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Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR
measurements

Jincheng Zhang?, Xiaowei Zhao®*

“School of Engineering, University of Warwick, Coventry, UK

Abstract

Spatiotemporal wind field information is of great interest in wind industry e.g. for wind resource assessment and wind turbine/farm
monitoring & control. However, its measurement is not feasible because only sparse point measurements are available with the
current sensor technology such as LIDAR. This work fills the gap by developing a method that can achieve spatiotemporal wind
field predictions by combining LIDAR measurements and flow physics. Specifically, a deep neural network is constructed and
the Navier-Stokes equations, which provide a good description of atmospheric flows, are incorporated in the deep neural network
by employing the physics-informed deep learning technique. The training of this physics-incorporated deep learning model only
requires the sparse LIDAR measurement data while the spatiotemporal wind field in the whole domain (which can not be measured)
can be predicted after training. This study, which can discover complex wind patterns that do not present in the training dataset,
is totally distinct from previous machine learning based wind prediction studies which treat machine learning models as “black-
box” and require the corresponding input and target values to learn complex relations. The numerical results on the prediction of
the wind field in front of a wind turbine show that the proposed method predicts the spatiotemporal flow velocity (including both
downwind and crosswind components) in the whole domain very well for a wide range of scenarios (including various measurement
noises, resolutions, LIDAR look directions, and turbulence levels), which is promising given that only line-of-sight wind speed

measurements at sparse locations are used.

Keywords: Deep learning, LIDAR measurements, Physics-informed neural networks, Wind field prediction

1. Introduction

As one of the most important renewable energy resources,
wind energy is under fast development all over the world. While
driving large mechanical devices (such as horizontal-axis wind
turbines) to generate power, wind is also the main source of
disturbance that causes damages to these devices and under-
mines the quality of the generated electricity. In order to make
good use of the incoming wind and to mitigate the impact of
the disturbance, wind speed measurement technologies, such
as light detection and ranging (LIDAR) [1], have been devel-
oped in recent years. Extensive research efforts have since then
been spent in the measurement analysis of LIDAR [2, 3] and
their applications in wind turbine control [4, 5] and wind re-
source assessment [6, 7]. However, LIDAR can only provide
wind speed measurements at sparse spatial locations along the
laser beam. As pointed out in [8], it can only measure the line-
of-sight (LoS) wind speed in the laser beam direction, so the
wind speed magnitude and direction have to be estimated (Cy-
clops’ dilemma). Thus the spatiotemporal wind field measure-
ment is out of reach with the current sensor technologies. On
the other hand, the detailed wind information is of great interest
because it can offer brand new opportunities in wind industry
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e.g. developing strategies on the wind resource assessment and
the monitoring and control of wind turbine/farm. For example,
detailed wind information was investigated based on CFD sim-
ulations for the wind resource assessment of complex terrains
in [9, 10] while the control of wind turbines based on detailed
flow structures was studied in [11] which showed the detailed
wind information could improve the control performance sig-
nificantly. Therefore, this work aims to bridge the gap between
the limitation of the current wind measurement technology and
the need of spatiotemporal wind information in various appli-
cations, by developing a deep learning based method that can
predict the spatiotemporal wind field in the whole flow domain
through combining LIDAR measurement and flow physics.

Currently there are very limited studies on unsteady wind
field predictions from LIDAR measurements. In [12], a wind
field reconstruction method was proposed, where a simplified
dynamic model of the atmospheric boundary layer was derived
and then an unscented Kalman filter (UKF) was used to esti-
mate the model state from LIDAR measurements. The sensitiv-
ity study of the developed method was also carried out, where
different beam half-angles, look directions, atmosphere condi-
tions, and measurement noise levels were considered. In [13],
a velocity and pressure field estimation framework was pro-
posed, where a reduced order dynamic model was built based
on Navier-Stokes (NS) equations, by uniquely employing a
pressure Poisson equation formulation in conjunction with a
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List of terminologies (abbreviations)

DoF Degree of freedom NN Neural network

FSTI Freestream turbulence intensity NS Navier-Stokes

HPC High-performance computing PDE Partial differential equation

LES Large eddy simulation PINN Physics-informed neural network

LIDAR  Light detection and ranging SOWFA Simulator for Offshore Wind Farm Applications
LoS Line-of-sight UKF Unscented Kalman filter

MRMSE Mean value of the root-mean-squared errors

List of terminologies (parameters and variables)

B; The bias term in the NN i The prediction value of the wind magnitude

D The turbine rotor diameter u* The true value of the wind magnitude

9 The dataset of all the NS test points Us The average freestream wind speed

9 The nondimensionalized 2 U The effective wind speed

L+1 The total number of layers in the NN w' All the LIDAR measurements by the left beam
A The loss arising from NS residue terms w! Nondimensionalized left beam data

% The loss arising from LIDAR observations wr All the LIDAR measurements by the right beam
Z The total NN loss /4 Nondimensionalized right beam data

Niof The total DoF of the NN w; The weight matrix in the NN

Ny, The batch size for right-beam test points [, 31 The spatial coordinate of points in the left beam
Ny, The batch size for left-beam test points [X7, 9] The spatial coordinate of points in the right beam
Ny The batch size for NS residue terms [x*,y", 1] The test points to evaluate NS residue terms

Ny, The neuron number of the hidden layers & The MRMSE of the predicted wind magnitude
N! The total number of points in the left beam € The MRMSE of the predicted wind direction
N™ The total number of points in the right beam ¥ The prediction value of the wind direction

Niest The total number of NS test points v* The true value of the wind direction

T The total time period % The kinematic viscosity of air

it The LIDAR measurement values W The stream function

up, NN output of the LoS speed in the right beam o The activation function in the NN

up, NN output of the LoS speed in the left beam

Table 1: The main terminologies (including abbreviations, parameters and variables) mentioned in this paper.

basis function decomposition method. Then a modified UKF
algorithm was used for the state estimation. The proposed
method was validated by both numerical experiments and real-
world LIDAR measurements.

The aforementioned studies employed traditional approaches
and relied on either low-fidelity flow models or reduced order
modeling of NS equations. Thus the prediction accuracy was
undermined. In this work, machine learning approach will be
employed with NS equations being directly encoded into the
wind field prediction process, which can approximate the com-
plex nonlinear dynamics of the incoming wind without model
reduction.

Machine learning, in particular deep learning [14], is de-
veloping very fast in the past few years, and its applications
in wind industry have also seen great successes e.g. in wind
power forecasting [15], wind speed forecasting [16, 17], and
wind farm wake modeling [18, 19]. However, the incorpo-
ration of physical laws in the training of deep learning mod-
els has not been explored in wind energy studies while such
ideas are emerging in other physical systems such as the data-
based turbulence modeling [20, 21], the discovery of govern-
ing equations [22, 23], solving high-dimension partial differen-
tial equations (PDEs) [24] and the surrogate modeling of phys-

ical systems [25, 26]. Recently a versatile machine learning
framework for solving forward and inverse problems involving
PDEs, called physics-informed neural networks (PINNs), was
proposed in [27]. The main idea of PINNSs is to encode PDEs
in terms of loss functions, which are then used for neural net-
work (NN) training together with the available labelled data.
Specifically, automatic differentiation [28] is employed to take
the derivatives of the NN output with respect to the NN input
(i.e. space and time coordinates). These derivatives are then
used to form the loss functions that represent the residues of the
PDEs. The development of PINNs is becoming very active. Re-
cent studies include both method development (such as its un-
certainty quantification [29], the use of adaptive activation func-
tions [30] and the learning from multi-fidelity [31] and noisy
data [32]) and various applications (such as vortex-induced vi-
brations [33], high-speed flow [34], and hidden-physics infer-
ence from flow visualizations [35]).

In this work, following the PINNs framework [27], a deep
learning based method is proposed for the predictions of spa-
tiotemporal wind field using only LIDAR measurements at
sparse locations. Here the NS equations are encoded in the deep
NN and an observation process is embedded into the NN which
maps the full flow state to LIDAR observations. The NN train-



ing is carried out to minimize both the functional loss (which
encodes the NS equations) and the measurement loss (which
is based on LIDAR observations). We distinguish our method
with traditional numerical methods and existing machine learn-
ing based wind prediction methods as follows: 1) Various nu-
merical models e.g. [36, 37, 38] are widely used for wind sim-
ulations and the detailed wind field can be obtained by solving
the NS equations numerically with properly-defined boundary
conditions or the input conditions estimated from measurement
data [39]. However, these models are mainly designed for for-
ward simulations of wind flows. It is extremely challenging
to incorporate real-time scattered measurement data in these
models because it involves solving the inverse problem, which
would require a formidable number of time-consuming simula-
tions to calibrate the model parameters and the input conditions
against the measurement data. In contrast, the PINNs frame-
work is specifically designed to incorporate data and PDEs in
a unified manner which makes it very powerful in solving in-
verse problems governed by PDEs. 2) Previous machine learn-
ing based wind prediction studies e.g. [16, 18, 40] treat machine
learning models as “black-box” and require the corresponding
input and target values for training. Then they can predict the
wind patterns which are present in the training dataset. We
mention that the paper [40] did explore to involve physics in
the form of simple analytical relations in the design of the ma-
chine learning on the wind farm modeling, which showed very
promising results. However, all these studies followed the tra-
ditional supervised machine learning, thus can not discover the
wind patterns that are not present in the measurement data. In
summary, our work, which fuses physics in terms of PDEs and
data in the deep learning training process for wind applications
for the first time, can achieve the predictions of spatiotempo-
ral wind field in the whole domain based on only line-of-sight
LIDAR measurements at sparse spatial locations, which is not
achievable by either traditional numerical models or existing
machine learning based models in the literature.

The method proposed in this work is tested and validated us-
ing large-scale numerical simulations based on SOWFA (Sim-
ulator for Onshore/Offshore Wind Farm Applications) [41].
SOWFA is a numerical solver based on OpenFOAM for the 3D
large eddy simulation (LES) of wind flow around wind turbine
array in the atmospheric boundary layer, which is developed by
National Renewable Energy Laboratory. It is widely used [41]
and has been validated in various studies such as the study of
the turbine dynamics [42] and the control of wind farms [43].
It is used in this work as the high-fidelity numerical experi-
ment platform to simulate the real-world wind flows in the at-
mospheric boundary layer. The LIDAR measurement and the
turbulent wind field are extracted from SOWFA simulations as
the model training data and the ground truth (for model valida-
tion) respectively. The results show that the proposed method
can predict the spatiotemporal wind field very well, including
both the wind magnitude and direction predictions. In particu-
lar, the propagation of the high-speed/low-speed flow structures
in the incoming wind is accurately predicted, which is of great
importance for wind turbine control. To further demonstrate
the method’s robustness, a sensitivity analysis is also carried

out, where LIDAR measurements with various levels of noise
and under different LIDAR spatial/temporal resolutions, differ-
ent LIDAR look directions and different freestream turbulence
intensity (FSTI) levels are considered. The results show that
the proposed method performs very well under all the scenarios
considered.

The main contributions and novelties of this paper are sum-
marized as follows:

(1) The prediction of spatiotemporal wind velocity field in
the whole flow domain based on line-of-sight wind speed
at only a few sparse locations measured by LIDAR
is achieved, which is of great importance for develop-
ing advanced approaches for the wind resource assess-
ment and for the monitoring and control of wind tur-
bine/farm. The developed method can achieve: i) the pre-
diction of flow dynamics over the whole domain of inter-
est, including the spatial locations where no measurements
are available; ii) great accuracy in wind field estimation,
because the spatiotemporal correlations between measure-
ments are taken into account implicitly through NS equa-
tions without model reduction; iii) robust wind estimation
in the scenarios of both “small” and “big” data, as the is-
sue of overfitting commonly encountered in deep learning
is tackled by enforcing the physical constraints.

(2) To our knowledge, this is for the first time that physi-
cal laws (in terms of PDEs) and data are fused in the
training of deep learning models for wind applications.
Specifically a deep NN with a large degree of freedom is
constructed and then the NS equations (which provide a
good description of atmospheric flows) are incorporated di-
rectly in the deep NN. After that, the deep NN is trained to
minimize the errors from both fitting the LIDAR measure-
ments and enforcing the NS equations. Because the ex-
isting wind prediction studies are either purely data-driven
[16, 17] or based on low-fidelity/reduced order models
[12, 13], they can not take full advantage of both physical
laws in terms of PDEs and data.

(3) The developed method is validated through high-fidelity
LES wind farm simulations and its robustness is veri-
fied under a wide range of scenarios. The results show
that the proposed method predicts the spatiotemporal flow
velocity in the whole flow domain very well for all the
considered scenarios including LIDAR measurements with
various levels of noise and under different LIDAR spa-
tial/temporal resolutions, different LIDAR look directions
and different FSTI levels. Both the wind magnitude and
direction are accurately predicted by using only the LoS
LIDAR measurements, overcoming the Cyclops’ dilemma.
A short-term wind forecasting is also achieved which does
not rely on the Taylor’s frozen turbulence hypothesis [44],
as the NN learns the dynamics of the evolving wind field
from NS equations.

The remaining part of this paper is organized as follows: the
deep learning based method for the spatiotemporal wind field
predictions is described in Section 2. Then the performance
of the proposed method is tested by using an LES wind farm



simulator as the experimental platform in Section 3, where a
wide range of scenarios are considered to verify the robustness
of the proposed method. Finally the conclusions are drawn in
Section 4. The main terminologies mentioned in this paper are
presented in Table 1.

2. Methodology

This work addresses the problem of predicting the spatiotem-
poral wind velocity field in the whole flow domain by physics-
informed deep learning and LIDAR measurements at sparse
spatial locations. The considered LIDAR configuration is illus-
trated in Figure 1(A), where two laser beams in the horizontal
hub-height 2D plane (shown as the shaded blue area) are used
to measure the LoS wind speed in the laser beam directions at
a frequency of 1s at discrete spatial locations along the beams
(marked as cross signs in Figure 1(A)). The half-angle of the
beams is 15°. An example of the wind speed measurements by
the left and right beams at these discrete locations during a time
period from O to T is shown in Figure 1(B). The wind field pre-
diction problem thus states as how to predict the spatiotemporal
velocity (including both the downwind and crosswind compo-
nents) field in the domain of interest (i.e. the whole hub-height
2D flow domain coloured in blue in Figure 1(A) ) from time 0
to T based on only the LoS wind speed measurements at a few
sparse locations marked as cross signs in Figure 1(A).

This task is not achievable by using the traditional supervised
machine learning framework with whether simple NN such as
multi-layer perceptions or complex NN such as convolution NN
and recurrent NN, because the traditional framework requires
the information on the whole spatiotemporal wind field as train-
ing data, but in reality only the LoS wind speed data at sparse
locations is available. In order to reconstruct the spatiotempo-
ral wind field based on only sparse measurement data, our work
employs the novel PINNs framework, where the incompressible
NS equations, which provides a very good description for many
fluid flows such as atmospheric boundary layer flows, are fused
with LIDAR data in the training of the deep learning model.

The overall flowchart illustrating the proposed method is
shown in Figure 1, where the training dataset collection, the
deep NN structure and training, and the model prediction are
illustrated in Figure 1(A-B), Figure 1(C), and Figure 1(D-E)
respectively. The detailed training and prediction process is de-
scribed in the rest part of this section.

2.1. Training dataset

The training dataset in this work is the LoS wind speed val-
ues at sparse spatial locations measured by LIDAR beams. The
data measured by the left and right beams are collected sepa-
rately as the observation process (i.e. the function that maps the
flow states to the measurement values ) depends on the beam
direction. Denote the spatial coordinate of the i measurement
point in the right beam as [%], §7], the spatial coordinate of the
i measurement point in the left beam as [fcf, j)f], and the LIDAR
measurement values at these coordinates at 7 second as Uz 57
and iy 5 7 respectively. We then collect all the LIDAR measure-
ments by the right beam during a time period of T seconds as

the data matrix %" of shape [N"xT,4], where N" represents the
total number of discrete points in the right beam and each row of
" consists of the spatiotemporal coordinate [X!, ¥, 7] and the
corresponding measurement value iz 57 - The measurements

by the left beam are collected in the same way as %' of shape
[N! x T,4] with N representing the total number of discrete
points in the left beam. These data matrices are then nondi-
mensionalized by the characteristic length D, the characteristic
time D/U., and the characteristic velocity U, where D repre-
sents the turbine rotor diameter and U, represents the average
freestream wind speed. The nondimensionalized data matrices,
which are the only wind data required for the NN training, are
hereby denoted as %" and %". In order to evaluate the trained
machine learning model, the test dataset is specified as the spa-
tiotemporal flow field in the whole domain in front of the wind
turbine during the same time period 7. To avoid confusion, we
mention that the training and test dataset in this work are totally
different, with the former consisting of the LoS wind speed data
at sparse locations and the latter consisting of the wind velocity
vectors at every locations in the 2D plane in front of the wind
turbine, while in the supervised machine learning they are gen-
erally of the same data structure and are usually obtained by
dividing the same dataset.

2.2. Neural network structure

After collecting the training dataset, a fully-connected deep
NN is constructed, which is illustrated in shaded grey and de-
noted as DNN1 in Figure 1(C). This deep NN takes the nondi-
mensional spatiotemporal coordinate (i.e. [z, x,y]) as the input
and returns the nondimensional stream function [45] and the
pressure as the output (i.e. [, p]). It is used to approximate
the mapping between the continuous spatiotemporal coordinate
and the corresponding quantities, such that given any time in-
stant #; and any location [x;, y;] the deep NN is trained to return
W(t;, x;,y;) and p(t;, x;, y;) as the output. However, no data about
p and  is needed for training this NN because these quanti-
ties are just auxiliary quantities used for deriving the velocity
and encoding NS equations. This fully-connected NN can be
expressed in recursive form as

Hy =[t,x,y],
Hi=0(Hi--Wi+B),1<i<L, (1)
HL = [l//sp],

where L + 1 represents the total number of layers in this deep
NN, {W;,1 <i<L}and {B;,1 <i < L} represent all the training
variables in this NN, and o represents the activation function.
The shapes of the weight matrix Wy, {W;, 1 <i < L} and W, are
[3, Nul, [Ny, N] and [Ny, 2] respectively, where N, represents
the neuron number of the hidden layers. The shapes of the bias
term {B;,1 < i < L} and By, are [1, N;] and [1, 2] respectively.
The total degree of freedom (DoF) of this deep NN (i.e. the
total number of training variables) can then be calculated as

Nyoy = 3Ny + (L = 2)NyNy, + 2N + (L= )N, +2. (2)

The hyperbolic tangent function is used for all the hidden lay-
ers in this work and the activation is not applied for the output
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Figure 1: The flowchart illustrating the proposed spatiotemporal wind field prediction method. (A) LIDAR configuration. (B) The LoS wind speed measured by the
left and right laser beams during a certain period. (C) The deep learning model which incorporates the NS equations and LIDAR measurements. (D) The prediction
of wind velocity at a given time instant and a given location after NN training. (E) The wind field prediction in the whole domain at a given time instant.



layer. We mention that L is typically very large. Thus the NN
is termed “deep” and it is this deep structure that enhances the
ability of the NN in capturing very complex nonlinear dynam-
ics. We mention that fully-connected NN with such large DoF
is generally not used in traditional supervised machine learning
as the issue of overfitting is hard to tackle, while it can be used
in this work as overfitting is constrained by the encoded PDEs
in the physics-informed deep learning framework.

After constructing this deep NN, a second NN, as shown in
shaded green and denoted as DNN2 in Figure 1(C), is con-
structed which takes the nondimensional spatiotemporal coor-
dinate (i.e. [¢, x, y]) as the input and returns the nondimensional
downwind velocity u, crosswind velocity v and pressure p as
the output. This second NN is derived based on the first NN,
by taking the derivative of the NN output of the first NN with
respect to the NN input using automatic differentiation. Thus it
shares the same training variables with the first NN and no new
training variables are created. The output of this second NN is
derived by

o0y = u, -0 /0x = v. 3)
Therefore, the continuity equation
ou Ov
—+ — =0, 4
ox Qdy @)

is satisfied automatically. As LIDAR can only measure the LoS
wind speed, no data about u or v is available for the NN training.
To train the NN with the LIDAR data, an observation process
that maps the flow state (i.e. [u, v, p]) to LIDAR observations
(ie. [uy,, ufos]) is embedded to the second NN, which is shaded
in light red in Figure 1(C). The functions f; and f, in Figure
1(C) represent the right and left beam observation processes
respectively, which are expressed as

fi(u,v) = ucos(15°) — vsin(15°) 5)
H(u,v) = ucos(—15°) — vsin(—15°) (6)

The inclusion of more LIDAR beams and/or other types of flow
sensors such as pressure sensors, is straightforward by embed-
ding the corresponding observation processes in this second
NN. In this work, only f; and f, are embeded as only the mea-
surements from the left and right LIDAR beams are used for the
NN training.

Next, a third NN, as shown in shaded pink and denoted as
DNN3 in Figure 1(C), is constructed based on the second NN
by taking the derivative of the NN output with respect to the
NN input using automatic differentiation. This NN, which is
the physics-informed part, takes the nondimensional spatiotem-
poral coordinate (i.e. [#, x,y]) as the input and returns the NS
residue terms (i.e. [e,, €,]) as the output. The NS residue terms
are defined by reformulating the following nondimensional 2D
NS equations

ou 814 Oou 817 u  0u

o T ey T Tox * g * a0
v av ov 8p 1 &v %
E+ua+\/6—y (9)) Eﬁ-’-a_yz)’ (8)

as
ou ou ou dp 1 0*u d*u
u = a. A, 5 \5 o a0 9
=BT 6x+vc'?y+8x Re 8x2+8y2) ©)
av av o op 1 v v
vE—FU—F+Vv—+ — - — (5 + —). 10
“= o T o v&y 0y Re 0x* 6y2) 10

Here Re = (U D)/v with v representing the kinematic viscosity
of air.

In summary, there are three deep NNs constructed in the
whole NN structure. However, they are essentially just one NN
in terms of training, as all of them share exactly the same train-
ing variables and only one loss function will be defined to train
these training variables. The NN training and prediction details
are described in the next subsection.

2.3. NN training and prediction

The deep NN is trained to minimize the loss arising from
both the NS residue terms and LIDAR observations. The loss
arising from NS residue terms is defined as

Nos

ns nS)|2

yl ,t Jd”, y?s’ r;m)|2

11

where {[x}*, y?*, £/*], 1 < i < N} is a batch of test points which
is fed to the deep NN to evaluate e, and e,. In practice, a set
of test points in the spatiotemporal domain of interest are first
collected in a data matrix 7 of shape [Ny, 3], where Ny is
the total number of test points and each row of & contains one
spatiotemporal coordinate. Then {[x[*, y*,#/°],1 < i < Ny} is
generated by randomly sampling from the data matrix &, which
is the data matrix & nondimensionalized by the characteristic
scale D and D/U. In this work, a 81 x 41 X 101 uniform grid
points in the domain [-240, 0]m x [-60, 60]m X [0, 100]s are
used to generate 7.
The loss arising from LIDAR observations is defined as

Na
1 1
R I AR
4 o
Ndz
+ —Z|u,os(xl,y i) — ulf? (12)

4 0

where {[x],y},#,u;],1 < i < Ny} is a batch of right beam
measurement data which are randomly-sampled from the ma-
trix %", and {[x},y,, 7, u!],1 < i < Ny} is a batch of left beam
measurement data which are randomly-sampled from the ma-
trix %",
Finally, the deep NN is trained to minimize the total loss de-
fined as
L =LA+, 13)
by feeding the data batches {[x°, :”, t:”] 1 < i £ Nyl
{[xl, ¥, ¢, u]l,1 < i < Ng} and {[xl,yl, i ﬁ],l < i < Ny}
to the NN simultaneously during each training iteration. The



Algorithm 1 The NN training and prediction procedure

% The NN training
Load LIDAR measurement data, i.e. %" and %".
Load the time and space coordinates of NS test points 2.
Set training iteration number Ny,
Set the batch size N, Ng,, Ng,.
foriin[1,2,..., Ni,] do
Generate data batches of size Ny, Ny, and N,, from
U", %' and 2 respectively.
8: Train the deep NN by feeding these data batches to min-
imize the total loss .Z.
9: end for

AR O i

10: % The NN prediction

11: Set any time coordinate of interest ¢.

12: Set a mesh of dimension N, for the whole 2D domain.

13: for iin[1,2,....N,.esn] do

14: Set [x;, y;] by the location of the i mesh point.

15: Propagate [x;, y;, t] through DNN2 to predict  and v at
the i mesh point.

16: end for

17: The wind field in the whole domain at time ¢ is obtained by
combining the u and v predictions at all the mesh points.

Adam optimization algorithm [46] is employed in this work for
the NN training.

After training, the spatiotemporal flow field in the whole flow
domain, including both the downwind and crosswind velocity
components, can be predicted. Specifically, given any time co-
ordinate #; and space coordinate [x;, y;], the corresponding wind
speed u; and v; can be predicted through the second NN, as
shown in Figure 1(D). The prediction of the flow field in the
whole domain at a given time instant, as shown in Figure 1(E),
can be achieved by propagating the given time coordinate and
the space coordinates of all the mesh points in the domain of
interest through the second NN. The whole training and pre-
diction procedure is summarized as Algorithm 1. In addition,
we mention that after training, the short-term flow field fore-
casting can also be carried out in a straightforward manner by
simply specifying the time 7 in Line 11 of Algorithm 1 as the
time coordinate of interest in the future.

3. Numerical results

The wind field prediction method developed above is eval-
uated in this section, by using the LES wind farm simulator
SOWFA as the experimental platform. The simulation setups
are described first, then the spatiotemporal flow field prediction
is carried out and the results are validated with the correspond-
ing true values (i.e. the SOWFA simulation results).

3.1. Simulation setups

The LES wind farm solver SOWFA is employed here to
simulate the turbulent atmospheric boundary layer. For the
mesh generation, as suggested by [43], a uniform mesh of size

Top View

wind flow

3000m

Mesh: 12mx12mx12m

3000m

Figure 2: A top view of the simulation domain at the turbine hub height. The
contour shows the instantaneous flow velocity magnitude.

12m X 12m X 12m is used in the whole simulation domain of
size 3000m x 3000m x 1000m, which is illustrated in Figure
2. The total number of cells is about 5.2 x 10°. 400s simula-
tions are carried out with a time step of 0.02s. From the last
100s simulations, the left and right LIDAR measurements are
collected, and the corresponding wind field data at turbine hub-
height is recorded for validation. In particular, the LIDAR mea-
surement process is simulated by extracting the velocity vectors
at the corresponding spatial locations, and then projecting them
onto the LIDAR beam directions to obtain the LoS wind speed
measurements. The turbine rotor dynamics is excluded in this
work, similarly as previous studies [12, 13]. We mention that
the rotor’s blockage effects have impacts on the flow field in the
vicinity of the wind turbine [47, 48], but the impacts become
negligible in the freestream flow further upstream which is the
main interested region for this work. The simulation in this
work is carried out in local high-performance computing (HPC)
clusters, which takes around 2 hours’ computational time using
256 processors.

3.2. Performance evaluation

A baseline case is used here to test the performance of the
proposed method. For the turbulent atmospheric boundary layer
simulations, an average freestream wind speed of 8m/s with an
FSTI level of 6% is considered. For the LIDAR configurations,
the range of the LIDAR beams is 220m and the distance be-
tween discrete measurement points is 20m. There are a total
of 11 spatial measurement points per LIDAR beams. The LI-
DAR measurement is carried out every second during the whole
period of 100 seconds and the measurement noise is excluded.
Since the wind turbine usually operates with a yaw angle equal
to 0°, the LIDAR look direction is set as the mean wind direc-
tion in this baseline case.



There are still some hyper-parameters in the NN structure
and the NN training procedure to be determined. The tun-
ing of the hyper-parameters is carried out by trying a set of
configurations and comparing their training losses. The hyper-
parameters’ values used in this work are given in Table 2. As
can be seen, the final NN used in this work has a total of 12
layers (L + 1) and the neuron numbers of the hidden layers are
128. This results in a total DoF of 149378. This deep structure
with such a large DoF enables the NN to accurately approxi-
mate complex nonlinear PDE systems such as the NS systems
in this work. The further increase of the layer number and the
neuron number is tested, which has little impact on the NN’s
performance. Thus the parameters given in Table 2 are used.
The NN training is carried out using the NVIDIA Tesla K80
GPU in this work with each training iteration requiring about
0.17s. After training, the prediction of the flow field at any time
instant of interest requires about 0.012s. These demonstrate that
the proposed method can meet real-time control requirement
by pre-training and online updating. We mention that train-
ing schemes based on transfer learning could possibly decrease
the computation time, which needs further investigations and is
outside the scope of the current work.

L Nh an Nd1 Ndz Ir

11 128 1000 1100 1100 107*

Table 2: The hyper-parameters in the NN structure and the NN training proce-
dure. Here Ir represents the learning rate.

After the NN training, the unsteady velocity field during the
considered period of 100s is predicted by the deep NN. Three
predicted snapshots, at time ¢+ = 50s, t = 60s and r = 70s,
along with the corresponding true snapshots (i.e. the snap-
shots obtained by SOWFA), are shown in Figure 3. As can
be seen, all the predicted snapshots agree with the true snap-
shots very well. The wind direction and magnitude have been
well resolved (Cyclops’ dilemma), which is achieved because
the correlations between the LoS wind speed measured at dif-
ferent locations are taken into account implicitly through NS
residue terms in the NN training procedure. Also, the down-
stream convection of flow structures in the incoming wind is
clearly captured. As shown from the predicted flow fields in
Figure 3(a, c, e), a high-speed flow structure enters the consid-
ered flow domain from the left at = 50s, travels to the middle
at ¢+ = 60s, and hits the wind turbine at the right side of the
domain at ¢+ = 70s. This successful identification of the flow
structure and its downstream convection are of great interest.
For example it can be used for wind turbine control to mitigate
the structural loads. In [11], it was shown that significant wind
turbine blade load reduction was achievable by taking the co-
herent flow structures into account in the wind turbine control
design. The paper [11] assumed that the coherent structures
were known and fully measurable, and pointed out that the pre-
diction of the detailed incoming wind information would play
an important role in the level of load mitigation. Therefore, the

Case  Quantity (units) Range MRMSE

) Magnitude (m/s) [6.71, 9.52] 0.198
Direction (°) [-6.03, 8.28] 2.77
E1) Magnitude (m/s) [6.71,9.52] 0.208
Direction (°) [-6.03, 8.28] 2.75
Magnitude (m/s) [6.71,9.52] 0.236

(B2)
Direction (°) [-6.03, 8.28] 3.32
Magnitude (m/s) [6.71, 9.52] 0.387

(B3)
Direction (°) [-6.03, 8.28] 3.73
Magnitude (m/s) [6.71,9.52] 0.523

(B4)
Direction (°) [-6.03, 8.28] 4.35
© Magnitude (m/s) [6.71,9.52] 0.212
Direction (°) [-6.03, 8.28] 2.85
) Magnitude (m/s) [6.71, 9.52] 0.222
Direction (°) [-6.03, 8.28] 2.66
® Magnitude (m/s)  [6.70, 9.73] 0.281
Direction (°) [11.4,27.8] 2.46
® Magnitude (m/s) [6.71, 8.96] 0.204
Direction (°) [-6.37, 6.13] 2.69

Table 3: The MRMSE between the predicted and the true flow fields during the
whole time period, for all the scenarios considered in this work, including (A)
the baseline case, (B1-B4) LIDAR measurements with various levels of noise,
(C) half spatial resolution, (D) half temporal resolution, (E) 20° LIDAR look
direction, and (F) FSTI level of 1%.

prediction results in our work fill this research gap by providing
an effective way for detailed flow predictions and flow structure
detection.

The unsteady wind field visualization is given in the support-
ing material of this paper, including both the prediction results
and the true results given by SOWFA (see Video 1). As shown
in the video, the unsteady flow details such as the convections of
high-speed/low-speed flow structures, are predicted accurately,
which demonstrates the great performance of the proposed pre-
diction method.

To further quantify the accuracy of the proposed method, the
mean value of the root-mean-squared errors (MRMSE) between
the predicted and the true wind speed fields during the whole
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Figure 3: The velocity field predicted by the proposed method at the baseline case, at time (a) ¢ = 50s, (c) t = 60s and (e) r = 70s. The corresponding true values

are also shown for comparisons (b, d, ).

time period is given in Table 3, which is defined as

(u;ivyi,t - ﬁxi,yi,l)z’ (14)

where the total time 7 is 100, the total number of test points
Niesr 18 3321, {[x;, yil, | < i < Nies} is the 81 X 41 uniform-grid
test points in the considered domain, and iy, y, , and u; . , repre-
sent the corresponding wind speed predictions and true values.
Similarly, the MRMSE between the predicted and true wind di-
rection fields is defined as

1 T 1 Nre'xl
== = it)? 15
€y T ; Ntest ;('yxi,y,-,t 7x,,y,,l) > ( )

where ¥y, and y} . , represent the corresponding wind direc-
tion predictions and true values. As shown in Table 3, the pre-
diction performance is quite satisfactory. The MRMSE is just
7.0% of the freestream wind speed range at this baseline case.

We now demonstrate the potential use of the proposed pre-
diction method for wind turbine control. First the effective wind
speed can be extracted from the predicted spatiotemporal wind
field, which is defined as the wind speed averaged over the rotor
plane and calculated by

Z

_ 1
Ux,t = ﬁ U,y ts
Y=l

(16)

where {[x,y;],1 <i < N,} is aset of spatial points at a fixed dis-
tance before the turbine location and uniformly distributed from
—D/2 to D/2 in the spanwise direction. Figure 4 shows the ef-
fective wind speed averaged over y direction at x = —130m,
x = =90m, x = =50m and x = —10m, which correspond to
120m, 80m, 40m and Om before the turbine location respec-
tively. The corresponding true values extracted from SOWFA
results are also shown. As can be seen, the predicted effective
wind speed matches with its true value very well. We mention
that the accurate prediction of the effective wind speed is not
unexpected as it is calculated based on the accurately-predicted
spatiotemporal wind information. This can help wind turbine
control e.g. on power regulation and load reduction.

Second, the proposed method can predict the instantaneous
wind speed at various turbine locations. As shown in Figure 5,
three spanwise locations, including Om, 15m, and 30m, are con-
sidered, which correspond to the turbine blade root, 1/2 chord
length, and turbine blade tip locations. The corresponding true
values are also shown in Figure 5 for comparisons. As can be
seen, the predicted instantaneous wind speed matches with its
true value quite well. This illustrates the great potential of the
proposed prediction method in the control of smart rotors [49].

Last but not least, the proposed method can achieve short-
term wind forecasting. The extrapolation of the proposed
method to future time instants is examined. In particular, the
time coordinates from 100s to 115s are fed to the deep NN
for predicting the 15-second ahead preview flow information.
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Figure 4: The effective wind speed predicted by the proposed method for the baseline case at distances of 120m, 80m, 40m, and Om before the turbine location. The

corresponding true values are also shown for comparisons.

In order to test the proposed method’s performance, another
15s SOWFA simulations are carried out and the wind field data
are recorded. The prediction and the corresponding true results
from 100s to 1155 are included in Figure 5. As can be seen, the
overall instantaneous wind speed is predicted at satisfactory ac-
curacy. This is because the deep NN learns the dynamics of the
evolving wind field from NS equations during the training, and
the learnt dynamics is retained which enables the deep NN for
short-term wind forecasting without using Taylor’s frozen tur-
bulence hypothesis [44]. As the machine learning model in this
work is continuous in time, any future time coordinate can be
fed into the NN for prediction. Thus it avoids the tedious tun-
ing of time steps, time horizons and single-step/multiple-step
settings in discrete-time models. However, we mention that as
in all other wind prediction models, the prediction time hori-
zon is still limited by the correlations between the data used for
predictions and the quantities to be predicted.

3.3. Sensitivity analysis

The robustness of the proposed method is further verified by
considering a wide range of scenarios including LIDAR mea-
surements with various levels of noise and under different LI-
DAR spatial/temporal resolutions, different LIDAR look direc-
tions and different FSTI levels. The prediction accuracy under
all the considered scenarios is given in Table 3.

Since LIDAR measurements are subject to various error
sources such as range weighting, the measurement noise must
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be considered in real-world applications. Here, the spatiotem-
poral wind field reconstruction from noisy LIDAR measure-
ments is investigated, where random noise is added to the LoS
wind speed value measured by the LIDAR at each measure-
ment location at each time instant. The noise is drawn from the
range [—e, e] uniformly and independently, where a set of val-
ues of e are considered including 0.025m/s, 0.05m/s, 0.1m/s,
and 0.2m/s. These cases are denoted as Case B1, Case B2,
Case B3, and Case B4 in Table 3 respectively. For each case,
the deep NN is trained with the noisy measurement data and
then used for predicting the spatiotemporal wind field. The
prediction MRMSEs for all the four cases are given in Table
3. As expected, the prediction becomes less accurate when the
measurement noise increases. However, for all the cases, the
errors remain quite small compared to the wind speed range,
which demonstrates the method’s robustness against noisy mea-
surements. As suggested in [12], Case B3 here represents the
typical noise of the commercially available pulsed LIDAR in-
struments. Similar measurement accuracy has been reported
in the product guide of the continuous wave LIDAR devices
by ZXLidars (https://www.zxlidars.com). The predicted spa-
tiotemporal flow field for Case B3 is shown in Figure 6. As can
be seen, the unsteady flow field is successfully predicted with
main flow structures identified correctly and the MRMSE re-
mains quite small as shown in Table 3, which indicate that the
proposed method works well with commercial LIDAR devices.
Furthermore, we mention that new methods such as Bayesian
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Figure 5: The instantaneous wind speed at turbine location predicted by the proposed method at the baseline case, at spanwise locations of Om, 15m, and 30m

respectively. The corresponding true values are also shown for comparisons.

PINNs [32] are under active development, which might offer
new opportunities for the predictions with lower-quality mea-
surements.

To further illustrate the proposed method’s great performance
in predicting the spatiotemporal information from very sparse
measurements, the cases with only half spatial/temporal LI-
DAR measurement resolutions are investigated. For the case
with half spatial resolution, the distance between the measure-
ment points is set as 40m and only 6 measurement points per
LIDAR beam are used in the prediction. For the case with half
temporal resolution, the measurement frequency of the LIDAR
beams is set as 2s. The prediction results are given in Figure 7.
As can be seen, the flow field predictions are similar as in the
baseline case, which demonstrates the method’s robustness with
various spatiotemporal measurement resolutions. In addition,
we mention that the predictions here are based on the measure-
ments at as few as 6 spatial locations per LIDAR beam, while
most existing works which follow the PINNs framework have
used a much larger set of measurement points. Thus the results
here also demonstrate the full potential of PINNs in handling
the situations of very sparse data. In addition, the prediction
accuracy for the half-spatial case and half-temporal case is just
slightly lower than the baseline case, which indicates the ex-
istence of data redundancy in the space and time domain for
the baseline case. This problem might be solved by design-
ing novel data acquisition strategies for the PINNs to optimally
place the measurement locations, which can further increase the
data quality and/or reduce the data redundancy. Such strategies
might lead to the design of the optimal LIDAR configurations
in wind industry, such as optimal half-angles, resolutions, scan-
ning patterns, and even the optimal coordination among LIDAR
beams. This task, however, is not trivial and requires extensive
studies on the problem formulation and the method develop-
ment, thus is out of the scope of the current paper.

In addition, as LIDAR can only measure the LoS wind speed,
the wind direction needs to be estimated (Cyclops’ dilemma). A
different LIDAR look direction is also considered here to fur-
ther demonstrate the proposed method’s ability in identifying
the incoming wind direction. The incoming wind’s mean di-
rection is set as 20° from the turbine facing direction. The re-
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sults are given in Figure 8. As can be seen, the incoming wind
direction is correctly identified, overcoming the difficulties of
estimating wind direction from only LoS wind speed data. The
prediction MRMSE given in Table 3 shows that the prediction
errors for both wind magnitude and direction remain very small.

Furthermore a different turbulence level is considered, where
the FSTI of the turbulent atmospheric boundary layer is set as
1%. The prediction results are given in Figure 9, along with
the corresponding true values. As can be seen, the predictions
match well with the true flow fields. The MRMSE given in
Table 3 also shows that the proposed method performs very well
in this case, similarly as all the other considered cases.

4. Conclusions

In this paper, the prediction of the spatiotemporal wind field
based on sparse LIDAR wind speed measurements was investi-
gated by using physics-incorporated deep learning techniques.
In order to achieve this, a deep fully-connected neural network
(which has a total of 12 layers with the hidden-layer neuron
number of 128) was first constructed, and then the Navier-
Stokes equations (which provide a very good description of at-
mospheric boundary layer flows) were incorporated in the neu-
ral network structure. The deep neural network structure with
a total degree of freedom of 149378 can approximate com-
plex nonlinear systems governed by partial differential equa-
tions (such as the Navier-Stokes system in this work), while the
incorporation of Navier-Stokes equations in the neural network
training empowers the deep neural network with the ability to
learn the dynamics of the evolving flow field over the whole
domain of interest, even though the LIDAR measurements are
only available at a few sparse spatial locations. To our knowl-
edge, this is for the first time that physical laws and data are
fused in a unified manner in the training of deep learning mod-
els for wind applications.

The proposed method was evaluated based on the high-
fidelity wind farm simulator SOWFA. The results showed that
both the wind magnitude and direction were predicted accu-
rately, overcoming the Cyclops’ dilemma. This is because the
correlations between the line-of-sight wind speed measured at
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different locations were taken into account implicitly through
the Navier-Stokes residue terms. The unsteady wind field pre-
dictions were compared with the corresponding true values. A
great match between prediction and true values was observed
with the mean value of the root-mean-squared error being only
0.198m/ s for wind magnitude prediction and 2.77° for wind di-
rection predictions at the baseline case. In particular, the flow
details such as the propagation of the high-speed/low-speed
flow structures were captured by the proposed method. Thus
it is expected that the proposed method can lead to a significant
reduction of turbine blade structural loads through advanced
blade control techniques which take these predicted flow details
as control input, especially under the smart rotor concept [49].
To further demonstrate the potential use of the proposed method
in wind turbine control, the predictions of the averaged and in-
stantaneous wind speeds were examined. The results showed
very good matches between the prediction and true values. In
addition, they showed that the proposed method could achieve
detailed short-term wind forecasting. These results are appar-
ently also very useful for wind farm control and wind resource
assessment. Furthermore, a wide range of scenarios were inves-
tigated to demonstrate the proposed method’s robustness, which
included the LIDAR measurements with various levels of noise
and under different LIDAR spatial/temporal resolutions, differ-
ent LIDAR look directions and different turbulence levels. The
results showed that the proposed method performed very well
in all these scenarios.

By fusing LIDAR measurements and Navier-Stokes equa-
tions, the proposed method achieved great accuracy in spa-
tiotemporal wind predictions. However, we mention that its
performance is still limited by the underlying physical law’s
ability in capturing the full dynamics of the evolving wind. For
example, the 3D flow structures and the thermal effects are not
captured by the current studies because the employed Navier-
Stokes equations are 2D. Therefore, future studies considering
more accurate physical models (e.g. 3D Navier-Stokes equa-
tions) are needed to improve the prediction performance. In
addition, the wind prediction is also limited by the LIDAR mea-
surement data’s ability in characterizing the essential wind in-
formation. Therefore, it is of great interest to investigate the
optimal data acquisition design for the proposed method. It is
expected that the data quality will increase using an optimized
data acquisition design, which, in turn, will increase the pre-
diction accuracy further. Future research may also include the
real-world LIDAR measurement campaign to further validate
the proposed method.

As the predicted spatiotemporal flow field contains much
more information about the incoming wind than the original LI-
DAR measurements, it is greatly useful in developing advanced
strategies for the wind resource assessment and for the monitor-
ing and control of wind turbine/farm, by using such rich flow
information. This may include the usage of the predicted spa-
tiotemporal data for wind power prediction, turbine load evalu-
ation, extreme event forecasting, maintenance scheduling, etc.
As the developed method is generic, another research direction
is the application of the developed method in the state estima-
tion and forecasting of other systems governed by partial dif-
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ferential equations such as wave/tide energy systems and other
flow configurations such as wind over complex terrains.
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