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Abstract

In this thesis, we study the regularity of embeddings of finite dimensional

subsets of Banach spaces into Euclidean spaces. We first consider subsets of Banach

spaces with finite box–counting dimension and extend an embedding result due to

Hunt & Kaloshin [15], which was previously known only for subsets of Hilbert spaces.

We then focus on almost homogeneous subsets of Banach spaces, which is a

weaker notion of homogeneous sets, or sets with finite Assouad dimension. Olson &

Robinson [25] showed that if X is a subset of a Hilbert space and X −X is almost

homogeneous, then X admits an almost bi–Lipschitz embedding into an Euclidean

space. We extend this result for subsets of Banach spaces, using a weaker condition

which requires that X −X is almost homogeneous near the origin.

We also study the question of whether the set of differences is almost ho-

mogeneous at the origin, if the set itself is homogeneous. We answer the question

negatively by considering a compact and homogeneous metric space X such that the

difference of isometric copies of X into L∞(X) is not almost homogeneous.

Finally, we find out that given an attractor K of a Iterated function system

that satisfies a weak separation condition, the Assouad dimension of K−K is bounded

above by twice the dimension of K. We then apply this result to a particular class

of asymmetric Cantor sets.
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Chapter 1

Introduction

Given a compact ‘finite–dimensional’ subset X of a metric space (M,d), it is natural

to ask whether we can find a continuous map from M onto some Euclidean space,

such that if we restrict it to X, we obtain a homeomorphism from X onto its image.

The main question we want to address in this thesis is how we can understand

the notion that an arbitrary subset X of a Banach space is ‘finite–dimensional’.

There are many possible dimensions that we can consider and each of them provides

different embedding properties into Euclidean spaces.

There have been embedding results concerning subsets with finite Hausdorff

dimension by Mañé [22], finite box-counting dimension by Foias & Olson [9], finite

Assouad dimension by Assouad [2], Olson & Robinson [25] and by Naor & Neiman

[24]. In this thesis, we will concentrate on embeddings of subsets of Banach spaces

with finite box-counting or Assouad dimension into Euclidean spaces.

In the second chapter, we concentrate on subsets of Banach spaces with finite

box–counting dimension. The box-counting dimension dB(X) of a compact set X

measures how does the minimum number of balls of radius ε that cover X changes as

ε→ 0. In 1993, Ben Artzi et al [3] treated the case when X is a subset of a Hilbert

space with finite box–counting dimension and showed that there exists a projection

into an Euclidean space which is injective on X and has a Hölder continuous inverse.

They also proved a sharp bound on the Hölder exponent. In 1996, Foias and Olson

treated the case where X is a subset of a Hilbert space H with finite box–counting

dimension and proved that there exists a dense set of linear maps L : H → Rk which

are injective on X with Hölder inverses on the image of X. However, they did not

obtain a bound on the Hölder exponent.

In 1999, Hunt and Kaloshin [15] introduced the thickness exponent τ , an

exponent which measures how well an arbitrary subset of a Banach space can be

approximated by linear subspaces. They proved a breakthrough result that for any
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subset X of a Hilbert space H with finite box–counting dimension, and for every

0 < θ < 1 + τ/2, there exists a k ∈ N and a dense set of linear maps L : H → Rk

that satisfies
1

CL
‖x− y‖ ≤ |Lx− Ly|θ,

for any x, y ∈ X and for some CL > 0.

They actually proved that the set of linear maps that satisfy the above

property is not only dense but also prevalent, a notion which can be viewed as an

analogue of ‘almost every’ in the context of infinite dimensional spaces. They also

showed that the bound on the Hölder exponent is sharp, i.e. there exists a set X ⊂ H
such that for any linear projection that is injective on X and has a θ-Hölder inverse,

the exponent must be less or equal than 1 + τ/2. The sharpness result was also

proved by Pinto De Moura and Robinson [6] by using the simpler example of an

orthogonal sequence in H.

The authors attempted to extend the theorem for subsets of Banach spaces

but their proof contained an error. Robinson [27] introduced the dual thickness

and proved an embedding for subsets of Banach spaces with finite box–counting

dimension. It has been an open question whether it is possible to prove the result

for subsets of Banach spaces, using the thickness rather than the dual thickness.

Motivated by this question, we prove an embedding result for subsets of Banach

spaces with the restriction that the thickness exponent is less than 1. In particular,

we prove the following theorem.

Theorem 1.1. Let X be a compact subset of a Banach space B with thickness

exponent τ(X) < 1 and box–counting dimension dB(X) <∞. Then for any integer

k > 2dB(X) and any given θ with

0 < θ < (1− τ(X))
k − 2dB(X)

k (1 + τ(X))
,

a prevalent set of linear maps L : B → Rk satisfies:

‖x− y‖ ≤ CL|Lx− Ly|θ, ∀ x, y ∈ X, for some CL > 0. (1.1)

In particular, L is bijective from X onto L(X) with a Hölder continuous inverse.

A second line of argument uses the Hahn–Banach theorem to construct linear

embeddings from subsets of Banach spaces with finite box-counting dimension into

Hilbert spaces. Using Hunt and Kaloshin’s result for subsets of Hilbert spaces, we

produce embedding theorems for subsets of Banach spaces into Euclidean spaces,

even without the restriction for the thickness to be less than 1, with the cost of a

2



factor of 1/1 + dB(X) in the bound of the Hölder exponent.

Theorem 1.2. Let X be a compact subset of a Banach space B with thickness

exponent τ(X) and box–counting dimension dB(X). Then for any integer k > 2dB(X)

and any given θ with

0 < θ <
k − 2dB(X)

k (1 + dB(X))
(

1 + τ(X)
2

) ,
there exists a linear map L : B→ Rk such that

‖x− y‖ ≤ CL|Lx− Ly|θ, ∀ x, y ∈ X. (1.2)

In particular, L is bijective from X onto L(X) with a Hölder continuous inverse.

In the third chapter, we concentrate on the relation between the box-counting

dimension of a compact subset of a Banach space and various thickness exponents.

As mentioned above, these exponents play an important role in embedding theorems,

especially when the embeddings are linear (as are the ones we consider). We study

a particular class of orthogonal sets in `p, for p ∈ [1,∞], which are used by De

Moura & Robinson [6] to prove that Hunt and Kaloshin’s theorem is sharp. We show

that the thickness exponent of these sets equals the box–counting dimension when

p ∈ [1, 2] and satisfies a lower bound when p > 2.

In Chapter 4, we study doubling metric spaces (X, d), which are spaces with

the property that every ball in the set can be covered by a fixed number of balls

with half the radius. In 1983, Assouad proved that for any 0 < ε < 1, doubling

metric spaces admit bi–Hölder embeddings with Hölder exponent ε, into an Euclidean

space RN , for some N depending on ε. Assouad’s pioneering work triggered a lot of

research in the field of embeddings. Recent results by Naor & Neiman [24], based

on work by Abraham, Bartal & Neiman [1], showed that we can actually choose N

in Assouad’s theorem to be independent of ε. The same result was also achieved

independently by David & Snipes [5].

The doubling property remains invariant under bi–Lipschitz maps and we

also know that any subset of an Euclidean space is doubling (see Chapter 9 in the

book of Robinson [28]). Hence, a metric space needs to be doubling in order to

admit a bi–Lipschitz embedding into an Euclidean space. However, the condition is

not sufficient since there are examples of doubling spaces due to Lang & Plaut [21],

Semmes [29] and Pansu [26] that cannot be embedded in a bi–Lipschitz way into

any Hilbert space.

An equivalent definition of a doubling space is given which involves the
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Assouad dimension dA(X), a more local version of the box–counting dimension. The

Assouad dimension is related to homogeneous sets, which are defined as follows.

Definition 1.3. A subset V of a metric space (X, d) is said to be (M, s)−homogeneous
if for every r > ρ > 0

NV (r, ρ) = sup
x∈V

N(V ∩B(x, r), ρ) ≤M
(
R

r

)s
,

where N(V ∩B(x, r), ρ) denotes the minimum number of balls of radius ρ required

to cover V ∩B(x, r).

The Assouad dimension of V ⊂ (X, d), dA(V ) is defined as the infimum of

all s > 0 such that V is (M, s) homogeneous for some M > 0.

We are interested in the notion of a weaker class of embeddings which are

called almost bi–Lipschitz. Given δ ≥ 0, we say that a map L : (X, d1) → (Y, d2),

between two metric spaces is δ-almost bi–Lipschitz if for x 6= y ∈ X, it satisfies

1

CL

d1(x, y)

slog(d1(x, y))δ
≤ d2(L(x), L(y)) ≤ CLd1(x, y),

where slog(x) = log
(
x+ 1

x

)
is defined as the symmetric logarithm function, for

x > 0.

In 2010, Olson & Robinson [25] introduced a weaker notion of an (α, β)–almost

homogeneous metric space, which remains invariant under almost bi–Lipschitz maps.

Definition 1.4. A metric space (X, d) is (α, β)-almost (M, s)- homogeneous if for

any 0 < ρ < r

NX(r, ρ) ≤M
(
r

ρ

)s
slog(r)αslog(ρ)β. (1.3)

The authors showed that when X is almost homogeneous, it admits δ-‘almost’

bi–Lipschitz embeddings into an infinite dimensional Hilbert space. In particular, the

image in H is almost homogeneous. They also obtained a bound on the exponent δ.

The authors also study the case when X is a subset of a Hilbert space such

that the difference X−X is almost homogeneous. They show that if such a condition

is true then X can be embedded into a sufficiently large Euclidean space using a

linear map with an ‘almost’ Lipschitz inverse. In particular, they prove that when

X −X is homogeneous, X admits δ-almost bi–Lipschitz embeddings for all δ > 3/2.

Unfortunately, the fact that X is (almost) homogeneous does not necessarily imply

that X −X is also homogeneous (see examples of this kind of sets in chapter 9 in

the book of Robinson [28]).

Sets of differences were also studied by Robinson [27], who proved that for

any subset of a Banach space X such that X−X is homogeneous, X admits δ-almost
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bi–Lipschitz embeddings into Euclidean spaces, for all δ > 1. The exponent δ was

shown to be sharp, in this case.

The condition on the set of differences on the result of Olson & Robinson

[25], was used to control covers of balls around the origin. In particular, their result

can be restated to hold for sets X such that X −X is almost homogeneous at zero.

The interesting fact about this condition is that it remains invariant under

linear almost bi–Lipschitz maps, as we show in section 4.2. In Section 4.2.1, we

consider subsets of Banach spaces such that the set of differences is almost homogen-

eous at the origin, i.e. satisfy (1.3) only for balls around zero. We show that under

this property, we can construct a linear embedding from a subset of a Banach space

into a Hilbert space. Since the condition remains invariant, we then use Olson’s &

Robinson’s result [25] to construct an embedding into an Euclidean space.

In Section 4.2.2, we extend the above result and we show that when X −X is

almost homogeneous at the origin, then there exists a prevalent set of linear almost

bi–Lipschitz embeddings from X into an Euclidean space. In particular, we show

the following result.

Theorem 1.5. Fix any M ≥ 1, s > 0 and α, β ≥ 0. Suppose X is a compact

subset of a Banach space B such that X −X is (α, β)-almost (M, s)-homogeneous

at the origin. Then, given any δ > 1 + α+β
2 , there exists a N = Nδ ∈ N and a

prevalent set of linear maps L : B→ RN that are injective on X and bi–Lipschitz

with δ–logarithmic corrections. In particular, they satisfy

1

CL

‖x− y‖
slog(‖x− y‖)δ

≤ |L(x)− L(y)| ≤ CL‖x− y‖, (1.4)

for some CL > 0 and for all x, y ∈ X.

We note that when X −X is homogeneous, we obtain embeddings for any

δ > 1, exactly as in Robinson’s result.

As mentioned above, Olson and Robinson showed [25] that any homogeneous

metric space (X, d) admits ‘almost’ bi–Lipschitz embeddings into a Hilbert space H

but it is not necessarily true that the image of X in H is homogeneous. However, they

showed that the image can be ‘well’ approximated by finite–dimensional subspaces

of H. It is natural to ask whether such a condition is sufficient for a subset of a

Hilbert space to be embedded in an Euclidean space in an almost bi–Lipschitz way.

Motivated by this question, we show that any subset of a Banach space that can be

’well approximated’ by linear subspaces can be embedded into an infinite–dimensional

Hilbert space in an almost bi–Lipschitz way.

In the next chapter, we study a metric space that was constructed by Laakso

[20] and used by Lang and Plaut [21] as an example of a doubling space that cannot
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be embedded in a bi–Lipschitz way into any Hilbert space. Their construction was

based on a sequence of graphs, equipped with the geodesic metric, which converges

with respect to the Gromov–Hausdorff metric to a limiting metric space. We know

by the result of Olson & Robinson [25], which was mentioned above that this set

can be embedded in an almost bi–Lipschitz way into a Hilbert space. It is a natural

question whether it also admits an almost bi–Lipschitz embedding into an Euclidean

space.

Motivated by this question, we isometrically embed the metric space X

described above into L∞(X) and look at the set of differences into L∞(X). We

show that Φ(X)− Φ(X) ⊂ L∞(X) is not almost homogeneous at 0, for any choice

of (α, β), thus giving an example of a set which is doubling but the set of differences

is not (α, β)-almost homogeneous at 0, for any choice of (α, β).

In Chapter 7, we study attractors of Iterated Function systems. In particular,

we are interested in finite collections of functions {fi : Rs → Rs : i ∈ I} that satisfy

|fi(x)− fi(y)| = ci|x− y|,

for some ci < 1, which holds for all x, y ∈ Rs. These maps are called contracting

similarities. It was proved by Hutchinson [17] that these systems determine a unique

attractor K, i.e. a non-empty compact set such that

K =

|I|⋃
i=1

fi(K).

These attractors are called self similar fractals. The problem of bounding dimensions

of self similar fractals has been extensively studied over the years by many authors.

One of the most common dimensions that is considered, is the similarity dimension,

which is denoted by dsim and is defined as the positive number D such that

|I|∑
i=1

cDi = 1.

In general, for these sets we have that

dH(K) = dB(K) ≤ dsim(K),

where dH(K) is the Hausdorff dimension and dB(K) is the box–counting dimension.

It has been shown by Hutchinson [17] that if there exists an non-empty open

set U such that all fi(U) are disjoint and U contains the disjoint union of fi(U),
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then

dH(K) = dB(K) = dsim(K). (1.5)

In case such an open sets exists, we say that the system satisfies the open set

condition.

Zerner [30] introduced another condition, called the weak separation condition,

which ensures that the images fi(K) do not overlap too much. In 2015, Fraser,

Olson et al [11] used the notion of Ahlfors regularity and showed that if the weak

separation condition is satisfied, then the Assouad dimension equals the Hausdorff

dimension and in particular the box–counting dimension. In section 6.2, we give an

independent proof of this result, without using Ahlfors regularity. The proof gives

some insight for the more involved argument of bounding the Assouad dimension of

differences of self similar fractals.

As discussed above, the Assouad dimension of sets of differences does not

necessarily satisfy any bounds related with the Assouad dimension of the original

set. Henderson [14] studied differences of self similar fractals and showed that

there exist attractors of systems of contracting similarities on the real line that

have arbitarily small Assouad dimension but the Assouad dimension of the set of

differences is maximal. Our main purpose is to show that if the system satisfies

a suitable separation condition, then we can achieve non–trivial bounds for the

Assouad dimension of the set of differences. In particular, we show that under a

suitable separation condition, we have dA(K −K) ≤ 2dA(K).

In the last chapter, we concentrate on Cantor sets, which are the most common

examples of attractors of systems like the one we described above. Cantor sets are

constructed by removing intervals from [0, 1] in an iterative process. The Cantor sets

can be symmetric or non symmetric depending on whether the intervals that remain

at each step of the iteration are of equal or non equal length.

A symmetric Cantor set, which is denoted by Cλ, is the attractor of a system

of similarities

f1(x) = λx and f2(x)λx+ (1− λ).

It is easy to see (see the book of Falconer [7]) that when λ ≤ 1/3, the above maps

satsify the open set condition for U = (0, 1), so all notions of dimensions coincide

for these sets. Henderson [14] showed that differences of symmetric Cantor sets are

actually attractors of another system of similarities on the unit interval that satisfies

the open set condition. In particular, he showed that for all λ < 1
2 ,

dA(Cλ − Cλ) < 2dA(Cλ).

We show that symmetric Cantor sets Cλ, for λ < 1
3 satisfy the weak separation
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condition for differences, which immediately gives an example of a set that satisfies

the weak separation condition for differences with a strict inequality for dA(Cλ−Cλ).

In the second part of the chapter, we focus on non symmetric Cantor sets

which are the attractors of the following system.

f1(x) = c1x and f2(x) = c2x+ (1− c2).

We denote the Cantor set in this case by Kc1c2 . Henderson [14] showed that if log c1
log c2

is an irrational number then dA(Kc1c2 −Kc1c2) = 1, which is maximal for this set.

We show that we can prove a non trivial bound for dA(Kc1c2 −Kc1c2) when log c1
log c2

is rational, c1 < 1/4 and c2 < 1/4. In particular, we prove the following theorem,

which is the main result of this chapter

Theorem 1.6. Suppose c ∈ (0, 1), p1 < p2 ∈ N such that cp1 < 1/4 , cp2 < 1/4. Let

K be the attractor of the system F = {f1, f2} where

f1(x) = cp1x, and f2(x) = cp2x+ (1− cp2).

Then,

dA(K −K) ≤ 2dA(K).

8



Chapter 2

Embedding properties of sets

with finite box-counting

dimension

2.1 Background

In this chapter, we focus on subsets of Banach spaces with finite box–counting

dimension, whose definition we now recall.

Definition 2.1. Suppose that (E, ‖ · ‖) is a normed space. Let X a compact subset

of E and let N(X, ε) denote the minimum number of balls of radius ε with centres in

X required to cover X. The upper box-counting dimension of X is

dB(X) = lim sup
ε→0

logN(X, ε)

− log ε
. (2.1)

It follows from the definition that if d > dB(X), then there exists some

positive constant C = Cd, such that

N(X, ε) ≤ Cε−d. (2.2)

For the rest of the thesis, we will refer to dB(X) as the box–counting dimension

of X. We now want to recall some elementary but useful properties of the box–

counting dimension, which we will be using in what follows. The proofs can be found

in Robinson [28].
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Lemma 2.2. Suppose (E1, ‖ · ‖1) and (E2, ‖ · ‖2) are normed spaces.

1. If f : (E1, ‖·‖1)→ (E2, ‖·‖2) is a Lipschitz function, i.e. there exists a constant

C > 0, such that

‖f(x1)− f(x2)‖2 ≤ C‖x1 − x2‖1 for all x1, x2 ∈ E1,

then for all compact subsets X ⊂ E1 we have

dB(f(X)) ≤ dB(X).

2. Let E1 × E2 be the product space equipped with some product metric. Suppose

also that X ⊆ E1 and Y ⊆ E2 are compact. Then,

dB(X × Y ) ≤ dB(X) + dB(Y ).

In 1999, Hunt and Kaloshin [15] established the existence of a ‘large’ set of

linear maps L : H → Rk with Hölder continuous inverses on the image of X. In order

to do so, they introduced a new quantity, called the thickness exponent of X, which

measures how well an arbitrary subset of a Banach space can be approximated by

finite–dimensional linear subspaces. We note that all Banach spaces we mention

from now on are real.

Definition 2.3. Let X be a subset of a Banach space B. The thickness exponent of

X in B, τ(X,B) is defined as:

τ(X,B) = lim sup
ε→0

log d(X, ε)

− log ε
,

where d(X, ε) denotes the smallest dimension of those linear subspaces V that satisfy

distB(x, V ) ≤ ε for all x inX.

If no such subspace exists, we set d(X, ε) =∞ and we adopt a similar convention

throughout this thesis.

Note that when τ > τ(X), then there exists some positive constant C such

that

d(X, ε) ≤ Cε−τ .

Therefore, when X ⊂ Rk, for some k ∈ N, then τ(X) = 0.

It is easy to see that the thickness exponent is always bounded above by the

box–counting dimension. Indeed, if we cover X by N(X, ε) balls of radius ε and let
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V be the subspace of B that is spanned by the centres of these balls, then every

element of X is within ε of V .

Moreover, Hunt & Kaloshin used the notion of prevalence, which was in-

troduced by Hunt [16] in 1992 as a generalisation of the term ‘almost every’ in

the context of infinite dimensional spaces. We only define what we need for the

purpose of this thesis and without proving any of the statements. For a more detailed

presentation, you can see Chapter 5 in the book of Robinson [28] or Chapter 6 in

Benyamini & Lindenstrauss [4].

Definition 2.4. Let (V, ‖ · ‖) be a normed linear space. A Borel set S ⊂ V is called

shy if there exists a compactly supported probability measure µ on V such that

µ(S + v) = 0,

for every v ∈ V . In general, a set is shy if it is contained in a shy Borel set. A set

is called prevalent if its complement in V is shy.

Remark 2.1. The set E = supp(µ), is called the ‘probe space’ and it easy to see that

a set S is prevalent if for every v ∈ V , v + u ∈ S, for µ−almost every u ∈ E. A

prevalent set is dense with respect to the norm of V and it is also straightforward (see

Chapter 5 in Robinson) to show that the intersection of prevalent sets is prevalent.

Using the above structure, Hunt and Kaloshin [15] proved the following result.

Theorem 2.5 (Hunt & Kaloshin, 1999). Let X be a compact subset of a real Hilbert

space H with thickness exponent τ(X) and box–counting dimension dB(X) < ∞.

Then for any integer k > 2dB(X) and any given θ with

0 < θ <
k − 2dB(X)

k
(

1 + τ(X)
2

) ,
there exist a prevalent set of linear maps L : H → Rk such that

‖x− y‖ ≤ CL|Lx− Ly|θ, ∀ x, y ∈ X, for some CL > 0. (2.3)

In particular, every such L is bijective from X onto L(X) with a Hölder continuous

inverse.

By using the fact that the thickness is bounded above by the box–counting

dimension, the above theorem can be restated such that the range of the exponent θ

depends solely on the box-counting dimension.

The authors attempted to extend the theorem for subsets of Banach spaces

and their proof relies on the claim that there exists a linear isometry from the dual of
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any finite–dimensional subspace of B to a linear subspace of the dual of B. However,

Kakutani & Mackey[18] proved that this can only be true in the context of a Hilbert

space. To circumvent this problem, Robinson [27] introduced a new exponent, the

‘dual thickness’ which was defined based on an approximation required in the course

of Hunt and Kaloshin’s argument.

Definition 2.6. Suppose that X is a subset of a Banach space B and for every

ε, θ > 0 let dθ (X, ε) denote the minimum dimension of all those subspaces U of B∗

with the property that for every x, y ∈ X with ‖x− y‖ ≥ ε, there exists some φ ∈ U ,

such that

|φ(x− y)| ≥ ε1+θ.

Then, for every θ > 0, we define

τ∗θ (X) = lim sup
ε→0

log dθ (X, ε)

− log ε
,

and then set

τ∗ (X) = lim
θ→0

τ∗θ (X) .

This admittedly unwieldy definition allows for the following result.

Theorem 2.7 (Robinson, 2009). Let X be a compact subset of a Banach space B

with dual thickness exponent τ∗(X) <∞ and box–counting dimension dB(X) <∞.

Then for any integer k > 2dB(X) and any given θ with

0 < θ <
k − 2dB(X)

k (1 + τ∗(X))
,

there exist a prevalent set of linear maps L : B→ Rk such that

‖x− y‖ ≤ CL|Lx− Ly|θ, ∀ x, y ∈ X, for some CL > 0. (2.4)

In particular, every such L is bijective from X onto L(X) with a Hölder continuous

inverse.

In Chapter 3 we prove that the dual thickness is bounded above by twice

the box–counting dimension of X which gives a range of θ independent of the dual

thickness. In particular, for any

0 < θ <
1

1 + 2dB(X)
, (2.5)
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we can find an embedding into Rk, for large enough k, such that the inverse is

θ-Hölder continuous.

There is no known general relation between the thickness and the dual

thickness in the context of a Banach space. However, Robinson [28] proved that

zero thickness implies zero dual thickness, which immediately implies that subsets of

Banach spaces with τ(X) = 0 admit embeddings for any positive exponent θ < 1. It

is a natural question to ask whether we can prove an embedding theorem directly,

i.e. without using the dual thickness when the thickness is small enough. In Section

2.4, we show that when τ(X) < 1, such an embedding is true and we establish the

same embedding result for τ(X) = 0 directly, i.e. without having to use the dual

thickness.

In Section 2.2, we consider X as a compact subset of a Banach space with finite

box-counting dimension and provide an embedding into a Hilbert space with a bound

on the Hölder exponent of the inverse that depends on the box–counting dimension

of X. As a corollary of this argument and Theorem 4.5 we immediately obtain an

embedding into an Euclidean space that does not require the dual thickness. We also

extend the result to any compact metric space using the Kuratowski embedding.

Then, in Section 2.4, we use the techniques introduced by Hunt and Kaloshin

along with some key new arguments and prove an embedding theorem for subsets of

Banach spaces with thickness exponent less than 1.

2.2 Embeddings from Banach into

Hilbert spaces

In this section, we prove two embedding results into a Hilbert space. Both of them

can be combined with Theorem 4.5 to provide an embedding theorem for compact

subsets of Banach spaces into Euclidean spaces that does not require the arguments

in Robinson’s result [27].

2.2.1 Embedding when dB(X) is finite

We first show that any compact subset of a Banach space with finite box–counting

dimension embeds into a Hilbert space.

Proposition 2.8. Suppose that X is a compact subset of a Banach space B with

finite box-counting dimension. Then, for every α > 1 + dB(X) there exists a linear

map Φ: B→ H, where H is a separable Hilbert space, such that for every x, y ∈ X

C−1
α ‖x− y‖α ≤ |Φ(x)− Φ(y)| ≤ Cα‖x− y‖, for some Cα > 0.

13



We first prove that for every n ∈ N there exists a linear embedding φn into a

Euclidean space Rmn such that φ−1
n satisfies a Lipschitz condition for all x, y ∈ X

with ‖x− y‖ ≥ 2−n.

Lemma 2.9. Suppose that X is as above. Then, given d > dB(X) and n ∈ N, there

exist φn ∈ L (B;Rmn), where mn ≤ C22nd, such that ‖φn‖ ≤
√
mn and

|φn(x− y)| ≥ 2−(n+1) whenever ‖x− y‖ ≥ 2−n, for x,y inX.

Proof. Let Z = X −X = {x− y : x, y ∈ X}. Then, it is easy to see that dB(Z) ≤
2dB(X). Indeed, Z is the image of X ×X under the Lipschitz map

(x, y) 7→ x− y

and so by Lemma 2.2, we obtain

dB(f(X ×X)) = dB(X −X) ≤ dB(X ×X) ≤ 2dB(X).

Given d as in the statement of the lemma, we can cover Z by no more than

mn = N(Z, 2−(n+2)) ≤ Cd 22nd balls of radius 2−(n+2). Let the centres of these balls

be zi. By the Hahn–Banach Theorem, we can find fi ∈ B∗ such that ‖fi‖ = 1 and

fi(zi) = ‖zi‖. Now, define φn : B → Rmn as

φn(x) = (f1(x), ..., fmn(x)) .

It is immediate that ‖φn‖ ≤
√
mn.

Suppose now that z ∈ X −X such that ‖z‖ ≥ 2−n. Then, there exists some

i ≤ mn such that ‖z − zi‖ ≤ 2−(n+2), and therefore

|φn(z)| ≥ |fi(z)| = |fi(zi) + fi(z − zi)|

≥ ‖zi‖ − ‖z − zi‖ ≥ ‖z‖ − 2‖z − zi‖

≥ 2−n − 2−(n+1) ≥ 2−(n+1).

We now continue with the proof of Proposition 2.8.

Proof of Proposition 2.8. We first construct a new separable Hilbert space H given

an orthonormal basis (ei)
∞
i=1 of `2 and a sequence (mi)

∞
i=1 of positive integers, by

taking the collection

ei ⊗ wmij i ∈ N, j = 1, . . . ,mi,
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as an orthonormal basis for H, where (wNj )Nj=1 denotes an orthonormal basis for RN .

We define the inner product 〈·, ·〉 on H to ensure that this is indeed an orthonormal

set, i.e. we set

〈ei ⊗ wmij , ei′ ⊗ w
mi′
j′ 〉 = δii′δjj′ .

In particular if xi ∈ Rmi , i ∈ N, then∥∥∥∥∥
∞∑
i=1

ei ⊗ xi

∥∥∥∥∥
2

H

=

∞∑
i=1

‖xi‖2Rmi .

Take d = dα > 0 such that α > 1 +d > 1 + dB(X). Then, for this d > dB(X),

we consider φn,mn given by Lemma 2.9, and then from the above construction we

consider H based on the sequence (mn)∞n=1. Now, for x ∈ B we set

Φ(x) =

∞∑
n=1

2(1−α)nφn(x)⊗ en ∈ H.

Clearly Φ is linear and

‖Φ‖2 ≤
∞∑
n=1

22(1−α)n‖φn‖2 ≤
∞∑
n=1

22(1+d−α)n <∞,

since 1 + d− α < 0.

Now, take any x, y ∈ X and suppose x 6= y (the case x = y is trivial). If

‖x− y‖ ≥ 1, then it suffices to take R > 0 such that

X −X ⊂ B(0, R).

Therefore, using also that ‖φ1(x− y)‖ ≥ 1
4 , we have that

‖Φ(x− y)‖ ≥ 21−α‖φ1(x− y)‖ ≥ 21−α

4

(
‖z‖
R

)α
= Cα‖z‖α.

If 0 < ‖x− y‖ < 1, consider n such that

2−n ≤ ‖x− y‖ < 2−(n−1).

Thus, we obtain

‖Φ(x− y)‖ ≥ 2(1−α)n|φn(x− y)|

≥ 2(1−α)n2−n−1 ≥ Cα 2−αn+1

≥ Cα‖x− y‖α,
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which concludes the proof of the embedding into a Hilbert space.

By combining Proposition 2.8 and Theorem 4.5, we can now obtain an

embedding theorem for compact subsets of Banach spaces into finite–dimensional

spaces. The difference here is that the range of the exponent depends on the thickness

and the box–counting dimension rather than the dual thickness.

Theorem 2.10 (Theorem 1.2). Let X be a compact subset of a Banach space B

with thickness exponent τ(X) and box–counting dimension dB(X). Then for any

integer k > 2dB(X) and any given θ with

0 < θ <
k − 2dB(X)

k (1 + dB(X))
(

1 + τ(X)
2

) ,
there exists a linear map L : B→ Rk such that

‖x− y‖ ≤ CL|Lx− Ly|θ, ∀ x, y ∈ X. (2.6)

In particular, L is bijective from X onto L(X) with a Hölder continuous inverse.

Proof. Take θ1 such that

θk
(

1 + τ(X)
2

)
k − 2dB(X)

< θ1 <
1

1 + dB(X)
,

and set

θ2 =
θ

θ1
<

k − 2dB(X)

k
(

1 + τ(X)
2

) .
By Proposition 2.8 (substituting α = θ−1

1 ), there exists a separable Hilbert

space H and a linear map Φ: B→ H such that for every x, y ∈ X

C−1
θ1
‖x− y‖ ≤ |Φ(x)− Φ(y)|θ1 , for some Cθ1 > 0.

We know from Lemma 2.2 that the box–counting dimension of X does not

increase under Φ. We now check that the same holds for the thickness exponent of

X. Take ε > 0 and let V be the linear subspace of B with the smallest dimension

among all those that satisfy

dist(x, V ) < ε,

for all x ∈ X. Let y = Φ(x) ∈ Φ(X) and if we let v ∈ V such that

‖v − x‖ < ε,
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then

‖y − Φ(v)‖ ≤ ‖Φ‖ε.

Since Φ(V ) is a linear subspace of H and dim(Φ(V )) ≤ dim(V ), we have

τ(Φ(x)) = lim sup
ε→0

log dH (Φ(X), ‖Φ‖ε)
− log ‖Φ‖ε

≤ lim sup
ε→0

log dB (X, ε)

− log ‖Φ‖ε
= τ(X).

Since

θ2 =
θ

θ1
<

k − 2dB(X)

k
(

1 + τ(X)
2

) ≤ k − 2dB(X)

k
(

1 + τ(Φ(X))
2

) ,
by Theorem 2.7 there exists a linear map T : H → Rk and a positive constant Cθ

such that

‖x− y‖ ≤ Cθ|T (Φ(x))− T (Φ(y))|θ1θ2 ,

for all x, y ∈ X. We conclude the proof by setting L = T ◦ Φ.

Note that the above theorem gives an embedding for all compact subsets of

Banach spaces with finite box–counting dimension, since τ(X) ≤ dB(X). The result

improves on the range of θ from Theorem 2.7 (see (2.5)) whenever

τ(X) <
2dB(X)

1 + dB(X)
.

However, we note that when τ(X) = 0, we obtain θ-Hölder embeddings for any

0 < θ <
1

1 + dB(X)
,

which is not optimal.

The above embedding into a Banach space can also be used as a tool to

prove an embedding theorem for compact metric spaces with finite box–counting

dimension. We first recall the Kuratowski embedding theorem, which allows us to

isometrically embed any compact metric space into a Banach space.

Lemma 2.11 (Kuratowski Embedding). If (X, d) is any compact metric space, then

the map

x 7→ Φ(x) = d(·, x)

is an isometry of (X, d) onto a subset of L∞(X).

For a proof of the above result, see Heinonen [13]. Hence, we have the
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following corollary of Theorem 1.2 and Lemma 2.11, using the fact that

τ(Φ(X)) ≤ dB(Φ(X)) = dB(X),

where Φ is the isometry from Lemma 2.11 and X is an arbitrary compact metric

space.

Corollary 2.12. Suppose (X, d) is a compact metric space with finite box–counting

dimension. Then, for any k > 2dB(X) and any given θ with

0 < θ <
k − 2dB(X)

k (1 + dB(X))
(

1 + dB(X)
2

) ,
there exists a Lipschitz map ψ : (X, d)→ Rk such that

‖x− y‖ ≤ Cψ|ψ(x)− ψ(y)|θ, ∀ x, y ∈ X.

The range of θ in the above Corollary improves on the respective range in

the paper by Foias and Olson [9]. There, the authors use a direct argument to prove

that if d = max{1,dB(X)}, then for any given

θ <
1

2d
(

1 + dB(X)
2

)
any compact metric space with finite box-counting dimension can be embedded into

a sufficiently large Euclidean space such that the inverse is θ-Hölder continuous.

2.2.2 Embedding when τ(X) < 1

We now prove another embedding into a Hilbert space, in which the range of the

Hölder exponent depends solely on the thickness exponent of X. This result also

provides some motivation towards the next section.

Proposition 2.13. Suppose that X is a compact subset of a Banach space B with

thickness exponent τ(X) < 1. Then, for every

α >
1 + τ(X)

1− τ(X)

there exists a separable Hilbert space H and a linear map Φ: B → H, such that

C−1
α ‖x− y‖α ≤ |Φ(x)− Φ(y)| ≤ Cα‖x− y‖, for all x, y in X.

Following the previous procedure, we first need the following Lemma.
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Lemma 2.14. Suppose that τ(X) < 1. Then, for every 1 > τ > τ(X), there exists

some βτ > 1 such that for every n ∈ N, we can find φn ∈ L (B;Rmn), Cβτ > 0, where

mn ≤ Cβτ 2βτnk, with ‖φn‖ ≤
√
mn and

|φn(x− y)| ≥ 2−(βτn+1), whenever ‖x− y‖ ≥ 2−n.

Before we prove the above lemma, we recall the definition of an Auerbach

basis for a finite–dimensional Banach space.

Definition 2.15. Suppose that U is a finite–dimensional Banach space. An Auerbach

basis for U is formed by a basis {e1, ..., en} of U coupled with corresponding elements

{f1, ...fn} of U∗ that satisfy ‖fi‖ = ‖ei‖ = 1 and

fi(ej) = δij .

For a proof of the existence of such a basis, see Exercise 7.3 in the book of

Robinson [28], for example.

Proof of Lemma 4.17. Take any β > 1. Then, by the definition of the thickness

exponent, there exists a subspace Vn of B and some C = Cβ > 0, such that

dim(Vn) = mn ≤ C2βnτ and

dist(x, Vn) ≤ 2−βn−2.

Suppose that {un1 , .., unmn} is an Auerbach basis for Vn, and let {fn1 , .., fnmn}
be the corresponding elements of V ∗n that satisfy ‖fni ‖ = 1, ∀i and

fni (unj ) = δij .

We now define a projection Pn onto Vn as

Pn(x) =

mn∑
i=1

fni (x)uni

and define φn : B→ Rmn by setting

φn(x) = (fn1 (x), ..., fnmn(x)).

Obviously ‖φn‖ ≤
√
mn ≤ 2βnτ/2. Moreover, let z ∈ X − X be such that

‖z‖ ≥ 2−n and choose zn ∈ Vn such that

‖z − zn‖ ≤ 2−βn−2.
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Then

‖zn‖ ≥ 2−n − 2−βn−2 ≥ 2−n − 2−n−2 ≥ 2−n−1.

Now, write zn =
∑mn

i=1 z
i
nu

n
i and take j ≤ mn such that ‖(z1

n, ..., z
mn
n )‖∞ = |zjn|.

Then,

|φn(z)‖2 ≥ |fnj (z)| ≥ |fnj (zn)| − |fnj (z − zn)|

≥ |zjn| − ‖z − zn‖ ≥ m−1
n ‖zn‖ − 2−βn−2

≥ C2−βnτ2−n − 2−βn−2 = C2−n(1+βτ) − 1

4
2−βn.

Now, we choose β = βτ such that

1 + βττ = βτ ⇔ βτ =
1

1− τ
> 1,

which concludes the proof.

We now prove Proposition 4.16 .

Proof of Proposition 4.16. Take 1 > τ > τ(X) such that

α >
1 + τ

1− τ
= βτ + τβτ ,

and let φn,mn be as given in the previous lemma.

Now, let (en)∞n=1 be the standard basis for `2 and following the construction

in the proof of Proposition 2.8 we define H based on the sequence (mn)∞n=1. We now

set

Φ(x) =
∞∑
n=1

2(βτ−α)nφn(x)⊗ en ∈ H.

Then,

‖Φ‖ ≤
∞∑
n=1

2(βτ−α)n2τβτn <∞.

Now, take any x, y ∈ X with x 6= y. If ‖x− y‖ ≥ 1, we argue exactly as in the proof

of Proposition 2.8. If 0 < ‖x− y‖ < 1, let n such that 2−n ≤ ‖x− y‖ < 2−n+1.

Therefore

‖Φ(x− y)‖ ≥ 2(βτ−α)n‖φn(x− y)‖2
≥ 2(βτ−α)n2−βτn−1

≥ 2−αn−1 ≥ Cα‖x− y‖α,

which gives the desired result.

20



Just as in the previous situation, we can now obtain a linear embedding

from a compact subset of a Banach space with finite box-counting dimension into a

finite–dimensional space such that the inverse is θ-Hölder continuous for any

0 < θ <
1− τ(X)

(1 + τ(X))
(

1 + τ(X)
2

) .
However, in the next section, we give a more direct proof that not only improves

this exponent, but also provides a prevalent set of embeddings.

2.3 A measure based on sequences of linear subspaces

Before we prove our main embedding result, we will recall, following Robinson [28],

the construction of a compactly supported probability measure that is based on the

ideas in Hunt and Kaloshin [15] and will play a key role in our proof. For a more

detailed analysis, see also Appendix A.

Suppose that B is a Banach space and V = {Vn}∞n=1 a sequence of finite–

dimensional subspaces of B∗, the dual of B. Let us denote by dn the dimension of

Vn and by Bn the unit ball in Vn.

Now, we fix a real number α > 1 and define the space Eα(V) as the collection

of linear maps L : B→ Rk given by

E = Eα(V) =

{
L = (L1, L2, ..., Lk) : Li =

∞∑
n=1

n−αφi,n, φi,n ∈ Bn

}
.

Let us also define

E0 =

{ ∞∑
n=1

n−αφi,n, φi,n ∈ Bn

}
.

Clearly E = (E0)k.

To define a measure on E, we first take a basis for Vn so that we can identify

Bn with a symmetric convex set Un ⊂ Rdn . Then, we construct each Li randomly by

choosing each φi,n with respect to the normalised dn–dimensional Lebesgue measure

λn on Un. Finally, by taking k copies of this measure we obtain a measure on E. In

particular we first consider E0 as a product space

E0 =

∞∏
n=1

Bn,
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and define a measure µ0 on E0 as

µ0 = ⊗∞n=1λn.

Secondly, we consider E = Ek0 and define µ on E as

µ =
k∏
i=1

µ0.

For any map f ∈ L(B;Rk), Hunt and Kaloshin [15] proved the following

upper bound on

µ{L ∈ E : |(f + L)x| ≤ ε},

for x ∈ B and any ε > 0. For a more detailed proof, see Robinson [28] or the Appendix

in this thesis. (Appendix A)

Lemma 2.16. Suppose that x ∈ B, ε > 0, f ∈ L(B;Rk) and V = {Vn} as above.

Then

µ{L ∈ E : |(f + L)(x)| < ε} ≤
(
nαdn

ε

|g(x)|

)k
,

for any g ∈ Bn.

2.4 Prevalent set of embeddings in Rk

We are now ready to state and prove the main result of this section.

Theorem 2.17 (Theorem 1.1). Let X be a compact subset of a Banach space B

with thickness exponent τ(X) < 1 and box–counting dimension dB(X) <∞. Then

for any integer k > 2dB(X) and any given θ with

0 < θ < (1− τ(X))
k − 2dB(X)

k (1 + τ(X))
,

there exists a prevalent set of linear maps L : B → Rk that satisfy

‖x− y‖ ≤ CL|Lx− Ly|θ, ∀ x, y ∈ X. (2.7)

In particular, L is bijective from X onto L(X) with a Hölder continuous inverse.

The proof follows some of the techniques introduced in Hunt and Kaloshin’s

argument with some key differences. In particular, we first use the thickness exponent

to construct a sequence of finite–dimensional subspaces of B, that ‘approximate’ X.
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Then, we use an Auerbach basis to define a sequence of finite–dimensional subspaces

of the dual of B and define our probability measure based on this sequence.

Proof. Clearly (2.7) holds if and only if

‖z‖ ≤ CL|Lz|θ ∀ z ∈ X −X. (2.8)

We want to bound the measure of linear maps that fail to satisfy (2.8) for

some z in a restricted subset of X −X. Take 1 > τ > τ(X) and d > dB(X) such

that

0 < θ < (1− τ)
k − 2d

k (1 + τ)
. (2.9)

Take some β > 1, which will be chosen later on and for every n ∈ N, by

definition of the thickness exponent, we can find a linear subspace Vn ⊂ B such that

dim(Vn) ≤ Cβ2θnτβ (2.10)

and

d(X,Vn) ≤ 2−θnβ

3
. (2.11)

Using an Auerbach basis for Vn, along with the Hahn–Banach theorem, we

construct a subspace Gn of B∗, as follows. Suppose that

{en1 , ..., endn}

is a basis for Vn and

{rn1 , ..., rndn}

is the corresponding basis for V ∗n , which satisfies:

‖rni ‖ = 1, ∀ i

and

rni (enj ) = δij , ∀ i 6= j.

Using the Hahn–Banach theorem, we extend the elements rn1 , ..., r
n
dn
∈ V ∗n to

maps fn1 , ..., f
n
dn

in B∗ and set

Gn = 〈fn1 , .., fndn〉,

a subspace of B∗, that is at most dn–dimensional.

We now construct a measure based on the sequence G = {Gn}∞n=1, according
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to the definitions given in the beginning of this section.

In particular, if Sn is the unit ball in Gn, we define

E = E2 (G) = {L = (L1, .., Lk) : Li =

∞∑
n=1

n−2φi,n, φi,n ∈ Sn}.

We now fix a map f ∈ L(B;Rk). Based on the above construction, we consider

Zn = {z ∈ X −X : ‖z‖ ≥ 2−θn}

and

Qn = {L ∈ E : |(f + L)z| ≤ 2−n, for some z ∈ Zn.}.

Our goal is to bound the measure of Qn by something summable over n and

use the Borel–Cantelli Lemma.

Using the fact that dB(X − X) ≤ 2dB(X), we cover Zn by C122nd closed

balls of radius 2−n, for some positive constant C. We observe that if z is in the

intersection of Zn with one of these balls, which we denote by B(z0, 2
−n), then

|(f+L)z0| ≤ |(f+L)(z)|+|(f+L)(z−z0)| ≤ 2−n+(‖f‖+‖L‖)2−n = (1+‖f‖+‖L‖)2−n.

But, ‖L‖ is bounded uniformly for all L ∈ E. Indeed

‖L‖2 ≤
k∑
i=1

|Li|2

and

|Li|2 =

∣∣∣∣∣
∞∑
n=1

n−2φi,n

∣∣∣∣∣
2

≤
∞∑
n=1

n−4 = C2 <∞.

Hence,

|(f + L)z0| ≤M2−n,

for some positive constant M , which holds for all L ∈ E and depends on f , which is

fixed.

Now, we wish to bound the measure of L ∈ E such that (f +L) fails to satisfy

(2.8), for some z in Y = Zn ∩B(z0, 2
−n). From the above discussion, we have that

µ{L ∈ E : |(f + L)z| ≤ 2−n for some z ∈ Y } ≤ µ{L ∈ E : |(f + L)z0| ≤M2−n}.
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Now, consider zn ∈ Vn such that ‖zn − z0‖ ≤ 2−θβn/3. Therefore,

‖zn‖ ≥ 2−θn − 2−θβn/3 ≥ 2−θn.

We now write zn as

zn =

dn∑
i=1

zine
n
i ,

and consider j ≤ dn such that

zjn = ‖(z1
n, ..., z

dn
n )‖∞.

We now define

gn = fnj ,

which satisfies

‖gn‖ = 1 and |gn(zn)| ≥ d−1
n ‖zn‖.

Hence,

|gn(z0)| ≥ d−1
n ‖zn‖ − ‖zn − z0‖ ≥ Cβ2−nθβτ2−θn − 2−θβn/3

= Cβ2−nθ(βτ+1) − 2−nθβ/3.

We now choose β such that βτ + 1 = β ⇐⇒ β = 1
1−τ , which gives that

|gn(z0)| ≥ C32−nθβ ,

with C3 > 0 independent of n. Using Lemma 2.16, we obtain:

µ{L ∈ E : |f(z0) + L(z0)| ≤M2−n} ≤
(
n2 dn

M2−n

|gn(z0)|

)k
≤ Ck3

(
n22nβθτ2−n2θβn

)k
.

Thus,

µ(Qn) ≤ C1C
k
3 22nd

(
n22nβθτ2−n2θβn

)k
,

so the sum
∑∞

n=1 µ(Qn) is finite iff

θ < (1− τ)
k − 2dB(X)

k (1 + τ)
.
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Thus, by the Borel–Cantelli lemma µ(lim supQn) = 0, i.e. µ–almost every L

lies in only a finite number of the Qn. For such an L, there exists a nL, such that

for every n ≥ nL, L does not belong to Qn. In particular

if |z| ≥ 2−nθ then |(f + L)z| ≥ 2−n, for all n ≥ nL.

To complete the argument, we use the fact that X −X is compact and we

claim the existence of an R > 0, such that X −X ⊆ B(0, R).

Now, let z ∈ X −X and consider the following cases

if |z| ≥ 2−nLθ,

then

|(f + L)z| ≥ 2−nL ≥ 2−nL

R
1
θ

|z|
1
θ .

If

|z| ≤ 2−nLθ,

then there exists n ≥ nL such that

2−(n+1)θ ≤ |z| < 2−nθ.

Thus,

|(f + L)z| ≥ 2−(n+1) >
1

2
|z|

1
θ .

We now put these two cases together to conclude that

|(f + L)z| ≥ CL|z|
1
θ , (2.12)

where

CL = max

{
2−nL

R
1
θ

, 2−1

}
. (2.13)

All in all, for every map f ∈ L(B;Rk), f + L satisfies (2.12), for µ-almost every

L ∈ E. Hence, there exists a prevalent set of maps L ∈ E that satisfy

‖z‖ ≤ CL|Lz|θ ∀ z ∈ X −X.

We note that when τ(X) = 0, given any 0 < θ < 1, X admits finite–

dimensional embeddings with a θ-Hölder continuous inverse, exactly as in the previous

two theorems.

We also note that the above result provides a bigger range for θ comparing
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to (2.5), whenever

1− τ(X)

1 + τ(X)
>

1

1 + 2dB(X)
⇔ τ(X) <

dB(X)

1 + dB(X)
.

The restriction on the thickness here is surprising and it is an interesting open

problem whether there is a result that extends Theorem 1.1 for thickness τ ≥ 1.
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Chapter 3

Thickness and Dual Thickness

In this chapter, we look closely at the thickness and dual thickness and how they

relate to the box–counting dimension. We prove some general estimates and we

also look at a particular class of sequences in `p which was used by Pinto de Moura

and Robinson [6] to prove that Theorem 2.7 is asymptotically sharp as k →∞. We

note that we already know that the thickness is bounded above by the box–counting

dimension.

3.1 General estimates for τ and τ∗

We first give an immediate upper bound on the dual thickness based on yet another

exponent.

Definition 3.1. Suppose that B is a Banach space and X ⊂ B. Then, given any

α > 0 and ε > 0 we denote by mα(X, ε) the smallest dimension of all those finite–

dimensional subspaces V of B∗ such that whenever x, y ∈ X with ‖x− y‖ ≥ ε there

exists some Φ ∈ V with ‖Φ‖ = 1 that satisfies

|Φ(x− y)| ≥ αε.

Then we define

σα(X) = lim sup
ε→0

logmα(X, ε)

− log ε
.

Following Robinson [28], we have the following estimate.

Lemma 3.2. Suppose that B is a Banach space and X ⊂ B. Then

τ∗(X) ≤ σα(X), ∀ α > 0.
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Proof. Let θ > 0. Let V be a finite–dimensional subspace of B∗ such that for all

x, y ∈ X with ‖x− y‖ ≥ ε, there exists φ ∈ V with ‖φ‖ = 1 and |φ(x− y)| ≥ αε. If

ε is small enough such that εθ < α, then

|φ(x− y)| ≥ ε1+θ,

which gives

τ∗θ (X) ≤ σα(X), ∀ θ > 0.

We now prove that in a Hilbert space the dual thickness is always bounded

above by the thickness. The result was also proved by Robinson [28], using another

exponent, called the Lipschitz deviation of X. We give an independent proof, which

only depends on τ, τ∗.

Lemma 3.3. Suppose H is a Hilbert space and X ⊂ H, such that τ(X) <∞. Then

τ∗(X) ≤ τ(X).

Proof. Take ε > 0 and let U be a finite–dimensional subspace of H such that

dim(U) = d = d(X, ε) and dist(X,U) < ε.

Now we consider P , the orthonormal projection onto U . For all x ∈ X we

have

‖x− Px‖ = dist(x, U) < ε.

Let

V = {L ◦ P : L ∈ U∗} ⊂ H∗.

It is easy to see that V is finite–dimensional and that dim(V ) = d.

Suppose that x, y ∈ X satisfy ‖x− y‖ ≥ ε. Since P (x− y) ≡ z ∈ U , we define

L : U → R such that

Lz(u) =
〈u, z〉
‖z‖

,

for all u ∈ U .

Then, Φ = Lz ◦ P ∈ V and ‖Φ‖ = 1. Moreover,

|Φ(x− y)| = |Lz(z)| = ‖z‖ = ‖P (x)− P (y)‖ = ‖x− y‖ ≥ ε.

Therefore,

τ∗(X) ≤ σ1(X) ≤ τ(X).
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In the context of a Banach space, there is no known relationship between the

thickness and the dual thickness. In the paper of Robinson [27], it is claimed that the

dual thickness is bounded above by the box–counting dimension, but there is an error

in the proof given there. However, we can prove that the dual thickness is bounded

above by the box dimension of the difference set X−X, which in particular is always

bounded above by twice the box dimension of X. Hence, when the box–counting

dimension is finite, the dual thickness is finite as well.

Lemma 3.4. Suppose B is a Banach space and X ⊂ B compact. Then

τ∗(X) ≤ dB(X −X) ≤ 2dB(X).

Proof. Let Z = X−X. Given ε > 0 and any d > dB(Z), we find N = N(Z, ε) . ε−d

balls of radius ε with centres zj that cover Z. By the Hahn–Banach theorem, for

any j ≤ N , we obtain linear functionals φj that satisfy

‖φj‖ = 1 and |φj(zj)| = ‖zj‖.

We now define V = span(φ1, ..., φN ).

Suppose now that z ∈ Z such that ‖z‖ ≥ 50ε and let j ≤ N such that

‖z − zj‖ < ε. Thus,

‖zj‖ ≥ 49ε,

which gives

|φj(z)| = |φj(z − zj) + φj(zj)| ≥ ‖zj‖ − ε ≥ 48ε.

This shows that

σ48/100(X) ≤ dB(Z),

and the conclusion is immediate by Lemma 3.2.

The above upper bound indicates that Theorem 4.5 is also true for subsets

of Banach spaces X such that dB(X − X) < ∞. Indeed, Robinson’s argument

[27] requires the sets of differences to have finite box–counting dimension, which in

particular holds when the set itself has. Since τ∗(X) ≤ dB(X −X), we have the

following result
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Theorem 3.5. Suppose B is a Banach space and let X ⊂ B compact such that

dB(X −X) <∞. Then for any integer k > dB(X −X) and any given θ with

0 < θ <
k − dB(X −X)

k (1 + τ∗(X))
,

there exist a prevalent set of linear maps L : B→ Rk such that

‖x− y‖ ≤ CL|Lx− Ly|θ, ∀ x, y ∈ X, for some CL > 0.

In particular, every such L is bijective from X onto L(X) with a Hölder continuous

inverse.

3.2 ‘Orthogonal’ sequences in `p

In the remainder of this chapter, we concentrate on a particular subset of `p, for

p ∈ [1,∞], and prove that some of the inequalities we know so far are sharp. These

sets were first discussed by Ben Artzi et al [3] and have been used by Pinto De

Moura & Robinson [6] as examples to show that the Hölder exponent of the inverses

in Hunt and Kaloshin’s Theorem 2.7 is asymptotically sharp.

Take p ≥ 1 and let (αn)∞n=1 be a decreasing sequence such that αn → 0. Then,

for all n let en = (0, 0, ..., 1, 0, ...), where the 1 is in the nth position and define

A = {a1, ..., an, ...} = {α1e1, ..., αnen, ...}.

It is obvious that ai ∈ `p, for all 1 ≤ p < ∞, hence A ⊂ `p. We also have ai ∈ c0,

where c0 is the space of real sequences converging to zero equipped with the `∞

norm. Following Ben Artzi et al [3], we know that

dB(A; `p) = lim sup
n→∞

log n

− log ‖an‖
= inf

{
ν > 0 :

∞∑
n=1

|an|ν <∞

}
(3.1)

for all p. For an easier proof, see also Chapter 3 in the book of Robinson [28]. For

the rest of this section, we implicitly understand the case p =∞ as meaning c0.

We first state without proof some additional properties of the box–counting

dimension that we will need. The proofs can be found in Chapter 3 in the book of

Robinson [28].

31



Lemma 3.6.

1. Let B a Banach space and A ⊂ B compact. Let M(A, ε) be the maximum

number of points in A that are ε–separated, meaning that ‖x− y‖ ≥ ε, for any

x, y in that collection. Then

dB(A) = lim sup
ε→0

logM(A, ε)

− log ε
.

2. Suppose (B1, ‖ · ‖1) and (B2, ‖ · ‖2) are Banach spaces, B1 ⊆ B2 and

‖u‖2 ≤ C‖u‖1, ∀ u ∈ B1.

Then, for all compact subsets X ⊂ B1,

dB(X;B2) ≤ dB(X;B1).

We now prove that the inequality dB(X − X) ≤ 2dB(X) is sharp for this

particular class of examples.

Lemma 3.7. For all p ≥ 1,

dB(A−A; `p) = 2dB(A). (3.2)

Proof. We know that dB(A−A; `p) ≤ 2dB(A). Hence, we need to show

dB(A−A; `p) ≥ 2dB(A).

We also have that `p ⊂ c0 and

‖u‖∞ ≤ ‖u‖p,

for any p <∞. By part 2 of Lemma 3.6, we deduce that

dB(A−A; `p) ≥ dB(A−A; co).

Thus, it suffices to prove that

dB(A−A; c0) ≥ 2dB(A).

32



Let ε > 0. Take N ∈ N, such that ‖aN‖∞ < ε ≤ ‖aN−1‖∞. Then

A ⊆
N−1⋃
i=0

B(xi, ε),

where xi = ai, ∀ 1 ≤ i ≤ N − 1 and x0 = 0. It is also obvious that N = N(A, ε). Set

zij = xi − xj , for all i 6= j. Then, we claim that

A−A ⊂
N−1⋃
i,j=0

B(zij , ε)
⋃
B(0, ε).

Take z = am − an ∈ A − A, such that ‖z‖∞ ≥ ε. Otherwise, z ∈ B(0, ε).

Suppose, without loss of generality that ‖am‖∞ ≤ ‖an‖∞.Then,

‖z‖∞ = ‖an‖∞ ≥ ε,

which implies that n ≤ N − 1 and zn0 = xn = an. We now have two cases: if

‖am‖∞ < ε, then

‖an − am − xn‖∞ = ‖am‖∞ < ε,

while if ‖am‖∞ ≥ ε, then

‖an − am − znm‖∞ = 0 < ε.

Now, let M = M(A − A, ε) denote the maximum number of ε–separated

points in A−A, i.e.

‖yk − yl‖∞ ≥ ε,

for all yk, yl in that collection. Then, we claim that

{zij}N−1
i,j=0 ⊆ {yk}

M
k=1.

Indeed suppose that for some i, j, i 6= j, zij = xi−xj = ai−aj 6= yk, ∀ k. Let ank , amk
such that yk = ank − amk and assume wlog that i 6= nk. Then,

|zij − yk‖∞ = ‖ai − aj − ank + amk‖

= ‖αiei − αjej − αnkek + αmkek‖∞
≥ ‖αiei‖ ≥ ε,

contradicting the fact that M(A − A, ε) is the maximum number of ε–separated
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points. All in all, we deduce that

M(A−A, ε) ≥ (N(A, ε)− 1)2 −N(A, ε) + 1 = N2 − 3N + 2.

Using part 1 of Lemma 3.6 it follows that

dB(A−A;∞) = lim sup
ε→0

logM(A−A, ε)
− log ε

≥ lim sup
ε→0

log
(
N2(A, ε)− 3N(A, ε) + 1

)
− log ε

≥ lim sup
ε→0

2 logN(A, ε)

− log ε
= 2dB(A),

which finishes the proof.

We now show that the thickness exponent and box–counting dimension of

this ‘orthogonal’ sequence coincide whenever p ≤ 2.

We first make the straightforward remark that whenever (B1, ‖ · ‖1) ⊆ (B2, ‖ ·
‖2), X ⊂ B1 and

‖u‖2 ≤ C‖u‖1 ∀ u ∈ B1,

then

τ(X;B2) ≤ τ(X;B1).

In particular, since τ(X) ≤ dB(X), we only need to show that the thickness exponent

of this orthogonal sequence equals the box–counting dimension when p = 2, This

has already been proven in Robinson [28]; here we give an alternative and slightly

easier proof. We first need the following lemma.

Lemma 3.8. Take {αn}∞n=1 as usual and let Ak = {a1, ..., ak} = {α1e1, ...,

αkek} ⊂ `2. Then,

d`2(Ak, ε) ≥ k
(

1− ε

‖ak‖

)2

.

Proof. We first remind ourselves that d = d(Ak, ε) denotes the smallest dimension

among those finite-dimensional subspaces V of `2 that satisfy

dist(x, V ) ≤ ε, ∀ x ∈ Ak.

For all i ≤ k take vi ∈ V such that ‖vi − ai‖2 ≤ ε. Then,

dim(span(v1, ..., vk)) = d.
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Let P denote the orthogonal projection onto span(v1, ..., vk). Thus, we have

‖ai − Pai‖2 = dist(ai, span(v1, ..., vk)) ≤ ‖vi − ai‖2 ≤ ε.

Moreover,

‖ai − Pai‖ = |αi|‖ei − P (ei)‖ ≥ |αk|(1− ‖Pei‖),

which gives

‖Pei‖ ≥ 1− ε

‖ak‖
.

We know that for every orthogonal projection in a Hilbert space,

rankP =

∞∑
i=1

‖Pei‖2,

which proves that

d ≥ k
(

1− ε

‖ak‖

)2

.

We can now show that the thickness exponent and the box–counting dimension

are equal in this case. For the proof, we use the argument in Robinson [28] and the

above lemma.

Lemma 3.9.

τ(A; `2) = dB(A) = lim sup
n→∞

log n

− log ‖an‖
.

Proof. Take n large enough such that ‖an‖ < 1 and take n′ ≥ n such that

|αn| = |αn+1| = ... = |αn′ | > |αn′+1|.

Let

εn =
‖an‖+ ‖an′+1‖

4
,

which implies

‖an‖
4

< εn <
|an‖

2
.

By the previous lemma, we have

d(A, ε) ≥ d(An′ , ε) ≥
n′

4
≥ n

4
.
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Therefore, we obtain

τ(A) ≥ lim sup
n→∞

d(A, εn)

− log εn
≥ lim sup

n→∞

log n− log 4

log 4− log ‖an‖

= lim sup
n→∞

(
log n

− log ‖an‖
1− log 4

logn

1− log 4
log ‖an‖

)

= lim sup
n→∞

log n

− log ‖an‖
= dB(A),

by (3.1).

It still remains open whether the thickness exponent and box–counting di-

mension of this particular set coincide, whenever p > 2. However, we give a lower

bound for the thickness exponent of A that depends on the box–counting dimension

and the conjugate exponent of p.

Lemma 3.10. Let p ∈ [1,∞] and A ⊂ `p as before. Then

τ(A) ≥ q dB(A)

q + dB(A)
, (3.3)

where q is the conjugate exponent of p.

We note that for p = 1 the right hand side of (3.3) becomes the box-counting

dimension, giving a direct proof of what we proved in the previous lemma.

Proof of Lemma 3.10. Suppose a1, ..., ak ∈ A. Consider εk = 1
2‖ak‖k

−1/q. Let U be a

subspace of `p such that dim(U) = d({a1, ..., ak}, εk) ≤ d(A, εk) and let v1, ..., vk ∈ U
be such that

‖vi − ai‖ ≤ εk.

We claim that v1, , , , vk are linearly independent and in particular that k ≤
dim(U). Indeed, consider λi ∈ R such that

k∑
i=1

λivi = 0.
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Then,

εk

k∑
i=1

|λi| ≥
k∑
i=1

|λi| ‖vi − ai‖p =

k0∑
i=1

‖λivi − λiai‖p

≥ ‖
k0∑
i=1

λivi − λiai‖p = ‖
k0∑
i=1

λiai‖p

=

(
k0∑
i=1

|λiαi|p
)1/p

≥ |αk|

(
k0∑
i=1

|λi|p
)1/p

≥ k−1/q
k∑
i=1

|λi| .

Therefore,
k∑
i=1

|λi| (−
1

2
k−1/q) ≥ 0,

giving that λi = 0 for every i.

Thus,

d(A, εk) ≥ k.

Now, we make the following computation

τ(A) ≥ lim sup
k→∞

log d(A, εk)

− log εk
≥ lim sup

k→∞

log k

− log(‖ak‖k−1/q)

= lim sup
k→∞

log k

1/q log k − log ‖ak‖

=
1

lim inf
(

1
q −

log ‖ak‖
log k

) =
1

1
q + 1

dB(A)

=
q dB(A)

q + dB(A)
,

which gives the desired lower bound.

As mentioned in the beginning of the section, we do not know if the dual

thickness is always bounded above by the box–counting dimension. However, Pinto

de Moura and Robinson [6] relied on this fact to prove that the dual thickness and

box–counting dimension of these orthogonal sequences coincide for every p ∈ [1,∞].

In the next lemma, we show that this upper bound is true in this particular case.

Lemma 3.11. Suppose that A = {a1, ..., ak, . . . } ⊂ `p is as usual. Then,

τ∗(A) ≤ dB(A), for any p ∈ [1,∞].
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Proof. Take any ε > 0. Then, there exists some N = N(A, ε), such that |αN | < ε

and |αN−1| ≥ ε. Then, ∀i ≤ N let x ∈ `p and set φi(x) ∈ R to be the i-th coordinate

of x. Since we are just projecting on one direction we immediately obtain that

‖φi‖ = 1 and

φi(aj) = δijαi.

Let

V = span(φ1, ..., φN ) ⊂ `p∗ .

Now, take any an, am in A such that ‖am‖p ≤ ‖an‖p and ‖an − am‖p ≥ 50ε.

Let in, im ≤ N such that

‖an − ain‖p < ε and ‖am − aim‖p < ε.

Since ‖am‖p ≤ ‖an‖p and ‖an − am‖p ≥ 50ε, we obtain ‖an‖p ≥ 25ε which gives

‖ain‖p ≥ 24ε.

Set

Φ =
φin − φim
‖φin − φim‖

,

and we have Φ ∈ V, ‖Φ‖ = 1 and

|Φ(an − am)| ≥ |(φin − φim)(an − ain + ain − aim + aim − am)|
2

≥ 20ε

2
= 10ε.

Arguing as in Lemma (3.7), we obtain τ∗(A) ≤ σ1/5(A) ≤ dB(A).

All in all, there is no known relation between the thickness and the dual

thickness in the context of a Banach space. Moreover, it is still open whether or not

the dual thickness is always bounded above by the box dimension.
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Chapter 4

Embedding sets with finite

Assouad dimension

4.1 Background

We say that a metric space (X, d) is doubling, with doubling constant K, if for every

x ∈ X and r > 0, there exist y1, ..., yK in X such that

B(x, r) ⊂
K⋃
i=1

B(yi, r/2).

We say that a metric space (X, d) embeds into a normed space (Y, ‖ · ‖) in a bi-

Lipschitz way if there exists f : X → Y and some constant L > 0, such that for all

x, y ∈ X
1

L
d(x, y) ≤ ‖f(x)− f(y)‖ ≤ Ld(x, y).

We also say that a map Φ: X → Y is δ-almost bi-Lipschitz if there exists an

L > 0 such that for all x, y ∈ X

1

L

d(x, y)

slog(d(x, y))δ
≤ ‖Φ(x)− Φ(y)‖ ≤ Ld(x, y).

We know that when a metric space embeds into an Euclidean space in a

bi-Lipschitz way then it must be doubling, but there are examples due to Laakso [20],

Lang & Plaut [21] and Semmes [29] that show that this condition is not sufficient.

We discuss one of these examples in Chapter 5.

In 1983, Assouad [2] proved that any doubling metric space (X, d) can be

embedded into an Euclidean space in a bi–Hölder way, i.e. for any 0 < α < 1, there
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exists some k ∈ N and a φ : X → Rk such that

1

L
d(x, y)α ≤ |φ(x)− φ(y)| ≤ Ld(x, y)α,

for all x, y ∈ X.

We also want to recall the notion of a homogeneous metric space (see also

Definition 1.3). A subset V of a metric space (X, d) is said to be (M, s)−homogeneous
if for every x ∈ V and r > ρ > 0

NV (r, ρ) = N(V ∩B(x, r), ρ) ≤M
(
R

r

)s
,

where N(V ∩B(x, r), ρ) denotes the minimum number of balls of radius ρ required

to cover V ∩B(x, r).

The Assouad dimension of K ⊂ (X, d), dA(K) is the infimum of all s > 0

such that K is (M, s) homogeneous for some M > 0.

It can be easily shown that a metric space is homogeneous if and only if it is

doubling (see Chapter 9 in the book of Robinson [28]). In 2010, Olson and Robinson

[25] introduced a weaker notion of an (α, β)-almost (M, s)- homogeneous metric

space and they proved almost bi–Lipschitz embeddings into Euclidean spaces.

Definition 4.1 (Definition 1.4). A metric space (X, d) is (α, β)-almost (M, s)-

homogeneous if for any 0 < ρ < r

NX(r, ρ) ≤M
(
r

ρ

)s
slog(r)αslog(ρ)β,

where

slog(x) = log

(
x+

1

x

)
> 0,

is the symmetric logarithm of x, for x > 0.

We give some useful properties of the symmetric logarithm, which we will be

using frequently. For the proof, see the paper of Olson & Robinson [25].

Proposition 4.2. Let C > 0 and γ ≥ 0. There exist positive constants AC , BC , aγ , bγ , c

such that

1. | log x| ≤ slog(x) ≤ log 2 + | log x|.

2. AC slog(x) ≤ slog(Cx) ≤ BC slog(Cx).

3. aγ slog(x) ≤ slog(xslog(x)γ) ≤ bγ slog(x).

4. If 2−(k+1) ≤ x ≤ 2−k, then slog(x) ≥ c slog(2−k).
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Using the above definition and Assouad’s construction ([2]), Olson & Robinson

[25] proved that any almost homogeneous metric space admits an almost bi–Lipschitz

map in a Hilbert space. In particular they proved the following.

Theorem 4.3. Suppose (X, d) is a compact (α, β)- almost homogeneous metric

space and let X be an infinite dimensional separable Hilbert space. Then, for any

δ > α+ β + 1
2 , there exists a δ-almost bi-Lipschitz map f : (X, d)→ H.

The authors also showed that almost bi–Lipschitz images of almost homo-

geneous sets remain almost homogeneous. They also proved an embedding theorem

when X is a subset of a Hilbert space H such that X −X is almost homogeneous.

In particular, they proved the following

Theorem 4.4. Suppose that H is a Hilbert space and X ⊂ H such that X −X is

(α, β)-almost homogeneous, for some α, β ≥ 0. Then, for every

δ >
3 + α+ β

2
,

there exists a N = Nδ ∈ N and a prevalent set of linear maps L : H → RN that are

injective and δ-almost bi-Lipschitz on X.

Based on the above work, Robinson [27] proved an almost bi–Lipschitz

embedding result for subsets of Banach spaces when X −X is homogeneous.

Theorem 4.5. Suppose X is a compact subset of a real Banach space B such that

the set X − X = {x − y : x, y ∈ X} is homogeneous. Then for any γ > 1, there

exists a natural number N and a prevalent set of linear maps L : B→ RN , that are

injective on X and γ-almost bi–Lipschitz, i.e. for some constant CL

1

CL

‖x− y‖
| log ‖x− y‖|γ

≤ |L(x)− L(y)| ≤ CL ‖x− y‖,

for all x, y ∈ X such that ‖x− y‖ ≤ rL < 1.

Remark 4.1. If X is (almost) homogeneous, it is not necessary that X −X will be

(almost) homogeneous (see examples in Chapter 9 in the book of Robinson). The

almost homogeneous condition on the set of differences is also not invariant under

almost bi–Lipschitz maps. However, in Olson & Robinson’s result [25], they only use

the fact that X −X is almost homogeneous to cover balls at the origin.

We show in the next section that if X is a subset of a Banach space and

X − X satisfies the (α, β)- almost homogeneous property at the origin, then X

admits an almost bi–Lipschitz embedding in some Euclidean space. We also show

that this condition remains invariant under linear almost bi–Lipschitz maps.
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4.2 Embeddings when X −X is almost homogeneous at

the origin

Definition 4.6. Suppose M, s > 0 and let (X, | · |) be a normed space. Then, given

any α, β ≥ 0, we say that X −X is (α, β)-almost (M, s)- homogeneous at the origin

if given any 0 < ρ < r, there exist zi ∈ X −X such that

Br(0) ∩X −X ⊆
N⋃
i=1

Bρ(zi)

and

N ≤
(
r

ρ

)s
slog(r)αslog(ρ)β.

It is trivial that when X−X is (α, β)-almost homogeneous, the above property

is satisfied. We first show that if the above property is satisfied, then the box–counting

dimension of X −X is finite.

Lemma 4.7. Take any M ≥ 1 and s ≥ 0. Suppose that X is a compact subset of a

Banach space B such that X −X is (α, β)-almost homogeneous at the origin. Then,

dB(X −X) <∞.

Proof. Take any ε > 0. Let R > 1 be such that

X −X ⊂ BR(0).

Suppose that 1 < ε < R. Since X −X is almost homogeneous at 0, there

exist {zi}Ni=1 ⊂ X −X such that

X −X ⊂ BR(0) ∩X −X ⊆ ∪Ni=1Bε(zi).

Using properties of the slog function, we have

N ≤
(
R

ε

)s
slog(R)αslog(ε)β ≤ Rs(slogR)α(log 2 + log ε)βε−s ≤ CR ε−s.

Suppose now that ε < 1 < R. Since X −X is almost homogeneous at 0, there exist

{zi}Ni=1 ⊂ X −X such that

X −X ⊂ BR(0) ∩X −X ⊆ ∪Ni=1Bε(zi),
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and

N ≤
(
R

ε

)s
slog(R)αslog(ε)β ≤ Rs(slogR)α(log ε+ log

1

ε
)βε−s

≤ Rs(slogR)α
(

log
1

ε

)β
ε−s ≤ Rs(slogR)αε−β−s,

which immediately implies that

dB(X −X) ≤ β + s <∞.

We now show that the condition on covers of balls around zero remains

invariant for the sets of differences under linear almost bi–Lipschitz maps.

Lemma 4.8. Let M ≥ 1, s ≥ 0 and suppose α, β ≥ 0. Suppose X is a compact subset

of a Banach space B and suppose that X −X is (α, β))-almost (M, s)- homogeneous

at the origin. Let δ > 1 and let B′ be another Banach space. Suppose that Φ: B→ B

is a bounded linear map such that

1

C

‖x− y‖
slog(‖x− y‖)δ

≤ ‖Φ(x)− Φ(y)‖ ≤ C‖x− y‖, (4.1)

for some positive constant C and for every x, y ∈ X. Then, Φ(X)− Φ(X) ⊂ B′ is

(α+ δs, β)-almost homogeneous at 0.

Proof. Let 0 < ρ < r. We want to cover the ball centred at 0 in Φ(X)− Φ(X). Let

x, y ∈ X be such that ‖Φ(x)− Φ(y)‖ ≤ r.
Suppose first that ‖x− y‖ ≤ r. Then, since X −X is almost homogeneous at

0, there exist zi ∈ X −X such that

Br(0) ∩X −X ⊂ ∪Ni=1Bρ/C(zi),

and N ≤
(
r
ρ

)s
slog(r)αslog(ρ)β. Let j ≤ N , such that ‖x − y − zj‖ ≤ ρ/C. Then,

since Φ satisfies 4.1, we have

‖Φ(x− y − zj)‖ ≤ C‖x− y − zj‖ ≤ ρ.

In particular we have that

Br(0) ∩ (Φ(X)− Φ(X)) ⊂ ∪Ni=1Bρ(Φ(zi))

and

N ≤
(
r

ρ

)s
slog(r)αslog(ρ)β.
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Suppose now that ‖x−y‖ > r. Then, let R > 4 be such that X−X ⊂ BR/4(0).

Assume without loss of generality that r < R/4. Then, by Lemma 4.2, we have

‖x− y‖
R

≤ C 1

R
‖Φ(x)− Φ(y)‖ slog

(
‖x− y‖
R

)δ
≤ Cr

R
log

(
R

‖x− y‖

)δ
≤ Cr

R
log

(
R

r

)δ
≤ Cr

R
slog

( r
R

)δ
≤ CR rslog(r)δ.

Thus,

‖x− y‖ ≤ CR rslog(r)δ,

We now again use the fact that X − X is almost homogeneous at 0 to deduce a

cover of the ball Br slog(r)δ(0) in X −X by at most N balls of radius ρ/C. We now

estimate N using again properties of the symmetric logarithm (Lemma 4.2).

N ≤
(
r slog(r)δ

ρ

)s
slog(rslog(r)δ)αslog(ρ)β ≤ bδ

(
r

ρ

)s
slog(r)δsslog(r)αslog(ρ)β

≤
(
r

ρ

)s
slog(r)α+δsslog(ρ)β.

Arguing as in the previous case, {Φ(zi)}Ni=1 ⊂ Φ(X)− Φ(X) and we deduce that

Br(0) ∩ Φ(X)− Φ(X) ⊂
N⋃
i=1

Bρ(Φ(zi)),

and

N ≤
(
r

ρ

)s
slog(r)α+δsslog(ρ)β.

In particular, Φ(X)− Φ(X) is (α+ δs, β)- almost homogeneous.

4.2.1 Embedding from a Banach into a Hilbert space

We now want to show that when X is a subset of a Banach space such that X −X
is almost homogeneous at the origin, then it admits a linear almost bi–Lischitz

embedding into a Hilbert space. In particular, by Lemma 4.8 the set of differences

of the image of X into H will also satisfy the almost homogeneous property at 0.

Following the techniques we introduced in the previous chapter, we use a Hahn-

Banach argument to construct the embedding at a single scale, as in the following

Lemma.
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Lemma 4.9. Let M ≥ 1, R ≥ 1 and s > 0 and suppose that X is a compact subset

of a Banach space B such that X −X is (α, β)-almost (M, s)-homogeneous at 0, for

some α, β ≥ 0. Then, there exists a collection (φn)∞n=1 of elements of L (B;Rmn)

that satisfy ‖φn‖ ≤ CR
√
mn ≤ CR n

α+β
2 and for every

x, y ∈ X with 2−(n+1)R ≤ ‖x− y‖ ≤ R 2−n,

we have that

|φn(x− y)| ≥ 1

4
‖x− y‖.

Proof. Suppose Z = X −X. Since Z is (α, β))-homogeneous we can cover

Z ∩BR2−n(0) = {z ∈ X −X : ‖z‖ ≤ R 2−n}

by no more than

mn ≤M
(

R 2−n

R 2−(n+3)

)s
slog(R 2−n)αslog(R2−(n+2))β ≤ CRnα+β log 2 = CR n

α+β

balls of radius R2−(n+2), for some positive constant C that depends only on M, s,R.

Let the centres of these balls be znj , for j ≤ CR nα+β.

Using the Hahn–Banach Theorem, we can find fnj ∈ B∗ such that ‖fnj ‖ = 1

and fnj (znj ) = ‖znj ‖. Now, define φn : B→ Rm by

φn(x) =
(
fn1 (x), ..., fnmn(x)

)
.

It is clear that ‖φn‖ ≤
√
mn ≤ CR nα+β/2 and if z = x− y ∈ X −X is such that

2−(n+1)R ≤ ‖z‖ ≤ R 2−n,

then for some znj we have that ‖z − znj ‖ ≤ R2−(n+2) and so

|φn| ≥ |fnj (z)| = |fnj (z − znj + znj )|

≥ |fnj (znj )| − |fnj (z − znj )| ≥ ‖znj ‖ − ‖z − znj ‖

≥ ‖z‖ − 2‖z − znj ‖ ≥ R2−(n+1) −R2−(n+2) ≥ 1

4
‖z‖,

which concludes the proof of the embedding at a single scale.

The above Lemma allows for the following embedding.
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Theorem 4.10. Suppose that X is a compact subset of a Banach space B such that

X − X is (α, β)-almost homogeneous at the origin. Then, given any δ > 1+α+β
2 ,

there exists a Hilbert space H and a bounded linear map Φ: B→ H, that satisfies

1

CΦ

‖x− y‖
slog(‖x− y‖)δ

≤ ‖Φ(x)− Φ(y)‖ ≤ ‖x− y‖,

for some positive constant CΦ and for every x, y ∈ X.

Proof. Take R > 6 such that

X −X ⊂ BR/2(0) ⊂ BR(0).

Take δ such that

δ >
1 + α+ β

2
.

Let mn, φn be from Lemma (4.9). Suppose {ek}mk=1 is a basis for Rm, which we

cyclically extend to all k ∈ N, as in the previous chapter. Then, we define Φ: B→ H

by

Φ(x) =
∞∑
k=1

k−δφk(x)⊗ êk.

Then, Φ is obviously linear and for every x ∈ B, we have

‖Φ(x)‖2 ≤
∞∑
n=1

|n−δφn(x)|2 ≤ ‖x‖2
∞∑
n=1

n−2δnα+β = ‖x‖2
∞∑
n=1

n−2δ+α+β <∞.

Hence

‖Φ‖ ≤
∞∑
n=1

n−2δ+α+β <∞,

since α+ β − 2δ < −1. Then, for any x, y ∈ X, let k ≥ 1 be such that

2−(k+1)R ≤ ‖x− y‖ ≤ R2−k.

By definition of Φ, we have

‖Φ(x)− Φ(y)‖ = ‖Φ(x− y)‖ ≥ k−δ|φk(x− y)| ≥ k−δ 1

4
‖x− y‖.

Using properties of the symmetric logarithm (Lemma 4.2), we obtain

slog(‖x− y‖)δ ≥ AR slog

(
‖x− y‖
R

)δ
≥ AR b slog(2−k)δ

≥ AR b kδ,
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for constants AR, b independent of x, y. Thus,

‖Φ(x)− Φ(y)‖ ≥ 1

CΦ

‖x− y‖
slog(‖x− y‖)δ

.

Hence, by Theorem 4.5 and Remark 4.1, we immediately obtain an almost

bi–Lipschitz embedding into an Euclidean space. However, in the section we establish

the existence of a prevalent set of almost bi–Lipschitz maps into Euclidean spaces

directly.

We also note that the above theorem can be used to provide embeddings of

compact metric spaces, using the isometric embedding Φ∗ : (X, d)→ L∞(X), given

by x 7→ d(x, ·), due to Kuratowski, which was also mentioned in the previous chapter

(see Lemma 2.11). In particular, we can define ‘X −X ′ in this context to mean

X −X ≡ Φ∗(X)− Φ∗(X) = {f ∈ L∞(X) : f = d(x, ·)− d(y, ·), for x, y in X}.

4.2.2 Embedding into an Euclidean space

We now extend the result of the previous subsection and prove the existence of a

prevalent set of almost bi–Lipschitz embeddings into Euclidean spaces for a compact

subset of a Banach space such that X −X is almost homogeneous at the origin. We

first want to recall Lemma 2.16, which will be used to bound the measure of maps

that do not satisfy the almost bi–Lipschitz condition.

Lemma 4.11 (Lemma 2.16). Suppose that B is a Banach space and let E = Eγ({Vn})
be a probe space defined as in section 2.3, based on a sequence {Vn}∞n=1 ⊂ B∗. Let

x ∈ B, ε > 0, f ∈ L(B;Rk). Then

µ{L ∈ E : |(f + L)(x)| < ε} ≤
(
nγdn

ε

|g(x)|

)k
,

for any g ∈ Bn, the unit ball in Vn.

We also recall the result due to Robinson [27] which provides a prevalent

set of injective and bi–Hölder embeddings from X into an Euclidean space when

dB(X −X) <∞ (see Theorem 3.5).

We are now in position to state and prove the main result of this section. For

the proof, we use techniques introduced by Olson & Robinson [25] and also used by

Robinson [27], tailored to the weaker condition we now have at the origin.
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Theorem 4.12. Fix any M ≥ 1, s > 0 and α, β ≥ 0. Suppose X is a compact

subset of a Banach space B such that X −X is (α, β)-almost (M, s)-homogeneous

at the origin. Then, given any δ > 1 + α+β
2 , there exists a N = Nδ ∈ N and a

prevalent of linear maps L : B→ RN that are injective on X and bi–Lipschitz with

δ–logarithmic corrections. In particular, they satisfy

1

CL

‖x− y‖
slog(‖x− y‖)δ

≤ |L(x)− L(y)| ≤ CL‖x− y‖, (4.2)

for some CL > 0 and for all x, y ∈ X.

Proof. The proof consists of three parts. We first establish the existence of a prevalent

set T1 of linear maps L that satisfy (4.2), for all x, y ∈ X such that ‖x− y‖ ≤ rL,

for some rL > 0. We then use Theorem 3.5 to construct a prevalent set T2 of linear

maps that are injective on X and have a Hölder continuous inverse. Finally, we show

that all linear maps in T1 ∩ T2, which in particular is a prevalent set, satisfy (4.2),

for all x, y ∈ X.

Let Z = X −X. Let R > 6 be such that

Z ⊂ BR/2(0) ⊂ BR(0).

Let γ > 1 be such that

δ >
α+ β

2
+ γ >

α+ β

2
+ 1.

By Lemma 4.9, for any given n ∈ N, there exist a collection of functionals {fni }
mn
i=1 ⊂

B∗ with mn ≤ C1n
α+β/2, ‖fni ‖ = 1 and such that for any z ∈ Z that satisfies

R 2−n+1 ≤ ‖z‖ ≤ R 2−n, there exists fnj such that

|fnj (z)| ≥ 2(−n+3).

Let

Vn = span{fn1 , ..., fnmn}.

Let also N ∈ N. Based on the sequence V = {Vn}∞n=1 and on γ > 1, we follow the

construction in the previous chapter and we define a probe space Eγ = Eγ(V) ⊂
L
(
B,RN

)
with a measure µ compactly supported on Eγ(V).

Following the argument of the previous chapter, we fix a map f ∈ L(B;RN )

and suppose that K ′ is a Lipschitz constant that holds for all L ∈ E. Then, we define

Zn = {z ∈ Z : 2(−n−1)R ≤ ‖z‖ ≤ 2−nR}
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and

Qn = {L ∈ E : |(f + L)(z)| ≤ n−δ2−n, for some z ∈ Zn}.

Since X is (α, β)- almost homogeneous at 0, given any n ∈ N, there exist

{zni }
kn
i=1 ⊂ Z such that

Zn ⊂ BR 2−n(0) ∩ Z ⊂
kn⋃
i=1

Bn−δ2−n(zi),

and

kn ≤M
(
R 2−n

n−δ2−n

)s
slog(R 2−n)αslog(n−δ2−n)β ≤ C2

(
nδ
)s
nα+β,

for some positive constant C2 depending on α, β,M . Now let L ∈ Qn. Then there

exists z ∈ Zn such that |(f + L)(z)| ≤ n−δ2−n. Since z ∈ Zn, there exists zni such

that

‖z − zni ‖ ≤ n−δ2−n,

which implies that

|(f + L)(zni )| ≤ |(f + L)(zni ) + (f + L)(z)− (f + L)(z)|

≤ n−δ2−n + (‖f‖+ ‖L‖)n−δ2−n

≤ (1 + ‖f‖+K ′)n−δ2−n = Kn−δ2−n,

where K depends on f .

We now compute the measure of Qn, based on Lemma 2.16. In particular,

we have

µ(Qn) ≤
kn∑
i=1

µ{L ∈ E : |(f + L)(zni )| ≤ (1 +K)n−δ2−n}

≤ kn
(

dim(Vn)nγKn−δ2−n|φ(zni |−1
)N

,

for any φ ∈ Bn, the unit ball in Vn Since zni ∈ Zn, there exists fni ∈ Vn such that

‖fni ‖ = 1 and |fni (zni )| ≥ 2−(n+3). Therefore,

µ(Qn) ≤ Cnδs+α+β+α+β
2
N+γN−δN ,

and C > 0 independent of n.

Since δ > α+β
2 + γ, we can choose N big enough such that(

α+β
2 + γ

)
N + 1

N − s
< δ,
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which implies that

δs+
α+ β

2
N + γN − δN < −1.

Therefore,
∑∞

n=1Qn < ∞ and by the Borel-Cantelli Lemma, for µ-almost

every L ∈ E, there exists an nL ≥ 1 such that for all n ≥ nL

2−(n+1)R ≤ |z| ≤ 2−nR ⇒ |(f + L)z| ≥ n−δ2−n.

Let z ∈ Z. If ‖z‖ ≤ R2−nL , then there exists n ≥ nL ≥ 1 such that

2−(n+1)R ≤ ‖z‖ ≤ 2−nR.

Therefore, arguing as in the end of Theorem 4.10, we obtain

|(f + L)(z)| ≥ n−δ2−n ≥ n−δ2−n ≥ 1

AR

‖z‖
slog(‖x− y‖)δ

.

Thus, we proved that there exists a prevalent set of bounded linear maps L : B→ RN ,

denoted by T1 such that all L ∈ T1

1

C ′
‖x− y‖

slog(‖x− y‖)δ
≤ |L(x)− L(y)| ≤ C ′‖x− y‖,

for all x, y ∈ X such that ‖x − y‖ ≤ R2−nL , for some nL ≥ 1. By Lemma 4.7, we

know that dB(X −X) <∞. Hence, by Theorem 3.5, for a fixed θ < 1, we establish

the existence of a N1 ∈ N and another prevalent set of linear maps L : B → RN1 ,

denoted by T2 such that any L ∈ T2 is θ-bi-Hölder on X. Assume without loss of

generality that N1 ≤ N and let T = T1 ∩ T2, which is still prevalent. Now suppose

that L ∈ T and f ∈ L(B,RN ).

Let z ∈ Z. Let m ≥ 1 such that

2−(m+1)R ≤ ‖z‖ ≤ 2−mR.

If m ≤ nL, we use that f + L ∈ T ⊂ T1 and we fall in the previous case that we just

proved. Suppose now that m > nL ≥ 1. Then, f + L ∈ T ⊂ T2. In particular,

|(f + L)(z)| ≥ ‖z‖1/θ ≥ R1/θ2−nL/θ.
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Hence,

slog(‖x− y‖)δ ≥ CRslog

(
‖x− y‖
R

)δ
≥ CR | log 2−m|δ = CRm

δ log 2 > AR n
δ
L log 2.

Thus,

|(f + L)(z)| ≥ R1/θ2−nL/θAR n
δ
L log 2

‖x− y‖
slog(‖x− y‖)δ

,

and the proof is now complete.

Arguing as in the previous case, we can extend the above theorem for any

compact metric space, using the Kuratowski embedding. In particular, the following

theorem holds.

Theorem 4.13. Suppose that (X, d) is a metric space and let Φ: X → L∞(X) be

the Kuratowski embedding. Suppose that Φ(X)−Φ(X) is (α, β)-almost homogeneous

at 0 Then, for any given δ > (α+ β)/2 + 1, there exists a N = Nδ ∈ N and a map

L : (X, d)→ RN , which is bi–Lipschitz with δ-logarithmic corrections and injective.

4.3 Embedding when X has ‘better than zero’ thickness

We know from the result of Olson & Robinson [25], that was mentioned before

(Theorem 4.3) that any almost homogeneous metric space (X, d) admits an almost

bi–Lipschitz embedding into a Hilbert space. The authors prove that besides from

being almost homogeneous, the image of X can be very well approximated by linear

subspaces of the Hilbert space H. We say it has ‘better than zero’ thickness. It is

natural to ask whether we can embed subsets of Hilbert spaces that satisfy that

property into Euclidean spaces.

Inspired by the above question, we show that a subset of a Banach space

that can be well approximated by linear subspaces can be embedded into an infinite–

dimensional Hilbert space in an almost bi–Lipschitz way. The techniques that we

use are more similar to the ones we used in the previous chapter but we include the

result here because it gives some indication towards proving an embedding result

into an Euclidean space for almost homogeneous sets. We note that the condition

here refers to X rather than X −X.

The thickness exponent was defined in the previous chapter and measures

how well can an arbitrary subset of a normed space can be approximated by linear

subspaces. Before we proceed, we recall the definition.
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Definition 4.14. Let X be a subset of a Banach space B. The thickness exponent

of X in B, τ(X,B) is defined as:

τ(X,B) = lim sup
ε→0

log d(X, ε)

− log ε
,

where d(X, ε) denotes the smallest dimension of those linear subspaces V that satisfy

distB(x, V ) ≤ ε for all x ∈ X.

If no such subspace exists, we set d(X, ε) =∞.

We now state the following result, which was proved by Olson & Robinson

[25].

Lemma 4.15. Suppose X is a compact homogeneous metric space. Take δ > 1
2 and

let f = fδ : X → H be the δ– almost bi–Lipschitz map from Theorem 4.3. Then,

there exist Vn ⊆ H and constants C1, C2 ≥ 1 such that

distH(x, Vn) ≤ C1 2−nn−δ

and

dim(Vn) ≤ C2 n
δ.

In particular, τ(f(X)) = 0.

We observe that we can rephrase the above condition and say that X has

‘better than zero’ thickness, if there exists a constant C ≥ 1 such that for every ε > 0

d(X, ε) ≤ C slog

(
1

ε

)s
,

for some s ≥ 0. We already know by the results in the previous chapter that compact

subsets of Banach spaces with thickness exponent less than 1 admit bi–Hölder

embeddings into Euclidean spaces. Motivated by the above result, we show that

when a subset of a Banach space can be approximated by linear subspaces as in

Lemma 4.15, then we can prove almost bi–Lipschitz embeddings into a Hilbert space.
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Proposition 4.16. Suppose that X is a subset of a Banach space B that has ‘better

than zero’ thickness, for some s ≥ 0. Then, for every

δ >
3s

2
+

1

2

there exists a separable Hilbert space H and a bounded linear map Φ: B → H, such

that

1

CΦ

‖x− y‖
slog(‖x− y‖)δ

≤ |Φ(x)− Φ(y)| ≤ CΦ ‖x− y‖, for all x, y in X.

We first need the following Lemma.

Lemma 4.17. Suppose that X has better than zero thickness for some s ≥ 0.

Then, for every n ∈ N, there exists C > 1, φn ∈ L (B;Rmn), where mn ≤ Cns,

‖φn‖ ≤
√
mn and

|φn(x− y)| ≥ C 2−n−1n−s, whenever ‖x− y‖ ≥ 2−n.

Proof. Take any n ∈ N. Then, by our hypothesis, there exists Vn such that

dist(x, Vn) ≤ 2−n−1n−s

and

dim(Vn) = mn ≤ C1 slog(2−nn−s)s ≤ C1(log 2 + s)sns = Csn
s

Suppose that {un1 , .., unmn} is an Auerbach basis for Vn, and let {fn1 , .., fnmn} be the

corresponding elements of V ∗n that satisfy ‖fni ‖ = 1, ∀i and

fni (unj ) = δij .

We now define a projection Pn onto Vn as

Pn(x) =

mn∑
i=1

fni (x)uni

and define φn : B→ Rmn by setting

φn(x) = (fn1 (x), ..., fnmn(x)).

Obviously ‖φn‖ ≤
√
mn ≤ Cn

s
2 . Moreover, let z ∈ X − X be such that
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‖z‖ ≥ 2−n and choose zn ∈ Vn such that

‖z − zn‖ ≤ 2−n−1n−s.

Then

‖zn‖ ≥ 2−n − 2−n−1n−s ≥ 2−n − 2−n−1 = 2−n−1.

Now, we write

zn =

mn∑
i=1

zinu
n
i ∈ Vn

and suppose j ≤ mn is such that ‖(z1
n, ..., z

mn
n )‖∞ = |zjn|. Then,

‖φn(z)‖2 ≥ |fnj (z)| ≥ |fnj (zn)| − |fnj (z − zn)|

≥ |zjn| − ‖z − zn‖ ≥ m−1
n ‖zn‖ − 2−nn−s

≥ Cn−s2−n − 2−n−1n−s ≥ C 2−n−1n−s,

which finishes the proof of the embedding at a single scale.

We now prove Proposition 4.16 .

Proof of Proposition 4.16. Take p > 1 such that

δ >
3s

2
+ p >

3s

2
+

1

2

and let φn,mn be as given in the previous lemma. We now set

Φ(x) =

∞∑
n=1

n−( s2+p)φn(x)⊗ en ∈ H.

Then,

‖Φ‖ ≤
∞∑
n=1

n−2( s2+p)n2 s
2 =

∞∑
n=1

n−2p <∞.

Now, take any x, y ∈ X and suppose x 6= y (the case x = y is trivial). If

‖x− y‖ ≥ 1
2 , then it suffices to take R > 4 such that

X −X ⊂ B(0, R/2).

Therefore, using also that ‖φ1(x− y)‖ ≥ C1
4 , we have that

‖Φ(x− y)‖ ≥ ‖φ1(x− y)‖ ≥ C1

4
≥ C1

4

‖x− y‖
R

.
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Now, we also have

slog(‖x− y‖)δ ≥ A 1

4δ
slog(4‖x− y‖)δ ≥ A

4δ
δ log 2.

Consequently,

‖Φ(x− y)‖ ≥ C ‖x− y‖
slog(‖x− y‖)δ

.

If ‖x− y‖ < 1/2, let n ≥ 1 such that 2−n ≤ ‖x− y‖ < 2−n+1. Therefore

‖Φ(x− y)‖ ≥ n−( s2+p)‖φn(x− y)‖2

≥ C1 n
−( s2+p)2−nn−s

≥ C12−nn−
3s
2
−p ≥ C12−nn−δ. ≥ C ‖x− y‖

slog(‖x− y‖)δ
,

which concludes the proof.

It is an open question whether we can prove embeddings into Euclidean spaces

for subsets of Hilbert spaces with ‘better than zero’ thickness. If such an embedding

is true, then using Lemma 4.15 and Theorem 4.3, we can immediately embed in

an almost bi–Lipschitz way any homogeneous metric space into an Euclidean space.

Note that so far we only have this result when X −X is almost homogeneous at 0

and as we show in the next chapter this is not sufficient to provide an embedding for

any (almost) homogeneous space.
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Chapter 5

The Laakso graphs

5.1 Construction of Laakso graphs

In this chapter, we consider a variation of the construction due to Laakso [20],

which was used by Lang & Plaut [21] to construct a doubling metric space X that

cannot be embedded in a bi–Lipschitz way into any Hilbert space. We consider the

Kuratowski embedding of X into L∞(X) and we show that Φ(X) − Φ(X) is not

almost homogeneous at 0 as a subset of L∞(X). In particular, we do not inherit any

control for covers of balls around 0 from the doubling property of Φ(X).

We first recall the Hausdorff distance for compact subsets of metric spaces.

Definition 5.1. Suppose (X, d) is a metric space and let A,B be non-empty compact

subsets of X. Then the Hausdorff distance is defined as

dH(A,B) = max{dist(A,B), dist(B,A)}.

The Gromov–Hausdorff distance between compact metric spaces is defined as

Definition 5.2. Suppose X,Y are non-empty compact metric spaces. Then

dGH(X,Y ) = inf dH(f(X), g(Y )),

where the infimum is taken over all metric spaces M and all possible isometric

embeddings f : X →M and g : Y →M .

It is easy to check that dGH(X,Y ) = 0 if and only if X is isometric to Y (see

the lecture notes from Heinonen [13] for a proof), proving that the set of all isometry

classes of compact metric spaces equipped with dGH forms a metric space, which is

complete (see Heinonen [13] again).
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We now recall the construction due to Lang and Plaut [21] of a metric space

that is homogeneous but does not embed in a bi–Lipschitz way into any Hilbert space.

In order to study sets of differenes, we need to make the construction somewhat

more concrete than that of Lang and Plaut [21]. We define the limiting metric space

explicitly and then prove that it coincides with the one defined by Lang and Plaut.

Let X0 be the unit interval [0, 1]. To construct Xi+1 from Xi, we take six

copies of Xi and rescale them by the factor of 1
4 as in the following figure (5.1).

Figure 5.1: The first stages of the construction. At each step i the dotted subset is
isomorphic to Xi−1.

We note that each Xi has diameter 1, has two endpoints, and comprises of 6i

edges of length 4−i each. Every Xi, for i > 0 also includes 6i−1 ‘squares’, which we

call ‘edge cycles’ for the rest of the chapter. We define a metric %i(x, y) on each of

the Xi to be the geodesic distance, i.e. the shortest path that we need to travel on

the graph to get from x to y. For any j > i, we construct an isometric embedding

of Xi into Xj , by identifying vertices in Xi with vertices in Xj and endpoints with

endpoints. The image of Xi into Xj is represented with the dotted lines in the above

figure. It is also easy to see that dGH(Xi, Xj) <
(

1
4

)i
, and so {(Xi, %i)}∞i=1 forms a

Cauchy sequence in the Gromov–Hausdorff metric and it follows that it converges to

a limiting metric space X, which is used by Lang and Plaut in their argument. We

now construct this space X explicitly using the following procedure
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Let (Xi, %i) be as above for any j > i let hi→j denote an isometric embedding

of Xi into Xj . Then, we take X∗ = ∪∞i=1Xi and define a pseudometric on X∗, by

setting

%∗(x, y) =

%i(x, y) if x, y ∈ Xi.

%j(hi→j(x), y) if x ∈ Xi, y ∈ Xj and i < j.

We now define a new metric space X, by identifying points in Xi with their

respective images in all Xj for j > i. For all x, y ∈ X∗, we define the following

equivalence relation

x ∼ y ⇔ %∗(x, y) = 0,

and we set X = ∪∞i=1[Xi]. Then, for any [x], [y] ∈ X, we define

%([x], [y]) = %∗(x, y).

This definition of X does not depend on the embedding we choose at each

step, since if we consider another we end up with an isometric metric space.

Using the above construction, it is easy to check that

dGH(X,Xi)→ 0.

Indeed, let π : Xi → X be such that for any x ∈ Xi,

π(x) = [x].

It is immediate that π is an isometry from Xi onto [Xi]. Therefore,

dGH(X,Xi) = dGH(X, [Xi]) ≤ dX(X, [Xi]).

Let x ∈ X \ [Xi]. Then, there exists k > i such that x ∈ [Xk]. Then,

dX(x, [Xi]) = dXk(x, hi→k(Xi)) ≤
(

1

4

)i+1
i→∞−−−→ 0,

which proves that X coincides with the metric space defined by Lang and Plaut. For

the rest of the argument when we mention a point x ∈ Xi we refer to the class [x]

with respect to the above equivalence relation.
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5.2 Doubling property

We now recall Lang & Plaut’s argument to show that X is doubling. The proof is

included for completeness and the above construction makes it more transparent.

Theorem 5.3. The metric space X defined above is doubling with doubling constant

6.

Proof. Take x ∈ X and r with 0 < r ≤ 1
2 . Now, we choose i such that

r

2
≤
(

1

4

)i
< 2r,

and also let k be the minimum natural number such that x ∈ [Xk]. We now have

the following cases.

If k ≤ i, then x ∈ [Xi]. Let BXi(x, r) be the closed ball in [Xi] and we set

Z = ∂BXi(x, r) ∪ (BXi(x, r) ∩ {p, q}) ,

where p, q are the endpoints of X0. Since r ≤ 2
(

1
4

)i
, Z = {t1, ..., t6} contains no

more than six points and as we can see from Figure 5.2 the closed balls in X of

radius r centred at Z cover BX(x, 2r) ∩ [Xi] = BXi(x, 2r).

Now, we need to check that as we move forward into [Xi+1], ... the new points

that are added each time are still covered by the same balls. Let y ∈ [Xj ] \ [Xi], for

j > i and %(x, y) ≤ 2r. It is clear from the construction that y must belong into

some edge cycle U in [Xj ]. It is also clear that we can find an element v of [Xi] into

the same edge cycle such that %(u, v) = %(u, y) for all u ∈ [Xj ] \ U and %(x, v) ≤ 2r.

(see also Figure 5.2).

Since v ∈ BX(x, 2r), there is some ts ∈ Z such that %(v, ts) ≤ r. We now

have two cases. If ts belongs to the same edge cycle as v, y, then

%(y, ts) ≤ 2

(
1

4

)j
< r

and if ts belongs outside the edge cycle, then

%(y, ts) = %(v, ts) < r,

as in the following Figure.

If k > i and x ∈ [Xk] \ [Xi], then x belongs into some edge cycle U in [Xk].

We claim that we can find y ∈ [Xi] such that

BX(x, 2r) ⊆ BX(y, 2r).
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Figure 5.2: Covering the points that are added in Xj .

Indeed, arguing as before, let y ∈ U ∩ [Xi] be such that %(u, y) = %(u, x), for all u

not in U . Now, let v ∈ BX(x, 2r).

If v is not in U , then %(v, y) = %(v, x) ≤ 2r, from the definition of y. If v is

in U , then

%(v, y) ≤ 2

(
1

4

)k
< 2r.

Using what we already know for balls centred at [Xi], the proof is complete.

5.3 Differences of Laakso graphs

In order to define the set of differences, we recall the Kuratowski isometric embedding

Φ: X → L∞(X) (5.1)

x 7→ %(·, x).

and we define

X −X = Φ(X)− Φ(X) = {%(·, x)− %(·, y) : x, y ∈ X}.

We now prove the main result of this chapter that gives a counterexample of

a doubling set X such that X −X is not (α, β)- almost homogeneous at 0 for any

α, β ≥ 0.
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Theorem 5.4. If X is the metric space defined above and Φ: X → L∞(X) is

the Kuratowski embedding defined in (5.1) then, Φ(X)− Φ(X) is not (α, β)-almost

(M, s)-homogeneous for any choice of α, β,M, S ≥ 0.

Proof. Suppose that Φ(X)− Φ(X) is (α, β)-almost (M, s)-homogeneous, for some

α, β,M, S ≥ 0.

Let r =
(

1
4

)i
, for some i ∈ N and take the ball BX−X (0, 2r). Then, there

exist {gj}Nj=1 ⊂ Φ(X)− Φ(X) such that

B2r(0) ∩X −X = B2r(0) ∩ Φ(X)− Φ(X) ⊂ ∪Nj=1BX−X(gj , r),

and

N ≤M2sslog(2r)αslog(r)β ≤ CM2siα+β,

for some absolute positive constant C. Now, let f ∈ BX−X (0, 2r). Then, there exist

x, y ∈ X such that

f(z) = %(x, z)− %(y, z), ∀z ∈ X.

We can easily check that ‖f‖∞ = %(x, y) < 2r. Similarly, let tj , sj ∈ X such that

gj(z) = %(tj , z)− %(sj , z), ∀z ∈ X.

Any time we choose x, y ∈ X such that %(x, y) < 2r, we obtain an element of

BX−X(0, 2r). Let [Xk] ⊂ X such that

tj , sj ∈ [Xk],

for all j ≤ N . We now have two cases

If k ≤ i, we show that for any edge cycle in Xi, there exist copies of some

tj or sj that belong to this edge cycle. Suppose that there exist a cycle in Xi that

does not contain any images of tj , sj . Then, we choose x, y ∈ Xi as in the Figure

5.3, where we zoom in at that specific cycle. Then, x, y ∈ X satisfy

%(tj , x) > r, ∀j ≤ N

%(sj , x) > r, ∀j ≤ N

%(sj , y) > 0, ∀j ≤ N

r < %(x, y) < 2r.
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Figure 5.3: The edge cycle in Xi, which does not contain any tj , sj .

Since f ∈ BX−X(0, 2r), there exist j ≤ N such that

‖f − gj‖∞ < r ⇔ ‖%(x, z)− %(y, z)− %(tj , z) + %(sj , z)‖∞ < r,

for some j ≤ N . Choosing z as in the above figure, depending on the position of

tj , sj we have that

‖%(x, z)− %(y, z)− %(tj , z) + %(sj , z)‖∞ = %(tj , x) + %(sj , y) > r

or

‖%(x, z)− %(y, z)− %(tj , z) + %(sj , z)‖∞ = %(x, y) + %(sj , tj) > r,

a contradiction. We conclude that any edge cycle in Xi contains one of the ti, si and

since there are 6i−1 edge cycles contained in Xi, we deduce that

N ≥ 6i−1,

a contradiction by choosing i large enough.

If k > i, we consider the endpoints vij , uij that enclose an edge cycle in Xi.

We rescale the cycle by the appropriate factor to create an edge cycle in Xk, with

the same endpoints in Xk (with respect to the equivalence relation we have). Since

distances are preserved, we only need to repeat the above argument for all these

cycles in Xk (see also the following figure).
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Figure 5.4: The case k > i.

Since Φ is an isometry, the set Φ(X) is doubling but Φ(X) − Φ(X) is not

(α, β)-homogeneous, for any α, β ≥ 0. Hence, the doubling property does not

necessarily imply that we will have a control on covers of balls around 0 in X −X.
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Chapter 6

Attractors of Iterated Function

Systems in Euclidean spaces

6.1 Background

In this chapter, we study attractors of Iterated Function Systems in the context of

a Euclidean space Rs. Our main purpose is to establish non-trivial bounds on the

Assouad dimension of differences of self-similar fractals, under some condition on

the structure of the system.

We first want to set up our theory in the general context of any complete

metric space (X, d) and then concentrate on systems in Rs. Suppose (X, d) is a

complete metric space and let I = {1, ..., |I|} be a finite set of indices. We say that

F = {fi : X → X}i∈I is a system of contracting similarities, if for all i ∈ I, there

exists 0 < ci < 1. such that

d(fi(x), fi(y)) = ci d(x, y),

for all x, y ∈ X. Then, these maps are obviously contractions, so by the Banach

fixed-point theorem they all have fixed points in X. We then say that a non-empty

compact set K ⊂ X is an attractor of the system if

K =

|I|⋃
i=1

fi(K).

It has been proven by Hutchinson [17] that every system F in a complete metric

space X defines a unique attractor K.
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We now introduce some notation. Let cmin = min{ci : i ∈ I} and cmax =

max{ci : i ∈ I} Let I∗ = ∪k≥1I
k be the set of all finite sequences with entries in I.

For

α = (i1, ..., ik) ∈ I∗,

we write

fα = fi1i2···ik = fi1 ◦ fi2 ◦ ... ◦ fik ,

and

cα = ci1 ...cik .

Let also

ᾱ = (i1, ..., ik−1)

We also define for any b < 1,

Ib = {α ∈ I∗ : cα ≤ b < cᾱ}.

Finally, we define C(I) to be the set all infinite sequences of integers (ip)
∞
p=1, with

entries in I. We now state without proof some general properties of the attractor K,

that we need. For the proofs, see the paper of Hutchinson [17].

Proposition 6.1. Suppose that (F ,K) is a system of contracting similarities with

attractor K. Then we have the following

1. For any given b < 1, K =
⋃
α∈Ib fα(K).

2. K ⊇ fi1(K) ⊇ fi1i2(K) ⊇ · · · ⊇ fi1...ip(K) ⊇ · · · and
⋂∞
p=1 fi1...ip(K) is a

singleton, which is denoted by kv, for v = (i1, i2, · · · , ip, · · · ) ∈ C(I). K is the

union of all these singletons.

6.2 The weak separation condition

Suppose now that (F ,K) is a system of contracting similarities in Rs with an

attractor K. One can show (see Hutchinson [17]) that a function f : Rs → Rs is a

contracting similarity if and only if there exist 0 < cf < 1, qf ∈ R such that

f(x) = cfOf (x) + qf ,

where Of : Rs → Rs is an orthogonal transformation. The computation of dimensions

of K is of particular interest. One of the most common dimensions that we are

interested in is the similarity dimension which is defined as follows.
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Definition 6.2. Suppose (X, d) is a complete metric space and let F = {fi : X →
X}i∈I be a system of finitely many contracting similarities. The similarity dimension

dsim is defined as the number D such that∑
i∈I

cDi = 1.

In general, we know by Falconer [8] and McLaughlin [23] that the box–

counting and Hausdorff dimensions of an attractor K are equal and bounded above

by the similarity dimension. This property does not hold in general for the Assouad

dimension, as proven by Fraser [10]. However, if the system is defined on a Euclidean

space and the images of the attractor under the maps fi do not overlap too much,

then it can be shown that the box–counting dimension equals both the Hausdorff

dimension and the Assouad dimension. An example of such a property is the weak

separation condition, which was introduced by Zerner [30], in the context of an

Euclidean space.

Definition 6.3. Suppose that F = {fi : Rs → Rs} is an iterated function system,

with K as an attractor. We say that the IFS satisfies the weak separation property if

there exists ε > 0 such that for any given 0 < b < 1 and any α, β ∈ Ib, we have

fα = fβ or ‖f−1
α fβ − is‖L∞(F ) ≥ ε,

where is denotes the identity map is : Rs → Rs.

Fraser, Olson, Robinson and Henderson [11] used the notion of Ahlfors

regularity and proved that the Assouad dimension coincides with the Hausdorff and

box–counting dimensions, under the above condition. We give an independent proof

of this result here, without using Ahlfors regularity, solely based on the definitions

and the separation condition. Moreover, the proof provides us a useful mode for the

analysis of sets of differences in the following section.

Definition 6.4. We say that {xj}kj=1 ⊂ Rs are in general position if no xi lies in

the affine space generated by any subcollection of the {xj} consisting of less or equal

than s points. Otherwise, no m of them can lie in a (m− 2)– dimensional hyperplane

for m ≤ s.

We now state and prove the following general Lemma, which will give an

equivalent property with the weak separation condition.
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Lemma 6.5. For every {xj}sj=0 ⊂ Rs in general position there exists an C > 0 such

that for every affine map h : Rs → Rs of the form

h(x) = Ax+ b,

where b is a constant and A is an s× s matrix, we have

‖h− I‖L∞([0,1]s) ≤ C |h(xj∗)− xj∗ |,

for some j∗ ∈ {0, 1, . . . , s} that depends on h.

Proof. Let j∗ be such that

|h(xj∗)− xj∗ | = max{|h(xj)− xj | : j = 0, . . . , s}

Since xj are in general position then there exist λ1, . . . , λs such that

x0 =

s∑
j=1

λjxj and

s∑
j=1

λj 6= 1.

Let x ∈ [0, 1]s be such that

‖h− I‖L∞([0,1]s) = |h(x)− x|.

Choose {aj}sj=1 such that

x =

s∑
j=1

ajxj .

Since |x| ≤
√
s and the xj are in general position, there is C1 independent of x such

that
s∑
j=1

|aj | ≤ C1.

Consequently,

|h(x)− x| =

∣∣∣∣∣∣
s∑
j=1

aj(h(xj)− xj)

∣∣∣∣∣∣+

∣∣∣∣∣∣
 s∑
j=1

ai − 1

 b

∣∣∣∣∣∣
≤ C1 max{|h(xj)− xj | : j = 1, ..., s}+ (C1 + 1) |b|

≤ C1|h(xj∗)− xj∗ |+ (C1 + 1) |b|.
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It remains to estimate b in terms of h.

To do this, we make the following computation:

2b = h(x0) + h(−x0) = h(x0)−
s∑
j=1

λjh(xj) + b

1 +

s∑
j=1

λj

 .

Hence,

b

1−
s∑
j=1

λj

 = h(x0)−
s∑
j=1

λjh(xj) = h(x0)− x0 + x0 −
s∑
j=1

λjh(xj)

= h(x0)− x0 +

s∑
j=1

λjxj −
s∑
j=1

λjh(xj)

= h(x0)− x0 −
s∑
j=1

λj(h(xj)− xj)

Therefore

|b| =
|h(x0)− x0 −

∑s
j=1 λj(h(xj)− xj)|

|1−
∑s

j=1 λj |

≤ |h(x0)− x0|+ C2 max{|h(xj)− xj | : j = 1, . . . , s}
δ

≤ C2 + 1

δ
|h(xj∗)− xj∗ |

where C2 =
∑s

j=1 |λj | and δ =
∣∣∣1−∑s

j=1 λj

∣∣∣ .
All in all, we obtain

‖h− I‖L∞([0,1]s) ≤ C|h(xj∗)− xj∗ |,

where C = C1 + (C1 + 1)(C2 + 1)/δ.

We now have the following Corollary.

Corollary 6.6. Suppose that the IFS satisfies the weak separation condition. Then,

for every {xj}sj=0 ⊂ F in general position, there exists an M > 0 depending only on

the {ci}|I|i=1 and {xj}sj=0 such that

|(fα − fβ)(xj)| ≥ εMr,

for some j ∈ {0, . . . , s}, which depends on α, β ∈ Ir.

Proof. Take h = f−1
α fβ in Lemma 6.5. Then, for fα, fβ such that α, β ∈ Ir, let j ≤ s
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such that

|f−1
α fβ(xj)− xj | = |f−1

α fβ(xj)− f−1
α fα(xj)| ≥ ε,

which implies that

|(fα − fβ)(xj)| ≥ εMr,

for some M > 0.

Before we proceed to the proof, we want to introduce some terminology from

graph theory, which will be useful in what follows.

Definition 6.7. We say that an undirected graph G = (V,E) with n vertices is

complete if every two vertices are connected with a unique edge.

Definition 6.8. An r-colouring of the edges of a graph (V,E) is a function g : E →
{1, 2, · · · , r}.

We now state the following version of Ramsey’s theorem. For a more detailed

analysis of Ramsey theory, see Chapter 1 in the book of Katz & Reimann [19]

Theorem 6.9 (Ramsey’s Theorem). Suppose that we have r colours and let n1, · · · , nr
be natural numbers. Then, there exist a number R(r, n1, n2, · · · , nr) such that if G is

a complete graph with at least R(r, n1, n2, · · · , nr) vertices, there exists an 1 ≤ i ≤ r
and a complete subgraph T of G of order ni such that all the edges in T are coloured

with the colour i.

An immediate corollary is the following.

Corollary 6.10. Suppose that G is a complete graph and suppose N ∈ N. Suppose

also that we have an r-colouring of the edges of G. If every monochromatic complete

subgraph of G has order at most N , then

|G| < R(r,N + 1, ..., N + 1).

Proof. Suppose that |G| ≥ R(r,N + 1, ..., N + 1). Then, by Ramsey’s theorem,

there exists a complete monochromatic subgraph of order N + 1, which violates the

hypothesis.

We now show directly that when the IFS satisfies the weak separation property

then the Assouad dimension of the attractor equals its box–counting dimension. In

particular, since the lower bound is always true, we only need to prove the upper

bound. The proof provides a useful tool for the more involved analysis of sets of

differences which follows in the next section.
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Theorem 6.11. Suppose that F = {fi : Rs → Rs} is an iterated function system

that satisfies the weak separation property. Let K be the attractor of the system and

suppose that K is not contained in a hyperplane. Then,

dA(K) = dB(K).

Proof. Let d > dB(K). Suppose, wlog that

K ⊂ B1(0).

Then, we fix y ∈ K and we have

K ⊂ B2(y).

Now, suppose x ∈ K and r > 0. Let

Gr(x) = {fα : α ∈ Ir, Br(x) ∩ fα(K) 6= ∅.}

Then, we have

B(x, r) ∩ F = ∪α∈IrB(x, r) ∩ fα(K)

= ∪fα∈Gr(x)B(x, r) ∩ fα(F )

⊂ ∪fα∈Gr(x)B(x, r) ∩ fα(B2(y))

⊂ ∪fα∈Gr(x)B(x, r) ∩B2r(fα(y)),

for all K ∈ F . We claim that we can bound the cardinality of Gr(x) independently

of r, x. Since K is not contained in a hyperplane, there exist {xj}sj=0 ⊂ F in general

position. By Lemma 6.6, for every choice of fα, fβ ∈ Gr(x), there exists a j ≤ s such

that

|fα(xj)− fβ(xj)| ≥ εr. (6.1)

Let

Tr(x) = {0 ≤ j ≤ s : |fα(xj)− fβ(xj)| ≥ εr, for some fα, fβ ∈ Gr(x).}

Obviously, |Tr(x)| ≤ s + 1, for all r, x. We now consider Gr(x) as a graph with

vertices fα and edges E = {{fα, fβ} : fα, fβ ∈ Gr(x)}. For any j ∈ Tr(x), we say

that the edge {fα, fβ} is of color j if

|fα(xj)− fβ(xj)| ≥ εr.
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Suppose that P jr (x) is a complete monochromatic subgraph of Gr(x), of color

j ≤ s+ 1. Then, for every fα ∈ P jr (x), we have

B(x, r) ∩ fα(F ) 6= ∅ ⇒ B(x, r) ∩ fα(B2(xj)) 6= ∅

⇔ B(x, r) ∩B2r(fα(xj)) 6= ∅,

which implies that

|fα(xj)− x| ≤ 3r. (6.2)

Moreover, for any fα, fβ ∈ P jr (x), we have by definition

|fα(xj)− fβ(xj)| ≥ εr. (6.3)

In particular fα(xj) 6= fβ(xj), for all fα, fβ ∈ P jr (x). Consequently, in order to count

the number of vertices in P jr (x), it suffices to count the points fα(xj), for fα ∈ P jr (x).

By (6.3), the balls of radius εr/2, with centres fα(xj), for fα ∈ P jr (x) are disjoint

and by (6.2), all the centres lie in a ball of radius 3r, centred at x. Thus,⋃
fα∈P jr (x)

B εr
2

(fα(xj)) ⊆ B3r+εr(x).

Therefore, if µ is the s-dimensional Lebesque measure, we have

|P rj (x)| ≤ µ (B3r+εr(x))

µ
(
B εr

2

) = M ′,

which is independent of r, x. Since Gr(x) is a complete graph and we bounded the

order of any complete monochromatic subgraph independently of r, x, we have by

corollary 6.10 That

|Gr(x)| ≤M,

independent of r, x.

We now enumerate Gr(x) using the following parametrisation.

Gr(x) = {fαk}
M
k=1.

Now, let N = N(F, ρ/r) denote the number of balls of radius ρ/r required to cover
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K. Let the centres of those balls be yj , for j ≤ N. Then,

B(x, r) ∩K ⊆ ∪Mk=1fαk(K)

⊂ ∪Mk=1fαk
(
∪Nj=1Bρ/r(yj)

)
= ∪Mk=1 ∪Nj=1 Bρ(fαk(yj))

We know by definition of the box–counting dimension that there exists some constant

C > 0 such that

N ≤ C
(
r

ρ

)d
.

Thus,

NK(r, ρ) ≤MN ≤MC

(
r

ρ

)d
.

Therefore, d ≥ dA(K) and since d > dB(K) was arbitrary we have dA(K) ≤
dB(K).

6.3 The weak separation condition for differences

In this section, we study differences of attractors of Iterated Function Systems

in Euclidean spaces. We want to establish non trivial bounds for the Assouad

dimension of the set of differences in terms of the Assouad dimension of the attractor.

In particular, we show that under a suitable separation condition, the Assouad

dimension of K −K is bounded above by twice the Assouad dimension of K. Note

that non-trivial bounds do not hold in general as there are examples on the real line

due to Henderson [14] where dA(K) < ε, for any ε > 0 and dA(K −K) = 1.

Definition 6.12. Suppose that F = {fi : Rs → Rs} is an system of contracting

similarities. Suppose that K is the attractor of the system. The IFS satisfies the

weak separation condition for differences if there exist M, ε > 0 and a collection of

points {xj}Mj=0 ∈ K such that for every given 0 < b < 1 and every α, β, γ, δ ∈ Ib, we

have

fα(K)− fβ(K) = fγ(K)− fδ(K)

or

‖fα(xi)− fβ(xj)− fγ(xi) + fδ(xj)‖ ≥ εb,

for some i, j ≤M that depend on α, β, γ, δ ∈ Ib.

We now recall the definition of Hausdorff distance, for compact subsets of

metric spaces.
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Definition 6.13. Suppose (X, d) is a metric space and let A,B be non-empty

compact subsets of X. Then the Hausdorff distance is defined as

dH(A,B) = max{dist(A,B), dist(B,A)}.

We now prove that the weak separation for differences is also satisfied if for

any scale b < 1, the sets fα(K)− fβ(K), fγ(K)− fδ(K) for α, β, γ, δ ∈ Ib are either

equal or their Hausdorff distance is bounded away from zero.

Lemma 6.14. Suppose that F = {fi : Rs → Rs} is a system of contracting similar-

ities. Suppose that there exists a ζ > 0 such that for any given 0 < b < 1 we have

that either

fα(K)− fβ(K) = fγ(K)− fδ(K)

or

dH(fα(K)− fβ(K), fγ(K)− fδ(K)) ≥ ζb,

for all α, β, γ, δ ∈ Ib. Then, the weak separation condition for differences is satisfied.

Proof. Let α, β, γ, δ ∈ Ib. Suppose that

fα(K)− fβ(K) 6= fγ(K)− fδ(K).

Let {xj}Mj=0 be an ζ/4 net in K, i.e.

K ⊂
M⋃
j=0

Bζ/4(xj) and |xi − xj | ≥
ζ

4
.

Assume without loss of generality that

dH(fα(K)− fβ(K), fγ(K)− fδ(K)) = dist(fα(K)− fβ(K), fγ(K)− fδ(K)) ≥ ζb.

Using the compactness of K, let x, y ∈ K be such that

dist(fα(K)− fβ(K), fγ(K)− fδ(K)) = dist(fα(x)− fβ(y), fγ(K)− fδ(K)).

Let i, j ≤M be such that

|x− xi| ≤
ζ

4
and |y − xj | ≤

ζ

4
.

Again by the compactness of K suppose that s, t ∈ K are such that

dist(fα(x)− fβ(y), fγ(K)− fδ(K)) = |fα(x)− fβ(y)− fγ(s) + fδ(t)|.
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Then, we deduce that

|fα(xi)− fβ(xj)− fγ(xi) + fδ(xj)| ≥ dist(fα(xi)− fβ(xj), fγ(K)− fδ(K))

= |fα(xi)− fβ(xj)− fγ(s) + fδ(t)|,

which implies that

|fα(xi)− fβ(xj)− fγ(xi) + fδ(xj)| ≥ |fα(x)− fβ(y)− fγ(s) + fδ(t)|−

− |fα(xi)− fβ(xj)− fα(x) + fβ(y)|

≥ ζb− 2
ζb

4
=
ζb

2
.

By taking ε = ζ/2, the proof is complete.

We now state and prove the main result of this chapter.

Theorem 6.15. Suppose that F = {fi : Rs → Rs} is a system of contracting

similarities and let K be the attractor of the system. If the IFS satisfies the weak

separation for differences then

dA(K −K) ≤ 2dA(K). (6.4)

Proof. The argument is similar with the argument of the previous section. We use a

Ramsey theory argument to prove that given any 0 < r < 1 and z ∈ K −K, the

cardinality of set of maps (fα, fβ) such that

Br(z) ∩ fα(K)− fβ(K) 6= ∅

is independent of r, z.

Assume without loss of generality that

K −K ⊆ B1(0).

Let d = dA(K) and let also r, ρ such that 0 < ρ < r < 1. Now, suppose z ∈ K −K.

Note that for any x ∈ K, we have

K ⊆ B1(x).

Let

Gr(z) = {(fα, fβ) : α, β ∈ Ir, Br(z) ∩ fα(K)− fβ(K) 6= ∅ and

fα(K)− fβ(K) 6= fγ(K)− fδ(K), for all (fγ , fδ) 6= (fα, fβ)}.
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We now observe by properties of K (see Proposition 6.1) that

Br(z) ∩ (K −K) ⊆ Br(z) ∩

 ⋃
(α,β)∈Ir⊗Ir

fα(K)− fβ(K)


=

⋃
(fα,fβ)∈Gr(z)

Br(z) ∩ (fα(K)− fβ(K))

⊆
⋃

(fα,fβ)∈Gr(z)

Br(z) ∩ (Br(fα(x)) ∩K −Br(fβ(y)) ∩K)

=
⋃

(fα,fβ)∈Gr(z)

Br(z) ∩B2r(fα(x)− fβ(y)),

for all x, y ∈ K.

We now claim that we can bound the cardinality of Gr(z) independently of

r, z. Indeed, by the weak separation property, we can find {xj}Mj=0 ⊂ F such that

for each choice of (fα, fβ), (fγ , fδ) ∈ Gr(z), we can find i, j ≤M such that

|fα(xi)− fβ(xj)− fγ(xi) + fδ(xj)| ≥ εr. (6.5)

Based on the above, we interpretGr(z) as a graph we say that an edge {(fα, fβ), (fγ , fδ)}
is of color (i, j), if

|fα(xi)− fβ(xj)− fγ(xi) + fδ(xj)| ≥ εr > 0. (6.6)

We claim that there exists N independent of r, z such that

|Gr(z)| ≤ N.

Let Tij be any complete monochromatic subgraph of Gr(z) of color (i, j). Therefore,

for all (fα, fβ), (fγ , fδ) ∈ Tij , (6.6) is satisfied for the same xi, xj . In particular for

each (fα, fβ), (fγ , fδ) ∈ Tij we have

fα(xi)− fβ(xj) 6= fγ(xi)− fδ(xj). (6.7)

Hence, the number of vertices in Tij equals the number of points {fα(xi)− fβ(xj) :

(fα, fβ) ∈ Tij}. For (fα, fβ) ∈ Tij ⊂ Gr(z), we also have

Br(z) ∩ (fα(F )− fβ(F )) 6= ∅ ⇒ Br(z) ∩ (Br(fα(xi))−Br(fβ(xj))) 6= ∅

⇔ Br(z) ∩ (B2r(fα(xi)− fβ(xj))) 6= ∅.

Therefore, we deduce
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|fα(xi)− fβ(xj)− z| ≤ 3r,

and we also know that

|fα(xi)− fβ(xj)− fγ(xi) + fδ(xj)| ≥ εr.

Therefore, all the balls of radius εr/2 and centres fα(xi)−fβ(xj), for (fα, fβ) ∈
Tij are disjoint and all the centres lie in a ball of radius 3r around z. It is immediate

from (6.7) that

|Tj | ≤
µ(B3r+εr(z))

µ(B εr
2

(fα(xi)− fβ(xj)))
≤ N1,

independent of r, z, (i, j). Hence, by Ramsey’s Theorem, we have that

|Gr(z)| ≤ N,

independent of r, z.

Now, we enumerate Gr(z) using the following parametrisation

Gr(z) = {(fαk , fβk)}Nk=1

Take any x ∈ K. Then, we have

Br(z) ∩ (K −K) ⊆
N⋃
k=1

Br(z) ∩ (fαk(K)− fβk(K))

⊆
N⋃
k=1

Br(z) ∩ (Br(fαk(x)) ∩K −Br(fβk(x)) ∩K).

Since fαk(x), fβk(x) ∈ K, we can cover each of these balls centred at those points by

N ′ = NK(r, ρ/2) balls of radius ρ/2 centred at K. Let the centres of those balls be

zki . Then,

Br(z) ∩ (K −K) ⊆
N⋃
k=1

N ′⋃
i=1

B ρ
2
(zki )−

N ′⋃
j=1

B ρ
2
(zkj )


⊆

N⋃
k=1

N ′⋃
i,j=1

Bρ(z
k
i − zkj )

Thus,

NF−F (r, ρ) ≤ N(N ′)2 ≤ NC
(
r

ρ

)2d

.
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Chapter 7

Cantor sets

Cantor sets are in general some of the most common examples of self similar fractals.

They are constructed by an iterated process of removing intervals from the unit

interval [0, 1]. We first focus on symmetric Cantor sets, where at each stage of

the iteration the intervals that remain are of the same length. We will show that

symmetric Cantor sets satisfy the weak separation condition for differences. In

particular, the Assouad dimension of differences of symmetric Cantor sets obeys

bounds in terms of the Assouad dimension of the Cantor set itself.

7.1 Symmetric Cantor sets

Symmetric Cantor sets are constructed by removing intervals of the same length

from [0, 1] repeatedly. In particular, let λ < 1/2 and suppose that C0 is the interval

[0, 1]. We define Ck+1 by removing intervals of length ckλ, from Ck, where ck is the

length of the intervals in Ck (see also Figure 7.1). Then, the middle -λ Cantor set is

defined as

C = ∩∞k=0Ck.

Figure 7.1: The first stages of the iteration for the middle–1/3 Cantor set.
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A symmetric Cantor set can also be defined as the attractor of an Iterated

Function system. For any λ < 1/2, the middle- λ Cantor set Cλ, is the attractor of

the following iterated function system.

f1(x) = λx and f2(x) = λx+ (1− λ).

We recall the open set condition, which holds if there exists an non-empty open set

U such that

U ⊇
|I|⋃
i=1

fi(U) and fi(U) ∩ fj(U) = ∅.

It is easy to see (see Chapter 13 in the book of Falconer) that the Cantor set

satisfies the open set condition for U = (0, 1) which in particular implies that

dA(Cλ) = dB(Cλ) = dsim(Cλ) =
log 2

log 1
λ

.

Henderson [14] studied the Assouad dimension of the set of differences Cλ − Cλ and

showed that it is strictly bounded above by twice the Assouad dimension of Cλ. This

is trivial when λ ≥ 1/3 since

2dA(Cλ) = 2
log 2

log 1
λ

> 1 = dA((−1, 1)) ≥ dA(Cλ − Cλ).

If λ < 1/3, Henderson [14] showed that Cλ −Cλ is an attractor of another system of

similarities, which satisfies the open set condition. In particular, he showed that

dA(Cλ − Cλ) =
log 3

log 1
λ

> 2dA(Cλ).

The above formula can be also obtained by taking the product of the Cantor set

with itself and projecting onto the span of (−1, 1).

We show that the Cantor set Cλ, for λ < 1/3 satisfies the weak separation

property for differences, which immediately gives an example of a set which satisfies

that property and

dA(Cλ − Cλ) < 2 dA(Cλ).

The proof also provides a useful technique for the more involved analysis of asymmetric

Cantor sets.

78



Proposition 7.1. The Cantor Cλ, for λ < 1
3 satisfies the weak separation property

for differences.

Proof. Fix λ < 1/3. Then, Cλ is the attractor of the Iterated Functions system

f1(x) = λx and f2(x) = λx+ (1− λ).

Take any 0 < b < 1. We claim that there exists a δ > 0, such that for any

α, β, γ, δ ∈ Ib we have

fα(Cλ)− fβ(Cλ) = fγ(Cλ)− fδ(Cλ).

or

|fα(x)− fβ(y)− fγ(x) + fδ(y)| ≥ δb,

for every x, y ∈ Cλ. In particular, this obviously implies the weak separation for

differences by choosing any single point in the Cantor set.

Now, we fix 0 < b < 1. Then, it is easy to see for any α = (i1, · · · , ik), β =

(i1, · · · , im) ∈ Ib, we have that k = m and

cα = cβ = λk ≤ b ≤ λk−1 = cᾱ = cβ̄. (7.1)

We also have that for any α = (i1, · · · , ik) ∈ Ib, there exists some translation qα such

that for any x ∈ Cλ
fα(x) = λkx+ qα

and

qα =
k−1∑
i=0

ti λ
i(1− λ) = (1− λ)

k−1∑
i=0

tiλ
i,

for ti ∈ {0, 1}.
Therefore, for any α, β, γ, δ ∈ Ib, there exists some k ∈ N such that |α| =

|β| = |γ| = |δ| = k and for any x, y ∈ Cλ

|fα(x)− fβ(y)− fγ(x) + fδ(y)| = (1− λ)

∣∣∣∣∣
k−1∑
i=0

aiλ
i

∣∣∣∣∣ ,
where ai ∈ {−1,−2, 0, 1, 2}.

Suppose now that

fα(Cλ)− fβ(Cλ) 6= fγ(Cλ)− fδ(Cλ).

We claim that
∣∣∣∑k−1

i=0 aiλ
i
∣∣∣ 6= 0.
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Indeed, suppose without loss of generality that

dH(fα(Cλ)− fβ(Cλ), fγ(Cλ)− fδ(Cλ)) = dist(fα(Cλ)− fβ(Cλ), fγ(Cλ)− fδ(Cλ))

and let x0, y0 ∈ Cλ be such that

dH(fα(Cλ)− fβ(Cλ), fγ(Cλ)− fδ(Cλ)) = dist(fα(x0)− fβ(y0), fγ(K)− fδ(K)) > 0.

Then, ∣∣∣∣∣
k−1∑
i=0

aiλ
i

∣∣∣∣∣ = |fα(x0)− fβ(y0)− fγ(x0) + fδ(y0)|

≥ dist(fα(x0)− fβ(y0), fγ(K)− fδ(K)) > 0.

Suppose that
∑k−1

i=0 aiλ
i > 0. We claim that there exist âi > 0 such that

k−1∑
i=0

aiλ
i =

k−1∑
i=0

âiλ
i.

We construct âi by the following process. If ak−1 ≥ 0, we set âk−1 = ak−1. If

ak−1 < 0, we write

ak−1 =

(
1

λ
+ ak−1

)
λ(k−1) − λ(k−2)

and we set

âk−1 =

(
1

λ
+ ak−1

)
.

Then, âk−1 > 0, since λ < 1
3 .

Now, if ak−2λ
(k−2) − λ(k−2) = (ak−2 − 1)λk−2 < 0, then we again write

(ak−2 − 1)λ(k−2) =

(
1

λ
+ ak−2 − 1

)
λ(k−2) − λ(k−3)

and we set

â(k−2) =
1

λ
+ ak−2 − 1.

Then, 1
λ + ak−2 − 1 > 0, since λ < 1/3 and we carry on this procedure until we

construct â0. Now, for all 1 ≤ i ≤ k − 1, we have that

âi = ai or (
1

λ
+ ai) or (

1

λ
+ ai − 1),
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which are all non negative. We claim that

A =

k−1∑
i=1

âiλ
i < 1.

We observe that for all 1 ≤ i ≤ k − 1, âi ≤ 2. Therefore

A ≤ 2

k−1∑
i=1

λi < 2

k−1∑
i=1

(
1

3

)i
≤ 2(

3

2
− 1) = 1.

Hence, â0 > −1. If â0 < 0, then

â0 ≤ −1,

a contradiction.

By a symmetric argument, i.e. by subtracting c where necessary we have

that if the sum is negative then it can be written such that all the coefficients are

non–positive. Assume that âi ≥ 0, for all i. In particular, by the construction above,

we observe that if âi > 0, then

âi ≥
(

1

λ
− 3

)
> 0. (7.2)

Let 0 ≤ m ≤ k − 1 such that âm > 0. Then, by (7.1), (7.2), we have

|fα(x)− fβ(y)− fγ(x) + fδ(y)| = (1− λ)

∣∣∣∣∣
k−1∑
i=0

aiλ
i

∣∣∣∣∣ = (1− λ)

k−1∑
i=0

âiλ
i

≥ (1− λ)amλ
m ≥ (1− λ)

(
1

λ
− 3

)
λk−1

≥ (1− λ)

(
1

λ
− 3

)
b,

which concludes the proof.

We note that we can actually make all the coefficients in the above construction

either negative or positive, depending on whether the sum is negative or positive.

We will need this in the following section, where we prove that a particular class of

Asymmetric Cantor sets satisfies the weak separation condition for differences.

7.2 Non-symmetric Cantor sets

Non-symmetric Cantor sets are constructed by an iterative process of removing

intervals of different lengths from the unit interval. In particular let c1, c2 ∈ (0, 1)
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such that c1 + c2 < 1. Suppose that C0 = [0, 1]. We construct C1 by removing an

interval of length 1− c1− c2 from C0 and we set C1 to be the remaining two intervals.

We carry on by removing intervals of proportionate length from each of the intervals

in Ck (see also Figure 7.2).

Figure 7.2: The first stages of the iteration for the asymmetric Cantor set.

Asymmetric Cantor sets are also the attractors of the following Iterated

function system

f1(x) = c1x and f2(x) = c2x+ (1− c2),

for c1, c2 ∈ (0, 1), such that c1 + c2 < 1. We denote the non symmetric Cantor set by

Kc1c2 . It has been proven by Henderson that if log c1
log c2

is an irrational number, then

dA(Kc1c2 −Kc1c2) = 1, which is maximal for this set.

It is an open question whether we can show that the Assouad dimension of

K −K is bounded by twice the Assouad dimension of K when log c1
log c2

is any rational

number.

In this section, we show that if log c1
log c2

is a rational number and c1 < c2 <
1
4 ,

then the weak separation for differences is satisfied. In particular, we prove the

following theorem, which is the main result of this chapter.

Theorem 7.2 (Theorem 1.6). Suppose c ∈ (0, 1), p2 < p1 ∈ N such that cp1 <

cp2 < 1/4. Let K be the attractor of the system F = {f1, f2} where

f1(x) = cp1x, and f2(x) = cp2x+ (1− cp2).

Then, K satisfies the weak separation condition for differences. In particular,

dA(K −K) ≤ 2dA(K) ≤ 2dsim(K).

The proof follows a similar procedure with the one for symmetric Cantor sets,

but is significantly more involved.
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Proof. Fix any 0 < b < 1. Let α, β, γ, δ ∈ Ib. Then, for any x, y ∈ K, we have

fα(x)− fβ(y)− fγ(x) + fδ(y) = (cα − cγ)x+ (cδ − cβ)y + qα − qβ − qγ + qδ, (7.3)

for some translations qα, qβ, qγ , qδ. By definition of Ib, we have that for any α ∈ Ib

cα ≥ cᾱcp1 ≥ bcp1 (7.4)

Assume that

fα(K)− fβ(K) 6= fγ(K)− fδ(K).

Assume first that qα − qβ − qγ + qδ = 0. By compactness of K, let x0, y0 ∈ K such

that

dH(fα(K)− fβ(K), fγ(K)− fδ(K)) = dist(fα(x0)− fβ(y0), fγ(K)− fδ(K)) > 0.

Therefore,

|fα(x0)− fα(y0)− fγ(x0) + fδ(y0)| ≥ dist(fα(x0)− fβ(y0), fγ(K)− fδ(K)) > 0.

It is immediate from (7.3) that either cα 6= cγ or cβ 6= cδ. Assume without loss of

generality that cα < cγ . Then, since 0, 1 ∈ K we have by (7.4)

|fα(1)− fβ(0)− fγ(1) + fδ(0)| = |cα − cγ | = cγ

(
1− cα

cγ

)
≥ bcp2

(
1− cα

cγ

)
.

We claim that there exists M > 0 such that(
1− cα

cγ

)
≥M.

Indeed, let n1, n2,m1,m2 be such that

cα = cp1n1+p2n2 and cγ = cp1m1+p2m2 ,

with p1m1 + p2m2 < p1n1 + p2n2. Then,

cp1n1+p2n2

cp1m1+p2m2
≤ cp1m1+p2m2+1

cp1m1+p2m2
= c,

which implies that (
1− cα

cγ

)
≥ (1− c).

Thus, the weak separation property is satisfied when qα − qβ − qγ + qδ = 0. Suppose
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now that qα − qβ − qγ + qδ 6= 0. By (7.3), we have that

|fα(0)− fβ(0)− fγ(0) + fδ(0)| = |qα − qβ − qγ + qδ|.

We claim that there exists M1 > 0 such that

|qα − qβ − qγ + qδ| ≥M1b.

We want to write qα − qβ − qγ + qδ in terms of powers of cp1 and cp2 . For α ∈ Ib, let

nα,mα ∈ N be such that

cα = cnαp1+mαp2 .

Then, we have

qα = (1− cp2)

c0

mα−1∑
j=0

to jc
p2 j

+ · · ·+ cp1(nα−1)

mα−1∑
j=1

tnα−1 jc
p2 j


for some tij ∈ {0, 1}, where 0 ≤ i ≤ nα − 1 and 0 ≤ j ≤ mα − 1.

Assume that N1 = max{nα, nβ, nγ , nδ} and N2 = max{mα,mβ,mγ ,mδ}.
Then,

qα − qβ − qγ + qδ = (1− cp2)

c0

N2−1∑
j=0

ao jc
p2 j

+ · · ·+ cp1(N1−1)

N2−1∑
j=1

a(N1−1)jc
p2 j


where aij ∈ {−2,−1, 0, 1, 2.}, for all i ≤ N1 − 1 and j ≤ N2 − 1. Let

Ai =

N2−1∑
j=0

aijc
p2j .

Since cp2 < 1/4 < 1/3, by the argument in the previous section (see proof of

Proposition 7.1), we can rewrite all negative Ai such that all the coefficients aij are

negative and all positive Ai, such that all aij are positive. In this case we also note

by the previous argument that if aij < 0, for some i, j then

−2 ≤ aij ≤ 3− 1

cp2
< −1

and if aij > 0, for some i, j, then

1 ≤ 1

cp2
− 3 ≤ aij ≤ 2.
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Consequently, if Ai < 0 then

− 2

∞∑
j=1

cp2j ≤ −2

N2−1∑
j=1

cp2j ≤ Ai < −
N2−1∑
j=1

cp2j , (7.5)

and if Ai > 0, we have

1 ≤
N2−1∑
j=1

cp2j ≤ Ai ≤ 2

N2−1∑
j=1

cp2j ≤ 2

∞∑
j=1

cp2j . (7.6)

Assume that qα − qβ − qγ + qδ > 0. We want to rewrite the above sum such that all

Ai are non–negative. If AN1−1 ≥ 0, we set ÂN1−1 = AN1−1. If AN1−1 < 0, we set

ÂN1−1 =

(
1

cp1
+AN1−1

)
cp1(N1−1) − cp1(N1−2).

We claim that
(

1
cp1 +AN1−1

)
> 0. Indeed, since AN1−1 < 0, we have that

AN1−1 ≥ −2

N2−1∑
i=0

cp2i ≥ −2

1− cp2
≥ −3, (7.7)

since cp2 < 1
3 . Thus, ÂN1−1 > 0, since cp1 < 1

4 . Now, arguing is in the symmetric

Cantor set case, if AN1−2−1 ≥ 0, we set ÂN1−2 = AN1−2−1, while if AN1−2−1 < 0,

we set

ÂN1−2 =

(
1

cp1
+AN1−2 − 1

)
,

which is positive since since cp1 < 1/4 and AN1−2 ≥ −3. We then write

AN1−2c
p1(N1−2) =

(
1

cp1
+AN1−2 − 1

)
cp1(N1−2) − cp1(N1−3)

= ÂN1−2c
p1(N1−2) − cp1(N1−3).

We continue the process until we have defined Â0. We note that for all

1 ≤ i ≤ n− 1, by (7.6) and (7.7), we have

1

cp1
− 4 ≤ Âi ≤ 2

N2−1∑
j=1

cp2j .

Hence,

N1−1∑
i=1

Âic
ip1 ≤ 2Bj

∞∑
i=1

cp1i,
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where

Bj =

N2−1∑
j=1

cp2j .

Therefore,
N1−1∑
i=1

Âic
ip1 ≤ Bj

(
2cp2

1− cp2

)
< Bj ,

since cp2 < 1/3. Since we have assumed qα − qβ − qγ + qδ > 0, we need

Â0 > −Bj = −
N2−1∑
j=1

cp2j .

But, from (7.5), (7.6), we deduce that if Â0 < 0, then it must satisfy

Â0 ≤ −
N2−1∑
j=1

cp2j .

Consequently, Â0 ≥ 0. By a symmetric argument, if qα − qβ − qγ + qδ < 0, we can

rewrite the sum such that all the Ai are non–positive, for 0 ≤ i ≤ N − 1. Assume

without loss of generality that qα − qβ − qγ + qδ > 0. Then, we have

qα − qβ − qγ + qδ = (1− cp2)

N1−1∑
i=0

Âic
ip1 .

By the above construction, we deduce that if Âi > 0, then Âi ≥ 1
cp1 − 4 > 0, for

0 ≤ i ≤ N1 − 1. Moreover, for every i, we have that

Âi =

N2−1∑
j=0

âijc
jp2 .

Similarly, if âij > 0, for some 0 ≤ j ≤ N2 − 1, then âij ≥ 1
cp2 − 3 > 0.

Assume that N1 = nα = max{nα, nβ, nγ , nδ} and N2 = mβ. Assume without

loss of generality that mβ ≤ nα. Thus, mα ≤ mβ ≤ nα. Let 0 ≤ m ≤ nα − 1 such

that Âm > 0. Let also 0 ≤ n ≤ mα − 1 ≤ mβ − 1 such that âmn > 0. Thus,

|qα − qβ − qγ + qδ| ≥ (1− cp2)Âmc
p1m ≥ (1− cp2)âmnc

p2ncp1m

≥ (1− cp2)

(
1

cp2
− 3

)
c(mα−1)p2c(nα−1)p1

≥ (1− cp2)

(
1

cp2
− 3

)
cᾱ ≥ (1− cp2)

(
1

cp2
− 3

)
b,
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which concludes the proof that the system satisfies the weak separation condition

for differences. Since the weak separation condition for differences trivially implies

the standard weak separation condition we deduce that dsim(K) ≥ dB(K) = dA(K),

which implies the desired result by Theorem 6.15.

Consequently, we have the following result

Theorem 7.3. Suppose c1 < c2 < 1/4 such that log c1
log c2

is rational. Suppose that

Kc1c2 is the attractor of the system F = {f1, f2} such that

f1(x) = c1x and f2(x) = c2x+ (1− c2).

Then,

dA(Kc1c2 −Kc1c2) ≤ 2dA(Kc1c2) ≤ 2dsim(Kc1c2).

Proof. Suppose that
log c1

log c2
=
p1

p2
.

Then, c1 = c
p1/p2
2 . Let c = c

1/p2
2 . Then, c1 = cp1 and c2 = cp2 . Moreover, cp1 < cp2 <

1/4. Thus, by the above Theorem, the result follows immediately.

We note that the only case that needs to be covered is when the above theorem

can be a useful tool for computing explicit bounds for the Assouad dimension of

differences of non symmetric Cantor sets. Let c ∈ (0, 1), c1 = cp, c2 = c2p such that

c2p < cp < 1
4 . Then, we can explicitly compute the similarity dimension dsim(Ac1c2).

In particular, let D such that

cpD + c2pD = 1.

By solving the quadratic equation for cp, we find that

D =
log φ

p log
(

1
c

) ,
where

φ =
2√

5− 1
.

Thus,

dA(Ac1c2 −Ac1c2) ≤ 2 log φ

p log
(

1
c

) .
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We note that in the above argument we only require one of the exponents to

be less than 1/4 and the other one to be less than 1/3. Moreover, it can be easily

shown that if both of the exponents are bigger than 1/3, then the asymmetric Cantor

set contains an interval, which trivially implies the bound on the Assouad dimension

of the set of differences.
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Chapter 8

Conclusions and Future Work

8.1 Conclusion

The results presented in this thesis extend several embedding theorems, previously

known only for subsets of Hilbert spaces, into subsets of Banach spaces. In particular,

using a combination of methods introduced by Hunt and Kaloshin, with some key new

ingredients, we established several new embedding theorems for subsets of Banach

spaces with finite box–counting dimension that depend solely on the box–counting

dimension or the thickness exponent.

We prove an embedding theorem for subsets of Banach spaces such that

the set of differences is almost homogeneous at 0. The theorem is an extension

of the respective result for subsets of Hilbert spaces, such that X − X is almost

homogeneous, that was proved by Olson & Robinson [25]. In particular, we prove

the theorem under a weaker condition which only deals with balls around 0 rather

than any point in X −X.

Our embedding theorems rely on a property that holds for the set of differences.

It is natural to ask whether the doubling property is enough to obtain local covers

for balls around 0. We give an example of a metric space which is doubling but

not (α, β)-almost homogeneous at 0, for any α, β ≥ 0, which answers the question

negatively.

However, in the context of Iteration Function Systems, we show that if the

system satisfies a suitable separation condition, then the Assouad dimension of

differences of attractors obeys non trivial bounds related to the Assouad dimension

of the attractor itself. In particular, we show that particular examples of symmetric

and asymmetric Cantor sets fall in the above class.

89



8.2 Future Work

There are a number of questions that arise naturally from the results presented in

this thesis and we would like to list some of them.

Question 8.1. In Section 2.4, we consider a set X with finite box counting dimension

and thickness exponent less than 1. Is it possible to extent the theorem without

the restriction of the thickness exponent being less than 1, in such a way that it

improves on Theorem 1.2?

Question 8.2. In Section 3.2, we show that the thickness exponent of any ‘orthogonal’

sequence in `p, for p ∈ [1, 2] equals the box dimension. We also show a lower bound

for p > 1. De Moura & Robinson showed that if a orthogonal sequence A in `∞ can

be linearly θ-bi–Hölder embedded in some Euclidean space, then

θ ≤ 1

1 + dB(A)
.

Can we find an orthogonal sequence A in `∞, such that τ(A) < dB(A)? A positive

answer to this question would yield a negative answer to question 8.1.

Question 8.3. In Section 4.2.2, we construct a prevalent set of linear almost bi–

Lipschitz embeddings from a subset of Banach space X into some Euclidean space,

when X −X is almost homogeneous at 0. Is it possible to extend the theorem for

doubling subsets of Banach spaces?

Question 8.4. Suppose X is a doubling subset of a Banach space. Can we find an

almost bi–Lipschitz embedding ψ from X into another Banach space Y such that

the set of differences ψ(X)− ψ(X) into Y is almost homogeneous at 0? This would

yield a positive answer to the question above.

Question 8.5. In Section 4.2, we show that if X −X is almost homogeneous and

can be embedded into a Hilbert space, using a linear almost bi–Lipschitz map Φ,

then Φ(X)−Φ(X) is almost homogeneous at 0. This leads to the following question.

Is the condition that X −X is almost homogeneous at 0 necessary in order to have

linear bi–Lipschitz embeddings into some Euclidean space? (we already know by

Theorem 4.12 that it is sufficient).

Question 8.6. In Section 4.3, we show that subsets of Banach spaces that can be

well approximated by linear subspaces can be linearly almost bi–Lipschitz embedded

into some Hilbert space H. Olson & Robinson show that any doubling metric space

admits an almost bi–Lipschitz embedding in a Hilbert space H and the image satisfies

the above property. Can we show that subsets of a Hilbert space with this ‘better
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than zero thickness’ property embed in an almost bi–Lipschitz way into some Rk?
This would yield a positive answer to question 8.3.

Question 8.7. In Section 5.3, we give an example of a doubling set X such that

X −X is not almost-homogeneous at 0. We know that X cannot be embedded into

any Hilbert space, with a bi–Lipschitz map. It is also true from theorem 4.3 that

X can be almost bi-Lipschitz embedded into a Hilbert space. Can we construct an

almost bi–Lipschitz map from X into an Euclidean space?

Question 8.8. In Section 6.3, we establish a weak separation condition that allows

us to bound the Assouad dimension of differences of self similar fractals in a non–

trivial way. In Lemma 6.14, we give a sufficient condition for the weak separation to

hold. Is it true that the two conditions are equivalent?

Question 8.9. In Section 7.2, we prove that a particular class of non symmetric

Cantors sets satisfies the weak separation property for differences. In particular, we

obtain non-trivial bounds for the Assouad dimension of differences of asymmetric

Cantor sets when c1 < c2 < 1/4, and

log c1

log c2
=
p1

p2
,

for p1, p2 ∈ N. Henderson [14] showed that if log c1
log c2

is irrational then the Assouad

dimension of the set of differences is maximal. Is it true that when c1 < 1/4, c2 ≥ 1/4

and log c1
log c2

is rational, then the weak separation property for differences is always

satisfied?

Question 8.10. Suppose H is a Hilbert space. Let f : H → H be a contracting

similarity , i.e. it satisfies

‖f(x)− f(y)‖ = c‖x− y‖,

for all x, y ∈ H and for some c < 1. We know by Hutchinson [17], there exists a

unitary operator U : H → H and a point q ∈ H such that

f(x) = cU(x) + q.

In particular, f is bijective and the inverse f−1 is a similarity that satisfies

‖f−1(x)− f−1(y)‖ =
1

c
‖x− y‖,

for all x, y ∈ H. Suppose F = {fi : H → H} is a system of similarities like the

one described above with an attractor K. What we can we say about the Assouad

91



dimension of K? Can K be embedded into an Euclidean space in an almost bi–

Lipschitz way? Can we formulate a separation condition, similar to the one that

Zerner introduced [30] to show that the set of differences is almost homogeneous at

0 under that condition?
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Appendix A

Measures on infinite

dimensional Banach spaces

In this appendix, we present several useful results from the book of Robinson [28]

about measures on infinite dimensional Banach spaces, that we are using throughout

the thesis. We first want to recall the construction from section 2.3 of a compactly

supported probability measure that is based on a construction from Hunt and

Kaloshin [15].

Suppose that B is a Banach space and V = {Vn}∞n=1 a sequence of finite–

dimensional subspaces of B∗, the dual of B. Let us denote by dn the dimension of

Vn and by Bn the unit ball in Vn.

Now, we fix a real number α > 1 and define the space Eα(V) as the collection

of linear maps L : B→ Rk given by

E = Eα(V) =

{
L = (L1, L2, ..., Lk) : Li =

∞∑
n=1

n−αφi,n, φi,n ∈ Bn

}
.

Let us also define

E0 =

{ ∞∑
n=1

n−αφi,n, φi,n ∈ Bn

}
.

Clearly E = (E0)k.

In order to define a measure on E, we first take a basis for Vn so that we

can identify Bn with a symmetric convex set Un ⊂ Rdn . Then, we construct each

Li randomly by choosing each φi,n with respect to the normalised dn–dimensional

Lebesgue measure λdn on Un. Finally, by taking k copies of this measure we obtain
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a measure on E. In particular we first consider E0 as a product space

E0 =

∞∏
n=1

Bn,

and define a measure µ0 on E0 as

µ0 = ⊗∞n=1λn.

Secondly, we consider E = Ek0 and define µ on E as

µ =
k∏
i=1

µ0.

For any map f ∈ L(B;Rk), Hunt and Kaloshin [15] proved an upper bound

on

µ{L ∈ E : |(f + L)x| ≤ ε},

for x ∈ B and any ε > 0. In order to prove such an estimate, we need the following

lemma, which can be found in the book of Robinson [28].

Lemma A.1. Suppose Ln is the Lebesque measure on Rn and λn is the uniform

n-dimensional Lebesque measure. If a ∈ R and x ∈ B then

λdn{φ ∈ Bn : |a+ φ(x)| < ε} ≤ dn
(

ε

|g(x)|

)
, (A.1)

for any g ∈ Bn, the unit ball in Vn.

Proof. For the proof, we recall the Brunn-Minkowski inequality (see Gardner [12]

for a detailed proof) which says that if T1, T2 are two convex subsets of Rn, then

Ln((1− t)T1 + tT2)1/n ≥ (1− t)Ln(T1)1/n + tLn(T2)1/n,

for t ∈ [0, 1].

Let x ∈ B. Suppose that g(x) 6= 0, otherwise the inequality is trivial. Let

P = {p ∈ Vn : p(x) = 0}.

It is easy to see that P is a subspace of B∗ and

dim(P ) = dim(Vn)− 1 = dn − 1.
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Let φ ∈ Bn such that |φ(x) + a| < ε. We have

[g(x)φ− φ(x)g](x) = 0.

Let p′ ∈ P such that g(x)φ = φ(x)g + p′. Thus,

φ =
φ(x)

g(x)
g +

1

g(x)
p′,

which implies that there exists p ∈ P such that

φ =
φ(x)

g(x)
g + p.

Therefore, ∥∥∥∥φ+
a

g(x)
g − p

∥∥∥∥ =
|φ(x) + a|
|g(x)|

‖g‖ < ε

|g(x)|
‖g‖.

Suppose that P is represented by a hyperplane Π in Rdn and g is identified with a

vector v ∈ Un, which is a symmetric convex set in Rdn . Let also

b =
a

g(x)
.

Then, the probability on the left hand side of (A.1) is bounded above by the

probability that an element u ∈ Un lies between(
−b− ε

|g(x)|

)
v + Π and

(
−b+

ε

|g(x)|

)
v + Π.

For any s ∈ R, let

Ks = Un ∩ (Π + sv),

the intersection of the symmetric convex set Un with translations of the hyperplane

Π. By the Brunn-Minkowski inequality, we have that the function

s→ Ldn−1(Ks)

is a concave function. In particular, it attains its maximum value at 0. If θ denotes

the smallest angle that Π makes with the vector v in Un, we have

λdn{φ ∈ Bn : |φ(x) + a| < ε} ≤
Ldn−1(K0)|v| 2ε

|g(x)| sin θ

Ldn(Un)
.

Since Un is a symmetric convex set, it contains the cone with base K0 = Un ∩Π and
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vertex v and the cone with base K0 and vertex −v. Consequently,

Ldn(Un) ≥ 2Ldn−1(K0)|v| sin θ
dn

,

which implies that

λdn{φ ∈ Bn : |φ(x) + a| < ε} ≤ dn
ε

|g(x)|
.

We can now show the following estimate.

Lemma A.2 (Lemma 2.16). Suppose that x ∈ B, ε > 0, f ∈ L(B;Rk) and V = {Vn}
as above. Then

µ{L ∈ Eα : |(f + L)(x)| < ε} ≤
(
nαdn

ε

|g(x)|

)k
,

for any g ∈ Bn.

Proof. By definition of the measure µ, we have

µ{L ∈ E : |(f + L)(x)| < ε} ≤ µ{L ∈ E : |(fi + Li)(x)| < ε for all i ≤ k.}

=

k∏
i=1

µ0{L ∈ E0 : |(fi + L)(x)| < ε}

Take any f0 ∈ B∗. Then we estimate

µ0{L ∈ E0 : |(f0 + L)(x)| < ε}

=
∞⊗
m=1

λdm

{
{φm}∞m=1 ∈ E0 :

∣∣∣∣∣f0(x) +
∞∑
m=1

m−αφm(x)

∣∣∣∣∣ < ε

}

=
∞⊗
m=1

λdm

{φm}∞m=1 ∈ E0 :

∣∣∣∣∣∣
f0(x) +

∞∑
m6=n

m−αφm(x)

+ n−αφn(x)

∣∣∣∣∣∣ < ε

 .

For

a = f0(x) +

∞∑
m6=n

m−α,

Lemma (A.1) implies that

λdn{φ ∈ Bn : |a+ n−αφ(x)| < ε} = λdn{φ ∈ Bn : |n−αφ(x)| < ε}

= λdn{φ ∈ Bn : |φ(x)| < nαε}

≤ dn
ε nα

|g(x)|
,
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for any g ∈ Bn.

By definition of the product measure
⊗∞

m=1 λdm , we obtain

µ0{L ∈ E0 : |(f0 + L)(x)| < ε} ≤ dn
ε nα

|g(x)|
,

which implies that

µ{L ∈ E : |(f + L)(x)| < ε} ≤
(
nαdn

ε

|g(x)|

)k
,

for any g ∈ Bn.
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Mathématique de France, 111:429–448, 1983.

[3] A. Benartzi, A. Eden, C. Foias, and B. Nicolaenko. Hölder continuity for the
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