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Abstract

Mammalian cell growth is a complex process encompassing genome replication,
cell mass accumulation and drastic reorganization of the intracellular structure.
Each of these processes contributes to gene expression noise, making the design of
robust genetic circuits difficult. We use flow cytometry to collect measurements on
multiple cell-cycle reporters, which we analyse using probability state modelling.
This approach enables us to position each cell into its most likely cell-cycle state.
Combining this methodology with measurements of gene expression kinetics such
as metabolic labelling of transcription and translation provides a high resolution
view into how such activities change during the cell-cycle. Changes in cell-size are
another important source of gene expression variation. Cells of different sizes are
known to grow at different rates, further confounding our measurements of noise.
Using ergodic rate analysis, we correlate our measurements of gene expression
kinetics with those of cell-size growth rate as a function of cell-cycle progression.
This way, we aim to elucidate the homeostatic mechanisms linking cell growth

and gene expression, in order to better understand gene expression noise.
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Chapter 1

Introduction

Gene expression is inherently a mnoisy process as the biochemical reactions
underlying it depend on low numbers of molecules, which leads to thermal
noise playing a large role. Even at its simplest definition, whereby the RNA
polymerase transcribes DNA into RNA, the interaction of the RNA polymerase
with the DNA template at the gene locus is inherently stochastic and governed
by Brownian motion (Eldar and Elowitz, 2010).

Many genes show a higher degree of noise than what the above model predicts,
resulting in over-dispersed mRNA and protein distributions when measured in
single cells. It has previously been proposed that this phenomenon is due to
transcription bursting, defined by sudden, short-lived increases in transcriptional
output, which can be shown analytically to lead to super-Poissonian distributions
(Paulsson, 2005). Such effects have been observed for certain genes, including in

live cells (Golding et al., 2005).

These observations have been suggested to be due to changes in the state of the
gene’s promoter, and can be modeled as a random telegraph process Paulsson
(2005).  Specifically, the promoter is modeled as having two states (on-off),
the switching between which results in a bursty transcriptional output. The

magnitude and the frequency of these bursts depends on the stochastic rates
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associated with the transitions between the two states, as well as the transcription
rate itself. This analytical framework has been used extensively to describe and

analyse the distributions of proteins and mRNA seen in cells (Sun et al., 2019a).

On the mechanistic level, the two promoter states are suggested to reflect
the stochastic binding of transcription factors, which increase the affinity of
the promoter to the transcriptional machinery, and by extension increase the
probability of transcription initiation and re-initiation. The exact mechanism
of promoter state-switching is not clear (Hebenstreit, 2013), and, importantly,
its relative noise contribution is not fully understood. On the other hand, the
relevance of gene expression noise in biology has become increasingly clear over
the past two decades, with many examples of organisms exploiting noise arising
at both the single cell and multicellular level, as well as how noise can in many
cases become an obstacle that organisms have evolved to overcome. An overview

of recent examples is given in the following sections.

1.1 Beneficial noise in microorganisms

Noise can be beneficial in the survival of organisms. At the single cell level, it
allows clonal populations to form phenotypically distinct subpopulations, either
as a form of division of labour, which can be beneficial to the colony, or as a bet
hedging strategy, which can prove useful in fluctuating environmental conditions
(Losick and Desplan, 2008). Several examples exist where such strategies are

implemented.

While bistability can be encoded in a genetic circuit, the existence of noise makes
such a design redundant. Specifically, To and Maheshri (2010) showed that
bimodality in a population can be generated using bursty expression of an unstable
autoregulatory transcription factor, without bistability explicitly encoded. In
Bacillus subtilis, stochastic expression of the autoregulatory protein ComK enables

a small fraction of the population (between 10 and 20%) to become competent,
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in other words to take up DNA from the environment (Maamar et al., 2007).
Although this DNA is not necessarily advantageous, the chance of it providing a
competitive advantage makes sacrificing a fraction of the population in this way

an effective mechanism for increasing the chances of survival of the population.

More recently, Mugler et al. (2016) showed that noise can expand the dynamic
range of the competence stress response, further highlighting the use of noise. In
a similar vein, the differentiation of B. subtilis into motile and non-motile cells
is governed by the stochastic expression of sigD. Interestingly, Cozy and Kearns
(2010) found that the relative location of sigD on the motility operon determined
the fraction of the population developing motility. This indicates how stochasticity

can be used by biology as an evolvable trait.

A similar strategy is employed in yeast sporulation, a survival mechanism triggered
by nutrient deprivation. As timing the initiation of sporulation can have important
consequences on the survival of each cell, a degree of variation in this timing would
be advantageous on the population level. Indeed, the initiation timing of meiosis
prior to sporulation has been shown to be highly variable, and dependent on
the stochastic expression of master regulator Imel (Nachman et al., 2007). Zhao
et al. (2019) verified the high temporal variation in the sporulation response using
a microfluidic device, enabling them to study the expression of multiple key genes

of the sporulation pathway.

Other such examples exist in the activation of alternate metabolic pathways, in
the face of fluctuations in the availability of nutrients. Stochastic switching of the
lac operon has been observed in Escherichia coli (Mettetal et al., 2006; Ozbudak
et al., 2004), as well as the galactose utilisation pathway in yeast (Acar et al.,
2005). More recently, Ge et al. (2018) demonstrated analytically that the bursty
activation of the lac promoter extends the range of lactose concentration at which
bimodality exists, allowing cells which do not express the lac operon to persist
in the presence of lactose. While the fraction of the population expressing the

wrong metabolic pathway will have sub-optimal growth, such a strategy avoids the

13



necessity to constantly sense changes in the environment, and has been shown to
be a viable survival method in fluctuating environmental conditions (Thattai and
van Oudenaarden, 2004). Recently, an analytical framework has been presented to

study the effects of stochastic gene expression on metabolism (Tonn et al., 2019).

Another interesting observation linked to stochastic gene expression has been
the specialisation of cells within a population to different nutrients. Using
nanometer-scale secondary ion mass spectrometry (NanoSIMS) to measure the
uptake of two different isotope-labelled sugars (arabinose and glucose) in single
cells, Nikolic et al. (2017) found that there was a strong variation between
single cells in their consumption of the two different sugars. As suggested, such
specialisation in the metabolic pathway could enable certain metabolic reactions
to be performed more efficiently. Stochastic expression of key metabolic enzymes
can have profound effects on cell growth. Kiviet et al. (2014a) showed that in
the case of growth limiting genes, stochasticity in the expression of even a single
catabolic enzyme can propagate to the cell’s growth rate. Counter-intuitively,
heterogeneity within a population’s growth rate has been shown to increase
the average growth rate overall, even in the absence of environmental stresses

(Hashimoto et al., 2016).

Finally, stochastic gene expression has been suggested to be implemented in the
survival of pathogens. Small numbers of persister cells exist even in untreated
populations of E. coli, and are generated continuously during growth (Balaban
et al., 2004). HIV latency on the other hand is caused by stable integration of the
virus into a small population of CD4 T cells, with burst of expression arising from

positive feedback of Tat protein stochastic expression (Weinberger et al., 2008).

1.2 Beneficial noise in multicellular organisms

Noise can be a driving force of cellular diversity in multicellular organisms too.

There are different ways in which gene expression noise can lead to intracellular
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phenotypic diversity in multicellular organisms. First, noise in gene expression
can aid in the differentiation of stem cells into different tissues. Some of the first
discovered examples include the development of the olfactory sensory system in
mice, whereby thousands of neurons are involved, each of which is required to have
a distinct odour receptor (Tsuboi et al., 1999). While a genetic circuit enabling
this would be prohibitively complex, relying on gene expression stochasticity is
sufficient. Differentiation of the various muscle fiber types constituting the muscles
of vertebrates has also been suggested to rely on expression noise in a similar way

(Hughes and Salinas, 1999).

Another example can be drawn from human vision. Trichromacy is a common
trait among primates which refers to the presence of three distinct opsins
(photo-pigment proteins) for detecting red, green and blue colours, only one of
which is expressed in each cone cell of the retina (Johnston Jr. and Desplan,
2010). A random distribution of cells expressing each opsin is required in order
to confer full colour vision (Roorda and Williams, 1999). Selection of which opsin
each cell produces is a result of a two stage mechanism, both of which steps
rely on stochastic gene expression. In Old World primates specifically (including
humans), the first step determines the fate between blue and red/green opsins,
while the second determines the expression of either the red or green opsins
via random selection of one of the two respective alleles. Due to the presence
of two copies of each gene per cell in diploid organisms, ensuring that only a
single opsin is expressed via the above mechanism would not be possible without
inactivating the second allele of each opsin gene. As these genes are located on
the X chromosome (Nathans, 1999), this is achieved in females by X chromosome
inactivation, and in males by virtue of having only one X chromosome. This
suggests that the location of genes can evolve in order to take advantage of noise,

leading to beneficial phenotypic mosaicism.

A similar strategy is followed during the development of the compound eye

in Drosophila, where the appropriate ratio of blue versus yellow-sensitive
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photoreceptors is determined by the stochastic expression of the gene spineless
(Wernet et al., 2006). Such expression of spineless results in a random distribution
of ‘pale’ and ‘yellow’ omatidia, resulting in an uneven ratio of 35:65 on the
developed compound eye, a ratio known to be conserved amongst other flies
(Franceschini et al., 1981), suggesting it is of functional importance. These
examples demonstrate how stochasticity has been exquisitely harnessed by

evolution for the development of complex traits such as vision.

Gene expression stochasticity may explain aspects of development more generally,
with cell-to-cell variability within a population of stem cells affecting their
response to differentiation stimuli, as shown for neuron differentiation (Shah
et al.,, 1996). In mammalian blood differentiation, variability in the expression
of the Sca-1 protein is correlated with the probability of choosing either
the eryhtroid or myeloid lineage (Chang et al., 2008). Similarly, during the
development of the mouse embryo, differentiation of the inner cell mass into
the epiblast and primitive endoderm appears to be dependent on the stochastic
expression of either Nanog or Gata6 (Dietrich and Hiiragi, 2007). These examples
illustrate how stochastic variability can be an effective mechanism for driving

differentiation programs during development.

More recent examples include the development of the amoeba Dictyostelium
discoideum, in which variability has been demonstrated to increase throughout
development, and then decrease once cells become terminally differentiated
(Antolovic et al., 2017). Similar observations have been made in studies of
haematopoeitic progenitor differentiation (Richard et al., 2016), suggesting that
noise is harnessed as a mechanism during development and differentiation. While
the direction of causality is not yet entirely clear in the relationship between
noise and cell-fate decision making, the role of noise has been more clearly

demonstrated in the immune system.

As well as providing a mechanism for differentiation of cells into different

tissues, noise can lead to phenotypic diversity between cells of the same tissue,
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a phenomenon termed ‘mosaic physiology’ (Woods, 2014). This effect can
expand the dynamic range of homeostatic responses, thus making the organism
more resilient to environmental challenges. For example, as well as enabling
greater diversity in the type of targets the immune system can respond to
(Schrom and Graham, 2017), variability in gene expression further enables tuning
the magnitude of the immune response. Specifically, it has been shown that
stochastic on/off switching of IL-2 expression in T}, cells upon immunisation is
required in order to ensure a wide-range linear response to the antigen strength

(Fuhrmann et al., 2016).

1.3 Detrimental noise in microorganisms

While noisy expression of stress response genes has been shown to be beneficial,
one would expect that variability in the expression of genes that are essential to the
function of the cell would be more tightly controlled. This was found to be the case
in two early genomic studies in yeast (Newman et al., 2006; Bar-Even et al., 2006),
both of which found that essential genes (lethal when deleted) such as those related
to protein synthesis and degradation were significanlty more precisely controlled
than non-essential genes. While these findings are not direct evidence for the
existence of noise minimisation mechanisms in yeast, Lehner (2008) showed that
an independent set of dosage sensitive genes (lethal when over-expressed), also
showed significantly lower noise, thus corroborating the findings of Newman et al.

(2006).

Furthermore, Lehner (2008) hypothesised that the existence of noise minimisation
mechanisms for certain genes would also have a knock on effect on the capacity
of mutations to alter the expression level of these genes on the genetic level. In
turn, this could slow down the rate at which the expression level of such genes
evolves. By comparing the divergence of genes with varying noise levels between
different yeast species (Tirosh et al., 2006), this was found to be the case (Lehner,

2008). These studies further support that gene expression noise has been widely
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minimised in yeast by natural selection for dosage-sensitive genes. Furthermore,
it illustrates that the pressure to minimise gene expression noise of vital genes
can limit the rate at which the expression level of these genes can evolve in a
population, thus limiting the latter’s capacity to adapt to changing environments

over time.

Further to these empirical findings, recent analytical treatments have found
a theoretical basis for how gene expression noise of essential genes can lead
to a reduction in the fitness of an organism. Specifically, Wang and Zhang
(2011) highlighted three mechanisms by which we can expect gene expression
noise to limit the growth rate of a microbial population. Firstly, fluctuations
in the relative concentrations of enzymes in a given metabolic pathway leads
to sub-optimal metabolic flux and thus a reduced rate of biomass production.
Second, unnecessary production of protein due to stochastic fluctuations in
transcription and translation can be costly in terms of the cellular energy budget
(Wagner, 2005), thus limiting the overall growth rate. Thirdly, the correct
assembly of certain protein complexes depends on the concentrations of their
constituent sub-units being in the appropriate ratios (Lehner, 2008). Noisy
expression of these sub-units can affect these ratios in potentially detrimental
ways (Fraser et al., 2004). Using mathematical modelling, Wang and Zhang
(2011) showed that via the above three mechanisms gene expression noise can
decrease the fitness of cells by over 25%, thus playing a fundamental role in

evolution.

In a similar vein, van Dyken (2017) highlighted that biochemical reactions
are predicted, based on Jensen’s inequality, to show a decreased rate of
conversion from substrate to product in the presence of noise. Briefly, as the
Michaelis-Menten (MM) equation describing the relation between substrate
concentration and rate of product formation is a convex curve, mapping a
distribution of substrate concentrations on this curve results in a positively

skewed distribution of reaction rates. This means that in the presence of noise,
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the mean steady state reaction rate is lower than the noise free equivalent, an
effect known as “stochastic slow-down” of MM reactions. Variation in substrate
concentrations among a population can result from the intrinsic noise in the
expression of upstream metabolic enzymes. Stochastic slow-down can therefore
decrease the rate at which a population of cells can metabolise a substrate in

order to grow and proliferate.

There are different mechanisms that could potentially be employed for controlling
noise in gene expression. Evidence for natural selection of such systems further
supports that gene expression noise can be detrimental. Thattai and van
Oudenaarden (2001) noted that there are three qualitatively different modes
of controlling protein levels, each of which is associated with different levels of
noise: high transcription coupled with low translation is shown to minimise noise,
while either low transcription coupled with high translation and intermediate
levels of transcription and translation are both associated with higher levels of
noise. Fraser et al. (2004) used measurements of transcription and translation
for all genes in yeast (Blake et al., 2003) to show that essential genes are biased
towards the first strategy, which could reveal one of the mechanisms by which
such genes have evolved to minimise noise. More recently, Chen and Zhang
(2016) integrated a GFP gene cassette at 482 different locations of the yeast
genome, and found that positioning can have a 15 fold effect on gene expression
noise. Furthermore, they found that regions associated with lower noise were
enriched for essential genes, suggesting that chromosome organisation is another

way natural selection has acted to minimise unwanted gene expression noise.

Finally, there is evidence implicating the evolution of certain regulatory networks
in order to minimise noise. = The bacterial chemotaxis regulatory network
appears to have evolved to minimise noise perturbations (Kollmann et al.,
2005). Specifically, multiple regulation models were proposed which varied in
their tolerance to noise, while exhibiting the same adaptive capacity to local

food signals. After testing their tolerance to noise, the authors found that the
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most resilient to perturbations model was the one which most closely matched
the natural chemotaxis topology in FE. coli. This suggests that excessive noise
in an essential function such as chemotaxis is detrimental, forcing regulatory
networks to evolve in such a way that minimises it. Similar noise mitigation
mechanisms have been discovered in the yeast mating pheromone response
pathway (Colman-Lerner et al., 2005). The authors found that, although cells
vary in their capacity to transmit a signal through the pheromone response
pathway, the target gene of this pathway also varied in its capacity to be
expressed.  Furthermore, these two sources of variability were negatively
correlated, allowing cells to respond robustly to pheromone signals in spite of

noise variability in the transduction of the signal.

1.4 Detrimental noise in multicellular organisms

Both direct and indirect evidence for the detrimental effects of noise in
multicellular organisms exists. Direct evidence can be found in cases where
noise suppression mechanisms have been destabilised, leading to pathogenic
phenotypes. Indirect evidence can be found in the presence of systems likely to

have evolved to suppress noise.

Battich et al. (2015) used a combination of single molecule RNA counting and
computer vision to analyse hundreds of single mammalian cells grown in culture.
They found that cytoplasmic variation in mRNA counts was largely suppressed,
leading to count distributions far narrower than the bursty kinetics of transcription
would predict. Using mathematical modelling, the authors showed that a time
delay of ~15 minutes between transcription and export of mRNA from the nucleus
can reduce the transcriptional noise in the cytoplasm by ~57%, thus posing
nuclear retention as an effective mechanism for buffering noise. These results were
validated experimentally by overexpressing NUP153, a protein known to decrease
the rate of mRNA nuclear export, which produced a reduction in cytoplasmic RNA

noise. Bahar Halpern et al. (2015) made similar conclusions in measurements done
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in cells from a variety of mouse tissues.

Other mechanisms which have been suggested to play a role in mitigating the
negative effects of gene expression are regulatory network topologies, such as
negative feedback loops. Transcription factors, fluctuations of which are likely
to propagate downstream regulatory pathways, are a prime example, many of
which are known to repress their own expression via negative regulation of their
own genes (Rao et al., 2002). Many non-transcription factor proteins are also
implicated in negative feedback loops via co-transcribed microRNAs, which
regulate the steady state expression level of the mRNAs they target, as well as
suppress fluctuations in mRNA counts (Tsang et al., 2007). Another mechanism
which has been implicated in noise reduction is the evolution of polyploidy, as
an increase in the number of genes leads to an averaging effect over the bursty

effects of transcription (Pires and Conant, 2016).

While noisy gene expression can be useful during multicellular differentiation,
development and immunity, it has been shown that the magnitude of the
variability as well as the timing during these processes are tightly regulated.
For example, while stochastic transcription causes large differences in transcript
levels between cells during early zebrafish embryogenesis, changes in cell cycle
duration and mRNA half-lives lead to a decrease in gene expression noise at later
stages due to increased temporal averaging (Stapel et al., 2017). Similarly, the
presence of feedback loops in genetic network in C. elegans buffer expression
variability of master regulator elt-2, which controls key developmental genes (Ji
et al., 2013), and removal of this feedback loops leads to bimodal expression
of elt-2 (Raj et al., 2010). The existence of such mechanisms suggests that
noise can also be deleterious during the execution of developmental programs in

multicellular organisms.

Indeed, in many cases loss of control in gene expression variability has been linked
to ageing, as well as the onset of cancer. Specifically, increased transcriptional

variability during ageing has been observed in the human pancreas (Enge et al.,
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2017), cells of the peripheral immune system and lung tissue (Cheung et al.,
2018; Angelidis et al., 2019), to the extent that it is now considered a biomarker
for ageing (Lu et al., 2016). Barkai and Leibler (2000) used simulations to
demonstrate that, while circadian clocks can function robustly in the presence
of gene expression noise, the presence of the latter poses strict limitations on the
underlying regulatory gene networks. As noise suppression mechanisms weaken
with age, noise can compromise the robustness of circadian rhythms, which in turn
can degrade many vital rhythms such as sleep/wake patterns (Hood and Amir,

2017).

Noisy gene expression has also been shown to facilitate the transition of a cell
from a healthy state to a cancerous one (Jia et al., 2017). Furthermore, once
cells have entered a malignant state, noise in epigenetic reprogramming can act
to reinforce that state (Shaffer et al., 2017). Finally, phenotypic variability
in cancers arising from noisy expression has been shown analytically to enable
resistance to chemotherapy (Schuh et al., 2019). Similar effects have also been
shown experimentally, with upregulation of p53 upon treatment with anticancer
drug cisplatin leading to apoptosis depending on both the level and timing of the
upregulation. Heterogeneity in either of these leads to a heterogeneous response

to the drug (Paek et al., 2016).

1.5 Noise and cell growth

The contribution of extrinisic sources to gene expression noise has been studied
closely in the past, starting with the famous dual-reporter system presented by
Elowitz et al. (2002). In brief, the levels of two genomically integrated proteins are
measured in single cells using fluorescent protein fusions. Correlated fluctuations
in the levels of the two proteins represent the effects of extrinsic sources of noise,
while uncorrelated fluctuations reflect the effects of intrinsic sources, as formalised
by Swain et al. (2002). Intuitively, the two types of sources can be measured using

a covariance plot of the two fluorescent proteins as the spread along the diagonal
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(extrinsic), and perpedicular to it (intrinsic).

An alternative approach to measuring intrinsic gene expression noise is by
obtaining a morphologically homogenous cell population, in order to minimise
the contribution of extrinsic sources. Such a method was suggested by Newman
et al. (2006), who used flow cytometry to filter cells based on morphological
properties (cell size and granularity) revealed by flow cytometry light scatter. By
varying the stringency of the filter, the authors were able to identify a threshold
which minimises the contribution of noise that can be accounted for by variability

in cell morphology, as demonstrated more recently by Meng et al. (2017).

Evidence in animal cells suggests that the majority of cytoplasmic mRNA
variation can be predicted by taking into account various aspects of the state of
each single cell (Battich et al., 2015). Specifically, Battich et al. (2015) noted
that when taking every cell’s micro-environment, cell size, cell-cycle state, as
well as 180 other image-based variables relating to the cell state, gene expression
was found to be minimally stochastic in the cytoplasm. Similar suggestions have
been made in earlier studies (Raser and Shea, 2006; Snijder and Pelkmans, 2011).
This suggests that cell growth may play a larger role in the gene expression noise
of mammals than previously considered, as proposed earlier on (Maheshri and O

'shea, 2007).

Gene expression noise and organism growth are intimately linked, both at the
single cell (Kiviet et al., 2014b) and multicellular level (Paldi, 2003). At the
single cell level, fluctuations in the concentration of metabolic enzymes due
to stochasticity in gene expression affects the growth rate of individual cells.
Furthermore, the random partitioning of molecules upon cell division (Huh and
Paulsson, 2011b) leads daughter cells to embark on the next cell cycle with

different starting conditions, further contributing to this effect.

Variation in cell growth rate in turn is strongly correlated with variation in cell
size. In the case of microorganisms, cells are generally larger at faster growth

rates, while mammalian cells in culture appear to have an optimal cell size
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nearer the middle of the size range (Miettinen and Bjorklund, 2016). In all cases,
increases in cell size and division rate are accompanied by proportional increases
in gene product generation (Kempe et al., 2015, Padovan-Merhar et al. (2015)),
a requirement for maintaining the working concentration of the intracellular

machinery responsible for cellular functions (Pérez-Ortin et al., 2019a).

Not taking these effects into account when counting individual transcripts or
protein molecules in single cells has been shown to lead to an overestimation
of gene expression noise (Battich et al., 2015; Kempe et al., 2015), especially
in mammalian cells grown in culture, which have been shown to vary up to
six-fold in volume (Tzur et al., 2009). On the other hand, the above homeostatic
mechanisms can lead to actual changes in gene expression noise. For example,
the higher division rates mentioned above increase the contribution random
partitioning of molecules has on noise. Conversely, theoretical analysis has shown
that preservation of noise homeostasis could be another driving force explaining

changes in both cell size and growth rate (Bertaux et al., 2018).

Due to the complex circular causalities underpinning these effects, it is not possible
to understand gene expression noise outside the context of cell growth, and vice
versa. To disentangle these relationships, multiple simultaneous measurements
have to be performed on single cells, such as measurements of cell size, growth rate,
and gene expression dynamics, combined with novel mathematical frameworks for

analysing the resulting data.

Such experiments have proven challenging to perform. This is particularly true
in mammalian cells, due to the higher cell-cycle complexity and longer generation
times. Recent advances in imaging, computer vision and live cell cycle tracking
have enabled studies in cell size vs cell cycle and revealed many aspects of cell
size regulation by cell cycle (Son et al., 2012; Miettinen et al., 2019). Others
have looked at how cell cycle correlates with gene expression (Skinner et al., 2016;
Hausnerova and Lanctot, 2017). Other studies have revealed correlations of cell

size with gene expression (Kempe et al., 2015; Schmidt and Schibler, 1995), but
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very few have looked at all three simultaneously (Padovan-Merhar et al., 2015),
and none which correlate all these measurements together, alongside cell growth

rate.

This is understandable, as the best available methods for measuring gene
expression currently require that cells are either fixed (single molecule in
situ fluorescent hybridisation, smFISH) or lysed (single cell RNA sequencing,
scRNA-seq), making them difficult to correlate with kinetic experiments of
cell growth. Recent analytical methods have enabled the extraction of growth
dynamics from fixed data (Kafri et al., 2013), based on the fact that cells in
an exponentially growing population are at a quasi-steady state, meaning that
the relative fraction of cells at each cell-cycle state is constant, even though the
overall number of cells is increasing exponentially. This allows one to infer the
rate of transition between different cell states, such as cell size, by measuring the
fraction of cells at each state. Coupled with independent cell-cycle measurements,
the authors showed it was possible to measure the growth dynamics of cells with

respect to cell-cycle progression by imaging fixed cells.

In more recent years, cell-growth in mammalian cells has been directly measured
using time-lapse microscopy and highly sensitive size measurements, such as the
suspended microchannel resonator (Son et al., 2012). Of note is the MS2 method
(Golding and Cox, 2004), which allows the real-time measurement of transcript
generation, as well as the more recent translation equivalent (Yan et al., 2016).
Nevertheless, the analytical method presented in (Kafri et al.,, 2013) remains
valuable, as it enables the measurement of cell growth kinetics in concurrence with
other measurements which cannot be currently made in live cells, such as gene
expression by smFISH or global transcription and translation rates by metabolic

labelling (Larsen et al., 2001; Marciano et al., 2018).

Furthermore, the ability to extract the relevant information from fixed cells
enables the use of flow cytometry for data acquisition, which is a well established,

high-throughput method capable of analysing millions of single cells. This level
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of sampling depth is currently not possible using time-lapse microscopy, which
can be a limiting factor when using the inherent heterogeneity of a population
for comparing the effect different cell sizes have on gene expression, as a large
overall sample is required to obtain robust statistics on rare cell states. A
limitation of flow cytometry is that the resulting information is not time resolved,
so fluctuations in gene expression cannot be tracked in real time (Simpson et al.,
2009). Progress in imaging analysis automation, combined with microfluidics, has
shown that the advantages of imaging can be made high throughput, especially
for prokaryotes and yeast which can be easily grown in suspension (Groisman

et al., 2005).

1.6 OQOutline

Here, we develop experimental, computational and mathematical methods for
uncovering the relationships between cell cycle, cell size and RNA dynamics.
Specifically, a model of gene expression and cell growth is formulated in Chapter
3, and an algorithm is developed for resolving the cell cycle in experimental data
in Chapter 4. In Chapter 5, the same algorithm is used to observe the effects of
cell cycle and cell size has on the rate of transcription, while the foundation is laid

for a high throughout transcriptomic metabolic analysis of mRNA in Chapter 6.
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Chapter 2

Theory, materials and methods

2.1 Flow Cytometry

Flow cytometry is a fluidics technique which relies on lasers exciting the
sample and measuring its emission, enabling the high throughput single cell
measurement of multiple variables simultaneously. Specifically, flow cytometers
use hydrodynamic focusing to generate a narrow stream of single cells directed
past a combination of lasers of different wavelengths, each of which is followed
by a combination of bandpass filters and photonmultiplier tubes (PMTs). The
PMTs measure the fluorescent content of cells by converting the detected photons
to electrons, while the bandpass filters define the spectral detection window. As
each cell crosses the laser beam, any fluorescently active molecules inside the cell
or on the cell surface become excited and emit light at a wavelength specific to

the type of fluorophore, the intensity of which is measured by the relevant PMTs.

Flow cytometry has been used extensively in immunology for characterising cell
types in immunology, by targeting cell-type specific epitopes with fluorescently
conjugated antibodies (Adan et al., 2017), while an array of different chemical
dyes exist for measuring different aspects of cellular physiology, such as total

DNA, RNA or protein content, intracellular calcium levels, pH and others. One
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of the main advantages of flow cytometry is the ability to measure multiple
fluorophores in parallel, with modern cytometers having >15 different channels.
This allows for investigating the correlations between multiple biological factors,
such as cell cycle phase, which can be measured by a DNA stain such as Hoechst,
and RNA kinetics, which can be measured using metabolic labelling. Furthermore,
it allows studying other cellular parameters such as cell size and inner structure,
based on light scatter patterns (Zuleta et al., 2014). This makes it an ideal
platform for investigating intrinsic and extrinsic contributions to gene expression,

as demonstrated by Newman et al. (2006).

2.2 Cell Cycle Analysis

In Chapters 4 and 5 we use the genetically engineered fucci cells (fluorescent
ubiquitination-based cell cycle indicator), a Hela cell line introduced by
Sakaue-Sawano et al. (2008) to make the study of cell cycle related processes

more straightforward.

These cell lines contain red (mCherry) and yellow (Venus) fluorescent protein
reporters fused with degron tags derived from the cell cycle regulator proteins
Cdtl and geminin respectively, stably incorporated into their genome. These
degron tags render the stability of the fluorescent proteins cell cycle dependent.
As the level of the resulting protein fusions can be readily quantified by measuring
their fluorescence intensity, cells can be broadly categorised into three different
cell cycle phases, namely early G1 (eG1), the G1/S transition and S/G2/M phases
according to the presence of Cdt1, Cdt1l and geminin or geminin only, respectively.
These reporters in combination with mathematical modelling have proven very

useful in cell cycle research (Saitou and Imamura, 2016).

The fucci reporters are complementary to the classic cell cycle analysis conferred
by DNA stains such as Hoechst. When combined, they can resolve the cell cycle
into at least four phases, namely eG1, the G1/S transition, S phase and G2 phase.
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Although the cell cycle can be subdivided in many more stages using antibodies
(Avva et al., 2012), the progression of fucci cells can be monitored while the cells
are alive, which makes it possible to study cell cycle related events at real time
using time-lapse fluorescent microscopy. Furthermore, not needing to fix and
permeabilise the cells, which are requirements for immunostaining, make fucci
cells a superior alternative for cell cycle analysis, especially when maintaining the

integrity of the cell morphology is important.

2.3 Metabolic Labelling

2.3.1 Total RNA

Metabolic labelling of transcription relies on the incorporation of a chemically
modified nucleotide into elongating RNA, which can subsequently be detected by
flow cytometry either using fluorescently labelled antibodies (Larsen et al., 2001)
or by covalently attaching a fluorescent group directly. We choose to measure
RNA transcription by metabolic labelling with 5-ethynyl-uridine (5EU), as it does
not require antibodies and has been demonstrated to be superior to the original
bromouridine (BrU) analogue in terms of detection (Jao and Salic, 2008). Instead,
the alkene group on 5EU readily reacts with azide groups (‘click chemistry’),
and this can be used to fluorescently label 5EU with the fluorophore Cyb5 after

incorporation.

Metabolic labelling can be used for measuring the in vivo rates of transcription and
RNA degradation. This is a technique whereby cells are grown for a set amount
of time in the presence of chemically modified ribonucleotides, which become
incorporated in the elongating RNA molecules (Rabani et al., 2011). Newly
transcribed RNA can thus be labelled and subsequently detected and quantified,
providing a more direct method for measuring the rate of transcription and RNA
degradation than the steady-state RNA number can provide, via classical RNA

sequencing.
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As the vast majority of RNA in a cell consists of ribosomal RNA (rRNA),
one notable limitation of the above approach is that measurements of global
transcription rate are likely dominated by rRNA kinetics. A modern alternative
method of metabolic labelling based on sequencing has been proposed, which
addresses this issue and permits quantification of mRNA kinetics for every

species individually (Herzog et al., 2017), as discussed in Section 2.3.2.

For the total RNA metabolic labelling, the method is outlined here. The
experiment was performed in triplicate. Cells were seeded overnight at a density
of 500,000 per well in a six well dish. The next day, cells were labelled for 1 hour
with ImM 5EU in DMSO, detached by trypsinisation, washed twice (10 seconds
at 10,000 rpm at 4C) in cold PBS, fixed in 4% paraformaldehyde for 15 minutes
at room temperature and then o/n at 4C. The next day, cells were permeabilised
with 0.2% Triton X for 20 minutes and 0.5 % for 10min. Cells were then labelled
for 1 hour in Cy5 click reaction solution (Jena Bioscience), followed by 2min at
37 shaking. Cells were washed 2x in 0.05% Triton X, and once in 3% BSA for
20min. Cells were spun down and resuspended in 10mg/ml Hoechst DNA stain
for 1 hour. Cells were spun down and resuspended in PBS, and left overnight at

4 degrees C. Cells were analysed the following morning by flow cytometry.

2.3.2 Gene specific

The slam-seq protocol relies on the fundamental principle that the uracil analogue
4-thiouridine (4sU) gets incorporated during the synthesis of nascent RNA, and
then can be subsequently converted to cytidine following a chemical step, which
can ultimately be detected by RNA sequencing, thus enabling us to identify newly
transcribed RNA (Herzog et al., 2017; Schofield et al., 2018). By incubating the
cells in 4sU for a specified length of time, we can obtain the change in nascent RNA
with respect to time, and thus get the rates of RNA synthesis and decay. The
advantage of using a sequencing based method is that the rates can be obtained

for every single gene individually, allowing for a more complete picture of RNA
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kinetics to be achieved.

As the rate of 4sU incorporation in newly transcribed mRNA is quite low (Russo
et al., 2017), and there is a background level of T to C mutations which varies
according to the sequencing method, inferring the true fraction of new to old
mRNA is not trivial. The efficacy of the inference will depend on the size of the
labelled fraction, the associated error rates and the read count associated with each
transcript. In order to maximise the number of genes for which we can robustly
estimate the labelled RNA fraction, we need to understand these relationships
and plan the experiment accordingly. A simple simulation outlined by Baptista
and Dolken (2018) can help us interpret the effect that these parameters have on
the quality of the data. Such an approach is employed in Section 6.2.

For the metabolic sequencing experiment in this thesis, the method is oultined
here. Cells were seeded in 10cm dishes at a 50% confluence over night. The next
day, cells were treated with either 0.5mM or 1mM of 4sU dissolved in DMSO, for
times ranging between 10 minutes and 1 hour. Negative controls were treated with
DMSO only. Cells were detached by trypsinisation using TrypLE (ThermoFisher)
for 5min at 37C. Once in suspension, cells were transferred to a 15ml Falcon
tube and fixed directly by adding 10 microliters of 50mg/ml reversible crosslinker
dithio-bis(succinimidyl propionate) (DSP) in DMSO, drop-wise while vortexing,
similar to (Attar et al., 2018). The cells were incubated in fixative for 15 minutes
at 37C, then pelleted gently at 500g for 5 minutes, followed by washing in PBS
to remove traces of trypsin and fixative. Cells were subsequently sorted using
FACS (£UV laser). Crosslinking was reversed using 50mM DTT prior to nuclear
fractionation, which was carried out according to Nabbi and Riabowol (2015).
RNA was purified from isolated nuclei, which was subsequently treated with
IAA (Herzog et al., 2017) prior to library preparation (SMART-Seq Stranded)
with ribodepletion. Libraries were sequenced using Next Generation Sequencing
with paired end, 150 length reads, on a HiseqX10 lane (Omega Bioservices).

Alignement and T to C conversion counting were performed by Dr Mark Walsh
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using STAR (Dobin et al., 2012).

2.4 Ergodic Rate Analysis

Ergodic rate analysis (ERA) is a method introduced by Kafri et al. (2013) for
extracting the rate of change of any measurement from static data. It relies on
two assumptions. First, that a growing population of cells is in a quasi-steady
state, whereby the fraction of cells at any cell cycle stage remains constant, even
though the total size of the population is growing exponentially. There is therefore
a balance between the rates of cells entering and leaving a given state and the
number of cells in that state. Second, the determinants of the cell cycle position
accurately describe both individual and collective cell behaviour. By relying on
these assumptions, it is possible to calculate the rate at which different biological
traits change. Kafri et al. (2013) use this method to measure the difference in
cell growth between cells of different sizes. Specifically using the above principles,

they developed the mathematical framework

o(s.A)) = a2—=A ) F(s|l —w) — (2—=X4 — Ag)F(s|l + w) — F(s|A) g
! f(s|Ap)Ap ’
(2.1)

where s is the cell size, [ is the stage in the cell cycle, F(s|l —w) is the cumulative
distribution function (CDF) of cell sizes among cells in the state [ — w at the
entrance to the interval A; = (I —w, !+ w), shown in Figure 2.1 in red (leftmost).
The width A; = 2w represents the resolution limit of the calculation, were w needs
to be appropriately chosen, shown in Figure 2.1 in blue. For the calculations in
Section 5.4, 2w is chosen to be 10% of the length of the cell cycle, which represents
the mean resolution obtained by PSM. F(s|A;) = F(s|l — w,l 4+ w) is the size
distribution within the interval Al, A, is the fraction of cells occupying all cell
cycle stages preceding Al, and Ap is the fraction of cells in Al. a = @, where

7 is the period of the cell cycle. f(s|Al) is the density of cells with size s in the
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interval Al.

Once these statistics have been obtained, Equation (2.1) is used to calculate the
rate of cell size change at a given cell cycle stage. By applying this calculation
throughout the cell cycle, Kafri et al. (2013) were able to compare the growth rate
at different phases. To verify the utility of the method presented in Kafri et al.
(2013), T tested it on synthetic data based on an imaginary function of cell size.
The results of the analysis is seen in Figure 2.2. Although the calculated rates
(red arrows) match well with the true trajectories (blue lines), the accuracy of the
result depends on the size of the sample and the choice of the calculation interval
w, which in turn depends on the resolution of the cell cycle. It would be useful in

the future to perform further tests on the limitations of the method.
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Figure 2.1: ERA stepwise calculation Points in black indicate cells
transitioning through the cell cycle, simulated based on an imaginary function
of cell size. Dashed lines indicate the coordinates for which the rate is calculated.
Points in blue and red indicate the subpopulations required for calculating the
rate of change, as shown in Equation (2.1).

33



o
o_
-
o _|
@
(o)
N
w o _|
= ©
©
@)
o _|
3
o _|
N

0 5 10 15 20
Cell Cycle

Figure 2.2: ERA validation by simulation Points in black indicate cells
transitioning through the cell cycle, arrows indicate the predicted trajectory of
cells of different sizes based on the result of Equation (2.1), and cyan lines indicate
the true trajectories based on the function used to simulate the data.

2.5 Probability State Modelling

CB Bagwell, who introduced fluorescence spectral overlap compensation for
flow cytometry (Bagwell and Adams, 1993) has more recently introduced the
theory of PSM for studying cell differentiation based on multiparametric flow
cytometry immunological data (Bagwell et al., 2015b). In their companion article
(Bagwell et al., 2015a), the method is applied to elucidate the stages of B-cell
CD19 upregulation. The method relies on using prior knowledge of how a given
biomarker changes over relative time to inform a model, the parameters for
which can be fitted to cytometry data, given reasonable boundary constraints.
Although time in (Bagwell et al., 2015a) is relative to differentiation, there is in
principle no reason why it cannot reflect other time dependent progressions such
as the cell cycle. Here, we adapt the principles of PSM for the purpose of cell

cycle analysis.
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2.5.1 Model Proposal

The overall modelling process can be described in five simple steps. First, a
suitably simple model is devised, describing our prior understanding of the
biomarker. This can be a simple progression such as the low-to-high transition
of the DNA stain Hoechst, or a more complex transition such as that followed
by the fucci Cdtl marker, as will be seen in Section 4.2. Bagwell et al. (2015b)
suggest using piecewise linear models to describe the changes in the mean and
error of the intensity measurement, but in principle any type of function can be
used. These models describe how a given biomarker’s measurement level and
variance changes over the course of the progression, in our case the cell cycle.
The progression is defined from 0 to 100, which reflects the cumulative density

percentiles.

Here, we start with the cell cycle reporter with the simplest transition, namely
DNA quantity, as measured by Hoechst staining. The proposed model contains all
three phases that can be distinguished by this stain; G1, S and G2/M. This model
is defined by two levels of intensity, indicated by the horizontal lines in Figure 2.3,
and two change points indicated by the two vertical lines. Together these define
two ‘Control Definition Points’ (red circles), between which the intensity level and
error are linearly interpolated. Further interpolations extend the progression to
start and end of the cell cycle. The error of the measurement, illustrated by the

height of the polygon, we assume to be normally distributed.

2.5.2 Calculation of Probabilities

The proposed model can be formally described by a pair of functions, giving the
change in measurement intensity level and spread. These are defined as Q(7, ()
and o (7, C), where 7 defines the state of the progression and C the piecewise linear
model, in accordance to the notation in (Bagwell et al., 2015b). By extension, the

model in Figure 2.3 can be seen as two dimensional density, defined by
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Figure 2.3: Proposed DNA cell cycle transition. Intensity is the normalised
measurement level of the DNA stain Hoechst. State refers to the cell cycle
progression. Red lines and circles define the control definition points, between
which the level is interpolated linearly. Black polygon lines show the interpolated
level of DNA stain +2 standard deviations.
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P(z|t,C) = N(z,Q(7,C),o(r,C)),

where 7 is the observed measurement level. P(x|7,C) allows us to calculate the
probability of a cell being at any stage in the cell cycle, based on the measured
DNA intensity level and the proposed model. Next, we discretise the above
probability density function,

100 (110.5)
E, . / / N(z,Q(1,C),o(r,C))dzdr, (2.2)
’ 100 100 1 (v—1.5)

where v € 1,2,...,w and s € 1,2,...,r are the discrete intensity levels and cell
cycle states a cell can be associated with. A probability matrix termed E-matrix,
defined by Equation (2.2), is calculated by numerically integrating the proposed
model over cell cycle time and measurement level at discrete intervals in this way.
The width of the intervals defines the resolution of the matrix, which is a rate
limiting step for the overall PSM algorithm and thus should be chosen according
to available resources. The result of numerically solving Equation (2.2) leads to
the matrix seen in Figure 2.4. The colour intensity indicates the relative density

distribution.

2.5.3 State prediction

Once a probability matrix has been obtained, the next step is to bin the cytometry
data into the same number of bins as the number of rows in the respective
FE-matrix. This can be seen in Figures 2.5 and 2.6, where we use 10,000 data points

simulated using the proposed DNA model shown in Figure 2.3 as an example.

The next step is critical, as it uses the above construction to determine the state
of each data point along the transition. Specifically, for every data point, we use
the corresponding row in the E-matrix, defined by the data point’s intensity level,

as a probability vector with values corresponding to each of the different columns
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Figure 2.4: E-matrix of proposed DNNA cell cycle transition. Darker colour
equals higher density. The matrix was constructed using a resolution of 20 by 20.

of the matrix (cell cycle states). This vector is then used to perform weighted
sampling across the columns of the matrix, and thus predict the cell cycle state

of the cell.

This way we can stochastically assign each data-point to a state 7 along the
progression, noting that the number of possible states is defined by the resolution
of the matrix. Once a state has been sampled for every single data point, the
process is complete. Uniform noise of appropriate bandwidth can be added to
reflect the uncertainty due to the resolution limit. The result is seen in Figure 2.7.
Figure 2.8 shows the result of the same process but using an E-matrix of higher

resolution.

2.5.4 Goodness of fit

The fit of the proposed model is evaluated by comparing each FE-matrix to

its empirical equivalent, ES-matrix. To construct the ES-matrix, we bin the
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Figure 2.5: Binning of data points. 10,000 data points simulated according to
the proposed DNA model, binned in a one-to-one correspondance with the rows
of the E-matrix. Left: kde of simulated data. Right: histogram of the same data
binned (n = 20) as described. Two peaks correspond to G1 and G2 respectively,
and are due to the fact that the duration of these phases is longer, resulting a
larger fraction of the population to found in these phases at any one time.
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Figure 2.6: Assigning of E-matrix row to each data point. The data are
binned in such as way so that each bin corresponds to a row in the E-matrix.
Here, 20 bins were used to match the 20 rows of the E-matrix.
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Figure 2.7: Result of PSM using 20x20 resolution E-matrix 10,000 data
points simulated according to the proposed DNA model, analysed by PSM using
the same model.
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Figure 2.8: Result of PSM using 100x100 resolution E-matrix 10,000 data
points simulated according to the proposed DNA model, analysed by PSM using
the same model.

resulting two-dimensional distribution of points seen in Figure 2.8, along both
axes, and count the points in each bin (see Figure 2.9). The resulting matrix
is normalised appropriately and then compared to the FE-matrix by means of
a reduced chi-square test, a common test for comparing binned data between
groups (McHugh, 2013). In this case, the data are in good agreement with the
model (not shown), which is expected, as it is the same model that was used to

simulate these data.

2.5.5 Model parameter inference

Once we have set up the above algorithm, we can use it to solve the inverse
problem of inferring the model parameters that best describe the experimental
data. We do so by iteratively proposing new values for the parameters describing
the model (change-point timings, intensity level means and variances), and testing
their agreement to the data, based on the scoring calculation in Section 2.5.4. This

process can be formulated into an objective function which in turn can subjected
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Figure 2.9: Construction of ES-matrix. Two dimensional distribution of
points is binned as shown to construct the empirical equivalent to the probability
E-matrix. Comparing the two matrices returns a score which can be used to assess
the fit.

to optimisation.

A suitable global optimisation algorithm needs to be chosen which takes the
characteristics of such an objective function into account. Specifically, the
optimiser needs to be able to cope with expensive and noisy evaluations,
potentially multiple false minima, as well as inequality constraints in the

parameter space.

Here, we use the Bayesian Optimisation package mlrMBO developed by Bischl
et al. (2017) to fit a probability state model to our DNA cytometry data. The
specific implementation was preferred as it is well developed and can be interfaced

with the rest of our analysis pipeline, also written in R.

To set the initial priors, we use a script written for this purpose by Dr Massimo
Cavallaro, which identifies the peaks in a bimodal distribution and fits a Gaussian
function to either peak. This way we obtain an initial estimation of the means and

errors of the two stationary states. Specifically, to overcome the convoluting effect
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of the transitory state between the two stationary states we used a half-Gaussian,
fitted on the corresponding extreme ends of the two clusters, as shown in Figure

2.10.
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Figure 2.10: Peak identification - half gaussian fit Histogram of DNA
intensity. Dashed red lines correspond to peaks identified, curved lines correspond
to the fitted half-Gaussian density. These are used as initial values for the mean
intensity and spread of the stationary phases in the DNA progression, between
which the values are linearly interpolated.

The second task is to pick suitable boundaries within which each parameter can
vary. Such boundaries, alongside the proposed model, form a type of prior and
are based on our current understanding of the process. Here, we use a two step
optimisation approach, employing broad boundaries to get an initial fit of the
parameters, which inform a set of secondary, narrower boundaries for the final
fitting. This way we benefit from the freedom of weak initial priors, but also the

precision that can be achieved from the subsequent stronger priors.

2.5.6 Converting cumulative percent to time

Once a satisfactory model has been identified, PSM can be used to predict the

state of each cell in the cell cycle, which is expressed in terms of cumulative
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percent. To convert this output to cell cycle time, we rely on the definition of
flux, according to which the longer a certain stage is in duration, the higher the
expected density of cells in that stage is. Using this principle we can convert this
relative time to absolute cell cycle time, using the duration of the average cell
cycle, which can be easily measured or obtained from the literature. This method
has been used before for correlating density of static data to relative time (Kafri

et al., 2013).

One important consideration to make is that due to cells dividing at the end of
each cell cycle period, there is a disproportionate number of cells at the start of
the cell cycle compared to the end. This can be accounted for using a simple

transform (Kafri et al., 2013):

= tn(sha)

where F'(I) is the cumulative distribution describing the frequency of cells that

are either at cell cycle stage [ or at earlier cell cycle stages, and

where 7 is the doubling time of the population, which for Hela cells is about 20
hours (Sherwood et al., 1994). PSM is based on quantile modelling (Gilchrist,
2000) and as a result the predicted state of each cell is expressed in terms of
cumulative percent. In order to obtain the predicted timeline in terms of cell
cycle time, the above transform can therefore be directly applied to each cell by

substituting F'(I) above with its predicted state from PSM.

2.6 Bayesian Optimisation

It is often useful to be able to computationally fit a function to a set of data,

either in order to evaluate how well a model describes the data or in order to
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obtain certain parameters which are difficult to extract directly. For example,
using a simple model such as that of gene expression developed in Chapter 3 it
is possible to estimate the rates of transcription and mRNA degradation using
a single snapshot of the mRNA distribution in a population of cells. Numerical
algorithms exist which can perform this procedure very efficiently, especially when
the analytical formula of the model being fitted (or its likelihood function) is

available.

In cases where this is not possible, an alternative approach is to use simulations
which describe the model, alongside a scoring method for evaluating the fit to the
data. As these simulations are often expensive to evaluate and the results noisy,
a different class of algorithms is required for performing the fitting. Sequential
model-based optimisation (SBMO) is such a class of algorithms, and has become

the state-of-the-art optimisation strategy in recent years (Jones et al., 1998).

Briefly, such models work by constructing a surrogate regression model which
approximates the objective function, and is much cheaper to evaluate than the
objective function itself. The surrogate function is initialised using a series of
points randomly sampled, and is then used to identify future candidate points
based on a certain criterion, called the infill criterion. The proposed points are
evaluated by the objective function, and the resulting score is used to update the

surrogate function.

By iterating between these two steps, an increasingly accurate surrogate function
is constructed, resulting in improved parameter sets being proposed with every
iteration. Ultimately, the algorithm is stopped when a maximum number of
iterations is reached. Furthermore, using a suitable criterion such as “expected
improvement”, a balance is struck between the exploration of underrepresented
areas and the targeting of the most promising areas of the parameter space,

ensuring that the process does not become stuck in a local optimum.

Here, the Bayesian Optimisation package by Bischl et al. (2017) was identified as
a suitable SBMO implementation for fitting cell cycle parameters using PSM in
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Chapter 3

Modelling gene expression and

cell growth

Gene expression is considered to be a noisy process (Raser and Shea, 2006). This
observation can be attributed in part to intrinsic sources, such as the bursty
nature of transcription (Raj et al., 2006), which result in broad, super-Poissonian
distributions of transcript numbers. As mentioned in Section 1, this burst-like
behaviour has been observed directly in certain genes, using live cell microscopy
(Golding et al., 2005). Ever since, the ‘random telegram’ model has become the
prevalent model for transcription (Raj et al., 2006, Lenstra et al. (2016)), though
recent evidence has questioned the universality of this model. Specifically, careful
consideration of extrinsic sources of noise (Swain et al., 2002), such as the variation
of cell size and cell cycle, has shown that, when taken into account, non-bursty
kinetics are sufficient in describing transcriptional dynamics (see findings in plants
(Ietswaart et al., 2017), yeast (Zopf et al., 2013) and mammals (Battich et al., 2015,
Klein et al. (2015))). To investigate this, we formulate a simple, non-bursty model
which takes these extrinsic sources into account, and determine whether such as

model can sufficiently describe the observed gene RNA distributions.

A similar approach was followed by Soltani et al. (2016), who studied the effects
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of molecule partitioning during cell division and the oscillation in active alleles
due to DNA replication, demonstrating the importance of the timing of these
events on gene expression noise. Specifically, variability in the period of the
cell cycle and timing of replication and division were considered explicitly, and
the moments of the resulting distribution were derived. Here, we simplify by
assuming deterministic timings of gene replication and division. This allows us to
derive the analytical form of the probability mass function (PMF) describing the
RNA distribution in a population of cells, which can be used directly to test the
likelihood of different parameter sets with respect to single-cell gene expression
data. We further extend the work of Soltani et al. (2016) by incorporating the
change in cell size during the cell cycle, a requirement towards understanding the

effects of cell growth on gene expression.

3.1 Two phase model

As a starting point, we consider a simple two-step mass action kinetics model of
RNA metabolism. To simulate the doubling and halving of the DNA substrate due
to the periodic replication of the genome and subsequent cell division, we start
by making the simplifying assumption that the transcription rate periodically
doubles and halves as a consequence. This constraint is relaxed in a later section.
Furthermore, we do not consider the partitioning of molecules at the end of the
division cycle at this stage. Instead, we proceed without it and account for it in

Section 3.3.

3.1.1 Deriving the RNA PMF at steady state

We begin by considering the model

(3.1)



where A and p represent the transcription and degradation rates respectively, 0
represents void. In order to simulate the changes in gene dosage during the cell
cycle, A is replaced by 2\ during the G5 phase, thus constituting a null model of
transcription dynamics during the cell cycle in the absence of dosage compensation
mechanisms (Voichek et al., 2016b, Padovan-Merhar et al. (2015)). This leads to
two distinct Chemical Master Equations (CMEs),

dPp,

d_tk = —(A+ku)P, + AP, + u(k + 1) P, during G1 (3.2)
dP, |
— = —Q2X+ k)P, +2\P,_ + p(k + 1)P, ., during G2 (3.3)

where P, is the probability of having k£ molecules at time ¢. The probability rate
equation is derived by considering the change in RNA molecules due to rates
A and p. We start using Equation (3.2) to derive the time varying probability
distribution at time ¢ during the first phase of the cell cycle, which will serve as a
stepping stone towards deriving the equivalent distribution for the second phase,
and ultimately the whole cell cycle at steady state. To do so, we employ the
probability generating function (p.g.f.),

G(z,t) = Z P2k,
k=0

where G is a power series representation of the PMF, from which the PMF is
recovered by taking derivatives of G with respect to z. Here, when differentiated
k times G returns the probability of having £ number of RNA molecules at time
t. The PMF is recovered by taking derivatives of G with respect to z To obtain
the relevant expression for the generating function, we differentiate G(z, t) with

respect to ¢ (Peccoud and Ycart, 1995). This gives us
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To solve this equation for G, we employ the method of characteristic lines. First

we parameterise G using 7, and differentiate using the chain rule, which gives

G dx , dt

Equations (3.4) and (3.5) give us the system of ODEs below, which we can solve

to obtain an expression for G.

% - (3.6)
% = —u(l—2) (3.7)
% _ _A\1-2)G, (3.8)

where 7 is what we use to parameterise z and ¢. By setting P,(0) = 1, and by the
way we define the characteristic lines we get the initial conditions z = s, t = 0,
G(s,0) =1, at 7 = 0. The above equations together with the initial conditions

give us the below expressions,

% = —)\(1—2)G,and (3.9)

z=1+(s—1)e. (3.10)

We solve for G by plugging (3.10) into (3.9) and integrating by sides,

/édG = /)\(3 — 1)ertdt

InG = \(s — 1)(le“t) +c.
w
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Using the initial conditions, we find e,

A
c:—;(s—l), (3.11)

which we substitute in (3.11),

G = en1ms)1—e"") (3.12)

Finally, we need to express G(z, t) in terms of z and t. We rearrange Equation

(3.10) and plug into (3.12) to get

(3.10) > s = (2 —1)e ¥ +1,

G(z,1) = enZ D= (3.13)

Equation (3.13) is the full expression of the p.g.f.. It can be shown that by
differentiating G(z,t) k times with respect to z, we get the generalised formula

below for deriving the probabilities at time ¢,

1 9kG
(1) = -2 (3.14)
k! 0z 0
Using equation (3.12), it can be shown that
G [\ g
-5 = <;(1—e—/~“)> e n=e™), (3.15)
By substituting Equation (3.15) into (3.14), we get
L /A ; —pt\k ,— 2 (1—e 1)
P.(t) = w (1 —e M)re w , (3.16)
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which describes the time varying RNA distribution. We use the same procedure
to obtain the PMF for the second phase of the cell cycle, where the transcription

rate changes from A to 2.

3.1.2 Probability distribution in G,, following G.

To derive the RNA distribution in the second phase, we use (3.3) alongside the
relevant initial conditions, which we obtain from Equation (3.16). Specifically, by
solving (3.16) at t = t;, where ¢, is the duration of the first phase, we obtain the
initial conditions of the second phase. As such, we obtain the p.g.f. for the second

phase,

G(z,t) = en(Z D@ T—ert) (3.17)

Following the same steps as before, Equation (3.17) in turn gives the PMF of
RNA numbers during the G, phase,
A

Py(t) = — <;> (2 — emli=t) gtk R (2me e (3.18)

3.1.3 Probability Generating Functions at steady state

So far we have obtained the time varying distributions of RNA numbers during
the first two phases of the cell cycle. These distributions though do not reflect the
steady state distributions. To obtain the steady state PMFs, we repeat the above
process for the 24 cell cycle, by solving Equation (3.2) as shown in Section 3.1.1,
though this time using initial conditions obtained by solving Equation (3.18) at
t = t; + ty, where ¢, is defined as the duration of the second phase. This way
we obtain the PMFs for the 37¢ cell cycle, then the 4", and so on. The resulting

sequence is captured by the closed forms
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G (Z t) _ e%e*/‘t(zfl)(e*“LHZT:l E"N(t1+t2)7znm:1 etnt1t(n—1)t3)) for phase 1 (3 19)
1\~ - s .

Apo—nt(, ut_ M=l np(ty+ty) S pu(nty+H(n—1)tg)
Gy(z,t) = en® "2 D(2e 1400 e Lino1€ ) for phase 2,

(3.20)

where m represents the number of cell cycles. As m — oo, Equations (3.19) and

(3.20) converge to the steady state functions

A(z—1)<1+e*“(t*f1> 1_ct2h

Gi(z,t) =e* 1—e“1“2)“) and (3.21)

Al e mlt—(tyttg)) _1—et1H )
wl# 1)(2 e et )

Gy(z,t) = e (3.22)

The p.g.f. Equations (3.21) and (3.22) are used to derive the equivalent probability

mass functions,

1 A 1 — pto A (emlt—t 1-eMt2
Peat) =4 (‘) (ehlt=t) =0~ 4 qykemn(@ TR AT Y (3.03)

k 1_eMtl )

L /A i (f—t — 1 —eth A (g mltoty—ty) 1—elTl
Pk72(t) - E (;) (2 € prmhts) 1— €M<t1+t2)>k€ s © 1_eh(t1+t2) ,

(3.24)

which match well with simulations (see Figure 3.1). It is worth noting however
that while the durations ¢; and ¢, of phases G1 and G2 respectively are modelled

as constants here, this is a simplification used to compute the closed forms of the
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PMFs. In reality, the durations of all eukaryotic cell cycle phases are known to
be variable (Charvin et al., 2008, Brooks et al. (1980)), and incorporation of this
source of variability into the model should be considered in the future, as used
by Soltani et al. (2016) for calculating the first two moments of the probability

functions.
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Figure 3.1: Steady state mRINA distribution at end of G1. Histogram
represents 10,000 Gillespie simulations ran with arbitrary parameters. Dots
represent the solution of the PMF from Equation (3.23) using the same
parameters.

3.2 Phase integration

Equations (3.23) and (3.24) describe the time-dependent RNA distributions
within a synchronised population of cells with respect to the cell cycle. However,
synchronisation achieved either by chemical cell cycle inhibition, or in silico
synchronisation based on cell cycle reporters, are not perfect. In order to compare
the above PMFs to the experimental data, we thus need to consider the resolution

limit of the cell cycle in the synchronised cells. As we will see in Chapter 4, in
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the case of in silico synchronisation, this limit depends on the information that
can be obtained from the available cell cycle reporters. In the simplest case, a
DNA stain such as Hoechst can be used to differentiate between G1, S and G2

phases.

To compare with population data resolved in these phases we require the PMF for
distributions over the whole of each phase, which we obtain by integrating over
each phase’s time-span. To get the PMF over the whole G1 phase, we integrate
Equation (3.23) from zero to t;, where zero is defined as the start of the G; phase
at steady state, and ¢; the end. Alternatively, we can integrate the p.g.f. (3.19)

over the same time span,

Y —p(t—tq)__1—et2k )
21 (1+e plt—ty) _1-ef2k
GI(Z,t) = 8“( ) 1-eltittoln )

2 00 A" (—1 4+ )" th e(—tt)pn gy
/ Gi(z,t)dt = en>1) Z ( < " ,
0

o n!
B le%u*l)l“ 0 (I—et2)(z=1DA  e"#(1—et2)(z—1)A
- 7 ’ (1 — eﬂ(t1+t2)> L ’ (1 — e#(tﬁ'tz)) W ’
(3.25)

and then derive the PMF' as before,

P B B O O P B P

b ke <ﬁ> (1= erltitta)) gy (1 — enltitta)) g T

A (L—ert2) X A ekl (1 —ett2) )

J * (1 —erltitta)) U (1—erttitta)) ) |7

(3.26)

where, as before, k is the number of RNA molecules. The same approach can be
employed to derive the RNA number PMF during the G, phase. By integrating
the p.g.f. (3.20) over the ¢; to t; + ¢, time span, we can derive the PMF for the
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G2 phase

1 (6_?(%>’“F(0’_(<1—emx _e“t2(1—e“t1))\>+

P2k = P 1— eu(t1+t2)) /~L, (1 — eu(t1+t2)> 1

S (2)

k—(n+1)

2\ (1—erti) X 2X  etl2 (1 —ettr) )
7 - <1 — eﬂ(t1+t2)> :U/, ? - (1 — @N(tﬁ‘tz)) 7

(3.27)

I‘<1+n,

Both steady state PMFs compare well to simulations (see Figure 3.2), noting
however that the integration and respective simulations reflect the popular
‘mother machine’ experimental setting (Wang et al., 2010), and thus cannot be
directly compared to snapshot-type data such as that acquired by flow cytometry,
due to the non-uniform distribution of cells throughout each phase caused by the
continuous influx of newborn cells at the start of the cell cycle. These equations

should therefore be adjusted accordingly before comparing to the data.

3.3 Cell division

Cell division has been shown experimentally to lead to a random partitioning
of RNA molecules, in a binomial fashion similar to Golding et al. (2005). Huh
and Paulsson (2011a) demonstrated mathematically that random partitioning of
molecules at division can explain the observed RNA variation in a population
of cells just as well as bursty transcription dynamics can. Here, we take into
account the effect of cell division by adapting our model accordingly. Specifically,
in a similar way to Section 3.1.2, we use the PMF solution at the end of the cell
cycle to obtain the initial conditions for solving the next cell cycle, though in
this case we add another step, whereby we take the binomial distribution of the
initial conditions. This is shown using a Gillespie simulation in Figure 3.3. The

derivation of the resulting PMF is outlined below.
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Figure 3.2: Integrated G1 and G2 phase mRNA distributions. Histograms
represent 10,000 Gillespie simulations ran with arbitrary parameters. Dots
represent the solutions of the PMFs from Equations (3.26) and (3.27), using the
same parameters. Blue indicates the G1 phase, red the G2.

3.3.1 Probability distribution in G,, following division

Let z; be the RNA number right before division and x4 be the RNA number right
after division. z, is given by a binomial B(z, p), where p is the ratio of the size of
the daughter cell in question over that of the mother cell, assuming homogeneous

distribution of transcripts in the cytoplasm.

Then

P(Xy=w,) = Z P (X, =2, X, = 1,)
n (3.28)
= Z P (X, =2,y Xy =2) P(X; = 2y).
x,=0

To get the p.g.f., we transform both sides,
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Figure 3.3: Gillespie simulation of dividing cell cycle model. 1,000 Gillespie
simulations ran with arbitrary parameters based on dividing 2-phase cell cycle
model.
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Z P (X, =) 2" = Z Z P(Xy = 2| Xy = 2) P (X; = 2q) 2™
z,=0 z,=0x,=0

oo o0

- Z Z P(Xy =20 Xy =21) P(X) = 2) 22

z,=0x,=0

- i (P (Xl = 561) i P<X2 = ZE2|X1 = xl)zzz) .

z,=0 z5=0

(3.29)

The x4 sum on the RHS is the p.g.f. for the binomial distribution B(z,,p). Thus

the above equation becomes

()= 3 P(X, =) (1—p) +p2)™, (3.30)

z,=0

which is the p.g.f. of P(X; = z;) with parameter ((1 - p) + p z), or in other

words,

G, (2) =G, (w), forw=p(z—1)+1, (3.31)

where G, corresponds to the RNA distribution at the end of the first G, phase,

which we calculated in the first section, see Equation (3.17). Thus

Gy, (2) = Gy(z,t) = enFTDEme T 0I—e) (3.32)

Hence, equation (3.31) becomes
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8

G, (2, 1) = G, (p(z—1) + 1)

_ a1 41-1) (2o n ) e nt) (3.33)
— enp(z=D)(2-e (et

Similar to Section 3.1.1, Equation (3.33) can now be used to find the initial
conditions for calculating the p.g.f. of the first G, phase after the first division.

The resulting function is shown below,

G, = o (=D (e trt2) (2p—1)—pe (1) —petit1) (3.34)

Then the PMF of RNA numbers during the first G; phase after cell division, is
given by

1 /0"
P1k<t> = E <_> <1 -+ 67“<t7(t1+t2))(2p — 1) —pef.u(tftl) —pe*t“> k
' (3.35)

67% (efu(t*(tﬁtQ))(2p71),peﬂb(t*tﬂfpe*tturl)

3.3.2 Probability distribution in G,, following G, after
division
Equation (3.34) can be used to calculate the PMF in the next phase. As shown

before, we use the conditions at the end of the first phase to calculate the initial

conditions for the second phase. This gives us

A, —p(t— ) —1)—pe Mt—11) _pe—nt_o—n(t—(2
G2 _ e“(z 1)(6 nlt=(t1+t2) (2p—1)—pe r(tt1) _pe—nt _e—H(t=( t1+t2))+2), (3.36)
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which in turn gives us

A * k
P, (t) = — (—) (6*#(t*(t1+tz)>(p2 — 1) _pe*#(t*fq) _peﬁut — e H(t—=(2t1+t3)) + 2)

67% (efu(tf(t1+t2))(2p71)7pefu(t7t1)7p€7u,t767u(t7(2t1+t2))+2>

(3.37)

When cross-checked with the simulation results both PMFs are found to agree

well.

3.3.3 Cell division model - steady state PMFs

Following the procedure described for the non-dividing model, the time varying
solution for the RNA distributions of the division model at steady state can be

shown to be

p(ty—t) k
1 M ggimrg — 1 A (erti—t) _ 9enltitts) 4 q
Py (t) = - exp (26 UESEEE] ) (e ¢ +1) (3.38)
1k

k! ol " (1 — 2€N(t1+t2))
for G1, and
(—t+2ty+tg) p(=t+2t1+tg) k
1 PR (Camakie i i | oA (1 — e =t
P2 (t) _ —'exp (geum ta) 1 ) ( 2eH(t1 tz),l) (3‘39)
g k! 7 p

for G2, noting that here we simplify by assuming cell division to be perfect, and
thus set the binomial coefficient p to 0.5. We thus have the time varying solution
for a model including gene dosage effects and cell division. These results match

well when compared to simulated data, see Figure 3.4.
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Figure 3.4: Dividing cell cycle model mRNA distribution. Histograms
represent 10,000 Gillespie simulations ran with arbitrary parameters. Dots
represent the solutions of the PMFs from Equations (3.38) and (3.39), using the
same parameters.

3.3.4 Cell cycle effects on RN A number mean and variance

At this point we can already ask questions about how the system behaves under
different parameter regimes. For instance, how are the mean and variance of RNA
molecule numbers affected by changes in cell cycle period? The cell cycle can vary
in length depending on culture conditions, but also stochastically, depending on
the number of cycle-related proteins inherited by newborn cells (Dowling et al.,
2014). Depending on the RNA turnover rate, this can have affect on the resulting
distributions, especially for longer living RNA species. Furthermore, we may ask
what the effects of variation in the relative duration of the two phases are? This
is relevant as the replication timing varies between genes, see ‘early’ and ‘late’
replicating genes (Voichek et al., 2016a), which could result in downstream effects

on RNA distributions.

To obtain the mean and variance, we use the p.g.f.s for the PMFs (3.38) and (3.39),

integrated over their respective time duration. Specifically, it can be shown that

E[X] = G'(1)

and
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Var(X) = G7(1) + G'(1) — [G" (1)),

where E[X] and Var[X] are the expectation and variance of variable X. We thus
have for the first phase

A ettt — 1
P, = (1 (2ot ia) 5)

and

A ettt — 1
VarGI(X> = M_-tl (tl — 1 (2€H(t1+t2) — 1)) )

where E; and Varg are the expectation and variance over the whole G1 phase.
It should be noted that here the expectation and variance are the same. The
distribution is thus Poissonian in spite of the changes we have made. In the same

way we get the results for the second phase,

(gerritmrs + 20ty — 1)
ity .

Eg, (X) = Varg, (X) =

= | >

The mean over the whole cell cycle, F. ., is obtained by taking the weighted average

ce)
over the two expectations, where the weight is proportional to the fraction of the

cell cycle spent in each of the two phases,

_ Eq (X)t) + Eg, (X)t,

E (X
(X) —

In Figure 3.5, we look at how E_, changes when we vary the cell cycle duration
length, as well as the relative durations of the two phases. We further look at how
these effects are influenced by RNA stability. In order to make the comparison
fair, we adjust the transcription rate for each value of RNA stability in order to

keep the overall mean constant. For a range of RNA half life values, changes in
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cell cycle properties have a considerable effect on the mean RNA number.
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Figure 3.5: Cell cycle effect on mean RNA number for different RNA
turnover rates. RNA halflives (hours) labelled in black. x-axis refers to the gene
replication timing with respect to the duration of the cell cycle period, y-axis refers
to the duration of the cell cycle period.

We observe that shorter half lives are generally more resilient to cell cycle effects
than longer ones (compare 20.8 hours with 6.9 hours in Figure 3.5). On the other
hand, in order to achieve the same level of RNA the transcription rate needs to
be increased. This can be shown in Figure 3.7, where the relationship between
the strength of the cell cycle effects (measured as the coefficient of variation of
means within each panel) and the RNA synthesis rate required to keep the mean

RNA level constant can be seen.

3.4 Multi-phase model

So far we have modeled the cell cycle in two phases, defined by the gene

copy number before and after DNA replication of the gene locus of interest.
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Figure 3.6: Colour legend for Figure 3.5. Colours reflect the mean quantity
of RNA.
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Figure 3.7: Transcription rate vs cell cycle effects for different RNNA
turnover rates. Black dots indicate the increase in variability due to cell
cycle effects seen in RNA species with longer half-lives. Red dots indicate the
reciprocal synthesis rate required to maintain the same mean RNA numbers
between different values of half-lives.
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Furthermore, we have made the simplifying assumption that changes in the rate
of RNA synthesis during the cell cycle are dependent solely on the copy number
of the gene, resulting in a periodic doubling of the rate. Finally, we have assumed
that the degradation rate remains constant throughout the cell cycle. In reality,
the cell cycle is a complex sequence of events, during which the rates of RNA
synthesis and degradation can change for various reasons, such as changes in the
concentration of the transcription and degradation machinery, or variations in

the state of chromatin.

To account for these changes, here we extend the dividing cell model from two
to three cell-cycle phases, in accordance with the easily resolvable experimentally
G1, S and G2/M phases, and find the steady state equations for each in the same
way as we did in Section 3.1.3. In addition, we let the rate of transcription and
degradation constants, A\ and p, vary unconstrained during the cell cycle. We
thus end up with a different set of rates for each phase. As before, we make the
simplifying assumption that cell division results in equally sized daughter cells,
in other words set the RNA binomial partitioning probability to p = 0.5. This
results in the below set of equations, describing the distribution of RNA molecules

in each cell cycle phase:
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where t;,t,5,t; are the durations of the G1, S and G2 phases respectively, and A;, Ay, A3 and
f1, [, 43 their associated transcription and degradation rates, respectively.
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Equations (3.40), (3.41) and (3.42) can be generalised to an arbitrary number of

phases, and this will be the focus of future progress.

3.5 Cell growth

Finally, we incorporate cell-cycle related cell-growth into the model. As the
transcription rate depends on the intracellular concentration of molecules such as
RNA polymerase II, ribonucleotides and the DNA template itself, we would expect
that an increase in cell volume, which can be due to either intrinsic size variation
or cell growth, would lead to a decrease in the stochastic rates of transcription,
as the molecules will effectively become diluted. A similar effect could be seen
with regards to the degradation machinery, thus affecting RNA turnover rates.
It has been shown that RNA concentration homeostasis is actively maintained
in mammalian cells of varying sizes, though the underlying mechanisms are not

understood (Kempe et al., 2015, Padovan-Merhar et al. (2015)).

Here, we construct a null model whereby cell size has a diminishing effect on
the above rates. In order for concentration homeostasis to be preserved, we thus
expect the rates to increase sufficiently during the cell cycle in order to compensate
for the dilution effects caused by cell size increases. We further assume, as a
starting point, that a population of cells will on average follow a linear growth

trajectory with respect to the cell cycle period.

We thus model the cell growth as v(t) = at + 3, where a and 8 are the growth
rate and initial cell volume respectively, and scale the rates A and p accordingly.
Following the same procedure used to obtain Equation (3.16), we get the time
dependent RNA distribution of a growing cell, here without considering DNA

doubling or cell division
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The resulting equation was compared to simulations and found to agree well (see
Figure 3.8. The cell growth model needs to be extended to include changes in

cell-cycle phases and cell-division, and this will be the focus of future progress.
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|

Figure 3.8: Cell size growth model mRNA distribution. Histogram
represents 10,000 Gillespie simulations ran with arbitrary parameters. Dots and
lines represent the solution of the PMFs from Equation (3.43), using the same
parameters.

3.6 Discussion

Although the aim of the work in this chapter was to obtain a mathematical
framework for analysing experimental data with, some preliminary investigations
could be made using the derived models. Specifically, we looked at how properties
of the cell cycle such as overall period duration and relative duration of the cell
cycle phases affect RNA numbers, and how varying RNA stability changes these
effects. Interestingly, for transcripts of the same average abundance, a lower
turnover is associated with a greater susceptibility to cell cycle effects, while the

opposite is true for more short lived transcripts.

This has likely to do with the fact that the number of transcript molecules
associated with a higher turnover rate can more rapidly be adjusted to changes in

rates associated with cell cycle progression. The opposite is true for longer living
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transcripts, which result in transcript numbers from previous phases carrying over
to the next, thus skewing the average number. This demonstrates the trade-off
that exists between the higher responsiveness associated with increased RNA
turnover rate, and the cost of increased synthesis required to maintain a constant

RNA level.

Although models based on mass action kinetics such as the ones developed
here can be insightful and have been used extensively towards understanding
gene expression noise, the implicit assumption made that the cell is a well
mixed compartment is arguably an oversimplification. For example, rather than
occurring homogeneously in the cell transcription has been shown to occur within
specialised locations in the nucleus termed transcription factories, which have
recently been suggested to form dynamically by liquid-liquid phase separation
(see Cramer (2019) for a recent review). These sub compartments can increase
the effective concentration of the transcriptional machinery which would affect
transcription noise, going against the assumption that transcription kinetics can
be explained by Brownian motion alone. It is therefore important to corroborate
any insights made using models such as these presented here with simulations
and models that incorporate the above and other effects, such as molecular

crowding (Golkaram et al., 2016), and this should be the focus of future research.

Here, we chose to specifically ignore genetic promoter switching in order to
understand whether extrinsic factors such as changes in gene dosage and cell
size during the cell cycle, as well as partitioning of molecules at cell division are
sufficient in describing the super-poissonian distributions of mRNA molecules
seen in populations of growing cells, in line with recent results (letswaart et al.,
2017; Zopf et al., 2013; Battich et al., 2015; Klein et al., 2015). It would be
useful to see how well the presented model fits to the experimental measurements,
compared with a model that incorporates promoter switching alongside cell cycle
effects. To do so, we could follow a similar appoach to the one described in this

chapter. Specifically, we could start from the basic formulation of the telegraph
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model and proceed by incorporating the increase in gene dosage following gene
replication. This could be achieved by doubling the frequency of transcriptional
bursts, in order to model the existence of twice the source of gene template.
In order to model the increase in cell size, either burst frequency or burst size
could be scaled, and the most agreeable to the data model could be chosen, as
described in (Sun et al., 2019b). Partitioning of molecules at division could be
done in the same way as here. As the resulting functions would be harder to
derive than the simpler Poisson model, it may be necessary to resort to obtaining

just the moments of the PMFs, rather than the full analytical solutions.

To summarise, we have thus far developed four stochastic models of gene
expression which include different aspects of cell growth. The first model,
described in Section 3.1.3, considers the effects of the change in gene dosage
on RNA transcription, due to DNA replication. The second model, described
in Section 3.3.3 extends the first by further including the random partitioning
of RNA molecules at cell division. Both of these effects have been shown to
be important extrinsic sources of gene expression variation, capable of shaping
the observed RNA distributions in a population of asynchronously growing
cells. In the third model, described in Section 3.4, we further extended the
two-phase division model to three phases, and allowed the rates of transcription
and degradation to vary in each phase, thus accounting for likely phase-specific
changes in rates overlaying the gene dosage effects. All three models were solved
analytically using probability generating functions, and their steady states were
derived. These models can thus be compared with smFISH data, and used to
infer the kinetics of different RNA species. This will be the subject of future

work.

A fourth model is considered in Section 3.5, incorporating the effects of cell size
increase on transcription and degradation rates, and the time varying solution
was found for the first phase. This model can be extended to include multiple cell

cycle phases and RNA partitioning at cell division, as in the previous three models,
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and that will be the focus of future work. However, the increase of cell size during
the mammalian cell cycle is not well understood, which is why obtaining more
experimental measurements was prioritised here, as opposed to further developing
the model. In Chapter 4, we look into how such measurements can be obtained
from asynchronous populations of cells, by computationally analysing multiple

cell cycle markers, in parallel to measurements of cell size and RNA kinetics.
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Chapter 4

Multiparameteric cell cycle

analysis using Probability State
Modelling

4.1 Background

Multiple markers can be simultaneously employed to resolve the cell cycle at
a much higher resolution than DNA content alone can afford. These can be
used in combination with other biomarkers such as fluorescent protein tags or
antibodies to track the regulation of different molecules with respect to the cell
cycle. An example of this is found in (Kafri et al., 2013), where DNA stained with
a fluorescent dye, and a fluorescent reporter with a geminin degron which marks
the exit of the G1 phase were used in combination to track changes in cell growth
rate. We are using a similar method while including a third marker, namely Cdt1

(Sakaue-Sawano et al., 2008), in order to increase the resolution of the cell cycle.

Different sub-populations can be extracted from cytometry data using polygon
compartments (“gates”) on bivariate plots, a practice used extensively in cell cycle

analysis (Jacobberger et al., 2012). Two important limitations became apparent
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when using this approach. Firstly, it is reliant on manual subsetting (“gating”) to
be performed on each sample, which is itself subjective and therefore makes the
comparison between samples problematic. Secondly, as the number of measured
cell cycle reporters increases, so does the complexity and labour intensity of the
subsetting process, making it poorly scalable. This issue, also called “the curse
of dimentionality” is well known in cytometry data analysis, and has thus led to

many gating-free methods being developed in recent years (Mair et al., 2016).

Kafri et al. (2013) use a dimensionality reduction algorithm relying on density
peak tracking to define a single trajectory, as a function of two independent cell
cycle reporters. Superior methods for exploring the trajectory of cells through time
have since been developed, primarily for studying differentiation (see (Saeys et al.,
2016) for a review). Such techniques include Probability State Modelling (PSM)
(Bagwell et al., 2015b), and nearest-neighbour network exploration (Bendall et al.,
2014; Gut et al., 2015; Setty et al., 2016), all of which are better suited for handling

data with more than two dimensions.

Unlike non-parametric methods such as density peak tracking (Kafri et al., 2013)
and nearest-neighbor network exploration (Bendall et al., 2014; Gut et al., 2015;
Setty et al., 2016), PSM (Bagwell et al., 2015b) is a parametric method based
on quantile modelling. This allows us to design a suitable model, which is
subsequently fitted to the experimental data. In our case, the advantages of
using a parametric approach is that prior biological knowledge can be encoded in
the constraints of the model and the resulting parameters from fits to different
samples can easily be compared. Furthermore, the probability of each data point
fitting to the model can be evaluated, enabling the identification of outliers and
cells not belonging to the population of interest. Finally, once a model has been
fitted, it can be used to generate simulated data, which can be used for estimating

the predictive power of the method.
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4.2 Building descriptive fucci models

In Section 2.5 we introduced PSM (Bagwell et al., 2015b) and described our
implementation for analysing the cell cycle, based on DNA quantity as measured
by Hoechst staining. Here we look at how our cell cycle model can be expanded
to encompass the measurement of two additional cell cycle markers based on he

fucci reporter system, geminin and Cdt1.

4.2.1 Selecting model priors

Before we can use PSM to predict the state of each cell, we need to have a good
understanding of how the levels of the cell cycle markers we are using change
as a cell progresses through the cell cycle. In our case, we are using the fucci
degron markers Cdtl and geminin, which have a relatively well known cell cycle
pattern (Sakaue-Sawano et al., 2008). To confirm that our measurements reflect
the theory, we look at how the fucci Cdtl and geminin reporter proteins correlate

with a known quantity such as DNA amount, see Figure 4.1.

Our prior biological knowledge of the three available reporters can thus be
summarised in table 3.1. What is not known is when exactly in cell cycle
time these events take place and at what rate the accumulation (‘rising’)
and degradation (‘falling’) occur. PSM enables us to test how well different

assumptions describe these transitions.

Marker/Phase  eG1 Gl  GI1-S S S-G2 G2/M M

DNA n=1 n=1 n=1 rising rising n=2 n=2
Cdtl low rising max falling low low low
geminin low low rising rising rising rising drops

As a first step, we use a DNA model fitted as described in Section 2.6 to analyse
the above data based on the DNA measurements alone, in order to observe how

the fucci markers change with time and roughly characterise their expression (see

1)



100
l

Cdt1
40

20

0 20 40 60 80 100 0 20 40 60 80 10
DNA

Figure 4.1: DNA vs fucci measurements. DNA of fucci cells was stained with
Hoechst for quantification by flow cytometry. Measurements are normalised from
0 to 100, by setting the minimum to 0 and maximum to 100, following outlier
exclusion.
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Figure 4.2).
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Figure 4.2: Analysis of fucct reporters by DNA staining and PSM. Data
shown is analysed by PSM based on a DNA model fitted as described in the main
text. Around 15,000 fucci cells were stained by Hoechst DNA dye and analysed
by flow cytometry.

This picture is in agreement with what we know from the literature
(Sakaue-Sawano et al., 2008). Specifically, Cdtl appears to be high during
G1 and the start of S phase and low during the G2/M phases. For geminin, we
can clearly see two populations during the G1 phase, suggesting that there is an
upregulation step during that time, followed by a gradual increase until the onset
of the G2 phase. What also becomes clear is that the low level of Cdtl during
the G1 phase is not the same as the low level during the G2/M phases, which is

important to note when assigning a model to the transition.
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Surprisingly, we find a population of highly expressing Cdtl cells during the
G2/M phases (Figure 4.2) that was not described by Sakaue-Sawano et al. (2008).
Following up on this observation, we found in the literature that Cdt1 does indeed
become upregulated towards the end of the cell cycle (Williams and Stoeber, 2012).
Taking together the information from the above table and the observations from
Figure 4.2 we propose a set of simple piece-wise linear model to describe the

transitions of the Cdtl and geminin reporters (see Figure 4.3).
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Figure 4.3: Proposed fucct models.

4.2.2 Multidimensional analysis with PSM

In Section 2.5 we saw how PSM can be used to analyse the cell cycle based on
a single measurement - DNA quantity. One of the main advantages of PSM over
bivariate gating is that it is specifically designed to handle multiple correlated
measurements of a process (Bagwell et al., 2015b), such as the cell cycle. Here,
we use PSM to analyse the cell cycle based on all three available measurements;

DNA, geminin and Cdt1.

To do so, the steps detailed in Section 2.5 need to be adapted to the

multidimensional case, as described in (Bagwell et al., 2015b). First, for each
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additional measurement we generate a probability E-matrix, as shown in Figure
4.4 for Cdtl and geminin. Similarly to 2.5.3, for each measurement we assign
the data into bins corresponding to the rows of the corresponding measurements
(Figure 4.4). This way, for each data point we obtain three probability weight

vectors, one for each measurement.

Cdt1 geminin

DNA

Figure 4.4: E-matrices for fucci models. Matrices corresponding to the
proposed models of Cdtl, geminin and DNA.

So far nothing has changed from the unidimentional implementation. In the next
step, for each data point we combine the three corresponding weight vectors by
element-wise multiplication, in order to obtain a consensus weight vector. The
resulting vector describes the probability distribution of finding a point with the
given combination of measurement intensities along the cell cycle period. Once a
consensus weight vector is obtained for every data point, we use it to assign a cell

cycle position to each by performing weighted sampling.

Depending on the number of measurement channels there will be an equivalent

number of resulting empirical ES-matrices, computed in the same way as shown in
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Section 2.5.4. These can be compared with their respective E-matrices to derive
an equivalent number of goodness of fit scores. The mean of these scores can be
used as an overall score of how well the three models describe the data. Once
again, we use this as the output of our objective function, which we subject to
Bayesian Optimisation using mlrMBO (Bischl et al., 2017), as detailed in Section
2.6.

4.3 fucct model fitting

Following this method, we run ten instances of the optimisation algorithm in
order to estimate the optimisation error. The fitting is performed in three steps,
as detailed in Sections 4.3.1 to 4.3.5. This iterative approach enables us to add
layers of complexity to the model gradually, as we understand more about the
cell cycle markers being used. Furthermore, it allows us to determine which cells
can be accounted for by the model, versus cells which may not belong to the
process (ie quiescent cells). This way we can chose whether to exlude these cells,
or advance the model accordingly. We find that a continuous piecewise linear
function is adequate for describing the DNA and most of the geminin transitions,
but not for the Cdtl transition. This is possibly due to a high degree of Cdtl
expression heterogeneity in certain phases of the cell cycle. We make appropriate

changes in the model to test whether we can account for this.

4.3.1 Starting conditions

Using peak identification followed by the fitting of a half-Gaussian we first obtain
a set of initial estimates for the mean and standard deviation of the steady states
in the same way as in Section 2.6. For each measurement, we use the relative
density corresponding to the fitted Gaussian on each mode, to obtain an estimate

of the proportion of time spent in each.

Following the same approach, we get a rough estimate of the time spent in each of
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the transitioning phases in order to get starting values for the change-point timings.
Specifically, for geminin we assign the remaining density to the transition between
the two constant phases, and do the same for the two transitioning phases of Cdt1
by first splitting the density in half. The resulting preliminary models can be seen
in Figure 4.3.

4.3.2 Optimisation Round 1:3

The aim of this step is to obtain better starting values for the levels and time
points that describe the model of each measurement. We do so using Bayesian
Optimisation to fit the preliminary models shown in Figure 4.3 to our data.
The resulting values will be used to inform our model and boundary constraints,

accordingly, for the next round of optimisation.

Here, we use our initial estimates of the timings of the above cell cycle events
from Section 4.3.1 to derive a first set of boundary constraints. At this stage,
we keep these constraints very broad as we the uncertainty about the true values
is high. Specifically, we use a £ 20 window on either side of each time point
estimate, correcting appropriately for any that may have a distance <20 from
either extreme of the cell cycle period. The resulting boundary constraints can

be seen in Figure 4.5.

Furthermore, we add two additional breakpoints in the middle of each transitory
phase in the geminin and DNA models, and set equally broad constraints for each.
This way we allow for greater flexibility in the shape of these phases. The mean
levels of these new breakpoints, as well as that for the initial G1 phase in Cdtl
for which we have no prior information, are kept free (+ 10 window), while the
rest are for the time being kept fixed at the initial estimations based on peak

identification.

We run the Bayesian Optimisation algorithm ten times for just under 1,500
iterations each. The mean and standard deviations of the resulting optimisation

paths can be seen in Figure 4.6, from which we can see that beyond 800 iterations
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Figure 4.5: First optimisation step. Each polygon corresponds to a distrinct
Vertial lines correspond to fitted timepoints, translucent
rectangles correspond to respective boundaries.

optimisation run.
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we get diminishing returns.
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Figure 4.6: Minimisation path of PSM objective function by Bayesian
Optimisation.

Figure 4.5 shows that the G1 to S transition on the DNA measurement occurs
much sooner than our initial estimations, derived from the DNA histograms. This
discrepancy is likely due to the contribution of the early S phase to the G1 phase
peak which leads to an overestimation of the G1 duration by the half-Gaussian
fit. The additional information contributed by the fucci reporters via the PSM
process is likely to have led to a better estimation of the relative G1 phase duration.
Similarly, we can see that the middle Cdt1 time point is near its boundary. These

boundaries need to be adjusted accordingly prior to the next optimisation run.

Before repeating the run with the updated constraints, we look closer into the
resulting fits in order to determine whether any further adjustments need to be
made to the models. We use the mean of all the optimisation runs for each
parameter of our cell cycle models to analyse our data using PSM (see Figure
4.7). We can see that the first Cdt1 stationary phase is in fact an increasing phase,
as can been seen by the points with higher expression level than the fixed level

between the 28th and 70th quantiles. Similarly, G1 phase DNA measurements
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are on average lower than the fixed value.

Cdt1 geminin

Figure 4.7: PSM analysis using averaged models from round 1.

Furthermore, we see that aside from certain density inhomogeneities along the
cell cycle period, there are also certain clusters of points lying outside of our
modeled trajectories (see 65-70, geminin and DNA; 70 to 75, DNA). These points
are clearly not described by our proposed models, either because they correspond

to experimental outliers or due to deficiencies of the models themselves.

In the next section, we use the chi-square distance of each point’s measurements
from the proposed models to get a metric of how agreeable the two are, in order
to identify outliers (Bagwell et al., 2015b), as well as potential shortcomings of
the proposed models.

4.3.3 Outlier Identification

Often in cytometry data analysis, there are data points which do not belong
to the population of interest, and thus need to be excluded prior to analysis.

Such inhomogeneities can arise from the presence of fractured cells, or cells which
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happen to be clustered together and as a result are registered as a single event
by the flow cytometer. Furthermore, cells which are not actively dividing can be
also be considered outliers in our case, and thus confound the interpretation of

our results.

Usually the population of interest can be roughly isolated using polygon ‘gates’
on bivariate plots of select measurements. More sophisticated methods also exist
which can identify likely subpopulations within the data set using a modelling
approach (Saeys et al., 2016). Although these methods can substantially reduce
the number of outliers entering the data analysis pipeline, they are not perfect,

and a variable number of outliers is usually still present.

Bagwell et al. (2015b) use a criterion to identify the data points which do not
comply with the proposed model, based on the chi-square statistic. A threshold
‘probability of exclusion’ needs to be defined a priori, for which the corresponding
chi-square value can be obtained by solving the inverse CDF of the chi-squared
distribution with degrees of freedom equal to the number of measurements being
modeled. Then the chi-square distance of each data point from the proposed
model is measured and compared to the threshold value, in order to determine
whether it is rejected or not. This is different from the goodness of fit scores
described in Section 2.5.4, as it does not measure how well the model describes

the whole data set. Instead, it measures how likely each individual data point is

to be part of the proposed model.

Although the above method was proposed by Bagwell et al. (2015b) for identifying
outliers, it can also be used to detect deficiencies of the model. Here, we set a
probability of exclusion threshold of p = 1073 to identify data points which are
not in agreement with the model (see Figure 4.8). We apply k-means to classify
these points into clusters, and check whether these can be identified as known
populations, which can subsequently either be specifically included in the model

or discarded.

At this stage it is important to identify which points correspond to true outliers,
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Figure 4.8: Outliers identified using chi-square test. Clusters identified
using k-means

and which are just flagged due to shortcomings of the proposed models. The
former need to be excluded from the analysis as they can impact the fitting process
and downstream interpretation, while the latter can inform us on how to improve

our proposed cell cycle models to better describe the observed data.

To that end, we use the bivariate plots of the three markers to help us identify
these points (see Figure 4.9). Clusters 1 and 3 have a very low DNA amount so are
likely to correspond to fractured cells. 5 to 8 and 2 appear in the G2/M transition
and M phase, which we have not yet explicitly modeled and could therefore appear
as outliers. Cluster 4 cannot be identified as easily. The G1l-level DNA amount
and low Cdtl levels suggest these cells may belong to an undividing, quiescent
population of cells, though this interpretation is not agreeable with the medium

to high geminin expression level.

These results suggest that additional breakpoints need to be inserted in our
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Figure 4.9: Corresponding locations of outliers on bivariate plots.

piecewise linear models to account for changes in the expression of geminin and
Cdt1 during the M phase. Furthermore, we broaden the boundaries of the Cdt1l
middle time point and the DNA G1 phase and manually adjust the relevant levels.

The resulting proposed models and constraints can be seen in Figure 4.10.

4.3.4 Optimisation Round 2:3

We run the Bayesian Optimiser again, this time using the improved model from
section 4.3.3. This is repeated ten times for roughly around 1,200 iterations each.
The resulting fits can be seen in Figure 4.10. The mean and standard deviation
of the optimisation paths can be seen in Figure 4.11. We use the mean of the
resulting fits for each parameter to analyse our data using PSM, similar to 4.3.2.

The resulting trajectories can be seen in Figure 4.12.

We can see in Figure 4.12 that points in the geminin and Cdtl trajectories have
now been shifted to fill the M phases. We can demonstrate this by plotting
the clusters of outliers identified in Section 4.3.3 observing their positions (Figure

4.13). We can see that the points in clusters 5 to 8 that we identified as potential M
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Figure 4.10: Second optimisation step. Each polygon corresponds to a distinct
optimisation run. Vertical lines correspond to fitted timepoints, translucent
rectangles correspond to respective boundaries.
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Figure 4.11: Minimisation path of PSM objective function by Bayesian
Optimisation.
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Figure 4.12: PSM analysis using averaged models.

phase cells have indeed been allocated in the newly defined M phase. Furthermore,
if we count the number of points that fall beyond the cutoff threshold of p = 1073,
we find that 43% of these points have been accounted for by the improved model
and are no longed deemed outliers (note the reduced number of points in Figure

4.14 compared to Figure 4.13).

Although the advanced model appears to lead to an improved overall fit, there
are still clusters of points that remain unaccounted for. Specifically, even though
many of the points in clusters 2 and 5 to 8 have been accounted for by the
implementation of the M phase, there are still points occupying where clusters
2, 6 and 4 were, and there is a region of low density between them. As these
observations coincide with the Cdtl downregulation step, we ask whether the

specific step is adequately described by our proposed model.

There are at least two explanations for why the model may be inadequate in
that phase. First, that the Cdtl downregulation may be so rapid (especially

towards the end) that there just are not enough cells present within the sample
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Figure 4.13: Location of outliers from Round 1 after second round of
optimisation.

with intermediate levels of expression, resulting in a region of low density in that
step. Alternatively, there is a high degree of heterogeneity in the expression of
Cdt1 between cells at that stage of the cell cycle, which means that a continuous

trajectory between the high and low levels of expression would fail to describe the

whole population adequately.

If the former explanation is correct, adding additional breakpoints in this step
would give sufficient flexibility to allow for a very rapid downregulation, thus
removing the low density region. We test this hypothesis by adding a further
breakpoint before the final optimisation run. With respect to the rest of the

model, we see a similar low density region in the M phase.
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Figure 4.14: Remaining outliers following addition of M phase to the
model.

4.3.5 Optimisation Round 3:3

In Section 4.3.4 we used the priors from Sections 4.3.2 and 4.3.1 to fit the time
points of the three proposed models, as well as the three mean levels that we had
no priors for. The initial models were further improved by adding an M phase
step in the geminin and Cdt1 transitions. Here, we use the resulting parameters
from Section 4.3.4 to design a new set of more constrained boundaries for the time

points, while letting the rest of the parameters vary.

Specifically, we fit all time points, mean measurement levels and errors
simultaneously, amounting to a total of 44 parameters, including an additional
breakpoint in the Cdt1 downregulation step. The resulting optimisation path can
be seen in Figure 4.15. The resulting fit can be seen in Figure 4.16. We obtain a
consensus fit by averaging over all the runs, and use it to analyse the cell cycle

of our data using PSM (Figure 4.17).
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Figure 4.15: Minimisation path of PSM objective function by Bayesian
Optimisation.
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Figure 4.16: Final optimisation step. Each polygon corresponds to a distinct
optimisation run. Vertical lines correspond to fitted timepoints, translucent
rectangles correspond to respective boundaries.
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Figure 4.17: PSM analysis using averaged models.

In Figure 4.17 we observe that, although the addition of a breakpoint in the Cdt1l
downregulation step has resulted in a slightly different profile, the low density
region at the 60th quantile persists. This suggests that a continuous piecewise
linear model may be insufficient for describing that stage of the Cdt1 transition due
to the high degree of expression heterogeneity at that point. Cdt1 level is therefore
likely not to be informative in that stage of the cell cycle, as cells with either high
or low level of Cdtl expression can be found there. Furthermore, attempting to
describe that stage of the Cdtl transition using a simple linear model leads to a
poor fit. For these reasons, in the next section we exclude Cdt1 from the inference

process, specifically during the phase with increased uncertainty.

4.3.6 Accounting for heterogeneity

In Section 4.3.5 we found that a piecewise linear model inadequately described
the Cdt1 downregulation step at the G1-S boundary. Here, we discuss a method

for selectively ignoring regions within a transition with high uncertainty such as
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this one from the PSM cell cycle analysis. The method relies on appropriately
averaging over the corresponding subset of the probability matrix obtained in
Section 2.5.2. This can be seen in Figure 4.18 for the G1-S boundary of the Cdt1
phase, where the selected region has been replaced by a uniformly distributed
density with value equal to the mean density corresponding to that region. This
has the effect that the precise positioning of data points that fall in that region

will only be informed by the alternative measurements, DNA and geminin.

Cdt1 geminin
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Figure 4.18: Probability matrices following selective averaging of
ambiguous phases.

This way we can selectively prevent any region of a given measurement from
influencing the PSM analysis. Using this approach, we fitted the model from
Section 4.3.5 again to the data, employing the same optimisation boundaries. The
resulting analysis can be seen in Figure 4.19. As we can see from this plot, there
is no longer a region of low density at the G1-S boundary (see DNA and geminin
trajectories). Furthermore, we can clearly see the co-existence of two distinct Cdt1

expressing populations in that region, as resolved by DNA and geminin. We keep
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Table 4.2: Table of model parameters for Cdt1 transition

1 2 3 4 5 6
p mean | 0.00 | 24.97 | 52.36 | 63.09 | 93.19 | 96.93
p sd 0.00 | 3.70 | 3.40| 298| 2.03| 1.26
l mean | 52.43 | 83.37 | 86.11 | 17.92 | 19.35 | 87.68
1 sd 3.28 | 212 329 | 1.67| 1.83| 4.50
S mean 6.36 | 5.00| 5.78| 584 | 435 | 5.17
s sd 127 1.30| 0.83| 143 | 0.44 ] 1.23

these results for further analysis (Chapter 5).

The parameters resulting from the simulations are summarised in Tables 4.2,
4.3 and 4.4 for Cdtl, geminin and DNA respectively, where columns refer to
breakpoints and p, [ and s refer to the timing, intesnity level and spread of each
breakpoint. Mean and sd of each parameter refer to the resulting mean and

standard deviations of ten parameter-fitting optimisation runs.
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Figure 4.19: PSM analysis using averaged models.

Although these results look promising, and potentially greatly improve the utility
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Table 4.3: Table of model parameters for geminin transition

1 2 3 4 5
p mean | 23.08 | 40.26 | 68.00 | 94.79 | 97.46
p sd 290 1.70| 422 | 232 | 1.25
l mean | 19.71 | 53.96 | 73.71 | 76.50 | 23.95
1 sd 060 291 | 1.81| 1.82| 4.1
S mean 3.54 | 392 496 | 516 | 3.06
s sd 043 ] 081 0.71| 094 049

Table 4.4: Table of model parameters for DNA transition

1 2 3
p mean | 38.18 | 60.39 | 80.49
p sd 2.01| 381 | 281
]l mean | 19.72 | 43.88 | 79.70
1 sd 0.67 | 3.89| 3.38
smean | 3.99| 539 | 5.77
s sd 0.54 | 0.71| 1.16

of our cell cycle model, we have not looked at the effect of averaging regions
of the probability matrix on the resulting scoring of the objective function,
which would in turn affect the fitting of the model. However, we have identified
the cause underlying the persistent low density region at the G1/S phase, as
the heterogeneous expression of Cdtl at that stage. This effect has also been
characterised by Grant et al. (2018), who found that the timing of the Cdtl
reporter fusion degradation depends on its expression level in each cell, during
G1. The authors instead proposed an alternative biomarker based on the fusion
of the PIP degron tag to a reporter protein, in order to mark the G1/S and S/G2

transitions more accurately.

While ignoring Cdtl during the G1/S phase allows us to rely on geminin and
DNA quantity during that phase, leading to a continuous cell cycle trajectory,
it remains to be verified how this affects the fitting procedure. An alternative
approach could be to switch the Cdt1 marker for a more precise cell-cycle marker
of the G1-S phase transition, such as one based on PIP (Grant et al., 2018).

Similarly, an alternative reporter could be used to mark the end of mitosis and
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onset of G1, such as the replication initiation factor Cdc6-GFP fusions used by
Duursma and Agami (2005). This would be especially useful here, as the present
set of markers cannot resolve the G2/M phases. An advantage of the fucci system
is the use of inactive protein fragments of Cdtl and geminin. A similar protein
reporter fusion could be constructed using the Cdc6 C-terminal sequence, which

is a target for ubiquitination by Cyclin F in mammalian cells (Walter et al., 2016).

4.3.7 Precision Assessment

Based on the resulting models we can determine how well the cell cycle can be
resolved, using simulated data. To do so, we first generate synthetic data using
the above models, as seen in Figure 4.20. The benefit of using synthetic data is
that the true cell cycle state is known for every cell, allowing us to compare it
to that predicted when analysing the synthetic data via PSM. This gives us an
estimation of the resulting resolution of the cell cycle model, as seen in Figure

4.21, which allows us to interpret the data in light of the limitations of the model.

S
— = Cdt1
B geminin
o |" DNA
> [ce)
‘©
c
2 o |
< ©
o
L)
© o _|
S <
£
@ o _|
Al
O —]

I I I I I I
0 20 40 60 80 100

Simulated Cell Cycle State

Figure 4.20: Simulated data based on fucci models predicted in Section
4.3. 10,000 data points simulated using PSM.

As the resolution often varies throughout the cell cycle, this is particularly useful
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Figure 4.21: Predicted vesus true cell cycle state. Simulated data generated
using the fitted fucci models were analysed using the same models. The resulting
state (predicted) is plotted against the simulated (true), in order to observe how
good the correlation is.

when comparing observations between different phases. In other words certain
cell cycle phases are better resolved than others, depending on the combination
of markers used. This can be seen in Figure 4.22, where the resolution at each
stage in the cell cycle has been measured using the data shown in Figure 4.21.
Specifically, a 95% confidence interval can been taken at each simulated cell cycle
state, based on the PSM analysis of the simulated data. This can also be seen by
taking the absolute distance of the 95% interval 4.23.

Repeating the same procedure for each reporter independently allows us to
compare the contribution of each reporter to the cell cycle resolution of the
combined model. In Figure 4.24, we can see that analysing the data using
all available markers simultaneously (blue line) combines their strengths, thus
improving the precision of the predicted cell cycle state. In Figure 4.25 we
look at how the different pairwise combinations of cell cycle markers compare

with each other. We see that the fucci markers alone (black) are the poorest
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combination when it comes to resolution, in part due to the unidentifiability
between the G1 and M phases of the cell cycle, something that is not noted
in the manuscript (Sakaue-Sawano et al., 2008). Adding DNA quantitation as
an additional dimension resolves this issue due to the change in ploidy between

these two phases, leading to a markedly improved resolution.
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Figure 4.22: Resolution at each cell cycle stage based on fucci markers
and DNA. Ranges obtained using a 95% confidence interval on the results
obtained by analysing the simulated data using PSM.

4.4 Discussion

Bagwell et al. (2015b) suggest that transitions are fitted iteratively, in order
to make the exploration of unknown markers by the researcher feasible and to
prevent the explored state-space from exploding as a result of the increase in the
number of fitted parameters. Although fitting well known progressions first can
be insightful with respect to the rest of the transitions, the multiple false minima
in the objective function often mean that fitting the first progression alone results
in a suboptimal set of parameters which may prove disagreeable when trying to

fit further measurement channels.
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Figure 4.23: Absolute interval at each cell cycle stage based on fucci
markers and DINA. Ranges obtained using a 95% confidence interval on the
results obtained by analysing the simulated data using PSM.

Here, a consensus fit between the measurements is achieved by fitting as many
progressions at a time as possible. Although fitting that many parameters
simultaneously can be computationally demanding, modern global optimisation
algorithms exist which can handle such demands. A machine learning-based
optimiser based on Baeysian Optimisation (Bischl et al., 2017) is used here,
which is specifically suited at handling expensive-to-evaluate, noisy objective

functions.

This way descriptive models for three cell cycle markers, namely DNA, geminin
and Cdtl, are fitted simultaneously. In the process, we saw that due to
heterogeneity in the Cdtl expression at the G1-S boundary, Cdt1 cannot provide
information about this step in the cell cycle, thus trying to fit a continuous
piecewise linear model results in a bad fit. In order to avoid this limitation a
method is proposed for selectively ignoring ambiguous transitions. This resulted
in an improved cell cycle trajectory, which we use in the next Chapter to explore

how transcription and cell growth relate to one another.
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Figure 4.24: Absolute intervals for each marker independently. The same
procedure described in main text was followed for each marker independently.
This allows us to compare the resulting resolution conferred by each individual
marker to the that obtained by the combined model.
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Figure 4.25: Absolute intervals for each pair of cell cycle markers.
Resolution comparisson of all possible pairwise combinations of available markers.
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The result is a phenomenological model consisting of the average cell cycle patterns
of the fucci markers and measurements of DNA content. This model can be used
to calculate the most likely cell cycle state of any fucci cell based on these three
markers. When applied to a population of growing cells, it lets us study the
effects of the cell cycle on various aspects of cell physiology, as will be seen in
the next Chapter. It must be noted however that the resulting model is based
on the average cell cycle, which means no observations can be made with regards
to the heterogeneity of cell cycle phase lengths or period duration between cells
of the same population. Furthermore, as the model is based on snaphsot data,
no information about the correlations between the lengths of different phases is
preserved. As it is known that cell cycle length heterogeneity is prevalent in
growing populations of cells (Chiorino et al., 2001), future measurements need to

be made to specifically account for these effects.

103



Chapter 5

Transcription kinetics and cell

growth

Mammalian cell growth is a complex process encompassing genome replication,
cell mass accumulation and drastic reorganization of the intracellular structure.
Each of these processes contributes to gene expression noise, making the design
of robust genetic circuits difficult (Huh and Paulsson, 2011a). As seen in Chapter
4, flow cytometry can be used to collect measurements on multiple cell cycle
reporters, which can be analysed using Probability State Modelling (Bagwell et al.,
2015b) to position each cell into its most likely cell cycle state. Combining this
methodology with measurements of gene expression kinetics such as metabolic
labelling of transcription and translation provides a high resolution view into how

such activities change during the cell cycle.

Changes in cell size are another important source of gene expression variation.
Furthermore, cells of different sizes are known to grow at different rates, further
confounding our measurements of noise. Using ergodic rate analysis (ERA) (Kafri
et al., 2013), we correlate our measurements of gene expression kinetics with those
of cell size growth rate as a function of cell cycle progression. This way, we aim to

elucidate the homeostatic mechanisms linking cell growth and global transcription,
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in order to better understand gene expression noise.

The relationship between cell size and RNA abundance in mammalian cells has
been investigated in the past by comparing the RNA content of mouse cells from
tissues with different characteristic cell sizes (Schmidt and Schibler, 1995). The
authors found a strong correlation between cell size and RNA content, which
was attributed to an increased rate of RNA synthesis. Although cells taken from
different tissues were normalised for DNA quantity, it is likely that other tissue -
specific mechanisms contribute to the observed changes in transcript abundance
alongside cell volume. In order to understand the effects of cell volume specifically,
such measurements would have to be repeated in cells within the same cell type.
Using single-cell measurements, it is possible to exploit the intercellular variation

within a population of cells for this purpose.

Such a strategy was employed more recently by Padovan-Merhar et al. (2015),
who measured mRNA transcript abundance in mouse fibroblasts alongside cell
size and cell cycle for a selection of 25 genes, using a combination of single
molecule fluorescent in situ hybridisation (smFISH) and fluorescent microscopy.
The cell cycle was resolved by counting the number of Cyclin A2 transcripts, which
are known to accumulate from the start of S to M phase (Gookin et al., 2017).
Using this method, the authors showed that the mRNA number of a cell strongly
correlates with cell volume, and that this relationship is not affected by cell cycle

progression.

Furthermore, using metabolic labeling, the authors conclude that mammalian
cells adjust their RNA abundance to maintain a relatively constant concentration
between different sizes, by increasing the rate of transcription rather than RNA
stability. Here, we repeat this metabolic labelling experiment using a more
advanced method of cell cycle analysis (PSM) which combines 3 distinct reporters,
and a simpler though well established method for measuring cell size, using flow

cytometry.
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5.1 Metabolic labelling of transcription in fucc?
cells

As described in Chapter 4, PSM can be used to combine the measurements
from multiple cell cycle reporters into a single cell cycle trajectory. This can
subsequently be used to track how any other measurable trait changes with respect
to the cell cycle. Flow cytometry is an excellent platform in this respect, as
it allows multiple traits to be measured in parallel. We utilise this property
to simultaneously measure three cell cycle reporters (DNA, Cdtl and geminin)
in fucci cells, alongside measurements of global transcriptional activity and cell
size, in order to understand to what extent changes in cell size and cell cycle
lead to changes in global transcription rates. Metabolic labelling and subsequent
quantification was performed according to the method desrcribed in 2.3. Briefly,
cells were treated with chemically labelled uridine (5EU), which can subsequently
be conjugated to a fluorophore and measured by flow cytometry to quantify the

incorporation rate.

The mean fluorescent signal detected in cells that had been administered 5EU was
over ten times higher than the background staining, as shown in Figure 5.1. This
demonstrates that incorporation of 5EU into the RNA of living fucci cells can be

readily detected within 1 hour of labeling, as shown before in other cell types (Jao

and Salic, 2008).

It is often informative to examine the shape of the resulting distributions. To
do so, we look at the density plots of the H5EU measurements without log
transforming. In Figure 5.2, we see that although the backgroud stain results in
a narrow distribution, the 5EU treated sample has a broad distribution, with two
broad peaks identifiable. The large breadth of the distribution suggests that the
transcription rate varries substanially between cells within the population, while
the two peaks suggest there are two subpopulations with different transcription

rates. By controlling for cell cycle and cell size effects, we are able to determine
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whether these two populations are explained by differences in cell cycle phase, as

seen in Figure 5.4.
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Figure 5.1: 5EU metabolic labelling. Density plots show the Cy5 labelling
intensity distribution of the flow cytometry measurements of roughly 15,000 fucci
cells. Black lines correspond to samples to which 5SEU was administered, red lines
are the negative control and indicate the background staining of the Cyb azide
dye.

Cell cycle models were fitted for the three reporters as described in Chapter 4. Five
independent runs of the fitting algorithm were performed in order to estimate the
associated error. The resulting models (shown in Figure 5.3) were used to analyse
the cell cycle trajectories of the SEU labelled samples, as shown for one of the
replicates in Figure 5.4. Although we can see that there is a cell cycle dependent
effect on the background staining (in red), this can easily be corrected for, by
subtracting the means at each point. The result of this operation is shown in

Figure 5.5.

In Figure 5.4 we can see that the incorporation rate is several fold above
background levels even at the very start of G1, suggesting that there is significant
transcription during the beginning of the cell cycle. It is worth noting, however,

that due to the time window of the 5EU pulse (1 hour), it is expected that a
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Figure 5.2: 5EU metabolic labelling, untransformed.
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Figure 5.3: Definition of cell cycle phases. Models for the three cell cycle
reporters fitted by PSM are sectioned into phases as shown by the dashed lines.
Early G1 (eG1) is defined from the start of the G1 phase. S is defined as the onset
of geminin upregulation (APC activity inhibition)
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Figure 5.4: Cell cycle analysis of 5EU incorporation. Left: points show
the mean 5EU incorporation level (black) and background staining (red) at each
point in the cell cycle, horizontal lines show the resolution limit at each phase,
vertical lines 4+ 1 standard deviation (SD) of 5EU intensity. Right: points show
the means of 5 independent fits of the cell cycle model, horizontal and vertical

lines show the respective uncertainty in cell cycle phase and mean 5EU intensity
(£ 1 SD).
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fraction of the 5EU detected in nascent cells within the first hour of the G1 phase
will have been incorporated during the M phase of the parent cell. This means
that we cannot differentiate between the rates during the first and last hour of
the cell cycle. Future experiments with shorter timepoints will enable us to look

at these phases more closely.

In other terms, these results are in agreement with earlier RNA kinetics studies
in Hela cells, performed in synchronised cultures (Pfeiffer and Tolmach, 1968).
Specifically, we see an overall doubling of the global transcription rate during the
cell cycle, with the rate heading towards a plateau during the G2, though in our
case we cannot resolve the whole of the G2 phase. In contrast to Pfeiffer and
Tolmach (1968), we do not observe a constant rate at the start of the cell cycle,
though this could also be due to limitations of the cell cycle resolution. Careful
optimisation of the flow cytometer lasers according to recent suggestions by Hazen
et al. (2018) can lead to a higher resolution cell cycle, as seen in Figure 5.7 for

cell size measurements.
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Figure 5.5: Background subtracted mean 5EU trajectory. Black line
indicates the mean HEU intensity. Light grey shade indicates the averaging
window due to the resolution limit at each stage in the cell cycle.

110



5.2 Cell volume - cell cycle

Here, we look at the progression of the mean cell size as estimated by the cytometer
using forward light scatter intensity (FSC.A), a commonly used measure of cell
size which has been shown to correlate best with particle cross sectional area
(Hawley and Hawley, 2018). Assuming that mammalian cells are approximately
spherical when in suspension, we can convert the arbitrary units of cross sectional

area to equivalent units of volume, according to the relation

4 A3

V==
3

where V is the volume and A the cross sectional area of the sphere.
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Figure 5.6: Cell volume increase during the cell cycle. Rows correspond
to two biological replicates. Cell volume units obtained as described in the main
text. Left column shows mean (black line) and cell cycle uncertainty (grey shade)
from 1 run of cell cycle fitting algorithm. Right column shows mean and error of
5 independent fits.
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In Figure 5.6 we can see that on average, although cells continue to grow
throughout most of the cell cycle, the rate of cell growth is not constant.
Specifically, cell size appears to be increasing from early G1 to the start of the
G2 phase, with at least one obvious decrease in growth rate, during the start of
the S phase. This is much more obvious in Figure 5.7, where the suggestions from
Hazen et al. (2018) have been implemented to increase resolution. This change
in rate has been characterised previously by Kafri et al. (2013), who suggest it is

part of a cell size homeostasis mechanism, as will be discussed in later sections.
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Figure 5.7: Mean cell volume during the cell cycle. 30,000 fucci cells were
analysed by flow cytometry after DNA staining with Hoechst dye. Cell volume
was obtained by converting FSC.A measurements of cross sectional area to volume.
Cell cycle was analysed using PSM.

5.3 Transcription rate - Volume

Next, we look at how all three variables, namely transcription rate, cell size and
cell cycle correlate with each other using a two dimensional heatmap. To that
end, we bin cells according to their cell size and cell cycle phase, and colour code

each two dimensional bin according to the mean 5EU intensity (Figure 5.8).

Interestingly, although the 5EU incorporation rate more than doubles across the
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Figure 5.8: Heatmap of global transcription rate accross cell size and
cell cycle. Global transcription rate measured using metabolic labelling. Cell
cycle analysed using PSM. Volume measurements estimated by converting forward
light scatter measurements. Bins are defined by sorting the cells first by cell cycle
(20 bins), followed by secondary binning by cell volume (8 bins). Mean 5EU
incorporation is obtained by averaging the mean within each bin.
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cell cycle, it appears to only have a modest correlation with cell size within each
phase. The heatmaps in the right hand panel are added to aid interpretation,
by allowing us to evaluate the results in light of the error associated with the
cell cycle analysis. The error is expressed in percentiles of coefficient of variation
(CV), and is measured using the results from five independent PSM fits of the cell
cycle (see Chapter 4), in combination with bootstrapping (100 resamplings). We
see that the precision is worse for the extreme size groups. This can be attributed
to the fact that in every stage of the cell cycle there are fewer cells with sizes near
the extremes. This error can be reduced by up-scaling the protocol in order to

analyse a larger sample of the population.

To look at the effects of cell size and cell cycle separately, we plot the transcription
rate as a function of cell cycle for each size group separately, see Figure 5.9. Here,
we see that indeed the cell size has a much smaller effect on transcription rate
than the cell cycle has. The effect of cell size appears to be strongest towards the
final stages of the cell cycle, though it is worth noting that this is the same region
for which the cell cycle resolution is poorest. As a result, the effect of cell size
cannot be distinguished from the effect of the cell cycle during this phase, and
thus the stronger effect of cell size during the end of the cell cycle could be due to
the difference in size between cells at different stages of the end of the cell cycle
that cannot be resolved. We further plot the reciprocal view of transcription rate
as a function of cell size for each cell cycle phase 5.10, where the same observation

can be made.

To investigate the relationship between cell size and transcription rate further,
we normalise the measured 5EU incorporation and cell size with respect to their
lowest values in order to compare the respective relative changes. As we can see
in Figure 5.11, there is a large span in relative cell sizes at any given phase, which
is not accompanied by a similar span in transcription rates. Instead, transcription

rate correlates more strongly with cell cycle than cell size.

Although this is contrary to what is described by Padovan-Merhar et al. (2015),
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Figure 5.9: Transcription rate as a function of cell cycle. Colours reflect
different size groups.
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Figure 5.11: Comparisson of relative changes in transcription rate and
cell volume. See caption in Figure 5.11 for details. Means are normalised with
respect to the lowest measurements respectively.
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upon closer inspection of the manuscript it appears that the authors did not
control for cell cycle phase in their metabolic labeling experiment. This would
naturally lead to cells from later phases in the cell cycle being over-represented in
the larger group compared to cells from earlier stages in the cell cycle, and vice
versa for smaller cells, thus allowing for changes in transcription rate due to cell

cycle effects to skew the volume - transcription rate relationship.

On the other hand, Padovan-Merhar et al. (2015) do account for the cell cycle in
their determination of RNA steady state using smFISH on a selection of 25 genes,
where the correlation with size appears to be strong. In light of Figure 5.11, it
appears that transcription rate alone does not sufficiently explain the size related
changes in RNA abundance shown in (Padovan-Merhar et al., 2015). Although an
adjustment of the decay rate was ruled out by the same authors, this conclusion
was derived by chemical inhibition of transcription followed by time-measurements

of RNA disappearance.

It has since been demonstrated in yeast (Das et al., 2017) that transcription
and degradation of RNA are coupled by feedback mechanisms, with evidence
suggesting similar mechanisms existing in mammals (Timmers and Tora, 2018).
Therefore, chemical inhibition of transcription may have led to an underestimation
of the role of RNA decay in preserving homeostasis. Furthermore, as the
degradation of RNA is known to be carried out actively by specialised nuclease
enzymes, which are themselves affected by dilution effects as cells grow, it is
possible that a passive mechanism of transcript homeostasis may exist, regulated
by the concentration of such enzymes. Another possibility is that a higher

number of ribosomes protect the mRNA from being degraded (Chan et al., 2018).

The implications of a slower RNA turnover would include a slower progression
through the cell cycle, as the relevant expression profiles for each phase would shift
more slowly. Such an observation has been made previously, though has been
attributed to alternative mechanisms, such as the reduced mitochondrial function

seen in larger cells (Miettinen and Bjorklund, 2016), or DNA concentration
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becoming limiting (Neurohr et al., 2019), with cells exceeding a certain size
becoming senescent. Furthermore, decay modulation has been implicated in
RNA homeostasis before in yeast (Garcia-Martinez et al., 2016). In light of the
above, the possibility of changes in RNA stability being responsible for adjusting
the abundance of RNA in cells of different sizes should be further investigated in

the future.

In order to better understand the scale of this effect, we quantify the relative
transcription rate per unit of cell size. In Figure 5.12 5.13, we see that smaller
cells produce far more RNA per unit of cell volume than larger cells do (roughly
2 - 3 fold). This is consistent with previous results from measurements of steady
state mRNA levels. Padovan-Merhar et al. (2015) noted that although transcript
abundance scaled strongly with cell size in the genes investigated, there was a 1.2
to 3 fold higher concentration of RNA seen in smaller cells. This effect, which was
highlighted more recently by Neurohr et al. (2019), raises two questions. First,
why do larger cells have a lower concentration of RNA, and second, how do larger

cells cope with this effect in terms of cell growth.

In Figure 5.12, we observe that the number of RNA molecules produced per unit
of volume is up to 3 times lower in larger cells than in smaller cells, suggesting
that RNA transcription is sufficient to explain this discrepancy. There are two
hypotheses that can readily describe this effect. Either larger cells do not require a
higher transcription rate to keep growing, or smaller cells are already transcribing
at a rate near the biological limit, therefore rendering larger cells unable to increase

their transcription rate, in spite of higher transcriptional demands.

As each RNA molecule can be translated hundreds of times by ribosomes
(Pérez-Ortin et al., 2019b), it is possible that increased translation, conferred
in part by increased RNA stability, could potentially be a mechanism for
compensating for the lower concentration of RNA in larger cells. Such a regime
would lead to a noisier expression of proteins, as stochastic fluctuations in RNA

numbers would be amplified by the increased translation rate (Hausser et al.,
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Figure 5.12: Transcription rate relative to cell size. Transcription rate
estimated by 5EU metabolic labelling is normalised by cell volume, obtained
by flow cytometry FSC.A measurements. Cell cycle analysed by PSM. Error
measurements obtained using 5 independent fittings of the cell cycle parameters
and bootstrapping (100 resamplings).
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Figure 5.13: Transcription rate relative to cell size (Lines). Transcription
rate estimated by 5EU metabolic labelling is normalised by cell volume, obtained
by flow cytometry FSC.A measurements. Cell cycle analysed by PSM. Error
measurements obtained using 5 independent fittings of the cell cycle parameters
and bootstrapping (100 resamplings).

2019). Therefore it is unlikely that such a mechanism would be preferentially
selected and more likely that it occurs by necessity, which suggests that
transcription being limiting is more probable. In a way, this is reasonable to
expect, as the amount of DNA template is constant between cells of different
sizes, and therefore much more likely to pose a bottleneck during gene expression

than RNA, which is amenable to amplification.

To test whether translation is in fact increased in larger cells, where transcription
may be limiting, we could use metabolic labelling of translation. Specifically, a
chemically labelled amino acid, which can subsequently be detected, could be
supplied in the growth media in order to measure the relative translation rate,
followed by the same analysis used here for the transcription rate. In order to test

whether transcription is indeed a limiting factor for cell growth in larger cells,

Furthermore, the global rate of translation itself depends directly on the
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concentration of tRNAs, rRNAs, and ribosome encoding mRNAs. Therefore,
the upregulation of translation in larger cells is contingent on an increase in the
transcription rate of these RNA species, which in turn is limited by the available
DNA template. Thus, increased translation can only compensate in a limited
way for the continuously increasing demand of transcription during cell growth.
Taken together, these results suggest that DNA becoming limiting in larger cells,
as seen recently in (Neurohr et al., 2019), could explain the reduced relative
amount of transcription in larger cells. In Section 5.4, we look at how this effect

impacts cell growth.

5.4 Ergodic Rate Analysis

So far we have seen that even though the global transcription rate scales strongly
with progression in the cell cycle, there is only a modest relationship with cell
size within any given cell phase. Furthermore, we hypothesised that this may be
due to DNA becoming limiting in larger cells, as has been suggested recently by
(Neurohr et al., 2019). Here, we ask what downstream effects this has on cell
growth. To do so, we employ ergodic rate analysis (ERA) (Kafri et al., 2013), a
method which enables us to compare the growth rate between cells of different

sizes using a single snapshot of a growing population (see Equation (2.1)).

We first use ERA to look at how the growth rate varies during the cell cycle for cells
of average size. We do this by solving Equation (2.1) along the cell cycle timeline
obtained by PSM in Chapter 4. In Figure 5.14, we see that the growth rate of
the average cell drops during the G1/S phase, as shown in (Kafri et al., 2013).
Interestingly, we further identify that the highest rate in the cell cycle occurs
during early G1, which was not seen in (Kafri et al., 2013). This discrepancy
can be attributed to the increased resolution provided by the additional cell cycle
reporter, Cdtl, which enables us to detect changes within the G1 phase with
greater detail. It is important to note that the resolution is too low during the

G2 phase to accurately measure the growth rate, so the decreased growth rate
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observed in both replicates during that phase cannot be unambiguously attributed

to a biological effect.
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Figure 5.14: Mean growth rate calculated by ERA. Growth rate is calculated
using ERA for the mean cell size along the cell cycle predicted by PSM. The two
figures represent two biological replicates independently analysed.

Following from the discussion in Section 5.3, here we use ERA to look at how the
growth rate varies between cells of different sizes at each stage in the cell cycle.
Figures 5.15 and 5.16 show that in terms of absolute growth rate (volume added
per unit time), there are both cell cycle and cell size related effects that can readily
be observed. The expected decrease of growth rate at the start of the S phase
(Kafri et al., 2013) can be seen in all size groups. Cells of all sizes appear to grow
fastest during the start of the cell cycle, with the unexpected exception of large
cells, which show a growth burst maximum at the late S phase. Furthermore,
growth appears to slow down for all cells prior to the G2 phase, consistent with
the presence of an S/G2 growth checkpoint, recently observed in Hela cells by

real-time volume tracking (Cadart et al., 2018).
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Figure 5.15: Growth rate for cells of different sizes. The two rows represents
independent biological replicate. Growth rates calculated for each size group using
ERA, as described in the main text. The cell cycle analysed using PSM. The left
column corresponds to growth rate, the right column to associated error, obtained
using bootstrapping (100 resamplings).
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Figure 5.16: Growth rate for cells of different sizes (Lines). The two panels
represents independent biological replicate. Growth rates calculated for each size
group using ERA, as described in the main text. The cell cycle analysed using
PSM. The left column corresponds to growth rate, the right column to associated
error, obtained using bootstrapping (100 resamplings).
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Although comparing absolute growth rate between samples of different sizes is
illuminating, a more biologically relevant measure is the relative growth rate,
in other words the percentage by which cells increase in size during a given
phase of the cell cycle, as this reveals the presence of homeostatic mechanisms
controlling the growth rate better than the absolute growth rate. In Figure 5.17,

we investigate these effects.

Specifically, we see that all sizes of cells have the highest percentage increase
during the early to middle G1 phase, though we can now identify a size dependent
component, with smaller cells growing relatively faster than larger cells during
that phase. We further see that smaller cells show an additional burst in growth
rate during the S phase (approximately 40" percentile), with a roughly 50%
faster relative growth rate compared to cells in neighbouring cell phases or larger
sizes. This is consistent with the existence of a previously described homeostatic
mechanism at the G1/S transition, which ensures that cells are over a certain size
threshold when progressing into the S phase by modulating the length of the G1
phase (Liu et al., 2018).

Strikingly, even when controlling for cell size, we find a population of large cells
growing roughly 30% faster than other cells during the late S phase. We must
highlight at this point that the above analysis cannot differentiate between changes
in growth rate and changes in cell phase duration, as it does not incorporate
distinct cell cycle length measurements for the different size groups. Therefore,
we cannot tell whether cells are growing faster during a given phase, or whether
instead these cells are spending a larger amount of time in that phase, as seen
in (Liu et al., 2018) for smaller cells during G1. In this sense, the cell cycle
trajectories of all cell size groups have been in silico synchronised to the average
trajectory, which, although useful for comparison purposes, should be interpreted

accordingly.

To disambiguate between the two interpretations, the growth rate could be

measured more directly using metabolic labelling of translation, using a labelled
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Figure 5.17: Relative growth rate for cells of different sizes. The two rows
represent biological replicates. Relative growth rate is obtained by normalising
the growth rate, obtained by ERA, by the mean cell size within each bin. The
growth rate is thus expressed as the fraction of growth with respect to cell size.
The error was estimate using bootstrapping (100 resamplings).

126



—i— smallest —— smallest
© - largest largest
Lo p—

)

2

©

Y

o< T

£

S

o

S

o ‘

(0] —

R |
=

9 |
o !

[an

2
|

0 20 40 60 80 100 0 20 40 60 80 100

cell cycle (earliest to latest)

Figure 5.18: Relative growth rate for cells of different sizes (Lines). The
two panels represent biological replicates. Relative growth rate is obtained by
normalising the growth rate, obtained by ERA, by the mean cell size within each
bin. The growth rate is thus expressed as the fraction of growth with respect to
cell size. The error was estimate using bootstrapping (100 resamplings).
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amino acide, as mentioned in Section 5.3. Thus, if larger cells are indeed growing
faster during the late S phase, we would detect an increased incorporation of

labelled amino acids, compared to smaller cells.

Nevertheless, the burst of growth rate during the late S phase (or the reciprocal
extension of said phase’s duration) seen in large cells has not been described before,
and is surprising in the context of cell size homeostasis. In order to establish
whether this effect is not an artifact of the S5EU labelling protocol, we repeat
these measurements on a live cell population. Figures 5.19 and 5.20 show that
although the cell cycle distribution is quite different when compared to Figure
5.17, which is likely due to variation in the culturing routine, the observations
made before are still apparent. Again, we find that growth is highest in the early
G1 phase for cells of all sizes, with smaller cells growing relatively faster. We see
the same increased growth in the early S phase in small cells though the effect
here is more modest (~ 20% increase instead of 50%). Notably, larger cells show
roughly 30% more growth in the late S phase than all other groups, similar to
Figure 5.17, suggesting that the effect is real, constituting an ‘anti-checkpoint’ in

cell growth.

5.5 Volume added per transcript synthesised

In order to better understand the relationship between growth rate and
transcription rate, in Figures 5.21 and 5.22 we look at how much volume is added
per RNA synthesised in cells of different sizes, as a function of cell cycle time. On
first inspection, the amount of volume added per RNA synthesised varies greatly
across different cell sizes and throughout the cell cycle. Specifically, larger cells
produce much more volume per synthesised RNA molecule than smaller cells
throughout the whole cell cycle (between 2 and 4 fold), which suggests that
larger cells have a higher translation capacity, potentially due to a combination

of greater RNA stability and a higher number or activity of ribosomes.
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Figure 5.19: Relative growth rate in live cells. 30,000 live cells were analysed
at high resolution by flow cytometry. The cell cycle was analysed using PSM.
The growth rate obtained by ERA. The error was estimated by bootstrapping
(100 resamplings).
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Figure 5.20: Relative growth rate in live cells (Lines). 30,000 live cells
were analysed at high resolution by flow cytometry. The cell cycle was analysed
using PSM. The growth rate obtained by ERA. The error was estimated by
bootstrapping (100 resamplings).

Furthermore, all size groups produce the most cell volume per RNA molecule
during G1. This effect diminishes as cells progress towards the S phase, but in
a size dependent manner, with larger cells continuing to produce more volume
per synthesised RNA for longer into the S phase. During the S phase, the
translation capacity of all cell sizes drops briefly at the G1/S transition, and
then rapidly rises in all cells, again in a size dependent manner. Interestingly,
we find that the late S phase growth burst in large cells observed in Figures
5.19 and 5.17 is not explained by a corresponding rise in global transcription. It
must be noted, however, that transcription and cell growth are not necessarily
strictly synchronised. Specfically, cell growth in the sense of accumulation of
cell mass is primarily determined by translation (Pérez-Ortin et al., 2019b),
which is temporaly distinct from transcription, especially in nucleated cells such
as eukaryotes. For this reason a more in depth analysis is required to better

understand the relation between changes in transcription and growth rate.
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Figure 5.21: Volume added per transcript synthesised. Volume per
transcript obtained by dividing the growth rate, obtained by ERA, by the rate of
5EU incorporation, measured by flow cytometry. Error obtained by bootsrtapping
(100 resamplings).
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Figure 5.22: Volume added per transcript synthesised. Volume per
transcript obtained by dividing the growth rate, obtained by ERA, by the rate of
5EU incorporation, measured by flow cytometry. Error obtained by bootsrtapping
(100 resamplings).

5.6 Discussion

We saw that the global transcription rate in Hela cells does not correlate
strongly with cell size, contrary to what has been suggested previously in mouse
fibroblasts (Padovan-Merhar et al., 2015). Upon closer inspection of the results in
(Padovan-Merhar et al., 2015), we found that cell cycle had not been controlled
for in their metabolic labelling experiment, which could explain this discrepancy.
Recently, it has been shown that DNA can become limiting as cells exceed a
certain size, with profound effects on cell growth rate (Neurohr et al., 2019).
Here, I suggest that DNA becoming limiting in larger cells can explain the fact
that RNA transcription does not correlate strongly with cell size. This raises
the question of whether larger mammalian cells maintain RNA concentration
homeostasis by regulating the stability of transcripts, as seen previously in yeast
(Garcia-Martinez et al., 2016). Although this suggestion has previously been
ruled out by Padovan-Merhar et al. (2015), their use of a transcriptional inhibitor
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for measuring the decay rate is likely to have confounded their results due to the
existence of transcription-decay coupling mechanisms recently suggested to exist
in mammals (Timmers and Tora, 2018). Careful kinetic experiments need to be

performed to shed light in this direction (Chan et al., 2018).

To investigate the effect limiting transcription has on the growth of cells, we
revisited a study on the growth rate of cells of different sizes, which identified a
size checkpoint at the G1/S boundary (Kafri et al., 2013). More recently, the p38
MAPK pathway has been linked to regulating the transition of smaller cells from
G1 to S, by extending the duration of G1, thus allowing for further growth (Liu
et al., 2018). Interestingly, no mechanism has so far been proposed to explain the

decreased growth rate seen in larger cells during this transition.

In light of the above results, I propose that decreased RNA expression due to DNA
becoming limiting can explain this phenomenon. Specifically, if we assume that
DNA can become limiting as cells accumulate volume during their progression in
G1, we would expect the effect to be stronger in larger cells, as the transcriptional
requirements for maintaining a constant concentration of RNA would be higher
in these cells. This could explain the size dependent curbing of cell growth rate
during the G1/S transition. As the S phase progresses, the DNA template of
relevant genes becomes doubled, thus enabling larger cells to resume a higher
growth rate. DNA limiting transcription during the cell cycle has been proposed
in the past by Pfeiffer and Tolmach (1968), who noted that inhibiting DNA
replication at different stages of the S phase led to a proportional decrease in

transcription rate.

Upon repeating the growth rate analysis method developed by Kafri et al. (2013),
we identify the characteristic G1/S checkpoint described before, as well as a
surprising ‘anti-checkpoint’, whereby large cells experience a burst of growth
during the late S phase. This could be another sign of DNA becoming limiting in
larger cells, the effect of which we would expect would become diminished once

certain late-replicating genes were duplicated. In support of this suggestion, it is
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worth noting that the rate of DNA replication is not constant, with the bulk of
DNA becoming replicated in the later S phase (Li et al., 2014).

The fact that this phenomenon was not observed by Kafri et al. (2013) could
be attributed to their cell size measurements reflecting total protein mass, while
ours reflects cell volume. Repeating our experiment by measuring protein mass
rather than volume would clarify this. Furthermore, our analysis benefits from
a higher resolution of the cell cycle than that by Kafri et al. (2013), conferred
by an additional reporter (Cdtl), as well as a more advanced cell cycle analysis

algorithm (PSM), which could also explain this discrepancy.

It is also worth noting that although the use of cell lines such as the HeLa-based
fucci cells makes the study of cell cycle effects much more feasible, many aspects
of the physiology of these cells do not reflect the native state of mammalian
cells. For example, most mammalian cells exist in tissues and have thus evolved
to respond to multiple types of extracellular cues relevant to their neighbouring
microenvironment, such as contact with the surfaces of other cells, mechanical
stresses and hormonal signals (Glazier, 2018). It is reasonable to assume that,
although basic insights can be gained using HeLa cells, the relations underlying
the mechanisms described in this chapter are more complex. These results should
therefore not be directly related to the multicellular setting without further

experiments in primary cells.

Another limitation in the chosen approach is that, although light scatter measured
by flow cytometry has been extensively used for approximating cell size (see
introduction in (Tzur et al., 2011) for a brief review), it is not a direct measurement
of size. Specifically, the acquired measurement is the result of multiple factors
such as the difference in refraction index between the suspension fluid and the
cells, the angle of beam-to-cell incidence, as well as internal and external surface
irregularities, among others. For this reason, the obtained size estimates are
quite noisy, and further verifications are required to make sure that meaningful

distinctions can be made between the different size groups in Figures 5.8 to 5.21.
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Moreover, as stated at the start of the chapter, the use of RNA metabolic labelling
and quantification by 5EU results in measurements of the global transcription rate.
As the vast majority of RNA in a cell consists of ribosomal RNA (rRNA), our
measurements of global transcription rate are likely dominated by that of rRNA.
To specifically study the effects of growth rate, cell size and cell cycle phase on the
kinetics all other RNA species, an alternative approach combining the powers of
metabolic labelling and RNA sequencing can be emploeyd (Herzog et al., 2017).

This avenue is explored in the next chapter.

As is often the case in biology, the mechanisms underlying our observations are
unlikely to be clear cut. In Figure 5.21, it appears that larger cells are able to grow
more with relatively less RNA synthesis than smaller cells. On the other hand,
it looks like the growth of larger cells may be limited by DNA, as cells reach a
critical size towards the end of the G1 phase. It is possible that RNA decay rates,
translational activity, cell cycle duration, or all the above, can be modulated to
allow growth in conditions where DNA becomes limiting. A systems approach will
enable us to interpret the presented and future measurements by integrating into a
mathematical model, which in turn will let us form new, testable hypotheses about
the role of these different mechanisms and their contributions to gene expression

noise.

To look more closely at the underlying mechanisms, we decided to measure the
transcriptional kinetics of the whole genome, at different stages in the cell cycle
and for varrying cell sizes. In Chapter 6, we look at how careful consideration
of the experimental constraints allows us to optimally design such an ambitious

experiment.
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Chapter 6

Transcriptomic kinetic analysis

In order to measure the contribution of cell-growth to the observed gene expression
variability in an asynchronously growing cell population, we can use metabolic
labelling to measure changes in the kinetics of RNA at different stages in the
cell cycle and at different cell sizes within each phase. Specifically, once cells
have been administered the labelled nucleotide for a specified amount of time
(called a ‘pulse’), they can be sorted according to cell size and cell cycle, prior to
analysis. A similar approach has been used to discern the rates associated with
gene expression at different stages in the cell-cycle using synchronised yeast cells
(Eser et al., 2014), whereby the labelled RNA is purified and quantified using

microarray analysis.

Here, we use an asynchronously growing population in order to avoid artefacts
from the disruption that chemical synchronisation methods cause, or clouding
from incomplete synchronisation. Furthermore, we use a more modern approach
for measuring the amount of metabolically labelled nucleotides based on
sequencing (Baptista and Dolken, 2018, Herzog et al. (2017)). This bypasses
the need for biochemical purification, making it more straightforward and thus
less prone to technical biases. Specifically, the aim of the experiment is to

metabolically label RNA in fucci cells, followed by cell sorting based on two
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variables: cell cycle and cell size. Once the cells have been sorted, they will be
analysed by sequencing, in order to quantify the amount of incorporated labelled
nucleotide and thus infer the change in RNA kinetics between the different

cell-states.

6.1 Revisiting published data

Herzog et al. (2017) the first to use metabolic sequencing to measure the kinetic
rates of thousands of mRNA species. For planning our own experiment, it was
important to first understand the limitations of this method. To do so, we started
by re-analysing the results from (Herzog et al., 2017). Here, we use the reported
mRNA turnover rates to predict how many T to C conversions we would expect
to see for each gene, and compare these results with the experimentally derived
ones. To get the predicted T to C conversions from the RNA turnover rate, we

use the below formulation, based on the analysis by Herzog et al. (2017).

Nrc

Assuming that the rate of T to C mutations observed in reads, Ratepo = N

has two sources (background mutations and 4sU incorporation events), we can

express it as

RateT>C’ = en(pn +po> + (1 - en)pm

or

RateT>C’ = enpn + Do

were p,, is the combined rate of incorporation and chemical conversion of 4sU,
D, is the background rate, 6, is the fraction of new mRNA, and Rate;. . is the
ratio of T to C conversions detected over T’s covered, as defined by Herzog et al.

(2017).
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By rearranging we get a solution for the new mRNA fraction,

g, — Baterc ~Po (6.1)
b,

When comparing the number of expected T to C conversions to the observed
(see Figure 6.1), we find that the published inferred rates correlate very poorly
for the earliest time point (see 45 minute pulse panel in Figure 6.1). Specifically,
there is an under-representation in detected T to C conversions compared to those

predicted by the published rate of mRNA turnover.

TC conversion rates, 1st replicate
p:—:\,».

Experimental

Expected

Figure 6.1: Experimental data vs expected TC conversions based on the
fitted degradation rates.

This can be shown to be consistent between the different replicates, and is likely
to be due to the loss of pre-RNA, which may consist of a substantial proportion
of the nascent pool of intragenic RNA at early timepoints. Specifically, the
library preparation method used in (Herzog et al., 2017) employs poly-A capture,
a method for enriching mature mRNA. This warrants further investigation, as

in order to minimise the contamination of cells between cell-cycle phases, the
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duration of the metabolic labelling step needs to be minimised (see Section 6.4).

To that end, we analyse the rates for introns and exons separately next, and
compare them. To do so, we use data from another study where pre-RNA is not
lost (Baptista and Délken, 2018). To get these rates, we plug an expression given
by Jiirges et al. (2018),

_ ., log(2)
— log(1—-6,)’

which relates the half life X of a given gene’s RNA to the 6,, fraction of new RNA

at a single pulse timepoint, t. We substitute 6,, with Equation (6.1) to get

log(2)

. Rater.c—p,\ "
log(1 — )

A=—t

which can be used to obtain an estimate of the half lives directly from
the (background subtracted) T to C conversion rate, which is measured
experimentally. We use this relation to obtain the half lives of introns and exons
separately from the raw data provided by Baptista and Dolken (2018) using their
stated p,, and p, parameters. As expected, introns indeed have a much higher
turnover than exons (Figure 6.2). This can also be seen in Figure 6.3, which
shows that according to the calculate rates, more than half of the introns (~56%,
for genes in chromosome 1) have a labelled fraction of 20% or larger within 20
minutes of labelling, in contrast to less than a quarter of exons (~24%, for genes
in chromosome 1). This is especially relevant as it can be shown by simulation
that, for our given experimental platform, the nascent RNA fraction and by
extension the half-life for the majority of genes is most accurately determined

when at least 20% of the counted transcripts are labelled (see Section 6.2).

This suggests that alternative methods of library preparation which retain the
pre-RNA, such as ribodepletion instead of polyA-capture may be preferable in

our case, as the pre-RNA labelled fraction expands much more rapidly providing
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a more reliable measurement at shorter pulses.
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Figure 6.2: Halflives of introns and exons. Raw data SLAM-seq data from
@Baptista2018 analysed for introns and exons separately. Data for genes on
chromosome 1.

6.2 Simulation of 4sU-RNA-seq experiment

As menioned in Chapter 2, a simulation can be used to test how well we can infer
the true RNA kinetics from a given SLAM-seq experiment. This simulation can

be briefly outlined as

1) Generate n number of new reads of length /. nucleotides.

reads
2) Assign n, number of uracil moieties by sampling from a binomial with [,
trials and rate Uy,;,,, equal to the fraction of U nucleotides in the specific

gene.

3) Decide whether the read derives from a new transcript by sampling from
a Bernoulli distribution with probability equal to the true fraction of new
transcripts, which is a function of the specific RNA turnover rate associated

with each gene and the duration of the labelling pulse - chase steps.
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Figure 6.3: Cumulative Distribution Function of the time it takes for
different species of RN A to reach a labelled fraction of 0.2.

4) According to the result of step 3), assign the number of T-to-C mutations.
For new transcripts, use a Binomial with n, trials and rate equal to the
incorporation rate p, times the chemical efficiency of the conversion step
(Yohem = 94% for slam-seq) plus the background mutation rate p, specific
to the sequencing method used, where p,, is the probability of 4sU being
incorporated in a given U position. For old transcripts, use a Binomial with

n,, trials and probability equal to that of the background mutation p,.

Using a simple Poisson mixture model, see eq. (6.2), it is possible to infer the

fraction of new reads, #,, (Schofield et al., 2018).

f(yil)‘oa >‘n7 0n> = enPOiSSOH(yi; )‘n) + (1 - 9n>POiSSOH(yi; )‘o>7 (62)

where y; is the number of T to C mutations detected in read 4, 6,, is the fraction
of reads deriving from new mRNA (synthesised during the pulse). A, and A, are
rates which correspond to the number of T to C conversions per read, deriving

from new and old transcripts respectively. Relating these back to the parameters
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used for the simulations, A\, = 7, (P, Ychem + Po) = L-Upias(PnYehem + Po) and
)‘o =Ny, = lrUbiaspo'

Using the simulation described above and the mixture model in Equation (6.2),
we can investigate how effectively the fraction of new mRNA, 6, , can be obtained
for different sets of experimental parameters. Specifically, using the published
turnover rates of transcripts in conjunction with their relative abundances, we
can investigate how different combinations of read depth and pulse times affect
the number of genes we can reliably detect. Here, we use the specific transcript
abundances measured in the SLAM-seq study by Herzog et al. (2017) and their
respective turnover rates to project where the bulk of the genes will lie on a
reliability heat map for a given pulse duration and sequencing depth, see Figure

6.4.

95% CI of deviation from true fraction:

new mRNA fraction
0.05 0.20 0.35 0.50 0.65 0.80 0.95

10 17 28 48 80 118 201 343 586 1000 1500 2739 5000

0.0

2 3 4567 9 1 13 15 18 21 24 27 31 35 40 45 51 58 67 78 93 123

% deviation

Figure 6.4: Effect of sequencing depth and metabolic labelling duration
on measurement error. Error defined as a percentage of the 95% confidence
interval of the measured fraction, obtained by simulation, over the true fraction.
Simulation was run 1000 times for each cell of the heatmap, in order to obtain the
relevant distributions. Red circles correspond to individual genes, the locations
of which are obtained using published half lives and relative abundances. Red
contour lines correspond to the density of genes.
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As expected, Figure 6.4 shows that the more reads sequenced per transcript,
the higher the accuracy with which we can identify the true fraction of newly
transcribed RNA, and by extension the turnover rate of that fraction. Similarly,
the larger the fraction of labelled RNA, the more accurately it can be estimated.

In this way we can find the region in which we can reliably infer the kinetics.

Using either published results or results from a pilot study, we can use the
heat map in Figure 6.4 to predict the proportion of genes for which the newly
transcribed fraction can be accurately estimated. Figure 6.4 thus constitutes a
guide on how deeply to sequence, as well as how long to administer the labelled
nucleotide for, when planning such a kinetic experiment. Furthermore, the effect
of other parameters such as read-length and background error can be considered,

by changing the parameters of the simulation accordingly.

6.3 Simulation of multi-step experiment

As shown in Section 6.2, we can use simulations in order to measure how accurately
we can obtain the kinetics of transcription and decay for different genes in a single
step 4sU labelling RNA-seq experiment. It is common in metabolic labelling
experiments to obtain multiple measurements in the form of a time series, in
order to get a better estimate of the rates, as well as to see what type of model
best describes the results. As for the single labelling time point, each of these
time points will have an associated sequencing depth and labelling window, which
need to be picked accordingly. In order to identify the best distribution of time
points and sequencing depths, we formulate a likelihood equation which describes
these steps, and test how well the parameters of data simulated as in Section 6.2

can be inferred.
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6.3.1 Experiment likelihood equation

As shown by Jurges et al. (2018), the fraction of labelled RNA depends solely on

the decay rate, and is given by

6,=1—e""

where g is the specific decay rate and ¢ the duration of the labelling pulse. A
similar equation can be derived for the chase step. Taking this logic further, we

can include both pulse and chase, yielding

9 — e_p’tp J— 6_M(tp+tc>

n Y

where ¢, and ¢, are the times for pulse and chase respectively. This way we can
calculate the fraction of new transcripts following both pulse and chase steps.
Substituting this in (6.2), we get a new time dependent distribution of T to C

conversions,

P(yilp) = [yl by, te, Aoy An) =
= (e Mo — e~Htrtte) ) Poisson(y;; A,,) (6.3)

+ (1 — (e7#t — e #tFte)))Poisson(y;; A, ).

Using the simulation from Section 6.2, we can fit the above distribution to
synthetic data produced using different combinations of parameter values, in
order to assess how well we can retrieve the true decay rate in each case. This
is shown for a set of parameters in Figure 6.5, where we assess the effectiveness
of the inference by measuring the fraction of runs for which the inferred decay
rate can be obtained within a given precision threshold. This number can be
compared between different sets of experimental parameters to help us decide

which to choose. Furthermore, a global optimisation algorithm can be used in
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conjunction with the above construction, such as the Bayesian Optimisation
package (Bischl et al., 2017) used in Section 4, in order to automatically find the

best set of parameters for our experiment.

1.0

nll functions(sim data)
—— optimise() results
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Figure 6.5: Negative Log Likelihood profile for pulse experiment. Each
line (grey) represents the likelihood equation for a single gene simulation (N =
100), with read depth = 100 and decay rate equal to that of the average intron (0.8
per hour). Minima found using the golden section method. Solutions accepted on
the basis of their relative distance (< 10%) from the true decay rate.

6.3.2 Accounting for experimental limitations

As well as testing the overall inference power of the whole experiment and thus
enabling us to choose the most suitable experimental parameter sets, we can use
this method to test the extent to which different steps in the protocol can affect the
reliability of our estimates. For example, an important concern in kinetic studies
in general is the bias caused by the time between the end of each pulse-chase
step and the actual measurement of the labelled fraction. Although cells can
be kept on ice for part of this duration, which is known to reduce the rates of
RNA metabolism (Scholtissek, 1967), there are steps such as the removal of the

labelling solution and re-suspension of the cells, which together can take up to
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20 minutes. This amount of time is comparable to the half-lives of many of the
faster - turnover RNA species, and can therefore lead to a significant systematic

overestimation of the decay rates.

For this reason, it is useful to know whether we can take this into account in our
model. Figure 6.6 shows the resulting likelihood profiles of several repetitions of
the simulation, using a single set of parameters which include a sample processing
time of 10 minutes. The sample processing time is easily implemented into the
model as an additional chase - step at the end of each pulse or chase step. The
effect of cooling cells on ice is implicitly accounted for by assuming that the rates
of degradation and transcription are zero during the duration of this step. The
validity of this assumption can be tested using a separate experiment, whereby
cells are loaded with the labelled nucleotide prior to incubation on ice, and the
deterioration of the signal while on ice measured. If the degradation rate on ice is
found to be non-negligible, as found in certain cases by Sensky and Rees (1976),
the above formulation can be used to account for it in the same way as for the

wash steps, using an additional set of rates.

Interestingly, simulating the time it takes to perform the required wash-steps
leads to a bi-modal likelihood profile, thus complicating the fitting (compare with

results with no processing time, Figure 6.6).

Although in this example the global minimum is still correct, this is not true
in all cases (not shown). Specifically, shorter timepoints are more prone to
leading to erroneus estimations of the decay rates, as the fraction of time spent
processing the sample after the incubation step increases. In our case, shorter
labelling steps are preferred in order to minimise the clouding effects caused by
cells travelling between phases, as discussed in Section 6.4. For that reason, the

option of reversably fixing cells was investigated.
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Figure 6.6: Negative Log Likelihood profile for pulse experiment with
wash step. Each line (grey) represents the likelihood equation for a simulated
intron (N = 100), with read depth = 100 and decay rate equal to that of the
average intron (0.8 per hour). Minima found using the golden section method.
Solutions accepted on the basis of their relative distance (10 percent) from the
true decay rate.
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6.4 Integration of phases during metabolic
labelling

Expression fold change can vary by up to 10 fold during the cell cycle in many
genes (Kuang et al., 2012), which suggests that the transcription and degradation
rates need to be adjusted accordingly. In order to measure these rates accurately
between phases, it is important that we account for the cell cycle time that passes
during the labelling step. Specifically, during the pulse of the chemically labelled
nucleotide, cells will travel from one phase to another, as shown in Figure 6.7.
The contribution of cells from the previous phase affects the average amount of
labelled RNA within each phase to varying extents, depending on the ratio of

T
== where T, and T,

T,

phase

and labeling pulse, respectively.

are the duration of the present cell cycle phase

ulse hase

In order to account for this effect we need to model the incorporation of labelled
nucleotide occurring over two adjacent phases with two sets of rates, assuming
that no cells cross to a third phase during the labeling pulse, and integrate
over the ‘effective duration’ of the first phase (time spent in first phase before
entering second phase), in order to get the average of all the possible such ‘effective

durations’.

From mass action kinetics, we have
— =\ — px(t),
T p(t)

where x is the number of mRNAs (as a unit of concentration). We wish to model
the progression of a cell from one phase to the next. We first solve for z(t) for

the first phase, with z(0) = 0.

We get the time varying equation
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where A; and p; are the mRNA synthesis and degradation rates during the first

phase, respectively.

Now we use this solution to get the initial conditions for the next phase.

Specifically,

A pa(=t1) (epats _ 1
x(tl — 1€ (6 )
H1

I

which we use to solve £ = \, — i, x(t), where A, and y, are the mRNA synthesis
and degradation rates during the second phase, respectively, and ¢; is the duration

of the time that a cell spends in the previous phase.

This results in the below equation:

(t) e“l(_tl)_“2t <A2M1€“1t1+”2t _ )\2M1€N1t1+ﬂ2t1 _ /\1M2€N2t1 + A1M26N1t1+ﬂ2t1>
xXr = 5

I5N2D)
(6.4)

where t > t1.

As mentioned above, we need to average over all the possible durations of time a
cell can spend in the previous phase, which can be done by integrating ¢; from
zero to the duration of the pulse (t), and re-scaling by dividing by the duration
of the pulse. This yields the below function

Auttg (patp (€200 )y (170 -1)) + Ay (NQLL 4 eta2(=t) 1)

(p1—H2)
x(t) = = : (6.5)
pst
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where t is the duration of the pulse.

As mentioned earlier, the contribution of cells from the previous phase depends

Tpulse

on the ratio of This is due to the fact that there are two populations

phase
of cells contributing to the resulting average. These can be described as 1) cells
that started in the previous phase when the staining started and ended up in
the next phase, and 2) cells which started and ended within the second phase,
corresponding to the red and green populations seen in figure 6.7, respectively.
The relative contributions of these two population to the overall average will

depend on the relative duration of the staining pulse and the second phase.

Specifically,
pOpl _ Tpulse
pop2 T T

phase ~ *pulse

The first population will obey the integrated two-phase model, while the second
population will obey the single-phase model. For fitting, we thus need to take
the weighted average of the contributing populations. It is the focus of future
research to determine the extent to which this construction can be used to take
into account the progression of cells from phase to phase during the labelling step,

by simultaneously fitting the data from all cell-phases.

6.5 Experimental Design

The results from this chapter lead us to suggest three important alterations
to the basic metabolic sequencing protocol suggested by Herzog et al. (2017).
Firstly, in Section 6.1 we saw that shorter labelling timepoints suffered from
an understimation of the RNA turnover, which we hypothesised to be due to
the choice of a library preparation method which enriches for mature RNA
(polyA-capture) and thus lead to a loss of much of the newly labelled preRNA.
This prompted me to suggest an alternative method of library preparation based

on ribodepletion, which conserves the nascent RNA fraction.

Secondly, using the simulation by Baptista and Délken (2018) combined with

150



Cell cycle progression during 5EU pulse

: > == — First population

| = > Second populatig

: = — Third population

| : I

| S |
) | = = |
= | —_— e - |
8 : jj - B — = -= :
<@ | = = —__:= 1
o | = e — |
e I — 3 , = I
© | = = == — |
@ ' = ——— 3 !

| S e e —— |

| B o——=—— 3> > I

! =—— 5 — = !

| _——— —— — - — |

| —— > |

| : I

l l | |

[ | [ |

0 1 2 3

Cell cycle (h)

Figure 6.7: Cells progressing through adjacent stages of the cell cycle
during the metabolic labelling pulse.

mathematical modelling, in Section 6.2 we saw for which experimental conditions
(labelling time and sequencing depth) the RNA turnover rates could be accurately
inferred for the majority of genes. We found that shorter labelling times (smaller
new RNA fraction) were associated with a higher measurement error, which could
be mitigated to an extent by sequencing more deeply. An alternative approach
could be to enrich for the nascent transcripts, by means of nuclear fractionation of
the cells prior to libary preparation. As we are interested in shorter timepoints in
order to avoid the cell-cycle clouding effects discussed in Section 6.4, I suggested

we employ nuclear fractionation in order to enrich for the labelled RNA fraction.

Thirdly, the analysis in Section 6.3.2 showed us that sample preparation time can
lead to biased estimations of RNA kinetics. Our experiment relies on extensive
sample processing following the labelling step, such as cell sorting into different
cell cycle phases and distinct cell sizes. In order to minimise the error caused by
the elapse time during these processing steps, we looked into reversible fixation

protocols that will allow us to preserve the state of the cells immediately following
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the labelling step. I thus identified reversible fixation using dithio-bis(succinimidyl
propionate), (DSP), also known as Lomant’s Reagent, which has been shown to

be useful in preserving the state of cells prior to sequencing (Attar et al., 2018).

Using the above suggestions, a pilot experiment was performed, the results of
which are shown in Figures 6.8 and 6.9. In pilot 1, we pulsed cells for 10 min, 20
min, and 1h. In Figure 6.8 the average TC/AG counts can be seen to increase
with labeling time, while the background mutation rate of other baseflips remains
constant and at the same level as the negative control. In each of the cases the
intron signal (red) is higher, consistent with the higher turnover rate of pre-RNA.
Also, the DSP fixation does not seem to affect the signal much, though more

repeats are required to confirm that.

In pilot 2 we only used 1 timepoint (1h), and tested the effect of sorting, UV
exposure and nuclear enrichment after DSP fixation. As in pilot 1, the DSP
fixation does not affect the signal intensity (compare lane 1 and 3), and it causes
no increase in the background mutation rate (compare lane 2 and 4). Finally,
nuclear enrichment leads to a big increase in the signal (see lane 5, Nuc), which
is maintained after sorting, even with the UV laser on (lanes 6 and 7). The below

table can be used to identify the different samples.

Sample / Steps 4sU pulse DSP FACS UV nuclear ext

4sU-10min 0.5mM 10min - - - -
4sU-20min 0.5mM 20min - - - -
4sU-60min 0.5mM 60min - - - -

control - - - - -
DSP 0.5mM 60min - - -
4sU 1mM 60min - - . ,
ve-minus -
DSP-plus 1mM 60min - - -
DSP-minus - - - -
Nuc 1mM 60min - -
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Sample / Steps 4sU pulse DSP FACS UV nuclear ext

UV-Plus 1mM 60min
UV-Minus 1mM 60min -

0.5mM 4sU - pilot 1

= exons — TC/AG
—1 = introns — TC/AG
exons - other
introns — other

Mean mutation rate

0.000 0.005 0.010 0.015 0.020
l

4sU-10min —
4sU-20min
4sU-60min —

control —
4sU-DSP —

Figure 6.8: SLAM-seq pilot experiment 1. Cells were labelled with 500
micromolar 4sU for either 10, 20 or 60 minutes prior to reversible crosslinking
with DSP. Library preparation and sequence processing performed by Dr Mark
Walsh following the SMART-seq method (TAKARA BioSciences). Mutation rate
obtained using the analysis in Section 6.1.

6.6 Discussion

As is often the case with high throughput experiments, careful planning is required
to get the most value out of this method. Using computer simulations and
parameters from published data we can understand what the required settings
such as labelling time, processing time and sequencing depth are, in order to

optimise the experiment. Such considerations are especially important when
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Figure 6.9: SLAM-seq pilot experiment 2. Cells were labelled with 1000
micromolar 4sU for 60 minutes prior to reversible crosslinking with DSP. Library
preparation and sequence processing performed by Dr Mark Walsh following the
SMART-seq method (TAKARA BioSciences). Mutation rate obtained using the

analysis in Section 6.1.

154



planning a large experiment on a budget.

This type of work falls under the category of optimal design of experiments.
Recently, Uvarovskii et al. (2019) demonstrated a way of optimising the above
experiment for a single timepoint by deriving an analytical solution to the problem,
which uses Fisher Information maximisation as the optimisation criterion. An
alternative approach to optimise any type of process is via simulation (see (Hong
et al., 2015) for a review of optimisation via simulation methods). We have chosen
the latter type of approach as it allows for greater flexibility in the structure of

the experiment designed.

Using simulations and modelling, we saw that the processing time of the samples
following a pulse step can be potentially accounted for (Figure 6.6), though a
more robust algorithm is required for finding the global minimum instead of
the bisection method currently employed. Once such an algorithm has been
implemented, Bayesian Optimisation (Bischl et al., 2017) or some other equivalent
optimiser can be used to find the best experimental parameters. Similarly, we saw
that while cells transitioning between adjacent phases in the cell cycle during the
metabolic labelling step can cloud our estimation of rates specific to each phase,
this can potentially be accounted for by fitting the data from different phases

simultaneously.

Using the results from the analysis in this chapter we designed an experiment
which best suits the requirements of this study. Using two pilot experiments we
saw that the suggested changes can be succesfully employed to suit our needs.
Specifically, the pilot experiments show that we can fix the samples after short
4sU pulses which will allow us to sort into different sizes and cell cycle stages
without worrying about time passing. Furthermore, nuclear enrichment gives
a strong boost (~3 fold) in the signal, which suggests we can perform multiple
shorter timepoints in order to fit the rates accurately, without worrying about the

averaging between cell-cycle phases that longer 4sU pulses would involve.
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Chapter 7

Conclusion

Much of modern biology has been concerned with identifying the causes and effects
underpinning biological functions. This has led to a vast wealth of knowledge, and
the understanding of thousands of molecular mechanisms underlying health and
disease, development and aging. This understanding has in turn led to the birth of
synthetic biology, which promises to tackle many of the worlds greatest challenges

such as food security, sustainable energy, currently incurable diseases, and more.

However, relationships between cause and effect are seldom linear in biology.
The complex interplay between gene expression homeostasis and cell growth,
which relies on feedback mechanisms that are only now starting to become
understood, is a good example. In such cases, it is crucial to consider the
system as a whole, since individual components in isolation often do not capture
the observed phenomena. Molecular systems biology allows us to express such
complex, dynamic interactions, in a way that enables us to test hypotheses which

encompass the whole system at once.

The utility of systems biology comes with its own set of challenges. Attempting
to understand how a system behaves requires a good level of understanding
of the individual components, for each of which there are often entire fields

devoted. It is thus necessary to be able to distill the available information
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in a way that enables implementation into a model, while preserving all key
mechanistic aspects. Furthermore, systems biology is a truly interdisciplinary
field. For example, systems biology publications can be found across physical,
biological, mathematical and computational journals. Therefore an appreciation
of all these distinct scientific domains is required in order to fully utilise the sum
of accomplished work. Such an effort has been made here, where we looked at

methods for studying gene expression noise and cell growth.

In the Chapter 3, we saw how a simple set of models encompassing aspects of cell
growth and gene expression can be derived. This will be useful in interpreting
future experimental results, and can be used as a tool for testing hypotheses.
Although more complex models of this kind exist, here we wanted to see whether
a simpler model without stochastic promoter switching can adequately explain
the observed behaviours, as suggested in recent experimental results (Ietswaart
et al., 2017; Zopf et al., 2013; Battich et al., 2015; Klein et al., 2015). A similar
modelling approach was followed by Soltani et al. (2016). Specifically, we used
assumptions of stationarity and spatial homogeneity to see how RNA dynamics
based on mass action kinetics govern the observed distribution of RNA molecules
numbers in a population of growing cells. We modeled the cell cycle as having
three phases corresponding to G1, S and G2/M phases of the eukaryotic cell cycle,
which can be readily resolved experimentally by DNA staining, and thus directly

compared to the model.

In Chapter 4 we saw how PSM, a method developed for delineating paths of
immune cell differentiation, can be re-purposed for resolving the cell cycle. In the
process, we identified certain technical limitations of PSM, for which suggestions
were made. Specifically, we found that fitting one measurement at a time as
suggested by Bagwell et al. (2015b) can ultimately lead to suboptimal solutions,
as the optimum found using the first measurement usually does not correspond
to the true solution, thus constraining the discovery of the global optimum when

considering further measurements. We saw how this can be overcome by fitting all

157



available measurements simultaneously. Although this leads to a combinatorial
explosion in the explored parameter state-space, this was addressed using a
Bayesian Optimisation approach, thus allowing for intelligent exploration of the

parameters.

Another observed limitation of PSM was the inability to capture the apparent
population heterogeneity in certain cases. Specifically, we saw that, within a
population of growing cells, Cdtl can take two levels of mean expression at the
same time during the cell cycle, as has been noted by Grant et al. (2018). Although
this was interesting in its own right and should be the topic of future work, it meant
that the continuous piecewise models used in PSM could not adequately describe
the cell cycle profile of Cdt1, proving an obstacle in resolving the cell cycle. Here,
we saw how to get around this by selectively excluding uninformative regions of
a given marker’s cell cycle path, during which we can rely on more informative
markers. In this way, we constructed a descriptive cell cycle model based on the
fucci reporters geminin and Cdtl (Sakaue-Sawano et al., 2008), in combination
with measurements of DNA quantity. This model can be used to either study
processes of the cell cycle, or to specifically control for the effects of the cell cycle
when studying unrelated process. This is particularly important when studying
gene expression noise, for which extrinsic contributors such as the cell cycle can

play an important role.

In Chapter 5 we specifically looked at how cell growth contributes to gene
expression noise by affecting the kinetics of RNA molecules. We used the
proposed fucci probability state models from the previous chapter to look at how
the rate of RNA synthesis varies with respect to both cell size and cell cycle.
Interestingly, we saw that, contrary to previous findings (Schmidt and Schibler,
1995; Padovan-Merhar et al., 2015), the rate of RNA synthesis alone cannot
explain the variation seen in RNA numbers in cells of different sizes, suggesting
that modulation of RNA stability may play a more important role than previously

thought. Although this is contrary to previous findings, the discrepancy could
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be explained by the strong relation between transcription rate and cell cycle
progression, which had not been previously controlled for. Furthermore, recent
findings in yeast and mammalian cells (Neurohr et al., 2019) suggest that the rate
of transcription can become limitted by the decreased concentration of DNA in
larger cells, although this idea has been also been challenged (Sun et al., 2019b).
Surprisingly, our high resolution cell cycle analysis, in combination with ergodic
rate analysis, uncovered a burst in cell growth rate seen in larger cells during the
late S phase. Further experimental repeats alongside orthogonal measurements

of cell size and growth rate are required to verify these findings.

In Chapter 6 we set the ground for performing a high throughout metabolic
sequencing experiment (Herzog et al., 2017), for measuring the kinetics of
thousands of RNA species at different stages in the cell cycle and for different
cell sizes. Such an experiment is expected to yield a comprehensive, detailed view
on cell size and cell cycle transcriptional regulation, as well as an understanding
of the genetic determinants underlying the observed variation in RNA molecule
numbers in growing populations of cells. Using simulations based on the work
from (Baptista and Dolken, 2018), and revisiting previous data, we saw that high
turnover RNA species can be more easily detected by metabolic sequencing, and
thus decided to use preRNA synthesis as a proxy for measuring transcriptional
activity. This highlighted the need for preserving the state of the cell at the time
of sampling throught the processing steps of the expriment. This was achieved
using reversible fixation of the cells (Attar et al., 2018), which was optimised
for our experimental conditions. We further discuss how the simulations and
mathematical models used in this chapter can be emploeyd to optimise the
parameters of this experiment, as recenlty explored by Uvarovskii et al. (2019).
The methods used and developed here will hopefully prove useful for further

exploration of the mechanisms underlying gene expression noise and cell growth.
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7.1 Future work

In the future, the number of phases modelled in Chapter 3 can be extended to an
arbitrary number, in order to enable comparison with more sophisticated cell cycle
resolution methods such as the one described herein. Although we focused on the
effect of cell growth on gene expression noise, feedback relationships between cell
size, cell growth rate and gene expression should be considered in the future, which
could be explored using coarse grained modelling (Shahrezaei and Marguerat,
2015). Finally, once available, it will be informative to see how well the models

developed in this chapter compare to cell cycle-resolved smFISH data.

In order to verify the metabolic labelling results in Chapter 5, more experiments
would be required. Specifically, the cell size measurements which are based on
cytometry light scatter need to be repeated using more precise methods such as
using an impedence based Coulter counter. Such measurements could be used
to test the resolution and calibrate the light scatter measurements of the flow
cytometer, in order to correlate with other parameters, such as cell cycle and

transcription rate.

More direct measurements of growth rate could be achieved by using alternative
metabolic labelling approaches, such as that of translation or lipid biosynthesis.
Once reliable measurements have been obtained, a model which combines the

interactions described in this chapter would be helpful.

PSM should be extended to cope with discontinuous functions such as the one
determined for Cdtl in Chapter 4. Alternative cell cycle reporters based on
established markers such as cyclins should also be tried (Gookin et al., 2017), in
order to confirm the results. Finally, PSM should be compared to other existing

pseudotime detection algorithms.

Parameter constraints should be incorporated into the mlrMBO package so
that parameter space can be explored more efficiently for the PSM models.

Optimisation of the metabolic sequencing experiment should be performed
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using mlrMBO or equivalent, in order to find the best timepoints to sample
the level of metabolic labelling incorporation at, so that the number of genes
that can be reliably measured is maximised. Finally, the model proposed by
Baptista and Dolken (2018) should be used to extract the turnover rates from our
pilot experiments, while simulations should be used to calculate the associated
confidence of each rate. Together, the above should be used to plan a larger scale

experiment, with measurements for each cell cycle phase and cell size group.

In the future, it would be interesting to investigate whether there are
commonalities in the sequence of genes with similar kinetics or similar patterns
during the cell cycle. This could be achieved once the data becomes available

using deep learning (Agarwal and Shendure, 2018; Washburn et al., 2019).
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