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Abstract

With observable paradigm shift in computer science from predictive mod-

eling to the generative one, it became important to maximise exploration of the

pathways towards useful data production. With currently dominating statistical

and compositional data augmentation strategies, opportunities also emerged for

more application-driven routes. The main value of such approaches lies in their

capacity to offer insights into context or event specific data productions, currently

overlooked by more topologically neutral machine learning approaches. The purpose

of this thesis is therefore to provide empirical evidence for useful data generation by

dynamic event-specific lexical semantic resources.

Various Web 2.0 applications due to their popularity have been accumulat-

ing large amounts of semantically rich metadata, which became readily available

and easily exploitable. Tags, usually consisting of a single word, are one type of

such data. Tag uses can vary largely across systems and platforms; Also known

under the term folksonomy, tags are usually non-hierarchical and open-ended, thus

reflecting users’ unique perspectives regarding various contexts, or resources. This

platform-enabled liberty of expression, however, has led to situations of frequent

semantic ambiguity due to spelling mistakes, morphological variations, polysemy,

multilingualism or inaccurate tag-to-resource associations. As a consequence, tag

spaces are often regarded as inconsistent, noisy and hardly reliable data sources.

Recent surge of interest amongst distributional semanticists in long- and

short-term fluctuations of word meanings on social media has suggested routes for

successful temporal sense disambiguation, thus inviting discussions around useful

xvii



real-world applications for such emerging data resources. One of such applications

- event analytics from the crowd behaviour perspective - is gaining an increasing

attention from researchers and practitioners, especially in the fields of operations

and situational management. Pursuing pragmatic aims of event detection, differen-

tiation and segmentation, this application domain is represented predominantly by

repetitive catastrophic events (such as natural hazards), during which directly or

indirectly exposed populations tend to share their situational experiences on social

media.

This thesis consists of three main parts, each corresponding to specific prob-

lem in event analytics: (i) detection, (ii) differentiation and (iii) segmentation. In

the first part I used the concept of ontological semantic proximity on the words-

candidates for semantic drift in order to highlight the dynamics of their semantic

oscillations within event-specific category (i.e., flooding). In my second experiment I

followed on these initial findings and performed an analysis verifying whether seman-

tically unstable lexical material can augment our knowledge about main sub-types of

floods, such as ‘slow’ (e.g., groundwater and pluvial floods) and ‘fast’ (surface water

and riverine floods) ones. In my third experiment I employed combined lexico-

visual modalities of the crowdsourced material to reconstruct changing perceptions

of flood events in order to understand how event severity can or cannot determine

situationally resilient behaviours.
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Chapter 1

Introduction
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1.1 Background

”There is nothing permanent except

change”

Heraclitus, c.535-475 BCE

Better data does make for better decisions. This axiom can be frequently en-

countered in various high-profile publications, covering various advances in modern

data analytics, including big data statistics or artificial intelligence. And whilst in

most cases it is given that ‘big’ means ‘more’, the question frequently remains how

to increase the volumes of useful data, which would enable more granular, better

fitted and overall more trustworthy insights into life of various objects or citizens of

the physical or social worlds.

According to Stanford Encyclopedia of Philosophy [SEP, 2002], the variety of

the world we are surrounded with is conditioned not only by the assortment of their

ordinary objects or citizens, but are also greatly dependent on the “sort of things

that happen to or are performed by them”. In the late 90s this view turned into

a focal debate across several disciplines, studying human languages, perception and

action in conditions of various events - static or dynamic ones, mental or physical,

as well as positive or negative ones.

In recognition of such complexity from the computational perspective, back

in 2002 by the Stanford Professor David Luckham introduced complex event analyt-

ics as an exciting interdisciplinary arena of the data science, which has not merely

provided organizations with new ways to analyze data patterns in real-time, but

also opened numerous and diverse avenues for the academic community to reflect

upon, and explore. And although event definition itself was set in motion by a

wave of industrial projects back in the 1990s (predominantly in the areas of active

databases and discrete event simulations) its formal introduction did not happen

until 2002, specifically in the book “The Power of Events”, which presented com-

plex event analytics as a “[...] set of tools and techniques for analyzing [...] the

complex series of interrelated events [...]” [Luckham, 2002, p.xvii] and not only de-

fined generically its terminology and prototype execution models for the very first

time, also it acknowledged the naissance of big data analytics, with its belief in the

enhanced analytical power of multiple data sources to provide insights into the most

complicated phenomena.

Throughout Luckham’s book, various natural world events that can be re-

garded as ‘complex’ are being defined in their broadest sense, irrespective of the

domain of origin or application. The only condition for their relevance to com-
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plex event analytics is the presence of vast heterogeneous amounts of information

available to describe them, sometimes referred to as ‘event clouds’ [Luckham, 2002,

p.28].

Event cloud information can originate from both structured (financial data

feeds, hydrological and meteorological sensor networks, IoT or ground-based in-

strumentation) and semi- or unstructuted data sources (news items, text messages,

social media posts, user-generated content for medical or traffic reports, etc.). From

the data politics perspective, these streams can be also re-defined as official (i.e., au-

thoritative) and crowd-generated ones. Combination of official measurements with

volunteered observations is particularly common in fields where the failure of au-

thoritative data sources can cause incorrect or imprecise predictions, resulting in

significant socio-economic consequences. One such example is the domain of weather

prediction.

As a consequence of the demand for complementary data streams (not least

facilitated by the advent of Web 2.0), different authoritative organizations started

implementing various data collection platforms that would enable the diversification

of traditional, historically evolved scientific observations (which are well described in

the book [PM, 2015]). One example of such an initiative is the Weather Observation

Website (WOW) [MO, 2018], launched in 2011 by the Met Office Public Weather

Service, supported by Royal Meteorological Society and the Department for Educa-

tion, for weather observers across the UK. The purpose of the website was to provide

a platform for the sharing of current weather observations from all around the globe,

regardless of where they come from, level of detail or the frequency of reports. The

observations can be collected using specially-designed digital, scientific or wireless

weather stations or just by looking out of the window or sending in a photo. It is

hoped that the website will encourage further growth in the UK’s weather enthu-

siast observing community and help educate children about the weather and that

this will become the UK’s largest source of weather observations. These initiatives

are usually moderated by a network of voluntary observers, who contribute daily

climatological readings; During the month these records go through quality check-

ing before being stored in the permanent archive and forming an important part

of the climatological record for the UK. The Met Office has an interest in knowing

where the weather is having a significant impact on people, infrastructure, transport

and other activities, so WOW includes a range of variables, including temperature,

rainfall rate, present weather, wind speed/direction, humidity, pressure (MSLP),

snowfall, soil moisture and a number of the media-specific entries, such as continu-

ous webcam observations, photos, magnetometers, etc.
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A similar initiative was launched around the same time at the British Geolog-

ical Survey and was explicitly defined as citizen science, combining the entire cluster

of volunteered activities. The overall term is used for projects in which individuals

or networks of volunteers - many without specific scientific training - perform or

manage research-related tasks such as observation, measurement or computation.

The use of such citizen science networks therefore allows scientists to accomplish re-

search objectives more feasibly than would otherwise be possible; and, in addition,

these projects aim to promote public engagement with research, as well as science

in general. Examples of citizen science initiatives include crowd maps of GeoEx-

posures [GE, 2011] to geological hazards, such as landslides or flooding, which are

reported in a simple form of location and evidence and which can be supplied in

the form of images, web or video links, as well as simple text descriptions. Other

applications are more hazard- or domain specific, for example, [MS, 2011], iGeology

[IG, 2011] platforms or landslide [RL, 2011] or earthquake [EI, 2011] reports. Some

activities are purely analog, and encourage people to collect samples of volcanic ash

in order to contribute to the collection of evidence of the distribution of ash falls

[AS, 2011] or to share their subjective experiences during an earthquake via short

questionnaires [SS, 2011].

The main concept behind all such initiatives is the idea of active citizen sens-

ing, which assumes active or voluntary design, participation or contribution to the

task, often linked to the concept of so-called proactive behaviours, which most often

assume personal interests or concerns (for example, of being flooded or protect-

ing investment against being damaged by geological hazards, such as fluctuating

groundwater levels), and which have been defined as ‘psychologically comforting’

and ‘healthy’ behaviours [Rotenberg, 2009].

However, apart from more active forms of data collection, modern media of-

fers also entire arrays of data streams, which can be useful potentially as they result

from mediated human activities not designed for the purposeful data production.

The idea of using social media as a data source stemmed from the fact that social

media channels, such as Facebook, Twitter, YouTube and Flickr started being in-

creasingly used to promote situational awareness as an increasing number of people

look to social media as an additional, more immediate and readily available source of

information from the late 2000s. Since then, the growing importance of social media

and its growing data repositories started being recognized by authoritative institu-

tions, which prompted them to explore the full potential offered by such alternative

data sources and resulted in the design of such platforms as WOW (MetOffice) and

GeoSocial [GS, 2011] (BGS).
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The power of these prototype platforms at the moment lies primarily in their

interactivity, as, for example, GeoSocial allows users, including BGS scientists, to

visualize geoscience-related posts from social media sites, such as Twitter, in real

time, where social media provide a different channel for gathering potentially useful

information for scientific analysis from the public. Hence, their official statement on

the website (as per August 2018) confirms that “the aim of GeoSocial is to explore

whether BGS can make use of the wealth of information that is publicly available

through such sites to help advance scientific understanding and provide better more

timely advice.”

The method behind GeoSocial data collection identifies potentially relevant

postings about different geoscience themes (such as landslides, flooding, volcanic

eruptions and earthquakes) from Twitter and, if they can be located, displays them

on a map interface. The application currently relies on keyword filtering and only

searches for English terms, therefore it has been acknowledged that some relevant

postings may not be retrieved where they do not meet the predefined search criteria.

However, even with the filtering levels, the posts that are displayed in real time are

still essentially the content provided by the Twitter platform and hence are beyond

the BGS’s quality checking procedures, so may contain offensive material or other

unconfirmed information (such as lies or rumours).

The emergence of such tools and platforms signified the acknowledgement

of novel and alternative data sources by authoritative and government institutions

around the world, even though they are still unsure of how useful they can be.

Thus, BGS defines that one of the routes for developing understanding could be

via novel data analytical techniques, such as machine learning, exploration of novel

data collection instruments or crowd verification. Used on new data sources and with

help of the novel analytical techniques, these approaches would enable understanding

of the usefulness of these types of information by [hazard] scientists and experts,

when used either independently or alongside structured official data holdings, field

observations and models.

1.2 Motivation

The main motivation behind this project is to understand the ways soft sensors (also

known as human, or citizen, sensors) could enrich existing complex event analytics

routines with semantic information contained in user-generated posts and entries

(text, photographs), and answer specific outstanding questions that have been found

challenging by more traditional data and modeling approaches.
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In the scope of this work I therefore aimed to look into how unstructured

data sources derived from social media can be rendered useful for geoscientists. I

turned my attention to the sub-field of the natural hazards [floods in particular] as a

prominent case of ‘human-environment’ interactions because of their firm positioning

between physical and behavioural geographic events [Bunting and Guelke, 1979;

Gold, 1980].

The main methods underlying contemporary, authoritative flood risk com-

munication systems are computational, using interpolated temporal measurements

of hydrological sensor networks (precipitation, surface water, groundwater and tidal

gauges), combined with the spatial topographical floodplain designations, which are

based on historic geodetic measurements and more recent light detection and ranging

(remote sensing) (LIDAR) scans of the earth surface or aerial photographs of flooded

areas. The high cost behind data collection and processing, time delays required to

get information extracted and, most importantly, lack of immediate interpretable

mechanisms of real social impacts have rendered this techno-centric approach only

partially efficient [Alexander, 1991]. Therefore the research community has searched

for cheaper and faster alternatives, like citizen science, which have been in use to

gather important ecological and environmental information since the beginning of

the 20th century [Sachdeva and McCaffrey, 2018; Silvertown, 2009].

On the other hand, since the advent of the Web 2.0, social media is increas-

ingly used for nowcasting and prediction of events in the social world [Moat et al.,

2014], and some initial studies have also demonstrated its potential for monitoring

and predicting phenomena in the physical world as well, such as storms, tsunamis,

hurricanes and droughts [Preis et al., 2013; Peary et al., 2012; Freberg et al., 2013;

Tang et al., 2015]. As observed, the advantages of using these data signals are

due predominantly to their complementary nature. Thus, some studies reported

on its potential strengths in areas where gauges or sensors are absent altogether

[Aggarwal and Abdelzaher, 2012; Javelle et al., 2014], while others demonstrate its

power when being used alongside existing sensor readings [Restrepo-Estrada et al.,

2018], thus improving on the accuracy and precision of the resulting signal and, as

a consequence, of the final warning message.

As event forecasting and monitoring is being increasingly characterized as a

‘big data’ problem, so the problem of data quality becomes apparent, where in the

conditions of apparent data abundance, the useful signal that can be extracted, is

either too sparse, or geographically inconsistent. For instance, while Portuguese-

speaking Twitter can generate vast amounts of georeferenced signals, other Twitter

communities can boast far less useful information (1-5 per cent) due to privacy
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concerns and social media participation preference trends [Brogueira et al., 2016].

The linguistic component of social media messages (i.e., text, tags, annota-

tions, etc.) is usually the primary filtering mechanism that enables data selection

for advanced event modelling, as it usually contains a direct description of the event.

These extracted data signals are further validated by two other important metadata

elements, timestamps and geolocation, which define the final usability of the ex-

tracted data by helping to verify whether messages have been sent from the nearby

area or around the same time the event broke out. Very often, whilst event data

streams on social media seem to be generating huge volumes of data, the amount

of actually useful post-filtered information can be significantly reduced, often due

to the small fraction of geolocated media on the social web. It therefore becomes

important to understand the mechanisms that could help to increase the volumes

of useful information that can be extracted for event modelling purposes.

One such method could be expansion of initial linguistic filtering by extend-

ing the volume of linguistic descriptors that could be potentially related to the event

and are either represented in a more significant fraction of the data uploaded to the

platform or are known to have a higher fraction of georeferenced data, for example,

originating from trusted profiles that have location services enabled on their devices.

For this reason, I decided to turn my attention to the concept of semantic drift (also

known as semantic change, or shift, in the literature on computational distributional

semantics); The main principle behind this approach is that some lexemes possess

several potential meanings and can be used as event descriptors themselves, thus

increasing the volume of useful risk-related information, improving the event sens-

ing potential if posted prior to the direct event-describing lexemes and reflecting

behavioural patterns around official flood risk communication.

As the main case study, the problem of flooding was therefore selected due to

its properties as a socio-natural phenomenon, which can substantially benefit from

the formalized complex event analytics approaches:

1. The uncertain nature of the phenomenon. In the UK flooding is considered to

be one of the biggest problems that the country is facing today, with climate

projections suggesting that increase in total rainfall will provoke major, more

frequent and less predictable flood events [Wilkinson et al., 2015];

2. It has been widely acknowledged that the issue of flooding as a typical example

of natural hazards has been predominantly approached from its geophysical,

climatological and meteorological perspectives, and far less from its social

dimension, which poses a problem as “natural hazards cannot be considered
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independently of the individuals and groups that they afflict” [Gold, 1980,

p.203]. This research gap was identified in the early 1980s and has not been

successfully addressed yet [Mackay et al., 2015], primarily due to the lack of

data as compared with information on the physical extent and magnitude,

data on human perception of, and response to, flooding has been considered

to be much harder to find [Beven, 2007];

3. Complex nature of the different types of the phenomenon, lack of knowledge

about which affects both accurate predictions and efficiency of selected mea-

sures [Wilkinson et al., 2014]. Whilst the most known flooding type is when

river waters overtop their banks, known as fluvial, or surface water flooding,

there are also exist less known and less well understood cases of pluvial and

groundwater flood types. Pluvial or ‘precipitation-related’ floods usually occur

following short intense downpours that cannot be quickly enough infiltrated

into the ground or evacuated by drainage systems. Groundwater flooding oc-

curs as a consequence of elevated levels of the groundwater table, which may

happen days or even weeks after heavy or prolonged rainfalls, causing water

stay in streets or inside properties for a long time, sometimes up to several

months. Sewage floods can occur as a result of both surface and groundwater

overflows, usually as a result of pipe misconnections or blockages. Diversity of

the sampling mechanisms behind various types of flooding prompts researchers

to turn their attention to non-orthodox data sources, capable of capturing the

tacit aspects of these distinct flood typologies;

4. Information on detailed human behaviour during floods is still scarce [Aerts

et al., 2018]; It has been already mentioned by several researchers that novel

flood warning mechanisms could substantially benefit from the data, for ex-

ample, on human mobility as an indicator of risk perception during various

stages of the hazard [Wang et al., 2016]. As traditional data collection tools

cannot stand up to the challenge [ben, 2009], there is therefore a scope for

alternative data sources, containing behavioural signals, to be tested for their

usefulness alongside more traditional, physical instruments [Baldassarre et al.,

2013; Cologna et al., 2017].

The complexity of processes behind the evolution of meteorological and hy-

drogeological events into flooding hazards and associated difficulties with advance

risk estimations also propagates uncertainties among actors and beneficiaries within

the system of environmental regulation, such as property developers [har, 2016] and

insurers [Petrolia et al., 2013], which could potentially benefit from new methods
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able to capture complex human experiences of the risky situations, collective mem-

ory and perceptions [Birkholz et al., 2014]. This hypothesis also resonates with the

recent statement made by the Environment Agency (2015) [TNA, 2015], acknowledg-

ing the limitations of current, predominantly technocentric, flood risk management

approaches based on the traditional data sources and methods: “Recorded flood

outlines contain the individual records of historic flooding. These records show

flooding to the land and do not necessarily indicate that properties were flooded

internally. Absence of a flood event does not mean that the area has never flooded,

only that we do not currently have records of flooding in this area [...]”.

1.3 Research questions

The main principle of complex event analytics is to get better information to enrich

situational analytics and respond to emerging hazards as quickly as possible [Etzion

and Niblett, 2011], with flood monitoring on social media as the chosen case study.

Following abovementioned problems in flood risk analytics (1-4), I have identified

the following research questions for in-depth investigation:

1. Can we detect events (e.g., flooding) with help of semantic drift on social

media?

2. Can semantic drift on social media help to differentiate types of flood events?

3. Can alternative tags (i.e., the ones, which are not direct event descriptors)

help us to distinguish different stages of flood events?

1.4 Thesis contributions

This thesis makes the following specific contributions:

1. Proposes three alternative methods for behavioural event analysis as compared

to more traditional authoritative data sources used in flood risk monitoring

and management;

2. Critically evaluates the complementarity between authoritative sensor net-

works and soft (social) sensors;

3. Introduces practical applications for the popular in data science concept of

semantic drift (also known as semantic instability in computational linguistics)

by adapting it to the requirements of situational analytics. I propose three
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types of such pragmatic applications: (i) transient semantic drift, (ii) spatial

semantic drift and (iii) cognitive semantic drift, each well adapted to answer

specific question in flood risk analytics.

1.5 Thesis structure

The remainder of this thesis is structured as follows:

Chapter 2 (Literature review): In this Chapter I present a detailed overview

of the literature sources covering the principal research trends in the field of human

perception of natural hazards and how social media data could step in in order to

address outstanding event-focused questions in the example of flooding phenom-

ena. I start off with the main approach to the classification of the natural hazards,

demonstrating diverging trends between geophysical and the social systems. In or-

der to better understand currently underrepresented research field of the natural

hazard analytics from a human perspective, I look at broader theories, arising from

experiences of the surrounding environment, and how have they evolved from being

purely reflexive towards becoming computationally orientated (AI and natural scene

statistics). Following this, I attempt to position natural hazard analytics in the con-

text of complex event analytics and continue by uncovering contemporary trends in

the latter domain and how it models hybrid socio-technical systems. After bringing

into focus social media as a data source, I describe the current state of art such

‘social sensors’ play in natural hazard analytics and present outstanding research

avenues for the computational behavioural component of natural phenomena.

Chapter 3 (Methodology): In the scope of this Chapter I present the main

arguments behind the choice of the research questions selected for further empirical

verification. I start off by presenting semantic drift as a main analytical tool for

analysis of the human perception of flooding on the multimodal platform Yahoo!

Flickr. This discourse is followed by hypotheses theoretically based on state-of-

the-art approaches in the field of distributional semantics and is repurposed for

further practical verification in context of the flood events. The second half of the

Chapter is dedicated to the theoretical reasoning behind selection of the primary

(e.g., variables-candidates for semantic drift) and secondary (authoritative flood

monitoring datasets) data sources for the three research questions of this thesis.

Chapter 4 (Event detection with semantic microchange on social media) is based

on the assumption that user generated content (UGC) in social media postings and

their associated metadata such as time and location stamps can be useful for provid-

ing valuable operational information during natural hazard events. The implications
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of the latter are such that, in a purely additive sense, they can provide much denser

geographical coverage of the hazard as compared to traditional sensor networks,

whilst also being able to provide what physical sensors are not able to do; Notably,

by documenting personal observations and experiences, they directly record the im-

pact of a hazard on the human environment. As choices of semantic tags in the

current methods are usually reduced to the exact name or type of the event (e.g.,

tags ‘Sandy’ or ‘flooding’), the main limitation of such approaches remains their

mere nowcasting capacity. In this analysis I therefore make use of polysemous tags

of images posted during several recent flood events to demonstrate how such volun-

teered geographic data signals can be used to detect event before the direct event

descriptors.

Chapter 5 (Event differentiation with spatial semantic drift) covers the already

known and well reported problem of noise in social media data sources, where words

and expressions [can] often mean something different not directly related to the event

in question. In addition to this, there is also a problem of data precision, which of-

ten prevents us from finding out exact types or subtypes of events we want to get

more detailed insights into. Nevertheless, current research efforts in this area of an-

alytics fail to appreciate an outstanding opportunity to explore how such noise can

be exploited for gaining deeper insights into complex flooding phenomena, where

traditional filtering by the keyword ‘flood’ is hardly helpful. To address this gap, in

the scope of analysis presented here I use the concept of semantic drift in order to

understand how ontologically related words on multimodal social media platforms

can generate additional pools of useful, but currently underexploited data compo-

nents. My results demonstrate that alternative keywords are able to differentiate

two main, according to the USGS classification system, types, specifically riverine

(river flow and surface water floods in our analysis) and flash (precipitation and

groundwater) floods.

Chapter 6 (Exploring potential of semantic drift for event segmentation). As

semantic drift is a known research category of distributional semantics for its ca-

pacity to demonstrate gradual long-term changes in meanings and sentiments of

words, its empirical performance is nevertheless largely determined by the corpus

composition. In Chapter 4, which used ontological relationships between words and

phrases, I have already established that there also exist certain types of seman-

tic microchanges on social media, emerging around natural hazard events, such as

floods. My previous results confirmed that such alternative lexical material can be

used to detect floods before their outbreak and to increase the volume of ‘useful’

georeferenced data for event monitoring. In this final experimental Chapter I use
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deep learning in order to determine whether pictures associated with ‘semantically

drifted’ social media tags reflect changes in the event severity or are a reflection

of the people’s reaction to the authoritative flood risk communication. The results

show that alternative tags do follow the pattern of the direct event descriptors and

are indeed sensitive to the evolving severity of the hazard. They also have more

complex composition, ranging from more focused to less focused scenes, which can

be used as statistical indicators of flood risk severity.

Chapter 7 (Results and Discussion) summarises findings from the previous

chapters and critically reflects on emerged theoretical questions and outlines future

directions for some similar and alternative practical implementation(s).

Chapter 8 (Conclusions) presents general overview of results, what implica-

tions they may have for the field of natural hazards analytics in context of the

growing interest towards socio-environmental studies.
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Chapter 2

Literature review
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Synthesis

In this Chapter I present a detailed overview of the literature sources covering the

principal research trends in the field of human perception of natural hazards and

how social media data could step in in order to address outstanding event-focused

questions in the example of flooding phenomena. I start off with the main approach

to the classification of the natural hazards, demonstrating diverging trends between

geophysical and the social systems. In order to better understand currently under-

represented research field of the natural hazard analytics from a human perspective,

I look at broader theories, arising from experiences of the surrounding environ-

ment, and how have they evolved from being purely reflexive towards becoming

computationally orientated (AI and natural scene statistics). Following this, I at-

tempt to position natural hazard analytics in the context of complex event analytics

and continue by uncovering contemporary trends in the latter domain and how it

models hybrid socio-technical systems. After bringing into focus social media as a

data source, I describe the current state of art such ‘social sensors’ play in natural

hazard analytics and present outstanding research avenues for the computational

behavioural component of natural phenomena.
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2.1 Natural hazard perceptions

2.1.1 Approaches to the natural hazard classification

Traditionally, the term ‘natural disaster’ has been remarkably difficult to define and,

as a consequence, there exist several approaches for classification.

According to the broader classification, natural hazards fall into the category

of negative events, which according to [Iliev et al., 2016], are “less numerous, but

more diverse when compared to positive events, which are much more common.”

According to [Burton and Kates, 1964], natural disasters can include various

environmental phenomena, including blizzards, floods, tornadoes, earthquakes, vol-

canic eruptions, fungal diseases, infestations, etc. From the perspective of physical

geographers primarily interested in climatological and geological events as opposed

to biological phenomena, a natural hazard is “an extreme geophysical event greatly

exceeding normal human expectations in terms of magnitude or frequency and caus-

ing major human hardship with significant material damage to people and their pos-

sessions and possible loss of life.” [Oliver, 1975]. However, a natural hazard would

not have been a hazard if it existed independently from human settlements, the indi-

viduals they afflict and the locations of their activity, so according to [White, 1974,

p.3] “[...]no natural hazard exists apart from human adjustment to it. It always

involves human initiative and choice. Floods would not be hazards were people not

tempting to occupy floodplains; By their occupancy people establish the damage

potential and may well change the flood regimen itself.”

From a purely geoscientific perspective, natural hazards are divided into

groups according to the main mechanisms behind their emergence and evolution.

According to The International Disaster Database, CRED (EMDAT) [IDD, 2011],

the most common division, adopted in many countries and according to which na-

tional authoritative risk communication organisations are structured: meteorological

(e.g., different types of storms, blizzards, heat waves, tornadoes, etc.), hydrological

(e.g., different types of flooding, tsunamis and related multi-hazards) and geological

(e.g., earthquakes, avalanches, landslides, volcanic eruptions, etc.) natural hazards.

The peculiar fact about natural hazards is that their boundaries are often

blurred as they may emerge due to various interacting geophysical factors. This can

lead to cases of multi-hazards or ‘cascading hazards’, such as, for example, flooding

and landslides occurring after rain over wildfires [AghaKouchak et al., 2018]. Also,

there are often cases of ‘nested hazards’, where one type of disaster may consist of

several interrelated hazards of similar types but of different origins [Sophocleous,

2002]: If we look at flooding specifically as a natural phenomenon it is extremely
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complex and subject to change. Incidents are no longer restricted to obvious areas

where a river or stream exists; for example, many urban floods are simply caused by

huge amounts of rain falling very quickly (flash floods) in an area where the drainage

system is unable to cope or due to unexpected underground basin recharge and rise

of groundwater levels [Handmer and Proudley, 2007]. As a consequence, there is an

ongoing motivation to understand how accurate our knowledge can be about natural

hazard risk — its location, timing and duration — which is being fuelled by both the

diverse and changing nature of natural hazards, but also by new, emerging datasets,

methods and computational tools [Gaitan et al., 2016], which can be potentially

useful for answering such longstanding questions.

2.1.2 Human responses to natural hazards

The problems posed by people’s understanding of and response to natural haz-

ards have long been of concern to both academic and policy-making communities.

Geographical research into natural hazards has evolved steadily over time within

a unified paradigm, traditionally process- and instrument-orientated [Brown and

Damery, 2002; Blair and Buytaert, 2016]. This has served to give natural hazards

research the considerable advantages of coherence and integration that contrasts

markedly with other areas of behavioral geography. According to some authors,

these benefits, nevertheless, have been largely “counterbalanced by a parochial out-

look and narrowness of analysis” [Gold, 1980, p.202][Blair and Buytaert, 2016], and

they claim that discussion of this matter must be postponed until the full, or at

least more extensive, range of human responses to natural hazards is examined us-

ing new and emerging data sources, thus embracing more integrative, socio-technical

mechanisms of natural hazards analytics.

Studies of how the natural environment defines human behaviour has shown

a rapid development in recent decades, coinciding with the rise of the behaviorist

tradition across several fields of the social sciences, including psychology, sociol-

ogy, geography, anthropology, which, in turn, have also sparked an interest in more

applied environmental design fields, such as architecture, urban and regional plan-

ning, and interior design. Fairly recently, this interest has also found manifestation

in more computational disciplines, such as data science and information engineer-

ing, aiming to incorporate human agents’ behavioural signals into complex models

of various phenomena of the physical world [Filatova, 2015; Dawson et al., 2011].

Since complete ignorance of the existence of hazards is rare, some generally

recurrent features can be noticed in studies of responses to natural hazards, which

are the most often approached from either evolutionary-cultural or personal per-
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spectives. The ways in which humans used to pass down stories through the ages

helped cultures to cope when disaster struck and provided rich research informa-

tion grounds for anthropologists and social scientists. In 1968, Dorothy Vitaliano,

a geologist at Indiana University, pioneered the study of cultural myths that told of

real geological events [Hamacher and Norris, 2010]. According to [Janif et al., 2016],

this story represented a unique geological record of ancient eruptions. Similarly,

McAdoo [McAdoo and Paravisini-Gebert, 2011] studied earthquakes that triggered

tsunamis, looking at the social and cultural factors that made some geological dis-

asters deadlier than others. Other scientists were using a similar strategy to study

seismic events in the Pacific Northwest. [Atwater et al., 2005] was tasked with map-

ping earthquake risks across Northern California, Oregon and Washington, and was

searching for information about previous earthquakes in those areas. However, writ-

ten records dated back only about 200 years. With help of Japanese seismologists,

he was able to link traditional native stories to historic records and start a produc-

tive collaboration. After the tsunami 2004 in Indonesia, during which hundreds have

been killed or left homeless, event stories-instructions to run immediately to high

ground if water recedes after an earthquake permitted residents of remote villages to

survive with relatively few casualties, and as they gained in popularity among peo-

ple, their geological merit began to grow as well. Since then, there have been more

constructive dialogues between social scientists, natural scientists and engineers,

which have led to more insights on how and why these disasters happened. Fairly

recently, geologists have also begun to pay more attention to how indigenous peoples

understood and prepared for disaster. It started to be recognized that these stories

could ultimately help scientists prepare for cataclysms to come, also confirmed by

the tsunami outcomes on the Andaman and Nicobar Islands, during which islanders

who had heard the stories about the Laboon tsunami or similar mythological figures

survived the tsunami almost unaffected, whilst many residents in the city of Port

Blair, being outsiders with no indigenous tsunami warning system to guide them to

the higher ground, became the main victims.

The second approach, covering personal experience factors was described by

[Ittelson, 1976], who put forward four reasons why human reaction varies in this

way:

(1) Previous experience: as natural disasters are not part of everyday lives,

the way people perceive dangerous situations is conditioned by how long ago the sit-

uation took place, as rare events usually require re-adjustment from scratch because

memories about them tend to fade away over time.

(2) The role of personality, about which little is yet known. It has been
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hypothesized that people living in hazard zones have personalities similar to gam-

blers, willing to take risk of losses caused by natural hazards against the prospects

of untroubled living.

(3) Attachment to place, which causes general unwillingness by the public to

recognize negative implications. Events often require major readjustments in the

ways people live, which they are usually reluctant to make. According to ecolog-

ical concepts of the natural environment, human systems are seen as having their

place within the natural order, where each individual needs to protect themselves,

recognizing that the natural environment is unpredictable and that risk is always

somewhere there.

(4) Attitudes towards nature. Information from the hazard environment is

often ambiguous and, as a result, judgements are less accurate than is normally the

case with other environments. For centuries, nature has been seen as beyond human

control and, as a consequence, associated with divine will. In numerous theological

works, fire, earthquakes, lightnings and floods have been seen as supernatural forces,

that are used “to cleanse evil or as tokens of divine displeasure.”

The latter reason is based on the known fact that people tend to associate

their everyday experiences with symbolic values, hence their emotional investment

into the landscapes they see and visit is no different. Such symbols can yield varying

and sometimes conflicting emotions, such as pleasure, pain, melancholy or nostalgia.

As a consequence, people’s relations with the surrounding environment can also

manifest itself in a myriad ways, where, in some instances, the emphasis is made on

landscape preference, attraction and friendliness and, in others, it has been based on

it being seen as a continuous source of risks and therefore provoking stress, avoidance

or adjustment.

The aesthetic conflict towards various landscape experiences has been ex-

pressed in Auden’s theory of topoi (or commonplaces), where pleasurable landscape

experiences are neatly summarized under the terms topophilia, which is a primary

category and has a more embracing meaning of a response of open and suggestive

emotion towards particular landscapes, including those that have never been visited

or that perhaps do not even exist. In this respect, according to [Betjeman, 1947]

topophilia has powerful links to utopia and heaven, where the landscape stands for

a degree of perfection, a person’s preferred location, which by the act of association

has been to a certain degree humanised.

Topophilia can be deeply personal, however, it can also be a shared experi-

ence; in addition, it can present images of a less positive kind, such as pain, suffering,

fear, or desolation. And although such topophobic images might be less expressive
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or powerful than those ones of topophilia, they can be surprisingly consistent over

time. For example, [Gold, 1980, p.118] describes that “...mountain, forest, river have

only recently become landscapes of attraction, loved today for solitude which pro-

vides a counterpoint to the pressures of the modern human landscape. In the past

adjectives such as ‘awful’, ‘horrible’, and ‘hideous’ were applied to the landscapes

of nature upon which human art was unable to act.”

In his analysis of Auden’s theory, [Gold, 1980, p.118] also points out that

there has been an interesting reversal in topophobic landscapes since industriali-

sation: as nature has become much better controlled, areas of wilderness, which

previously has been viewed as dangerous shifted from being a word of topophobic

content to one of topophilia, to the extent that the search for original naturalness

has become a search for utopia in the minds of many [Lowenthal, 1964]. At the

same time anthropogenic landscapes, particularly industrial ones, have turned into

a topophobic concept. For example, the image of the dark, smoky and polluted

industrial landscape (e.g., Blake’s “dark Satanic mills...” (1804) became and per-

sisted for decades as a dominating theme in attitudes towards cities, but at the

same time it is the image that has stimulated contemporary concerns with conser-

vation and landscape preservation. Regarding the examples of European topophilia

[Glacken, 1967] demonstrated how contradictions between accepted landscape the-

ories and scientific, geographical and economic development have led to changes in

environmental attitudes. More recent studies have also attempted to demonstrate

the role of antropogenically altered environment in enhancing unethical antisocial

behaviours and crime [Lu et al., 2018].

Another theory was put forward by [Appleton, 1975], who combined the ani-

malist arguments of Dewey with associationalist thinking to produce habitat theory,

where he suggested that “in order to achieve evolutionary survival, man had to

learn how to see without being seen.” (p.239) This theory produced a framework of

landscape symbolism that was organised around three main concepts of ‘prospect’,

‘refuge’ and ‘hazard’. Because hiding was seen as absolutely crucial landscape be-

haviour for primitive societies, it was important to use surroundings in a way that

allowed warning of an approaching animate or inanimate hazard. Therefore, accord-

ing to the theory, if it were not for the existence of hazards, prospects and refuges

would have no meaning; Thus, the concept of a hazard was turned into a cornerstone

concept of the symbolism framework.

As well as attributing landscape with artistic meanings and connotations,

symbols nevertheless are also products of the human mind that facilitate the com-

munication of ideas and images about landscape, which are also firmly grounded in
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the culture in which they are found. [Panofsky, 1970] has claimed that symbolic

meaning operates at three levels, which broadly parallel the three elements of land-

scape (actual physical features, associated activities, performed on the scene, and

proper meanings or symbols). At a primary level Panofsky identified factual mean-

ing, as when the representation of a particular natural feature is associated with

the real landscape element and expressional meaning, in which certain psychologi-

cal states are identified by their representation, for example, a face expression or a

word. The secondary level was conventional meaning, which is approached through

identification of symbols. For example, linguistic metaphor of ‘standing water’ can

be used to describe flooding. However, in order to achieve that recognition, we re-

quire some knowledge of the traditions or habits of representation of that particular

natural phenomenon in that particular geographical area. At the third level, the

proper symbolic level, iconology is important for the interpretation of the landscape

metaphor, specifically how meaning was formed in those particular settings. From

this perspective, in order to comprehend the symbolic landscape, we must under-

stand the basic values and attitudes of those who produced that landscape and

those who hold images of it. In this respect language as a system of symbols is

a particularly representative iconology as it is used for meaningful communication.

However, this may consist of various sounds, gestures, or written characters that

may represent objects, actions, events that can be either directly translatable or

metaphorically encoded.

Environmental meaning creation has been also a concern of Gibson’s ecologi-

cal psychology, which suggested that the affordances of the environment, what it can

offer to the animal, either good or ill, define its perception and all the subsequent

activities [Gibson, 1979]. In its broadest sense, ecological psychology complements

the traditional focus of environmental ecology, which is primarily concerned with

energy transactions between the living systems and their environments by empha-

sising yet another angle of information transactions. In later works, Gibson used the

term ‘ecological’ psychology to emphasise this animal-environment reciprocity for

the study of problems of environmental perception, since he believed that analysing

the surroundings was just as much a part of the psychologist’s task as analysing the

perceivers themselves, and hence that the physical concepts of the landscape and

the biological concepts of the organisms would have to be tailored to one another in

a larger system of mutual constraint.

In his complementary on Gibsonian theories of environmental perception,

Nicolai Bernstein also presented an ecological approach to the problems of situated

coordination and movement [Bernstein, 1967]. He pointed out that action cannot
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be studied without reference to the environment and that physical and biological

concepts must be regarded together as a reciprocal system. This coupling of Gibson’s

ideas with those of Bernstein therefore have provided a natural basis for looking at

traditional psychological topics of perceiving, learning and acting as activities of

crowds rather than of isolated individuals.

In order to consider some broader influences on processes behind meaning

attribution to geographical spaces, it is worth looking at theories of environmental

learning, which are often in opposition to more instinct-based theories of ecological

psychology. This school of authors argue that whilst there are multiple factors

in play that can define human attitudes to the natural environment, landscape

aesthetics perception is mostly defined by whether the person is a visitor or a

resident (i.e., the temporality of presence) in an area as the desired landscape and

the hazard zone are often one and the same thing [MacEachren, 1992]. They looked

at opportunities to extend micro-scale studies of developmental psychologists, whilst

also considering the influence of various socio-cultural factors on an individual’s view

of the natural and urban environment [Boulos et al., 2011; Dubey, 2016; Ruiz-Correa

et al., 2017].

Theories based on the principle of the temporality of presence maintained

that differences in the mental or behavioural characteristics of individuals are due

primarily to environmental experience, which, in turn, resulted in several percep-

tual laws first proposed by the Gestalt psychologists [CHE, 2019]. Since Gestaltists

believed that the brain had innate self-organising tendencies, they tried to explain

[environmental] perception and cognition specifically from this perspective. They

believed that the first stage in perception was the ability to distinguish the fore-

ground (i.e., central) figure from its background (or simply ‘ground’ as they referred

to it) and conducted a series of experiments that put forward the principles by which

they believed such pattern recognition takes place: ‘proximity’, ‘similarity’ and of

‘good continuation’.

According to the proximity principle of perceptual grouping, elements that

are close together are perceived as a group. Similarity suggests that visually similar

objects tend to serve as a basis for space fragmentation for the observer, whilst

the good continuation principle allows for the primary perception of simpler shapes

before they start constituting perceptually more complex formations. Although rel-

atively well-structured, these principles did not find an empirical confirmation in

subsequent works by [Elkind and Scott, 1962] and [Bower, 1965] on age differences

between observers, and by [Schwitzgebel, 1962] and [Vernon, 1971] looking at edu-

cational and cultural differences. However, the idea that human ability to perceive
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objects or shapes as holistic figures against the background, reflecting that we learn

to allocate them to a specific category of objects or shapes with which we are fa-

miliar, has recently been followed up by the work of Berkeley researchers on natural

scenes prediction with help of computer-assisted classification algorithms [Stansbury

et al., 2013]. Here, the authors pursue the idea that machine learning algorithms

can classify natural scene objects into visual semantic categories just as well as the

human visual cortex, which has been the subject of quite a substantial body of re-

search in natural scene statistics. Starting off with the ability to quantify natural

objects and shapes the field has evolved into an interdisciplinary area capable of

negotiating with and confirming some of the most fundamental research hypotheses

in psychology, specifically about the role of attentional mechanisms in natural scene

perception.

According to recent findings, perception of scenes in the natural environment

to a great degree is dependent on the awareness and consciousness (i.e., presence)

of the observer, which are only possible in conditions of attention as natural-scene

perception is not a pre-attentive process [Cohen et al., 2011]. Also, following this

quantitative tradition, what happens is that humans tend to categorize scenes they

encounter in their everyday life, such as park, workplace or the beach and these

categories are assembled according to knowledge of the way objects co-occur in

known (or learnt) natural scenes, and can also be used to distinguish one category

of natural scene from another. Moreover, the results have confirmed that such

inferences can also be made in the opposite direction, i.e., the name of the category

can imply its constituents (just as in [Stansbury et al., 2013]’s example of the ‘beach’

category, which “is sufficient to elicit the recall of such objects as towels, umbrellas,

sandcastles and so on.”).

2.2 Data streams for complex event analytics

As I mention above, data on human understanding of hazards have been a focus

of interest of behavioural geographers since the last century. However, it has been

accepted that such data is hard to come by as compared with information about the

physical extent and magnitude of natural hazards, as attitudes towards nature are

strongly influenced by the socio-cultural backgrounds of event participants [Renn,

2008]. Nevertheless, the growing interest in approaching natural hazards as socio-

natural systems has provoked interest in understanding how they are structured

from the perspective of human behaviour as events people partake in and react to.

In order to reveal potentially successful routes of integration of behavioural
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and social data with other data streams, I looked at the broader areas of complex

event analytics, dealing with the problems of data ontologies and interoperability.

Since such smart cyber-physical systems (CPS) are based on processing of heteroge-

neous and dense data streams from multiple sensors, the main challenge turns out

to be the integration and matching of patterns against those streams.

Since its inception, complex event analytics-related approaches have been

adopted by operational intelligence and service management programmes in order

to provide insights into business operations and/or identify actions that trigger par-

ticular events or their various states. They have been heavily based on correlation,

which helped to analyze the majority of events and to select the most significant

ones, so-called ‘triggers’. This proto-complex event analytics did not produce new

inferred events; instead it was used to compile event hierarchies (e.g., for relating

high-level events with low-level events) and has subsequently evolved into business

process management operations (BPMO), where seemingly disparate events signif-

icantly affect each other’s outcomes (e.g., a malfunction or breakdown detection).

Later, complex event analytics also started contributing to BPMO at implementa-

tion levels, such as customer service monitoring (e.g., click-stream analysis, customer

experience management and ‘recommendation systems’). Another early adopter of

complex event analytics technology was the financial services industry, which used it

for structuring and contextualising data streams to inform trading behaviour (e.g.,

algorithmic trading). More recent advances in complex event analytics technologies

have also made it more affordable for smaller companies, thus enabling them to

create their own algorithms to compete with larger players in spheres such as of

online banking and multichannel marketing.

Whilst business and finance complex event analytics have been predomi-

nantly underpinned by time series processing, where historical time series and real-

time streaming data are aggregated into a single continuum, more recent and sys-

temic examples of complex event analytics can be seen in driverless cars and IoT,

where sensors enabled detection of various events and trigger reactions that sub-

sequently turned into events themselves (i.e., ‘cascading events’). The majority of

techniques are defined by their main property of temporality, i.e., a system’s state is

more efficiently presented in the form of dynamic data streams from which a system

continuously learns a number of different states, rather than preserving its form as

a static, materialized model.

More recently, [Wang and Cao, 2012] introduced context-aware semantic

complex event analytics with the ‘context’ still being understood as metadata or

annotation, however, this time containing more information on the background
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physical environment. Domain ontology was therefore used for the first time to

annotate heterogeneous data and infer high-level contexts, accounting for physical

entities, such as Object (things that participated in the event), Time (time instance

or interval of the event), Environment (location and location features) and Action

(the execution degree, method, tools of action). By using semantic and context-

awareness technologies, complex event analytics was seen as being able to infer

hidden information and improve event processing precision [Wang et al., 2016] by

dynamically annotating heterogeneous data in streams to infer high-level context

and subsequently associating detected events with the current context to forecast

what will happen based on relationships in the event ontology.

Recent studies have demonstrated an increased interest in combining com-

plex event analytics with social media monitoring (SMM), which would enable the

possibility of early identification of potential users/customers or quantification of

the influence of real-world events on public opinions, with the possibility to design

systems capable of addressing cases with a strong aspect of proactive crowd be-

haviour (i.e., able to anticipate future behaviour in social media streams and act

proactively to realize new opportunities or to avoid potential problems). Increased

interest in human-centric sensing as a relatively cheap data source for various appli-

cations also provoked interest in testing these growing volumes of new data alongside

quickly evolving complex event analytics approaches. As social media and other web

data sources offered much richer semantic information volumes, emerging research

started looking beyond mere metadata/annotation elements, such as, for example,

time and geolocation, thus shifting methodological requirements towards multimodal

analytical approaches [Thang-Duong et al., 2017].

2.3 Research framework

2.3.1 Reasoning behind data selection

The choice of social media data to study human perceptions of natural hazards

was a straightforward one. People usually make an effort to stay aware of what

happens in their neighbourhoods, especially if their health, wellbeing or prosperity

is at stake, therefore a good part of their everyday experiences are likely to be

‘mediated’ by new communication tools. It has already been shown that public

information sufficiency, risk perception and self-efficacy can predict risk-information

seeking behaviour [Huurne and Gutteling, 2008; Krohne, 1989; Zuuren and Wolfs,

1991]. As a consequence, it goes without saying that natural disasters are extremely

‘newsworthy’ and, as well as actively ‘consuming’ risk-signaling reports, people also
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tend to engage in conversations about approaching, ongoing or past natural disasters

on social media and various websites. There is a high degree of certainty that in any

given year events such as storm, hurricane, earthquake, or even volcanic eruption will

steal the headlines; and when they do, it is equally certain that the focus of attention

will be stories of immediate public interest, including the havoc and disruption of

everyday life, destruction of houses, numbers of victims, and first person reports of

witnesses.

Developments associated with Web 2.0 have exponentially increased the

amount of digital information, predominantly textual, which, when collated as data

elements, can be used as standalone information signals or accompanying descriptors

for acoustic, photographic and video material. Also known as a source of ‘natural

language’ data, these sources of unstructured information are very well positioned to

help understanding how meanings are created and to expand applications towards

event monitoring.

Grounded in geocomputation, citizen science is increasingly seen as a nexus

at the interface of policy, science and the public [Newman et al., 2012], and various

types of similarly produced user generated content (UGC) have been employed in

ecological and environmental studies in order to explore the opportunities they afford

to quantify relationships between physical phenomena and community response, as

well as to assess the reliability of citizen science data in relation to expert data

[Riesch and Potter, 2013]. Design- and principle-wise, these novel and emerging data

sources vary from secondary (customizable multi-purpose templates) and primary

(Facebook, Geocaching, etc.) web platforms to custom-made smartphone apps (e.g.,

RiverObstacles) able to accommodate various types of data collection, ranging from

text and numerical and from passive to active sensing. In most cases, such practices

have proven to be an economic and efficient alternative to data collection for scientific

purposes, where results indicated high concordance between participants’ and expert

scores [Riesch and Potter, 2013].

Known ongoing challenges for citizen science initiatives include wider demo-

graphic engagement with such initiatives, as well as the need to ensure continuity of

data collection routines. Thus, whilst it is relatively easy to find individuals willing

to share information using tools provided by Web 2.0, it is not always obvious how

to ensure ongoing engagement from volunteers, especially for cases where active and

continuous sensing is required [Silvertown, 2009]. Also, from the data standards

perspective, as a collaborative outcome and because crowdsourced information is

often analyzed in terms of the ‘big’ data sets, the lack of the possibility of granular

tracking of all data points brings forward concerns about data quality and mistrust
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of citizen science in some circles of the scientific community [Lopez-Aparicio et al.,

2017]. This issue is specifically noticeable for cases where data is often unstruc-

tured and/or generated opportunistically. The issue is less apparent for cases with

a structured format (like data collected via dedicated platforms and smartphone

apps), which makes curation somewhat easier. [Riesch and Potter, 2013] also point

out that the most challenging aspect in environmental citizen science user generated

content (UGC) data is the lack of complete and accurate geolocation data associ-

ated with descriptive information. This subset of UGC, also known as Volunteered

Geographic Information (VGI), is considered the most promising domain of citizen

science, however, it also suffers from data collection disparities due to unequal ac-

cess to Information Communication Technology (ICT) by different socio-economic

and demographic groups, creating forward ontological problems in data production,

which, however, do not necessarily affect its status or quality [Silvertown, 2009].

New data and new ways of working with these datasets therefore suggest

more creative planning methods capable of equally incorporating readings from dis-

tributed sensor networks and interpreting various social participatory undertakings

[Townsend, 2013]. Some of them are strictly design-related. For example, the design

of intelligent monitoring of social media with proactive event detection properties

[Riemer et al., 2012] also introduced a set of challenges related to real-time data

processing, such as online semantic indexing used in contemporary web searches.

Semantic capabilities have been defined as one of the crucial components for event

pattern definition (as opposed to simple filtering) that allow users to express their in-

terest on a more abstract level, thus simplifying user-centric pattern generation and

allowing usage of semantic requests based on previously specified domain knowledge

in event processing engines.

Since the majority of socio-environmental processes are spatially grounded,

geo-referenced social media data is considered to be fundamental for complex event

analytics routines, specifically for projects with environmental applications. Cur-

rent methods are primarily orientated towards mining vast linguistic resources in

their natural state without taking into account its own dynamics, which could be

expressed, for example, in form of the lexico-grammatical, phonological and soci-

olinguistic determinants of language production. As a consequence, vast amounts

of potentially useful semantic information on the social web continues to be accu-

mulated in its latent form.

Since human communication can acquire both verbal and nonverbal forms,

a criticism has been already been expressed in recent research overviews [Yang and

Eisenstein, 2013; Eisenstein, 2017] that the field of orthodox computational linguis-
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tics is overly concerned with “the structure of verbal information transfer”, whilst

ever increasing availability of social media data opens opportunities to far more chal-

lenging interdisciplinary methodological undertakings, such as better understanding

of language settings and all kinds of social processes. [Nguyen, 2017], for example

go as far as describing social media data as “a data type that is signaling all kinds

of social phenomena”, and provide some convincing arguments for the obvious need

to formalize this methodological sub-domain of computational linguistics into a sep-

arate subfield of the computational sociolinguistics that builds its methodological

capacity on the connection between social variables and language used by the same

socio-demographic groups. This connection is primarily grounded in linguistic vari-

ation due to colloquial nature of human interaction on social media; and although

it can be characterized as fluid and tenuous, it, nevertheless, captures the symbolic

nature of the socio-linguistic dualism by means of representing the speaker’s social

identity via the language devices they choose to use in the particular circumstances.

An example of this successful methodological formalization provoked me to

reflect on where social media stands it terms of complex event analytics require-

ments in general and, particularly, how it can be re-purposed to answer the research

questions of this thesis. Some further research into this aspect has demonstrated

the peculiarity of the situation as, on the one hand, social media data and event

processing intuitively seem to be two complementary elements of the same system

due to the inherently event-driven nature of the data production on digital social

platforms. This requirement has therefore motivated me to select a platform for

experimental analyses that includes several compulsory modalities (e.g., annotation

tags/text, visual material that can be represented by photographic or videographic

materials, geolocation/coordinates, etc.). For this purpose, I chose Yahoo Flickr

Creative Commons 100 Million dataset (YFCC100M) [Thomee et al., 2016], which

is a global-coverage open dataset provided by Yahoo! for the research community to

experiment with fully multimodal crowd-generated source of information and com-

prising the main modalities of my interest: linguistic (tags), geographical and visual

(Fig. 2.1).
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Figure 2.1: Flickr Creative Commons dataset is the part of Yahoo Webscope’s
datasets for researchers, and is considered to be one of the largest public multimedia
datasets that has ever been released (99.3M images (49M of which are geotagged)
and 0.7M videos), all from the single platform and released under Creative Commons
licensing. The dataset (appr. 12GB) consists of such attributes as photo ID, a jpeg
url or video url, and some corresponding metadata such as title, description, camera
type and tags. Other attributes, which are derivatives of the Flickr social ecosystem,
like comments, favourites and social network data can be queried from the Flickr
APIs directly. Image by David Shamma on Flickr (CC BY-ND 2.0).

2.3.2 Data collation

When trying to associate data with a particular event, we use domain-specific key-

words in order to describe those events (i.e., ‘weather’, ‘rain’ and ‘storm’ for natural

hazards analytics), which are subsequently related to the locations they are, or likely

to, originate from. Therefore location and keyword descriptors are of the upmost

importance for natural hazard analytics from the phenomenological perspective –

however, both have some known limitations due to their volunteered nature as data

signals.

When we take Twitter as an example, geographic metadata available for
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geo-located tweets predominantly originates from profile location (82 per cent),

mentioned location (17 per cent) and activity location (1 per cent) [GNI, 2013].

Since the particular value of data streams for flood monitoring purposes lies in their

capacity to generate large volumes of georeferenced data, where social media data

is concerned as a potential contributory source, its entry points should consist of

the point-lexemes with the precise XY coordinates as opposed to the place names,

which are less accurate due to their nature of being topological centroids of the real

world objects. The fact that our data derives from social media platforms suggests

that the data coverage will be uneven, and as a consequence this will find reflection

in the spatial component of our multi-modal dataset, since:

(i) people, living or visiting flood risk areas are not necessarily representative

of the demographics of social media or mobile technology users,

(ii) and even if they are, they do not necessarily have geolocation enabled

on their smartphone/mobile devices,

(iii) or are not actively broadcasting the topic of flooding on their profiles.

Hence there is a need to develop alternative methods for precise location

extraction from social media data.

Keywords, which are widely used as direct event descriptors, also have their

limitations as prospective data sources. Although analytic philosophy still claims

that any meaning can be expressed in language [Searle, 1979], outside of it the limits

of natural language when it comes to meaning-making have long been recognized in

both arts and sciences. Psychology and linguistics acknowledge that language is not

a perfect medium as much of our thought is either ambiguous or inexpressible in

language, so there is scope to look for new data sources - or their combinations - and

algorithms, capable of highlighting any deficiencies in natural language and adapting

it to specific pragmatic purposes, such as, for instance, environmental sensing and

risk-signaling.

2.3.3 Social media data for natural hazard analytics

Since human experience of environmental processes can be ambiguous, we are in-

terested in the detailed insights granular data from social media can provide about

meaning creation and the dynamics people attribute to their surroundings whilst

experiencing a natural hazard, or any risky situation for that matter. Hence, the

two main mechanisms of improving natural hazard monitoring with help of social

media data considered in the scope of this thesis are: (i) useful volume and (ii)

semantic plasticity, where it can be argued that in the context of our primary data

source, both elements are interrelated and interdependent.
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As the mechanism of useful volume has been already briefly covered here

and elsewhere as a known data instrument, below I am going to provide a brief

explanation of the semantic plasticity mechanism, which has not yet received any

attention in the research literature as a potential tool for event analytics.

Semantic variation of form is considered as a fundamental language property

of plasticity, inherent to its structure and driven by universal cognitive mechanisms

that are explained by a dynamic conception of meaning construal, and hence possess

mechanisms of self-regulation expressed in complementary rules of variation and sta-

bility [Robert, 2008]. For instance, various metaphorical and metonymic forms are

known to result from a certain kind of stability governed by familiar mechanisms

of common meanings and prototypes. Whilst this plasticity is often discussed in

linguistic circles from the perspective of ambiguity and as a source of communica-

tive misunderstandings, it nevertheless can be also examined from the point of view

of dynamic lexical data resources, which can be exploited by various event track-

ing methods, as linguistic references are always mediated (or grounded in objective

reality). It is very rare that form and its meaning have a unique one-to-one corre-

spondence, usually a form possesses several meanings, which can be construed in

accordance with the context and using various mechanisms, such as categorization

or segmentation of phenomena, selection or highlighting of event specific properties,

etc., since reality is presented to perception as a continuum to be labelled by dis-

crete linguistic resources. Construction of varying designators of the referent also

explains the existence of polysemy and synonymy, which can vary from language to

language.

Back in the late 80s to the early 2000s, when mechanisms behind the brain’s

handling of meanings were not well known [Pulvermüller, 2001], cognitive linguists

speculated about the existence of so-called image schemas, which constitute a form

of representation that is common to perception, memory and semantic meaning

[Gärdenfors, 2007]. In their work on spatial prepositional structures, [Lakoff, 1987;

Langacker, 1987] proposed the system of the schemata constituents, which, for ex-

ample, can comprise the trajector (the object that is in focus) and the landmark

(in relation to which the trajector executes its spatial functions of movement or

positioning), and therefore is universal and non-descriptive. [Gärdenfors, 2007] also

points out the strong connection between image schemas and visual processes, where

‘trajectory-landmark’ duality corresponds to ‘figure-background’ in the field of visual

perception and both trajectory and figure are in the focus of attention. According

to [Lakoff, 1987; Langacker, 1987; Johnson, 1987], the two main axioms of image

schemas are: (i) their structures are inherently spatial, and (ii) they are universal,
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i.e., every word is supposed to be part of an image schema. Also, according to

[Langacker, 1987], a schema can be re-purposed into another one with the same di-

mensions, objects and relations by changing only its focus. This is when the process

of refocusing takes place, where the same scene can serve as a platform for very

different cognitive processes involved into processing of its different aspects.

In his attempts to formalize image schemas for computer processing applica-

tions, [Holmqvist, 1993, p.31] defined them as “that part of a picture which remains

when all the structure is removed from the picture, except for that which belongs

to a single morpheme, a sentence or a piece of text in a linguistic description of a

picture.” [Gibbs and Colston, 1995, p.348] define them as “dynamic analog repre-

sentations of spatial relations and movements in space.”

In his earlier work [Gärdenfors, 2000] presented a precise theoretical account

of what constitutes an image schema based on the notion of conceptual spaces,

which had been used by two distinct cognitivist traditions in linguistics. The first

one, represented by Lakoff, Langacker and Johnson defined spaces as the platforms

or frameworks for domain modeling, onto which can be mapped various spatial and

temporal dimensions, and hence can be regarded as mere geometrical or topological

structures. [Lakoff, 1987] expressed the claim that meanings of linguistic expressions

should be understood through the lens of spatial image schemas combined with the

metaphor overlay.

Unlike Lakoff and Langacker, the second approach brings into focus the dy-

namics of representations, rather than geometry of image schemas, which therefore

lose their definition of ‘images’ as such. The early proponent for this approach is

[Talmy, 1988] who described the importance of the role of underlying forces and

dynamic patterns, which could be implied from visibly static scenes and hence are

better positioned for meaning extraction. Followed up by [Barsalou, 1999], the con-

cepts were redefined as “perceptual symbols that are dynamic patterns of neurons

functioning as simulators that combine with other processes to create conceptual

meaning.”(p.611) In Barsalou’s theory, these meaning containers are very closely

related to perceptual processes.

Since this thesis is concerned with the problem of activation of semantic re-

sources in unstructured (‘natural’) language data for an applied task of flood risk

monitoring, it seems inevitable to look into problems of meaning dynamics, specifi-

cally what drives its change, duration of change and under which circumstances.
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2.3.4 Research avenues

As it has been outlined in the literature review, there are currently several outstand-

ing research avenues that could be followed up with help of the various modalities

of social media data available for collection via numerous API instruments. Some

prominent examples have already been investigated during the data exploratory

stage of this project and are presented in Table 2.1, and specifically relate to ques-

tions of public community engagement strategies, natural hazard risk perceptions

and eyewitness reporting of disaster impacts. Some of those and very similar re-

search problems have already been addressed with help of more traditional data

sources and methods, predominantly of qualitative and interpretative traditions of

social sciences. Their subsequent validation with social media analytics was mainly

motivated by opportunities these emerging data sources had to offer in term of cost,

volume and flexibility as the same databases could (and still can) be re-purposed to

address very similar or slightly different sets of research questions.

The use of social media in natural hazard analytics specifically has been al-

ready widely covered in the recent research literature [Earle, 2010; Acar and Muraki,

2011; Preis et al., 2013; Al-Saggaf and Simmons, 2015; Tang et al., 2015; Kaufhold

and Reuter, 2016; Crooks et al., 2013]. Unsurprisingly, the majority of studies were

concerned with use of VGI (Volunteered Geographical Information) component of

UGC due to the strong interest from the research community in the ‘sensing’ proper-

ties of social media signals, which could be useful for hazard monitoring in poorly or

un-instrumented locations. The authors of this research tradition of mixed methods

strongly advocate the combined use of signal streams from social media platforms

and authoritative physical sensors, where the former are regarded as suppliers of

more intense (yet noisy) data complementary to official instruments that are usu-

ally with limited geographical coverage, but more trustworthy scientifically.

If we take look at the current gaps in the domain of natural hazard analyt-

ics with help of social media data, it become obvious very quickly that there is a

certain lack of ‘applied critical’ studies that could, for example, either evaluate the

full potential of one single platform for a range of questions in particular domain

of natural hazard analytics or compare the results across several social media plat-

forms. Another observable criticism is that, despite almost a decade of social media

analytics, there still exists a certain degree of mistrust and skepticism in scientific

circles regarding use of social media data on its own, hence the proliferation of anal-

yses where social posts are converted into ‘signals’ and merged with the readings of

physical sensors. Also, if we recall again the problem of the lack of a phenomeno-

logical perspective in social media studies predominantly concerned with dynamic
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social processes, it is therefore possible to conclude that there exists a certain degree

of disciplinary discrepancy regarding how the same data source is being approached

by the different (here: social and environmental) disciplines. Since the primary

purpose of this thesis was to advocate these methods for advancing understanding

of natural disasters from perspective of human linguistic and behavioural interpre-

tations, it turns into an interesting challenge to demonstrate how this discrepancy

can be approached empirically.
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Chapter 3

Methodology
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3.1 Synthesis

In the scope of this Chapter I present the main arguments behind the choice of the

research questions selected for further empirical verification. I start off by present-

ing semantic drift as a main analytical tool for analysis of the human perception

of flooding on the multimodal platform Yahoo! Flickr. This discourse is followed

by hypotheses theoretically based on state-of-the-art approaches in the field of dis-

tributional semantics and is repurposed for further practical verification in context

of the flood events. The second half of the Chapter is dedicated to the theoretical

reasoning behind selection of the primary (e.g., variables-candidates for semantic

drift) and secondary (authoritative flood monitoring datasets) data sources for the

three research questions of this thesis.
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3.2 Background

3.2.1 Research questions

Following the arguments outlined in the literature review, the main reasons behind

the choice to research natural hazard events (specifically floods) with the help of

semantic change on social media are:

(i) To find out whether event-specific (as opposed to known sociocultural

long-term irreversible semantic changes of interest to the field of diachronic linguis-

tics) language dynamics exist on social media;

(ii) To verify whether semantic drift can increase the volume of useful event-

specific georeferenced data as compared to the dominated use of the direct event

descriptors. The notion of usefulness is defined here in the context of outstanding

problems in flood risk management, notably, problems of detection (can alternative

data sources ‘sense’ event outbreaks? ), differentiation (do communities understand

what type of flooding they are exposed to? ) and segmentation (how does annotated

visual material represent people’s perceptions at different stages of flood events? ).

My secondary research interests are linked to questions of critical platform

evaluation, where I want to use a single platform across several interlinked research

tasks.

3.2.2 Semantic drift as an analytical tool

There are two main reasons why semantic drift was selected as an analytical tool,

one theoretical and one pragmatic.

From the theoretical perspective, there is an emerging interest in verifying

how events people experience or take part in are reflected in the data footprints they

leave on social media platforms. Following from here, there is also a more practi-

cal interest in verifying whether changing meaning dynamics affects the amount of

useful data that can be re-purposed for better event monitoring, management and

intervention.

The first studies of semantic change emerged at the end of the 18th cen-

tury, with the most famous one conducted by [Bréal, 1897], who coined the term

‘polysemy’, a property of linguistic units (e.g., words) to acquire several meanings

and therefore to be more prone to semantic change than words with fewer mean-

ings. Usually in the linguistic literature polysemy is described alongside synonymy,

where they tend to be opposed to each other as the functional-conceptual variation

of any symbolic form to the functional-conceptual relation between any symbolic

forms. Seen in these terms, both synonymy and polysemy can be described as ei-
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ther concrete or schematic. Thus, [Glynn and Robinson, 2014] cite Lakoff’s analyses

[Lakoff, 1987] of spatial prepositions as studies of concrete, or non-schematic, poly-

semy, whilst his study of the deictic construction is regarded as schematic polysemy.

Following the earliest examples of studies of polysemy-synonymy, which were

predominantly quantitative, [Geeraerts, 1993; Wierzbicka, 1990; Taylor, 1995; Hil-

ferty, 2015] also highlighted theoretical links between the two concepts, thus leading

to discussions on semantics of categorization in cognitive linguistics. In these dis-

cussions, semantic ambiguity of polysemous words was defined either by the number

of interpretations [Rodd et al., 2002] or by their relationships that define their am-

biguous conditions [Klepousniotou and Baum, 2007]. While the first approach was

predominantly concerned with dictionary studies, the second one paved the way

towards redefining ‘polysemy-synonymy’ relationships from the perspective of cat-

egorical hierarchies, where a polysemous term became known as ‘a prototype’ and

the associated synonyms as its synset formations. Subsequently, [Klepousniotou and

Baum, 2007], in further investigations into relational polysemy tested recognition of

figures of speech, metaphors and metonyms in the context of their regularity and

came up with the conclusion that relationships between the metonym senses are

more likely to be regular than relationships between senses of metaphorical words,

and they also are predicted to be processed faster than metaphors. The latter find-

ings have been challenged by [Jager and Cleland, 2015] as they suspected that in

the original [Klepousniotou and Baum, 2007] study the number of senses were not

controlled for and their effects were confounded by numerical polysemy.

The starting point of this approach was the realisation that it is impossible to

describe every aspect of the real world in terms of a delimited number of semantic

components and we should look for some kind of ‘ideal’ category member (a.k.a.

prototype) on the basis of semantic proximity to other members, which, alongside

the prototype, are composed into a semantic category. According to some followers

of prototype semantics [Labov, 1984], category boundaries may shift depending

on the linguistic or situational context. According to other authors [Klepousniotou

et al., 2008; Kacinik and Chiarello, 2007; Jager and Cleland, 2015] the more members

(a.k.a. synonyms, or synsets) are grouped around the prototype into the category,

the more polysemous (or ambiguous) the prototype is.

Although it has been already recognised that there was less work on syn-

onymy per se, conceptual metaphor and metonymy studies have been, in effect,

synonymy studies. Such studies were primarily focused on figurative lexemes and,

according to some authors [Kittay and Lehrer, 1981], they look like studies of ‘near-

synonymy’. Obviously, they included much discussion on what constitutes a source
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or a target domains and whether certain expressions represented the concept in

question well. All these and similar questions are concerned from a lexical semantic

point of view with the problems of [near]synonymy.

The main descriptive models of polysemy used by the cognitive linguists are

therefore prototypicality and semantic frequency. The role of lexemic frequency has

been originally discussed by [Hamilton et al., 2016b] in the context of the Con-

formity Law of semantic change, where it was argued that words that are being

used most frequently are less prone to semantic change as their main function is

to support everyday communication. Similarly, according to the Law of Prototyp-

icality [Dubossarsky et al., 2017], words and lexemes that are used as descriptors

of a particular lexical category with a degree of centrality in the radial system, i.e.,

are either central or near-central members, are also less likely to drift semantically

due to their core function of categorical support. Finally, according to the Law of

Innovation, polysemy itself is positively correlated with semantic change [Hamilton

et al., 2016b].

[Hamilton et al., 2016b]’s findings are challenged in [Dubossarsky et al., 2017],

and examining the Dubossarsky-Hamilton dilemma in more detail, it turns out that

factors leading to semantic change are far more diverse and not necessarily limited

to purely distributional (i.e., linguistic) ones. For example, an initially proposed

negative correlation between semantic change and word frequency has been shown

in [Dubossarsky et al., 2017] to occur mainly due to choice of models and its role, al-

though contributory, is not as significant as originally suggested by [Hamilton et al.,

2016b]. The proposed negative correlation between meaning change and prototypi-

cality, as well as a positive correlation between meaning change and polysemy turned

out to be much weaker as both are highly collinear with frequency and therefore can-

not be regarded as independent contributors to semantic change. It was proposed

therefore to look at some other, additional, factors from which meaning change may

result and it is most likely due to their interaction that we can observe, according

to [Dubossarsky et al., 2017], likely more credible effects, however small they turn

out to be.

Such factors may originate from various situational domains, notably social,

political or environmental [Bochkarev et al., 2015; Newman, 2010] and they require

some further investigation. For example, [Kulkarni et al., 2015] argue that linguistic

shifts are especially typical for the language of the Internet, which is more likely

to stimulate or provoke meanings changes in the context of the rapid exchange of

ideas. They used several methods, notably frequency-based and the distributional

ones in order to construct word time series and then model temporal evolution of
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natural language and observed that initial choice of the construction method can

determine types of extractable information about word usage trends. Specifically,

they observed differences between the words Sandy and Hurricane on the Google

Trends platform in October 2012, where both demonstrated well-defined frequency

spikes and therefore were expected to undergo the shift in meaning (according to

the authors’ assumption). However, only the word Sandy had actually acquired new

meaning, which was revealed with help of the distributional semantics method. It

has been therefore concluded that the methodological value of the frequency anal-

ysis can be considered as an initial step in assisting selection and identification of

potential lexical candidates for semantic change.

According to [Bochkarev et al., 2015], the dynamics of lexical evolution can be

essentially of two types. The first one is the general lexicon contingency of historical

factors, which is fairly uniform across multiple languages and at timescales of at least

five decades (i.e., macrochange) and the second one is driven by regularities, possibly

universals of cognition and social interactions (i.e., microchange), which are variable

and differ between languages as they can be driven by societal transformations or

catastrophic events.

3.2.3 Hypotheses

Following conclusions of the abovementioned authors, in order to maximise extrac-

tion of lexical units covering a particular meaning of our interest (e.g., flooding), we

can use the following reflections.

First of all, it would be fair to assume that useful data expansion will take

place at the expense of higher-frequency synonyms of the direct word-descriptor

of the event in mind and/or its prototype. The direct event descriptor itself can

be either one of the synonyms in the cluster of synsets (sets of synonyms), belonging

to the particular category or a prototype itself. If the latter is the case, we need to

ensure that the prototype, being essentially polysemous by nature, is related exclu-

sively to the event of our interest and does not signify any other phenomenon. One

way of dealing with this issue experimentally is to ensure that it is strongly related

to the least polysemous synset(s), which also represent the potential candidates for

useful semantic change, and this strength can be confirmed either ontologically or

topically.

For the similar reasons, situations where the direct descriptor is a prototype

are also highly undesirable, because it will have a higher probability of drifting

semantically itself, hence reducing the data volume in the opposite direction, so we

need to consider cases as optimal where the direct event descriptor belongs to one
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of the synsets. Data expansion in such cases is therefore possible if the candidates

for semantic change relate to the direct event descriptor in the capacity of a parallel

synset. However, if the direct event descriptor is either a prototype of the category

or one of its [highly] polysemous synsets itself, we need to consider the introduction

of some kind of a ‘lexical benchmark’, i.e., a word or set of words that are strongly

connected (either ontologically or topically) with the candidates for semantic drift -

but not with the direct event descriptors. Hypothetically, multidirectional drifts are

simultaneously incompatible, so the drift towards a different category would mean

that the meaning candidate data is void in terms of its usefulness for our complex

event analytics. However, this hypothesis requires further independent empirical

testing and is beyond the scope of this thesis.

When we shift our attention to the physical forms in which meanings tend

to manifest themselves in any language, we are inevitably going to hit the domain

of usage-based linguistics, which claims that meanings are operationalised either

via pure monosemic or via various manifestations of polysemic forms (retrospective

equations, where a single item has multiple meanings with equal etymologies). Mul-

tiple meanings (synonyms, or synsets as it has been introduced above) of the latter

can relate to each other as metaphors (i.e., extrospective equations) or metonymies

(i.e., introspective equations).

It can be argued that metaphors are potentially less useful for the purpose of

this thesis as due to their frequent irregularities they may not cover sufficient amount

of data to render them useful. Nevertheless, metaphors still represent an interesting

candidate data, especially in the context of prototype theory as they can represent

particular instances of measurement, quantity and comparison, and therefore be

useful for typological complex event analytics. When things or objects do not have

clearly defined physical or conceptual boundaries, such as natural hazards, we still

have a tendency to classify or categorise them as such, because we are inclined to

perform mental operations with discrete objects, taking as an example “mountains,

street corners or hedges” [Lakoff and Johnson, 1980, p.25]. Such way of perceiving

the physical world is usually motivated by certain practical purposes we have on

mind, such as “locating mountains, meeting at street corners, trimming hedges”,

or even vital ones, such as risk detection and self-preservation. Similar to his work

with prepositional radial structures, which illustrate basic experiences of human

spatial orientation and producing orientational metaphors, [Lakoff and Johnson,

1980], operationalisation of the concepts behind physical objects provides the basis

for ontological metaphors, which allows for various and alternative ways of seeing

events and phenomena in much more compartmentalized ways that are easier to
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perceive and understand. Interestingly and understandably, as [Lakoff and Johnson,

1980] point out, very rare cases of ontological metaphors are seen as such in classical

encyclopedic understanding of the term as they serve a very limited range of purposes

– such as referring or quantifying. For example, both spate and deluge can transfer

their metaphorical sense of measure onto flood phenomena, where the first one

originally signified a large number of similar things coming in quick succession and

the second designated a great quantity of something arriving at the same time, but

in the context of natural hazards they, for example, can mean different types of

flooding, a surface water/riverine and the pluvial/flash floods, respectively.

3.2.4 Prospective applications

In the above sections I predominantly concentrated on linguistic rules of semantic

change and how they can be linked to the topic of natural hazards theoretically.

However, in order to render them useful for the purpose of event analytics, in ad-

dition to the increase of useful data signals, it also should do so in agreement with

the specific problem tasks of flood risk monitoring and management, which have

been defined in the scope of this thesis as detection, differentiation and segmen-

tation. These specific problem tasks are related, for example, to the outstanding

challenges in design of more socially inclusive flood risk communication programs,

to understanding of public reaction to the current authoritative warnings and to

appreciation of the ways social media is able reflect crowd responses to the different

types of flood events.

The decision to work with a single social media platform was motivated by

interest in verifying what is the maximum potential it holds in covering several

aspects of event analytics, however, one important condition here was its strict

multimodality, i.e., each text message should be associated with other types of

crowd-sourced data elements or their metadata, such as timestamps, geolocation

and visual media, where in our case the latter is the primary data component of the

photo-and videographic Yahoo! Flickr platform. Table 3.1 presents the structure

of the primary and supporting data components, derived from the Yahoo! Flickr

platform in order to construct individual models to answer the research questions.

The exact configuration of the models will be expanded in their respective following

chapters.
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Research question Primary
data
elements

Support-
ing data
elements

Proposed
model

1. Can we predict events (e.g.,
flooding) with help of semantic
drift on social media?

Tags,
times-
tamps

Geoloca-
tion

Transient
semantic
microchange
(Chapter 4)

2. Can semantic drift on social
media help to differentiate types
of flood events?

Geoloca-
tion,
tags

Spatial semantic
change
(Chapter 5)

3. Can alternative tags help to
distinguish different stages of
flood events?

Tags,
images

Times-
tamps,
geolocation

Cognitive
semantic drift
(Chapter 6)

Table 3.1: Proposed models of event-driven semantic change, re-purposed for the
analysis of mediated human behaviour during flood events.

3.3 Data components

3.3.1 Selection of the lexical variables

According the literature summarised above, the following conditions need to be

satisfied by candidate variables for semantic drift in order to be regarded as useful

data for event analytics:

(i) They should have a higher frequency than direct event descriptors in order

to be able to provide additional data signals. According to the Conformity Law of

semantic change [Hamilton et al., 2016b], word frequency correlates negatively with

change of meanings, however, since this condition was challenged by some other

authors [Dubossarsky et al., 2017] and frequency itself is an important factor for

definition of useful data, here it was regarded as a factor that requires further

verification in conditions of situational semantic change (or microchange).

(ii) They should exhibit a more negative sentiment score as compared with

a direct event descriptor in order to have increased semantic instability and hence

are more likely to drift semantically. Following Hamilton’s work on semantic drift

[Hamilton et al., 2016b,a], the implications are that negative words are more di-

achronically unstable and therefore they have faster rates of semantic change.

(iii) They should be polysemous (i.e., have a relatively high number of

synsets). It has been agreed between several authors that polysemy correlates with

semantic drift, however, where event analytics is concerned with data maximization,

we want to avoid situations of ‘multidrifts’, where both direct event descriptors and

candidates for useful semantic drift exhibit fluctuations. This condition also requires
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further verification in the context of event-focused analytics.

(iv) They should have high degree of prototypicality (several strong relation-

ships of ‘is-a’ type with their synsets), this condition is directly related to polysemy,

hence it also requires further adaptation for studies of event-driven semantic insta-

bilities.

All these conditions have been a focus of attention in recent literature [Du-

bossarsky et al., 2017; Hamilton et al., 2016b] concerned with the rules (or laws)

of long-term sociolinguistic types of semantic changes. Since no such laws, to the

best of my knowledge, have been proposed for the short term, situational semantic

drifts, I therefore re-purposed the above-mentioned conditions for my case of event

analytics in order to verify whether they may also applicable for the cases of phe-

nomenological semantic instabilities and rendered useful from the practical point of

view.

Since event analytics presumes context similarity between direct event de-

scriptors and candidates for semantic change I therefore I started my data selection

by matching my principal single lexeme ‘flood’(F) with the words that have high

semantic similarity (prototype test) and relatedness (test for synonymy) scores and

are represented by higher volumes in the Yahoo! Flickr database (Fig 3.1).

44



Figure 3.1: Monthly-aggregated temporal profiles of the main environmental tags
(georeferenced) on Yahoo! Flickr (2004-2014).

Three similarity measures (‘is-a’ hierarchical type relations) used are based

on the lengths of paths between the concepts: LCH [Leacock and Chodorow, 1998],

WUP [Wu and Palmer, 1994] and PATH proper:

The three remaining similarity measures (RES [Resnik, 1970], LIN [Lin,

1998], and JCN [Jiang and Conrath, 1997]) are based on information content, which

is a corpus-based measure of the specificity of a concept:

There are also two relatedness measures (e.g., ‘has-part’, ‘is-made-of’, ‘is-an-

attribute-of’, i.e., non-hierarchical type relations) HSO [Hirst and St-Onge, 1998]

and LESK [Banerjee and Pedersen, 2003]. The LESK measure uses the text of a

gloss as a unique representation for the underlying concept and assigns relatedness

by finding and scoring overlaps between the glosses of the two concepts.

The words that satisfied both conditions are lexemes ‘river’(R) and ‘wa-

ter’(W), which are represented in the WordNet 3.1 database [WN, 2015] as mono-

(having a single gloss) and polysemous (having several glosses) words, respectively:
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‘river’ (R) gloss

(n) river (a large natural stream of water (larger than a creek)) “the

river was navigable for 50 miles”

‘water’ (W) glosses

(n) water, H2O (binary compound that occurs at room temperature

as a clear colorless odorless tasteless liquid; freezes into ice below 0 degrees

centigrade and boils above 100 degrees centigrade; widely used as a solvent)

(n) body of water, water (the part of the earth’s surface covered with

water (such as a river or lake or ocean)) “they invaded our territorial waters”;

“they were sitting by the water’s edge”

(n) water (once thought to be one of four elements composing the uni-

verse (Empedocles))

(n) water system, water supply, water (a facility that provides a source

of water) “the town debated the purification of the water supply”; “first you

have to cut off the water”

(n) urine, piss, pee, piddle, weewee, water (liquid excretory product)

“there was blood in his urine”; “the child had to make water”

(n) water (a liquid necessary for the life of most animals and plants) “he

asked for a drink of water”

The structure of WordNet 3.1 is based on the principles of a differential

theory of lexical semantics [Miller et al., 2008] and where representations are not

on the level of individual words or word forms, but on the level of word meanings

(lexemes). These lexemes are characterized by listing their word forms in a synset

so the meanings of words and word forms are strongly influenced by sets of words

they share meanings with. The meaning of a concept is hence determined by its

position relative to other words in the larger database structure.

Going back to our case, in topological terms, data expansion here is therefore

hypothetically possible at the expense of the lexeme (R) constituting parallel synset

relations (as metonyms: ‘is-part-of’ type) with the word (F) and at the expense

of the lexeme (W) entering prototypical (hierarchical ‘is-a’ type) relationships with

both synsets (F) and (R) of a certain hydrologically themed category (unspecified

in the context of this thesis as we are not exploring the entire category). And ac-

cording to our earlier conditions outlined in the Hypotheses section of this Chapter,

since one of our candidates for semantic drift is the prototype (and hence is es-

sentially polysemous by nature), we need to ensure that it is related exclusively to
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the event of interest and does not signify any other phenomenon. This condition is

satisfied by the presence of the monosemous lexeme (R) with which (W) is strongly

connected both ontologically and topically, so if (R) is drifting semantically during

flood event, the (W) lexeme is very likely to exhibit similar behavior under the

similar circumstances.

According to my prior hypotheses, situations where the direct descriptor is

a prototype are also highly undesirable because it will have a higher probability to

drift semantically itself, thus reducing the data volume in the opposite direction, so

we need to consider cases as optimal where the direct event descriptor is one of the

synsets. However, if the direct event descriptor is a [highly] polysemous synset, we

still need to consider the introduction of some kind of a lexical benchmark, i.e., a

word or set of words that are strongly connected (ontologically, topically or both)

with the candidates for semantic drift, but not with the direct event descriptors.

This benchmarking will introduce additional point(s) of reference for situations of

simultaneous ‘multidrifts’, so these additional variables preferably are less polyse-

mous (if monosemy is unattainable) and have positive sentiment/connotation score,

both conditions for relative sematic stability. In our case, lexeme (F) is relatively

polysemous (six glosses, see below) and have a negative connotation (-0.03125 senti-

ment score [ASA, 2016]), both individually being sufficient conditions for semantic

drift [Iliev et al., 2016; Hamilton et al., 2016a]. Using the previously mentioned

principle of topological similarity (‘is-a’ type relationships) I selected two bench-

mark lexemes ‘nature’ (N) (five glosses; 0.25 sentiment score) and ‘landscape’ (L)

(four glosses; -0.015625 sentiment score).

‘flood’ (F) glosses

(n) flood, inundation, deluge, alluvion (the rising of a body of water and

its overflowing onto normally dry land) “plains fertilized by annual inundations”

(n) flood, inundation, deluge, torrent (an overwhelming number or amount)

“a flood of requests”; “a torrent of abuse”

(n) flood, floodlight, flood lamp, photoflood (light that is a source of

artificial illumination having a broad beam; used in photography)

(n) flood, overflow, outpouring (a large flow)

(n) flood, flowage (the act of flooding; filling to overflowing)

(n) flood tide, flood, rising tide (the occurrence of incoming water (be-

tween a low tide and the following high tide)) “a tide in the affairs of men which,

taken at the flood, leads on to fortune” (Shakespeare)
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‘nature’ (N) glosses

(n) nature (the essential qualities or characteristics by which something

is recognized) “it is the nature of fire to burn”; “the true nature of jealousy”

(n) nature (a causal agent creating and controlling things in the uni-

verse) “the laws of nature”; “nature has seen to it that men are stronger than

women”

(n) nature (the natural physical world including plants and animals and

landscapes etc.) “they tried to preserve nature as they found it”

(n) nature (the complex of emotional and intellectual attributes that

determine a person’s characteristic actions and reactions) “it is his nature to

help others”

(n) nature (a particular type of thing) “problems of this type are very

difficult to solve”; “he’s interested in trains and things of that nature”; “matters

of a personal nature”

‘landscape’ (L) glosses

(n) landscape (an expanse of scenery that can be seen in a single view)

(n) landscape (painting depicting an expanse of natural scenery)

(n) landscape, landscape painting (a genre of art dealing with the de-

piction of natural scenery)

(n) landscape (an extensive mental viewpoint) “the political landscape

looks bleak without a change of administration”; “we changed the landscape

for solving the problem of payroll inequity”.

All indices of similarity and relatedness for the three groups of selected lex-

emes (i.e., direct event descriptor (F), candidates for semantic drift (RW) and bench-

mark words (NL)) are presented in Fig 3.2.
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Figure 3.2: WordNet-based topological similarity (LCH, WUP, PATH, RES, LIN,
JCN) and topical relatedness (HSO, LESK) measures between (FRWNL) lexemes,
selected for the data experiments.

Knowledge about topological similarity and topical relatedness can be use-

ful not only for the manual construction of the methodological frameworks; Given

the growing recognition of the multidimensional properties of data, graph artificial

networks are gaining importance [Scarselli et al., 2009] and therefore opportunities

emerge to train new generation of Graph Neural Network (GNN) on the WordNet

knowledge base [Hamaguchi et al., 2017; Saedi et al., 2018] in order to provide new

event-specific semantic augmentation models (Fig 3.3).
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Figure 3.3: Graph-like representation of the relations between lexemes, constituting
event-specific category flood.

3.3.2 Authoritative benchmark datasets

Three computational linguistic experiments, constructed to obtain empirical con-

firmation for several approaches towards re-purposing semantic drift concept for

event-based data extraction are benchmarked in this thesis against three types of

the flood monitoring information:

(i) past weather events,

(ii) geographically-approximated1 locations of hydrometric (water levels) mon-

itoring stations (e.g., river gauges and groundwater sensors), and

(iii) flood warning communication typologies (a.k.a., ‘flood stages’), used to

reflect the severity or potential danger levels of the approaching hazard, or to warn

about status change of the ongoing flood event.

Past weather events

Met Office UK regularly issues and updates information regarding past weather

events [PWE, 2019] (1990- ), which cover floods, major storms, ex-hurricanes, hot

spells, snow periods and low temperatures; The descriptive information is accompa-

nied with the precise dates range.

Hydrometric monitoring points

Hydrometric monitoring points is the composite national (England and Wales)

dataset consisting of four main components, notably, (i) surface water monitor-

ing stations, (ii) river flow gauges, (iii) precipitation monitoring stations and (iv)

groundwater levels observation stations. This dataset are available in GIS SHP

format from the Government Open Data portal [DSP, 2019].

1Exact coordinates of each monitoring station has been anonymised for open data purposes by
snapping each point to the nearest intersection of OSGB 1936 grid reference system, scaled down
to 1km squares.
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Flood stages and risk communication

Flood stage is used to describe the progress in covering the designated flood risk

areas with water. It is defined by the NOAA National Weather Service as “an

established gage height for a given location above which a rise in water surface level

begins to create a hazard to lives, property, or commerce.” [NWS, 2019]

The main principle behind the designation of flood risk areas is topographic

gradient. Topographically dependent water movements define the convergence of

streams, which are - if not intercepted or infiltrated - run from the higher locations

to the lower ones, with the velocity, defined by the gradient of the routing slope

[Tewolde and Smithers, 2006]. Derived initially from direct geodesic surveys, the

most recent production of topographic maps involves applications of remote sensing

techniques, predominantly radar and LiDAR based. The high resolution of LiDAR

data also enables modeling of pluvial flood events by being able to capture the finest

sinks and obstacles within impermeable urban structures [Diaz-Nieto et al., 2012].

Designation of topographically defined flood risk areas was also used for automatic

classification of the properties contained within the designated boundaries as the

ones being at risk. Depending on how flood stage progresses, flood risk areas are

used by authoritative environmental bodies in order to make decisions about how

to inform public and organize rescue and evacuation campaigns (Fig 3.4).

Figure 3.4: Three types of risk communication messages used by the Environment
Agency in the UK: (a) Flood Alert (‘Flooding is possible. Be prepared.’) is used two
hours to two days in advance of flooding; (b) Flood Warning (‘Flooding is expected.
Immediate action required.’) is used half an hour to one day in advance of flooding;
(c) Severe Flood Warning (‘Severe flooding. Danger to life.’) is used when flooding
poses a significant threat to life.

Just like information about hydrometric monitoring points, datasets describ-

ing flood alert, risk and severe warning areas are available under the open data

conditions from the Government Data Portal.
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3.4 Methods

The choice of methods outlined below was mainly conditioned by the data modalities

(i.e., lexical, temporal, spatial and visual), however, the common underlying theme

was motivation to highlight relational processes both within and between modalities

of the composite dataset, generated during particular event. I therefore used meth-

ods from statistics, geography, computational linguistics and computer vision, the

disciplines, which are currently methodologically concerned with representations of

interactivity between data structures [Xu et al., 2019].

3.4.1 Time series cross-correlations

One of the problems I started the experimental part of this thesis with and which

is described in Chapter 4 is associated with finding relationships between several

time series: direct event descriptors (xt), candidate variable(s) (yt) and benchmark

lexemes (zt). In situations like this not only we are interested in measuring the joint

dynamics between the lexemes, we are also looking to find how series xt may be

related to past lags of the y-series, which means that the cross correlation function

(CCF) can assist in identifying lags of the y-variable that might be useful predictor

of xt. Apart from solving the empirical problem of finding at which lag sample cor-

relations between yt+h and xt (h = 0, ±1, ±2, ±3, etc.) are the strongest, I am also

seeking to confirm or reject the hypothesis that crowd-generated production of the

lexemes that are direct event descriptor candidates or benchmark material happen

independently of each other. If shuffled correlations in their various configurations

(for details, see Chapter 5, Methodology section) are statistically stronger than the

continuous data streams then the process can indeed be seen as independent (e.g.,

if tags (L) and (R) co-occur in one message and (F) in the other during the same

time interval, then tag (R) is not necessarily semantically closer to the neutral in

the context of flood risk situation tag (L), it can be still related to the flood event).

3.4.2 Spatial autocorrelation

Studies that illustrate spatial linguistic interactions are quite scarce, since geostatis-

tical studies are quite parochial and are much more likely to be seen in the domain

of social geography (e.g., crime analytics) or ecology (e.g., dynamics of the species

distribution), rather than in language studies. Nevertheless, it can be argued that

lemmatised linguistic content is not much different from the ecological dynamics,

especially when data is derived from social media and provides samples large enough

to be able to be reliable (however, also arguably largely corpus-specific) insights into
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the ways people communicate about certain phenomena in different areas. There

is therefore an opportunity to reveal how spatial interaction of our flood-related

lexemes-tags can lead to semantic drift, which increases the volume of the event-

relevant data in a statistically significant way - which I follow up upon in Chapter

5.

Conventional statistics are largely based on the assumption that variables

are random, independent and identically distributed (‘i.i.d assumption’) [Durbin,

1973; Gaenssler and Stute, 1979], however, this assumption can only be considered

reasonable when samples are taken from controlled experiments where variables are

assumed to not interact with each other, which is very a rarely realistic scenario. In

many cases, the i.i.d. assumption is convenient because it allows ignoring the entire

domain of complex relationships random variables may form with each other when

drawing inference. However, if not taken into account, this can cause an overestima-

tion of important underlying patterns, as well as an obscuration of characteristics

of individual random variables when samples are not identically distributed [West-

erholt et al., 2018].

Social media derived data that has a spatial attribute (or modality as defined

in the context of this thesis) is not collected in a fully controlled manner but taken

from in situ physical and social contextual conditions [Goodchild, 2009]. One of

the applications it being used for is different socio-geodemographic mosaics (e.g.,

Experian Mosaics), where data is often aggregated into arbitrary units that are de-

fined for purposes other than mere spatial analysis, e.g., census statistics. In such

conditions, it would be fair to assume that those adjacent spatial units may then

be subject to similar contextual influences that are produced by the phenomenon

of interest, the boundaries of which are much larger than those ones of arbitrar-

ily defined spatial units (e.g., socio-political unrest or species distribution). These

characteristics inevitably cause redundancy within related random variables, which,

in turn, violates the i.i.d. assumption. These circumstances motivate the first Law

of Geography, which states that “everything is related to everything else, but near

things are more related than distant things” [Tobler, 1970]. This law was also statis-

tically confirmed by the concept of spatial autocorrelation, which is a second-order

characteristic that describes the spatial interaction behaviour within random vari-

ables [Fischer and Getis, 2010]. A range of different estimators exist [Getis, 2007,

2008]: the covariance-based Moran’s I and Geary’s c [Cliff and Ord, 1969], the spa-

tial autoregressive coefficients ρ (autoregressive parameter for the spatial lag model)

and λ (autoregressive parameter for the error lag model) [Anselin et al., 2008], or Gi

[Getis and Ord, 1992], which emphasizes structures among extreme values. These
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estimators evaluate spatial interaction behaviours within random variables but are

used in different application scenarios. These include the assessment of influences

of distance effects, of the roles of geometry and topology, or of the impact that

individual geographic features have on spatial processes [Getis, 2007].

In this thesis, I am particularly interested in the multivariate configuration

of Moran’s I [Moran, 1950], which is one of the most popular estimators of spatial

autocorrelation. Simple Moran’s I measures the normalized spatially-weighted co-

variance within random variables, where it takes account of geographic structures

by incorporating a so-called spatial weights matrix. Spatial weights define fixed geo-

graphic structure connecting those spatial units si ∈ S upon which the investigated

phenomenon is believed to operate [Bavaud, 1998; Harris, 2011], however, many

geostatistical packages (e.g., GeoDa) offer automated quantification of the weights’

matrices by running preliminary iterations on the distributions of the data points.

Using Moran’s I as a test statistic allows the investigation of whether the modelled

geographic layout plays a significant role in the structure of an attribute, and thus

if geographic factors can be regarded as major drivers of interactions within the

analysed random variables.

The multivariate configuration of Moran’s I used in this thesis is in principle

very similar to the Moran’s I tool, however, rather than determining the level of spa-

tial autocorrelation within one variable (that is, how clustered in space one variable

is in terms of high and low values), it determines whether there is spatial autocor-

relation between two or more variables. Like the Moran’s I, the range of possible

values lies between -1 and 1: An estimate of 0 implies no spatial autocorrelation,

more significant estimates move closer to 1, the greater the degree of positive spatial

autocorrelation while the closer they get to -1, it indicates stronger negative spatial

autocorrelation. This method was the principal statistical instrument for answering

my second research question defined in the Introduction and detailed methodology

for which is described in Chapter 5.

3.4.3 Lexical network analysis

Chapter 6 of this thesis represents the final experimental part of my research and

aims to answer how meaning dynamics is reflected in the visual modality of social

media posts created during various stages of flood events. The main two sets of

methods used here are lexical network analysis and word embeddings.

Since Lakoff’s work on semantics, it has become a commonplace practice

within the framework of cognitive linguistics to organize the different senses in a form

of a lexical network, where prototypical sense in placed in the centre and increasingly

54



peripheral senses are moved away from it [Brugman and Lakoff, 1988]. As a matter

of fact, such networks were established with no prior empirical evidence, relying on

what Sandra and Rice (1995) refer to as “unshakeable confidence in introspections of

linguists”. This approach has been criticized for its arbitrariness by corpus linguists

claiming that any lexical network requires empirical validation [Gilquin, 2008].

As has been already mentioned in the literature review, categories are con-

structed under a number of necessary and sufficient conditions, the principal ones

of which are:

(a) any element should satisfy these conditions if its considered to be a part

of that category,

(b) consequently, some members are more representative of the category than

the others, and

(c) consequently again, some senses of a polysemous word become so typical,

central that they turn into categorical prototypes.

The shape of such structures is known as a ‘radial network’ [Lakoff, 1987],

however, I am personally not happy with such definition as it assumes the inde-

pendence of each axis and hence excludes the possibility of horizontal synonymous

relationships between the senses, which is not true, as Lakoff himself acknowledges

the existence of the lateral (also known as ‘synonymical’) relationships between the

senses [Brugman and Lakoff, 1988]. I therefore try to avoid in the context of this

thesis the term ‘radial network’ and stick to the ‘lexical network’ concept.

In the majority of the cases, lexical networks are established on the basis

of intuition, where the central sense of the word is being arbitrarily selected first,

with the subsequent addition of the [seemingly] related lexical categories. On this

account, [Sandra and Rice, 1988] pointed out that “there is a lot of vagueness re-

garding the nature of the represented reality, at both the linguistic and cognitive

levels” as a consequence of such methodological design process. As a response to

this criticism, both cognitive and linguistic validity have been tested in subsequent

studies. The linguistic one was tested by means of frequency as attested in corpora,

while cognitive validity was tested by means of a sentence assembling experiment de-

signed to elicit the most salient sense of the word represented in the lexical network

- i.e., by means of contextual validation.

While the problem of lexemic frequency has already been methodologically

addressed and discussed earlier in this Chapter, the contextual validation remains a

challenge since we are dealing with de-contextualised lexical material (i.e., tags). In

order to address this cognitive gap, I turned to the accompanying visual modality in

order to identify mechanisms behind linguistic construals. If we associate each tag
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with the image and take a look at its components, we can quickly identify semantic

links between the object in focus of the image and its linguistic annotation. More-

over, it can be claimed that other objects that maybe more peripheral or less well

distinguishable visually may be also semantically linked to the focal elements and

these relationships are based on contextual (or event-driven) semantics, rather than

on the dictionary one, so the image structure quickly acquires the properties of a

network analogous to the linguistic one described above and based on the same-sense

principles. And if we follow my earlier comment, it’s not a radial network, but rather

a complete undirected weighted graph, where all the objects are connected and the

strengths of those connections is defined by their cosine similarity in the event-driven

(domain-specific) corpora. However, since the spatial scale of the process of interest

is rather large, instead of looking at the structure of every individual image, I look

at the ensemble of images tagged with the same linguistic tags, where each image

is classified as a scene by a deep learning Convolutional Neural Network (CNN). I

propose an assumption that people tend to focus their attention on similarly struc-

tured scenes during the various stages of the evolving events and this property can

be used to capture various stages of, in our instance, flood events when analyzed

as aggregated ensembles. As metrics, I use the notion of attention focus, since it

has been recently established that the natural scene perception requires attention

[Cohen et al., 2011]. From the behavioural geography perspective, attention focus

tends to coincide with the objects that belong to the category of ‘landmarks’: They

are used to denote familiar objects or scenes that can aid environmental naviga-

tion. If the landscape is familiar, then it consists of a high number of recognizable

landmarks with a high degree of semantic similarity between them, and this type of

navigation is referred to as ‘route following’ one. In contrast, compilation of poorly

identifiable, disconnected scenes is attributable to situations as seen by people un-

familiar with the area, and hence they exhibit certain characteristics of ‘wayfinding’

behaviour.

Attention focus metric is derived from the probability of CNN scene classi-

fications and attention density is derived from the semantic network density value.

These values are subsequently used to derive information about the spatial mobility

of flood event participants around the timing when flood risk communications of

various degrees of severity have been made by the Environment Agency during the

period 2004-2014. More detailed description of the method is presented in Chapter

6.
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3.4.4 Word embeddings

In order to extract values of the density of semantic networks for the previous method

that have at their nodes CNN classified images-scenes tagged by any of the three

groups of our interest (risk-signalling (or negative) (F); positive (NL) and neutral

(RW)), I used values of cosine similarity metrics of word embeddings to construct

the edges and estimate network densities.

Computational modelling of linguistic meanings is based on the assumption

that they can be inferred from their immediate syntactic context (or ‘word embed-

dings’). According to [Rohrdantz et al., 2012], research in this area mainly focuses

on two objectives: word sense disambiguation (WSD) and word sense induction

(WSI). The goal of WSD is to classify occurrences of polysemous words according

to manually predefined senses, whilst the aim of WSI is to learn word senses from

text corpora without having a predefined number of senses - where the later goal is

much more harder to achieve.

Since one of the research interests of this thesis is linked to the WSD task,

it is worth mentioning that the two popular methods for performing such a classifi-

cation are word2vec and Latent Semantic Analysis (LSA) [Deerwester et al., 1990].

[Sagi et al., 2009] also have demonstrated that broadening and narrowing of word

senses can be tracked over time by applying both methods to ‘small world’ contexts

in diachronic corpora and conclude that word2vec captures similarity in a better

manner. Some other algorithmic implementations of word embeddings also exist,

notably skip-grams with negative sampling (SGNS), Global Vectors for word rep-

resentations (GloVe) and Positive Pointwise Mutual Information (PPMI) [Navigli,

2009].

Word embeddings in general are a popular technique in natural language

processing (NLP), often regarded as shallow technique owing to its computational

efficiency, where words from the dictionary are mapped to low-dimensional vectors.

These models can be either easily trained by the user or are publicly available via

several implementations from the web. In this thesis I used the pre-trained Google

word2vec model that was trained on Google News data (appr. 100 billion words)

and contains 3 million words and phrases fitted using 300-dimensional word vec-

tors. Their increasing popularity, as compared to more traditional approaches in

computational linguistics, such as distributional semantics models, is motivated by

the fact that they seem to continuously and significantly outperform other meth-

ods, supposedly due to their neural architecture, which allows prediction of words,

rather than simply counting their co-occurrences [Levy et al., 2015]. As a conse-

quence, embeddings are increasingly being used by researchers in novel and creative
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ways, especially in fields such as digital humanities and computational social science

[Hamilton et al., 2016a; Bakarov, 2018], where dependency parsing, named entity

recognition and bilingual lexicon induction are just a few examples where the use of

embeddings as features has increased performance in recent years.

In technical terms, word embeddings are mappings of words to points in a

K-dimensional continuous space, where K is much smaller than the size of the vo-

cabulary. This dimensionality reduction has two main advantages: firstly, large and

sparse vectors are transformed into much smaller and denser vectors; and secondly,

the conflation of features uncovers latent semantic relationships between words.

These semantic relationships are usually measured via cosine similarity, though

other metrics such as Euclidean distance and the Dice coefficient are also widely

used.

In NLP, word embeddings are often used as features for downstream tasks,

specifically in studies concerning contemporary issues in language and culture. For

example, [Hamilton et al., 2016b] trained separate embeddings on temporal segments

of a corpus to track changes in the similarity of words to measure semantic drifts

and [Heuser, 2016] used embeddings to characterize discourse about virtues in 18th

Century English text. Other studies used cosine similarities between embeddings

to measure the variation of language across geographical areas [Kulkarni et al.,

2015] and time [Kim et al., 2014], and it is worth mentioning that each of these

works sought to “reconstruct the mental model of authors based on documents”, an

application that will be exploited also in this thesis when attempting to answer my

third research question.

There essentially exist two NLP perspectives on the usage of word embed-

dings, notably downstream- and corpus-centered ones, which differ by their approach

to exploration of implicit bias in word embeddings. From a downstream-centered

perspective, these stereotypical associations representing bias should be filtered out

before using the embeddings as features; and in contrast, from a corpus-centered

perspective, implicit bias in embeddings is not a problem that must be fixed but

rather a means of measurement, providing quantitative evidence of bias in the train-

ing corpus.

It should also be remembered that embeddings are not a single objective view

of a corpus - and much less an objective view of language. The corpus is itself only

a sample used to represent the domain or phenomena of interest to the researcher

and the ways this sample is being curated (e.g., modification of its size, length of the

documents or inclusion of specific documents) can cause significant variability in the

embeddings. Also, different algorithms demonstrate different corpus sensitivities.

58



For example, LSA, GloVe, SGNS, and PPMI are not sensitive to document order,

however, all four algorithms can be sensitive to the presence of specific documents

(though this effect has been proven weaker for PPMI case) [Antoniak and Mimno,

2018]. Some additional studies have demonstrated that the use of embeddings as

sources of evidence of semantic proximity between meanings needs to be tempered

with understanding that cosine similarities are not always reliable metrics and that

smaller corpora and longer documents are more susceptible to variation in cosine

similarities between embeddings [Bakarov, 2018; Antoniak and Mimno, 2018].

In my third data experiment, described in Chapter 6, I used the largest

pre-trained vectors trained on part of Google News dataset [w2v, 2013] containing

about 100 billion words and the maximal length of the documents are two words,

corresponding to description of the natural scenes from the MIT Places database

[MIT, 2014]. These properties of the data selected for my empirical analysis are

expected to partially mitigate known issues associated with application of cosine

similarity metrics.
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Chapter 4

Event detection with semantic

microchange on social media
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4.1 Synthesis

As useful as word embeddings may be for answering questions about how language

works diachronically, the non-discriminatory approach they use for the contextual-

ization of words is currently poorly adapted for event monitoring. Although [Hamil-

ton et al., 2016b]’s embeddings quantify semantic change for thousands of words and

have proven to be a robust and valuable tool for complex overarching contexts, some

studies (e.g., [Antoniak and Mimno, 2018]) have pointed out some risks associated

specifically in regards to under-representation of the fine temporal variability within

corpora and sensitivity to the presence of specific documents [words], which can

been seen as a problem in event analytics.

Secondly, the language of events is also affective, and although there are much

more negative words in the dictionary, positive words tend to be more frequent

[Iliev et al., 2016]. Following [Hamilton et al., 2016a]’s work on sentiment drift,

the implications are that negative words are also more diachronically unstable, i.e.,

they have faster rates of semantic change. Since this is contradictory to my target

of maximisation of the event-driven unstable lexemes, here I examine how lexemes-

candidates (RW) with close-to-neutral sentiment scores (0.0; -0.006, respectively)

co-evolve with the direct event descriptor (F |-0.03), whilst being benchmarked

against more positive concepts of (L |-0.02) and (N |0.25). My results indicate

that event-specific neutral words do tend to change their meaning from positive to

negative around flood events.
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4.2 Background

Contemporary environmental hazard forecast mechanisms are based on highly spe-

cialised procedures, often involving cross-institutional partnerships, like, for exam-

ple, the Flood Forecasting Centre [FCC, 2019] in the UK, created in 2009 as a

partnership between the Environment Agency and Met Office. What they offer is

a range of services, packaged as Flood Guidance Statements (FGS), which aim to

provide information to citizens to help them with emergency planning and decision-

making when facing or experiencing any form of natural flooding, including from

river, surface water, tidal/coastal or from groundwater sources. Fairly recently

(2016-2017, exact date unknown) they have extended their 2-day advance regional

warning mechanisms towards 5-day ones [FWI, 2019] for England and Wales, with

detailed reference to background weather information [MOF, 2019] aimed at ex-

plaining mechanisms behind approaching or evolving natural hazards.

The models behind flood warnings systems are gradually evolving towards

much finer resolutions (e.g., city scales) and much more hybrid (e.g., designed for

both atmospheric research and operational forecasting applications) tools. Examples

of such systems are Weather Research and Forecasting Model (WRF) [MMM, 2019]

in the US and the Unified Model (UM) [UM, 2019] in the UK. The first one was

designed to serve a wide range of meteorological applications across a range of scales

(from tens of metres to thousands of kilometres), and has been particularly successful

at city-sized mesoscale simulations at the sub-kilometre scale, whilst the UM model

has only gone as far as regional scale, failing to break through the sub-kilometre

threshold and thus fuelling a growing desire in the research community to achieve

this standard in seamless UK meteorological prediction systems. For example, one

research project conducted at the University of Warwick (UK) aimed to provide a

set of reliable, high-resolution reference simulations over a range of environmental

conditions in order to understand why UM calculations do not agree with ground

observations made by radar [Sit, 2017]. This illustrates that flood forecasting and

monitoring are being increasingly characterised as a ‘big data’ problem, where a lot

of hope is pinned on using different data sources, such as satellites, radar systems,

rainfall gauges and hydrological networks, integrated and processed with help of the

parallel computing and other state of the art infrastructures [Degrossi et al., 2017].

Apart from the geo- and atmospheric sciences research community, this inter-

est in finer-scale predictions has also been picked up by interdisciplinary researchers,

looking at how, for example, ‘social sensors’ (i.e., multimodal signals generated on

the web and social media) can fill in gaps in the demand for sub-kilometre reso-
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lutions [Stopczynski et al., 2014]. Of particular interest are social media messages

with geographic reference, also known by the term of volunteered geographic infor-

mation (VGI) [Goodchild, 2009] as they can provide some highly valuable insights

of what is happening in a specific location with help of text and images often pro-

vided alongside temporal and geographical attributes of postings. However, due

to the sheer volume of these uploads and their semi-structured nature, one of the

outstanding challenges remains to understand how to deal with such data signals,

i.e., how to ‘separate wheat from chaff’ without losing the volume and resolution of

useful information. This conversational paradigm can also be seen as an extension

of other, more analogue, but equally unstructured real-world behaviours reflecting

human action facing environmental uncertainties [Tkachenko et al., 2015].

Information seeking and sharing, and implementation of resilience measures

can be regarded as a particular type of risk-signalling behaviour that is absent from

the contemporary warning systems [Tkachenko et al., 2017c]. Tracking the ways

in which people not only behave but also make changes to their properties and

environment can open a new direction for behavioural research, specifically, for en-

vironmental habits tracking and re-calculation of risks. Often seen as a reactive

response to external stimuli, social media postings have demonstrated some po-

tential for estimating socio-economic impacts of natural hazards, where degree of

success is defined by the recurring nature of the event, its spatial footprint and local

enthusiasm and proactive behaviours for researching information about emerging

flood risks [Tkachenko et al., 2016a, 2017b].

Nevertheless, this proliferation of social media platforms has introduced a

new and additional source of information to be taken into account when designing

warning systems and planning their implementation. Thus, the US Geological Sur-

vey (USGS) was the first environmental institution to recognise the value of such

user generated content (UGC), acknowledging that analysis of the content and ge-

ographic distribution of Twitter postings - i.e., ‘social sensors’ - can be a useful

supplement to instrument-based estimates from physical sensors of earthquake lo-

cation and magnitude [Earle, 2010]. A more recent study reported on the value

of Flickr image sharing platform in nowcasting of the evolving ex-hurricane Sandy,

where aggregated volumes of UGC was found to replicate air depression fluctuations

over the same time period [Preis et al., 2013]. In these early studies, various open

UGC is treated as a valuable nowcasting tool in conditions where official observa-

tion stations, sensors or gauges do not provide sufficient geographic coverage to be

able to generate timely and spatially accurate updates about the situation on the

ground.
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Despite growing interest in these new and widely available data sources, cur-

rent methods of using social media data have begun to reach the limits of their

potential. We argue that the explanation lies somewhere in how ‘useful’ data com-

ponents are being defined. For example, all current analyses are based on the exact

words and word-combinations designating either type of a hazard itself (e.g., ‘flood’,

‘hurricane’) or its name (e.g., ‘Sandy’, ‘Katrina’) [Preis et al., 2013; Hilfinger et al.,

2011]. However useful for operational purposes, from the forecasting perspective

they hold relatively little value as they limit these initiatives to their mere nowcast-

ing capacity.

Turning attention to the origins of the reasons behind people’s conversations

about the natural world both in analogue and digital worlds, it was decided to seek

answers in the area of environmental semantics, which defines lexical structures

people use in order to express their interactions with the natural environment (see

Chapters 2 and 3). This decision was linked to an initial hypothesis that any natural

phenomenon can be described by a much wider spectrum of words and structures

than those that are currently being employed by social media analysts. For instance,

environmental anthropologists recognise that people’s engagement with, for exam-

ple, water in the landscape - or the landscape itself - can be seen as a cognitive

experience of endlessly changing states [Tkachenko et al., 2017c]. Each of these

states has its own qualities and associated meanings, which are always potentially

there, detectable by human sensory experiences in many different contexts and un-

der various circumstances [Wohlleben, 2018]. However, to the best of my knowledge,

no study has been conducted to exploit this research opportunity in order to verify

the value of information encoded in these accompanying meanings, i.e., where they

stand as compared to the direct event descriptors.

In this data experiment I therefore aimed to test the novel hypothesis that al-

ternative environmental semantics (or speaking methodologically, lexemes-candidates

for semantic drift) can be linked to extreme environmental events and may serve as

a predictor of an evolving hazard.

4.3 Hypothesis

In the scope of this analysis I propose a hypothesis that in the context of the negative

hazard event (i.e., flood), topical neutral words are more semantically unstable than

emotionally charged ones - and therefore will have tendency to fluctuate towards

negatively-charged direct event descriptors and away from more positive environ-

mental descriptors.
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4.4 Methodology

4.4.1 Variables

In many respects, current approaches to the selection of words for event monitor-

ing can be seen as somehow näıve, compiled with help of the crowd-sourcing (e.g.,

via former CrowdFlower (now Figure Eight) platform) or selected arbitrarily by

researchers (‘armchair linguistics’), where both are largely intuitive, random or en-

tirely usage-driven. Such armchair approaches contrast with the corpus methods,

where words-candidates are selected by algorithm and without much account of hu-

man perception, attitude to the phenomena in question or their subjective preference

of one word over the other. I argue that the truth lies somewhere in between both

approaches. On the one hand, we cannot discard the objective computational part,

however, we still need to make sure that the subjective component is accounted for.

Therefore, in the scope of this work, requirements for data entries (variables) were

established as follows:

(i) Word-candidates for event-predicting semantic drift should be able to

demonstrate some general positive trends of temporal co-evolution with the direct

event descriptors;

(ii) They should have sentiment tone that is slightly different, preferably

more neutral than the sentiment of direct-event descriptors, which are expected

to be more emotionally charged depending on the nature of the event (positive or

negative);

(iii) They should also be able to demonstrate a positive correlation with

some other background lexemes, which, in turn, should not be strongly co-related

to the direct event descriptors.

The idea of selecting variables on the basis of their correlation (i.e., ‘pro-

portional co-occurrence’) capacity with direct event descriptor(s) is linked to the

hypothesis that such an overall trend is composed of periods of very strong and

weak correlation, where the latter should logically coincide with elevated rates of

co-occurrence with background lexemes. Regarding the sentiment component of

requirements, the advantage of using the [near]neutral words lies in their expected

predictive capacity. Their neutrality assumes their penetrative usage outside event

boundaries, which are socially constructed on social media with help of direct event

descriptors. Hence, we can hypothesize that they can be useful for either event

prediction, its impact estimation - or both. In previous preliminary studies I tried

to analyze how good digital traces from several platforms (Google Analytics, Flickr)

are at predicting or estimating impacts of several natural hazards, including floods.
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Interest has therefore evolved towards understanding the behaviour of neutral words

around emotionally charged events.

4.4.2 Cascading non-probabilistic sampling

From the method design perspective, according to [Antoniak and Mimno, 2018],

who evaluated the stability of embedding-based word similarities, it has been found

that relatively reliable results can be obtained by simply averaging over multiple

bootstrap samples in all tested cases. I therefore decided to use the non-probabilistic

sampling design in order to extract lexemic behaviour to compare longitudinally.

Non-probability sampling is generally known as a sampling technique where

samples are gathered in a process that does not give all the individuals in the popu-

lation equal chances of being selected [Higginbottom, 2004]. As compared to proba-

bility sampling, non-probability sample does not result from a randomized selection

process. Here, variables are usually selected on the basis of their accessibility or by

the purposive, personal judgement of the researcher. Whilst this method is popular

in a number of instances (outline below), some of the obvious downsides are that

it is not always clear what proportion of the entire population is being represented,

often leading to conclusions that the results are not generalisable.

Non-probability sampling can be fit for purpose in the following situations:

(i) When there is a need to highlight a particular trait in the population,

(ii) When the aim is to perform a qualitative or exploratory study, or

(iii) In pilot studies, which will be subsequently followed by experiments

utilizing randomized probability sampling.

Within the scope of this data experiment I selected variables (lexemes) asso-

ciated with crowd postings on the photo-sharing platform Yahoo! Flickr (i.e., ‘flood’

(F), ‘river; water’ (RW), ‘nature; landscape’ (NL)), with the specific purpose of ex-

tracting their cross-correlations. This approach is justified by ‘armchair linguistics’

[Fillmore, 1991], where the researcher is allowed to make some arbitrary data se-

lections if they believe that some subjects are more fit for purpose as compared to

other individuals.

Method development began with the novel hypothesis that some alternative

tags, which satisfy the criteria outlined above, can exhibit event-detecting behaviour

in the context of emerging flooding. This assumption was motivated by the ways

people tend to interact with their surrounding environment, which changes as pre-

cipitation builds up or water levels start approaching residential areas (or areas that

are not normally covered with water). Here, I argue that during a certain time pe-

riod before the peak of the event, the semantics of human conversations on social
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media also become distinct from the general context meaning [Spirn, 1998] and ac-

quires new properties under the influence of the new perceptual experience, such as,

for instance, observations of saturated soil or raised water levels in nearby streams

[Strang, 2004]. As the primary aim of this study is to verify the predictive potential

of social media platforms on their own (e.g., without combining them with data

signals from other sources, such as river gauges or precipitation readings), I have

therefore defined events in my dataset as ‘flood peaks’ on social media, reflected

by maximum uploads of content tagged with the direct event descriptor (i.e., (F)),

around the time of flood events, identified by several authoritative sources (Fig 4.1).

Since this was an approximate selection, scope still remains for future data exper-

iments to define social media indicators suitable for cases of unpredictable events,

such as various natural hazards since similar sets of indicators have been already

developed for social events. The latter ones are regarded as more predictable as

they are usually scheduled in advance, their time of occurrence is usually known

and hence there is ‘before’ and ‘after’ data from social media platforms available

for comparison. In contrast, for unpredictable events we can only get data after the

event [Fujiyama et al., 2016].

Figure 4.1: Timeline of Flickr activity during a number of flood events(2004-2014)
of various magnitude, captured by official, secondary and massmedia sources.

For the algorithm development, I needed three conditions to be satisfied in

order to prove the predictive capacity of lexemes-predictors:

(i) Be responsive to changes in event magnitude, which is represented by the

number of daily uploads of the direct event descriptors to the social media;

67



(ii) Their behavioural profiles should differ within and outside designated

‘event buffers’: For example, during the time period around the event outbreak

they should exhibit statistically significant correlative behaviour with the direct

event descriptors, whilst outside those periods these relationships change and they

may potentially start correlating with other sets of topics; and

(iii) Lexemes-candidates have to exhibit stronger correlations with direct

event descriptors in any period preceding the ‘flood peak’ time interval, where ‘flood

peak’ represents socially-constructed start of the event (according to the known log-

normal distribution of the unpredictable events [Preis et al., 2013; Fujiyama et al.,

2016] on social media). In this respect, it can be argued that this type of flood

prediction is a real case of event detection as we need to capture socially significant

natural events, rather than hydrological phenomenon, which do not always involve

people or imply negative consequences for communities.

The adaptation of these conditions to algorithm construction for the pur-

pose of this study is as follows: I select three sets of lexemes: (1) direct event

descriptor(s), which are usually hazard-naming words, such as ‘flood’, ‘earthquake’,

‘storm’ etc., (2) benchmark words, which have a more general meaning, exhibit

positive sentiment and demonstrate correlation trends with the words-candidates,

but not with the direct event descriptors, and (3) words-candidates for event detec-

tion, which possess intermediate sentiment value between direct event descriptors

and benchmark lexemes, and exhibit correlation trends with both sets of words.

Here algorithm development began with four selected input tags ((N), (L),

(R), (W)), plus two additional aggregated tags ((RW) and (NL)). Each of these

inputs was connected to a single output (combined risk-signaling tags ‘flood’, ‘flood-

ing’, ‘floodplain’), without any initial weight attribution. As an activation function

a simple Pearson Product-Moment Correlation was used, which is an advantage for

our case study where linear output units are required:

ρX,Y = (
cov(X,Y )

σXσY
) (4.1)

The very first iteration (a) of the algorithm, which is presented in Fig 4.2 is

therefore designed to verify whether selected words in our corpus tend to correlate

in accordance with our initial requirement: ρ(F )(NL) � ρ(F )(RW ) ∧ ρ(RW )(NL).
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Figure 4.2: Conceptual workflow: (a) segmentation of the study period into ‘flood-
peak’ and ‘hazard-free’ intervals; (b) definition of the max event severity with help
of the daily social media uploads (here: 10, 50, 100 and 125 uploads per day); (c)
segmentation of the flood-peak periods into pre- and post-climax periods, using max
social media activity as a threshold.

Having satisfied the first set of requirements, I then looked at whether it was

possible to capture the dynamics of those initially defined relationships between

sets of lexemes, or whether these relationships are static. For this purpose a 5-day

buffer was designated around each ‘flood peak’ (however, equation 4.2 illustrates

that any buffer can be selected as it strongly depends on frequency of hazard events

in particular locations), in order to make this method comparable to the current

warning timescale by the FFC UK [FWI, 2019]. For the sake of this experiment, it

was assumed that ‘flood peak’ on social media corresponds to the very beginning
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of the event, spiking at the outbreak and then again at each situational change

according to the crowd interest. Therefore, each 5-day period preceding each event

outbreak can be considered as ‘forecast period’, and each 10-day period around each

peak is regarded as ‘event buffer’.

Bpeaks = (
Nall −Npeaks

Npeaks
)
1
2 , (4.2)

where Bpeaks is a number of forecast days, Nall is the number of days in the study

period, Npeaks is a number of days with event-specific social media activity in the

study period.

I then looked at the dynamics of lexemic co-occurrences inside and out-

side each ‘event buffer’, following corresponding set of conditions: (a) relationships

between F and RW should become stronger inside the buffer across the dataset:

ρ(Finside)(RWinside) � ρ(Foutside)(RWoutside); (b) relationships between NL and RW

should be stronger outside the buffers than inside: ρ(NLoutside)(RWoutside) � ρ(NLinside)(RWinside);

(c) relationships between NL and F should become even weaker inside buffer than

they were continuously across the corpus timespan: ρ(Finside)(NLinside) � ρ(F )(NL).

So far we have looked at the strength of the co-occurrences of our variables,

without giving too much attention to the magnitude of the event, i.e., changes

in daily post volumes, which could be indicative of dramatic turns during the

course of the event. By introducing the magnitude condition, I assumes that

the impact of the event is reflected in the number of crowd-generated uploads of

alternative lexemes per day (e.g., more than 10, 50, 100 or 125 posting thresh-

olds, to illustrate their sensitivity to the event dynamics/evolution), so the ideal

would be a scenario where the event magnitude shows the strongest correlation

between the direct event descriptor and the lexemes candidates inside the ‘event

buffer’, which should visibly decrease when comparing days with a smaller number

of uploads: ρ(Finside125)(RWinside∼=) > ρ(Finside100)(RWinside∼=) > ρ(Finside50)(RWinside∼=) >

ρ(Finside10)(RWinside∼=). Also, hypothetically, no difference should be evident when

looking at the same dynamics outside ‘event buffers’: ρ(NLoutside125)(RWoutside∼=) ∼
ρ(NLoutside100)(RWoutside∼=) ∼ ρ(NLoutside50)(RWoutside∼=) ∼ ρ(NLoutside10)(RWoutside∼=).

Finally, we shift our attention inside to the ‘event buffers’, which are com-

posed of ±5 days before the event outbreak (first local maxima of uploads for each

event, mentioning the direct event descriptor), in order to find out whether our alter-

native tags could be used for event detection purposes: ρ(Finside(5...1))(RWinside(5...1)) >

ρ(Finside)(RWinside), where n is a ‘flood peak’.
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4.5 Results

Fig 4.3 illustrates the dependency behaviours of tags inside and outside flood peak

periods, without taking into account the magnitude of the event.

Figure 4.3: Correlation values between positive (NL), negative (F) and neutral (RW)
tags on the Yahoo! Flickr platform (2004 - 2014).

These results illustrate that flood-related tags (F) tend to correlate with hy-

drologically themed tags (lexemes-candidates for event detection), which constitute

the linguistic component of the uploaded content, either on their own (e.g., (R) or

(W)) or in combination (RW). These dependencies illustrate the general contrast

with how other tags, which are linked to more generic environmental thematics ((N),

(L)), relate to the event detecting lexemes, which successfully satisfies our initial re-

quirement for the input variables. It is also possible to confirm that (R) and (W)

tags occupy an intermediate position between the topic of the natural hazard and

more generic natural landscape theme.

Since combined RW tags demonstrated higher correlation rates with F tags

inside flood peak periods and slightly decreased ones outside, Fig 4.4 shows depen-

dencies between combined tags (RW) and flood-related tags outside (1a) and inside

(2a) flood peak periods respectively, this time accounting for the event magnitude

condition, where impact is reflected by the number of crowd-generated content up-

loaded per day (e.g., more than 10, 50, 100 or 125 photos).
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Figure 4.4: PPMCC values of the cross-dependencies between aggregated tag ma-
terial (a) (RW) vs. (F) and (b) (RW) vs. (NL): (1) outside and (2) within Flood
Peak Periods (FPP).

For comparison, I also present the interaction between (RW) and (NL) tags

outside (1b) and within (2b) flood peak periods. We observe here that the varying

extent of flood peak periods (FPP) has no effect on the tags’ relations outside these

time intervals, and that the relationship between the benchmark and the candidate

lexemes are significantly stronger (r = 0.45, p[0.05], (1b)) than the relationships

between F and RW (r = 0.09, p[0.05], (1a)). Figs 2a and 2b show correlations within

FPP and clearly illustrate that in these instances event magnitude does matter. For

the pairs of candidate- and event-describing tags, the correlation increases with

magnitude, and conversely, we observe a simultaneous decrease for the tag pairs

(NL) and (RW). In terms of temporal proximity to the peaks (i.e. ‘events’), we

observe that combined tags work as a better predictor one day before the flood

peak events, after which the correlation drops to its minimum on the exact day of

the maximum upload of UGC tagged with direct event descriptors containing ‘flood’

lexeme.

To investigate how each of the (RW) components performs in conditions of

varying magnitude, I examined FPP only and compare relations between individual
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tags-candidates (R), (W) and event-designating tag (F) (Fig 4.5 (1a and 1b)) and

combined tags used to describe generic environmental benchmark tags (NL) (Fig

4.5 (2a and 2b)).

Figure 4.5: Correlation values of the cross-dependencies between deconstructed
(RW) tag material: (a) (R) vs. (F) (1a) and (NL) (2a); and (b) (W) vs. (F)
(1b) and (NL) (2b) within Flood Peak Periods (FPP) exclusively.

These results illustrate some slight - though significant - differences between

hydrologically-related tags ‘river’ and ‘water’. For instance, the statistical perfor-

mance of the tag (R) differs very little when related to flood-signaling and natural

topics alike, while the strength of the relationship drops slightly in the case of (NL)

postings (from r = 0.41 to r = 0.30, p[0.05]). The pattern of this relationship also

demonstrates an interesting and quite dramatic ‘drop-effect’, when event magnitude

increases to its highest band (more than 125 uploads per day), with the correlation

coefficient being at its lowest on the day preceding the actual outbreak in both cases

(‘flood peak’). We may also conclude that the main contribution to the correlative

power between combined hydrologically-themed and flood-related tags - when the

magnitude is accounted for - was predominantly due to the tag ‘water’. For exam-
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ple, Fig 4.5 (1b and 2b) illustrates how correlation increases with event magnitude,

peaking at its highest one day before the local maxima, and how the opposite to this

trend is reflected in the case of longitudinal relationships with the combined (NL)

tags. It is also possible to observe the highest correlation peak for the pair of tags

(W)-(F) at the highest event magnitude level, with more than 125 daily postings.

Although the connections between generic and risk-signaling environmental

tags have been successfully established, there is still a need to identify whether there

is potential for words-candidates to be able to detect flood peaks (a.k.a. ‘events’)

before their outbreak. For this purpose, the time window was reduced our time

window to the five day pre-event interval and the tag relationships compared across

all the best performing predictor candidates identified during the previous stages of

the algorithm workflow and across event magnitudes for which they demonstrated

the highest correlation capacity (more than 100 and 125 postings per day).

Figure 4.6: (a) PPMCC values of the cross-dependencies between the best per-
forming predictor candidates ((R), (W) and (RW) tags) and hazard-signalling tags
(‘flood’, ‘flooding’, ‘floodplain’) within 5-day time intervals before the event local
maxima (more than 100 and 125 open source crowd-generated uploads to the Ya-
hoo! Flickr platform); (b) PPMCC difference for the best predictor candidates when
accounting for the pre-event interval only, as compared to the entire FPP.

Fig 4.6(a) illustrates that narrowing the analytics temporal window throws
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the advance prediction timing of the best candidates (RW) and (W) tags back

from one to three days. Fig 4.6(b) illustrates how correlation differs between the

best selected candidates during each of the five days before the event outbreak

and throughout the entire FPPs, and shows a dramatic increase in the correlation

power of the tag ‘water’ across both top comparable magnitudes (Fig 4.6(b)), thus

producing a substantial peak in the aggregated (RW) tag sequence three days before

the event (as an average estimate, calculated for the entire study period 2004 - 2014).

4.6 Conclusion

This data experiment, to the best of my knowledge, constitutes the only study that

attempts to verify how indirect event descriptors (i.e., words that do not name the

event explicitly, but are assumed to be related to it) can detect flood events when

they are subjected to so called semantic drift, during which words change their

primary meanings.

From the results I conclude that for the case of flooding taken as an event,

alternative words (such as ‘river’ and ‘water’), derived from ‘social sensors’, have

the potential to be used as hazard detectors, since they exhibit meaning fluctuations

that can be seen as a particular case of semantic change, i.e., transient semantic

drift. This very simple data experiment illustrated that event-describing words can

form categorical clusters, which, if selected carefully, can consist of the groups of

words with polar opposite meanings, one of which can be event-describing, and

words with more neutral meanings, which fluctuate between the two mentioned

types. Such neutral words may represent the data potential for event analytics,

which hasn’t be exploited so far.

This conclusion was arrived at after observing changing correlation patterns

with the word ‘flood’ around the hazard peaks and with more positive words ‘nature’

and ‘landscape’ outside those flood peak periods. These findings have a high signif-

icance and represent a substantial advance in the field of the application of social

media analytics in the natural sciences, specifically as they belong to the category of

unpredictable events [Fujiyama et al., 2016]. Further investigations in this direction

are recommended in order to assist design and implementation of socially adapted

flood warning systems, i.e., ones that integrate human behavioural data alongside

hydrological and pluviometry information, however, other similar applications may

also be identified and tested.

Regarding consistency with the findings presented by [Hamilton et al., 2016a],

about higher semantic volatility of more negative words, these results do not provide
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any definite conclusions as in order to be able to achieve this level of expertise more

events will need to be analysed, including social ones and the ones with much more

positive connotations. What can be suggested, however, as an extension of the

abovementioned experiment is more granular analysis that also accounts for the

meaning-neutral words. And, of course, it would be beneficial to also include the

notion of relativity, as while we know that there are more negative words in the

dictionary and positive words tend to occur more often in everyday speech, what

implications these facts have for event analytics still remains undefined.
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Chapter 5

Event differentiation with

spatial semantic drift
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5.1 Synthesis

Although signal detection is an important property for critical data selection for

complex event analytics, for the socio-natural sciences, and specifically for hazard

analytics, it is important how much of that semantic signal maps geographically to

the most precise location possible, since traditionally warning decisions are made

on the basis of such spatially grounded information. This implies that we are pri-

marily interested in words that a priori have much higher volume on social media

as compared with direct event descriptors, and this augmented frequency is also

supported by the test for spatial statistical significance. However, given the diver-

sity of events within the flooding phenomena, the opportunity also appears to verify

whether those words can also signify different sub-types of floods.

In regards to the above, I hypothesised that the processes, underlying peo-

ple’s activity on social media during flood events, are related to reactions and coping

mechanisms with the certain types of floods, typical to that particular area (i.e.,

modifiable areal unit problem (MAUP)). These activities can accumulate over time

and emerge in the data form of the statistically significant hotspots. The value of

the additional data points, provided by lexemic drift lies in the fact that not only

they increase the ‘sensing coverage’, but also can be instrumental in differentiating

flooding types.
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5.2 Background

Social media data have contributes to both mapping and forecasting of natural dis-

asters, and is has been concluded that the combination of multiple non-authoritative

data sources can help to fill in the gaps of spatio-temporal coverage of authorita-

tive data, by using, for example, tweets [alongside gauges] as a weighting factor for

creating inundation maps [Huang et al., 2018] or as part of a wavelet transform

function for signal detection [Weng et al., 2011]. Recent studies have also reported

positive findings, demonstrating how tweets can be used in areas lacking rain gauges

or where sensors work with interruptions [Restrepo-Estrada et al., 2018]. Moreover,

given the complex nature of flood events, which can be caused, for example, by

surface water, excess rainfalls or groundwater sources, there is also a need to un-

derstand: (a) based on contiguity rules (i.e., when spatial units share a common

border of non-zero length), how spatial zoning due to different configurations of hy-

drometric networks affect the usefulness of topical social media postings; (b) based

on the fact that each hydrometric network is an historically evolved infrastructure

(see below), which type of flooding people as ‘sensors’ are most likely to ‘signal’.

It is given that social media activities are not evenly spread across areas [CBS,

2015]; And this may be due to various factors, including willingness or interest of

communities to cover different topics, preference of one social media platform over

another or turning off location sharing modules. Either way, if we ignore the last two

factors as an acceptable bias, patterns of language distribution across space remains

a rich topic for research, of interest for theoretical and applied linguists alike, since

it can provide insights into diachronic aspects of human communication [Kavouras

et al., 2005], but also provoke various interesting downstream applications, including

[the topic of this thesis] how meanings behind words we use during natural disasters

can be repurposed into useful data signals.

Emergence of word clusters in some areas and their absence in others may be

due to several reasons. The primary and most straightforward one is outbreak of an

event of some kind, in such cases space is usually prominently fragmented into dis-

tinct hot- and cold spot areas, covered by the same or similar keywords, the existence

of which usually coincide with the duration of the event - unless its consequences

are so marked that people continue talking about it for months. For instance, this

was the case of 2013-14 United Kingdom winter floods [BBC, 2014], which not only

covered substantial areas of the southern England but were also a combination of

meteorological and hydrogeological conditions that led to the combination of several

types of inundations and, specifically, co-occurrence of surface and infrequent type
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of groundwater flooding, which did not recede in Oxfordshire until the early spring

in 2014 [GWF, 2014]. As a consequence, these events generated around unique 5mln

Twitter posts between November 2013 and April 2014 with the hashtag ‘#flood’,

which on its own was not very informative as it failed to account for different types

of flooding that occurred due to various water sources (e.g., tidal, surface water and

groundwater ones) and generated different sets of impacts [PDF, 2011].

Another type of spatial distribution of linguistic material is less spontaneous,

often requires some advanced computation, such as machine learning techniques, in

order to distill recurrent patterns from the longitudinal datasets. The most common

hot- and cold spots occur in urban areas (they are also known under the terms

‘urban pulses’ or ‘metropolitan rhythms’ [Miranda et al., 2016]), specifically around

popular tourist destinations as they reflect technologically mediated various levels

of human activities that occur at varying hourly, daily and monthly resolutions

(hence the term ‘beats’). Applications for this data are numerous, well-researched

and constantly evolving; from real-time crime analytics and prevention [Rumi et al.,

2018], to mobility tracking [Chioda, 2014] and mapping happiness [Quercia, 2014].

For spatial distributions of point data, two possible visualizations come to

mind: heatmaps and hot spots. Although these terms are often used interchange-

ably, the differences between the two are quite significant. Whilst heatmaps are a

mere representation of topological proximity between point data, hot spot analysis

uses statistical analysis in order to define areas of high occurrences versus areas

of low occurrence and therefore supports visualizations of indicators of statistical

significance, rendering them less subjective. The designation of an area being a hot

(or a cold) spot is therefore expressed in terms of statistical confidence [GIS, 2014].

Different domains that use geostatistical techniques as a method have their

own understandings of what constitutes a hot spot according to underlying theories

in their respective research fields, which help to avoid erroneous data interpretations.

For example, crime analytics uses place, street or neighborhood theories, which are

locational and are often contrasted with repeat victimization theories, which can

operate at various levels of space geometries [NIJ, 2005].

In computational linguistics, hotspot analysis is commonplace although much

less formalized than in the other disciplines. For example, [Grieve, 2011, 2013] used

geostatistical approaches to study regional dialectology, syntactical rule deviations

in Standard American English, as well as to compare its regional phonetic and

lexical variations. More recent studies, by the same author and his collaborators

[Grieve et al., 2017] looked at cases of lexical emergence, an irreversible example

of semantic change from the point of view of geographical dimensions (contrasted
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to the domineering distributional semantic or longitudinal approaches mentioned in

the previous Chapter of this thesis) and geolexicographical variations of common

words [Grieve et al., 2011]. Whilst they are quite innovative in terms of successful

cross-disciplinary methodological borrowings, these analyses also show some limi-

tations that, when addressed, could benefit linguistic data applications, including

those within the scope of this thesis. First of all, these analyses are predominantly

sociolinguistic (as opposed to the phenomenological tradition). They cover a great

deal of what has been previously defined by anthropological linguist Pennebaker in

the 90s (and some other authors) as “mood of personality”, i.e., linguistic varia-

tion due to personal styles, rather than any exogenous factors [Pennebaker, 1993;

Arntz et al., 2012; Hirsh and Peterson, 2009]. Secondly, all lexemic analyses con-

ducted with help of hot spot mappings are predominantly univariate [WM, 2015],

i.e., they don’t take into account spatial interactions of several lexical variables,

which could have provided additional dimensions to temporal word vectors, used to

analyze corpus-driven temporal language dynamics [LEX, 2016].

5.3 Hypotheses

According to the USGS classification of floods [FT, 2019], there are two most basic

types of floods (‘slow’ (pluvial and groundwater) floods and ‘fast’ (river flow and

surface water) floods). My hypotheses are therefore linked to this framework:

1. Alternative lexemes are capable to differentiate those two basic types of floods,

by statistically resonating to one of them;

2. The group of ‘slow’ floods is better reflected on long-term social media data

aggregates (in our case 2004-2014 time period).

5.4 Materials and methods

In order to address this gap I used combinations of uni- and bivariate cases of hot

spot analytics in order to answer the question of whether candidate lexemes for risk-

signaling do quantitatively outperform the volume of significant clusters formed by

direct event descriptors (Fig 5.1). For this purpose, I tested whether candidates

for semantic drift correlate with event descriptors and form statistically significant

clusters outside those ones created by direct event descriptors uniquely. In order to

examine their drift towards risk-signaling, I then subsequently verified whether the

types of relationships they form with benchmark lexemes are significantly different.
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The analysis was based on the weights of contiguity rules and modelled over the

boundary geographies, derived from the main types of hydrological networks in the

UK.

Figure 5.1: Schematic reasoning behind useful spatial drift of lexemic units on social
media.

5.4.1 Datasets

Hydrological observation networks are composed of groups of stations or gauges

and are designed to perform observations in order to maintain monitoring of a sin-

gle or several interrelated objectives (e.g., an assessment of available or scarce water

resources, flood forecasting, design of development plans, etc.). In most cases, net-

works are designed to address a set of connected objectives, such as combined flood

warning and in such cases they are compositionally heterogeneous, i.e., they consist

of several types of sensors (stream gauges for monitoring river levels, meteorologi-

cal and agrometeorological stations for respective observations of atmospheric and

soil moisture conditions, pluviometry sensors for measuring precipitation levels and

intensity, etc.).

Alongside the conventional uses of hydrological information, such networks

also support a set of secondary applications, including planning, drinking water

quality control, biodiversity sampling, design of water utilization systems and de-

velopment of local flood warning systems, just to name a few.
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The design of hydrological networks and their gradual optimization is usually

a continuously iterative process, often economically motivated and justified, start-

ing from a minimum number of sensors (stations, gauges) and gradually increasing

their number until the network reaches its optimal configuration. According to the

Institute for Watershed Science [IWS, 2019] at Trent University in Canada [Pyrce,

2004], design of the earliest networks was primarily driven by a single, specific

project, however, efforts to support wars and military operations at the beginning

of the last century motivated what has been later referred to as “ad hoc installation

series, without much reference to one another”. Eventually, this process led to the

emergence of several early observation network theories, largely experience-based,

including the ‘quasi-uniform areal coverage’ one, which takes into account only the

primary aim of installation, and what [Nemec and Askew, 1986] referred to as a

‘basic pragmatic approach’.

The very first attempts to use statistical methods did not emerge until the

late 1930s, when error estimates were used for choosing optimum gauge density

for precipitation measures [Rainbird, 1967]. In 1934 the first network design was

proposed, using elements of spatial and linear interpolation [Glushkov, 1933], thus

producing continuous representation of fields of hydrological elements, which can be

assessed by stations/gauges, distributed according to typical watershed areas (i.e.,

‘zonal-representative’) in such way that they are close enough not to miss impor-

tant geomorphology, but far enough so as to detect norm gradients of hydrologic

elements. Each station was therefore located at the discharge outlet of the micro-

(or meso-) catchments with similar characteristics, where optimum watershed area

A should satisfy the relation Agr <= Ao < Ac, where Agr and Ac are the gradi-

ent and correlation criteria respectively, which should satisfy the smallest and the

largest distance between the centres of fragmentation candidate catchments. Also,

one of the most characteristic features of early network designs and optimization

was the two-type approach to the function of stations. The first group was meant

to work on a continuous basis and the secondary group was supposed to operate

for relatively short time periods (up to 10 years) in order to provide benchmark

calibration information for the data collected by continuously operating stations.

In the 1990s and 2000s, socio-economic strategies and information theories

have been gradually introduced into the design of networks, specifically Bayesian

decision theory models [Mawdsley et al., 1990; Holzkämper et al., 2012], which,

amongst others, examined the economic value of data in the design of hydrometric

networks for flood protection. These interdisciplinary methodological innovations

are also complemented with regionalization techniques, probabilistic and determinis-
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tic models and cartographic analysis, where each method has a particular application

depending on the type of problem to be solved or limitations in the collected data.

Depending on its primary purpose, the hydrometric network can be called

a surface water network, precipitation network, a groundwater network or a water

quality network [Mishra and Coulibaly, 2009]. Fairly recent reviews, conducted by

World Bank, United Nations and WMO have noted a marked decline in hydrometric

network density in developed and developing countries alike, due to reasons varying

from lack of funding or appreciation of the value of long-term hydrometry, to critical

infrastructure disruptions caused by wars and other disasters. As a consequence,

in order to draw attention to the quality of contemporary measures of environment

sustainability, WMO proposed density of hydrological network as one of a number

of novel indicators. This is defined as the average area served by one hydrological

station [Kundziewicz and Somlyony, 1997], which needs to be periodically reviewed

as several researches have demonstrated the impact of network density on the ac-

curacy of streamflow estimates. The optimization problem therefore has become

two-dimensional; from one perspective the need emerged to design long term, flexi-

bly sustainable networks from scratch, and from the other to find ways to augment

a previously existing network [Pardo-Iguzquiza, 1998]. Some analyses have already

been carried out regarding the latter problem, specifically in design of pluviometric

networks, which successfully used variance-reduction in combination with simulated

annealing [Pardo-Iguzquiza, 1998; Fattoruso et al., 2017], where estimated accu-

racy was maximized and the total metering cost was minimized through variance

reduction and enumerative search algorithms.

In the scope of this analysis several types of the UK-wide hydrological net-

works have been used as a benchmark authoritative geo-designations, specifically

groundwater, precipitation, surface water sensors and riverflow gauges. Their XY

coordinates, along with associated stations’ metadata were downloaded from the

DATA.GOV.UK portal [DSP, 2019].

5.4.2 Methods

Space fragmentation

The main principle behind hotspot analytics lies in its use of vectors to identify

locations of statistically significant clusters (hot spots and cold spots) in the data

by aggregating points of occurrence into polygons that are in proximity to one

another, based on a calculated distance. The analysis therefore groups features

when similar high or low values are found in a cluster. For the purposes of the
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spatial statistics methods, oulined below, I used basemap polygons, derived from

the Voronoi tessellation around each measurement station (Fig 5.2).

Figure 5.2: (a) Main networks for monitoring water-related risks in the UK; (b)
Principle of the Voronoi space fragmentation around hydrometric monitoring points.

Global Moran’s I (Spatial autocorrelation)

Before hotspot analysis is performed, it is important to test for presence of cluster-

ing in the data with some prior analysis technique involving spatial autocorrelation

that will indicate if any clustering occurs within the entire dataset. For this pur-

pose, I used global Moran’s I, which belongs to the group of simple-to-use global

statistical tests, amongst which are also mean center, standard deviation distance

and standard deviation ellipse [Chun and Griffith, 2013]. The test for clustering is

considered to be the first essential step in revealing whether data has hot spots, and

there exist several approaches, such as nearest neighbour index (NNI) and test for

spatial autocorrelation. All the methods start with the basic principle of hypothesis
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testing from classical statistics, specifically from the initial assumption that data is

distributed according to the rules of complete spatial randomness (CSR).

Since emergence of the useful configurations of social media points is condi-

tioned by the topological configuration of the basemap polygons (i.e., sensors), as

well as spatial dispersion of the point clouds, the global test is used to highlight the

presence of statistically significant clusters, which can be either positive or negative.

Spatial autocorrelation tests, of which Moran’s I is the most commonly used, require

a so called ‘intensity value’, which is used to construct a weights matrix using rules

of distance (between points) or spatial neighborhood directionality (polygons), and

which, in case of the latter can be perpendicular, diagonal or 8-directional (Rooks,

Kings and Queens, respectively [Chun and Griffith, 2013]). In the scope of this

analysis I used Queens contiguity rules, however, there is also a scope for future

studies to look at the distance-based sensitivity, which can be useful, for instance,

to define event boundaries or for comparison with other spatial statistic indices.

Contiguity-based Moran’s I works with point data, aggregated by polygon

boundaries, where each point represents a unique attribute (in our case, each point

entry represents a lexeme). The metrics of global spatial autocorrelation Moran’s

I therefore estimates spatial relatedness taking into account both feature locations

and their values.

I =
n

So

∑
i

∑
j wijzizj∑
i z

2
i

, (5.1)

where zi is a standard deviation of feature i from its mean value, wij is the spatial

weight between features i and j, n is a total number of features and So is the

aggregate of all spatial weights.

Given sets of features that are arranged in a particular spatial configuration

and are associated with a particular attribute, Moran’s I measures whether the

pattern of arrangement is statistically clustered (I∼1), dispersed (I∼(-1)) or random

(I = 0) [Anselin et al., 2008]. If points that are close together have similar values,

the Moran’s I result is high, where the significance of the result can be tested against

a theoretical normal distribution by dividing by its theoretical standard deviation

[Páez and Scott, 2005].

There are several ways of drawing inferences from Moran’s I and, in most

cases, it is down to weights selection. A positive and significant global Moran’s I

suggests clustering of the like values in the dataset is present, but not necessarily hot

or coldspots specifically as it could be either or both simultaneously. Indication of

86



clustering does not provide an explanation for why clustering occurs, and therefore

one can assume different processes behind the same, or very similar, patterns. In

case of true contagion, evidence of clustering can emerge due to spatial interactions,

for example, peer effects, epidemics, etc., while in the case of apparent contagion,

evidence of clustering emerges purely due to spatial heterogeneity, where different

spatial structures generate local similarities. Since in the scope of this experiment I

am interested in the interaction between both processes, i.e., influence of the precon-

figured hydrometric layouts, which introduces critique of the existing authoritative

hazard monitoring, and the posting intensity, which reflects magnitudes of the public

engagement, the contagion is therefore expected to occupy the intermediate position

between its true and apparent manifestations. In order to elicit true tendencies, I

also introduce the standard square mesh (1x1km) to benchmark my findings with

the sensors’ networks.

Anselin Local Moran’s I (Cluster and outlier analysis)

While global spatial autocorrelation provides only one statistic to summarize the

entire study area, the detection of clusters requires local statistics. Since Moran’s I

test is represented by the sum of individual crossproducts, it has been successfully

repurposed for local indicators of spatial autocorrelation (LISA) by calculating in-

dividual Moran’s Is for each spatial unit, associated with significance estimators.

Unlike global Moran’s I test, the local one (also known as cluster and outlier analy-

sis), defines clusters of attributes with high or low values, as well as spatial outliers.

The most used implementation of the algorithm is in the Mapping Clusters Toolset of

ArcGIS Advanced (version 10.6 used here). The algorithm’s outputs (local Moran’s

I, z-score, pseudo p-value) are available for each feature, irrespective of whether

results are significant or not. The local Moran’s I statistic of spatial association are

therefore given as:

Ii =
zi
m2

∑
j

wijzj , where (5.2)

m2 =

∑
i z

2
i

n
. (5.3)

Just as with the global scenario, a positive value for I suggests that a feature

has neighboring features with similarly high or low attribute values, with which they

together form a cluster. If I is negative, then a spatial attribute value is surrounded
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by dissimilar values and becomes an outlier if confirmed by the measure of statistical

significance p.

Whether the spatial attribute is part of the cluster or forms an outlier, re-

lationships are also determined by the statistical significance test. Some software

packages have a single 95 per cent CI (the open source software package GeoDa

[GEO, 2019] used here has three: 0.001; 0.05 and 0.1). The output field distin-

guishes clusters of high values (‘High-High’) or hotspots, low values (‘Low-Low’) or

coldspots, high value outliers, surrounded by low values (‘High-Low’) and low value

outliers, surrounded by high values (‘Low-High’).

Bivariate Moran’s I (Spatial correlation)

As the authors of this algorithm state themselves [GEO, 2019], “the concept of bi-

variate spatial correlation is complex and often misinterpreted”. This is mainly due

to the fact that historically, the spatial aspect of the correlation was often omitted

(or altogether ignored), thus leading to the assumption that the main mechanism

behind the relationship between variables is the in-place correlation, whereas its im-

plementation (GeoDa) was designed to reflect the correlation between one variable

xi and the spatial lag
∑

j wijyj of another [Anselin et al., 2002].

Bivariate Moran’s I extends the idea of the original Moran scatter plot, where

a variable and its spatial lag constitute two respective axes, to a bivariate context,

where axes are composed of one variable and the spatial lag of another ; In other

words, it helps to estimate to what extent one variable at a location is correlated

with its neighboring areas for a different variable. The equation below shows that

the main interest of this algorithm is to visualize the slope of a regression of wy on

x.

IB =

∑
i(
∑

j wijyj × xi)∑
i x

2
i

(5.4)

The most common use of bivariate spatial correlations is when the variable

is measured at two points in time, with the aim of understanding to what extent

an observed value is correlated with its value at neighboring locations at a different

point in time, i.e., to capture the time-space cube dynamics of one particular variable.

The authors of the algorithm suggest that it is important to keep in mind that since

the focus is on the correlation between x value at i location and the y values at

neighboring locations, “the correlation between x and y at location i should be

ignored”.
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In this work I implemented a special case of bivariate spatial autocorrelation

applied to distributional semantics, where I considered the case of useful semantic

drift if word-candidates, surrounded by either direct event descriptors or benchmark

lexemes form statistically significant relationships of the type ‘High-High’ and ‘Low-

Low’, meaning that the tendency for respective cases of hot- or cold spots’ formation

of the candidates with either of the polar groups of meanings (risk vs. aesthetic

pleasure) determines their semantic drift. Whether this is useful for flood analytics

or not is determined by the total volume of non-overlapping cases with the direct

event descriptor’s hot- and coldspots clusters, which typologically differ from clusters

word-candidates formed by the benchmark lexemes.

5.5 Results

5.5.1 Global indicators

The first set of results is linked to the exploratory part of the analysis, aiming

to reveal whether there are global patterns of spatial correlation between pairs of

lexemes selected for analysis (Fig 5.3).

Figure 5.3: Global bivariate Moran’s I testing for presence of the interactional clus-
ters between pairs of the selected lexemes (p < 0.05).

The results illustrate, first of all, that globally risk-signaling lexemes (F)

have the lowest tendency to form spatial clusters with either potential candidates

or benchmark lexemes (Moran’s Is barely exceed 0.1 at 95% CI [0.004, 0.12]), where
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the possibility of (N) or (L) lexemes to surround the area with the high occurrence

of direct event descriptor and form statistically significant clusters or outliers is the

lowest as compared across all possible combinations of lexemic relationships.

Next, we can observe elevated coefficients of significant spatial co-occurrence

of the lexemes (R) and (W), which confirms their lexical dynamics in the context

of this study. Both benchmark lexemes (N) and (L) illustrate stronger clustering

potential with the word-candidate for semantic change (R) and lower potential with

the lexeme (W), despite the fact that (W) is much more frequent in the corpus

than (R) and has a much higher representation weight than its counterpart. Nev-

ertheless, this fact could be potentially explained by the more polysemous nature

of (W), which can occur in various contexts, not necessarily the environmental one

or during flood events [Strang, 2004]. Similarly, the lexeme (L) forms stronger rela-

tionships with both (R) and (W) than does (N), which also hypothetically may be

due to the fact that (N) may have a much broader environmental meaning and be

much less connected semantically to the lexemes-candidates, whereas (L) can be di-

rectly connected to them via relations of hypernymy (where landscape constitutes a

broader category of meaning into which fall (R) and (W) as more narrower, specific

meanings).

In terms of the basemap polygons for our global Moran’s I correlation tests,

which are derived from the Voronoi tessellations for each group of hydrometric net-

works (i.e., groundwater, river flow, precipitation and reference ones [OS, 2019]), the

1km grid reference mesh prompts the weakest spatial aggregates, whilst precipitation

catchments and the groundwater ones are the strongest aggregates. Interestingly,

results for the river flow and surface water hydrometric networks occupy an interme-

diate position between precipitation-groundwater (upper threshold) and reference

(lower threshold) meshes. Moran’s I indices peak for precipitation and groundwater

networks on the (RW) congregations (with second and third peaks, respectively,

on (LR) and (LW) congregations), and for surface water and river flow on (NR)

and (NW), respectively. These preliminary findings may be indicative for the po-

tential of different word clusters to differentiate various flooding phenomena, which

could be a useful source of information about the extent of flooding impacts for

decision-makers and the insurance industry. Indeed, according to the USGS broad

classification of floods as mentioned in the Hypotheses subsection of this Chapter,

there are two most basic kinds of floods: river floods, which are more widespread

and flash floods. River floods, according to this typology are more common and

hence more predictable, since they occur around large rivers in areas with a wetter

climate and can be linked to a storm of some kind. In contrast, flash floods occur
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due to excessive rainfall water, usually accumulated on top of continuous imper-

meable surfaces, as in urban areas, where infiltration rates are slowed down. So,

looking again at the results, we can clearly spot this binary division, where one

group is represented by ‘precipitation-groundwater’ clustering trends and is most

likely to correspond to the flash floods type, according to the USGS classification

and another group is represented by the ‘river flow-surface water’ clustering pattern

and can be seen as corresponding to the river floods type. Also, if we segment the

space according to the current distribution of sensors measuring precipitation and

groundwater levels, then we can see that they have twice as strong Moran’s I indices

for lexemic clustering around direct event descriptors (F) than if we configured space

according to the ‘river flow-surface water’. This can be indicative of the data hav-

ing stronger relevance to the flash type of flooding. Not only is clustering potential

higher in this case, but also candidate lexemes (RW) form stronger spatial aggrega-

tions with direct event descriptors (F) than benchmark lexemes (NL). In case of the

group ‘river flow-surface water’, it is less clear whether lexemes-candidates (RW)

tend to form clusters with direct event descriptors (F) or with background words

(NL).

If we add to our results visualisation the behaviour of the uni-variate clusters

(FF, RR, WW, etc.), we can see that they significantly outperform the hybrid ones

(Fig 5.4). However, although risk-signalling clusters (FF) seem to have higher ten-

dency for autocorrelation, I needed to verify how many of the hybrid clusters (FR,

FW) do not overlap with those areas, thus potentially providing some additional

information.

Figure 5.4: Interpretation of the Fig 5.3 when compared to the univariate (i.e., RR,
WW, FF, etc.) cluster formations.

Also, I wanted to see how alternative lexemes behave in terms of the cluster

91



formation individually and in combination (Fig 5.5). These results illustrate that

when we sum up the candidates for semantic drift, they are more likely to produce

stronger or more numerous clusters. This can be explained by the increase of the

sheer volume of the data, also confirming the importance of continuous search of

the useful data signals on social media.

Figure 5.5: Comparison of the cluster formations when modelling neutral lexemes
as independent (**) or combined (*) variables.

5.5.2 Uni- and bi-variate LISA

Once the global statistical spatial patterns were identified I then looked at local indi-

cators of spatial autocorrelation (LISA) uni- and bivariate combinations of variables

and their interactions, with the aim of answering the question of whether higher-

frequency lexemes-candidates for event monitoring actually increase the amount of

event-related useful [statistically significant] information for monitoring, as com-

pared to the direct event descriptors.
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Figure 5.6: Spatial distribution of the hot- and cold spots, formed by the direct event
descriptor (F) and combined benchmark lexemes (NL) (univariate cases of the local
Moran’s I), as well as by the spatial interaction between lexemes-candidates for
semantic drift (RW) with both direct event descriptors (F) and background lexemes
(NL) (bivariate cases of the local Moran’s I).
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Fig 5.6 illustrates the spatial distribution of hot- and cold spots, formed by

the direct event descriptor (F) and combined benchmark lexemes (NL), as well as

by the spatial interaction between lexemes-candidates for semantic drift (RW) with

both direct event descriptors (F) and background lexemes (NL). Following the simple

principle of exclusivity, useful data that can be produced by candidate-lexemes,

will be represented by statistically significant bivariate hot- and cold spot clusters

generated by direct event descriptors and the candidates, which are non-overlapping

with univariate hot- and coldspot clusters, formed by direct event descriptors (hence,

their additive value to already known useful variables). To avoid cases of circular

spatial correlation, where candidates also form the same significant clusters with

benchmark lexemes, only z-values of their bivariate interaction with the direct event

descriptors (i.e., (FR), (FW) and (FRW)), which are different to z-values they form

with the benchmark words ((NLR), (NLW) and (NLRW)), have been selected for

each mesh cell, derived from four (plus the benchmark 1km grid) georeferenced

hydrometric sensor networks.

Fig 5.7(a) illustrates the fraction of mesh cells (a.k.a. ‘sensors’) that are cov-

ered by statistically significant hot and cold spots of the various uni- and bivariate

combinations of the risk semantics, thus suggesting the areas with the largest and

smallest potential for social media posts to contribute to sensor/gauges’ readings.

Here we observe that bi-variate combination of risk signaling (F) and ambivalent

(RW) semantics constitute the highest fraction amongst the irregular mesh cells,

while representing the smallest one on the benchmark 1km OSGB grids. Predom-

inantly across all results (apart from the FW clusters for the case of the surface

(SW)) ambivalent clusters (FR, FRW, FW) quantitatively outperform the explicit

risk-signaling clusters (F), thus demonstrating the additive value of semantically

unstable keywords.
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Figure 5.7: (a) Proportion of statistically significant units (i.e., areas around mon-
itoring stations) to the total number of the respective units in each hydrologi-
cal network; (b) Proportion of the statistically significant (F-RW) clusters, non-
overlapping with statistically significant (F) clusters and different from the statisti-
cally significant (NL-RW) clusters.

Fig 5.7(b) illustrates the second part of the method that aimed at quantifying

the fraction of statistically significant cold and hot spots (and their outliers) of the

bivariate Moran’s I indices that lie outside the significant (F) clusters, whilst also

geographically overlapping with the bivariate Moran’s I indices that (RW) form

with semantically positive keywords (N) and (L), but with different z-values (thus

indicating locational semantic drift).

Figure 5.7(b) illustrates the fraction of mesh cells, where statistically signif-

icant clusters of semantically neutral keywords migrated to statistically significant

(and thus useful as governed by the underlying rules of spatial non-randomness)

risk signaling locations. The results also illustrate the higher performance of indi-

vidual keywords (FR and FW) as compared to the combined scenarios (FRW) and

95



also demonstrate some interesting discrepancies between (R) and (W) scenarios for

river flow, precipitation and groundwater networks, where (R) slightly outperforms

the (W) scenario in case of river flow and where (W) outperforms (R) scenarios on

precipitation and groundwater lattices.

The actual structure of the semantically drifted sensor areas is presented on

Fig 5.8. Here we can observe that across all sensor networks, presence of the actual

hot- and cold-spots emerges in cases of combined modelling of semantically neutral

tags (RW). Their individual modelling only indicates the approximate positioning

of the process, reflected in the domination of the positive outliers (i.e., ‘High-Low’

areas).
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Figure 5.8: Structure of the statistically significant units (i.e., sensor areas, covered
by geolocated human activity on social media) of the neutral lexemes or their combi-
nations, which were observed to drift semantically from more positive environmental
topics.
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5.6 Conclusion

Although social media introduced a lot of geographically grounded information,

applications with the combined use of the linguistic and spatial modalities are sur-

prisingly scarce. The aim of this Chapter has been to consider some broad influences

upon the process by which meaning is attributed to geographical space and regarded

as being closely linked to motivation, in that the individuals invest the spatial en-

vironment with meaning according to their own experiences or needs.

In the previous Chapter I looked into how we can detect useful semantic drift

on social media. Since the data we are dealing with here is firmly geographically

grounded, the aim of this Chapter has been to demonstrate the role spatial rules

play behind semantic drift and how we can extract useful data based purely on the

location of polysemous UGC. Whilst pursuing the pragmatic aim of differentiating

two most basic groups of flooding, I was able to confirm that semantic drift is indeed

a geographically differentiated phenomenon and social media can help us to monitor

slowly evolving or receding flood events.
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Chapter 6

Exploring potential of semantic

drift for event segmentation
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Synthesis

As semantic drift is a known research category of distributional semantics for its

capacity to demonstrate gradual long-term changes in meanings and sentiments of

words, its empirical performance is nevertheless largely determined by the corpus

composition. In Chapter 4, which used ontological relationships between words and

phrases, I have already established that there also exist certain types of seman-

tic microchanges on social media, emerging around natural hazard events, such as

floods. My previous results confirmed that such alternative lexical material can be

used to detect floods before their outbreak and to increase the volume of ‘useful’

georeferenced data for event monitoring.

In this final experimental Chapter I use deep learning in order to deter-

mine whether pictures associated with ‘semantically drifted’ social media tags re-

flect changes in the event severity or are a reflection of the people’s reaction to the

authoritative flood risk communication. The results show that alternative tags do

follow the pattern of the direct event descriptors and are indeed sensitive to the

evolving severity of the hazard. They also have more complex composition, ranging

from more focused to less focused scenes, which can be used as statistical indicators

of flood risk severity. The analysis however lacks some statistical robustness and

would significantly benefit from the further testing on much larger datasets.
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6.1 Background

Unusual events and changes in the natural environment can significantly impact

people’s day-to-day activities, therefore information on human micro-mobility has

been primarily valued for its crucial role in response to disaster and evacuation

strategies [Wang and Taylor, 2016]. Thus some studies reported that success of

planning and executing evacuation operations to a great extent depend on exact

information of where people are [Chakraborty et al., 2005; Pan et al., 2007]; Other

researchers highlight that real-time designation of the risk areas could benefit from

understanding the patterns of human movement [Boodram et al., 2018]. Also, suc-

cessful geotargeting of appropriate shelter locations relies on hotspots of vulnerable

gatherings of people [Zhao et al., 2017; Bashawria et al., 2014], whereas adaptation

of early and real-time warning communication to mobile outdoor populations can

be instrumental for the deployment of a new generation of smart alert systems [NA,

2019; Council, 2013; Gonzales et al., 2016].

Despite its obvious importance, studies looking into human mobility during

natural disasters (i.e., under conditions of disruption) are quite scarce [Morrow-Jone

and Morrow-Jone, 1991; Bengtsson et al., 2011]. The majority of studies seem to

primarily concentrate on the fundamental characteristics of generic human mobil-

ity patterns [Wang and Taylor, 2016], which fall into categories of small world be-

haviours [Kleinberg, 2000], presuming existence of cliques and generally predictable

activities, Lévy Flights of the exploratory chaotic movements or Brownian naviga-

tion associated with aggressive or predatory motives [Watts and Strogatz, 1998;

Zachary, 2017; Cohen et al., 2002; Zaidi, 2012; Humphries et al., 2010; Sims et al.,

2014; Karamouzas et al., 2014; Brockmann et al., 2006].

Researchers at Harvard University [Wang and Taylor, 2016] looked at 2-year

human mobility data, collected from Twitter for a number of different natural dis-

asters around the world, including hurricanes, winter storms, wildfires, rainstorms

and earthquakes. This analysis was performed in order to understand whether ma-

jor events can significantly perturb routine mobility patterns described by power

law distributions. They introduced the concept of the quantitative resilience of

human mobility, according to which it is possible to evaluate the degrees of inter-

dependence between people’s spatial movements and civil infrastructure, such that

resilient activity is able to return promptly to its steady state equilibrium in re-

sponse to natural hazards. They concluded that although perturbed by various

hazards, the movement of people in almost all studied cases still conformed to a

natural-state power law distribution, whereas event characteristics, such as severity
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and duration, tended to lead to much more significant disruption of urban mobility

in natural hazard conditions.

While spatiotemporal data signals are useful for crowd estimation and inter-

vention planning, research on human sensory experience during natural events is,

to the best of our knowledge, nonexistent. However, as social media is gradually

becoming more visual and less textual [bib, 2016; Niederer, 2018], the need also

increases to adapt meaning extraction strategies from various sensory data modali-

ties (e.g., video, audio, images). Specifically, for natural hazard analytics such data

tranformations hold a lot of promise, since it is widely known that in situations of

uncertainty people tend to generate a lot of mediated information when exploring

their environment and adapting to it [Allison et al., 2006]. In this study I therefore

propose to extend existing work on human mobility resilience and use so-called expe-

riential modality, reflecting how people see the hazard when directly exposed to it.

Building on previous findings, I focus on one natural hazard event only (flooding),

however, this time accounting for the attribute of severity [Wang and Taylor, 2016].

Data-wise this study is also based on georeferenced (XY) information from

the Yahoo! Flickr platform, where data material consists of images associated with

tags and descriptive text. I made an inventory of data geographically associated with

UK floodplain areas, where during the time period 2004-2014 were issued various

flood risk communication messages (‘Alerts’, ‘Warnings’ and ‘Severe warnings’).

Selected data entries were then filtered to extract the following three categories:

(a) direct event descriptors (i.e., tags, containing the word ‘flood’, (b) benchmark

lexemes (i.e., words with which semantically unstable words highly correlate, such

as ‘nature’ and ‘landscape’, and (c) alternative (i.e., semantically unstable) lexemes

‘river’ and ‘water’. This framework was derived from our previous findings on the

positive role of ‘semantically drifted’ material in flood event monitoring [Tkachenko

et al., 2017a]. By analysing and comparing data across the 3-stage severity codes

and before/after they have been issued, I attempt to understand how statistical

indicators of the crowd attention on social media can be used for event segmentation.

6.1.1 Environmental spaces

Relationships between space and people’s experiences have been well covered in [It-

telson, 1973]’s theory, where he draws a distinction between the ‘space of objects’ and

what he termed as ‘environmental spaces’. Unlike spaces of objects, which are usu-

ally smaller than a human body, environments necessitate movement within them

in order to be perceived and experienced. Furthermore, unlike object spaces, which

have little emotional content, environmental spaces also foster affective attachments,
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thus influencing perception of the environmental space as a whole.

Similar to this framework, behavioural geography introduced in the 1990s a

distinction between perceptual and cognitive spaces. According to this, perceptual

spaces refer to what can be seen or observed through the senses at one time, whilst

the cognitive ones comprise larger-scale spaces, which cannot be sensed at once

by our sensory system and therefore must be consecutively assembled, much like

a jig-saw [Tversky, 1993]. Cognitive spaces are also considered instrumental in

linking sensory images of our immediate experiences to cognitive factors of beliefs,

knowledge and memory.

Since different parts of the environment are represented independently, for its

successful navigation these independent representations have to be linked. Graph-

like representations have long been suggested to provide a structure suitable to

integrate these spatially independent, yet semantically interconnected, experiences

or memories of space [Kuipers, 1978; Poucet, 1993; Schölkopf and Mallot, 1995].

In these graph-like structures, local positional information is usually attached

to nodes, while edges are used to reflect the strength of the connections between

them. The exact nature of information stored in nodes and edges can differ be-

tween models. Thus [Poucet, 1993], for example, suggested that nodes are place

representations, while connections between distinct places are encoded as vectors in

the polar coordinates of a two-dimensional coordinate system in which each point

is determined by a distance from a reference point and an angle from a reference

direction. Closely related to the Poucet’s network of charts is the theory of the net-

work of reference frames [Meilinger et al., 2010], which suggests that environmental

spaces are represented by means of independent coordinate systems, each with its

own specific orientation. Nevertheless, irrespective of structural differences, the im-

portance of these theories lies in their efforts to structure our everyday mobility

strategies according to the network theories.

6.1.2 Spatial focus

One of the ways to approach this difference empirically is to understand how people

relate to the components of their surrounding environments. That is, whether they

treat them as generic objects or distinguish them as landmarks [Scaplen et al.,

2014; Chan et al., 2012]. According to the Burwell Laboratory of Memory and

Attention [BL, 2019], there are currently many outstanding questions about the

roles of ‘landmarks’ and ‘objects’ in guiding human behaviour, however, the primary

difference between them lies in the fact that ‘landmarks’ are used for orientation

purposes, while ‘objects’ merely contribute to the contextual background and accrue
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various associative properties. It has also been argued that specialisation of ‘objects’

as ‘landmarks’ should be based on the function of the ‘object’ within a specific

navigational context. Where appearance is concerned, the more distinct an ‘object’

looks within an environment (and more informative or memorable its features are),

the more likely can be associated with the ‘landmark’ category [Stankiewicz and

Kalia, 2007]. Also, the stability of ‘objects’ in the environment can influence their

role as ‘landmarks’. If the former are to be counted as ‘landmarks’, then they

need to be able to provide reliable navigational information, predominantly at the

expense of a stable spatial position as it has been previously shown that objects at

decision points are better remembered than those at non-decision locations [Jansen-

Osmann and Fuchs, 2006; Kessels et al., 2011]. A study of virtual route-navigation

by [Mallot and Gillner, 2000] demonstrated how objects in the environment attain

action-related associations, and although ‘landmarks’ are commonly referred to as

discrete objects, the geometry of their extended surface or boundaries can also

provide important information for navigation.

6.1.3 Semantic density of scenes

During our movement in space, a sense of direction can help us to establish an un-

derstanding about spatial relationships between different locations and can improve

the representational stability of situated real-world objects [Wang and Spelke, 2000].

For humans, orientation and directional information are controlled predomi-

nantly visual cues and hence it can be argued that for successful navigation in space

one needs to operationalise already accumulated storage of visual information about

previously visited locations or to create new mental images for current or future ref-

erences. Performance for aligned versus misaligned (or connected vs. disconnected)

orientations is therefore considered to reflect the fact that semantic relationships be-

tween objects or scenes in the real world are assigned similar connections in memory

with respect to the specified reference direction.

6.2 Statistical indicators of crowd attention

Spatial attention belongs to those fundamental behaviours that are essential for ev-

eryday life. It serves the purpose of survival and involves nearly all sensory systems,

though visual information appears to prevail while traversing the environment in a

purposeful manner [Waller and Richardson, 2008; Murray and Wallace, 2011; Mast

and Jäncke, 2007]. Also, as a research branch of behavioural geography it is primar-

ily concerned with the question of how spatial information such as orientation (or
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direction) and attention (or focus) are coded cognitively. Specifically, whether this

is done egocentrically (i.e., in direct relation to the observer as a primary reference

point) or allocentrically (when the reference is a visual frame situated independently

from the observer’s position in space). The question of what is the difference be-

tween the strategies from the perspective of their cognitive underpinnings remains

a topic of debate [Ekström et al., 2014].

In order to deploy the concept of experiential mobility, I decided to extract

statistical indicators of the crowd attention from the geotagged images, taken during

the sequence of flood events 2004-2014 in the UK. Such indicators belong to the

category of the ‘natural scene statistics’ and are quite common application in the

field of computer vision [Stansbury et al., 2013]. Such indicators are: (1) descriptive

(qualitative); (2) quantitative and (3) relational.

6.2.1 Hypotheses

Analysis of perceptual experiences during flood events can be sensitive to both

spatial and temporal design constraints. For example, we can characterise public

behaviour during individual events, behaviours for a particular area across multiple

events or across events of the similar types of severity. Whilst these questions would

form a nice exploratory analyses for subsequent case studies, for the purpose of

this thesis I decided to follow the route aiming to make sense of public behavioural

response to event evolution and flood warning information [Goulter and Myska,

1987; Parker et al., 2009; Du et al., 2016].

In order to evaluate visual experiences of the exposed crowds, I used spatial

designations for each of the 3-stage flood risk communications (i.e., ‘Alerts’, ‘Warn-

ings’ and ‘Severe warnings’). I selected images from the Yahoo! Flickr platform

that are tagged with either of the three groups of keywords: (a) direct event de-

scriptors (i.e., ‘flood’); (b) alternative lexemes, exhibiting transient semantic drift

around flood events (‘river’, ‘water’) [Tkachenko et al., 2017a] and benchmark lex-

emes, used to describe the general, undisturbed state of the natural landscape of

floodplains (i.e., ‘nature’, ‘landscape’.

My interest to structure the method around semantic drift in this analysis is

twofold: (a) First of all, I am interested to observe the phenomenon dynamics (both

qualitative and quantitative) at much finer, sub-event, scale; (b) Secondly, it would

be useful to verify the usefulness of different groups of lexemes for various flood

stages. And since the three abovementioned groups of lexemes are treated here as

situational construals that are reflected in the visual and linguistic modalities of the

dataset [Divjak et al., 2016; Reiter and Sripada, 2002; Garcia et al., 2012; Rohrdantz
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et al., 2012], my two main hypotheses are as follows:

Hypothesis 1: Scene compositions of the direct event descriptors and se-

mantically drifted material start resembling each other as event evolves;

Hypothesis 2: Since semantic drift is a context-driven rather than con-

trolled process, we should expect lexico-visual responses to be more sensitive to

event severity when compared to the timing of flood risk communication.

6.3 Materials and methods

We already know that people tend to classify scenes according to their context and

compositionality, which means that natural scenes can relate to each other as se-

mantically close or distant in a manner similar to the principle of linguistic word

embeddings. According to the latter, words or concepts tend to form situational

clusters that do not necessarily coincide with their ontological (or dictionary) sim-

ilarities, but do so according to their uses and co-occurrences in various domains

of everyday life. With this concept in mind, I extracted computer classified scenes,

alongside their classification confidence values, which will serve as indicators for the

definition of ‘objects’ and ‘landmarks’, and verified how they relate to each other

semantically within floodplains associated with various degrees of risk.

6.3.1 Datasets

YFCC100M

I used the Yahoo Flickr Creative Commons 100M (YFCC100M) dataset [Thomee

et al., 2016] containing a list of images and videos uploaded to the Yahoo! Flickr

platform between April 2004 and August 2014. All the audio-visual material pro-

vided in this database is licensed under one of the Creative Commons copyright

licenses (CC:BY).

Flood stages and risk communication

Flood stages are used to describe the progress in covering the designated flood risk

areas with water. The main principle behind the designation of flood risk areas is

topographic gradient [Tewolde and Smithers, 2006]. Originally derived from direct

geodetic surveys, now floodplains are designated with the help of more dynamic

remote sensing techniques, using repeat high resolution orthophotography and pho-

togrammetry.
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Designations of topographically defined flood risk areas are used for various

purposes. For example, insurance companies use them to automatically identify

at-risk properties. Also, depending on the flood stage progression, flood risk areas

are used by authoritative environmental bodies (such as the Environment Agency

in the UK) to inform the public and organise rescue and evacuation campaigns.

In the UK, there are three types of risk communication messages, correspond-

ing to the stages of event severity: Alerts (‘Flooding is possible. Be prepared ’), which

are used from two hours to two days in advance of flooding, Warnings (‘Flooding is

expected. Immediate action required ’), which are used from half an hour to one day

in advance of flooding and Severe flood warnings (‘Severe flooding. Danger to life’),

which are put in place when flooding poses a significant threat to life.

Spatial designations of floodplains under Alert, Warning and Severe warning

statuses and historic records of risk communication are available from the Govern-

ment Data Portal [DSP, 2019]. The spatial intersection of these areas with the

Yahoo! Flickr posts is illustrated in Fig 6.1.
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Figure 6.1: Spatial extraction of social media data. Distribution of geolocated Flickr
tags uploaded to the platform during 2004-2014 within spatial designations used as
communication units for flood alert (yellow), warning (orange) and severe warning
(red) messages by the Environment Agency, UK.

For designations of the ‘before’ and ‘after’ periods around flood risk commu-

nication, I selected 100 hours (appr. four days) in each direction around the timing

of the announced risk status for each designated floodplain. The temporal distribu-

tion of relevant tags around ensembles of flood events 2004-2014 is illustrated below

(Fig 6.2).

108



Figure 6.2: The temporal distribution (±100 hours) of tags around announced major
flood events in the UK (2004-2014), using 3-stage flood risk communication system
(alerts, warnings and severe warnings).

6.3.2 Methods

There are two types of information we need to extract from the social media dataset:

(a) classification of scenes into categories of ‘objects’ and ‘landmarks’ posted before

and after flood risk warning messages across all three stages of event severity (alerts,

warnings and severe warnings), and (b) semantic relatedness of identified ‘objects’

and ‘landmarks’.

In the case of the allocentric crowd attention there are no obvious landmarks

in sight, as well as no obvious connections between places. So, whilst adapting this

statement to the properties of our data, it can be argued that landmark-equivalent

corresponds to the well-defined scene associated with the highest probability value

by the classification algorithm [Stansbury et al., 2013]. Connections (or their ab-

sence) between places can be also expressed with the help of the statistical prob-

ability of co-occurrences of scenic categories near each other, for example, in news

outlets, which comprise a substantial topical corpus on natural disasters due to
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their ‘newsworthiness’ [Gold, 1980]. In the case of the egocentric collective atten-

tion, the situation is the opposite, where we should expect an increased number of

well-defined, typical scenes with strong semantic connections.

This framework is quite flexible as it can be adapted to multiple questions

concerned with spatio-temporal, cognitive dynamics of crowds (Fig 6.3).

Figure 6.3: Allocentric-egocentric scene attribution. Flickr images (‘Flooded Street’
by pelennor – CC BY-NC-ND 2.0) posted during the same hour from the same
area. The scheme demonstrates the gradual shift from egocentric to allocentric
scene compositions.

‘Deep’ image classification into ‘objects’ and ‘landmarks’

For natural scene classification I used the pre-trained Places CNN from MIT [Her-

ranz et al., 2018; Zhou et al., 2014], which classifies images into 365 scene categories.

This dataset was designed to account for the human visual cognition system and

is widely used for training classifiers to recognise high-level visual tasks, such as

object detection, scene classification or event prediction. Each scene category is de-

scribed with a two-tier labeling system, where simple nominal semantic categories

(such as ‘road’ or ‘forest’) are associated with their functional counterparts (e.g.,

‘broadleaved forest’, ‘mixed forest’, ‘city road’ or ‘desert road’). Following this clas-

sification, each image was allocated up to five scene categories and each of these

values were used to make a decision whether the classified scenes corresponded to

the categories of ‘objects’ or ‘landmarks’.

Jaccard distance

As this analysis is conducted across ensembles of spatial units (i.e., floodplains)

and temporal segments (‘before’/‘after’ events) I used the metrics of compositional
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dissimilarity across extracted spatio-temporal groups of images. For this purpose

we chose Jaccard distance [Jaccard, 1912], which reflects the degree of dissimilarity

between situational scene ensembles and, in our case, aims to illustrate whether

people tend to focus on the same or different areas during the various stages of flood

events.

dJ =
A ∪B −A ∩B

A ∪B
(6.1)

Semantic density of complete graphs

It can be argued that since environmental spaces require ‘panoramic’ observation to

be effectively perceived [Sweeny and Whitney, 2014; Freundschuh and Egenhofer,

1997], the scenes-snapshots they are composed of also possess some kind of seman-

tic interaction, due to crowds’ attention, for example, to important aspects of flood

events (e.g., dramatic scenery of flooded houses and gardens, submerged vehicles,

etc.). Therefore we can use interactional methods for their estimation. Here, I de-

cided to turn to fundamental graph methods, which aim to explore semantic relat-

edness of scene clusters posted around each type of flood event (moderate (‘Alerts’),

severe (‘Warnings’) and dangerous (‘Severe warnings’)), in order to visualise seman-

tic pathways between previously identified ‘objects’ and ‘landmarks’. We therefore

can observe that a complete model of spatial navigational behavior for the area A

during the time interval (t1 − t) resembles the shape of a complete, weighted graph

G (E,V,w), where w:E→ eVal and eVal represents set of potential graph weights.

It can be argued that this type of situational semanticity can be analysed

with the help of traditional embedding methods, where the model is usually pow-

ered by the domain-specific corpora and is used to extract semantic weights between

lexical items (names of the scenes in our case) based on their co-occurrences. Fol-

lowing this principle, we used a standard word2vec cosine similarity algorithm for

weights compilation, where semantic similarity between two lexical concepts A and

B is represented as:

cos(θ) =
A ·B
‖A‖‖B‖

=

n∑
i=1

AiBi√
n∑

i=1
A2

i

√
n∑

i=1
B2

i

(6.2)

My algorithm was based on a pre-trained Google word2vec model [w2v, 2013]
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containing three million words and phrases, which has been trained on Google News

data (around 100 billion words) and fitted using 300-dimensional word vectors (fea-

tures).

Finally, I estimated sets of graph densities to be compared with each other

using proportions between actual and potential semantic weights, where 0 means

that scenes are semantically unrelated (conditions of poor or lack of orientation)

and 1 illustrates topically connected clusters of the natural scenes:

dG(A,∆t) =

∑
(w : E)∑
eV al

. (6.3)

6.4 Results

6.4.1 Compositional dissimilarity

First I decided to look into how scenes tagged with alternative (neutral) lexemes

(‘river’, ‘water’) differ from the two other groups of risk signalling (‘flood’) and

benchmark words (‘nature’, ‘landscape’) (Fig 6.4).

Figure 6.4: Jaccard distance between the scenes, tagged with neutral, positive and
risk-signalling words posted before and after flood events 2004-2014. These results
illustrate that the compositional distance between neutrally tagged photographs and
the two other sets generally decreases with event severity, both before and after risk
communication messages. Zero values here correspond to ‘no data’.

112



Here, neutral lexemes, which have previously demonstrated a transient shift

of meaning around flood events [Tkachenko et al., 2017a], show an increased struc-

tural dissimilarity with both sets of words. This distance gradually decreases with

the increase of event severity, for both cases before and after official risk communica-

tion messages. This can be indicative of the fact that during the early stages of flood

events alternative lexemes are associated with more generic natural scenes and as the

hazard evolves, their similarity with the ‘flood’-tagged scenes increases. However,

this step required subsequent comparison of scenes tagged with event descriptors

(‘flood’) and positive words (‘nature’, ‘landscape’) (Fig 6.5).

Figure 6.5: Jaccard distance between scenes, tagged with positive (‘nature’, ‘land-
scape’) and risk-signalling (‘flood’) words posted before and after flood events 2004-
2014. These results illustrate that before risk communication the dissimilarity in-
creases evenly between ‘flood’-tagged and positively-tagged scenes with the increase
of the event severity. After risk communication it also evenly decreases with event
severity. This can be indicative of the fact that the perceived event severity affects
segregation of the visual material in the same manner as authoritative risk com-
munication, where the former segregates crowds according to the perceived danger,
whilst the latter re-focuses their attention back onto familiar landscapes.

Here we can observe that the compositional distance of positively tagged

scenes posted before flood risk communication, varies very little with event severity

and this pattern replicates for the ‘flood’-tagged scenes after authoritative warn-

ings. This suggests that ‘flood’-tagged scenes hold the potential to discriminate the

severity of evolving flood events before risk communication, whilst positively tagged
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material have the potential to indicate post-event recovery when analysed alongside

each other. However, definitive conclusions are difficult to draw because of the lack

of ‘flood’-tagged material posted before severe warnings and positively-tagged scenes

after.

Finally, I looked at the compositional distance that the same three sets of

lexemes tend to exhibit between themselves before and after authoritative risk com-

munication (Fig 6.6). The results show the biggest structural distance in case of

the alternative lexemes (‘river’, ‘water’), and the smallest for the case of positively-

tagged scenes ‘nature’ and ‘landscape’, with risk-signalling material occupying a

somewhat intermediate position between both groups.

Figure 6.6: Compositional Jaccard distance between the sets of images posted before
(horizontal axis) and after (vertical axis) ensembles of flood events 2004-2014. The
results illustrate that scenes tagged with the alternative lexemes-candidates for sit-
uational semantic shift demonstrate the highest compositional distance before and
after flood risk communication, which is also independent of the event severity.

Looking at these sets of results it is therefore possible to conclude that event-

specific semantic drift of the neutral words (‘river’, ‘water’) discovered in our previ-

ous work [Tkachenko et al., 2017a] is also supported by the compositional dissimilar-

ity of the images with which they are associated. Despite their temporal correlation

with both sets of lexemes (positive and risk-signalling), the structural dissimilarity

of their associated scenes across both sets – which decreases with event severity –

may be indicative of the discriminatory potential for the severity of evolving hazards
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before authoritative risk communication takes place, as well as of varying (according

to event severity) coping mechanisms of crowds after formal announcements of risk

states.

6.4.2 Quantitative and relational statistics

Spatial focus

Fig 6.7 illustrates results of the deep learning image classification with help of the

pre-trained Places CNN (See Methods section above). Here we observe very lit-

tle variation between the strengths of scene classification across all three groups

of images associated with positive (‘nature’, ‘landscape’), negative (‘flood’) or neu-

tral (‘river’, ‘water’) semantic tags. Nevertheless, it was possible to extract sub-

populations with the classification confidence above and below 0.5 in order to per-

form some further relational analysis of the semantic density between, what we can

define as ‘more focused’ (p>0.5) and ‘less focused’ (p<0.5) scenes.

Figure 6.7: Distribution of the confidence values of the natural scene classifications
using MIT Places CNN.
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Semantic density of scenes

Semantic density is a network-based statistical indicator, based on the lexical prop-

erties of the scene classification step. Using word embeddings and lexical network

analysis (Chapters 3.4.3 and 3.4.4) I explored relational density between the lexical

categories, which are used to describe scenes with the different degrees of focus.

Fig 6.8 illustrates the following findings:

1. The semantic density of all ‘flood’-tagged scenes gradually decreases with the

increase in event severity. Following previous sets of findings, this phenomenon

is coupled with the simultaneous increase in spatial focus. In the case of

semantically unstable material the trend is exactly the opposite: increased

semantic density is accompanied with a decrease in focus;

2. Amongst groups of outliers and as compared to the entire datasets, the most

dramatic examples of semantic density are for scenes tagged with semantically

unstable words and this density also increases with event severity. It is there-

fore possible to conclude that after emergence of ‘flood’-tagged scenes, the

rest of the alternative lexemes start losing their significance as risk-signallers

and prepare to mutate back to more positive connotations (i.e., ‘nature’ and

‘landscape’).

Figure 6.8: Semantic density of navigational frames captured by images on the
Yahoo! Flickr platform posted before and after official flood risk communication.
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6.4.3 Cross-interval comparison of focus distributions

To finalise the results obtained during data exploration I performed Kruskal-Wallis

H Test on the spatio-temporal data segments. Prior to this I run the normality test

(Fig 6.9), rejection of which suggested use of the test for population distributions

without assuming them to follow the normal distribution.
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Figure 6.9: QQ plots and Shapiro-Wilk normality test values of the focus indices,
extracted from classification of (FRWNL) natural scenes across the following time
intervals: (ace) before official flood risk communication; (bdf) after official flood risk
communication; (ab) during flood alerts; (cd) during flood warnings; (ef) during
severe flood warnings.

Modeling time intervals were selected to answer the third big question of

this thesis, specifically whether semantically unstable material has the potential

to segment events according to their evolving severity. In the context of flooding

this means that attention focus expressed via posted images should be significantly

different during event stages, rather then before/after authoritative flood risk com-

munication.

The null hypothesis was that attention focus on the spatio-temporal ensem-

bles of images is represented by identical populations. To test the hypothesis, I
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applied the kruskal.test R function to compare the independent point data. Results

presented in Table 6.1 illustrate the p-values for the three groups of lexemes. Here

we can observe that semantically unstable lexical material (RW) is represented by

the sets of images, which tend to vary compositionally in response to the event sever-

ity rather than to the authoritative flood warning communication. This behavior

to the certain degree replicates the pattern of direct event descriptors (F), which

demonstrates composition of non-identical populations extracted from the images

posted during various types of warnings, but identical before and after risk com-

munication. Interestingly, the benchmark lexemes (NL) demonstrated completely

opposite trend, where event severity showed no observable influence on the compo-

sitional structures of the images posted during flood events on the floodplains, but

where alerts and warnings led to significant difference in the composite focus of the

natural scenes.

Before/after warnings Across warning types

F 1.24 NS 8.69 **

RW 1.97 NS 3.83 *

NL 4.63 ** 0.38 NS

Table 6.1: Kruskal-Wallis H test (** = p<0.05; * = p<0.1).

6.5 Conclusion

The importance of this analysis lies in the fact that making use of social media can

help us to substantially expand operational knowledge regarding the locations of

the most vulnerable populations during hazardous events, as well as to make use of

valuable local knowledge of how to efficiently manoeuvre using local landmarks and

their semantic connectivity. These strategies generally align with risk perception

studies, highlighting the importance of social insights for designing and evaluat-

ing risk communication programmes, as without detailed knowledge of behavioural

contexts of targeted audiences, risk communication is unlikely to succeed.

The first set of informative findings here suggest that significant scope exists

for exploration of use of the abstract language during extreme and risky events,

which can be significantly enhanced with application of the multimodal techniques.

This statement is also supported by the earlier research in social psychology about

situational use of the abstract language [Smith and Trope, 2006; Wakslak et al.,

2014] by the distinct groups, which can be defined as more “confident”.

In this analysis, the structural dissimilarity of the associated with the neutral
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tags scenes across both sets (positive and risk-signalling), which decreases with event

severity, is also indicative of the discriminatory potential for the severity of evolving

hazards before authoritative risk communication takes place. Our statistical analysis

confirms this, however, it can be advised that such analysis would benefit from

testing across wider range of the hazard events or risk-related situations before the

definite conclusion about the full potential of semantically drifted material for event

segmentation on social media is made.
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Chapter 7

Results and Discussion
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Since, to the best of my knowledge, no study so far attempted to look into

the concept of event-driven semantic drift, I needed to start off with the ques-

tion of whether we can detect events with help of semantic drift on social media

(i.e., whether words, which are ontologically close to the direct event descriptor, ex-

hibit similar to it behaviour throughout duration of the event). A frequency-based

[Kulkarni et al., 2015] approach was selected in order to demonstrate the quantita-

tive co-fluctuations of the candidates for semantic drift (‘river’, ‘water’) with either

direct event descriptor ‘flood’ or ‘benchmark’ lexemes (‘nature’, ‘landscape’). This

experiment confirmed that meaning drift of the words-candidates is indeed tran-

sient and the strength of relationships with the direct event descriptors appears to

be higher several days before the peak of the event, thus indicating potential routes

for exploring the predictive capacity of the semantically unstable lexical material on

social media.

From the perspective of distributional semantics, what I proposed here can be

regarded as an emerging hybrid method design, illustrating how to capture periodical

word meaning broadenings and narrowings that form a basis for transient semantic

shifts. While ongoing theoretical discussions in the field of semantic change are

concerned with the uni-directional (irreversible) semantic changes playing a role in

long-term language evolution, my method is mostly concerned with short-term and

reversible changes that, according to some scholars are not lexical drifts at all, and

could be seen as instances of semantic instability [Tredici et al., 2019].

Whist the first experiment provided some promising results, there are, nev-

ertheless, some obvious limitations. For instance, targeting more numerous posts

than direct event descriptor, I used only a very small number of the words-candidates

for semantic drift, whilst ignoring less numerous individually, but potentially more

numerous in combination. Incorporation of the complete ontological networks in

this type of event analytics can provide promising avenues for future studies, which

can critically evaluate and compare performance of the words-candidates. Secondly,

whilst frequency-based approaches are generally acceptable by some corpus linguists

[Hamilton et al., 2016b; Kulkarni et al., 2015], some others [Dubossarsky et al., 2017;

Antoniak and Mimno, 2018] find it ambiguous, so the scope still remains for testing

embedding-based approaches (word2vec, GloVe, PPMI, neural nets) [Pennington

et al., 2014; Levy et al., 2015], whilst accounting for ontological similarity.

Once the tendency for situational semantic change was detected, I wanted to

further verify how valuable those data signals are from the spatial perspective and

whether they are capable of the differentiating flooding types, which can be specific

for different areas due to their repetitive nature. For this purpose I used UK-wide
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spatial designations of the four main hydrometric networks, notably groundwater,

precipitation, river flow and surface water stations, and I decided to test temporally

aggregated (2004-2014) social media data points for the presence of spatially sig-

nificant clusters. Initial sets of results (Global Moran’s I demonstrated that there

is potential for differentiating ‘slow’ floods (e.g., groundwater and precipitation (or

pluvial) ones) from the ‘fast’ floods (surface water and river flow ones).

When looking at the structure of the local indicators of spatial autocorrela-

tion (LISA), we can notice a slight segregation of results, where surface water (‘SW’)

and precipitation (‘Pr’) scenarios constitute a group with the lowest trend of com-

bined semantic drift (FRW), whilst river flow (‘RF’) and groundwater (‘GW’) form

the group with the highest trend, although still smaller than in case when lexemes

(R) and (W) are modelled individually (i.e., (FR( and (FW), respectively).

And returning back to our research question, I can confirm the results ob-

tained during the global autocorrelation modeling and say that surface water and

river floods are the ones, that provoke the highest volumes of semantically drifted

material, presumably indicating more radical shift of attention from more environ-

mentally neutral objects/topics. However, in the context of their global autocorrela-

tion, the clusters they produce are much weaker with less prominent locations, which

means that they are much less localised and much more widespread that pluvial and

groundwater floods.

From the data selection perspective, the importance of accounting for single-

or combined scenarios became more obvious when we look at the structure of signif-

icant spatial relationships between the modelled units. Fig 5.8 shows that combined

models represent the highest potential to detect hot- (where event takes place) and

cold spot (where event definitely does not) cluster areas, whereas single lexemes are

only indicative of the processes occurring nearby.

This analysis provided some promising results for differentiation of the two

main groups of flooding types, using existing infrastructure of the specialised sensors.

As it became obvious during presentation of the results, I can suggest two research

avenues for the follow-up studies.

The first one is linked to more critical selection of the candidates for semantic

drift; Although ontologically approximated lexemes showed some promising results,

there is nevertheless a scope for more systematic analysis of individual candidates,

as well as for testing their combined performance. This type of analysis can provide

some useful for environmental monitoring socio-linguistic profiles of the areas, where

use of certain words or their combinations by the local residents can signal certain

types of phenomena.
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The second one is linked to more critical modelling approaches; Whilst

Moran’s I can be seen as an optimal model, the scope still remains to validate these

results across other indices of spatial dependency [Fan and Myint, 2014]. There is

also a scope for more critical, distributed analyses (e.g., ‘time-space cubes’ [TSC,

2019]), however, this is adviseable for the scenarios with more numerous candidates

for semantic drift.

The idea that shift of attention (i.e., contextual attention shift) during hazard

(or any other critical situation) conditions the true meaning behind the words people

use was further followed up in the Chapter 6. From the practical perspective, I also

wanted to verify how event stages, which are used by the Environment Agency

and the Met Office in the UK, are reflected in the patterns of the collective crowd

attention throughout flooding hazards. This idea was borrowed from the market

segmentation strategies, based on behavioural profiles of the customers for more

efficient targeting and adopted in the early 20s in the last century [Dickson and

Ginter, 1987].

This set of results demonstrated that different types of crowdsourced lexical

material with associated visual media related to the topic of environmental percep-

tion of risk have the potential to not only sense an approaching flooding hazard, but

also indeed provide some insights into its stages, (ranging from the least to the most

severe), thus providing the basis for situational event segmentation strategies. The

main mechanisms behind such segmentations are linked to the active and passive

ways in which people tend to act and react in conditions of uncertainty [Rotenberg,

2009], specifically a proactive search for visual cues in the surrounding environment

before official warnings are issued [Tkachenko et al., 2016b]. Nevertheless, although

some valuable patterns in data analysis started emerging, it was possible to con-

clude that this analysis will significantly benefit from testing on far more extensive

datasets and potentially across much wider range of events.
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Chapter 8

Conclusions
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The main purpose of this thesis was to understand how to approach a spe-

cific natural hazard (i.e., flooding) from the social event perspective by using data,

generated by event participants before, during and after the event(s) in order to

assist to the design of the socially adapted flood risk management strategies. I used

multimodal social media platform Yahoo! Flickr in order to propose three meth-

ods, aiming to answer currently problematic areas in flood risk monitoring, such as

event detection [Wilkinson et al., 2015], differentiation [Wilkinson et al., 2014] and

segmentation [Wang et al., 2016].

Social media has already been widely used in various events analytics studies

[Alexander, 1991], including hazard monitoring [Earle, 2010; Acar and Muraki, 2011;

Weng et al., 2011; Aggarwal and Abdelzaher, 2012; Al-Saggaf and Simmons, 2015;

Preis et al., 2013; Peary et al., 2012] and mobility of the crowds during catastrophic

events [Wang and Taylor, 2018]. Data selection for such studies is usually made on

the basis of georeferenced keywords, which are direct event descriptors (e.g., ‘flood’,

‘storm’, ‘avalanche’). As a consequence [I hypothesised], a lot of material, which

can be potentially useful for event monitoring, is being omitted. To address this

gap, I turned my attention to the concept of semantic drift, which is a well known

category in distributional semantics and recently received a lot of attention from

the web-focused corpus linguistics researchers [Hamilton et al., 2016b; Antoniak

and Mimno, 2018; Dubossarsky et al., 2017; Kulkarni et al., 2015]. Whilst the

main practical application of this concept is to understand diachronic dynamics

of language, I decided to repurpose these recent findings (also known as ‘Laws of

Semantic Change’ [Hamilton et al., 2016b]) to verify whether semantic drift also

occurs around flood events and whether it generates additional data signals, which

can be used to answer research questions of this thesis.

Following these theories, rather than standard embeddings-based approach

of the corpus lingusitics, I manually selected lexemes-candidates for semantic drift,

based on their ontological relationships [Fillmore, 1991]. This was done with the pur-

pose to demonstrate behaviour of more numerous data signals around flood events,

but also, more importantly, to develop a method for corpus-, period- and timestep-

independent change of meanings. Following this principle, the latter would have

suited analysis of both event-driven and natural semantic drifts across various cor-

pora, however, in the scope of my analysis I concentrated on the single one, compris-

ing several modalities. There is obviously a scope for the future studies to verify the

behaviour of event-driven drifts across different corpora, for example, on Twitter

and Facebook.

According to some emerging views in data science, at some point in the near
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time theory-free data-driven models will entirely supplant models that explicitly

start from theory [Lyon, 2015]. From this perspective environmental and climate

research look as interesting test cases for the suggested shift from process-based to

so called “theory-free modelling” [Knüsel et al., 2019] as so far ‘big data’ typically

has been applied to ‘small problems’ of the structured cases of repeated evalua-

tion of predictions. Very recently, [Knüsel et al., 2019] have provided some critical

overview towards the case of ‘big’ environmental analytics by pointing out interme-

diate categories between classical domain science and ‘big data’, thus implying that

“...Big-data elements can be useful for climate research beyond small problems if

combined with more traditional approaches based on domain-specific knowledge...”.

It can also be argued that where social media data is concerned as a ‘big data’ source,

the tendencies towards its complementary modeling alongside existing sensors’ sig-

nals [Restrepo-Estrada et al., 2018] can be also explained by the present scepticism

due to inability to predict platform longevity or continuity of the API services or

incapacity to find the ways to tackle its spatio-temporal inconsistencies [Restrepo-

Estrada et al., 2018]. As a consequence, although behavioural event analytics is

gaining an increasing attention amongst researchers and practitioners, natural haz-

ard analytics is, nevertheless, still heavily grounded in techno-instrumental tradition

of the physical sciences, where people are treated as passive agents rather than active

event participants and decision makers.

Since event analytics is essentially concerned with pursuit of the main prag-

matic aims of detection, differentiation and segmentation of phenomena, these tasks,

whilst also representing the outstanding questions in flood risk management, have

been repurposed in the context of this thesis for analysis of the hydrological risks

from perspective of exposed populations, whose real-world experiences are captured

by various modalities of the social media data (i.e., lexical, visual, geolocational).

I decided to use semantic drift as an emerging analytical tool whilst being

primarily driven by the research interest to verify how it can help to answer some of

the most pressing questions for flood risk management. However, I was also intrigued

by the possibility to verify what can happen if we decide to develop methods, where

traditional data and measurements lose their position of a primary information

components and are used as a mere reference/background source. In such ways, I

contemplated, we can see how far we can get when using social media as one of the

main sources of information for risk communication and decision-making.
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M Bréal. Essai de Sémantique: Science des Significations. Paris: Hachette., 1897.

D Brockmann, L Hufnagel, and T Geisel. The scaling laws of human travel. Nature,

439(7075):462–465, 2006.

G Brogueira, F Batista, and JP Carvalho. Using geolocated tweets for characteri-

zation of Twitter in Portugal and the Portuguese administrative regions. Social

Network Analysis and Mining, 6(37), 2016.

JD Brown and SL Damery. Managing flood risk in the UK: Towards an integra-

tion of social and technical perspectives. Transactions of the Institute of British

Geographers, 27:412–426, 2002.

C Brugman and G Lakoff. Cognitive topology and lexical networks. In: GW Cottrell,

S Small and MK Tannenhause (Eds.) Lexical Ambiguity Resolution: Perspectives

from Psycholinguistics, Neuropsychology and Artificial Intelligence. San Mateo,

CA: Morgan Kaufman Publishers, 1988.

TE Bunting and L Guelke. Behavioral and Perception Geography: A Critical Ap-

praisal. Annals of the Association of American Geographers, 69(3):448–462, 1979.

I Burton and RW Kates. The perception of natural hazards in resource management.

Natural Resources Journal, 3(3):412–441, 1964.

J Chakraborty, GA Tobin, and BE Montz. Population evacuation: Assessing spatial

variability in geophysical risk and social vulnerability to natural hazards. Natural

Hazards Review, 6(1):23–33, 2005.

E Chan, O Baumann, MA Bellgrove, and JB Mattingley. From objects to landmarks:

The function of visual location information in spatial navigation. Frontiers in

Psychology, 3:304, 2012.

A Chioda. Monitoring urban mobility with social networks. Master graduation thesis

submitted to Politecnico di Milano., 2014.

Y Chun and DA Griffith. Spatial Statistics and Geostatistics. SAGE Publications,

2013.

AD Cliff and JK Ord. The Problem of Spatial Autocorrelation. London: Pion., 1969.

MA Cohen, GA Alvarez, and K Nakayama. Natural-scene perception requires at-

tention. Psychological Science, 22(9):1165–1172, 2011.

133



R Cohen, S Havlin, and D Ben-Avraham. Structural properties of scale free networks.

Handbook of graphs and networks. Wiley-VCH., 2002.

V Cologna, RH Bark, and J Paavola. Flood risk perceptions and the UK media:

Moving beyond ‘once in a lifetime’ to ‘Be Prepared’ reporting. Climate Risk

Management, 17:1–10, 2017.

National Research Council. Geotargeted Alerts and Warnings: Report of a Work-

shop on Current Knowledge and Research Gaps. Washington, DC: The National

Academies Press., 2013.

A Crooks, A Croitoru, A Stefanidis, and J Radzikowski. Earthquake: Twitter as a

distributed sensor system. Transactions in GIS, 17(1):124–147, 2013.

RJ Dawson, R Peppe, and M Wang. An agent-based model for risk-based flood

incident management. Natural Hazards, 59:167–189, 2011.

S Deerwester, ST Dumais, G Furnas, T Landauer, and R Harshman. Indexing

by latent semantic analysis. Journal of the American Society for Information

Science, 41:391–407, 1990.

L Degrossi, J Albuquerque, C Restrepo-Estrada, A Mobasheri, and A Zipf. Explor-

ing the geographical context for quality assessment of VGI in flood management

domain. Proceedings of 14th ISCRAM conference, 2017.

J Diaz-Nieto, DN Lerner, A Saul, and J Blanksby. GIS Water-Balance Approach

to Support Surface Water Flood-Risk Management. Journal of Hydrologic Engi-

neering, 17:55–67, 2012.

PR Dickson and JL Ginter. Market Segmentation, Product Differentiation, and

Marketing Strategy. Journal of Marketing, 51(2):1, 1987.

D Divjak, E Dabrowska, and A Arppe. Machine meets man: Evaluating the psy-

chological reality of corpus-based probabilistic models. Cognitive Lingusitics, 27

(1):1–33, 2016.

E Du, S Rivera, X Cai, L Myers, A Ernest, and B Minsker. Impacts of human

behavioural heterogeneity on the benefits of probabilistic flood warnings: An

agent-based modeling framework. Journal of the American Water Resources As-

sociation, 53(2):316–332, 2016.

A Dubey. Deep learning the city: Quantifying urban perception at a global scale.

European Conference on Computer Vision, 2016.

134



H Dubossarsky, D Weinshall, and E Grossman. Outta Control: Laws of Semantic

Change and Inherent Biases in Word Representation Models. Proceedings of the

2017 Conference on Empirical Methods in Natural Language Processing, pages

1136–1145, 2017.

J Durbin. Weak convergence of the sample distribution function when parameters

are estimated. The Annals of Statistics, 1(2):279–290, 1973.

P Earle. Earthquake Twitter. Nature Geoscience, 3:221–222, 2010.

J Eisenstein. Unsupervised learning for lexicon-based classification. Proceedings of

the National Conference on Artificial Intelligence (AAAI), 2017.

AD Ekström, AEGF Arnold, and G Iaria. A critical review of the allocentric spatial

representation and its neural underpinnings: Toward a network-based perspective.

Frontiers in Human Neuroscience, 8:803, 2014.

D Elkind and L Scott. Studies in Perceptual Development I: The Decentering of

Perception. Child Development, 33:619, 1962.

O Etzion and P Niblett. Event Processing in Action. Manning, Greenwich., 2011.

C Fan and S Myint. A comparison of spatial autocorrelation indices and landscape

metrics in measuring urban landscape fragmentation. Landscape and Urban Plan-

ning, 121:117–128, 2014.

G Fattoruso, A Agresta, S De Vito, A Buonanno, M Molinara, C Marrocco, F Tor-

torella, and G Di Francia. Online anomaly detection on rain gauge networks for

robust alerting services to citizens at risk from flooding. In: Gervasi O. et al.

(Eds.) Computational Science and Its Applications, 10406:427–442, 2017.

T Filatova. Empirical agent-based land market: Integrating adaptive economic be-

haviour in urban land-use models. Computers, Environment and Urban Systems,

54:397–413, 2015.

CJ Fillmore. ‘Corpus linguistics’ vs. ‘Computer-aided armchair linguistics’. Direc-

tions in Corpus Linguistics: Proceedings from a 1991 Nobel Symposium on Corpus

Linguistics, pages 35–66, 1991.

MM Fischer and A Getis. Handbook of Applied Spatial Analysis: Software Tools,

Methods and Applications. Springer-Verlag Berlin Heidelberg., 2010.

135



K Freberg, K Saling, KG Vidoloff, and G Eosco. Using value modeling to evaluate

social media messages: The case of Hurricane Irene. Public Relations Review, 39

(3):185–192, 2013.

SM Freundschuh and MJ Egenhofer. Human conceptions of spaces: Implications

for Geographic Information Systems. Transactions in GIS, 2(4):361–375, 1997.

T Fujiyama, C Matsui, and A Takemura. A power-law growth and decay model

with autocorrelation for posting data to social networking services. PLoS ONE,

11:e0160592, 2016.

P Gaenssler and W Stute. Empirical processes: A survey of results for independent

and identically distributed random variables. The Annals of Probability, 7(2):

193–243, 1979.

JAE Gaitan, S van de Giesen, and NC ten Veldhuis. Can urban pluvial flooding be

predicted by open spatial data and weather data? Environmental Modelling and

Software, 8:156–171, 2016.

D Garcia, A Garas, and F Schweitzer. Positive words carry less information than

negative words. EPJ Data Science, 1(3):1–12, 2012.

P Gärdenfors. Conceptual Spaces: The Geometry of Thought. MIT Press., 2000.

P Gärdenfors. Cognitive semantics and image schemas with embodied forces. In:

JM Krois, M Rosengren, A Steidele and D Westerkamp (Eds.) Embodiment in

Cognition and Culture. John Benjamins Publishing Company, pages 57–76, 2007.

D Geeraerts. Cognitive linguistics and the history of philosophical epistemology. In

R Geiger and B Rudzka-Ostyn, eds., Conceptualizations and mental processing in

language. Berlin: Mouton de Gruyter., 1993.

A Getis. Reflections on spatial autocorrelation. Regional Science and Urban Eco-

nomics, 37:491–496, 2007.

A Getis. A history of the concept of spatial autocorrelation: A geographer’s per-

spective. Geographycal Analysis, 40:297–309, 2008.

A Getis and JK Ord. The analysis of spatial association by use of distance statistics.

Geographical Analysis, 24:189–206, 1992.

RW Gibbs and HL Colston. The cognitive psychological reality of image schemas

and their transformations. Cognitive Linguistics, 6(4):347–378, 1995.

136



JJ Gibson. The ecological approach to the visual perception. Boston: Houghton

Mifflin., 1979.

G Gilquin. Taking a new look at lexical networks. Lexis, 1:23–39, 2008.

CJ Glacken. Traces on the Rhodian Shore: Nature and Culture in Western Thought

from Ancient Times to the end of the Eighteenth Century. Berkeley: University

of California Press., 1967.

VG Glushkov. Geographical and hydrological method. Izh. GGI. No.57-58, 1933.

D Glynn and J Robinson. Corpus Methods for Semantics: Quantitative studies in

polysemy and synonymy. John Benjamins Publishing Company., 2014.

JR Gold. An Introduction to Behavioural Geography. Oxford University Press, 1980.

D Gonzales, L Kraus, J Osburg, SR Shelton, and D Woods. Geo-targeting Perfor-

mance of Wireless Emergency Alerts in Imminent Threat Scenarios. Published

in: Geo-Targeting Performance of Wireless Emergency Alerts in Imminent Threat

Scenarios (Washington, D.C.: U.S. Department of Homeland Security (DHS) Sci-

ence and Technology (SandT) Directorate, June 2016)., 2016.

MF Goodchild. Geographic Information Systems and Science: Today and Tomor-

row. Annals of Geographical Information Science, 15(1):3–9, 2009.

IC Goulter and NM Myska. The human component in flood warning and flood

response system. GeoJournal, 15(3):297–305, 1987.

J Grieve. A regional analysis of contraction rate in written Standard American

English. International Journal of Corpus Linguistics, 16:514–546, 2011.

J Grieve. A statistical comparison of regional phonetic and lexical variation in

American English. Literary and Linguistic Computing, 28:82–107, 2013.

J Grieve, D Speelman, and D Geeraerts. A statistical method for the identification

and aggregation of regional linguistic variation. Language Variation and Change,

23(2):193–221, 2011.

J Grieve, A Nini, and D Guo. Analysing lexical emergence in American English

online. English Language and Linguistics, 21:99–127, 2017.

DW Hamacher and RP Norris. Australian aboriginal geomythology: Eyewitness

accounts of cosmic impacts? Archaeoastronomy: the Journal of Astronomy in

Culture, 22:62–95, 2010.

137



T Hamaguchi, H Oiwa, M Shimbo, and Y Matsumoto. Knowledge Transfer for Out-

of-Knowledge-Base Entities: A Graph Neural Network Approach. Proceedings of

the Twenty-Sixth International Joint Conference on Artificial Intelligence, pages

1802–1808, 2017.

WL Hamilton, K Clark, J Leskovec, and D Jurafsky. Inducing domain-specific

sentiment lexicons from unlabeled corpora. Proceedings of the 2016 Conference

on Empirical Methods in Natural Language Processing, pages 595–605, 2016a.

WL Hamilton, J Leskovec, and D Jurafsky. Diachronic Word Embeddings Reveal

Statistical Laws of Semantic Change. Proceedings of the 54th Annual Meeting of

the Association for Computational Linguistics, page 1489–1501, 2016b.

J Handmer and B Proudley. Communicating uncertainty via probabilities: The case

of weather forecasts. Environmental Hazards, 7(2):79–87, 2007.

R Harris. The handbook of spatial statistics. International Journal of Geographical

Information Science, 25:333–334, 2011.

L Herranz, S Jiang, and X Li. Scene recognition with CNNs: Objects, scales and

dataset bias. 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 571–579, 2018.

R Heuser. Word vectors in the eighteenth- century. In IPAM workshop: Cultural

Analytics, 2016.

G Higginbottom. Sampling issues in qualitative research. Nurse Researcher, 12:

7–19, 2004.

J Hilferty. Mothers, lies, and bachelors: A brief reply to Wierzbicka (1990). Word,

48:51–59, 2015.

D Hilfinger, C Barrington, and E Lacy. Latino social network dynamics and the

Hurricane Katrina disaster. Disasters, 36:101–121, 2011.

JB Hirsh and JB Peterson. Personality and language use in self-narratives. Journal

of Research in Personality, 43(3):524–527, 2009.

G Hirst and D St-Onge. Lexical chains as representation of context for the detection

and correction malapropisms. WordNet: An Electronic Lexical Database, 49:305–

332, 1998.

138



K Holmqvist. Implementing Cognitive Semantics. PhD thesis, Lund University,

1993.

A Holzkämper, V Kumar, B Surridge, A Paetzold, and DN Lerner. Bringing diverse

knowledge sources together - A meta-model for supporting integrated catchment

management. Journal of Environmental Management, 96(1):116–127, 2012.

X Huang, C Wang, and Z Li. Reconstructing flood inundation probability by enhanc-

ing near real-time imagery with real-time gauges and tweets. IEEE Transactions

on Geoscience and Remote Sensing, 56:4691–4701, 2018.

NE Humphries, N Queiroz, JRM Dyer, NG Pade, MK Musyl, KM Schaefer,

DW Fuller, JM Brunnschweiler, TK Doyle, JDR Houghton, GC Hays, CS Jones,

LR Noble, VJ Wearmouth, EJ Southall, and DW Sims. Environmental context
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