approach to distinguish
reliable peaks from those due to noise.

■ METHODOLOGY
Sample Preparation. Sample A was an NIST light sour

crude oil sample [National Institute of Standards and
Technology, SRM 2721, crude oil (light sour)], which was
dissolved at 0.1 mg/mL in an 80:20 mixture of propan-2-ol/
toluene (Fisher Scientific, Loughborough, U.K.), with formic
acid (Sigma−Aldrich Co. Ltd., Gillingham, U.K.) being added at
1% by volume to aid protonation. Sample B was a South
American crude oil sample that was dissolved at 0.05 mg/mL in
50:50 propan-2-ol/toluene (Fisher Scientific, Loughborough,
U.K.), with 0.2% formic acid (Sigma−Aldrich Co. Ltd.,

Figure 1. Schematic of the Themis preprocessing algorithm.
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Gillingham, U.K.) for positive-ion mode or 0.8% ammonium
hydroxide (Sigma−Aldrich Co. Ltd., Gillingham, U.K.) for
negative-ionmode. Sample Cwas a Kodak naphthenic acid (NA)
mixture (The Eastman Kodak Co., Rochester, NY) was prepared
at 0.1 mg/mL in acetonitrile (VWR Chemicals, Lutterworth,
U.K.) without the addition of any ammonium hydroxide.
Instrumentation. Mass spectra were acquired as 4 M data

sets (i.e. approximately 4 million data points) using an Apollo II
electrospray ionization (ESI) source, coupled to a 12 T solariX
FTICR mass spectrometer (Bruker Daltonik GmbH, Bremen,
Germany). For sample A, the instrument was operated in
positive-ion mode and six repeat measurements were obtained,
each of them being the result of 300 scans. Sample B was
recorded in both positive- and negative-ion modes with five and
six repeat measurements, respectively. The number of scans was
300 for the negative-ion mode and 210 for the positive-ion mode.
Sample C was recorded in negative-ion mode with six repeat
measurements and 100 scans. In all cases, replicates were
obtained the same day in a single session on the instrument.
Broadband mass spectra were acquired, where a single zero fill
and sine-bell apodization were applied before a Fourier
transform.
Statistical Processing. The spectra were exported from

solariXcontrol to DataAnalysis 4.2, which was used to extract
peak information by use of the following parameters: peak finder
FTMS, S/N threshold 4, relative magnitude threshold (base
peak) 0.01%, and absolute magnitude threshold 100%. The
spectrum was not subject to any modification other than
application of the default apodization before undergoing Fourier
transformation.
Step 1: Detect Anomalous Replicates.The averagemolecular

weight Wj of each replicate j = 1, ..., r, where r is the number of
replicates, was calculated as a quality control metric to detect
anomalous runs:

̅ = ∑
∑
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=
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M i j I i j
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1

1

j

j
(1)

where M(i,j) is the m/z value of peak i in sample j, I(i,j) is the
corresponding magnitude, and nj is the number of peaks in
sample j.
To identify what constitutes an anomalous average molecular

weight, we must first characterize their reference distribution
from the data. Given that the mean and the standard deviation
(SD) can be heavily influenced by outliers, we used robust
measures of the center and spread, namely, the median and the
corrected median absolute deviation (MAD),56−58 given by eq 2:

= | − |x x b x xMAD( , ..., ) {median [ median ( ) ]}n i i j j1 (2)

with b = 1.4826 for Gaussian distributions. Motivated by the
central limit theorem, we assume that the average molecular
weights of nonanomalous samples are approximately normally
distributed around a mean μ, with standard deviation σ. We wish
to find an interval (μ − y, μ + y) that, in the absence of any
anomalies, should contain all n samples with probability 1 − α,
where α is a user-specified error threshold (by default α = 0.05).
If it is assumed that replicates are independent, for a given μ and σ
it can be seen that

α μ σ= Φ −− ⎡
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whereΦ−1(x, μ, σ) is the inverse normal cumulative distribution
function.

Step 2: Normalize Peak Magnitudes across Replicates. To
take into account that the dynamic range of magnitudes varies
across samples, we apply quantile normalization.59,60 This
ensures that the distribution of magnitudes is identical across
replicates, facilitating subsequent peak alignment.

Step 3: Initial Alignment of Peaks across Replicates. Our
peak alignment strategy has two steps, a first one to initialize
(step 3) and a second one used iteratively to refine the matching
(step 5). For clarity, we denote any value that may change across
iterations with a k superscript to indicate the value at the kth
iteration. In the initialization step, k = 0. To initialize the peak
alignment, we take the sample with the largest number of peaks
as a reference and match peaks in all other replicates to the
reference. Let m(k) denote the number of aligned peaks in
iteration k and m(0) the number of peaks in the longest replicate
at initialization. For each peak in the reference replicate, we
match to the closest peak in each replicate in terms of its m/z
value.

Step 4: Discarding Inconsistent Peaks. We compute the
standard deviation of the m/z values matched to reference peak i
= 1, ..., m(k), which we denote Zi

(k). Intuitively, peaks that are
consistently observed across samples should show similar m/z
values, resulting in low Zi

(k). That is, one typically observes a
subpopulation of reliable peaks with low Zi

(k) and another
subpopulation of less reliable peaks with high Zi

(k), likely due to
noise. This motivated us to fit a mixture model to separate these
subpopulations. Let Pij

(k) ∈{1, ..., nj} be the index of the peak in
replicate j (for j = 1, ..., r) that is matched to the ith reference peak
in iteration k. We define the mean m/z and magnitude for
reference peak i = 1, ..., m(k) in eqs 4 and 5:
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Equations 6 and 7 give the respective m/z and magnitude
standard deviations:
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An important step in our algorithm is to identify the
subpopulation of peaks consistently observed across replicates.

To this end we fit a normal mixture model61 to ̅
⎡
⎣⎢

⎤
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of the function mclust62,63 in the R package mclust.
Calculating the relative standard deviation (RSD), by dividing
the standard deviation Zi

(k) of a peak by its Mi
(k), allows us to

express the results in a unit equivalent to parts per million (ppm),
which is a standard unit when expressing the mass error
associated with the m/z of a peak. In addition, it helps to make
the mixture model more reliable, as it allows to be equally
stringent for high and low m/z, as the SD tends to be larger for

high m/z values. We denote = ̅
⎡
⎣⎢

⎤
⎦⎥G logi

k Z

M
( ) i

k

i
k

( )

( ) .

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.7b02345
Anal. Chem. 2017, 89, 11383−11390

11385

49



In mclust, we set the maximum number of components to
capture peak subpopulations of high and low quality, and
potentially a third one of intermediate quality. We use the
Bayesian information criterion (BIC) to select the final number
of components in the mixture. Themis then selects the
population with lowest mean Gi

(k). When this mean is >1 ppm,
a warning is given to signal that the data set may be of low quality.
The first time that step 4 is performed, a conservative threshold is
used: peaks are discarded if they have a probability below 0.01 of
belonging to the selected subpopulation. Doing so allows the
algorithm to remove the majority of the obvious noise while
making sure not to discard any potentially relevant peaks. At this
step, the presence of leftover noise is not problematic, as further
refinement will be performed by iteratively repeating steps 4 and
5.
In each subsequent repetition of step 4 in future iterations, the

0.01 threshold is increased by 0.01, up to a maximum of 0.5. The
goal is that, by the end of the iterative process, only peaks
belonging to the high-quality subpopulation remain.
Step 5: Align Peaks across Replicates. After peak removal in

step 4, we refine the peak matching across samples using a
combined criterion that incorporates both magnitude and m/z,
in contrast to step 3, where we only used m/z. Intuitively, the
criterion seeks the closest peak on the basis of a score wherem/z
and magnitude are weighted according to their inherent
variability. Given that the precision of the variance estimates in
eqs 6 and 7 may suffer when the number of replicates r is low, we
borrow strength across peaks by using the hierarchical empirical
Bayes framework proposed by Smyth and Speed,64 implemented
in function squeezeVar from the Bioconductor package
limma.65 We denote Z̃i

(k−1) and T̃i
(k−1) as the refined estimates

analogous to Zi
k−1 and Ti

k−1. Specifically, the score to measure
the closeness of peak l in sample j to reference peak i at the kth
iteration is given by eq 8:
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The highest scoring peak in each replicate replaces the one
chosen in the initial matching. After this peak assignment we
update Mi

(k), Ii
(k), Zi

(k), Ti
(k), Z̃i

(k), and T̃i
(k). To obtain a scoring

method that limits the effect of outliers and can be computed in
cases where a reference peak is absent from one or a few
replicates, we added the possibility to replace eqs 4, 5, 6, and 7 by
trimmed means and standard deviations. That is, the replicate(s)
with largest Sijl

(k) in eq 8 can be discarded.
Themis iteratively repeats steps 4 and 5 until either the BIC

selects a single population or else all remaining subpopulations
have a mean less than ≡1 ppm and the peak list does not change
between five successive iterations.
Output Combined Peak List. The final output is a list

composed of three tables containing respectively the m/z values,
magnitude values, and final peak list. The m/z and magnitude
tables have a [mK,r] dimension wheremK indicates a peak and r a
replicate number. The final reference peak list file is an m(K) × 4
table, where m(K) is the number of reference peaks at the final
iteration K. Themis stores the m/z, SD(m/z), magnitude, and
SD(magnitude) of each peak as separate columns. Themis
provides a function to extract columns 1 and 3 from the peak list
table to a .txt file containing a first column with the m/z and a
second with the corresponding magnitudes.

■ RESULTS AND DISCUSSION

The performance of the preprocessing methodology was
assessed for a sample of NIST light sour crude oil, a naphthenic
acid sample,66 and a crude oil sample analyzed in both positive-
and negative-ion modes. We also used a data set that was
recorded by use of deliberately aberrant instrument parameters
to study the ability of our framework to detect such situations.
Themis is available as an online tool at http://themis.warwick.ac.
uk/themis and is based on Rwui67 to generate a web interface for
the R script.
A common strategy to improve accuracy in m/z values is to

apply a calibration step based upon a list of reference peaks. This
step can in principle be applied to each individual peak list given
as input to Themis or to the single reference peak list output by
Themis. It is common that there can be minor variations in mass
errors between different data sets. Calibrating each individual
peak list before passing to Themis can significantly improve the
quality of the processing due to improved consistency.
In order to test step 1 of the algorithm, we recorded a spectrum

of NIST sample A where the ICR cell was intentionally
overloaded with a high ion population and one where we
deactivated ion source dissociation (ISD), which is used to
minimize noncovalent aggregation. These two peak lists were
extracted and included with the six others that were acquired
under normal conditions. The algorithm was able to detect these
two spectra as aberrant and remove them. Similarly, we then
substituted the ISD off-peak list for naphthenic acid sample C for
the list of replicates for sample A (NIST) used before, to verify
that our method would be able to cover this potential error.
Again, the algorithm successfully detected the spectrum that did
not correspond to sample A (NIST) and removed it. The
procedure was illustrated in Figure 2, where spectra C and E were
discarded after modelization while the other were kept.

To assess step 2, we produced a quantile−quantile plot (q−q
plot) to compare the magnitudes across samples. We observed
considerable variation between replicates (Figure 3A), partic-
ularly for greater magnitudes. Low magnitudes (ranging from 0
to 0.5 × 108) exhibited a similar distribution across replicates. In
the region from 0.5× 108 to 2.0× 108, we observe an inflection of
the line, which demonstrates that the magnitude is different but
the overall shape is similar. Also, single high-magnitude peaks
such as those originating from contaminants will influence the
total signal magnitude for the corresponding data set. The
quantile-normalized magnitudes are shown in Figure 3B. Similar
results were observed for other samples (see Figures S1−S3 in
Supporting Information).

Figure 2. Automated detection of outliers and use of a series of repeat
measurements to produce an averaged data set for characterization.
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Figure 4 was produced after the initial peak alignment in step 3.
It shows a histogram of log-standard deviation within-peak m/z
values for multiple data sets. It reveals the presence of a
subpopulation with low log(SD/mz) corresponding to reliable
peaks, that is, with similar m/z across replicates, and another
subpopulation with high log(SD/mz) mostly composed of noise.
Evidence of distinct subpopulations was observed in all data sets

we have analyzed so far, including different samples, instruments,
users, and peak list extraction methods.
Step 4 is critical because, although in all data sets there are

clearly distinct subpopulations, the distributions are different.
That is, the threshold used to distinguish reliable from unreliable
peaks cannot be a fixed quantity but instead needs to be data-
dependent. The red line, labeled 1 ppm, indicates a fixed

Figure 3. Quantile−quantile plots of magnitudes of six replicates, (A) before and (B) after quantile normalization, for the NIST light sour crude oil
sample.

Figure 4.Histograms of log absolute relative standard deviation (RSD) for peaks matched under the initial matching of different samples. The red line,
labeled 1 ppm, represents a standard deviation equivalent to 1 ppm; the black line, labeled Themis Threshold, shows the position of the threshold
between noise and consistent peaks after Themis processing. (A) NIST light sour crude oil sample A, positive-ion ESI; (B) naphthenic acid sample C,
negative-ion ESI; (C) South American crude oil sample B, positive-ion ESI; (D) South American crude oil sample B, negative-ion ESI.
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threshold equivalent to the log of 1 ppm, a value typically used as
a benchmark for accuracy of the mass measurement. For
comparison, the black line, labeled Themis Threshold, indicates
the final threshold identified by our mixture model framework,
which is adaptive to the nature of the individual data sets. For
instance, for both ionizations of the crude oil B, a more tolerant
threshold was used. While for Figure 4C, the threshold
immediately makes sense to the eye, Figure 4D may give the
impression of selecting part of the noise population. This is
because, during the refining process, the shape of the population
changes due to the scoring algorithm. With the NIST data, the
refinement led to the removal of peaks that ended up being
present several times following the rematching performed during
the iterative part of the algorithm. During this part, the peaks in
between the two large populations resulting from valid peaks (on
the left) and noise peaks (on the right) slowly joined these large
populations. The more challenging naphthenic acid sample
ended up with a threshold close to 1 ppm. This data set had
considerably fewer peaks than the three other data sets, making
the mixture modeling more challenging. Despite fewer peaks for
the mixture modeling, the algorithm still managed to isolate a
consistent population.
An example that highlights the benefits of the algorithm is

given in Figure 5, with close examination of a region around the

peak m/z = 248.1434, for two replicate data sets and Themis
output using all replicates. It is possible for a user to manually go
through every data set, adjust the parameters, and get an optimal
assignment. This is a laborious task usually avoided by using
default data analysis parameters across the data sets. Manual
adjustments of the parameters on a case-by-case basis is the way
to assign the greatest possible number of peaks but also leads to
an increased risk of false assignments due to inclusion of noise
peaks. In Figure 5, noise was observed between m/z 248.00 and

248.40 for the individual replicates but was not observed in the
data set produced by Themis.
Figure S5 shows a larger m/z region to illustrate the peak list

obtained across the six replicates of the NIST sample. Our
algorithm identified peaks that were consistently observed across
replicates with a S/N ratio as low as 4.5 up to 15 for this section
between 700 and 710m/z. For comparison, in the region around
400 m/z the peaks are routinely observed with a S/N ratio of
more than 500.
The raw peak lists for the NIST light sour crude oil sample

contained an average of approximately 16 400 peaks. Out of
these, Themis identified 2260 reference peaks deemed to be
common among all replicates. The number of entries increased
to 2523, when the peaks were allowed to be absent from one of
the replicates at step 5 of our algorithm, and to 2820, when peaks
could be absent from two of the replicates. Allowing peaks to be
absent from one or more replicates increases the ability to detect
potentially relevant peaks, at the expense of an increased risk of
potentially including less reliable peaks.
We compared the chemical composition obtained from

unprocessed spectra with that from the peaks list produced by
our algorithm for NIST light sour crude oil. For the purposes of
the comparison, the N1 class has been used, as it is the most
prevalent and the more challenging NS class because of its lower
magnitudes. The data were recalibrated by use of the N1 class and
a walking algorithm.51 The m/z match tolerance was set to 1
ppm. For the N1 class, the results demonstrated that the
reference peak list output by Themis has a similar chemical
composition after processing. Plots of contributions by double-
bond equivalents (DBE) and carbon number for the N1 class are
shown in Figure S6. Figure S6 demonstrates that the assignments
were very similar despite the output from Themis containing a
fraction of the number of peaks, indicating that information was
not being lost during the processing. Themis is expected to
improve picking of peaks of low S/N ratio, and therefore we next
looked at the NS class, which forms a smaller contribution to the
profile. Figure 6 shows the contributions of homologous series to
the NS class, where the NS class included many lower-magnitude
peaks, as already shown in Figure 5.
At first glance, a wider range of carbon numbers and DBE

appeared to be observed when no processing was used. Closer
inspection of the data, however, revealed gaps within the DBE
series; this can typically be used to differentiate between likely
correct and incorrect assignments within petroleum data, due to
the well-known presence of homologous series. The additional
assignments in the unprocessed replicates were also associated
with higher mass errors, further indicating that they were of
questionable validity. Furthermore, manual inspection of the
data also revealed that the peaks in question were not
consistently observed across the replicates. The combination of
these observations provides evidence that removal of these
assignments does not represent a loss of information but, in fact,
a reduction in false positives. After processing with Themis, the
series observed were more consistent and the associated range of
mass errors was smaller. While Themis reduced the size of the
peak list by differentiating noise and inconsistent peaks,
information is not being lost. In fact, the processing has
facilitated an improvement in data quality by reducing
interference in the analysis from false positives.
Figure 7 is a histogram of the mass errors associated with

assignments of the NS class for sample A (NIST) before
processing (Figure 7A) and after Themis processing (Figure 7B).
Typical mass errors were below 1 ppm for both data sets, with

Figure 5. Peak assignment between m/z 248.00 and 248.40, showing
two replicate data sets and the one produced by Themis using all
replicates. In replicate 1, composition C15H21NS is present just above
the noise threshold, while in replicate 2, the peak is below the noise
threshold and so not assigned.
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root-mean-square values of 0.38 ppm and 0.21 ppm, respectively.
The unprocessed replicate displays larger mass errors than data
resulting from processing with Themis, as also illustrated by the
false positives in Figure 6A.

■ CONCLUSION
Themis capitalizes on the availability of replicated measurements
to generate a single, reliable peak list, while avoiding the a priori
discarding of low-magnitude peaks that typically occurs when
signal-to-noise thresholds are applied. At a practical level, the
user’s workflow is simplified by performing downstream data
analysis on a single data set produced by Themis, instead of
working with replicates individually and comparing results at the
end. Furthermore, the preprocessing actually led to improved
assignment of low-magnitude contributions. Data set sizes and
the demand for more reliable, replicated data will increase
alongside technological advances in experimental methods.
There is an accompanying need to simplify data sets and handle
greater numbers of mass spectra. Themis currently performs its
tasks within a few minutes and removes the majority of the noise,
but there is scope for improvement. For instance, one could
incorporate into the analysis peak shape information, such as the
full width at half-maximum or some chemical prior information,

to further refine the output reference peak list. In this work it has
been found that it is simplistic to use a single parameter
threshold, such as S/N ratio, to separate noise from valid peaks,
and using m/z in combination with magnitude is a more
promising approach. While the application of Themis has been
demonstrated for petroleum, it is expected to also be useful for
other complex samples. It is intended that Themis will be
included in a workflow alongside specialized software for the
analysis of different complex mixtures. The anticipated benefits
include faster downstream data analysis, fewer false positives,
fewer genuine peaks discarded, and hence ultimately an increased
confidence in the results of the analysis, which is vital when
decision-making may be based on the findings.
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Figure S1: Quantile-quantile plots of the magnitudes of the six replicates before (A) and
after (B) quantile normalization for the South American crude oil Sample B, negative-
ion ESI

0 1.0 0 1.0

0

1.0

0

1.0

Before normalization After normalization

Magnitude of replicate 1

M
a

g
n

it
u

d
e

 o
f 
re

p
lic

a
te

 X

Replicate 2 vs 1

Replicate 3 vs 1

Replicate 4 vs 1

Replicate 5 vs 1

Magnitude of replicate 1

M
a

g
n

it
u

d
e

 o
f 
re

p
lic

a
te

 X

x10
8

x10
8

x10
8

x10
8

A. B.

Replicate 2 vs 1

Replicate 3 vs 1

Replicate 4 vs 1

Replicate 5 vs 1

Figure S2: Quantile-quantile plots of the magnitudes of the five replicates before (A) and
after (B) quantile normalization for the South American crude oil Sample B, positive-ion
ESI
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Figure S6: Stacked bar plot the carbon number and DBE distributions for the N1 class
for the NIST light sour crude oil sample. The results of the data analyses are shown
for: (A) a single replicate, where the total peak list (all classes and including noise)
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replicates, where the entire peak list comprised approximately 2,260 peaks.
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Figure S8: Multidimensional Scaling (MDS) two-dimensional plot based on the
Spearman correlation between magnitudes for each pair of data sets, before and after
Themis. Data points that are closer together have a stronger correlation. Prior
to processing with Themis, replicates R1 and R2 appear as outliers, relative to the
remaining replicates. After processing, these replicates are now much closer, indicating
that Themis reduced systematic biases across samples.
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Chapter 3

Repeatability, signal-to-noise

ratio, mass error and molecular

assignments in petroleomics

3.1 Context

In this chapter, the objective is to get a better estimate of the quantity of molecular

assignments of non-repeatable peaks in petroleum-related samples. In order to get an

understanding of the molecular composition of petroleum related samples, it is crucial

to assign molecular formulae to the peaks detected. The methods to process the

signal from Fourier transform mass spectrometry have improved over time, leading

to the identification of more peaks and with greater accuracy. The tools necessary to

perform the molecular assignments and reproducibility of the peaks have not been

investigated. Using Themis to separate non-reproducible peaks from the reproducible

ones in three types of sample, it was observed that using only reproducible peaks

lead to better molecular assignments and lower root mean square mass error. The

results showed that between 15 to 26% of the peaks assigned in a single replicate can

be considered as non-reproducible when compared to peaks present in all replicates,
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depending on the S/N threshold used for the peak-picking.

This chapter will be submitted as an article to a peer-reviewed journal. The

idea to study the quality of molecular assignments in complex mixtures, similar to

what has been done for proteomics, came from Peter O’Connor. The data for this

study was acquired by the author under the supervision of Diana Catalina Palacio

Lozano. Supervisors Mark P. Barrow, Simon E. F. Spencer and David Rossell

provided guidance and advice for the design of the experiment, the data analysis

and the manuscript writing. The adaptation of Themis into a Shiny [142] interface

was performed by the author. The manuscript was written by the author.

3.2 Publication
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Abstract

The ultra-high resolution of Fourier transform ion cyclotron resonance mass spec-

trometry (FTICR MS) enabled researchers to resolve the mass-to-charge ratio (m/z)

of thousands of molecules within petroleum samples. Accurately assigning those m/z

values to a molecular composition is crucial for the characterization of the composition

of those complex samples. Over time, regular improvements in the instrumentation,

the signal processing and molecular assignment software have led to better charac-

terization but the repeatability of current methods has not been yet investigated in

detail. Specifically, a peak found in a sample but not in a replicated experiment could

either correspond to a false positive or be a low-intensity peak that is hard to de-

tect. Using the Themis algorithm on peak lists which were extracted using a range of
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signal-to-noise (S/N) thresholds of three different samples, we were able to develop a

better understanding of the assignment process and repeatability. The results showed

that when analysing all peaks present in at least 2 out of 5 replicates, more compo-

sitional assignments were obtained with a significantly lower RMS mass error than

when analysing individual replicates separately. It was estimated that between 15 to

26% of the compositional assignments were not fully repeatable across all replicates,

depending on the S/N threshold used for the peak-picking when analysing a single

replicate.

Introduction

Complex mixtures such as petroleum and dissolved organic matter (DOM) require analysis by

ultra-high resolution mass spectrometry (UHRMS).1,2 Fourier transform ion cyclotron reso-

nance mass spectrometry (FTICR MS)3–7 is currently the state-of-the-art technique in terms

of ultrahigh resolving power and mass accuracy.8 While light and medium petroleum frac-

tions have been successfully analysed using high-field Orbitrap mass spectrometers, FTICR

MS remains unrivalled in terms of performance.9–13

A deep understanding of the composition of crude oils and derived products is essential

to improve the recovery of oil and its processing.14 The term “petroleomics” has been used

over the last few years to describe the characterization of petroleum and its products by mass

spectrometry.15–21 The challenges posed by the processing of crude oils continue to grow in

importance as the sources of light, easy to process, crude oil is getting sparser and lead to

a higher reliance on heavy crudes.22 Characterizing the composition of crude oils also plays

an important role in understanding their toxicity and their impact on the environment.23,24

To obtain greater insight into complex mixtures, several scientific domains have been the

subject of recent advances. Increases in the magnetic field strength directly increase the

resolving power (RP) achievable per second of acquisition time. A method called OCULAR

was recently developed using FTICR MS to achieve a world record of unique compositional
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assignments within a single sample.25 A 21 tesla FTICR MS was recently used to assign

more molecules and also increase the accuracy of the data.26 The transformation from a

magnitude mode spectrum to an absorption mode spectrum has been demonstrated to help

improve the resolving power by up to two fold and increase the mass accuracy.27 Peak

picking algorithms are also at the centre attention with new algorithms aiming to reduce

the number of false assignments.28 Finally, recalibration methods constitute a crucial step

towards reliable assignments and several methods have been described.29,30

To assign a molecular composition to each measured peak from its m/z, researchers can

currently rely on two commercial software offerings: Composer (Sierra Analytics, Modesto,

CA, U.S.A.)9,32 and PetroOrg (Florida State University, Tallahassee, FL, U.S.A.).33 Some

research groups are also relying on in-house algorithms.34

Molecules found inside petroleum and related compounds are commonly characterized

by their heteroatom count (N, N2, O, O2 etc), their double bond equivalents (DBE), and

finally the number of carbon atoms they contain. Within the same heteroatom class and

DBE, homologous series of peaks will be separated by the mass of CH2 (14.015650 Da).22

This means that when a few peaks belong to the same heteroatom class and DBE, we can

predict where the other peaks of that same family will be found.

Many data analysis workflows currently rely on peak-picking algorithms to generate a

peak list. Those methods require user-defined parameters, the most prevalent being that

the peak height exceeds a selected signal-to-noise ratio (S/N). Setting the S/N threshold too

high leads to a conservative list of highly reliable peaks but will miss out on low intensity

peaks. A lower S/N will avoid missing low intensity peaks but will include more noise and

non-repeatable peaks. If the user has a particular interest in low intensity peaks, a lower

S/N threshold will need to be used. In term of probabilities, the lower the S/N threshold,

the more likely some of the observed peaks will be due to chance and associated to the

experimental background noise.

The Themis algorithm demonstrated that by using replicates from the same sample, it
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was also possible to discriminate between repeatable and non-repeatable peaks.35 Reliable

peaks tended to be consistently observed across replicates, whereas spurious non-repeatable

peaks were not. Thus, the use of Themis gave the ability to set a reduced S/N ratio without

compromising on the reliability, keeping the root mean square mass error low and reducing

the amount of non-repeatable compositional assignments. The results also showed an im-

provement in the profile of heteroatom classes distribution. The work also raised questions

about the drawbacks of current molecular assignment methods and the rate of non-repeatable

assignments associated to standard peak identification algorithms.

The goal of this paper is to address an important need in studying and correcting poten-

tial false positive assignments arising from assigning a molecular composition to peaks not

consistently observed across replicates. To this end, we developed a new version of Themis

which was recoded to handle larger datasets, increase speed and enable interactivity with

the R package, Shiny.36

Three samples were used to demonstrate a range of different levels of sample complexity.

For each sample, we acquired multiple replicates to enable the study of between-sample

consistency. The results from extracting peak lists using different S/N was compared to the

peak list obtained by processing several replicate peak lists with Themis. We then studied

the differences in assignments between a regular workflow based on a single spectrum and

the assignments produced with Themis designed to only keep repeatable peaks.

Methodology

Sample preparation

Three samples were selected to reflect different levels of crude oil complexity. Sample A was

a crude oil from the Middle-East and was selected to act as a relatively simple sample. It

was diluted to a concentration of 0.1 mg/ml with equal volumes of toluene and propanol.

Sample B was a bio-oil sample and served as a medium complexity sample. It was diluted
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to a concentration of 0.05 mg/ml with equal volumes of toluene and methanol. Sample C

was a crude oil sample from central America and was selected for its high complexity. It was

diluted to a concentration of 0.05 mg/ml with 20% toluene and 80% propanol. The solvent

were picked based on previous experience to achieve an optimal homogeneous dilution while

the concentration was selected based on previous trials and colour of the sample. The more

complex the sample, the more dilution is necessary for optimal signal during the acquisition.

Instrumentation

Mass spectra were acquired using an APPI II atmospheric pressure photoionization (APPI)

source, coupled to a 12 T solariX FTICR mass spectrometer (Bruker Daltonik GmbH, Bre-

men, Germany). Broadband mass spectra were acquired, where a single zero fill and Sine-Bell

apodization were applied before usage of a fast Fourier transform. Ten replicates of each

mass spectrum were acquired with the aim to retain the five most similar to apply the Themis

processing. Sample A was acquired using the accumulation of 200 scans, sample B, 100 scans

and sample C, 300 scans.

Signal processing

The spectra were exported from solariXcontrol to FTMS Processing 2.1.0 software which

was used offline to produce an absorption-mode mass spectra and an asymmetric apodiza-

tion (Kilgour)27 function was applied. DataAnalysis 4.2 was then used to extract peak

information using the peak finder “FTMS” method. The peak list of each mass spectrum

was exported using S/N values of 2, 3, 4, 5 and 6.

Data processing

The replicated peak list for each S/N of each sample was processed using a modified version

of the Themis algorithm.35 As a novel contribution, Themis was implemented within a Shiny
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interface to enable more interactivity with the users, giving the possibility, for each step,

to decide whether to use the automatic settings or manual ones. It is also possible to see

how many peaks are isolated in cases where certain peaks are not present in all the repli-

cates, leaving the user the possibility to choose the desired level of replicability. Further, the

processing speed was also enhanced to better cope with bigger datasets thanks to tidyverse

packages and better use of functional programming. Themis takes replicates mass spectra

of a same sample and combines their peak lists, only retaining the peaks present across all

replicates. The peak list produced by Themis was then used to perform molecular assign-

ments. For comparison, the peak list from each replicate of each sample was also processed

for molecular assignments.

The molecular assignments were performed using Composer 1.5.6 (Sierra Analytics,

Modesto, CA, U.S.A.). The same settings were used across each sample to minimize the

sources of variation.

The original peak lists along with the corresponding molecular assignments were parsed

using R and metrics were computed such as the number of peaks for each replicate and the

S/N threshold.

Results and discussion

Throughout the study, the 5 most similar replicates, based on the average molecular weight,

for each sample were retained out of the 10 acquired to ensure redundancy in case of experi-

mental fluctuation such as signal loss. We considered that 5 was a number of replicates that

could be feasibly produced by a user. The improvements in Themis now allowed the user to

visualise the average molecular weight for each replicate, the confidence interval and decide

whether to exclude the outliers or not. The same peak-picking settings in DataAnalysis,

including the S/N threshold, were used to extract the peak list of each replicate for each

sample. Using Themis, not only a peak list with only peaks present in all replicates was ex-
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ported for each S/N, also with all peaks present in 4 out 5 replicates, 3 out 5 replicates and 2

out 5 replicates. The first step to explore the differences in the peak lists was to perform the

molecular assignments on each replicate separately and all peak list exported from Themis.

We observed differences both in the number of detected peaks and the corresponding molec-

ular assignments. In figures 2, 3, 4, 8, those variations between replicates were highlighted

using error bars for the standard deviation (SD). As the peak lists generated by Themis were

based on all available replicates, there is no between-replicate variance.

Figure 1 shows the replicability of the peaks across replicates. We first notice that most

peaks were found in all 5 replicates in each sample and for every S/N threshold and that

the number of peaks increased when the S/N threshold decreased. The number of peaks

with a lower level of repeatability increased when the S/N threshold decreased. While

the number of peaks present in only present in 2,3, and 4 out of 5 replicates was similar

between S/N 3 to 6, the number of peaks was significantly higher at S/N 2. Figure 1

demonstrates that the repeatability of the peaks picked with a low S/N threshold was lower.

In consequences molecular assignments performed with a low S/N threshold will lead to a

significant proportion of low intensity peaks not being repeatable or fully repeatable between

acquisitions.

Figure 2 showed the average number of molecular formulae assigned for each replicates

analysed separately (dash line) and the number of molecular formulae assigned for each peak

list produced by Themis (full lines), representing different levels of repeatability. The number

of molecular formulae assigned increased when including peaks present in at least 2 out of 5

replicates compared to when only including peaks present in all replicates. Comparing the

values for the average number of molecular formulae assigned for each replicates analysed

separately, Themis can give a higher number of assignments depending of the settings used.

This suggest that when investigating peaks difficult to distinguish from the noise, reducing

the presence requirement in Themis can help harvest peaks which may or may not be present

when looking at a single replicate.
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Naturally, the follow up question concerns the origin of theses changes in the number

of molecular formulae assigned compared to replicates analysed separately. Gavard et al.35

previously demonstrated that the decrease in the number of assigned peaks was largely due

to the removal of non-repeatable information and generally important information was pre-

served and the RMS mass error was reduced. Figure 3 showed the root mean square (RMS)

mass error of the m/z molecular assignments for all samples, using different repeatability

requirements, as a function of S/N threshold.

The RMS mass error decreased when moving up from peaks present in at least 2 out of 5

replicates to only including peaks present in all replicates. There was an expected decrease

in the RMS mass error of the molecular assignments as the S/N threshold was increased

and replicates analysed separately appear to more affected. The RMS mass error for the

assignments was consistently higher when using the average data of individual replicates

compared to using Themis.

In Figure 2, we noticed that lower repeatability levels led to similar or increase in the

number of molecular assignments compared to replicates analysed separately. Despite allow-

ing peaks with a lower repeatability level, the data processed with Themis demonstrated a

consistently lower RMS mass error than the replicates analysed separately.

This suggests that non-repeatable peaks with a high RMS mass error were removed but

allowing lower levels of repeatability allowed to observe peaks which may have been consistent

in term of m/z but sometimes above and sometimes below the intensity threshold during

peak picking. The higher RMS mass error for the replicates analysed separately suggest that

a number of non-repeatable peaks were assigned an incorrect molecular composition as they

fell within a window of error for molecular assignment.

We then studied where the not fully repeatable peaks were located for each S/N threshold

using sample C. For that we looked at the number of molecular formulae assigned per m/z

width of 10 depicted in Figure 4.

The results demonstrated that at high S/N threshold the replicates have a majority of
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Figure 3: Root mean square (RMS) mass error for each peak list as a function of S/N. The
error bars apply to the average for the replicates analysed separately.

repeatable peaks as both the error bar were small and the proximity with the number of

peaks present in all 5 replicates. Those findings match what was observed earlier in Figure 1.

Going towards low S/N threshold, the error bars for replicates analysed separately increased

and there was a clear difference between the number of peaks present in all 5 replicates

and those only present in one. The differences were more pronounced in the dense areas

suggesting that the presence of non-repeatable peaks was proportional to the peak density

across the mass spectrum. The non-repeatable peaks found in the most intense central region

were likely to come from the noise baseline. Most non-repeatable peaks found at high m/z

were probably due to the combined effect of the decrease in intensity and the decrease of

resolving power which diminishes inversely proportional to the m/z. Figures S1 and S2, for

respectively samples A and B, demonstrate similar trends.

In addition it was found in Figures S3, S4 and S5 that the variations in RMS mass error

of the molecular assignments versus the m/z were strongly dependent of the m/z profile or

spectrum so by extension the sample analysed. Sample A showed an improvement evenly
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distributed, sample B showed improvement in the high m/z region while for sample C,

improvements were observed in both low and high m/z regions. In consequence, depending

of characteristics of the mass spectra obtained for each sample, the processing with Themis

lead to improvement in different regions.

Figure 5 showed the heteroatom classes distribution at S/N 2 for the peaks present in all

replicates and in a single replicate. Some low contribution classes are being discarded while

several high contribution classes see their percentage contribution to the total signal increase

when using only peaks present in all replicates. The extremely low contributions classes

displayed spurious double bond equivalents (DBE) distributions based on non-repeatable

peaks which explain their removal. The heteroatom classes distribution for S/N 3, 4, 5 and

6 are depicted in Figures S6, S7, S8 and S9.
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Figure 5: Heteroatom classes distribution for sample C at S/N 2. The most intense classes
increased and some of the lowest were removed when only looking at peaks present in all
replicates.

Figure 6 showing the double bond equivalents (DBE) vs. carbon number of the N3[H]
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heteroatom class for sample C at S/N 2 for both methods showed a clear improvement in

the continuity of the DBE series when only retaining the most repeatable peaks.

Replicates analysed separately Themis
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Figure 6: Double bond equivalents (DBE) vs. carbon number of the N3 [H] heteroatom class
for sample C at S/N 2.

Figure 7 showed similar improvements than in Figure 6 but this time looking at the

heteroatom classes N1 and S3 for sample A. Indeed, for petroleum analysis, gaps within

DBE series are often used to distinguish correct and incorrect assignments because of the

presence of homologous series.

The previous results demonstrated the non-repeatable peaks which were been assigned

a molecular composition had a mass error higher than the rest of the assigned peaks and

were located within either or both low intensity regions and high m/z regions, the later

being affected by a decrease in resolving power leading to reduced quality data compared

to lower m/z regions. Finally, keeping only repeatable peaks led to more consistent series

being observed.

Using a low S/N threshold increased the quantity of non-repeatable compositional as-
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Figure 7: Double bond equivalents (DBE) vs. carbon number of the N1 and S3 heteroatom
classes for sample A at S/N 2.
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signments. We used Themis to calculate the percentage of non-repeatable compositional

assignments in a single mass spectrum as a function of the S/N threshold used for each

samples. Figure 8 suggests that between 15 and 17% of the compositional assignments at

S/N 6 were not fully repeatable, while at S/N 2 that percentage raised to between 23 and

26%.
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Figure 8: Percentage of compositional assignments not found across all 5 replicates as a
function of S/N threshold.

Conclusion

In this study we observed that the number of non-repeatable peaks increases when reducing

the S/N threshold. When analysing all peaks present in at least 2 out of 5 replicates, we

were able to obtain more peaks assigned and with a significantly lower RMS mass error than

when analysing replicates separately. This was due to the recovery of low intensity peaks

which may have been missed in other replicates but with a consistent m/z. We demonstrated

that while using peaks present in all replicates reduced the number of peaks extracted and
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assigned, further investigations reveal that the method provided a lower RMS mass error for

the molecular assignments while preserving most of the intensity assigned. The number of not

fully repeatable peaks distribute proportionally to the peak’s density across the m/z range

and do not appear to be focused within any specific heteroatom class. The data gathered

suggests that when performing molecular assignments, no method is currently error-free or

ideal. Keeping the S/N threshold high and the mass error tolerance high for assignments

will cause the analyst to miss out on important information. By contrast lowering the S/N

threshold and being more tolerant for the assignments will increase the number of non-

repeatable compositional assignments. Even using a high S/N threshold will yield about 15

to 17% of not fully repeatable compositional assignments. The percentage rises to between

23 and 26% when reducing the S/N threshold to 2. Those numbers are very conservative

as they are calculated by comparison with the peaks present in all replicates. If comparing

to the peak list obtained with all peaks present in at least 3 out 5 or at least 4 out of 5

replicates, the percentage drops. Themis can be used to retain only the most repeatable

peaks among replicates, leading to more confident molecular assignments or to harvest extra

information by gathering peaks only present in a few replicates while still retaining benefits

such as a lower RMS mass error for the molecular assignments.
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Figure S1: Number of peaks assigned per m/z width of 10 for each S/N for the sample A.
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Figure S2: Number of peaks assigned per m/z width of 10 for each S/N for the sample B.

S-2

87



S/N  5 S/N  6

S/N  2 S/N  3 S/N  4

200 400 600 800 1000 200 400 600 800 1000

200 400 600 800 1000

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

m/z (1 Da slices) 

R
M

S
 m

as
s 

er
ro

r 
(p

pm
)

Average replicates analysed separately Themis

Figure S3: Evolution of the RMS mass error accross the m/z range of the Sample A
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Figure S4: Evolution of the RMS mass error accross the m/z range of the Sample B
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Figure S5: Evolution of the RMS mass error across the m/z range of the Sample C
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Figure S6: Heteroatom classes distribution for sample C at S/N 3.
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Figure S7: Heteroatom classes distribution for sample C at S/N 4.
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Figure S8: Heteroatom classes distribution for sample C at S/N 5.
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Figure S9: Heteroatom classes distribution for sample C at S/N 6.
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Chapter 4

Rhapso: Automatic stitching of

mass segments from Fourier

transform ion cyclotron

resonance mass spectra

4.1 Context

The complexity of crude oil has always pushed FTICR MS detection limits, leading

to record resolution and mass accuracy. Some extremely complex samples contain so

many different components that competitive effects take place within the collision

cell and the ICR cell, and there is a detection limit of minimum 50 to 100 ions which

prevents most ions from being detected. A new technique consisting of segmenting

the acquisition into small m/z bins enabled more molecules to be observed within

those samples. Unfortunately, this means that the data needs to be manually stitched

together. The segments also display a decrease in intensity at the edges due to the

quadrupole isolation, a phenomenon often called an “edge effect”. This segmented
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acquisition method offered higher accuracy and the ability to detect a record number

of ions. A need emerged for a method to automatically stitch the segments together

to form a spectrum but also to correct for the intensity drop at the edges. The Rhapso

algorithm was developed to tackle these tasks, relieving the user from a laborious

task but also reducing the need for large overlaps between segments, reducing the

number of spectra needed to cover the complete m/z range of interest.

This chapter was published as an article in Analytical Chemistry. The Rhapso

algorithm presented in this chapter was used in a publication in Chemical Science.

Rhapso was developed and coded by the author to be part of a new method called

OCULAR. The sample was provided by Alexander Guzman. The data acquisition

necessary for the development of this algorithm was performed by Diana Catalina

Palacio Lozano with my assistance. The manuscript for this chapter was written by

the author.

4.2 Publication
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Rhapso: Automatic Stitching of Mass Segments from Fourier
Transform Ion Cyclotron Resonance Mass Spectra
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ABSTRACT: Fourier transform ion cyclotron resonance mass
spectrometry (FTICR MS) provides the resolution and mass
accuracy needed to analyze complex mixtures such as crude oil.
When mixtures contain many different components, a com-
petitive effect within the ICR cell takes place that hampers the
detection of a potentially large fraction of the components.
Recently, a new data collection technique, which consists of
acquiring several spectra of small mass ranges and assembling a
complete spectrum afterward, enabled the observation of a record
number of peaks with greater accuracy compared to broadband
methods. There is a need for statistical methods to combine and
preprocess segmented acquisition data. A particular challenge of
quadrupole isolation is that near the window edges there is a drop in intensity, hampering the stitching of consecutive windows.
We developed an algorithm called Rhapso to stitch peak lists corresponding to multiple different m/z regions from crude oil
samples. Rhapso corrects potential edge effects to enable the use of smaller windows and reduce the required overlap between
windows, corrects mass shifts between windows, and generates a single peak list for the full spectrum. Relative to a stitching
performed manually, Rhapso increased the data processing speed and avoided potential human errors, simplifying the
subsequent chemical analysis of the sample. Relative to a broadband spectrum, the stitched output showed an over 2-fold
increase in assigned peaks and reduced mass error by a factor of 2. Rhapso is expected to enable routine use of this spectral
stitching method for ultracomplex samples, giving a more detailed characterization of existing samples and enabling the
characterization of samples that were previously too complex to analyze.

Petroleum is one of the most complex mixtures found in
nature and can contain hundreds of thousands of unique

elemental compositions within a single sample.1 The study of
petroleum composition has become known as “petroleo-
mics”.1−10 Developing a more detailed understanding of
petroleum composition in order to address the challenges of
producing and refining crude oil has become increasingly
important in recent years.11−14 Fourier transform ion cyclotron
resonance mass spectrometry (FTICR MS)15−20 is a state-of-
the-art technique for petroleomics that provides a significant
ultrahigh resolving power and mass accuracy to assign
elemental compositions of highly complex samples.21 FTICR
cells can hold a maximum of a few million ions, and singly
charged ions will be detected if their presence reaches the
detectable amount of at least 50 to 100 ions.22,23 If several
thousands of molecular compositions are present, many species
can fall below the detection limit.24 To overcome this problem,
we traditionally use signal averaging, summing the data over

several scans (usually several hundred).25 This method is
reaching its limit for extremely complex samples, due to the
space-charge effects which lowers the isolation dynamic range
and mass accuracy.26

The space-charge effect can be addressed by segmented
acquisition, a method to obtain a full-range FTICR spectrum
when the instrumentation was not able to produce a
broadband spectrum.27,28 The spectral stitching method has
gained interest recently as the limits of the broadband
techniques start to show.29,30 A quadrupole mass analyzer is
used to select ions within a specified m/z range before being
passed to the ICR cell, hence reducing the number of different
molecular compositions in the cell and helping to get the
molecules above the detection threshold. A complete method
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called “selected ion monitoring (SIM) windows” by its authors
was established by Southam et al. for biological samples and
later used to enhance relative isotopic abundance measure-
ments by Weber et al.32 SIM was recently improved and made
widely available for mass-spectrometry-based metabolomics
and lipidomics.33 Earlier work by Rodgers et al.34 and
Zabrouskov and Senko35 used stitched spectra after segmented
acquisition; however, the data analysis methodology has not
been described or made available. Every application of the SIM
method reported a higher number of peaks, an increase in the
number of peaks assigned, and a higher mass accuracy.
Currently, a complete stitching method was only established
for metabolomics and lipidomics samples, where the number
of peaks observed is around a few thousand and the maximum
mass width investigated is m/z 700.31 In contrast, in complex
petroleum samples, the number of peaks in broadband mass
spectra can easily reach ten of thousands30 and spana width of
around 1000 m/z. This means that the methods developed for
biological samples are not directly applicable to petroleum
samples since the windows size must be adapted to the higher
molecular density. In addition, because of the higher mass
range, it is not realistic to use an overlap of width of 10 m/z
between windows. The calibration tools available are different
too. The strategy of Southam et al.31 relies on having a critical
number of isolation windows with an internal standard.
Petroleomics researchers try to limit the use of internal
calibration to avoid doping the sample, but instead use known
molecular series as internal calibrants. No methods that are
able to perform stitching using peak lists have been publicly
described for petroleomics to date. In 2012, Gaspar and
Schrader29 used the commercial software Xcalibur (Thermo
Electron, Bremen, Germany) to recreate a full spectrum by
adding all the segments acquired, as well as those from the
broadband. Recently Krajewski et al.30 performed the stitching
by manually trimming the best width of 20 m/z out of a width
of 25 m/z acquisition and ensuring that there was no overlap
with the following windows to prevent duplicating peaks.
Southam et al.31 observed a phenomenon that they called an

“edge effect” consisting of a reduction in intensity at the
isolation windows’ edges compared to what was expected by
studying the ratio of two peaks depending of their position
across the window. The strategy employed by the authors to
account for this effect was to use a large overlap between
windows (roughly a width of 10 m/z), so the edge of one
window is covered by the central part of the subsequent
window (where there is no edge effect). This strategy cannot
be practically translated to petroleum samples, as these require
substantially smaller windows; increasing their overlap would
result in an experiment that could take days to complete.
In this paper we describe a new algorithm called Rhapso to

automatically clean the peak lists, correct the edge effect via a
convenient statistical model, and stitch the peak list. Rhapso
was the name of a nymph in the greek mythology which
derives from a greek verb meaning to stitch. Rhapso was
recently successfully used to help achieve the highest resolving
power and number of unique molecular assignment to date.36

■ METHODOLOGY
The quadrupole was used to only transmit ions within a
specified m/z region for detection. This creates an isolation
window of a mass spectrum; a partial mass spectrum results,
which will be referred to as a “segment”. The user keeps the
width of the isolation window the same (e.g., spanning a width

of 20 m/z) but progressively moves the center of the isolation
window to higher m/z (e.g., m/z 261, 279, 297, etc.). In this
way, the user acquires a large number of overlapping segments
which span the entire m/z range of interest. In Rhapso each
segment is trimmed at the high and low m/z ends of the
observed signal to enable good subsequent stitching and
prevent the inclusion of noise or low quality peaks, producing
reduced-width segments. The reduced-width segments can
then be combined appropriately, finding suitable regions for
overlap, to produce a new mass spectrum.

Sample Preparation. A South American vacuum residue
sample obtained using supercritical fluid extraction was used to
illustrate our data analysis methodology. The sample has
around 90% of its constituents with a boiling temperature less
than 720 °C at atmospheric equivalent temperature (AET).
High performance liquid chromatography (HPLC) grade
toluene (Fisher Scientific, Loughborough, UK) was used to
dilute the sample to a concentration of 0.05 mg/mL.

Instrumentation. Mass spectra were acquired using an
Apollo II atmospheric pressure photoionization (APPI) source,
coupled to a 12 T solariX FTICR mass spectrometer (Bruker
Daltonik GmbH, Bremen, Germany). The injection was
performed using a flow rate of 500 mL h−1, vaporizer at 350
°C, drying gas at 250 °C, and capillary potential at 1200 V.
Potentials of 0.4 V were applied to the front and back trap
plates of the ICR cell. For the broadband mass spectrum, a
data size of 4 M was used with a detection range of m/z 250−
3000, and 100 time-domain transients were coadded. To
produce the stitched data, the m/z range (equivalent to 1000
Da) was segmented into 41 windows, each with an m/z width
of 20, with each window overlapping the adjacent windows by
an m/z width of 2. A quadrupole was used to isolate these
narrow m/z ranges, and 50 time-domain transients were
coadded.
In order to avoid influencing the peak abundance, the mass

envelope, excitation range, magnitude, and ion accumulation
time were kept constant. After acquisition, a single zero fill and
Sine-Bell apodization were applied before usage of a Fourier
transform.

Signal Processing. The FTMS Processing 2.1.0 software
was used with an asymmetric apodization (“Kilgour”)37

function for offline phasing of the segments to generate
absorption-mode spectra. The spectra were then exported from
solariXcontrol to DataAnalysis 4.2 and then internally
recalibrated using the HC class with a mass difference of
2.01565 Da. Finally, the peak finder “FTMS” method was used
to extract peak information and provide a peak list for each
segment and the broadband mass spectrum.

Statistical Processing. Rhapso consists of four steps as
depicted in the flowchart in Figure 1.

Step 1: Removal of Peaks Outside of the Isolation
Window. Peak finding algorithms (e.g., the DataAnalysis 4.2
FTMS peak picking algorithm used in our examples) may
identify peaks outside of the target m/z isolation window. In
addition, the width of each segment can be different.
We have developed a strategy to obtain reduced-width

segments that have a common width and contain the peaks of
interest. One option would be to ask the user to input the
theoretical m/z range targeted by each window; however, the
observed m/z range can differ from the theoretical one due to
the precision of isolation of the quadrupole. Instead, we
developed a method to detect automatically the m/z range
using as little prior information as possible. The method allows
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for a maximum overlap between consecutive segments of 50%
the size of the segments; e.g., for a width of 20 m/z, the
maximum overlap is a width of 10 m/z.
Each segment was acquired aiming for a theoretical m/z

width, which we denote by W and was kept constant for all
spectra. Let r be the number of segments and nj be the number
of peaks in segment j = 1, ..., r. Define Mi,j as the m/z value of
peak i = 1, ..., nj in segment j and Ii,j as the intensity value of
peak i = 1, ..., nj in segment j. We define Sj = miniMi,j to be the
smallest m/z Mi,j of segment j and Hj the highest m/z Mi,j of

segment j. Further, let Ej be the integer m/z at the center of the
segment as specified by the user. The observed width of the
signal in each segment is often larger (up to 20%) than W).
Our goal is to stitch segments using as wide a range as

possible, subject to the measured intensities being high enough
to ensure that measurements are accurate. Specifically, we seek
the most suitable width W + x to use for the stitching where x
is a width adjustment for all segments to be determined as
described below. Crude oil molecules are detected in clusters
of peaks occurring every integer; consequently, we will
investigate segments with widths W + x for integer x = 0, 1,
..., ⌈0.2W⌉. The cleaning procedure described below is
repeated for all the values of x. For each (W + x) and within
each segment j we look for the m/z value which maximizes the
sum of the intensities in a window of width (W + x). Hence dj
= arg maxd ∑i∈S(d) Ii,j where S(d) = {i : d ≤Mi,j ≤ d + (W + x)}
within an m/z interval [d, d + (W + x)]. The range of d
considered for segment j is given by the interval d ∈ [Ej − (W
+ x) + Cj, Ej + Cj], with Cj being the decimal which needs to be
added to the integer m/z in order to ensure that a cluster of
peaks does not get split. If the peak density is too high to
determine a space between them, a region with low intensity
peaks will be selected. In order to calculate Cj we search for the
largest 10 gaps between peaks within [Ej − (W + x), Ej + (W +
x)], and for those 10 gaps we calculate the decimal places of
(Mi+1,j + Mi,j)/2 to identify how far the centers of the gaps are
from the integers. If the standard deviation of the decimals of
those 10 values is under 0.1, then Cj is the average of those
decimals; otherwise Cj = 0.

Step 2: Estimate the Edge Effect. To investigate and
measure systematic intensity decreases at the segment edges,
we combined the data from all the cleaned segments by
shifting them on a common new scale. This is because
individual segments display natural variability due to the
chemistry of the crude oils which can be mistaken as an
intensity drop if located toward the edges. In contrast, by
stacking all segments one can estimate common patterns in
intensity drops. The shifted m/z value for peak i in spectrum j
is defined as Zi,j = Mi,j − Sj. That is, the shifted m/z values
range is Zi,j∈[0,W + x]. Now we divide the Zi,j into k bins 1
m/z wide and let nk denote the number of peaks for bin k and

( )Y Ilogk n i
n

i j
1

1 ,
k

k= ∑ = for bin k and Xk = mini,j∈ k(Zi,j) denote

the floor m/z Zi,j of each bin. We model the log of the mean
intensity of each bin using a piecewise linear model where a
and b define the change points at which intensity starts to drop
near the edges. That is,

Y X a X a

X b X b e

( ) ( )

( ) ( )

k k k

k k k

0 1

2





β β

β

= + [ − × < ]
+ [ − × > ] + (1)

for k = 1, ...,W + x where ek is an error term and  the indicator
function. The model is fitted by least-squares, which is finding
(a, b, β0, β1, β2) that minimizes the mean square residuals
(MSR). Specifically, given (a, b) the optimal (β0, β1, β2) can be
found by ordinary linear regression. Hence, it suffices to
consider a grid of (a, b) values for a ∈ {0, ..., [0.2(W + x)]}
and b ∈ {(W + x) − [0.2(W + x)], ..., (W + x)}, to find the
MSR associated with the optimal (β0, β1, β2) and choose the
(a, b) attaining the smallest MSR overall. This step was
performed for each of the window sizes W + x investigated.
The smallest MSR obtained from all the different window sizes

Figure 1. Flowchart representing the four processing steps of Rhapso
taking place after acquisition,signal processing and export to peak list
for each segment.

Figure 2.Mass spectrum of a segment between m/z 651 and 674 after
FTMS peak picking, before processing and stitching with Rhapso.
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is isolated, determining the value of (x, a, b) to be used in the
rest of the processing.
Step 3: Correct Window Edge Effects. We used the

piecewise linear model in eq 1 to correct intensity drops at the
segments’ edges of each individual segment. Because both the
overall intensity and the magnitude of the intensity vary across
segments, we estimate β0, β1, β2 separately for each window j.
We calculate β1 and β2 for each segment and use the associated
segment center to fit a locally estimated scatterplot smoothing

(LOESS) model38 for each β. The models are then used to
calculate a smoothed β1 and β2. This is done to avoid being
affected by outlier peaks, especially in the presence of a low
number of peaks at the extremities of the window, which can
result in an inappropriate value. We denote these new

estimated coefficients as j0β ,̂ j1β ,̂ j2β .̂ The corrected intensities

Ii j,
̂ are obtained as

I
I S a M M S a

I H b M M H b
log( )

log( ) max , 0 (( ) ) if

log( ) max , 0 (( ) ) if
i j

i j j j i j i j j

i j j j i j i j j
,

, 1 , ,

, 2 , ,

β

β
=

+ { } + − < +
+ {| | } − − > −

̂
l
m
oooo
n
oooo (2)

where Sj and Hj are the lowest and highest m/z values in
segment j.
Step 4: Stitching. We have an overlap between segments j

and j + 1 and we must choose from which window to take
peaks. We wish to determine the best m/z to change from
segment j to j + 1. We isolate the peaks from both spectra with
an m/z within the interval [Sj+1, Hj] and form a new set
u j M M H M M S( ) : :i j i j j i j i j j, , , 1 , 1 1= { ≥ } ∪ { ≤ }+ + + . Let Mi j,

̂
be the elements of u(j). We search for the top k largest gaps
arg maxi Mi + 1,j − Mi,j between peaks in the overlap region u(j).
Define P1, ..., Pk to be the midpoints of these k gaps. In
addition, we define P0 = (Sj+1 + Hj)/2 to be the center of the
overlap. The merging point P* is selected to be the midpoint
closest to the center P0 : arg minl |Pl − P0|. Once all the merged
peaks have been identified and the excess peaks removed from
each end, the isolation windows are assembled into a unique
peak list and exported for further analysis.

■ RESULTS AND DISCUSSION

The calibrated and phased mass list of each segment was
exported using DataAnalysis 4.2 as text files and processed with

Rhapso. Rhapso has been implemented using a Shiny web
interface.
At this stage, the peak list of each isolation window can

contain peaks from outside the targetted isolation due to the
noise. The lower the signal-to-noise ratio (S/N) used for the
peak picking, the more noise that will be included. As seen in
Figure 2, different segment widths can be considered. For
instance, the window illustrated in Figure 2 has an observed
width of 23 m/z, larger than the theoretical width W of 20
m/z. It is in our best interest to retain as much of segments as
possible to be efficient and use fewer segments. In our
application, we have explored using widths of 20, 21, 22, and
23 m/z. The m/z range to include for each of the widths
considered was determined as described in Step 1. In the
subsequent steps we explore each of them and determine
which one is the best. As explained in step 2 of the method, we
have modeled and corrected a decrease in intensity at the
edges of the spectra caused by the isolation by the quadrupole.
This phenomenon was described by Southam et al. and called
an “edge effect”. Instead of using a large overlap and deleting
the edges, which would require more segments and in
consequence a much longer acquisition time, we decided to

Figure 3. (A) Overlapped log-intensities across all windows in the shifted m/z scale Zi,j and (B) plot of the average intensity of each bin with an
m/z width of 1.
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apply a correction of the intensity. In order to calculate a
piecewise model of the intensity diminution at the edges, we
had to find where the decrease in intensity occurs. This is
specific to the type of sample analyzed, the molecular
abundance, the size of the windows, and the instrument.
Because of its chemical composition, crude oil displays natural
undulations that need to be preserved. In Figure 3 A, we
subtract the minimum m/z of each window to all the peaks
present in the window and calculated the log of the mean
intensities in each bin of width 1 m/z. This allows us to go
beyond the natural undulations and to display a clear pattern of
intensity diminutions at the edges of the windows. By looking
for the minimum mean squared residuals of a piecewise model,
we determine the optimum break points, where an intensity
correction is needed (Figure 3 B).
Using a grid search for the best breakpoints a and b, the

MSR for the model was used to determine the best values for
each width considered. Finally, the width with the model
yielding the minimum MSR determines the width used in the
subsequent steps. After the optimal width W was determined,
the β coefficients were calculated for each segment (Figure 4)
and a LOESS model was fitted. Figure 4 was created without
any log transformation on the intensity to highlight the
similarities of the distribution of the coefficients with the
intensity profile of the final stitched spectrum. It becomes clear
that using the same β for all segments would not be a good fit
and proves that the intensity drop at the edges is more
pronounced when the intensity increases.
The correction was applied using a β coefficient calculated

on the log(intensity) scale and applied to log(intensity) data
before being transformed back to the original scale.
In order to assess the quality of the intensity correction

performed during step 3, we looked at the mean intensity of
each window of width 1 m/z. Figure 5 represents these
averaged corrected and uncorrected intensities for each peak
cluster. The dots represent the mean intensity without
correction, and the arrows point where the mean intensity is
after correction. We notice that the correction applied helps
restore the natural undulation profile. In accordance to the

distribution observed in Figure 4, the correction was most
visible in the most intense segments while, at the edges (low
and high m/z), the correction was minimal, and sometimes not
necessary.
After the intensity correction was applied, the merge

between each segment was performed. As described in the
methods and illustrated in Figure 6A, the overlap region was
isolated (illustrated by the two vertical lines). Since we know
that the quality of the peaks deteriorates at edges and we want
to prevent either duplicating or losing any peaks, the best place
to switch from one segment to the other will be in the center of
the overlap region and between clusters.

Figure 4. LOESS model estimate of (A) j1β ̂ and (B) j2β ̂ for a width W = 21, as a function of the segment center.

Figure 5.Mean intensity of each window with an m/z width of 1. The
arrows indicate the changes to mean intensity of each peak cluster
after correction.
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In Figure 6B, the green central vertical line illustrates the m/
z where Rhapso found it would be the best place to perform
the stitch.
With thousands of peaks, comparing two mass spectra can

be challenging, so, in Figure 7A, we have represented a density
plot using all the m/z measured in each data set. The density
was weighted by the intensity of each m/z. The figure clearly
illustrate the higher complexity of the mass spectrum, the
higher intensity, and also the broader distribution of the
spectrum when using a spectral stitching method.

In Figure 7B, the m/z of each assigned peak was reduced to
an integer, and we counted the number of peaks of each
integer. The results were plotted as a bar plot and demonstrate
the increase in number of peaks assigned after using Rhapso to
stitch the segments. It is worth noting the similarity of the
distribution with the density plot in Figure 7.
Figure 8 shows the evolution of the main molecular classes.

The bar plot clearly demonstrates an increase in the number of
peaks assigned for each class. There is a 2- to 3-fold increase in

Figure 6. Illustration of the isolation of the overlap region between two segments (A) before and (B) after removal of the unnecessary peaks at the
extremities, following automated calculation of the overlap position for segments.

Figure 7. (A) Density plot based on all the m/z measured in both broadband and stitching mode. The plot shows the broader peak distribution in
stitching mode due to the increased number of peaks in the low intensity regions. (B) Comparison of the number of assignments per m/z width of
1 using both techniques.
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the number of peaks assigned in each class which is consistent
with the higher number of peaks assigned.
While a higher number of peaks were assigned, this increase

did not result in a higher mass error. Figure 9 illustrates how
the mass error compares between broadband and stitching.

Figure 9A shows the root-mean-square error along the m/z
axis. The RMS error was calculated by pooling the mass error,
in ppm, for each ppm width of 1 across the range. The data set
processed with Rhapso has a systematically lower error and a
wider m/z range as already illustrated before. Figure 9B
illustrates the distribution of the mass error in ppm observed
for all the peaks assigned. The horizontal lines respectively
mark the 5%, 25%, 50%, 75%, and 95% quantiles within each
violin plot. It is worth noting the much narrower distribution
and median closer to 0 with the stitching method.
As presented by Palacio Lozano et al.,36 Rhapso enabled for

this vacuum residue sample a sharp increase in the number of
peaks assigned (17k vs 50k) and led to a 2-fold decrease in the
RMS mass error. An increase in the number of classes, highest
DBE, and highest carbon number were also registered. We
have also noted a sharp increase in the number of isotopic
peaks assigned.

■ CONCLUSION

The acquisition process is currently very time-consuming but is
expected to be automated in the future. Rhapso performs the
spectral stitching of any complex spectrum acquired using
selected ion monitoring windows within a few minutes. The
method, implemented within a Shiny interface, allows the user
to visualize each segment all along as well as check each step of
the processing. Rhapso also allows analysts to speed up the
acquisition process by permitting the reduction of the overlap
between each window thanks to the intensity correction
method. It also preserves the natural undulations of the
spectra, characteristic of crude oils. The method also
demonstrates that the correction allows the peaks’ distribution
to be closer to the ones observed in broadband mode. The
spectral stitching method is crucial to increase the number of
peaks observed and lower the mass error using existing
instrumentation available to the users. However, any invest-

Figure 8. Number of peaks assigned for the prevalent molecular
classes with the broadband mass spectrum (purple) and the mass
spectrum obtained using segments stitched with Rhapso (green).

Figure 9. Root mean square error of the assigned peaks for each m/z width of 1 of the mass spectrum as (A) a density plot over the m/z range and
as (B) a violin plot.
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ment in more expensive equipment such as a more powerful
magnet or more advanced FTICR spectrometer will also lead
to further improvements. The results demonstrated not only a
net increase in the number of peaks assigned but also an
increase in the quality of those assignments. While the mass
spectrum maintained a similar distribution, we showed there
was an increase of peak density in the lower intensity regions.
It is expected that this algorithm will enable a more extensive
use of this technique, by relieving the user of a highly time-
consuming step.
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Figure S1: Broadband mass spectrum of the South American vacuum residue sample, ac-
quired using positive-ion APPI coupled to a 12 T FTICR mass spectrometer.
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Chapter 5

KairosMS: New solution to

process complex mixture data

analyzed by hyphenated -

ultra-high-resolution mass

spectrometry

5.1 Context

In this chapter, the challenges posed by the analysis of complex mixtures using

ultra-high resolution mass spectrometry were addressed. In order to gain information

regarding the structure of the molecules, it is possible to couple chromatography with

ultra-high resolution mass spectrometry (UHRMS). The UHRMS is crucial to resolve

all the co-eluting components and resolve each extracted ion chromatogram (EIC)

to observe isomers. This method leads to large datasets and the data analysis is

currently extremely laborious. The current data processing methods rely on manually
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segmenting the elution into as many time slices as necessary. The signal of each time

slices is summed and peak list is extracted and processed individually. In order to

for the method to become viable better tools are needed. KairosMS removes the

need to manually divide the data and perform as many molecular assignments and

plots as there are segments. KairosMS imports the data as a masslist, processes it

and returns a single peak list which is used to obtain the molecular assignments.

The assignments are then incorporated by KairosMS with the original data. A wide

range of interactive visualisations have been implemented to assist the researcher in

the exploration. It is also possible to process several samples and visualise them side-

by-side within the same plots, making the comparison between samples extremely

straightforward. KairosMS not only decreases the time necessary to analyse complex

mixtures with hyphenated UHRMS, it also enables a more accurate analysis as no

time information is lost. It also affords the ability to rapidly screen EICs and observe

isomeric contributions.

This chapter was submitted as an article to Analytical Chemistry. The data

to develop this method was sourced from various researchers across different research

groups. The patterns and algorithm theory were discovered by the author. The first

implementation of the algorithm was done in R by Hugh E. Jones, Masters student

at the time. Initial visualisations were performed by Hugh E. Jones. Hugh E. Jones’

code was then adapted and expanded by the author in a Shiny interactive interface.

Extensive testing and feature requests were provided by Diana Catalina Palacio

Lozano and Mary J. Thomas. The supervisors David Rossell, Simon E. F. Spencer

and Mark P. Barrow provided guidance and help throughout the process. KairosMS

is expected to be used in numerous upcoming publications. The manuscript was

written by the author with corrections from Diana Catalina Palacio Lozano and

Hugh E. Jones.
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KairosMS: A New Solution for the Processing of Hyphenated
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ABSTRACT: The use of hyphenated Fourier transform mass
spectrometry (FTMS) methods affords additional information
about complex chemical mixtures. Coeluted components can be
resolved thanks to the ultrahigh resolving power, which also allows
extracted ion chromatograms (EICs) to be used for the
observation of isomers. As such data sets can be large and data
analyses laborious, improved tools are needed for data analyses and
extraction of key information. The typical workflow for this type of
data is based upon manually dividing the total ion chromatogram
(TIC) into several windows of usually equal retention time,
averaging the signal of each window to create a single mass
spectrum, extracting a peak list, performing the compositional
assignments, visualizing the results, and repeating the process for
each window. Through removal of the need to manually divide a data set into many time windows and analyze each one, a time-
consuming workflow has been significantly simplified. An environmental sample from the oil sands region of Alberta, Canada, and
dissolved organic matter samples from the Suwannee River Fulvic Acid (SRFA) and marine waters (Marine DOM) were used as a
test bed for the new method. A complete solution named KairosMS was developed in the R language utilizing the Tidyverse
packages and Shiny for the user interface. KairosMS imports raw data from common file types, processes it, and exports a mass list
for compositional assignments. KairosMS then incorporates those assignments for analysis and visualization. The present method
increases the computational speed while reducing the manual work of the analysis when compared to other current methods. The
algorithm subsequently incorporates the assignments into the processed data set, generating a series of interactive plots, EICs for
individual components or entire compound classes, and can export raw data or graphics for off-line use. Using the example of
petroleum related data, it is then visualized according to heteroatom class, carbon number, double bond equivalents, and retention
time. The algorithm also gives the ability to screen for isomeric contributions and to follow homologous series or compound classes,
instead of individual components, as a function of time.

Complex mixtures such as petroleum, petroleum related
samples, and dissolved organic matter (DOM) are

among the most complex and heterogeneous mixtures found
in nature.1,2 The study of these complex mixtures is crucial to
improve refining techniques3−5 and assess their environmental
impacts.6−8 The ultrahigh resolution of Fourier transform mass
spectrometry (FTMS)9−13 has been beneficial to their
study.14−16 More recently, Orbitrap instruments were success-
fully used for oil-sand related samples17,18 and DOM.19 While
Orbitrap instruments are more widely available and have lower
costs, Fourier transform ion cyclotron mass spectrometry
(FTICR MS) offers the highest performance for the study of
complex mixtures.18,19 The use of FT-based mass spectrom-
eters have enabled researchers to observe previously
unresolved molecules and gain a deep understanding of their
composition.20 Nevertheless, there still remains unexploited
information to be extracted21,22 and new techniques to observe
record number of molecules are regularly developed.23

Specifically, FTMS techniques allow researchers to determine
the masses of thousands of ions with very high accuracy, but do
not give any structural information that could be used for
distinguishing molecules with the same mass but a different
structure (isomers).24 To address this issue, recent publica-
tions have used an online system of gas chromatography
(GC),24 liquid chromatography (LC),25,26 and trapped ion
mobility spectrometry (TIMS)27 coupled to FTMS instru-
ments.
While chromatography coupled to FTMS instruments is

now well-established, the data processing pipeline is struggling
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to keep pace with the instrumentation advances. The tools
developed so far struggle to perform well with the ultrahigh
resolution and the complexity of the acquired spectra. Most
software currently available such as OpenChrom,28 MS-Dial,29

XCMS,30 MZmine,31 MetAlign,32 MathDAMP,33 and MS
Resolver (Pattern Recognition Systems, Bergen, Norway)34

use m/z binning to create a data matrix with m/z and retention
time (tR) as axes and intensity of the peak recorded by the
analyzer. This strategy allows researchers to process the data
rapidly, match peaks across samples, and perform downstream
analysis such as group comparisons, clustering, principal
component analysis, etc. However, these methods have not
been designed to tackle the challenges posed by the natural
variations of the m/z induced by the space-charge effects of the
FTMS instruments along with the density of complex samples.
Indeed, none offer the ability to recalibrate to tackle the space-
charge effects. In addition, they have not been developed to
work with low signal-to-noise (S/N) data and the need for
denoising. This forces the user to raise the S/N threshold
leading to potentially omitting informative peaks, losing some
of the benefits of the ultrahigh resolution.
The m/z binning method is based upon the assumption that

each molecule m/z is far enough from any other so that
sufficiently large bins can be used while avoiding having two
different molecules in a single bin. Each bin will then contain
an extracted ion chromatogram (EIC) that comprises peaks at
given m/z values from scans spanning a retention time range.
The peaks within an EIC of a molecular composition are
defined by a unique m/z, intensity, and retention time.
Analyzing complex mixtures requires the ultrahigh resolution
to be able to separate ions present within a very narrow m/z
width.4,35,36 For this reason, the use of large bins is detrimental
as there is a high probability of having several EICs to appear
in the same bin, losing the benefits of the ultrahigh resolution.
The use of small bins also poses great challenges as it increases
the risk of excluding parts of the EIC, especially with FT
instruments which are subject to space-charge effects resulting
in shifting m/z during the experiment. The width of the bins
would need to be dynamic as different sample complexities and
instruments would influence the viable bin width. For example,
analyzing data with an m/z error range of 10 parts per million
(ppm) does not pose the same challenges as techniques
yielding m/z errors of less than 1 ppm. Similarly, analyzing
samples with hundreds of different molecules does not pose
the same challenges as analyzing hundreds of thousands of
different molecules. The majority of the software cited earlier
was developed with the aim of the characterization of other
sample types (e.g., biomolecules) using lower resolution
instrumentation; hence, they present significantly different
characteristics and very different visualization tools. One issue
is that they require the conversion of data to the mzXML
format, which multiplies the file size; an example of a
hyphenated ultrahigh resolution data set in the region of
20−30 GB can become almost 100 GB, leading to increased
computational overheads and making successful processing
unviable. Other file export methods can sometimes place
restrictions on the maximum number of peaks captured, which
is not suitable for complex mixture analysis. Furthermore, the
software does not allow incorporation of molecular assign-
ments determined using external methods (e.g., in-house
algorithms or commercial software) which may be required for
a researcher’s workflow, especially for work in specialized
fields. As a consequence, the current tools do not scale well for

the particularly large and complex data sets often associated
with hyphenated ultrahigh resolution experiments.
Presumably, for these reasons, recent papers using

hyphenated techniques with FTMS on complex mixtures
have not made extensive use of the available software described
previously to analyze their data.24,25,37 MZmine was used by
Barrow et al.24 to obtain a 3D representation of the data but
not for the molecular composition analysis. Instead, we can
distinguish two methods being employed to analyze hyphen-
ated complex mixture data and another one which has not yet
been applied on complex mixtures analyzed by FTMS. The
first strategy was employed by Barrow et al.24 and Patriarca et
al.25 and relied on summing the signal for several time frames
to generate peak lists for different time ranges. Those peak lists
were analyzed as individual mass spectra and molecular
assignments generated for each. The information resulting
from those assignments was used to create the plots for each
peak list which were then used to follow the molecular
evolution of the sample over time. This technique has the
advantage of relying on an established workflow to analyze
individual spectra but is labor-intensive and induces a loss of
temporal resolution, since large time frames are being grouped
(e.g. 1 minute windows), meaning that variation within each
averaged time frame may be lost.
The second strategy was used by Rüger et al.37 and relies on

an extensive signal processing routine coded for MATLAB
which requires long computational time on a server (90−120
min with 20 to 60 GB of RAM) and a MATLAB license. The
method has the advantage of not relying on other software and
performs the processing starting from raw signal. Strict filtering
is applied based on the expected molecular properties38 and
makes use of a modified region of interest (ROI) algorithm to
extract the EICs.39 This ROI method works best in the absence
of noise, and because it uses the recorded intensities to detect
ROIs, low-intensity regions are unlikely to be detected.
The final method to isolate the EICs has been described

using Kalman tracking,40 although it has not been tested on
hyphenated FTMS complex mixtures. This method relies on
evaluating the probable position of the next data point using
centroid data (discrete m/z with zero line widths) of plasma
samples. While the Kalman tracking appears to perform well in
the presence of hundreds of EICs, its performance has not yet
been demonstrated with millions of data points, which are
routinely obtained in centroid mode with complex mixtures.
Previous work demonstrated that peak list data and R can be

used to develop new processing methods which improve the
quality of the data.41 So, to address these issues, we developed
a method in the open source language R that can run from
either a personal computer (PC) or a web application named
KairosMS. The name derives from Kairos, an ancient Greek
word used to describe time along with Chronos. The method
uses developments in signal treatment, peak-picking, and
molecular assignments for complex mixtures analyzed with
FTMS. It performs, when necessary, an m/z correction to
compensate for the space-charge effects in complex mixtures, a
quick matching of EICs together, and discarding of noise.
Once the EICs have been matched, a single mass list is

generated where each EIC has been reduced to an m/z and an
intensity to facilitate assigning peaks to molecules using
standard software. The short computing times allow for the
trialing and optimization of different settings quickly. Peak
assignments are then imported into our workflow, where we
developed a suite of tools for data visualization and
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exploration. Standard figures such as double bond equivalent
(DBE) plots,42−44 class distributions, or van Krevelen
diagrams45,46 for any specified time ranges, down to a scan-
by-scan basis, can be generated within seconds. A high level of
information is retained using this method, enabling new
visualizations to be developed, such as the contribution of
specific heteroatom classes and homologous series over each
scan during the complete elution process.

■ METHODOLOGY

Sample Preparation. One oil sands process-affected water
(OSPW) and two groundwater samples (G1 and G2) were
obtained from the Athabasca region along a groundwater flow
path.24 The samples were filtered under vacuum, acidified to
pH 4.5, and extracted using Strata-X-A solid phase extraction
sorbent (Phenomenex Torrance, CA, United States). The
extracts were then methylated using BF3-methanol prior to
analysis.
The reference material Suwannee River Fulvic Acid (SRFA)

and a marine sample taken at 674 m depth from the North
Pacific Ocean at the Natural Energy Laboratory of Hawaii
Authority (NELHA)47,48 used for analysis were acidified (0.01
M HCl), desalted, and concentrated by solid phase
extraction.25 The marine sample is hereafter referred as Marine
DOM. The SRFA sample was diluted with ultrapure water and
enriched with 0.1% formic acid to a final concentration of 500
ppm in 5% methanol, 94.9% water, and 0.1% formic acid. The
freeze-dried SRFA powder was weighed and diluted to 500
ppm with 5% acetonitrile, 94.9% water, and 0.1% formic acid.
A crude pyrolysis bio-oil sample with humidity less than 10

wt % was produced using a mixture of softwoods as original
material.49 The samples were dissolved in acetone at a final

concentration of 3 ppm, and 1 μL was injected into a 30 m
DB-5 column (0.25 mmID, 0.25 μm).

Instrumentation. KairosMS capabilities and visualization
tools were explored for the analysis of six hyphenated data sets
acquired with different ultrahigh resolution mass spectrom-
eters. The experimental parameters and instrumentation are
briefly described as follows:
GC-APCI-FTICR MS: The OSPW, G1, and G2 samples

were analyzed using a 7890A GC instrument (Agilent
Technologies, Santa Clara, California, United States) con-
nected to an atmospheric pressure chemical ionization (APCI)
source (Bruker Daltonik GmbH, Bremen, Germany) in
positive mode which was itself used for the ionization method
and connected to a 12 T solariX FTICR mass spectrometer
(Bruker Daltonik GmbH, Bremen, Germany) equipped with
an Infinity Cell. The temperature was first held at 40 °C and
increased at a rate of 20 °C min−1 until a final temperature of
280 °C was reached and held for 20 min. Broadband mass
spectra in magnitude mode were acquired, and a single zero fill
and Sine-Bell apodization were applied before usage of a
Fourier transform.

LC-Orbitrap. The SRFA and Marine DOM were obtained
from Patriarca et al.25 and acquired using an LTQ-Velos-Pro
Orbitrap MS (Thermo Scientific, Germany) using an electro-
spray ionization source (ESI) in negative ion mode. The
chromatography was performed using an Agilent PLRP-S
poly(styrene/divinylbenzene) column fitted with a precolumn
filter (0.5 μm, Supelco Column Saver). After injection, the
acetonitrile percentage was increased from 5 to 20% over 2
min and maintained constant for 10 min before being
increased to 40% at 13 min and held isocratic until 22 min.
Finally, the acetonitrile percentage was increased up to 90%
and maintained for 10 min.

Figure 1. KairosMS workflow. In Step 1, a mass list containing an identification number, m/z, intensity, and retention time is extracted using the
instrument manufacturer’s software. The data processing is then performed during Steps 2−6 in KairosMS. KairosMS generates a single data set for
compositional assignments (Step 7). Finally, a single data set or multiple data sets can be opened in KairosMS for interactive visualization and
further data analysis (Step 8). All data and graphics are exportable.
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GC-APCI-FTICR MS 2xR. The bio-oil mass spectra were
acquired using a Bruker 450 GC instrument (Bruker Daltonik
GmbH, Bremen, Germany) connected to an APCI ion source
in positive mode coupled to a 7 T solariX 2xR FTICR mass
spectrometer (Bruker Daltonik GmbH, Bremen, Germany)
equipped with a ParaCell. It is worth noting that a 7 T FTICR
equipped with a 2 ω detection has performance capabilities
comparable to those of a 15 T instrument when operated at
similar detection conditions of ω. The oven temperature was
initialized at 60 °C and increased at a rate of 6 °C min−1 until a
final temperature of 300 °C was reached. The oven was then
maintained at 300 °C for 9 min. Broadband mass spectra were
acquired, where a single zero fill and Sine-Bell apodization
were applied before usage of a Fourier transform. In
ftmsControl, a processing was applied which removes 95% of
the data points due to the removal of the electronic noise.

■ STATISTICAL PROCESSING
Overview. The algorithm developed reads a mass list where

each peak is defined by its m/z, intensity, and the retention
time of the scan in which it was detected (Step 1). The mass
list can be refined by cutting beginnings and/or ends of the
retention time (Step 2) and/or low intensity peaks (Step 3). A
method to detect and separate the EICs is applied (Step 4).
After detection of the EICs, it is possible to apply a
recalibration method to compensate for any space-charge
effect (Step 5). A final EIC matching is performed on the
recalibrated mass list (Step 6), and a peak list is created
containing only one pair of m/z and intensity for each EIC and
used for molecular assignment (Step 7). The assigned peaks’
information is merged with their corresponding EIC, and a
table containing all of the EICs (assigned and unassigned) is
created and used to create a large series of interactive figures
(Step 8). The KairosMS workflow is shown in Figure 1, and
further details of each step are described as follows.
Throughout, the term “intensity” is used to refer to absolute
abundances and “relative intensity” is used to refer to relative
abundances.
Step 1: Extract the Data. FTICR MS data were opened

with Bruker DataAnalysis 4.2 (DA) software, and the FTMS
peak-picking method was used alongside a script to automati-
cally perform a peak-picking for each mass spectrum recorded
over time. The FTMS peak picking algorithm involves the
setting of a minimum S/N threshold, thus providing an initial
level of noise filtering. For Orbitrap data, the “.raw” data file
was converted to mzXML format and read directly into
KairosMS. The information was structured into a matrix,
where each row corresponds to a peak and columns to
respectively retention time, m/z, and intensity. The R code
used for the processing made extensive use of the Tidyverse50

packages and was implemented in a Shiny51 interface.
The mass list is composed of peaks i = 1, ..., n, n being the

number of peaks present. Each peak has an m/z, intensity, and
retention time respectively noted Mi, Ii, and Ti, where Ti ∈ t1,
t2, t3, ..., tm and m is the number of scans.
Step 2: Trim the TIC. In chromatography, the beginning of

acquisition often corresponds to a baseline signal of noise and
can optionally be removed. In consequence, we offer the user
the possibility to provide start and end points for the elution
and discard any peaks with Ti outside this range. This step will
help to discard unnecessary information which will speed up
the processing and reduce file sizes. Part of it can be retained if
the user wishes to later apply any baseline subtraction.

Step 3: Intensity Filter. Following an initial noise filtering
performed on the basis of the S/N in Step 1, a second filtering
can be performed on the basis of peak intensities; Zhurov et
al.52 demonstrated that it is possible to discriminate between
noise and genuine peaks using the log of intensities. A density
plot of the log(Ii) was created to optionally help the user
decide on a level of intensity filtering. Peaks with log(Ii) lower
than the threshold specified by the user are discarded.
Removing parts of the lowest-intensity peaks may be necessary
to improve the downstream separation between noise and
EICs.

Step 4: EIC Matching Algorithm. The Themis algorithm41

was adapted to work through an additional dimension to
perform the denoising and extract each EIC. As previously
described, the m/z consistency was used but this time between
scans to isolate the EICs. The difference was that due to
intensity variations inherent to the chromatography elution,
the intensity parameter had to be excluded from the equation
used by Gavard et al.41 The method performed well in those
conditions, but a threshold for the minimum number of
consecutive peaks had to be implemented to reduce false
positive EICs arising from the combination of too few data
points. The user can adjust this parameter by considering the
experiment hardware, the sample, and the conditions of
acquisition: in some experimental conditions combining GC
and simple oil-related samples, an EIC of a low abundance
species can be as short as 3 to 5 scans. As described in Themis,
a population separation threshold was automatically calculated,
but control was given to the user to change this value if
deemed necessary.

Step 5: Recalibration. This recalibration method relies on
the intra-EIC variations; the first step is to perform a primary
matching of the EICs as described in Step 4. The m/z was
reconverted into Hz using an adaptation of eq 153 taken from
Barry et al.54
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The frequency was calculated using eq 2, derived from eq 1,
using instrument-specific values A and B provided by the user.
For a Bruker FTICR MS data set, the A and B values are
respectively named ML1 and ML2 and can be found within the
method file within each data directory.
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Let F j̲ be the highest frequency in peak in the jth EIC. For
each peak i within EIC j, we define the frequency shift
F F Fi i j̃ = − ̲ . For each time t ∈ {t1, ..., tm} we compute the
mean frequency shift S(t)
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A LOESS model55 was fitted to the relation between the
scan total intensity and the mean frequency shift S(t). We

denoted the new S(t) predicted using the LOESS model S t( ) ̂.
The modeling helps to ensure that if some scans were too
shifted to be picked up, they would still get the appropriate
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corrections in regards to their expected shift because of the
total intensity of the scan.

W e s e a r c h f o r a n y S t( ) ̂ w h i c h i s

S t mean S t sd S t( ) ( ( )) 2 ( ( ))− > ×̂ ̂ ̂ . Any peak i within the

previously identified S t( ) ̂is corrected by calculating

F F S T
m

S t( )
1

( )i i i
t t t,..., m1

∑∼ = + −̂ ̂
∈ (4)

The remaining peaks have F Fi i
∼ = . All of the Mi values are

subsequently updated using (1) with the corrected frequency
Fi
∼
. Using the updatedMi, the EIC matching described in Step 4

is performed again using the same parameters. We now

calculate S t( )
∼

similarly to S(t), but based on Fi
∼

instead of Fi .
The final frequencies are obtained by calculating

F F S t S t t t t( ) min( ( ): , ..., )i i m1* = ∼ + ∼ − ∼ ∈ and the corre-
sponding m/z was calculated. The updated m/z are then
used in Step 6.
If the A and B coefficients from eq 1 are not available, an

equivalent procedure can be applied without going into the
frequency domain by calculating the shift in ppm and applying
the correction directly on the m/z. The described recalibration
method, however, does not rely on prior knowledge of the true
m/z of one or more peaks.
Step 6: Processing. If recalibration was performed in step 5,

the density plot observed previously might have changed. In
consequence, KairosMS offers the user the opportunity to
change the settings used for the pairing (Step 4). Once the
pairing described in Step 4 has been performed, the user has an
overview of the number of isolated EICs. The number of EICs
which had two or more peaks from the same retention time
and went through an additional refinement is also presented,
and a high value will indicate that the previous settings needs
to be tightened.
Step 7: Molecular Assignment. Once the EICs were

isolated, a mass list was created using the sum of intensities
within each EIC and the mean m/z of each EIC. This standard
mass list can be read into third party molecular assignment
software (e.g. Composer, PetroOrg, in-house scripts, etc.),
depending on the type of sample. The assignments for each
EIC were merged with the data for the peaks within the EIC
and stored as an R data table object called a tibble.56 The
columns containing the information from the assignment
remained empty for peaks within the unassigned EICs. No
information is therefore removed from the original peak list,
and the assignments could be redone later if necessary.
Step 8: Data Analysis Tools. Currently, KairosMS produces

a suite of visualization tools commonly used in petroleomics
due to the need to visualize complex mixture data. These
include displaying the DBE vs carbon number, percentage
intensity contribution of the different classes, evolution of the
intensity over time for each class, homologous series of
molecules, van Krevelen diagrams, breakdown of the
contribution of each atom present in the sample, area under
the curve (quantification) for heteroatom classes to molecules,
and principal component analysis. Note that in addition to
using data from hyphenated mass spectrometry experiments,
direct infusion data can also be analyzed, visualized, and
compared. Steps 1 to 7 are performed on each sample
individually, leading to the characterization of the majority of
EICs. The comparison between samples is then based on the

use of molecular assignments, which are determined, merged
with the EICs, and compared during steps 7 and 8.
Comparisons between several hyphenated samples that have
been analyzed using KairosMS are also provided in Figures 5
and 6. KairosMS was coded in R and implemented into a Shiny
interactive interface, allowing the user to see the plots as the
analysis proceeds through the process and adjust the
parameters accordingly. KairosMS can be run either locally
on a personal computer or online through a server or a local
network.

■ RESULTS AND DISCUSSION
Data Processing. A screenshot presenting the interface of

KairosMS is depicted in Figure S1. A detailed description of
the processing steps in KairosMS for the OSPW sample are
detailed below.
To process the OSPW data set, the TIC between 0 and 9

min was trimmed, and the intensities below 73 130 were
filtered out. This led to a reduction from 2 963 880 to
2 086 325 data points (29.61% removed). The denoising and
EIC extraction method from Step 3 was applied to enable the
recalibration method described in Step 4.
The optional recalibration step allowed us to correct for the

space-charge effects without using any prior knowledge about
the sample. The calibration was performed using matching
conditions of 20 consecutive peaks. Figure 2 shows the

evolution of the average frequency shift for each retention
time. One can notice the similarities with the profile of the
original f shift compared to the TIC in Figure 4. The
recalibration performed attenuates the space-charge effects, as
the calculated frequency shifts after recalibration shown in
black in Figure 2. Before recalibration, the RMS error, which
was calculated using the difference between the assigned m/z
and the experimental m/z of each peak of each EIC, was 2

Figure 2. Average frequency shift in Hz within EICs for each
retention time before recalibration (red) and after (black) for the
OSPW sample.
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ppm. After recalibration, the RMS error decreased to 0.4 ppm
(Figure 3).

Using a minimum EIC length of 20 scans, 1 473 579 of the
2 086 325 peaks were kept (29.37% removed). The complete
process typically takes tens of seconds to perform and could be
improved further with the use of parallel computing. A total of
6540 distinct EICs were isolated with this process. We
compared the TIC before and after processing to make sure
that no critical features were discarded and that the shape of
the TIC had been preserved. Figure 4 shows there were no
noticeable differences before and after processing, ensuring
that all major peaks had been preserved and matched to an
EIC.
Because current petroleomics software for molecular assign-

ments (Composer, PetroOrg) were designed to assign
molecular composition on a single spectrum, each EIC was
summarized by a single m/z and intensity. The average m/z of
each EIC was used, while the intensities of the EICs were

individually summed. The resulting spectrum for the OSPW
sample is presented in Figure S2.
Once the assignments were performed using Composer, the

molecular composition for each peak assigned was reattributed
to their respective EIC, and a special data frame format
(tibble) was used to store all of the information. Tibbles make
subsetting easier than traditional data-frames and allow the
mixing of several types of data (e.g. characters, numeric,
factor). Subsetting is crucial at a later stage as we analyze the
data and explore specific classes, retention times, m/z. The
unassigned EICs were preserved so that the processed data,
saved as.csv, could be reprocessed in the future.
The data processing described above for OSPW can be

performed in about 5 min. The raw GC data obtained for the
OSPW sample is about 24 GB in size and is reduced after steps
1−7 in KairosMS to a final data set size of 163.4 MB (0.68% of
the original data set size). Similarly, the processing steps were
performed to extract the EICs of the remaining data sets: G1,
G2, SRFA, Marine DOM and the bio-oil. A final data set size in
the range of 93−117 MB was obtained for each sample.

Data Analysis Tools. These data sets contain the assigned
and unassigned EICs and are used for further data analysis in
the final step in KairosMS. KairosMS enables the user to
interpret hyphenated data and to study the molecular
composition more efficiently than before; a list of some of
the visualization tools available are listed below:

• TIC and mass spectra visualization at a desired retention
time.

• Interactive DBE versus carbon number plots: individual
or multiple classes with the possibility of the extraction
of the EICs of each data point of the DBE plot. The
DBE plots can be visualized in different retention time
frames as desired for the user.

• Interactive class distribution: heteroatomic classes can
be visualized in different retention time ranges. The
heteroatomic class distribution can be fixed or automati-
cally updated for desired retention times.

Figure 3. Histogram of the mass error in ppm of each peak for each
EIC with the assigned m/z.

Figure 4. Comparison of TICs before (top line, black) and after
(bottom line, red) processing.

Analytical Chemistry pubs.acs.org/ac Article

https://dx.doi.org/10.1021/acs.analchem.9b05113
Anal. Chem. 2020, 92, 3775−3786

3780

113



• Mass spectra, DBE, and carbon number distribution: the
sum intensities versus carbon number and DBE can be
plotted by individual heteroatomic class.

• Interactive van Krevelen diagrams: van Krevelen
diagrams can be plotted as a function of time, and the
heteroatomic classes can be selected for the user. The
user can also extract the EICs in each data point in the
van Krevelen diagram.

• Interactive EIC visualization: a total EIC per heter-
oatomic class or homologous series can be extracted.
The total area under the curve (AUC) per class or
homologous series is calculated by KairosMS and can be
exported in a .csv file. Additionally, the user can define
either: an m/z, assigned molecular formula, or a custom
molecular formula to be visualized from the data set.
The EICs can be visualized for a particular or multiple
heteroatomic classes within a certain ranges of carbon
number and DBEs as desired by the user.

• Filters: the data visualization includes data filters either
by class, DBE, isotopic compositions, retention time,
adduct type, or by sample.

• Plot settings: all plots can be individually exported in
.png, .pdf, .eps, or .tiff format. The figures can be faceted
by the sample-identifying name. Additionally, the data
point size in DBE plots can be changed or plotted in a
log10 scale. Class distribution figures can be plotted in
stack bars or bar charts, and the coordinates can be
flipped. The data in EICs can be visualized and exported
with a defined dot size, and the EICs can be exported in
a defined retention time domain. Alternatively, the
figures can be generated in an external software by
downloading the data from KairosMS in a .csv file. The
figure format of the graphic can be changed by using
different color schemes, different graphic resolution,
figure size, and data legend size.

These capabilities are shown in the Movie provided in the
Supporting Information.

■ APPLICATIONS: DATA ANALYSIS VISUALIZATION
GC-FTICR MS for the Analysis of OSPW and Ground-

water. As it often becomes necessary to compare data

Figure 5. (A) Heteroatom class distribution for retention times 12.10−12 min and 31.10−32 min. (B) EICs of selected homologous series from
the O2[H] class. (C) EICs of selected molecular composition for the OSPW and two groundwater samples (G1 and G2).

Analytical Chemistry pubs.acs.org/ac Article

https://dx.doi.org/10.1021/acs.analchem.9b05113
Anal. Chem. 2020, 92, 3775−3786

3781

114



sets,24,25 we extended the capabilities of KairosMS so that one
can compare several samples after they have been processed
due to the level of detail of information retained during the
processing. No limits have been set to the number of data sets
to compare, but using more files requires longer computation
times and more memory. The previous OSPW sample was
compared to two groundwater samples (G1 and G2). The first
step was to use the class contribution function to observe the
key differences between the samples (see Figure 5A). As
shown in Figure 5A, the class distribution of all samples is
shifted toward higher oxygen-containing species at higher
retention time. Additionally, it is noticeable that the oxygen
content of the OSPW sample is comparatively different to the
groundwater sample. For instance, at low retention time, the
relative abundance of the oxygenated classes is higher in the
OSPW in comparison to the groundwater samples, and lower
relative oxygen content species elute from the GC column at
higher retention time in comparison with the groundwater
samples.
Using the observations made in the class distribution in

Figure 5A, the O2[H] class was selected for further analysis
and further broken down to observe independently each

homologous series, where it can be seen that the predominant
DBEs were 2.5, 3.5, and 4.5 (Figure 5B). An enlarged version
of Figure 5B with the complete retention time is available in
the SI as Figure S5. The AUC of the homologous series shows
an increased contribution at higher retention times as the DBE
increases. Thus, species with higher DBE have increased
boiling point and therefore elute from the GC column at
higher retention time.
Because we observed differences in the O2 [H] class, we

explored it further and observed its evolution with a scan by
scan resolution. In Figure S3, we notice that G1 and G2 display
the exact same elution profile, while the OSPW has remarkable
differences. In Figure S4, the isotopes for this particular
molecular composition were also observed.
KairosMS enables a rapid screening of EICs for each

molecular composition identified by giving the capability to
display all of the EICs matching specific features such as a
specific m/z or m/z range, belong to a specific heteroatom
class, DBE range or range of carbon numbers. Once differences
are identified for a specific heteroatom class, it becomes
possible to display the EIC for individual molecular
composition within that class.

Figure 6. (A) Total ion chromatogram (TIC) with the mass spectra for retention times 10.72 min and 20.57 min. (B) EICs for the heteroatom
classes O4[H] and O7[H] with associated AUC. (C) Heteroatom class distribution for retention times 10.72−10.80 min and 20.57−20.66 min for
the SRFA and Marine DOM samples.
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After screening EICs corresponding to the O2[H] class,
noticeable differences were found between the groundwater
and OSPW EICs. For instance, the EICs corresponding to
C13H18O2[H] and C14H16O2[H] in Figure 5C show a
distribution of peaks at low retention time in the groundwater
samples that were not detected in the OSPW. This indicates
the presence of different isomers and different ratios between
isomers which can then be isolated and further investigated.
LC-Orbitrap: Dissolved Organic Matter. KairosMS

capabilities to handle dissolved organic matter analyzed in an
online LC-Orbitrap system were tested using Marine DOM
and SRFA samples. Each data set was first processed using
KairosMS and the results exported as .csv files. Finally, both
files were loaded into KairosMS for data exploration and
comparison. The TIC and the mass spectra at two different
retention times of SRFA and the marine samples can be seen in
Figure 6A. As shown in this figure, the compositions with

higher m/z elute at higher retention time in both samples.
Figure 6B and C shows the differences in molecular
composition between the two samples for the complete run.
The class distribution shown in Figure 6C can be modified
within KairosMS to show any retention time range to highlight
the difference of composition at any stage of the acquisition. In
contrast to the GC experiment, the components eluting from
this LC column at higher retention time correspond to species
with lower oxygen containing species. A major new capability
enabled by this work is the ability to track specific heteroatom
classes across every scan acquired. For instance, Figure 6B
shows the heteroatom class O4[H] and O10[H] intensity across
the complete retention time, allowing the user to immediately
highlight the differences between the two samples. In similarity
with the EICs by homologous series, the AUC of the classes is
calculated in KairosMS.

Figure 7. (A) van Krevelen diagram with EICs displayed for two different points on the plot. (B) DBE vs carbon number of the O2[H] and O5[H]
heteroatom classes with associated EICs for two data points on the plot. (C) DBE vs carbon number of the O3[H] and O4[H] heteroatom classes
with associated EICs for two data points. Note that each data point in a van Krevelen diagram represents the sum of multiple molecular formulas,
while each data point in a DBE vs carbon number plot is a single molecular formula.
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To further explore the differences between the two samples,
it is also possible to plot side by side or to overlap the van
Krevelen diagrams for each sample (Figure S8). As in Figure
S6, this plot can be refined to observe any specific retention
time range. The figure demonstrates significant differences
between the two samples, especially in the region below H/C
of 1.
GC FTICR MS 2xR. A bio-oil sample was analyzed using a

solariX 2xR FTICR MS. The 2ω detection from this
instrument allows to either operate the instrument at twice
the speed for the same resolving power or to double the
resolving power if the speed is kept the same as compared to
conventional 2ω instruments. For gas chromatography,
acquisition at twice the speed is particularly useful for samples
presenting a large number of isomers.
The van Krevelen diagram and the DBE plots of the classes

O2[H], O3[H], O4[H], and O5[H] obtained within the total
retention time in the GC column (see Figure 7A and 7B−C,
respectively). The EICs of the compositions in both type of
plots can be visualized by using KairosMS. In contrast to DBE
plots, where each data point corresponds to a single
composition, van Krevelen data points can correspond to
multiple EICs of different compositions with the same H/C
and O/C values (e.g., C8H12O4[H] and C12H18O6[H]. In
comparison with the previous samples, the bio-oil has a
remarkable number of potential isomers. For instance, the
composition C8H12O4[H] shows the presence of at least 71
potential isomers. It is important to note that species with
higher carbon number, higher DBE, and higher oxygen content
eluted from the column at higher retention times.
The EIC shown in Figure S9 shows the presence of at least

35 potential isomers. To assess KairosMS capabilities to isolate
such challenging EIC, we’ve overlapped the EIC obtained
using DA and KairosMS and it showed a complete overlap
between the two with only minor differences within the noise
baseline due to the necessary intensity threshold resulting from
the peak picking.
Other Applications. KairosMS also provides the ability to

search for any specific EIC of an identified molecule. The user
can search using m/z or molecular composition but can also
display all of the EICs with specific features such as heteroatom
class, carbon number, and DBE. This allows a researcher to
quickly determine differences between elution profiles at the
molecular level.
Finally, by using the intensity information on all of the

assigned EICs, the calculation of the elemental contribution
within each sample can be swiftly obtained, and the
percentages for each elements can be calculated as depicted
in Figure S7.
KairosMS was also used to process peptide digest data,

analyzed by LC-FTICR MS, as pictured in Figure S10. Even
without providing molecular assignments, in this particular
case, KairosMS was able to quickly and accurately calculate the
area under the curve for all isolated EICs, providing useful
quantification data.

■ CONCLUSION
Using hyphenated Fourier transform mass spectrometry,
additional separation methods such as chromatography
provide further insights about complex chemical mixtures,
especially for the observation of isomers. The data analysis for
such experiments previously relied on long and laborious
manual work. The typical workflow for this type of data is

based upon manually merging mass spectra over a series of
retention time ranges, extraction of each peak list, assigning
compositions, visualizing the results, and repeating the process
for each retention time range. KairosMS addresses those issues
by removing the need to manually divide a data set into many
time windows and analyze each one, while also preserving the
time resolution. Data are first extracted as a mass list to reduce
computing time, relying on peak picking and centroid
detection of existing algorithms. KairosMS then processes
the data, can attenuate space-charge effects, and existing peak
assignments methods are reused. The recalibration is currently
best suited for FTICR MS instruments analyzing complex
mixtures and needs to be optimized for data sets such as
biomolecules. The method could be further improved by
implementing prior knowledge about one or more peaks.
KairosMS demonstrated its abilities over a wide range of
samples (petroleum, environmental, dissolved organic matter
results, and biomolecules) from different types of analyzers and
types of chromatography, turning hyphenated ultrahigh
resolution mass spectrometry into a regular tool for those
samples. The capability to quickly visualize EICs from any
class, homologous series, m/z, or molecular assignment helps
the user to fully exploit the information enabled by the
chromatography, especially in the presence of multiple isomers,
paving the way to shift from relying solely on molecular
compositions to understanding the structure of the molecules
in complex mixtures. Among the features for comparing many
complex data sets, KairosMS also includes options for
hierarchical clustering and principal component analysis. It
should be noted KairosMS can be used for data analysis,
visualization, and sample comparison for direct infusion data in
addition to hyphenated data sets. Using the same simple file
format for the processed data, we were able to simultaneously
browse and compare samples, saving the user from repetitive
tasks. It is expected that with such information made available,
additional new visualization methods can be developed to help
tackle the challenges posed by the volume of data.
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(37) Rüger, C. P.; Schwemer, T.; Sklorz, M.; O’Connor, P. B.;
Barrow, M. P.; Zimmermann, R. Eur. J. Mass Spectrom. 2017, 23, 28−
39.
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Mejia-Ospino, E.; Barrow, M. P. Fuel 2020, 259, 116085.
(50) Wickham, H. Tidyverse: Easily install and load ‘Tidyverse’
packages. R package version 2017, 1.
(51) Chang, W.; Cheng, J.; Allaire, J.; Xie, Y.; McPherson, J. shiny:
Web application framework for R [Computer software], R package
version 1.0.0; 2017. https://cran.r-project.org/web/packages/shiny/
index.html.
(52) Zhurov, K. O.; Kozhinov, A. N.; Fornelli, L.; Tsybin, Y. O.
Anal. Chem. 2014, 86, 3308−3316.
(53) Francl, T. J.; Sherman, M. G.; Hunter, R. L.; Locke, M. J.;
Bowers, W. D.; McIver, R. T. Int. J. Mass Spectrom. Ion Processes 1983,
54, 189−199.
(54) Barry, J. A.; Robichaud, G.; Muddiman, D. C. J. Am. Soc. Mass
Spectrom. 2013, 24, 1137−1145.
(55) Cleveland, W. S.; Grosse, E.; Shyu, W. Local regression models.
Statistical models in S; Chambers, J. M., Hastie, T. J.; 1992, pp 309−
376.
(56) Wickham, H.; Francois, R.; Müller, K. Tibble: Simple Data
Frames. 2018. https://cran.r-project.org/web/packages/tibble/index.
html

Analytical Chemistry pubs.acs.org/ac Article

https://dx.doi.org/10.1021/acs.analchem.9b05113
Anal. Chem. 2020, 92, 3775−3786

3786

119



Supporting information for:

Supporting information for: KairosMS: A new

solution for the processing of hyphenated

ultrahigh resolution mass spectrometry data

Remy Gavard,† Hugh E. Jones,‡ Diana Catalina Palacio Lozano,‡ Mary J.

Thomas,† David Rossell,¶,§ Simon E. F. Spencer,¶ and Mark P. Barrow∗,‡

MAS CDT, University of Warwick, Coventry, CV4 7AL, United Kingdom, Department of

Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom, Department of

Statistics, University of Warwick, Coventry, CV4 7AL, United Kingdom, and Department

of Economics & Business, Universitat Pompeu Fabra, Barcelona, 08005, Spain

E-mail:

∗To whom correspondence should be addressed
†MAS CDT, University of Warwick, Coventry, CV4 7AL, United Kingdom
‡Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
¶Department of Statistics, University of Warwick, Coventry, CV4 7AL, United Kingdom
§Department of Economics & Business, Universitat Pompeu Fabra, Barcelona, 08005, Spain

S1

120



Figure S1: Screenshot presenting KairosMS interface.
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Figure S2: Mass spectrum created using the EICs extracted to be used for molecular assign-
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M
arine D

O
M

0 20 40

Carbon

Hydrogen

Nitrogen

Oxygen

Phosphorus

Sulfur

Carbon

Hydrogen

Nitrogen

Oxygen

Phosphorus

Sulfur

Percent Contribution

Marine DOM SRFA

SR
FA

Figure S7: Elemental contributions for the samples SRFA and Marine DOM, based on all
the assigned EICs.

S6

125



Marine DOM SRFA

0.25 0.50 0.75 0.25 0.50 0.75

0.6

0.9

1.2

1.5

O/C

H
/C

Nelha

SRFA

2.50e+07

5.00e+07

7.50e+07

1.00e+08

1.25e+08Figure S8: van Krevelen diagram of the H/C ratio vs O/C ratio for the Marine DOM and
SRFA samples.

5 10 15 20 25 30 35 40
Time [min]

0

2

4

6

8
x108
Intens. EIC m/z 213.1278 KairosMS

EIC m/z 213.1278 +/- 0.005 Data Analysis

Figure S9: Comparison of the EIC of the same molecular assignment as seen in DA and
KairosMS after peak picking at S/N 1.

S7

126



Ubiquitin

8 10 12 14

0.0e+00

5.0e+07

1.0e+08

1.5e+08

Retention Time (mins)

In
te

n
s

it
y

Figure S10: EIC from a peptide digest of ubiquitin analyzed by LC-FTICR MS.

S8

127



Chapter 6

Summary

6.1 Chapter 2: Themis: Batch Preprocessing for Ultrahigh-

Resolution Mass Spectra of Complex Mixtures

Themis uses replicate measurements of a single sample in order to create a single peak

list by looking for consistent information across replicates. This method improves

retention of reliable information, while avoiding the loss of low-intensity peaks which

can happen when the normal signal-to-noise thresholds between 4 and 6 are applied,

thanks to the retention of peaks present across multiple replicates. For the user, this

translates into a more reliable peak list, without having to analyse several replicates

separately or to compare the downstream results.

Themis was illustrated by analysing a light sour crude oil and a South

American crude oil with an ESI 12 T FTICR MS. An intentionally low signal-to-noise

threshold was used to ensure the inclusion of low intensity peaks. Themis identified

2260 peaks among the 16400 originally picked. The molecular assignments that

followed were done with a dedicated software and the comparable composition was

observed with and without Themis at high intensity, but only low intensity classes

demonstrated improvements. The benefits of using Themis result in being able both

to use a lower signal-to-noise threshold than one would when using a single mass
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spectrum, and reducing the chances of false positive molecular assignments. Themis

provides researchers with the ability to improve their data and facilitate downstream

analysis with minimal extra work.

6.2 Chapter 3: Repeatability, signal-to-noise ratio, mass

error and molecular assignments in petroleomics

In order to obtain high quality molecular assignments and reduce the assignment of

unreliable peaks, the important setting is the signal-to-noise threshold. Setting the

S/N threshold too high leads to a conservative list of more reliable peaks but will

miss out on low intensity peaks. A lower S/N will avoid missing low intensity peaks

but will include more noise and unreliable peaks. The use of the Themis algorithm

with replicates enables to overcome these issues by discarding non-reproducible

peaks, leading to lower RMS mass error and more reliable assignments, especially

towards lower intensities. These characteristics makes it a suitable tool to study

the proportion of molecular assignments of not fully reproducible peaks obtained

using a conventional procedure. Three different samples were studied and their

peak lists exported using a range of S/N thresholds. As expected, the RMS mass

error decreased and most of the original intensity was assigned after processing with

Themis. The proportion of non-reproducible compositional assignments increases

when reducing the S/N threshold, the highest numbers being logically for the lowest

S/N threshold. These non-reproducible compositional assignments did not focus

around specific molecular classes and were distributed proportionally to the peak’s

density across the m/z range. The distribution of the homologous series improved

when analysing only peaks present in all replicates, showing an enhanced continuity,

a criterion often used to distinguish correct and incorrect assignments. It has been

estimated that between 15 to 26% of the compositional assignments can be considered

as not fully reproducible, depending on the S/N threshold used for the peak-picking.
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6.3 Chapter 4: Rhapso: Automatic stitching of mass

segments from Fourier transform ion cyclotron res-

onance mass spectra

Some petroleum samples are so complex that even FTICR MS struggles to provide

an exhaustive overview of their composition. The spectral stitching provides the

capability to yield more information with a higher accuracy while using existing

FTICR MS instrumentation. Rhapso was developed to allow this technique to

become more common by reducing the challenge posed by data processing. The

edge effect correction performed by Rhapso uses a higher proportion of the windows

of acquisition while preserving the natural intensity undulations, characteristic of

petroleum-related samples. Finally, Rhapso automatically performs the stitching

between each spectrum by using the optimal location within the overlap of the

two spectra. The Rhapso algorithm was implemented within a web-based interface

capable of running on both laptops and servers and performs its task within minutes.

This technique demonstrated that using spectral stitching, when compared to a

broadband method, yields a net increase in the number of peaks detected but also a

clearer quality gain for the molecular assignments, with a significant reduction in

the RMS mass error. Rhapso was developed to be part of the OCULAR method

by Palacio Lozano et al. which lead to the assignment of a record breaking 244,779

molecular compositions within a petroleum sample.

6.4 Chapter 5: KairosMS: New solution to process com-

plex mixture data analyzed by hyphenated - ultra-

high-resolution mass spectrometry

Chromatography coupled with ultra-high-resolution mass spectrometry has been

increasingly employed over recent years as a way to gain a deeper understanding of
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complex mixtures. The existing data analysis methods available were not suitable for

such datasets as they struggled to scale the large amount of data leading to manually

laborious techniques having to be employed, often leading to loss of information.

KairosMS was developed to tackle this challenge and uses existing tools while taking

out most of the laborious work for the user. Existing software is used to export

the large dataset to a mass list processed by KairosMS. Molecular assignments are

obtained by using existent dedicated software on a peak list generated by KairosMS.

After processing, the user is able to explore their data seamlessly by using the

large variety of visualisations available. KairosMS was successfully used on a large

variety of samples (petroleum, environmental, dissolved organic matter results and

biomolecules), instruments (FTICR MS, Orbitrap) and chromatography (LC, GC).

Information which was previously only attainable with a tremendous amount of

work became easily accessible to users allowing them to raise more questions and

find more answers, particularly in the presence of isomers. KairosMS gives one the

ability to rapidly visualise EICs from any class, homologous series, m/z or molecular

assignment. Thanks to a common file format for the processed data, it is also possible

to simultaneously visualise multiple samples at once, saving the user from having

to repeat the same tasks several times and allowing them to immediately grasp

differences between samples.
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Chapter 7

Conclusions and Future Work

Analysing complex mixtures with ultra-high-resolution mass spectrometry pushes

not only instrumental but also data analysis techniques to their limits, highlighting

the limitations of the inability of the majority of the existing tools to cope with such

data. This field being at the forefront of research, the small size of the market makes

it difficult for a company to develop profitable dedicated tools, and researchers had

to resort to adapting multiple software and many repetitive tasks. Scientists in this

area of research had to become self-sufficient in terms of data analysis tools to ensure

its continued progression. This task required a highly interdisciplinary approach

in order to develop new algorithms but also implement of new methods to quickly

prototype and customise software that will allow rapid and efficient workflows.

The work presented in this thesis is the result of the combination of chemistry,

statistics and data science in order to address the challenges of data analysis for

petroleomic mass spectrometry data. Three new algorithms implemented into

fully functional solutions were presented, all with friendly user interfaces allowing

researchers to improve their workflow, decrease time spent on laborious tasks, improve

data quality and enable access to more information. Themis, Rhapso and KairosMS

are currently used regularly by Dr. Barrow’s research group but their functionalities

can still be expanded. In order to increase access to those tools, software engineering

132



work has to be carried out to render these software more stable and better able to

handle higher processing loads. However, this task necessitates software engineering

knowledge, usually outside of the scope of a PhD research project.

In the future, further studies to better understand the optimal settings for

Themis would be necessary, particularly to determine the ideal number of replicates

to use according to sample complexity. Rhapso is currently still in its infancy and

it is believed that more sophisticated techniques could be implemented to better

handle the extremely complex situations with an abundant level of noise. Ideally,

automatic sampling techniques would be implemented to allow for replicates of each

window, allowing us to apply Themis prior to using Rhapso for the stitching. This

would make for higher data quality but would also give Rhapso the opportunity to

perform more efficiently.

KairosMS capabilities are currently being refined and extended every day as

researchers use it and provide feedback. It has the potential to become the main tool

for any researcher working with complex mixtures and ultra-high-resolution mass

spectrometry. At the moment, KairosMS covers the needs of Dr Barrow’s research

group and can process data from other instruments thanks to few collaborations,

but in the future there are plans to expand its capabilities beyond the lab’s needs.

The ability to process ion mobility data is currently being implemented, along with

advanced abilities to gain more information from the isomers present in a sample.

Further developments could lead to the implementation of GCxGC instrumentation

along with 2D mass spectrometry.

This thesis started with the ambition of using statistics to help address the

data analysis challenges faced by petroleomics. The combination of the two brought

some successful developments but the data manipulation and visualisation quickly

became the bottleneck. The rise of data science as a discipline helped fuel the

development of specifically designed R packages to addresses these issues.

The scope of this research was refined over the years as the needs and tools
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were better understood, but ultimately all the different projects share the same vision

of addressing difficult challenges using tools and ideas outside of the conventional

chemist’s toolbox. In closing, this author has gained valuable experience from this

research and would like to impart some lessons learnt: spending time with statisticians

from various fields, being immersed in the data science community, travelling all

over the world and learning about geography, history, politics, culture, languages,

sociology and photography has fuelled this multipotentialite, enabling him to look at

problems in a unique way and come up with unique solutions. However, working at

the intersection of many different fields comes with its own set of challenges. Being

involved in multiple different disciplines means that one is constantly surrounded

by specialists which can make one feel like they are never enough; there is always

something that one does not know because one endeavours to become a specialist in

several fields all at once while most people stick to a single field.

Finding peers can be extremely disorientating as while one theoretically

belongs in multiple places, the reality is often that there is the feeling of belonging

nowhere, feeling either too much or not enough. As such situations further exacerbate

the well-known imposter syndrome, it is even more important to surround one’s self

with the right people. This author counts himself extremely lucky to have found

many open-minded people who saw value in the work and who were of immense help

along the way. These people were always willing to make an effort to understand

the endeavour being made, and make their expertise as accessible as possible. The

understanding that everyone approaches problems from different perspectives is

extremely important, as is being able to translate one’s ideas in a way that another

can understand.

Finally, it is crucial to realise that when developing algorithms, dashboards,

software or anything else aimed at users, developers need to meet the users where

they are. For that, developing empathy for the users and their problems and a direct

understanding of the research issues is key; walk a mile in their shoes and one will
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be able to develop a solution that suit them, not one’s self.

The publication by Palacio Lozano et al. demonstrates that when chemistry,

statistics and data science are combined, the analytical boundaries can be pushed fur-

ther. Going forward, sciences cannot afford to ignore the benefits of interdisciplinarity

and other bridges between fields that could be beneficial to everyone.
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[80] Śılvia M. Rocha, Michael Caldeira, Joana Carrola, Magda Santos, Nádia Cruz,

and Iola F. Duarte. Exploring the human urine metabolomic potentialities by

comprehensive two-dimensional gas chromatography coupled to time of flight

mass spectrometry. J. Chromatogr. A, 1252:155–163, 2012. doi: 10.1016/j.

chroma.2012.06.067.
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Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly

Expands Mass Spectrometry Toolbox. J. Am. Soc. Mass Spectrom., 27(12):

1929–1936, Dec 2016. ISSN 18791123. doi: 10.1007/s13361-016-1507-9.

[93] Donald F. Smith, David C. Podgorski, Ryan P. Rodgers, Greg T. Blakney,

and Christopher L. Hendrickson. 21 Tesla FT-ICR Mass Spectrometer for

Ultrahigh-Resolution Analysis of Complex Organic Mixtures. Anal. Chem., 90

(3):2041–2047, 2018. ISSN 15206882. doi: 10.1021/acs.analchem.7b04159.

[94] Eunji Cho, Matthias Witt, Manhoi Hur, Maeng Joon Jung, and Sunghwan

Kim. Application of FT-ICR MS Equipped with Quadrupole Detection for

Analysis of Crude Oil. Anal. Chem., 89(22):12101–12107, 2017. ISSN 15206882.

doi: 10.1021/acs.analchem.7b02644.

[95] Feng Xian, Christopher L. Hendrickson, and Alan G. Marshall. High resolution

mass spectrometry. Anal. Chem., 84(2):708–719, 2012.

[96] Yulin Qi and Peter B. O’Connor. Data processing in Fourier transform ion

cyclotron resonance mass spectrometry. Mass Spectrom. Rev., 33(5):333–352,

2014. ISSN 10982787. doi: 10.1002/mas.21414.

[97] Yulin Qi, Mark P. Barrow, Steve L. Van Orden, Christopher J. Thompson,

Huilin Li, Pilar Perez-Hurtado, and Peter B. O’Connor. Variation of the

148



Fourier transform mass spectra phase function with experimental parameters.

Anal. Chem., 83(22):8477–8483, 2011. ISSN 00032700. doi: 10.1021/ac2017585.

[98] Yulin Qi, Mark P. Barrow, Huilin Li, Joseph E. Meier, Steve L. Van Orden,

Christopher J. Thompson, and Peter B. O’Connor. Absorption-mode: The next

generation of Fourier transform mass spectra. Anal. Chem., 84(6):2923–2929,

Mar 2012. ISSN 00032700. doi: 10.1021/ac3000122.

[99] David P.A. Kilgour and Steven L. Van Orden. Absorption mode Fourier trans-

form mass spectrometry with no baseline correction using a novel asymmetric

apodization function. Rapid Commun. Mass Spectrom., 29(11):1009–1018,

2015. ISSN 10970231. doi: 10.1002/rcm.7190.

[100] Li-Kang Zhang, Don Rempel, Birendra N. Pramanik, and Michael L. Gross.

Accurate mass measurements by Fourier transform mass spectrometry. Mass

Spectrom. Rev., 24(2):286–309, Mar 2005. ISSN 0277-7037. doi: 10.1002/mas.

20013.

[101] Konstantin O. Zhurov, Anton N. Kozhinov, and Yury O. Tsybin. Evaluation of

high-field orbitrap fourier transform mass spectrometer for petroleomics. Energy

and Fuels, 27(6):2974–2983, jun 2013. ISSN 08870624. doi: 10.1021/ef400203g.

URL http://pubs.acs.org/doi/abs/10.1021/ef400203g.

[102] Alan G. Marshall and Ryan P. Rodgers. Petroleomics: The Next Grand

Challenge for Chemical Analysis. Acc. Chem. Res., 37(1):53–59, 2004. ISSN

00014842. doi: 10.1021/ar020177t.

[103] Ryan P. Rodgers, Tanner M. Schaub, and Alan G. Marshall. Petroleomics: MS

Returns to Its Roots. Anal. Chem., 77(1):20A–27A, 2005. ISSN 0003-2700.

[104] Alan G. Marshall and Ryan P. Rodgers. Petroleomics: Chemistry of the

underworld. Proc. Natl. Acad. Sci. U.S.A, 105(47):18090–18095, 2008. ISSN

0027-8424. doi: 10.1073/pnas.0805069105.

149

http://pubs.acs.org/doi/abs/10.1021/ef400203g


[105] Mark P Barrow. Petroleomics: study of the old and the new. Biofuels, 1(5):

651–655, 2010. ISSN 1759-7269. doi: 10.4155/bfs.10.55.

[106] Mark P. Barrow, Liam A. McDonnell, Xidong Feng, Jérémie Walker, and

Peter J. Derrick. Determination of the nature of naphthenic acids present in

crude oils using nanospray Fourier transform ion cyclotron resonance mass

spectrometry: The continued battle against corrosion. Anal. Chem., 75(4):

860–866, 2003. ISSN 00032700. doi: 10.1021/ac020388b.

[107] Claudia X. Ramı́rez, Juan E. Torres, Diana Catalina Palacio Lozano, Juan P.

Arenas-Diaz, Enrique Mejia-Ospino, Viatcheslav Kafarov, Alexander Guzman,

and Jorge Ancheyta. Molecular Representation of Petroleum Residues Using

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Con-

ventional Analysis. Energy and Fuels, 31(12):13353–13363, Dec 2017. ISSN

15205029. doi: 10.1021/acs.energyfuels.7b02507.

[108] Diana Catalina Palacio Lozano, Jorge Armando Orrego-Ruiz, Rafael Cabanzo
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and Hilkka I. Kenttämaa. Molecular structures of asphaltenes based on the

dissociation reactions of their ions in mass spectrometry. Energy and Fuels, 24

(10):5548–5559, 2010. ISSN 08870624. doi: 10.1021/ef1007819.

[118] Edward Kendrick. A mass scale based on CH2= 14.0000 for high resolution

mass spectrometry of organic compounds. Anal. Chem., 35(13):2146–2154,

1963.

[119] Chang S. Hsu, Kuangnan Qian, and Yungning C. Chen. An innovative ap-

proach to data analysis in hydrocarbon characterization by on-line liquid

chromatography-mass spectrometry. Anal. Chim. Acta, 264(1):79–89, Jul 1992.

ISSN 00032670. doi: 10.1016/0003-2670(92)85299-L.

[120] J. Fernandez De La Mora. Electrospray ionization of large multiply charged

species proceeds via Dole’s charged residue mechanism. Anal. Chim. Acta, 406

(1):93–104, Feb 2000. ISSN 00032670. doi: 10.1016/S0003-2670(99)00601-7.

[121] Sunghwan Kim, Robert W. Kramer, and Patrick G. Hatcher. Graphical

Method for Analysis of Ultrahigh-Resolution Broadband Mass Spectra of

Natural Organic Matter, the Van Krevelen Diagram. Anal. Chem., 75(20):

5336–5344, 2003. ISSN 00032700. doi: 10.1021/ac034415p.

[122] David R. Gibson and Hari Pulapaka. A fast algorithm and software for analysis

of FT-ICR data. J. Math. Chem., 48(2):381–394, 2010. ISSN 02599791. doi:

10.1007/s10910-010-9679-1.

152



[123] Christopher P. Rüger, Toni Miersch, Theo Schwemer, Martin Sklorz, and Ralf

Zimmermann. Hyphenation of Thermal Analysis to Ultrahigh-Resolution Mass

Spectrometry (Fourier Transform Ion Cyclotron Resonance Mass Spectrometry)

Using Atmospheric Pressure Chemical Ionization for Studying Composition and

Thermal Degradation of Complex Materials. Anal. Chem., 87(13):6493–6499,

2015. ISSN 15206882. doi: 10.1021/acs.analchem.5b00785.

[124] Yunju Cho, Arif Ahmed, Annana Islam, and Sunghwan Kim. Developments in

FT-ICR ms instrumentation, ionization techniques, and data interpretation

methods for petroleomics. Mass Spectrom. Rev., 34(2):248–263, Jan 2015. ISSN

10982787. doi: 10.1002/mas.21438.

[125] William Kew, John W.T. Blackburn, David J. Clarke, and Dušan Uhŕın. Inter-
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