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The well-known thermal capillary wave theory, which describes the capillary spectrum of7
the free surface of a liquid film, does not reveal the transient dynamics of surface waves,8
e.g., the process through which a smooth surface becomes rough. Here, a Langevin model9
is proposed that can capture these dynamics, goes beyond the long-wave paradigm which10
can be inaccurate at the nanoscale, and is validated using molecular dynamics simulations11
for nanoscale films on both planar and cylindrical substrates. We show that a scaling relation12
exists for surface roughening of a planar film and the scaling exponents belong to a specific13
universality class. The capillary spectra of planar films are found to advance towards a14
static spectrum, with the roughness of the surface 𝑊 increasing as a power law of time15
𝑊 ∼ 𝑡1/8 before saturation. However, the spectra of an annular film (with outer radius ℎ0) are16
unbounded for dimensionless wavenumber 𝑞ℎ0 < 1 due to the Rayleigh-Plateau instability.17

1. Introduction18

Surface roughening due to randomness is ubiquitous in nature, and a problem span-19
ning many disciplines, e.g., in the propagation of wetting fronts in porous media, in the20
growth of bacterial colonies, and in atomic deposition during the manufacture of computer21
chips (Kardar et al. 1986). To allow us to predict and control surface roughening, it is essential22
to understand how surface morphology develops in time, and this is usually described by23
scaling relations (Kardar et al. 1986; Barabási & Stanley 1995).24
A liquid film at rest on a substrate also has a rough, fluctuating surface due to thermally25

excited capillary waves. These capillary waves are used in experiments to measure properties26
of liquid-solid systems (Jiang et al. 2007; Pottier et al. 2015; Alvine et al. 2012). This27
measuring technique has the advantage of being non-invasive, which is important for soft28
matter and biological fluids that can be sensitive to external forces. Capillary waves also29
play an important role in modern theories of surface physics (MacDowell et al. 2013; Evans30
1981), and are thought to be critical to the instability of thin liquid films (Vrij & Overbeek31
1968) where thermal capillary waves are enhanced by disjoining pressure, leading to the32
film rupture. The roughness created by thermal capillary waves is usually on the scale of33
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nanometres, but it has also been observed optically at the microscale in ultra-low surface34
tension mixtures (Aarts et al. 2004).35

Previous work (Jiang et al. 2007; Pottier et al. 2015; Alvine et al. 2012; MacDowell36
et al. 2013; Evans 1981; Aarts et al. 2004) has been underpinned by Capillary Wave Theory37
(CWT), which, from the equipartition theorem (i.e. in thermal equilibrium), provides the38
mean amplitude of each surface mode as a function of wavenumber (𝑞). For a planar film39
(without gravity), the r.m.s. spectral density is given by:40

𝑆s(𝑞) ∝
√︁
𝑘𝐵𝑇/𝛾
𝑞

, (1.1)41

where 𝑘𝐵 is the Boltzmann constant, 𝑇 is temperature, and 𝛾 is the surface tension.42
Importantly, (1.1), has no time dependence; it cannot reveal how a smooth surface develops43
to a rough one, or how sudden changes in material parameters generate evolution towards44
new spectra – as such, we refer to it as the static spectrum, and denote it using the subscript45
‘s’. Understanding dynamics is also essential as it allows prediction of the time required for46
a smooth film to reach its static spectrum, thus determining when the adoption of classical47
CWT is valid.48

Alongside open problems concerning the dynamics of capillary waves on a planar interface49
is their evolution in a cylindrical geometry. An analysis of this geometry is timely, being50
driven by state-of-the-art applications, e.g., the use of nanofibres to transport annular films51
of liquids (Huang et al. 2013) and the manufacture of ultra-smooth optical fibres (Bresson52
et al. 2017).53

For the aforementioned dynamic problems, it is natural to seek solutions to the equations54
of fluctuating hydrodynamics (FH) (Landau & Lifshitz 1959). In FH, thermal fluctuations,55
which drive the capillary waves, are modelled by a stochastic stress (white noise) contribution56
to the Navier-Stokes equations. A long-wave approximation for thin films, and also for jets,57
has been used to derive stochastic lubrication equations (SLE) from FH: the Jet SLE by58
Moseler & Landman (2000), and the Planar-film SLE by Grün et al. (2006), Davidovitch59
et al. (2005) and Durán-Olivencia et al. (2019). Notably, numerical solutions to the Jet60
SLE (Moseler & Landman 2000; Eggers 2002; Zhao et al. 2020) and the Planar-film SLE61
(Grün et al. 2006; Nesic et al. 2015; Diez et al. 2016; Durán-Olivencia et al. 2019; Shah62
et al. 2019) demonstrated that noise can accelerate the rupture process, in agreement with63
experimental analyses (Becker et al. 2003).64

Linear stability analysis of the SLE has provided time-dependent capillary wave spectra65
for both jets and planar films (Mecke & Rauscher 2005; Fetzer et al. 2007; Zhao et al.66
2019; Zhang et al. 2019). Importantly, in the recent article (Zhang et al. 2020), new SLEs67
have been derived for both planar and annular films (like those consider here), taking into68
account the slip effects at the solid-liquid interface, which are well-known to be significant69
for nanoflows (Lauga et al. 2005; Bocquet & Charlaix 2010). However, despite their success,70
the long-wave approximation inherent in each of these SLEs creates restrictions on the71
wavelengths that can be accurately predicted, which requires the development of a more72
general method.73

The motivation of this work is to understand the time-dependent nature of capillary wave74
spectra, 𝑆(𝑞, 𝑡), i.e. the surface roughening process (i) for different types of film (e.g. planar75
or annular), (ii) with different physics (e.g. with or without liquid slip at the substrate), and76
(iii) without the limitations of the lubrication approach. The subject is both of fundamental77
interest and practical value: creating a single theoretical framework under which the time78
evolution of thermal capillary waves on films can be studied; and allowing prediction of79
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Figure 1: Snapshots of a thin liquid film (a section) on a substrate in MD. For planar films, (a) initial
configuration with a smooth surface; (b) surface roughening. For annular films, (c) initial configuration; (d)
beads formed due to the Rayleigh-Plateau instability. Two types of cylindrical substrates are used: (e) Fibre
1, cut out from a bulk of Platinum with fcc structure. (f) Fibre 2, consisting of two concentric surfaces. 𝐿𝑥
is the film length, ℎ is the film thickness for a planar film and film radius for an annular film, and 𝑎 is the
fibre radius (𝑦 and 𝜃 are into the page).

the time required for a smooth film to reach its static spectrum, thus determining when the80
adoption of classical CWT is valid.81
This paper is organised as follows. In § 2, themolecular models of nanoscale liquid films on82

substrates are presented, which will be used as virtual nanoscale experiments against which83
to validate new theories. In § 3, our new Langevin model of capillary wave growth is derived.84
§ 4 compares the new model with molecular simulation results and previous experiments,85
and discusses new findings. In §5, we summarise the main contributions of this work and86
outline exciting future directions of research.87

2. Molecular Dynamics Simulations88

Weusemolecular dynamics (MD) simulations as a benchmark for capillarywave dynamics89
of nanoscale liquid films (the best proxy for experimental data at this scale), and adopt the90
popular open-source code LAMMPS (Plimpton 1995). All simulation domains contain three91
phases, with an Argon liquid film bounded by its vapor above and a Platinum substrate below,92
as shown in figure 1 for planar and annular films.93
The film is composed of liquidArgon, simulatedwith the standard Lennard-Jones (LJ) 12-694

potential:𝑈 (𝑟𝑖 𝑗) = 4𝜀𝑙𝑙 [(𝜎𝑙𝑙/𝑟𝑖 𝑗)12 − (𝜎𝑙𝑙/𝑟𝑖 𝑗)6], where 𝑙𝑙 denotes liquid-liquid interactions95

and 𝑖 𝑗 represents pairwise particles. The energy parameter 𝜀𝑙𝑙 is 1.67×10−21 J and the length96
parameter𝜎𝑙𝑙 is 0.34 nm.The temperature of this system is kept at𝑇 = 85Kor𝑇∗ = 0.7𝜀𝑙𝑙/𝑘𝐵97
(* henceforth denotes LJ units). At this temperature, the number density of liquid Argon is98
𝑛∗
𝑙
= 0.83/𝜎3

𝑙𝑙
. The number density of the vapor phase is (1/400)𝑛∗

𝑙
. The surface tension99

of liquid is 𝛾 = 1.52 × 10−2 N/m and the dynamic viscosity is 𝜇 = 2.87 × 10−4 kg/(ms)100
(Zhang et al. 2020). For a planar substrate, the solid is Platinum made of five layers of atoms,101
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with a face centred cubic (fcc) structure and its 〈100〉 surface in contact with the liquid. The102
Platinum number density is 𝑛∗𝑠 = 2.60/𝜎3

𝑙𝑙
. For cylindrical substrates, two different atomic103

structures are considered: the one in figure 1(e) is generated by cutting a cylinder from a large104
cube of Platinum; the one in figure 1(f) consists of two concentric surfaces, of which the105
cross section consists of two rings with same number of particles distributed uniformly. All106
solid substrates are assumed to be rigid, which saves considerable computational cost. The107
liquid-solid interactions are alsomodelled by the same 12-6 LJ potential with𝜎𝑙𝑠 = 0.8𝜎𝑙𝑙 for108
the length parameter. For planar films, three different values of the energy parameter are used,109
in order to generate varying slip lengths: Case (P1) 𝜀𝑙𝑠 = 0.65𝜀𝑙𝑙 , Case (P2) 𝜀𝑙𝑠 = 0.35𝜀𝑙𝑙110
and Case (P3) 𝜀𝑙𝑠 = 0.20𝜀𝑙𝑙 . For annular films and Fibre 1, Case (A1) 𝜀𝑙𝑠 = 0.7𝜀𝑙𝑙; for Fibre111
2, Case (A2) 𝜀𝑙𝑠 = 0.6𝜀𝑙𝑙 .112
The initial dimensions of a planar liquid film (see figure 1(a)) are 𝐿𝑥 = 313.90 nm,113

𝐿𝑦 = 3.14 nm and ℎ0 = 3.14 nm; the MD simulations are quasi-2D (𝐿𝑥 � 𝐿𝑦) allowing114
comparison with 2D theory. The initial size of the annular film (see figure 1(c)) has film115
length 𝐿𝑥 = 229.70 nm and outer radius ℎ0 = 5.74 nm. The radius of Fibre 1 is defined by116
the radius of cylinder, 𝑎1 = 2.35 nm, used to cut the fibre out of a bulk cube of Platinum.117
Fibre 2 has an outer radius 𝑎2 = 2.17 nm, with spacing 0.22 nm from the inner ring. Solid118
particles are distributed uniformly with 5◦ spacing.119
For the planar case, we separately equilibrate a liquid film with thickness ℎ0 = 3.14 nm120

and a vapour are in periodic boxes at 𝑇 = 85 K. Then the film is deposited above the substrate121
and the vapour is placed on top of the film. Because there exists a gap (a depletion of liquid122
particles) between the solid and liquid, arising from the repulsive force in the LJ potential,123
it is necessary to deposit the liquid above the substrate by some distance. The thickness of124
the gap is found to be about 0.2 nm after the liquid-solid system reached equilibrium so125
that we choose a deposit distance 𝑑 = 0.2 nm. This makes the position of film surface at126
𝑧 = ℎ0 + 𝑑 = 3.34 nm initially if the substrate surface has position at 𝑧 = 0.127
For an annular film, cuboid boxes of liquid and vapour are equilibrated separately in128

periodic boxes at 𝑇 = 85 K. Then an annular film is cut out from the cuboid box with the129
outer radius at 5.74 nm and inner radius above the fibre radius with an interval 0.2 nm. Then130
the fibre is put into the annular film and vapour is placed to surround the film. Notably, in131
this case, the position of film surface is still at ℎ0 = 5.74 nm initially.132
Periodic boundary conditions (PBC) are applied in the 𝑥 and 𝑦 directions of a planar system133

whilst vapour particles are reflected specularly in the 𝑧 direction at the top boundary of the134
planar system. For annular films, PBC are applied in all three directions. After initialization135
of the simulated systems, the positions and velocities of the liquid and vapour atoms are136
updated with a Nosé-Hoover thermostat (keeping the temperature at 𝑇 = 85K) and the above137
boundary conditions.138
According to classical theory, the surface of the initially smooth planar film, figure 1(a),139

should remain smooth indefinitely. However, thermal fluctuations generate surface roughness140
over a period of time, see figure 1(b), and it is the evolution of this roughness that we study141
here. The situation for the annular film is more complex, since, as seen in figure 1(d), it142
can be prone to a Rayleigh-Plateau instability, due to the ‘pinching’ surface tension force143
generated by the circumferential curvature.144
In this work, ℎ(𝑥, 𝑡) is the film height, 𝛿ℎ = ℎ−ℎ0 is the surface perturbation from its initial145

height ℎ0, 𝛿ℎ the perturbation in Fourier space, and 𝑆(𝑞, 𝑡) =
√︃
〈|𝛿ℎ |2〉 the surface spectrum,146

where 〈 · · · 〉 denotes an ensemble average, and | · · · | the norm of the transformed variable. In147
MD, the liquid-vapour interface (ℎ) is defined by the equimolar surface. A discrete Fourier148
transform of 𝛿ℎ is performed and surface spectra (presented in § 4) are obtained from the149
average of a number of independent simulations (65 for planar films and 10 for annular films).150

Focus on Fluids articles must not exceed this page length
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3. Langevin Model for Thermal Capillary Wave Growth151

For nanoflows, where inertia is usually negligible, Stokes flow governs the flow dynamics.152
In this regime, for the deterministic setting, linear analyses of free-surface flows are described153
by equations for the surface perturbation (in Fourier space) of the form:154

𝜕

𝜕𝑡
𝛿ℎ +Ω 𝛿ℎ = 0 , (3.1)155

where Ω(𝑞) is the dispersion relation (the decay rate of a particular mode). The dispersion156
relation for films depends on the domain geometry, the physics at play, and any approximations157
adopted. For example, for a planar film with slip, no disjoining pressure, and a long-wave158
approximation, the dispersion relation is (Zhang et al. 2020):159

Ω(𝑞) =
(ℎ30 + 3ℓℎ

2
0)𝛾𝑞

4

3𝜇
. (3.2)160

Here ℓ is the slip length at the liquid-solid interface and 𝜇 is the viscosity of the liquid. A161
similar expression is obtained in (Zhang et al. 2020) for the annular film, again, adopting a162
long-wave approximation.163
For nanoscale liquid films, where the Reynolds number is small, Stokes flow is accurate but164

the long-wave approximation is less valid, particularly as noise can excite short-wavelength165
perturbations. For planar films with slip, the Stokes-flow dispersion relation was obtained in166
(Henle & Levine 2007), whilst for annular films with slip, we have derived an expression for167
the first time, with details of the relatively standard derivation in Appendix A.168
The main idea in this work is to establish a framework for taking thermal fluctuations into169

account in modelling films in the general case (i.e. for whichever film geometry, physics, or170
modelling approximation we adopt). Knowing the restoring pressure due to surface tension171

is 𝛽𝛿ℎ (𝛽 = 𝛾𝑞2 for planar films and 𝛽 = 𝛾(𝑞2 − 1/ℎ20) for annular films), we can rewrite172
(3.1) and add a fluctuating pressure term (white noise) at the same time. This results in a173
Langevin equation of the form:174

𝛽

Ω

𝜕𝛿ℎ

𝜕𝑡
= −𝛽𝛿ℎ + 𝜁𝑁, (3.3)175

where 𝑁 (𝑞, 𝑡) is a complex Gaussian random variable with zero mean and correlation176

〈|𝑁𝑁 ′ |〉 = 𝛿(𝑞 − 𝑞′)𝛿(𝑡 − 𝑡 ′), and 𝜁 is the noise amplitude. Since ( 3.3) is an Orn-177
stein–Uhlenbeck process, 𝜁 is determined straightforwardly by considering the surface at178

thermal equilibrium, where 〈|𝛿ℎ |2〉s = 𝑆2s =
𝜁 2Ω

2𝛽2 . Thus, we must have179

𝜁 =

√︂
2
Ω
𝛽𝑆s, (3.4)180

where for planar and annular films, the CWT gives:181

𝑆s =

√︄
𝐿𝑥

𝐿𝑦

𝑘𝐵𝑇

𝛾𝑞2
, 𝑆s =

√︄
𝐿𝑥

2𝜋ℎ0
𝑘𝐵𝑇

𝛾(𝑞2 − 1/ℎ20)
, (3.5a,b)182

respectively (Zhang et al. 2020). Here 𝐿𝑦 is the planar-film length in the 𝑦 direction with183
𝐿𝑥 � 𝐿𝑦 , making the simulation of planar films quasi-two dimensional.184
The required time-dependent capillary wave spectra can be obtained directly from ( 3.3)185

(see Appendix B). As we are interested in how thermal fluctuations roughen a surface (i.e.,186
the evolution of a non-equilibrium surface to its thermal equilibrium), the initial condition187
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of the surface is assumed to be smooth, though our theory is general to consider any kinds of188
initial conditions (see Appendix B). As you will see, a smooth interface allows us to extract189
the maximum time for a non-equilibrium liquid surface to reach its thermal equilibrium,190
which provides a useful guideline either for computational or experimental investigation of191
non-equilibrium surfaces. For an initially smooth surface (𝑆(𝑞, 0) = 0), the spectra are:192

𝑆(𝑞, 𝑡) = 𝑆s
√︃(
1 − 𝑒−2Ω𝑡

)
. (3.6)193

194

The power of this Langevin model is its generality: to find the time-dependent spectrum for195
the linear treatment of any Stokes-flow film, all that is required is to substitute the appropriate196
static spectra and dispersion relation into (3.6). For example, substituting (3.2) and (3.5a) into197
(3.6) generates exactly the spectra derived in (Zhang et al. 2020) for a planar film, with slip,198
without disjoining pressure, and using a long-wave approximation (i.e. the SLE). It also offers199
the opportunity of improving on such SLE predictions by adopting more accurate dispersion200
relations, such as those utilising Stokes flow (see Appendix A), or adding additional physics201
without having to always return to the full equations of FH, and performing an asymptotic202
analysis.203
This Langevin model also naturally bridges the gap between the growth of capillary waves204

to the static spectrumwhich is our focus here, and the relaxation of capillarywave correlations205
after the free surface reaches the static spectrum, widely studied in previous work (Jiang et al.206
2007; Pottier et al. 2015; Alvine et al. 2012; Aarts et al. 2004). With (3.3) and using the Itô207
integral (Diez et al. 2016; Mecke & Rauscher 2005), the correlation of interfacial Fourier208
modes is found to be for planar films209 〈

𝛿ℎ(𝑞, 𝑡)𝛿ℎ∗(𝑞, 𝑡 ′)
〉
=

〈���𝛿ℎ(𝑞, 0)���2〉 𝑒−Ω(𝑡+𝑡′) − 𝐿𝑥

𝐿𝑦

𝑘𝐵𝑇

𝛾𝑞2

[
𝑒−Ω(𝑡+𝑡′) − 𝑒−Ω |𝑡−𝑡′ |

]
(3.7)210

Here, the asterisk denotes a conjugate value and, 〈|𝛿ℎ(𝑞, 0) |2〉 = 𝑆(𝑞, 0)2 is the initial spectra211
of the surface. Assuming the initial surface is smooth, and with 𝑡 = 𝑡 ′, (3.7) is simplified to212
(3.6). On the other hand, assuming the initial condition is at the state of the static spectrum,213
(3.7) is reduced to214 〈

𝛿ℎ(𝑞, 𝑡)𝛿ℎ∗(𝑞, 𝑡 ′)
〉
=
𝐿𝑥

𝐿𝑦

𝑘𝐵𝑇

𝛾𝑞2
𝑒−Ω |𝑡−𝑡′ | , (3.8)215

which is the relaxation dynamics of capillary waves studied previously (Jiang et al. 2007;216
Pottier et al. 2015; Alvine et al. 2012; Aarts et al. 2004).217

4. Results and Discussions218

4.1. Spectra of Planar Films219

We now compare the proposed Langevin model directly to MD data. Figures 2(a-c) show220
spectra of (long) planar films with three different slip lengths. The first thing we note is that221
the spectra are, indeed, time dependent, and only gradually approach the static spectrum.222
One can see that the transient characteristics of the spectra are strongly influenced by the223
slip length, which is controlled in the MD indirectly by the solid-liquid interaction potential224
(Appendix C provides details on how this parameter, and the effective film thickness, are225
extracted from independent MD simulations for use in the Langevin model, see the caption226
of figure 2 for values).227
From figures 2(a-c), the MD spectra compare remarkably well with the Langevin model228

when a Stokes-flow approximation to the dispersion relation is adopted (solid lines) for all slip229
lengths and at all times. In contrast, the Langevin model with a dispersion relation derived230
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Figure 2: (a-c) Evolution of capillary spectra of a (long) planar film for increasing slip length. A comparison
of spectra extracted from MD results (triangles), and Langevin model with Stokes-flow dispersion relation
(solid lines) or with long-wave dispersion relation (dash lines) at four different times, along with the static
spectrum (dash-dot line). (a) ℓ = 0.68 nm, (b) ℓ = 3.16 nm, (c) ℓ = 8.77 nm. The effective thickness of
the film ℎ0 = 2.90 nm and film length is 313.9 nm. Inset of (c) shows how the dominant wavenumber 𝑞𝑑
decreases with time. (d) evolution of capillary spectra for a short film (62.8 nm) with other settings the same
with (b).

from a long-wave approximation (dashed lines) – equivalent to the SLE of Zhang et al.231
(2020) – is only accurate (i) when slip lengths are small relative to the film thickness (i.e. not232
for the case in figure 2(c)) and (ii) only in the later stages of capillary wave growth where the233
dominant (dimensionless) wavenumber 𝑞𝑑ℎ0 (the one with peak amplitude) becomes much234
smaller than unity (i.e. when the wavelength becomes large), as discovered and detailed235
in Zhang et al. (2020). Thus, the new Langevin model developed here allows us to go beyond236
the long-wave paradigm.237
The dominant wavenumber is seen to decrease with time and 𝑞𝑑 can be estimated from238

the dynamic spectrum (3.6), by finding the spectrum’s maximum 𝜕𝑆/𝜕𝑞 |𝑞=𝑞𝑑 = 0. Adopting239
the long-wave approximation for the dispersion relation (3.2) allows analytical results to be240
obtained (Zhang et al. 2020):241

𝑞𝑑 �

[
15
8

𝜇

𝛾(3ℓℎ20 + ℎ
3
0)

] 1
4

𝑡−
1
4 . (4.1)242

As can be seen from the inset of figure 2(c), this prediction agrees well with the MD.243
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Figure 3: Slip effects on surface roughening of a planar film. (a) a comparison made among MD results
(symbols), Langevin model with Stokes-flow dispersion relation (solid lines) or with long-wave dispersion
relation (dash lines). (b) a comparison of Langevin model with previous experiments (Fetzer et al. 2007) of
a rupturing film without slip but with effects of disjoining pressure. A further experiment with large slip is
suggested.

4.2. Roughness of Planar Films and Their Universality Class244

For the free surface considered here, the roughness of the film,𝑊 , can be defined in terms245
of the evolving surface spectrum from Parseval’s theorem:246

𝑊 (𝑡) =

√︄
1
𝐿𝑥

〈∫ 𝐿𝑥

0
(𝛿ℎ)2 𝑑𝑥

〉
=

√√
1
2𝜋𝐿𝑥

∫ 2𝜋𝑁
𝐿𝑥

2𝜋
𝐿𝑥

𝑆2 𝑑𝑞 , (4.2)247

where 𝑁 is the number of bins used to extract the surface profile fromMD simulations, which248
provides an upper bound on the wavenumbers that can be extracted. A quick inspection of249
the MD results presented in figure 3(a) (symbols) reveals that, approximately, the roughness250
grows with some power law in time, which motivates the use of scaling relations to study251
surface roughening, as considered previously for the interface roughening between two252
immiscible inviscid gases (Flekkøy & Rothman 1995). In other words, this opens up the253
remarkable possibility of obtaining a simple parametrisation for this complex roughening254
process that aligns the process to seemingly unrelated physical phenomena.255
Scaling relations for surface roughness can be summarized byBarabási & Stanley (1995)256

𝑊 ∼ 𝐿𝛼 𝑓 (𝑡/𝐿𝑚), (4.3)257

where 𝐿 is the system size, 𝑓 (𝑣) = 𝑣𝜅 for 𝑣 � 1 (during roughness growth), and 𝑓 (𝑣) = 1258
for 𝑣 � 1 (at roughness saturation; which is not reached in the MD results of figure 3). The259
time to transition, between roughness growth and saturation, scales with 𝑡𝑠 ∼ 𝐿𝑚. The three260
exponents (𝛼, 𝑚 and 𝜅) define a universality class, and are here related by 𝜅 = 𝛼/𝑚.261
For the planar film, 𝛼 can be obtained by considering the surface at saturation, i.e. from262

the static spectrum given in (3.5a), assuming 𝐿𝑦 is fixed: 𝑊 ∼ 𝐿𝑥
1/2. An upper estimate263

on the transition time, between growth and saturation, can be estimated from the inverse264
of the dispersion relation at the largest permissible wave length (𝑞 = 2𝜋/𝐿𝑥). For this it is265
reasonable to use the long-wave approximation, (3.2), to find 𝑡𝑠 ∼ 𝐿𝑥

4, and thus 𝑊 ∼ 𝑡1/8.266
In summary, we find the exponents 𝛼 = 1/2, 𝑚 = 4 and 𝜅 = 1/8, assuming, as we have done,267
long-wave dominated roughness.268
TheMDresults in figure 3(a) indicate that, indeed,𝑊 ∼ 𝑡1/8; this scaling ismore apparent at269
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later times, but before saturation, when the roughness is characterised by long wavelengths.270
This precise scaling, as well as the anticipated roughness saturation, is confirmed by the271
Langevin model with a long-wave approximation to the dispersion relation (the dashed272
lines). A closer agreement with MD at earlier times, when the roughness has a shorter273
characteristic wavelength, is provided by a Stokes-flow dispersion relation (solid lines), but274
this model does not permit the simple extraction of power laws. The results also show that275
enhanced slip accelerates the roughening of the surface, but does not alter the final saturated276
value.277
Interestingly, the new analysis enables us to see that the exponents we find for the surface278

roughening of a planar film using the long-wave dispersion relation (i.e. the planar-film SLE279
byGrün et al. (2006); Zhang et al. (2020)) are the same with those for surface roughening280
of atomic depositions in molecular beam epitaxy (MBE) (Barabási & Stanley 1995; Krug281
1997). Thus the two distinct physical problems belong to the same universality class (1/2, 4,282
1/8).283
The strong dependency of the transition time on domain length (𝑡𝑠 ∼ 𝐿4𝑥) which we have284

uncovered, explains why in our simulations for a film length 𝐿𝑥 = 313.9 nm this time is285
of the order of microseconds (see figure 3(a)) and is thus impossible to resolve in MD.286
For example, for case P2, the transition time 𝑡𝑠 = 1/|Ω| = 3389.3 ns using the long-wave287
dispersion relation and 𝑡𝑠 = 3458.5 ns using the Stokes-flow dispersion relation, evaluated288
at the smallest permissible wavenumber, 𝑞 = 2𝜋/𝐿𝑥 . However for a shorter film with film289
length 62.78 nm (other parameters are the same with P2), the transition time is 𝑡𝑠 = 5.4290
ns with the long-wave dispersion relation and 𝑡𝑠 = 8.2 ns with the Stokes-flow dispersion291
relation (with better accuracy). Thus, the complete evolution of capillary waves to the static292
capillary wave can be realized in MD simulations, which is shown in figure 2(d), but our293
results have highlighted that care should be taken when interpreting results for larger film294
lengths where reaching thermal equilibrium (the static spectrum) for the surface is often295
computationally intractable.296

4.3. Spectra of Annular Films297

Figure 4 shows the evolving spectra of the capillarywaves of annular films. Forwavenumber298
𝑞ℎ0 > 1, the MD spectra (triangles) of different times collapse onto the static spectrum,299
(3.5b). However, for 𝑞ℎ0 < 1, the Laplace pressure from the circumferential curvature300
results in a negative dispersion relation such that the amplitude grows unboundedly until the301
film ruptures and beads are formed (seen in figure 1(d)).302
The surprise finding discussed earlier is that the noise amplitude in the Langevin model303

appears independent of whether CWT (which assumes disturbances are saturated) or a long-304
wave approximation (which does not) is adopted. It is therefore interesting to see that the305
Langevin model compares closely to the MD simulation for the annular film, particularly in306
unstable regions of the spectra. Note, while the noise amplitude seems independent of the307
long-wave approximation, the dispersion relation is not, see the inset of figure 4(b); hence308
the improved agreement when adopting the Stokes-flow dispersion relation, particularly in309
figure 4(b), which is rather dramatic in the annular case.310

4.4. Connections with Experiments311

Using the parameters found in experiments of polymer systems considered in (Jiang et al.312
2007; Pottier et al. 2015; Alvine et al. 2012) where a static spectrum has to be presupposed313
to measure the temporal correlations of capillary waves, i.e., (3.8), we calculate the transition314
time to be hours long – it is therefore not immediately clear that the assumption of saturation315
is justified, and this should be confirmed before analysing experimental data.316
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Figure 4: Evolution of capillary spectra for annular films; a comparison between MD results (triangles), the
static spectrum (dashed and dotted line) and the Langevin model. Dispersion relations used in the Langevin
model assuming Stokes flow (solid lines) and a long-wave approximation (dashed lines). Slip lengths (a)
Fibre 1, ℓ = 0; and (b) Fibre 2, ℓ = 1.18 nm. The hydrodynamic boundary is at radius 𝑎 = 2.60 nm and the
initial surface at ℎ0 = 5.74 nm (see Appendix C for measurement details).

Fetzer et al. (2007) presented experiments of dewetting polymer films and compared the317
experimental data with the no-slip planar-film SLE (Grün et al. 2006; Mecke & Rauscher318
2005) to investigate the effects of thermal fluctuations on thin-film dewetting. The high319
viscosity of experimental liquids makes the time scales for instability growth so slow that320
AFM can be used to provide spatio-temporal observations. One of the variables they analysed321
is the roughness of the film surface in experiments, with whichwe can compare our developed322
Langevin model. In their experiments, the dewetting is influenced by disjoining pressure so323
that the capillary spectrum from Langevin model is slightly modified to consider disjoining324
pressure 𝜙:325

𝑆(𝑞, 𝑡) =
√︄
𝑆2(𝑞, 0)𝑒−2Ω𝑡 + 𝐿2 𝑘𝐵𝑇

𝛾𝑞2 + 𝑑𝜙/𝑑ℎ
��
ℎ0

(
1 − 𝑒−2Ω𝑡

)
. (4.4)326

Here 𝜙 = 𝐴

6𝜋ℎ30
and 𝐴 is the Hamaker constant. The long-wave dispersion relation considering327

disjoining pressure is328

ΩLW =
1
𝜇

(
1
3
ℎ30 + ℓℎ

2
0

) (
𝛾𝑞4 + 𝑑𝜙

𝑑ℎ

��
ℎ0𝑞
2
)
, (4.5)329

while the Stokes-flow dispersion relation considering disjoining pressure is330

ΩStokes =
𝛾𝑞2 + (𝑑𝜙/𝑑ℎ)

��
ℎ0

4𝜇𝑞
sinh(2𝑞ℎ0) − 2𝑞ℎ0 + 4𝑞ℓsinh2(𝑞ℎ0)

cosh2(𝑞ℎ0) + 𝑞2ℎ20 + 𝑞ℓ [2𝑞ℎ0 + sinh(2𝑞ℎ0)]
. (4.6)331

The surface roughness𝑊 is thus determined by the spectrum with332

𝑊 =

√︄
1
𝐿2

∫ 𝐿

0

∫ 𝐿

0
(𝛿ℎ)2 𝑑𝑥𝑑𝑦 =

√︄
1
2𝜋𝐿2

∫ 𝑞max

𝑞min

𝑆𝑞 𝑑𝑞. (4.7)333

Here one has to think of the spectrum as radially symmetric in the wavenumber space for a334
two-dimensional surface.335
We use the data of roughness from Experiment 1 (Exp. 1) presented in the figure 2 of336

Rapids articles must not exceed this page length
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Fetzer et al. (2007). To evaluate (4.7), the values of parameters (film thickness, surface337
tension, Hamaker constant, viscosity, 𝑞𝑚𝑖𝑛, 𝑞𝑚𝑎𝑥 and initial condition 𝑆(𝑞, 0)) have to be338
known. Some of them (𝑞𝑚𝑖𝑛, 𝑞𝑚𝑎𝑥 , 𝑆(𝑞, 0)) are unavailable from Fetzer et al. (2007). For339
others, Fetzer et al. (2007) provided referenced values but did not provide the fitting values340
of parameters used to have good fit with experimental data. Therefore, we have to adjust341
some values of parameters to have best match with the fitting curve in the figure 2 of (Fetzer342
et al. 2007) to infer what values may have been used by Fetzer et al. (2007). In summary,343
the values we use are ℎ0 = 3.9 nm, 𝛾 = 0.045 N/m, 𝜇 = 2 × 104 kg/(ms), 𝐴 = 2 × 10−20344
J, 𝑆(𝑞, 0) = 0, 𝑞𝑚𝑖𝑛 = 0.42 nm-1 and 𝑞𝑚𝑎𝑥 = 0.1𝑞′𝑑 , where 𝑞

′
𝑑
is the constant dominant345

wavenumber and 𝑞′
𝑑
=
√︃
1
𝛾

𝐴

2𝜋ℎ40
.346

Since there is no slip (ℓ = 0 nm) and the 𝑞′
𝑑
ℎ0 = 0.0482, which is much smaller than 1,347

the Langevin model with a long-wave dispersion relation (i.e., Planar-film SLE) can be as348
accurate as Langevin model with a Stokes-flow dispersion relation. However, polymer films349
usually have a large slip (up to 1μm) (Fetzer et al. 2005; Bäumchen et al. 2014) on certain350
substrates. We thus suggest a experiment using the same polymer film mentioned above, but351
the film has thickness ℎ0 = 9 nm and a large slip length ℓ = 450 nm on a substrate. We predict352
that this would greatly accelerate the roughening and thus dewetting as shown in figure353
3(b), which highlights the better accuracy of using the Langevin model with Stokes-flow354
dispersion relation.355

5. Conclusion356

We have investigated the dynamic capillary waves of both planar and annular liquid films at357
the nanoscale. A Langevin model with a Stokes-flow dispersion relation is able to accurately358
predict the growth of capillary waves with slip effects, as validated by MD simulations.359
Though our MD simulations of the evolution of an initially smooth surface is ideal, it may360
represent the scenario of the melting of nanoscale metal surfaces by laser pulses (González361
et al. 2013). Our work also provides grounds for carefully evaluating future experiments362
of thin films that currently rely on Capillary Wave Theory. The quantitative analysis of363
spontaneous roughening, which is connected to the theory of Universality Classes, allows364
better understanding of the instability of liquid-vapour or liquid-liquid interfaces (Vrij &365
Overbeek 1968). Though gravity is not considered in current work as it is usually neglected366
at the nanoscale, the introduction of gravity to our Langevin model is straightforward for367
potential applications in larger scales. A topic of future interest will be to investigate how368
capillary length influences the roughening process. The established relation between capillary369
spectra and slip also provides a method to measure large slip length such as water films on370
graphene where a shear-driven method shows considerable statistical errors (Kumar Kannam371
et al. 2012).372
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Appendix A: Stokes-flow dispersion relation for an annular film with slip379

For a liquid film flowing on a fibre, axisymmetric Stokes flow is assumed in the annular380
film. We use the method in (Craster & Matar 2006) to calculate the dispersion relation381
analytically, but now assuming we have slip at the liquid-solid interface. The momentum382
equations are383

𝜕𝑝

𝜕𝑟
= 𝜇

[
𝜕

𝜕𝑟

(
1
𝑟

𝜕 (𝑟𝑢)
𝜕𝑟

)
+ 𝜕

2𝑢

𝜕𝑥2

]
, (A1)384

𝜕𝑝

𝜕𝑧
= 𝜇

[
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑤

𝜕𝑟

)
+ 𝜕

2𝑤

𝜕𝑧2

]
. (A2)385

386

Here 𝑢, 𝑤 and 𝑝 are the radial velocity, axial velocity and pressure, respectively. The mass387
conservation with incompressible assumption is388

1
𝑟

𝜕 (𝑟𝑢)
𝜕𝑟

+ 𝜕𝑤
𝜕𝑧

= 0. (A3)389

In terms of the boundary conditions, we have the slip boundary condition and no-390
penetration condition at the fibre surface 𝑟 = 𝑎 such that391

𝑤 = ℓ
𝜕𝑤

𝜕𝑟
, (A4)392

𝑢 = 0. (A5)393394

At the free surface 𝑟 = ℎ, the no-shear boundary condition, for small surface perturbations,395
is396

𝜕𝑤

𝜕𝑟
+ 𝜕𝑢
𝜕𝑧

= 0, (A6)397

and the normal force balance requires (for small surface perturbations)398

− 𝑝 + 2𝜇 𝜕𝑢
𝜕𝑟

= 𝛾


𝜕2ℎ/𝜕𝑧2[

(𝜕ℎ/𝜕𝑧)2 + 1
]3/2 − 1

ℎ
[
(𝜕ℎ/𝜕𝑧)2 + 1

]1/2  . (A7)399

Meanwhile, the kinematic condition is400

𝜕ℎ

𝜕𝑡
+ 𝑤 𝜕ℎ

𝜕𝑧
= 𝑢. (A8)401

The linear stability analysis of the above equations (A1-A8) is performed using 𝑢 =402
𝑢̃𝑒Ω𝑡+𝑖𝑞𝑧 , 𝑤 = 𝑤̃𝑒Ω𝑡+𝑖𝑞𝑧 , 𝑝 = 𝑝0 + 𝑝𝑒Ω𝑡+𝑖𝑞𝑥 , and ℎ = ℎ0 + ℎ̃𝑒Ω𝑡+𝑖𝑞𝑧 . The linearisation of the403
momentum equations leads to404

𝜇

[
𝑑

𝑑𝑟

(
1
𝑟

𝑑 (𝑟𝑢̃)
𝑑𝑟

)
− 𝑞2𝑢̃

]
=
𝑑𝑝

𝑑𝑟
, (A9)405

𝜇

[
1
𝑟

𝑑

𝑑𝑟

(
𝑟
𝑑𝑤̃

𝑑𝑟

)
− 𝑞2𝑤̃

]
= 𝑖𝑞𝑝. (A10)406

407

For the equation of mass conservation, we have408

1
𝑟

𝑑 (𝑟𝑢̃)
𝑑𝑟

+ 𝑖𝑞𝑤̃ = 0. (A11)409

Using (A9-A11), the elimination of 𝑤̃ and 𝑝 leads to a fourth-order ordinary partial410
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differential equation for 𝑢̃411

𝑑

𝑑𝑟

1
𝑟

𝑑

𝑑𝑟

{
𝑟
𝑑

𝑑𝑟

[
1
𝑟

𝑑 (𝑟𝑢̃)
𝑑𝑟

]}
− 2𝑞2 𝑑

𝑑𝑟

[
1
𝑟

𝑑 (𝑟𝑢̃)
𝑑𝑟

]
+ 𝑞4𝑢̃ = 0. (A12)412

The general solution of this equation is (Craster & Matar 2006)413

𝑢̃ = 𝐶1𝑟𝐾0 [𝑞𝑟] + 𝐶2𝐾1 [𝑞𝑟] + 𝐶3𝑟 𝐼0 [𝑞𝑟] + 𝐶4𝐼1 [𝑞𝑟], (A13)414

where 𝐾0(𝐾1) and 𝐼0(𝐼1) are zeroth (first) order modified Bessel function of second and first415
kind. We can also get the expressions for 𝑤̃ and 𝑝 which are416

𝑤̃ = − 1
𝑖𝑞

{𝐶1 [2𝐾0(𝑞𝑟) − 𝑞𝑟𝐾1(𝑞𝑟)] − 𝐶2𝑞𝐾0(𝑞𝑟)417

+ 𝐶3 [2𝐼0(𝑞𝑟) + 𝑞𝑟𝐼1(𝑞𝑟)] + 𝐶4𝑞𝐼0(𝑞𝑟)} , (A14)418

𝑝 = 2𝜇 [𝐶1𝐾0(𝑞𝑟) + 𝐶3𝐼0(𝑞𝑟)] . (A15)419420

The four coefficients (𝐶1-𝐶4) are determined by the boundary conditions (A4-A8). For421
boundary conditions (A4) and (A5) at 𝑟 = 𝑎, their linearised form are422

𝑤̃ = ℓ
𝑑𝑤̃

𝑑𝑟
, (A16)423

424

𝑢̃ = 0. (A17)425

And for boundary conditions (A6-A8) at 𝑟 = ℎ0, their linearisation gives426

𝑑𝑤̃

𝑑𝑟
+ 𝑖𝑞𝑢̃ = 0, (A18)427

428

− 𝑝 + 2𝜇 𝑑𝑢̃
𝑑𝑟

= (−𝛾𝑞2 + 𝛾 1
ℎ20

) ℎ̃, (A19)429

430

Ω =
𝑢̃

ℎ̃
. (A20)431

A substitution of (A13-A15) into linearised boundary conditions (A16-A20) leads to a set432
of four homogeneous equations, which is433

©­­­«
𝑚11 𝑚12 𝑚13 𝑚14

𝑎𝐾0(𝑞𝑎) 𝐾1(𝑞𝑎) 𝑎𝐼0(𝑞𝑎) 𝐼1(𝑞𝑎)
−𝐾1(𝑞ℎ0) + 𝑞ℎ0𝐾0(𝑞ℎ0) 𝑞𝐾1(𝑞ℎ0) 𝑞ℎ0𝐼0(𝑞ℎ0) + 𝐼1(𝑞ℎ0) 𝑞𝐼1(𝑞ℎ0)

𝑚41 𝑚42 𝑚43 𝑚44

ª®®®¬
©­­­«
𝐶1
𝐶2
𝐶3
𝐶4

ª®®®¬ = 0,
(A21)434

where the elements of first row are given by435

𝑚11 = 𝑞(2ℓ − 𝑎)𝐾1(𝑞𝑎) − (ℓ𝑎𝑞2 − 2)𝐾0(𝑞𝑎),436

𝑚12 = −𝑞𝐾0(𝑞𝑎) − ℓ𝑞2𝐾1(𝑞𝑎),437

𝑚13 = −(ℓ𝑎𝑞2 − 2)𝐼0(𝑞𝑎) − 𝑞(2ℓ − 𝑎)𝐼1(𝑞𝑎),438

𝑚14 = 𝑞𝐼0(𝑞𝑎) − ℓ𝑞2𝐼1(𝑞𝑎). (A22)439440
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The elements of fourth row are given by441

𝑚41 = 2𝜇𝑞ℎ0𝐾1(𝑞ℎ0) − 𝐷ℎ0𝐾0(𝑞ℎ0)/Ω,442

𝑚42 = 2𝜇 [𝑞𝐾0(𝑞ℎ0) + 𝐾1(𝑞ℎ0)/ℎ0] − 𝐷𝐾1(𝑞ℎ0)/Ω,443

𝑚43 = −2𝜇𝑞ℎ0𝐼1(𝑞ℎ0) − 𝐷ℎ0𝐼0(𝑞ℎ0)/Ω,444

𝑚44 = −2𝜇 [𝑞𝐼0(𝑞ℎ0) − 𝐼1(𝑞ℎ0)/ℎ0] − 𝐷𝐼1(𝑞ℎ0)/Ω. (A23)445446

Here 𝐷 is the driving force 𝐷 = 𝛾(𝑞2 − 1/ℎ2).447
The vanishing of the determinant of 4 × 4 matrix gives the dispersion relation Ω = Ω(𝑞).448

Numerically, we use Matlab to solve the determinant of the matrix.449

Appendix B: Capillary spectra from the Langevin model450

For the Langevin equation formulated in the main text451

𝜕

𝜕𝑡
𝛿ℎ = −Ω𝛿ℎ + 𝜁Ω

𝛽
𝑁, (A24)452

its solution can be represented as the linear superposition of two contributions453

𝛿ℎ = 𝛿ℎdet + 𝛿ℎflu, (A25)454

where 𝛿ℎflu is the contribution purely caused by thermal fluctuations and 𝛿ℎdet is the solution455

to the deterministic part of (A24), i.e., 𝜕𝛿ℎ
𝜕𝑡

= −Ω𝛿ℎ; obtained as below456

𝛿ℎdet(𝑞, 𝑡) = 𝛿ℎ(𝑞, 0)𝑒−Ω𝑡 , (A26)457

where the initial disturbance is 𝛿ℎ(𝑞, 0); here this is the Fourier transform of the liquid458
surface found in MD simulations at 𝑡 = 0.459
To find the contribution of the fluctuating component to the spectrum, we determine the460

impulse response of the linear system 𝜕𝛿ℎ
𝜕𝑡

= −Ω𝛿ℎ through:461

𝜕𝛿ℎ

𝜕𝑡
= −Ω𝛿ℎ + 𝛿. (A27)462

Performing a Laplace transform of (A27) using 𝑔(𝑞, 𝑠) =
∫ ∞
0 𝛿ℎ(𝑞, 𝑡)𝑒−𝑡𝑠𝑑𝑡 with zero initial463

disturbance 𝛿ℎ(𝑞, 0) = 0 gives464

𝑔 =
1

𝑠 +Ω
, (A28)465

so that from the inverse Laplace transform, the impulse response is simply466

𝐻 = 𝛿ℎ = 𝑒−Ω𝑡 . (A29)467

Now with thermal fluctuations 𝜁𝑁 as the input, we find468

𝛿ℎflu = 𝜁

∫ 𝑡

0
𝑁 (𝑞, 𝑡 − 𝜏)𝐻 (𝑞, 𝜏)𝑑𝜏. (A30)469

As 𝛿ℎ is both a random and complex variable, the root mean square (r.m.s) of its norm is470
sought, which, from (A25), is given by471 ���𝛿ℎ���

rms
=

√︄���𝛿ℎdet + 𝛿ℎflu���2 =
√︄���𝛿ℎdet���2 + ���𝛿ℎflu���2, (A31)472
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(as the average of 𝛿ℎflu is zero) where from (A26)473 ���𝛿ℎdet���2 = |𝛿ℎ(𝑞, 0) |2𝑒−2Ω𝑡 , (A32)474

and from (A30)475 ���𝛿ℎflu���2 = 𝜁2Ω2

𝛽2

����∫ 𝑡

0
𝑁 (𝑞, 𝑡 − 𝜏)𝐻 (𝑞, 𝜏)𝑑𝜏

����2476

=
𝜁2Ω2

𝛽2

∫ 𝑡

0

���𝑁 (𝑞, 𝑡 − 𝜏)
���2𝐻 (𝑞, 𝜏)2𝑑𝜏477

=
𝜁2Ω2

𝛽2

∫ 𝑡

0
𝐻2𝑑𝜏 (A33)478

=
𝜁2Ω

2𝛽2
[1 − 𝑒−2Ω𝑡 ] .479

480

Thus, we obtain the spectrum of capillary waves as481

𝑆(𝑞, 𝑡) =
���𝛿ℎ���

rms
482

=

√︃
|𝛿ℎ(𝑞, 0) |2𝑒−2Ω𝑡 + 𝑆2𝑠

(
1 − 𝑒−2Ω𝑡

)
. (A34)483484

For an initially smooth surface,
���𝛿ℎ(𝑞, 0)��� = 0, (A34) simplifies to485

𝑆(𝑞, 𝑡) = 𝑆𝑠
√︃(
1 − 𝑒−2Ω𝑡

)
, (A35)486

487

which is (3.6) in the main text.488

Appendix C: Measurements of slip length489

Slip length is measured from independent configurations by simulating pressure-driven490
flow past a substrate surface as shown by the MD snapshots in the top-left corner of figure491
5(a) (for a planar film) and figure 5(c) (for an annular film). The pressure gradient is492
created by applying a body force 𝑔 to the fluid. The generated velocity distribution is493
𝑢(𝑧) =

𝜌𝑔

2𝜇 (𝑧 − 𝑧1) (2𝑧2 − 𝑧1 − 𝑧) + 𝑢𝑠 for a planar film. Here 𝑧1 and 𝑧2 are positions of494

the hydrodynamic boundary (HB) and free surface (FS) for a planar film, respectively, and495
𝑢𝑠 is the slip velocity at the HB. For an annular film, the axisymmetric velocity profile is496
𝑢(𝑟) = −𝜌𝑔

4𝜇
[
𝑟2 − 𝑟21 − 2𝑟

2
1 log(𝑟/𝑟2)

]
+ 𝑢𝑠, where 𝑟1 and 𝑟2 are positions of the HB and FS497

for this system.498
The precise location of two boundary positions for each system is not trivial since there499

is an interfacial zone between the two different phases (solid-liquid and liquid-vapour) as500
demonstrated by the density distribution(the orange line in figure 5(a) and the inset of figure501
5(c)). For the HB, research has showed it is located inside the liquid, between first-peak502
density and second-peak density rather than being located at the solid surface (Bocquet &503
Barrat 1994; Chen et al. 2015) by comparing the analytical solution and MD measurements504
of the correlations of momentum density (an offset which matters when the interfacial layer505
has comparable width to the film). In line with this finding, we choose the position of HB506
at the first valley of density distribution: 𝑧∗1 = 1.3𝜎 for a planar film and 𝑟

∗
1 = 7.65𝜎 for an507

annular film (see figure 5(a) and figure 5(c)). The position of FS is determined in the standard508
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Figure 5: Slip length measured using pressure-driven flows. Figures (a-b) are for planar films with (a) for
case P2 and (b) for case P1 and P3. MD calculations of velocity (triangles) are fitted with analytical solutions
(black solid lines) with the HB (𝑧1) at the first valley of MD density (yellow solid line) and FS (𝑧2) at 0.5𝑛∗𝑙 .
The inset shows slip length as a function of driving force. Figure (c) is for annular films, case A1 and A2.
The inset shows the density profile.

way by the location of equimolar surface where density is 0.5𝑛∗
𝑙
, with 𝑧∗2 = 9.8𝜎 for a planar509

film and 𝑟∗2 = 16.55𝜎 for an annular film (see figure 5(a) and figure 5(c)).510
After locating the boundary, the slip velocity is obtained by fitting velocity profiles of511

MD data (symbols) with analytical expressions of velocity (solid black lines) as shown in512
figure 5(a). The slip length ℓ is the distance between the HB and the position where the513
the linear extrapolation of the velocity profile vanishes. Figure 5(a) is, in particular, for the514
measurement of slip length of case P2 where the slip length is measured to be ℓ∗ = 9.3𝜎515
(3.16 nm) (ℓ = 0.68 nm for P1 and ℓ = 8.77 nm for P3, see figure 5(b)). In figure 5(a),516
two different values of driving forces 𝑔∗ = 0.01 and 𝑔∗ = 0.006 are used to prove that the517
measured slip length is a constant independent of driving forces (𝑔∗ 6 0.01). However, as the518
inset shows, the slip length become force (shear)-dependent for 𝑔∗ > 0.01, which is beyond519
current consideration (Thompson & Troian 1997). As the driving forces in the free-surface520
flows studied for capillary waves are small, the assumption of a constant slip length holds.521
For annular films, as shown in figure 5(c), the slip lengths are ℓ = 0 nm (no-slip) for case522

A1 and ℓ = 1.18 nm for A2. Similar to the planar cases, we make sure that the slip lengths523
for annular cases are constant using driving forces with different strength.524
We note that as the HB does not align with the edge of the solid, the effective thickness525

of the fluid domain simulated for capillary waves in the main text is different with its initial526
thickness. For a planar film, as the position of the initial free-surface is at 3.34 nm (see §2)527
and the HB is at 𝑧1 = 0.44 nm, the effective thickness of a planar film is 2.9 nm. For an528
annular film, this means 𝑎 = 𝑟1 = 2.6 nm and outer radius ℎ0 is 5.74 nm.529
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