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Abstract

The purpose of this thesis is to study random walks on “decorated” Galton-Watson

trees with critical offspring distribution in the domain of attraction of an α-stable

law for some α ∈ (1, 2).

In Chapters 2 and 3 we give some background on the topologies and models

used in the thesis. In Chapter 4 we consider a specific example: stable looptrees. We

prove a scaling limit result for convergence of random walks on discrete looptrees

to convergence of Brownian motion on continuum looptrees. We then construct

a detailed investigation of the limiting Brownian motion, in particular obtaining

detailed bounds on the transition density and on the spectrum of the associated

Laplacian. Along the way, we also prove precise volume asymptotics.

In Chapter 5 we construct the local limit of compact stable looptrees which we

call infinite stable looptrees. In particular, this allows us to show that the operations

of taking scaling limits and local limits of discrete and continuum looptrees can be

done in either order or in combination. As a result, we are also able to prove similar

limit results for stochastic processes on these spaces. Moreover, we are able to apply

the local limit result to obtain limiting results for the volume of a small ball and

the small-time on-diagonal transition density for compact stable looptrees.

In Chapter 6 we consider the main general model of interest: that of a

decorated Galton-Watson tree. In this chapter we formulate some assumptions

regarding the graphs used for “decoration”, and then prove some results establishing

the volume growth exponent, random walk displacement exponent and spectral

dimension for these decorated Galton-Watson trees.

In Chapter 7 we give some brief comments on future research directions.
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Chapter 1

Introduction

The random walk has been a fundamental object in probability theory since Karl

Pearson, now generally acknowledged to be the founder of modern-day statistics,

first coined the term over one hundred years ago, in a 1905 edition of Nature [Pea05].

Figure 1.1: PEARSON, K. The Problem of the Random Walk. Nature 72,
294(1905).

Pearson’s call was answered by Lord Rayleigh [Ray05], who had in fact solved

the problem 25 years previously whilst studying sound waves with random phases.

In a two-dimensional setting and for large n, the required density is asymptotic to
2r
n e
−r2
n dr. This is now known as the Rayleigh distribution and naturally describes

a range of physical phenomena.

Although Pearson’s problem has now been solved, one hundred years later

the case is by no means closed. Rayleigh’s solution holds for a random walk on the

two-dimensional lattice, but the world is not flat, nor is it uniform. What if the
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walker encounters a mountain range, or a valley?

Motivated by these considerations, there has since been a concerted mathe-

matical effort to understand the behaviour of random walks on a variety of different

graphs, including trees, fractals, and Cayley graphs, to name but a few. The prop-

erties of the random walk depend on the properties of the underlying graphs: for

example, while a random walk on the lattice typically moves distance
√
n after n

steps, on the binary tree we would expect it to move distance of order n. On the

other hand, a diffusion on the Sierpinski gasket moves roughly distance t
log 2
log 5 in time

t. We give some further examples in Figure 1.2, letting (Xn)n≥0 denote a simple

random walks on the given graphs, and d(0, Xn) denote the distance of Xn from its

starting point with respect to the graph distance on these graphs.

(a) d(0, Xn) ≈
√
n. (b) d(0, Xn) ≈ n

log 2
log 5 .

(c) d(0, Xn) ≈ n.

(d) d(0, Xn) ≈ n
5
13 , image by

Mike Bostock.
(e) d(0, Xn) ≈ n 1

3 .
(f) d(0, Xn) ≈ n

1
4 , image by

Igor Kortchemski.

Figure 1.2: Examples of different spaces with different random walk exponents.
References: [BP88], [BCK17], [Cro12], [GM17a] [GH18].

The speed of a random walk is in general quantified through the introduction

of two random walk exponents (if they exist):

(i) The spectral dimension, dS = −2 limn→∞
log p2n(x,x)

logn ,

(ii) The displacement exponent, ddis = limn→∞
log supk≤n d(0,Xk)

logn .

As we will see in this thesis, on sufficiently homogeneous spaces, these limits are

not random, even if the underlying graph is. The extra factor of 2 is included in

the definition of spectral dimension so that it is equal to d on Zd. Here pn(x, y) =
Px(Xn=y)

deg y is the transition density of the simple random walk, and for connected

graphs the limit in (i) does not depend on the choice of x. The quantity dw = 1
ddis

2



is also known as the walk dimension since in natural cases it corresponds to the

dimension of the range of the walk.

These notions of dimension can be contrasted with the natural definition of

dimension in terms of the volume growth of the space, given by

df =
limr→∞ log (Vol(B(x, r)))

log r
.

Here B(x, r) denotes the open ball of radius r around x (with respect to graph

distance), and Vol(B(x, r)) its volume (i.e. the number of vertices it contains). On

Zd, it is the case that df = dS , and this remains true for a wide class of “well-

behaved” graph models. However, this is not always the case, and it is commonly

observed that dS < df on graphs of a fractal nature, for example as mentioned for

the Sierpinski gasket above [BP88]. Heuristically, this is because the random walk

gets “trapped” in the fractal parts of the graphs for non-negligible amounts of time,

which has the overall effect of slowing it down. More concretely, whilst we expect

Brownian motion in Rd to move distance t
1
2 in time t (known as diffusive behaviour),

we can see from Figure 1.2 that on fractal-type graphs it is often the case that the

walk dimension is strictly greater than 2 (for example, in the Sierpinski gasket it is
log 5
log 2 = 2.32...), in which case we say the random walk is subdiffusive, or undergoes

anomalous diffusion.

On sufficiently homogeneous graphs it is usually the case that dw =
2df
dS

,

and we will see that this also holds for all the examples considered in this thesis.

Heuristically, this is because at time t, we expect a random walk started at x to be

distributed roughly uniformly in the ball of radius t
1
dw around x, so that pt(x, x) is

of order t
−df
dw .

Random walks are now well-understood on several (but by no means all!)

natural graph models, and in recent decades the scope has widened to include ran-

dom walks on graphs that are random, as well as deterministic. In this context,

subdiffusive behaviour was first rigorously established by Kesten in 1986, who con-

sidered a random walk on a critical percolation cluster both in two dimensions and

on a regular tree [Kes86a, Kes86b]. On such a tree, the critical cluster is more

tractable (it is simply a critical Galton-Watson tree with binomial offspring distri-

bution), and Kesten showed that dw = 3. The study of the two-dimensional “ant

in a labyrinth” (as De Gennes called it [dG76]) is more subtle, but as a first step

Kesten managed to show that there is some ε > 0 such that the Euclidean distance

to the root grows slower than n
1
2
−ε. However, this restriction to the Euclidean

metric is still somewhat suboptimal, and establishing the same result with respect

to the intrinsic metric on the cluster has been an open problem for some time. It

is only very recently that Ganguly and Lee proved the first result in this direction

3



[GL20].

Critical percolation clusters are a classical example of random structures that

are naturally “fractal-like”, and Alexander and Orbach conjectured in 1982 [AO82]

that a critical cluster on Zd should have dS = 4
3 for all d ≥ 2. This is the same as

the spectral dimension of an (unpercolated) finite variance critical Galton-Watson

tree. The Alexander-Orbach conjecture resisted attack for some time, with results

mainly restricted to critical clusters on trees [Kes86b, BK06], and then extended

to oriented percolation in high dimensions in 2008 [BJKS08]. The full result in

high dimensions by was proved by Kozma and Nachmias in their celebrated paper

[KN09] in 2009 using lace expansion techniques. The intuition for the result is that

in high dimensions, the lattice is sufficiently spread out that the critical cluster looks

a lot like a critical Galton-Watson tree, so that their spectral dimensions agree. For

comparison, df = 2 in this case. In low dimensions, there is now evidence to suggest

that the conjecture is false when d < 6 [JN14, JL20], and the question of the true

exponent remains an open problem.

After well as establishing the exponents, the next aim would be to prove a

full random walk scaling limit on the critical cluster. In high dimensions this is con-

jectured to be Brownian motion on the integrated super-Brownian excursion (BISE),

informally Brownian motion on an embedded spatial tree and formally constructed

in [Cro09]. Substantial progress was made in this direction in [BACF19b], in which

the authors establish four conditions for convergence to BISE. Verifying these con-

ditions still poses a challenge, however, and as of today has been achieved in the

case of a random walk on the range of a branching random walk [BACF19a], but

not yet for the full percolation cluster.

It is now well-known that in low-dimensional, sufficiently recurrent regimes,

the exponents for a random walk on a given graph depend on two key properties of

the graph: its volume and (electrical) resistance growth. The first of these is not sur-

prising (intuitively, it makes sense that a random walk should take longer to escape a

denser subgraph), but the second of these is perhaps less obvious. However, it turns

out that viewing a graph as an electrical network with given edge conductances is

both useful and natural: due to Kirchoff’s Laws, voltages are harmonic functions,

and it turns out that the notion of “effective resistance” is precisely what determines

the escape probabilities for an electron (i.e. a random walker). We will introduce

the necessary quantities more precisely in Section 2.4, but see [Kum14, Nac] for

excellent surveys covering these concepts in more detail.

Resistance is easiest to study on trees since the effective resistance between

two points agrees with the graph distance in this setting. It is therefore of no

surprise that substantial progress has been made in understanding random walks

on graphs that are trees or “tree-like”, whereas often less is known about random

4



walks on other graphs (though there are notable exceptions to this). In particular,

our understanding of random walks on critical percolation clusters, and many other

structures arising naturally in statistical physics, is far from complete.

Physical models such as percolation have classically been studied on the in-

teger lattice, but in recent years there has been increased mathematical interest in

adding an extra layer of randomness to the underlying graphs, with a particular em-

phasis on random surfaces. In many ways, random graphs are a more natural model

for the real world but another advantage is that this opens up more techniques for

mathematical analysis since we are not constricted by the rigidity of the underlying

space. In particular, random graphs often enjoy a spatial Markov property which

means that they can be studied using Markovian exploration processes; see [Cur]

for more details.

Figure 1.3: Planar maps. The first two are the same map; the third is different.

In recent decades the study of random surfaces has blossomed into a very

fruitful area of probabilistic research, and currently we perhaps know more about

random walks on random critical structures when they are defined on random planar

maps, rather than on the two-dimensional lattice. Formally, a planar map is an

equivalence class of the set of graphs embedded into the plane such that no two edges

cross, where we say that two embedded graphs are equivalent to each other if one

can be obtained from the other through an orientation-preserving homeomorphism,

as illustrated in Figure 1.3. We view a planar map as a metric space by giving each

edge length 1, and endowing it with the graph metric. It is also possible to add a

measure supported on the vertices of the map.

We do not attempt to give a full introduction to random planar maps, as the

theory will not be necessary for this thesis; instead we show a simulation in Figure

1.4, and refer to [Mie] for an introduction. We also note that there is a parallel

continuum theory for studying random surfaces embedded into the plane known as

Liouville Quantum Gravity (LQG): we refer to [Gwy, GHS19b] for recent surveys.

Just as Brownian motion can be thought of as a “canonical” random path

and any discrete time random walk with finite variance jump distribution falls into

its universality class, there is a notion of a Brownian surface and a corresponding

Brownian universality class of discrete random planar maps, and there is consider-

5



Figure 1.4: A triangulation of the sphere. Image by Thomas Budzinski.

able interest in studying statistical physics models on random planar maps in this

universality class.

For example, take the model of site percolation on a large uniform triangula-

tion. It is known that this model exhibits a phase transition with critical probability

pc = 1
2 [Ang03, BCM19]. Moreover, although the critical cluster is not a tree (recall

that even on the lattice it is only believed to be asymptotically tree-like in high di-

mensions), it is known to have macroscopic faces which are individually glued along

a tree structure, and the boundary is described by an object known as a “looptree”

[CK15, Ric18a, BCM19]. Each macroscopic face has its own internal structure,

but one would hope to exploit the underlying tree structure in order to understand

resistance and random walks on the critical cluster.

Critical percolation clusters are not the only model that can be described by

a “decorated tree” structure. In fact, there is a much wider class of maps, known as

stable maps (each corresponding to a different universality class of random planar

maps) that can be described in this way. In the so-called dense phase (corresponding

to stability parameter α ∈ (1, 3
2)), these are also known to have a decorated tree

structure [Ric18b]. The critical percolation cluster discussed above is a special

case since it is believed to correspond to the case α = 7
6 [BCM19, Section 5.4].

Another special case is the O(n) loop model [Ric18b, Section 6], and we see similar

structures appearing from other Fortuin-Kasteleyn models, and also [BLR17] from

quadrangulations with skewness [BR18].

The purpose of this thesis is to study random walks on a general “decorated

tree” model, along the lines of that pictured in Figure 1.5, in the hope that it will

6



Figure 1.5: An example of a decorated tree, and its underlying Galton-Watson tree.

apply to the models described above. Before commencing, we briefly comment on

other results regarding random walk exponents on random planar maps.

Subdiffusivity of a random walk on random planar maps was first established

by Benjamini and Curien [BC13], who showed that the displacement exponent on the

Uniform Infinite Planar Quadrangulation (UIPQ) is at most 1
3 by decomposing at

so-called “pioneer points”; however, in line with the KPZ relations they conjectured

that the correct exponent should in fact be 1
4 , and this was subsequently proved

in [GM17a, GH18] (lower and upper bounds respectively). The proofs that this

exponent is 1
4 also encompass several other subclasses of the Brownian universality

class. More recently, random walks on stable maps were considered by Curien and

Marzouk [CM19b, CM19a], who extended the upper bound of 1
3 to (bipartite) stable

maps with parameter α ∈ (1, 2), although this is not believed to be sharp except for

in the limit as α ↓ 1. Similar results were also obtained by Lee [Lee17] for random

walks on the wider class of unimodular planar graphs, who presents a method for

establishing subdiffusivity based only on the volume growth properties of the space

(although the corresponding displacement exponent is not necessarily sharp).

Finally, we mention that stochastic processes on random surfaces have also

been constructed in the continuum and the natural analogue of Brownian motion

on a Brownian surface is known as Liouville Brownian motion (LBM). This was

independently constructed in [Ber15, GRV16] using techniques of LQG, and has

recently been shown to arise as the scaling limit of simple random walks on certain

classes of random planar map models [BG20]. It is also known to exhibit sub-

Gaussian behaviour (e.g. sub-Gaussian heat kernel estimates were established in

[AK16]), but establishing the relevant displacement exponent is a difficult task since

it was only very recently that the intrinsic LQG metric was constructed [GM19].

In terms of this thesis: the full model is postponed to Chapter 6, and we start

in Chapter 4 by considering the simpler model of a looptree. This essentially cor-

responds to the case where each macroscopic face is empty, and can be represented

7



L
disc;m
α

discrete looptree of mass m

Lα

compact continuum stable looptree

L
disc;1
α

infinite discrete looptree

L1

α

infinite continuum looptree

scaling limit as m ! 1, factor m
−1

α

Curien and Kortchemski, 2014

local limit as m ! 1

Richier, 2017

Stefánsson, 2015

taking mass to 1

scaling limit

Theorem 5.0.2

Theorem 5.0.1

scaling limit as m ! 1,

Remark 5.5.4

factor >> m
−1

α

local limit on

Björnberg and

Figure 1.6: Relations between discrete/continuum and compact/infinite looptrees.

by a loop. Random walks on this model were already considered in [BS15], but we

extend their result to give a scaling limit and perform a detailed analysis of the

continuum limit, in particular obtaining finer fluctuation results. Our methods for

the looptree model are also instructive for the general model in Chapter 6; in par-

ticular to prove the volume upper bounds we introduce an iterative decomposition

procedure that we then generalise in Chapter 6.

Chapter 5 concerns a model of infinite stable looptrees. We originally consid-

ered these as a tool to understand the limiting behaviour of small balls in compact

stable looptrees, but this eventually evolved into a separate project. The purpose

of the chapter is essentially to complete the picture in Figure 1.6. We also obtain

similar limit theorems for stochastic processes on these spaces.

The full decorated tree model is considered in Chapter 6. In view of appli-

cations, we only consider critical Galton-Watson trees, though one could define a

similar model on supercritical trees and ask different questions about the random

walk (e.g. regarding its speed: we elaborate on this in Chapter 7), and we assume

that the offspring distribution ξ satisfies ξ([x,∞)) ∼ cx−α as x → ∞ for some

α ∈ (1, 2). To understand volume and resistance growth on the decorated tree,

it is clearly necessary to make some assumptions regarding volume and resistance

growth on the inserted graphs. The main contribution of the chapter is to explain

how the overall random walk exponents are obtained from the relevant exponents

for the inserted graphs and that of the offspring distribution in the underlying tree.

We will see that the model undergoes several phase transitions, at the points

where certain important quantities transition from finite to infinite expectation. For

example, if the diameter of a graph inserted at a vertex of degree n is approximately

n
1
d , and the volume of this graph is approximately nv (we will make this precise in

Chapter 6), then the volume growth exponent behaves as shown in Figure 1.7.

At the end of Chapter 6 we consider some examples of graphs to insert. We

conclude the thesis with a brief discussion of the future outlook in Chapter 7.
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Chapter 2

Preliminaries

In this chapter we go over some technical preliminaries that will be useful for the

rest of the thesis.

2.1 Hausdorff and packing measures on metric spaces

We start by introducing Hausdorff and packing measures, which are closely linked

to Hausdorff and packing dimensions which provide a natural notion of dimension

on fractal metric spaces. Our exposition here is similar to that of [Duq10, Section

1], but for further background Hausdorff and packing measures see [Fal14, Chapter

2] and [TT85, Sections 3,5] respectively.

Let (M,dM ) be a metric space. For any x ∈M , let B̄(x, r) denote the closed

ball of radius r around x. For any ε > 0 and any S ⊂ M , recall that an ε-packing

of S is a collection of disjoint balls (B̄(xi, ri))i≥0 with B̄(xi, ri) ⊂ S and ri ≤ ε for

all i.

Now take a function g : (0, r0) → R+ for some r0 > 0. We say that g is a

regular gauge function if it is continuous, non-decreasing, limr↓0 g(r) = 0 and there

exists a constant C ∈ (1,∞) such that g(2r) ≤ Cg(r) for all r ∈ (0, r02 ). We then

define a measure P∗g (S) by

P∗g (S) = lim
ε↓0

sup
{∑
i≥0

g(ri) : (B̄(xi, ri))i≥0 is an ε-packing of S
}
.

P∗g (S) is know as the g-packing pre-measure of S. We define the g-packing outer-

measure of S by

Pg(S) = inf
{∑
i≥0

P∗g (Ei) : S ⊂ ∪i≥0Ei

}
.

It can be shown (e.g. ref) that Pg is a Borel regular metric outer measure.

The g-Hausdorff measure is defined similarly, but by considering coverings
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rather than packings. We set

Hg(S) = lim
ε↓0

inf
{∑
i≥0

g(Diam(Ei)) : Diam(Ei) < ε and S ⊂ ∪i≥0Ei

}
.

Here Diam(S) = supx,y∈S dM (x, y) denotes the diameter of S.

As above, Hg is a Borel regular metric outer measure on M .

In the case where we take g(r) = gn(r) = rn for some n ∈ R+, it is staight-

forward to show that there is at most one value of n for which Pg(S) /∈ {0,∞}, and

similarly for Hg(S) (though the two values may not be the same). We respectively

define the packing and Hausdorff dimensions of S by

dimP(S) = sup{n ≥ 0 : Pgn(S) =∞} = inf{n ≥ 0 : Pgn(S) = 0},

dimH(S) = sup{n ≥ 0 : Pgn(S) =∞} = inf{n ≥ 0 : Pgn(S) = 0},

where in this case we take sup ∅ = 0, inf ∅ = ∞. In the case of Rd with the usual

Euclidean metric, the Hausdorff and packing dimensions are both equal to d.

In the case of fractal metric spaces endowed with a particular measure, say

µM , it is sometimes the case that µM will be equal to the packing or Hausdorff

measure (up to a constant) for a specific choice of g. In this case, it is unlikely

that g will be polynomial. For example, in the case of the continuum random

tree endowed with its usual uniform volume measure (to be formally introduced in

Section 3.1.1), it was shown in [Cro08], [DLG06] and [Duq12] that we need to take

g(r) = r2log log r−1 and g(r) = r2(log log r−1)−1 to get agreement for the Hausdorff

and packing measures respectively. In the case of stable trees, Duquesne showed the

form of the exact packing measure in [Duq12], and showed in [DLG06] that there is

no such exact Hausdorff measure.

In the case of stable looptrees we have not been able obtain the exact func-

tions needed to obtain non-trivial Hausdorff and packing measures. However, in

Chapter 4 we prove very precise bounds for the gauge functions at which the asso-

ciated Hausdorff and packing measures jump from infinity to zero, accurate up to

log-logarithmic terms.

2.2 Gromov-Hausdorff-Prohorov topologies

A key part of this thesis will be to prove convergence results for sequences of metric

spaces endowed with measures. In this section we introduce the Gromov-Hausdorff-

Prohorov topology, which is an appropriate topology for this convergence.

Firstly, let (E, d) be a metric space. The Hausdorff distance dH between two
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sets A,A′ ⊂ E is defined as

dEH(A,A′) = max{sup
a∈A

inf
a′∈A′

d(a, a′), sup
a′∈A′

inf
a∈A

d(a′, a)}.

Now let (E′, d′) be a second compact metric space. The Gromov-Hausdorff

distance between E and E′ is defined as

dGH(E,E′) = inf{dFH(ϕ(E), ϕ′(E′))},

where the infimum is taken over all isometric embeddings ϕ : E → F , ϕ′ : E′ → F

into some common metric space (F, δ).

The Gromov-Hausdorff distance can also alternatively be defined using cor-

respondences. A correspondence between the metric spaces (E, d) and (E′, d′) is a

subset R ⊂ E×E′ such that for every x1 ∈ E there exists x2 ∈ E′ with (x1, x2) ∈ R,

and similarly for every y2 ∈ E′ there exists y1 ∈ E with (y1, y2) ∈ R. The distortion

of the correspondence R is defined as

dis(R) = sup{|d(x1, y1)− d′(x2, y2)| : (x1, x2), (y1, y2) ∈ R}.

The following result is standard.

Lemma 2.2.1.

dGH(E,E′) =
1

2
inf{dis(R)}.

where the infimum is taken over all correspondences R between E and E′.

We will mainly be working with trees and related objects which normally

have a distinguished root vertex and are equipped with a natural volume measure,

so suppose additionally that µ and ν are two finite measures on E, and let Aε =

{x ∈ E : d(x,A) < ε} be the ε-fattening of A in E. We define the Prohorov distance

dEP (µ, ν) between µ and ν by

inf{ε > 0 : µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε for any closed set A ⊂ E}.

For two rooted measure metric spaces (E, d, µ, ρ) and (E′, d′, µ′, ρ′) we define

the pointed Gromov-Hausdorff-Prohorov distance between them as

dGHP (E,E′) = inf{dFH(ϕ(E), ϕ′(E′)) + dF (ϕ(ρ), ϕ′(ρ′)) + dFP (µ ◦ ϕ−1, µ′ ◦ ϕ′−1)},

where ρ and ρ′ are the roots of T and T ′ respectively and the infimum is taken over

all isometric embeddings ϕ : E → F , ϕ′ : E′ → F into some metric space (F, δ).

It is also worth noting that we can simply define the pointed Gromov-Hausdorff
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distance as

d∗GH(E,E′) = inf{dFH(ϕ(E), ϕ′(E′)) + dF (ϕ(ρ), ϕ′(ρ)},

where again the infimum is taken over all isometric embeddings into a common

metric space (F, δ). Similarly to before, it can then be shown that

d∗GH(E,E′) =
1

2
inf{dis(R)}.

where the infimum is instead taken over all correspondences R between E and E′

that include the pair (ρ, ρ′).

2.2.1 Gromov-Hausdorff-vague topology

In order to extend this to convergence of non-compact measured metric spaces, we

will use the Gromov-Hausdorff-vague topology of [ALW16]. We will restrict our

attention to boundedly finite, Heine-Borel metric spaces endowed with measures of

full support. In this case, weak convergence is metrized by the Prohorov metric

[Bil68, Theorem 6.8] so we can write the weak convergence of [ALW16, Definition

5.8] as Prohorov convergence in our Definition 2.2.2.

This topology will be used to prove a local limit theorem stating that an

increasing sequence of compact metric spaces converge in distribution to an infinite

metric space. To make sense of this kind of convergence, we will consider all of our

metric spaces to be pointed, in that they will have a distinguished vertex (normally

the root) which plays a special role. Gromov-Hausdorff-vague convergence then says

that for almost every r > 0, balls of radius r around the root converge with respect

to the usual Gromov-Hausdorff-Prohorov topology defined in previous section. We

formalise this below.

Recall that a Heine-Borel space is a metric space in which every bounded,

closed set is compact (so in particular, a Heine-Borel space is complete, separable

and locally compact). As in [ALW16], we let X be the space of equivalence classes

of boundedly finite measure metric space, and XHB be the set of equivalence classes

of boundedly finite Heine-Borel measure metric spaces, where we say that two ele-

ments (X1, d̃1, ρ1, µ1), (X2, d̃2, ρ2, µ2) ∈ X are equivalent if and only if there exists

an isometry ϕ : X1 → X2 such that ϕ(ρ1) = ρ2 and µ1 ◦ ϕ−1 = µ2.

For any X = (X, d̃, ρ, µ) ∈ X we let Br(X) denote the closed subspace

(B(ρ, r), d̃|B(ρ,r), ρ, µ|B(ρ,r)).

Definition 2.2.2. (cf [ALW16, Definition 5.8]). Let X = (X, d̃, ρ, µ) and
(
Xn =

(Xn, d̃n, ρn, µn)
)
n≥1
∈ XHB. We say that Xn → X in the Gromov-Hausdorff-vague

topology if and only if Br(Xn) → Br(X) with respect to the Gromov-Hausdorff-
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Prohorov topology for Lebesgue almost every r > 0.

Remark 2.2.3. For compact spaces, it should be clear that Gromov-Hausdorff-vague

convergence is equivalent to the usual Gromov-Hausdorff convergence. In particular,

if BR(Xn)→ BR(X) for a given R > 0, then the convergence also holds for Lebesgue

almost every r ∈ (0, R). To prove full Gromov-Hausdorff-vague convergence, it is

therefore sufficient to prove convergence along a countable sequence rn diverging to

infinity. We will do this in Chapter 5 when we prove several limit theorems for

sequences of looptrees that converge to an infinite stable looptree.

We also have the following proposition, which will allow us to apply the

Skorokhod Representation theorem in Chapter 5.

Proposition 2.2.4. (cf [ALW16, Proposition 5.12], [ADH13, Lemma 2.9]). The

space of Heine-Borel boundedly finite measure spaces equipped with the Gromov-

Hausdorff-vague topology is a Polish space.

Remark 2.2.5. In keeping with [GM17b], we say that a r is a“good radius” if

µ(∂B(ρ, r)) = 0. Since the sets ∂B(ρ, r) are disjoint for different values of r,

it follows that the set {r ≥ 0 : r not good} must have zero Lebesgue measure. In

particular, the Prohorov convergence (or lack of it) at these values of r will not have

any effect on Gromov-Hausdorff-vague convergence. It can in fact be shown [BBI01]

that if Xn → X Gromov-Hausdorff vaguely, then the (at most countable) set of r for

which Br(Xn) 9 Br(X) is a subset of the set S = {r > 0 : µ(∂B(ρ, r)) > 0}.

2.3 Skorokhod-J1 topology

In this section we briefly introduce the Skorokhod-J1 topology, first defined in

[Sko56], and used to give a notion of convergence for càdlàg functions that are

not continuous. In this setting, the usual uniform convergence is too strong for

our purposes since if fn → f uniformly and f is not continuous, then this requires

that any jump point of f will also be a jump point of fn for all sufficiently large n.

Convergence in the Skorokhod-J1 topology instead allows for the jump locations of

the fn to converge to those of f .

The Skorokhod-J1 distance function is defined as follows. First let

Λ = {λ : [0, 1]→ [0, 1] : λ(0) = 0, λ(1) = 1, λ a homeomorphism}.

The Skorokhod-J1 distance is then defined as

dJ1(f, g) = inf
λ∈Λ
{||f · λ− g||∞ + ||λ− I||∞}. (2.1)
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Figure 2.1: Tree.

It should be clear that this defines a metric on D(I,R) for any compact interval

I ⊂ R. If fn is a sequence with dJ1(fn, f)→ 0, then the function λn is used to align

the jump locations of the fn to those of f . The requirement that ||λn − I||∞ → 0

ensures that the locations of the jumps of fn uniformly approach those of f , and

the requirement that ||fn ◦λn− f ||∞ → 0 ensures that fn → f uniformly away from

the jumps.

2.4 Stochastic processes and electrical resistance

Throughout this thesis, the theory of resistance forms will be a key technique used

to define and analyse stochastic processes. Here we give a brief overview of the

salient points of the theory. For a full account, consult [Kig01] and [Kig12]. A good

introduction can also be found in [Cro17].

For intuition, we start by considering random walks on trees. Let X be a

simple random walk on the tree in Figure 2.4, and let d be the shortest distance

metric on the tree. It can be verified by direct calculation that

Pa(X hits b before returning to a) =
1

2
,

Pa(X hits c before returning to a) =
1

4
.

Notice also that

1

deg(a)d(a, b)
=

1

2
,

1

deg(a)d(a, c)
=

1

4
.

In fact, it is a general result (e.g. see [LPW09, Chapter 9]) that for any tree

T , if a and b are two vertices in the tree and X is a simple random walk on the tree,

then

Pa(X hits b before returning to a) =
1

deg(a)d(a, b)
. (2.2)
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Moreover, it is also true that for any vertices a, b ∈ T , we have the following occu-

pation density formula:

Ea
[∫ τb

0
f(Xs)ds

]
= 2

∫
T
d(b, branch(a, b, c))f(c)deg(c)dc, (2.3)

where branch(a, b, c) is the unique branch point of a, b and c.

This suggests that the shortest-distance metric d on any tree T is somehow

characterising the behaviour of a simple random walk on T . We would therefore

expect that properties of the metric can be used to give information about the

simple random walk. This useful because the behaviour of the metric is often easier

to analyse than the random walk itself.

It is clear that a relationship in the form of (2.2) will not hold for a general

non-tree-like graph G (consider adding an edge between b and c in Figure 2.4, for

example), however it is natural to ask whether there is a different metric that we

can use for a more general graph that characterises a random walk in the same way.

It turns out that the appropriate metric is given by the effective resistance metric,

defined as follows.

Take a discrete graph G = (V,E), with edge weights (ce)e∈E . We view G as

an electrical network where each edge e has electrical conductance ce. The resistance

of each edge is given by Re = c−1
e . Take two vertices a, b ∈ V , and apply a unit

voltage at a. This induces a flow of current from a to b. Now suppose we replace

the whole of G by a single edge joining a to b. The effective resistance between a

and b, denoted R(a, b) is equal to the resistance that we must give this one edge so

that on again applying a unit voltage to a, the total current flowing from a to b is

unchanged.

Effective resistance corresponds to the usual physical notion of electrical

resistance and can be calculated for a specific graph G using the series and parallel

laws. These are as follows (we have lifted the definitions from [LPW09, Section

9.4]).

Parallel Law. Conductances in parallel add. Suppose edges e1 and e2 have

conductances c1 and c2 respectively, and share vertices v1 and v2 as endpoints.

Then both edges can be collectively replaced by a single edge of conductance c1 + c2

without affecting the effective resistance in the rest of the network.

Series Law. Resistances in parallel add. If v is a node of degree 2 with

neighbours v1 and v2, then the edges (v, v1) and (v, v2) can be collectively replaced

by a single edge of resistance r(v,v1) +r(v,v2) without changing the effective resistance

in the rest of the network.

Letting X be a simple random walk on G, we then have the following result,
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which generalises (2.2).

Pa(X hits b before returning to a) =
1

c(a)R(a, b)
, (2.4)

where for any c ∈ V , c(a) =
∑

x∼a c(a, x). For a proof, see [LPW09, Chapter 9].

We formalise these heuristics in the next section.

2.4.1 Stochastic processes associated with resistance metrics

To study Brownian motion and random walks on metric spaces we will be using

the theory of resistance forms and resistance metrics, developed by Kigami [Kig01,

Kig12].

Let G = (V,E) be a discrete graph equipped with non-negative symmetric

edge conductances c(x, y)(x,y)∈E and a measure (µ(x))x∈V . The associated random

walk on G is the continuous time Markov chain on V with generator ∆, i.e. such

that

∆f(x) =
1

µ(x)

∑
y∈V :y∼x

c(x, y)(f(y)− f(x)) (2.5)

for any function f : V → R; in other words, this is the continuous time random

walk that jumps from x to y with rate c(x,y)
µ(x) . The conductances therefore determine

the transition probabilities of the random walk, and we can use µ to vary the time-

scaling.

If we view G as an electrical network where each vertex x ∈ V has potential

(i.e. voltage) f(x), then the energy dissipated by the network is equal to E(f, f),

where E(f, g) is an energy functional given by

E(f, g) =
1

2

∑
x,y∈V

c(x, y)(f(y)− f(x))(g(y)− g(x)). (2.6)

Clearly, this does not depend on µ; however, we can also write it as a Dirichlet form

on the space L2(V, µ) as

E(f, g) = −
∑
x∈V

(∆f)(x)g(x)µ(x). (2.7)

Moreover, we can write effective resistance on G as a function R on V × V
by setting

R(x, y)−1 = inf{E(f, f)|f : V → R, f(x) = 1, f(y) = 0}, (2.8)

where we take the convention that inf ∅ = ∞. R(x, y) corresponds to the usual

physical notion of electrical resistance between x and y in G. It can be shown (e.g.
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see [Tet91]) that R is a metric on G, so we call it the resistance metric.

The notion of a resistance metric can be extended to the continuum as follows.

Definition 2.4.1. [Kig01, Definition 2.3.2]. Let F be a set. A function R : F × F
is a resistance metric on F if and only if for every finite subset V ⊂ F , there exists

a weighted graph with vertex set V such that R|V×V is the effective resistance on V ,

i.e. is given by (2.8).

A resistance metric on a set F can be naturally associated with an energy

functional E constructed analogously to (2.6) above. We let F denote a subspace

of real-valued functions on F with finite energy, and call the pair (E ,F) a resis-

tance form. (Technically, (E ,F) must also satisfy the so-called Markov property, see

[Kig12, Definition 3.1] for details). Given a measure µ on F , the energy functional

can be written as a Dirichlet form on the space L2(F, µ) analogously to (2.7) above,

and therefore can be naturally associated with a stochastic process on F , provided

the resistance form is regular as per the definition below.

Definition 2.4.2. [Kig12, Definition 6.2]. A resistance form (E ,F) is regular if

F ∪ C0(F ) is dense in C0(F ) with respect to the supremum norm, where C0(F )

represents the space of continuous functions on F with compact support.

By [Kig01, Theorems 2.3.4 and 2.3.6], there is a one-to-one correspondence

between resistance metrics and resistance forms on F , given analogously to (2.8).

Moreover, if the corresponding resistance form is regular, then it induces a regular

Dirichlet form on the space L2(F, µ) (analogous to (2.6)), which in turn is naturally

associated with a Hunt process on F as a consequence of [FOT11, Theorem 7.2.1].

This is automatically the case when (F,R) is a compact resistance metric space

endowed with a finite Borel measure µ of full support, for example, but in the case

of the infinite looptrees considered in Chapter 5 we will have to put some extra

work into proving that the associated resistance form is regular. This is done in

Proposition 5.5.2.

We have tried to keep background on resistance forms and Dirichlet forms to

a minimum, but see [Kig12] for more on this. The key point is that, under appro-

priate regularity conditions on the underlying space (which will always be fulfilled

in this thesis), there is a one-to-one correspondence between resistance metrics and

stochastic processes. The reader should feel free to skip the proof of Proposition

5.5.2, which proves the required regularity in the setting of Chapter 5, and merely

use this correspondence as a black box throughout the thesis.

This correspondence allows us to use results about scaling limits of measured

resistance metric spaces to prove results about scaling limits of stochastic processes

as detailed in the following result of [Cro18]. Before stating it, we note that the
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notion of effective resistance between points given in (2.8) can be extended to that

of effective resistance between two sets A,B ⊂ F by setting

R(A,B)−1 = inf{E(f, f)|f : F → R, f(x) = 1 ∀ x ∈ A, f(y) = 0 ∀ y ∈ B}.

Theorem 2.4.3. [Cro18, Theorem 1.2]. Suppose that (Fn, Rn, µn, ρn)n≥0 is a se-

quence in F such that

(Fn, Rn, µn, ρn)→ (F,R, µ, ρ)

Gromov-Hausdorff-vaguely for some (F,R, µ, ρ) ∈ F, and R, (Rn)n≥1 are resistance

metrics on the respective spaces. Assume further that

lim
r→∞

lim inf
n→∞

Rn(ρn, Bn(ρn, r)
c) =∞. (2.9)

Let (Yt)t≥0 and (Y n
t )t≥0 be the stochastic processes associated with (F,R, µ, ρ) and

(Fn, Rn, µn, ρn) as described above. Then it is possible to isometrically embed (F,R)

and (Fn, Rn)n≥1 into a common metric space (M,dM ) so that

Pnρn((Y n
t )t≥0 ∈ ·)→ Pρ((Yt)t≥0 ∈ ·)

weakly as probability measures as n→∞ on the space D(R+,M) equipped with the

Skorokhod J1-topology.

The intuition behind the result above is that the convergence of metrics and

measures respectively give the appropriate spatial and temporal convergences of the

stochastic processes. We will apply it several times in this thesis to take limits of

stochastic processes on looptrees.

We also give an annealed version, which applies in the case where the metric

spaces are random, say defined under the probability measure P, and we can define

a stochastic process by averaging over the state space. In this case we let

Pρ
(

(X̃)t≥0 ∈ ·
)

:=

∫
Pρ((Xt)t≥0 ∈ ·)dP

denote the annealed law obtained by averaging over the random state space. In this

case we have a similar result.

Theorem 2.4.4. [Cro18, Theorem 7.2]. Suppose that (Fn, Rn, µn, ρn)n≥0 is a se-

quence in F such that

(Fn, Rn, µn, ρn)
(d)→ (F,R, µ, ρ)

Gromov-Hausdorff-vaguely for some (F,R, µ, ρ) ∈ F. Assume further that

lim
r→∞

lim inf
n→∞

P(Rn(ρn, Bn(ρn, r)
c) ≥ λ) = 1 (2.10)
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for all λ > 0. Then it is possible to isometrically embed (Fn, Rn)n≥1 and (F,R) into

a common metric space (M,dM ) so that

Pρn
(

(X̃n)t≥0 ∈ ·
)
→ Pρ

(
(X̃t)t≥0 ∈ ·

)
weakly as probability measures as n→∞ on D(R+,M) (i.e. on the space of càdlàg

functions on M equipped with the Skorokhod J1-topology).

2.4.2 Simple random walk estimates

In Chapter 6 we will be analysing simple random walks on a discrete graph G =

(V,E). To fit this into the framework of electrical networks introduced above, we

therefore give every edge in the graph conductance 1, and set µ(x) = deg x for all

x ∈ V . The Markov process with generator as given by (2.5) above is therefore a

constant speed random walk, in that it waits at each vertex for an exp(1) random

time before jumping to the next vertex. This is not quite the same as the simple

random walk; however, it seems quite reasonable to expect that the two processes

should have the same asymptotics, and this is indeed the case: in Chapter 6 we will

study the measure µ along with resistance, and apply results of [KM08] to use these

to understand a simple random walk.

Note that, if U ⊂ V , then µ(U) essentially counts the number of edges in µ.

This matches the intuition that the overall time it takes for a simple random walk

to cross a set depends on how many edges it is required to cross. If one instead

takes µ(x) = 1 for all x ∈ V , then the volume estimates correspond to counting

vertices, and the associated random walk is instead a (continuous time) variable

speed random walk.

2.5 Stable Lévy processes

In Chapter 3 we will introduce stable trees and looptrees. These are constructed

from stable Lévy processes, which we now introduce, along with some of their key

properties. The material presented here is classical and may be found in greater

detail in [Ber96].

A Lévy process is a càdlàg process starting from 0 with stationary indepen-

dent increments. We say (a, b,K) is a Lévy triple if a ∈ [0,∞), b ∈ R and K is a

Borel measure on R with K({0}) = 0 and∫
R

(1 ∧ |y|2)K(dy) <∞.

We call a the diffusivity, b the drift and K the Lévy measure. We can define a

process corresponding to a given Lévy triple as follows. First let B be a Brownian
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motion in R and let M be a Poisson random measure, independent of B and with

intensity µ on (0,∞)× R, where µ(dt, dy) = dtK(dy). Then let

Xt =
√
aBt + bt+

∫
(0,t]×{|y|≤1}

yM̃(ds, dy) +

∫
(0,t]×{|y|>1}

yM(ds, dy), (2.11)

where M̃ := M − µ. We set the final integral to be zero on the null set

{M((0, t]× {|y| > 1}) =∞ for some t ≥ 0}.

Then X is a Lévy process with characteristic function

E
[
eiuXt

]
= etψ(u)

for all t ≥ 0, where

ψ(u) = ψa,b,K(u) = ibu− 1

2
au2 +

∫
R

(eiuy − 1− iuy1{|y| ≤ 1})K(dy).

The next theorem tells us that all Lévy processes are of this form. A proof may be

found in [Ber96].

Theorem 2.5.1 (Lévy-Khinchin Theorem). Let X be a Lévy process. Then there

exists a unique Lévy triple (a, b,K) such that

E
[
eiuXt

]
= etψa,b,K(u)

for all t ≥ 0 and all u ∈ R. Furthermore,

E
[
e−λXt

]
= exp

{
t
(
− bλ+

1

2
aλ2 +

∫
R

(e−λy − 1 + λy1{|y| ≤ 1})K(dy)
)}

provided that the right hand side is finite.

We say that a Lévy process X is spectrally positive if it has no negative jumps.

Additionally, we say it is α-stable if we can normalise X so that E
[
e−λXt

]
= eλ

αt.

In this thesis we will be focusing on the case when X is both spectrally positive and

α-stable. As we show below, it then follows that E
[
e−λXt

]
is finite for all λ ≥ 0, and

that X satisfies the scaling property (c−
1
αXct)t≥0

d
= (Xt)t≥0 for any constant c > 0.

Its transition density consequently satisfies the relation pt(x) = t
−1
α p1(xt

−1
α ).

Corollary 2.5.2. Let X be a spectrally positive Lévy process. Then E
[
e−λXt

]
<∞

for all λ ≥ 0 and all t ≥ 0.

Proof. This follows directly from the representation in 2.5.1.
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2.5.1 Lévy excursions and bridges

To code stable trees and looptrees, we will be using Lévy excursions rather than

a general Lévy process. We now explain how these can be constructed from Lévy

processes.

Let X be an α-stable spectrally positive Lévy process, normalised so that

E
[
e−λXt

]
= eλ

αt, and let Xt = infs∈[0,t]Xs denote its running infimum process.

Define g1 and d1 by

g1 = sup{s ≤ 1 : Xs = Xs}

d1 = inf{s > 1 : Xs = Xs}.

Note that Xg1 = Xd1 almost surely since X almost surely has no jump at

time g1 and X has no negative jumps. We define the normalised excursion Xexc of

X above its infimum at time 1 by

Xexc
s = (d1 − g1)

−1
α (Xg1+s(d1−g1) −Xg1)

for every s ∈ [0, 1]. Then Xexc is almost surely an α-stable càdlàg function on [0, 1]

with Xexc(s) > 0 for all s ∈ (0, 1), and Xexc
0 = Xexc

1 = 0.

Most of the results regarding volume will be obtained by careful analysis

of the Lévy excursions coding the looptrees. In most cases, it is easier to analyse

an α-stable Lévy process rather than an excursion. Results regarding the Lévy

process can then be transferred first to a Lévy bridge, and then to an excursion via

a sequence of transformations which we now describe.

An α-stable Lévy bridge is informally an α-stable Lévy process conditioned

to return to 0 at time 1 (see [Ber96, Chapter VIII]). It has a density with respect

to the law of a standard Lévy process, which is equal to

p1−t(−Xt)

p1(0)
,

with pt the density of Xt and t ∈ (0, 1). Note that it follows from [Zol86, Section

I.4] that p1 is bounded on R. This means that if F is a bounded continuous function

D[0, t]→ R, then

E
[
F (Xbr

s : 0 ≤ s ≤ t)
]

= E
[
F (Xs : 0 ≤ s ≤ t)p1−t(−Xt)

p1(0)

]
. (2.12)

The excursion can then be obtained from the bridge via the Vervaat trans-

form, given below. For a full treatment see [Cha97].

Theorem 2.5.3. Let Xbr be a Lévy bridge, and let m be the almost surely unique
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time when Xbr attains its minimum. Then the process defined by

Xexc
t =

Xbr
m+t −Xbr

m if m+ t ≤ 1

Xbr
m+t−1 −Xbr

m if m+ t > 1,

has the law of a normalised Lévy excursion.

Conversely, if Xexc is a normalised Lévy excursion and U is independent

and uniformly distributed on [0, 1], then the process

Xbr
t =

Xexc
U+t −Xexc

U if U + t ≤ 1

Xexc
U+t−1 −Xexc

U if U + t > 1,

is distributed as a Lévy bridge.

We use these results throughout to transform a statement regarding Xexc to

a similar statement regarding X, which is usually easier to prove.

2.5.2 Descents

When Lévy excursions are used to code stable trees and looptrees, the sizes of the

jumps of the processes correspond to the density of the hubs in the stable tree, and

the lengths of loops in the stable looptree. The following proposition is useful in

characterising the behaviour of the jumps, and consequently the behaviour of loops

in the looptree. It follows from Proposition 3.1 of [CK14], which is proved using

results from [Ber92a].

Proposition 2.5.4. Let (Xs : s ∈ R) be a two-sided spectrally positive α-stable

Lévy process. For each point s ∈ R with Xs 6= Xs− let ∆s = Xs − Xs−, and for

t > s let xts = infs≤r≤tXr − Xs− ∨ 0. Also let Ls denote the local time of the

process (X(t−s)−)s≥0 at its infimum, normalised so that E
[
exp(−λX(−L−1(s))−

]
=

exp(−sλα−1). Then the point measure

∑
s�0

δ
(
Ls,∆s,

x0
s

∆s

)
is a Poisson point measure of intensity dl · xΠ(dx) · 1[0,1](r)dr, where here we write

s � t if s ≤ t, ∆s > 0, and xts > 0.

We also give a technical lemma which will later be used at various points in

Chapter 4. This appeared previously in [CK14, Section 3.3.1] and uses an argument

from [Ber96].
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For a function f : [0,∞)→ R and [a, b] ⊂ [0,∞), we first define

Osc[a,b]f := sup
s,t∈[a,b]

|f(t)− f(s)|.

We also let St = sup0≤s≤tXs denote the running supremum process of X, and

It = inf0≤s≤tXs its running infimum process.

Lemma 2.5.5. Let E be an exponential random variable with parameter 1, and let

X be a spectrally positive α-stable Lévy process conditioned to have no jumps of size

greater than 1 on [0, E ], independent of E. Let Õsc = Osc[0,E]X. Then there exists

θ > 0 such that E
[
eθÕsc

]
<∞. Moreover, E

[
eθÕsc

]
↓ 1 as θ ↓ 0.

Proof. Since Osc[0,E] = SE−IE , and SE−IE is stochastically dominated by S
(1)
E −I

(2)
E

where S
(1)
E and I

(2)
E are independent copies of the corresponding random variables, it

is sufficient to show the existence of a θ > 0 such that both E
[
eθSE

]
and E

[
e−θIE

]
<

∞.

As noted in [Ber96, Section VII.1], the second of these is quite straightfor-

ward. Let T−a = inf{t ≥ 0 : Xt ∈ [−a,∞)}. Since X has no negative jumps,

conditionally on {T−a <∞}, we have that XT−a = −a almost surely. Moreover, we

have by the memoryless property that

P(Ta+b < E) = P(Ta < E)P(Tb < E) .

Equivalently,

P(−IE > a+ b) = P(−IE > a)P(−IE > b)

and hence −IE has an exponential distribution, say with parameter Φ(E), which is

clearly non-zero, and so E
[
e−θIE

]
<∞ for all θ < Φ(E).

To bound E
[
eθSE

]
, first note that since X has no jumps greater than 1 on

[0, E ] it follows that for any m ≥ 1, P(SE > m+ 2) ≤ P(SE > m)P(SE > 1) and

hence P(SE > 2n) ≤ P(SE > 1)n for all n ≥ 1. By direct computation it then follows

that, provided 0 < θ < −1
2 log(P(SE > 1)), we have

E
[
eθSE

]
≤ 2

|2θ + log(P(SE > 1))|
.

The final claim follows by bounded convergence.

Remark 2.5.6. Note that the same results holds if E is set to be deterministically

equal to 1 rather than an exponential random variable. The proof is almost identical

to the one above, but we instead have that IE is stochastically dominated by an

exponential random variable. The result also holds if the exponential random variable

E has any other constant parameter, by exactly the same proof as above.
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2.5.3 Itô excursion measure

We can alternatively define Xexc using the Itô excursion measure. For full details,

see [Ber96, Chapter IV], but the measure is defined by applying excursion theory to

the process X −X, which is strongly Markov and for which the point 0 is regular

for itself. We normalise local time so that −X denotes the local time of X −X at

its infimum, and let (gj , dj)j∈I denote the excursion intervals of X −X away from

zero. For each i ∈ I, the process (ei)0≤s≤di−gi defined by ei(s) = Xgi+s −Xgi is an

element of the excursion space

E =
⋃
`>0

Dexc([0, `],R≥0).

We let ζ(e) = sup{s > 0 : e(s) > 0} denote the lifetime of the excursion e. It was

shown in [Itô72] that the measure

N(dt, de) =
∑
i∈I

δ(−Xgi , e
i)

is a Poisson point measure of intensity dtN(de), where N is a σ-finite measure on

the set E known as the Itô excursion measure.

Moreover, the measure N(·) inherits a scaling property from the α-stability

of X. Indeed, for any λ > 0 we define a mapping Φλ : E → E by Φλ(e)(t) = λ
1
α e( tλ),

so that N ◦Φ−1
λ = λ

1
αN (e.g. see [Wat10]). It then follows from the results in [Ber96,

Section IV.4] that we can uniquely define a set of conditional measures (N(s), s > 0)

on E such that:

(i) For every s > 0, N(s)(ζ = s) = 1.

(ii) For every λ > 0 and every s > 0, Φλ(N(s)) = N(λs).

(iii) For every measurable A ⊂ E

N(A) =

∫ ∞
0

N(s)(A)

αΓ(1− 1
α)s

1
α

+1
ds.

N(s) is therefore used to denote the law N(·|ζ = s). The probability distri-

bution N(1) coincides with the law of Xexc as constructed above.
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Chapter 3

Random trees and looptrees

In this chapter, we introduce random trees, random looptrees, and their coding

functions.

3.1 Discrete random trees and their coding functions

We start with random trees. Random trees have been the subject of considerable

mathematical research over the past few decades. They are fundamental objects in

probability theory in their own right and have applications in the study of population

genetics and percolation. More recently, they have been crucial in the study of

random maps, which can be constructed via various bijections with random trees.

We start with discrete trees. Trees are connected graphs with no cycles, and

are most commonly defined using the Ulam-Harris formalism of [Nev86]. First let

U = ∪∞n=0Nn.

By convention, N0 = {∅}. If u = (u1, . . . , un) and v = (v1, . . . , vm) ∈ U , we let

uv = (u1, . . . , un, v1, . . . , vm) be the concatenation of u and v.

Definition 3.1.1. [Nev86, Section 2]. A plane tree θ is a finite subset of U such

that

(i) ∅ ∈ θ,

(ii) If v ∈ θ and v = uj for some j ∈ N, then u ∈ θ,

(iii) For every u ∈ θ, there exists a number ku(θ) ≥ 0 such that uj ∈ θ if and only

if 1 ≤ j ≤ ku(θ).

Informally, a plane tree θ is a branching process started from some initial

root vertex labelled ∅ (or ρ), and the offpring of vertex u are of the form uj where

j ∈ {1, 2, . . . , ku(θ)}.
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We denote by Tdisc the set of all plane trees. Additionally, if θ ∈ Tdisc, we

let τu(θ) = {v ∈ U : uv ∈ θ} be the shift of θ at u. τu(θ) can be understood as the

subtree grown from the root u.

The canonical examples of random discrete trees are Galton-Watson trees.

To define these, first let µ be a probability measure on Z≥0. We will refer to µ as

the offspring distribution.

Definition 3.1.2. A Galton-Watson tree with offspring distribution µ is a plane

tree T θ satisfying the following properties.

(i) Pµ(k∅ = j) = µ(j) for all j ∈ Z≥0,

(ii) For every j ≥ 1 with µ(j) > 0, the shifted trees θ1(T θ), . . . , θj(T θ) are inde-

pendent under the conditional probability Pµ(· | k∅ = j), with law Pµ.

In other words, a Galton-Watson tree with offspring distribution µ is a

branching process with a single root ∅ where the trees emanating from each ver-

tex are independently distributed according to Pµ. It is shown in [Nev86, Section

3] that for any probability measure µ on Z≥0, there is a unique probability mea-

sure Pµ on T satisfying the above two properties. In this thesis, we will mainly be

considering the critical case where
∑∞

k=0 kµ(k) = 1.

Suppose T is a tree with |T | = n + 1. We can define two functions which

encode its structure: the height function and the contour function. Both are illus-

trated in Figure 3.1, and are defined as follows. The height function HT is defined

by considering the vertices u0, u1, . . . , un in lexicographical (i.e. depth-first) order,

and then setting HTi to be equal to the generation of vertex ui. The contour function

CT is defined by considering the motion of a particle that starts at the root ∅ at time

zero, and then continuously traverses the boundary of T at speed one, respecting

the lexicographical order where possible, until returning to the root. CT (t) is equal

to the height of the particle at time t. Since each edge is traversed twice in this

process, the contour function is defined in this way up until time equal to 2n. It

will be convenient to set it equal to zero after this point. By contrast, the height

function is defined precisely up until time n.

Note that this definition ensures that the contour function will be non-

negative after time zero, and the height function will be strictly positive.

In order to gain some intuition about the height and contour functions we

have marked two vertices on the tree in Figure 3.1 along with the points corre-

sponding to the excursion around τ1(T ) of the height and contour processes. For

the contour function, note that this excursion lasts precisely until the time that

CT drops strictly below CT (1). Any subsequent visits to the same level as CT (1)

correspond to visits of siblings of vertex 1. By similar logic, for two points s, t ≤ 2n

it follows that the most recent common ancestor of u(s) and u(t) corresponds to the

27



Tree Contour function Height function

τ1(T ) τ1(T )

Figure 3.1: Example of contour function and height function for the given tree.

point between s and t where CT takes its minimum value, i.e. if u(r) = u(s)∧ u(t),

then CT (r) = mins∧t≤k≤s∨tC
T (k). We can therefore define a function

d(s, t) = CT (s) + CT (t)− 2 min
s∧t≤k≤s∨t

CT (k), (3.1)

which is equal to the graph distance between u(s) and u(t) and hence is a pseudo-

metric on {0, 1, . . . , 2n}. Also, d(s, t) = 0 if and only if u(s) = u(t), so we can define

an equivalence relation on {0, 1, . . . , n} by setting s ∼ t if and only if d(s, t) = 0. T is

then isomorphic to the quotient space ({0, 1, . . . , 2(n−1)}/ ∼, d). This construction

of T will be useful when we extend the construction to the continuum.

One major difference between the height and contour functions is that whilst

the contour function must move by ±1 at each time interval, the height function

can drop by an arbitrary amount (provided it remains positive). For example, in

Figure 3.1 we see that there is a place where the height function drops by 4.

Now let ξ be an offspring distribution with E[ξ] = 1 and 0 < V ar(ξ) =

σ2 < ∞, and such that there exists λ > 0 such that E
[
eλξ
]
< ∞. Consider a

sequence of Galton-Watson trees (τn)∞n=1 started from an initial root ρ with offspring

distribution ξ conditioned on |τn| = n. Let Hn and Cn be the corresponding height

and contour processes. The following results of Marckert and Mokkadem in [MM03]

(and previously by Aldous via alternative methods in [Ald93]), show that the height

function and contour function converge to the same process when appropriately

rescaled.

Theorem 3.1.3. Let e(t)t∈[0,1] be a standard normalised Brownian excursion, con-
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structed from a Brownian motion as described in Section 2.5.1. Then(
Cn(b2ntc)√

n

)
t∈[0,1]

⇒

(
2

σ
e(t)

)
t∈[0,1]

and

(
Hn(bntc)√

n

)
t∈[0,1]

⇒

(
2

σ
e(t)

)
t∈[0,1]

as n→∞, weakly as processes on the space D([0, 1],R) equipped with the Skorokhod-

J1 topology.

The height process and the contour process are both very useful characteri-

sations of trees but neither are Markovian. However, it turns out that both can be

written as functionals of a Markovian process, known as the Lukasiewicz path. For

a random tree T θ with height and contour processes Hθ and Cθ, this is a random

walk W θ = {Wn(T θ) : 1 ≤ n ≤ |T θ|}, defined by first setting W0 = 0, and then for

0 ≤ n ≤ |T θ|, setting Wn+1 = Wn + ku(n)− 1, where u(n) refers to the nth vertex in

the lexicographical ordering of T θ, and ku(n) is the number of offspring of u(n), as

in Defition 3.1.2.

An example for the tree pictured in Figure 3.1 is shown in Figure 3.2.

τ1(T )

Figure 3.2: Lukasiewicz Path for the tree above

We remark on some properties of the Lukasiewicz path. Firstly, note that

when we are dealing with a Galton-Watson tree at criticality, it follows that

E[Wn+1 −Wn] = E
[
ku(n)

]
− 1 = 0,

so W is a centred random walk.

Secondly, we have that Wi ≥ 0 for all 0 ≤ i ≤ n − 2, Wn−1 = 0 and
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Wn = −1. This can be understood by the following argument. We say that a vertex

v is “visible” from another vertex u if v is a child of u, and in this case we say that

v can be “seen” from vertex u. Then if we let (Xi)0≤i≤n be the process which visits

u(i) at time i, then Wi gives the total number of vertices seen up until time i, minus

the total number of vertices visited. Since each vertex other than the root is seen

before it is visited, it follows that this quantity will be strictly positive until X hits

the final vertex, at which it will be 0, and then fall to −1 since at this point we will

have visited all vertices and seen all except the root vertex.

The next lemma (taken from [LGLJ98] but independently shown in [BK00]

and [BV96]) shows how to recover the height function from the Lukasiewicz path.

Lemma 3.1.4. [LGLJ98, Corollary 2.2]. Let T be a µ-Galton Watson tree, with

associated height process (Hn)0≤n≤|T |−1. Then

Hn = |{j ∈ {0, 1, . . . , n− 1} : Wj = inf
j≤k≤n

Wk}|. (3.2)

The intuition behind the result is that the set of points j ∈ {0, 1, . . . , n− 1}
satisfying Wj = infj≤k≤nWk correspond to the ancestors of the vertex u(n).

In the next section we will construct α-stable Lévy trees and show that

they arise as scaling limits of discrete trees with appropriately defined offspring

distributions. The main idea behind the proof of this result is to show that the

Lukasiewicz paths of the discrete trees converge to an α-stable Lévy process, and

that this in turn is enough to imply convergence of the height and contour processes.

This approach depends crucially on the Markovian structure of the Lukasiewicz path

and its definition in terms of the offspring distribution.

Multi-type Galton-Watson trees

We will consider scaling limits of looptrees defined from both one and two-type

Galton-Watson trees in Chapter 5. Accordingly, let ξ, ξ◦ and ξ• be probability

distributions on Z≥0.

Definition 3.1.5. A Galton-Watson tree with offspring distribution ξ is a random

plane tree T with law Pξ satisfying the following properties.

(i) Pξ(k∅ = j) = ξ(j) for all j ∈ Z≥0,

(ii) For every j ≥ 1 with ξ(j) > 0, the shifted trees θ1(T ), . . . , θj(T ) are inde-

pendent under the conditional probability Pξ(· | k∅ = j), with law Pξ, where

θi(T ) = {v ∈ U : iv ∈ T }.

We say that T is critical if E[ξ] = 1. Additionally, we say a random plane tree

is an alternating two-type Galton-Watson tree with offspring distribution (ξ◦, ξ•) if
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all vertices at even (respectively odd) height have offspring distribution ξ◦ (respec-

tively ξ•). We say that the tree is critical if E[ξ◦]E[ξ•] = 1.

3.1.1 Lévy trees

To define continuum random trees, we mimic the construction of discrete trees as

quotient spaces given in the previous section. We begin with a definition of a random

real tree, originally given in [DMT96], and then explain how they can be explicitly

constructed by analogy with the discrete case.

Definition 3.1.6. A metric space (T , d) is a real tree if the following two properties

hold for every σ1, σ2 ∈ T .

(i) There is a unique isometric map fσ1,σ2 from [0, d(σ1, σ2)] into T such that

fσ1,σ2(0) = σ1 and fσ1,σ2(d(σ1, σ2)) = σ2.

(ii) If q is a continuous injective map from [0, 1] into T such that q(0) = σ1 and

q(1) = σ2, we have

q([0, 1]) = fσ1,σ2([0, d(σ1, σ2)]).

A rooted real tree additionally has a distinguished vertex ρ called the root.

We define an equivalence relation on the set of real trees by saying that T1

and T2 are equivalent if there exists a root-preserving isometry between them, and

denote by T the space of isometry classes of compact rooted real trees. We endow

T with the pointed Gromov-Hausdorff topology. Additionally, we let TM be the set

of quadruples (T , d, ρ, µ) with (T , d) ∈ T, ρ its root and µ a probability measure on

T . It is shown in [EPW06] that T endowed with the metric dGH is complete and

separable and their proof can be extended slightly to include measures as well. This

is given in the theorem below, and a proof including measures was given in [Arc17].

Theorem 3.1.7. [EPW06, Theorem 1]. TM endowed with the metric dGHP is

complete and separable.

The canonical example of a random real tree is the Brownian Continuum

Random Tree (CRT), denoted by Te and introduced by Aldous in [Ald91b]. It arises

naturally as a scaling limit of discrete trees in that, if Tn is a discrete tree with

critical offspring distribution ξ with variance σ2, then

1

σ
√
n
Tn

(d)→ Te

as n→∞. A simulation is shown in Figure 3.1.1. The CRT possesses many fractal

and self-similarity properties but we do not go into detail here. An extensive account
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(a) The Brownian CRT, by Igor Kortchemski. (b) 1.5-stable tree, by Igor Kortchemski.

Figure 3.3: Stable trees.

is given in the three Aldous papers [Ald91b], [Ald91c] and [Ald93], including several

alternative constructions.

In this thesis, we will be most interested in stable Lévy trees which arise as

scaling limits of discrete trees when the offspring distribution has infinite variance.

This has the effect that in the limit, we get vertices (or “hubs”) of infinite degree.

This contrasts strongly with the CRT where all branch points are binary. Lévy

trees were studied extensively by Duquesne and Le Gall in [DLG05], building on the

work [LGLJ98] of Le Gall and Le Jan where the authors introduced Lévy trees to

code the genealogy of continuous state branching processes. More specifically, again

let Tn be a discrete tree conditioned to have n vertices, but this time with critical

offspring distribution ξ in the domain of attraction of an α-stable law, i.e. a law ξ

such that ξ([k,∞)) ∼ ck−α as k →∞ for some α ∈ (1, 2). We then have that

n−(1− 1
α

)Tn
(d)→ c · Tα (3.3)

in the Gromov-Hausdorff topology as n→∞, where Tα is known as the stable tree

of index α, and c is just a positive constant. A simulation of Tα for α = 1.5 is also

shown in Figure 3.1.1.

Just as in the previous section, continuum trees can be coded by functions

that play the same role as the Lukasiewicz path for discrete trees. In the case of

α-stable trees, this path is a spectrally positive α-stable Lévy excursion Xexc. The

height function Hα can then be defined analogously to (3.2) by setting it to be the

continuous modification of the process defined for t ∈ [0, 1] by

Hα(t) = lim
ε→0

1

ε

∫ t

0
1{Xexc

s < Its + ε}ds, (3.4)

where Its = infs≤r≤tX
exc
r . This limit exists in probability - for more details see
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[DLG02]. To define the stable tree, we first define a pseudodistance on [0, 1] by

dα(s, t) = Hα(s) +Hα(t)− 2 inf
s≤r≤t

Hα(r)

whenever s ≤ t. Note the resemblance to (3.1). We then define an equivalence

relation on [0, 1] by saying s ∼α t if and only if dα(s, t) = 0, and set Tα to be the

quotient space ([0, 1]/ ∼α, dα).

This construction also provides a natural way to define a measure on Tα as

the image of Lebesgue measure on [0, 1] under the quotient operation. The scaling

relation (3.3) can then be extended to Gromov-Hausdorff-Prokhorov convergence by

endowing the discrete trees with the renormalised degree measure.

We remark that this construction can also be mimicked more generally by

taking a function g (not identically 0) from [0,∞) to [0,∞) with g(0) = 0 and of

compact support. For every s, t ≥ 0, we can define a distance function dg by

dg(s, t) = g(s) + g(t)− 2 inf
s∧t≤r≤s∨t

g(r),

and an equivalence relation ∼ on [0,∞) by setting s ∼ t if and only if dg(s, t) = 0.

Then, letting ζg = sup{x ∈ [0,∞) : g(x) > 0}, we set

Tg = [0, ζg)/ ∼ .

Theorem 3.1.8. [DLG05, Theorem 2.1]. The metric space (Tg, dg) is a real tree.

As in the discrete case, properties of Tα are encoded by the process Xexc.

Letting π : [0, 1] → T be the canonical projection, we have a distinguished vertex

ρ = π(0) which is the root of T . Also, for u, v ∈ T , we denote by [[u, v]] the unique

geodesic between u and v, and we say u � v if and only if u ∈ [[ρ, v]]. For given

u, v ∈ T , we say z is the unique common ancestor of u and v, written z = u ∧ v, if

z is the unique element in T with [[ρ, u]] ∩ [[ρ, v]] = [[ρ, z]].

The relation � on T can be recovered from Xexc by defining

s � t if and only if s ≤ t and Xexc
s− ≤ I

t
s.

This is the same as in Proposition 2.5.4. It can be shown that the two definitions of

� given above define partial orders on T and [0, 1] respectively, and are compatible

with p in the sense that, if u, v ∈ T , then u � v if and only if there exist s, t ∈ [0, 1]

with p(s) = u, p(t) = v and such that s � t. Additionally, if we let s∧ t be the most

recent common ancestor of s and t (with respect to �), then it can be verified that

p(s ∧ t) = p(s) ∧ p(t).
As in the discrete case, the multiplicity of a vertex u ∈ T is defined as the
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number of connected components of T \ {u}. Vertex u is called a leaf if it has

multiplicity one, and a branch point if it has multiplicity at least three. It can then

be shown that u ∈ T is a branch point if and only if there exists s ∈ [0, 1] such that

π(s) = u and ∆s := Xexc
s − Xexc

s− > 0. ∆s gives some measure of the number of

children of u. Finally, if s, t,∈ [0, 1] with s � t, the quantity

xts := Its −Xexc
s−

can be regarded as the position of the ancestor of p(t) amongst the “∆s” children

of p(s).

This intuition can be seen to be consistent with the discrete case by the

following argument. Suppose u is a vertex in a discrete tree with ku children, listed

as u1, u2, . . . , uku , and suppose that u is the sth vertex of the tree when the vertices

are written in lexicographical order. The Lukasiewicz path thus has a jump of size

ku−1 between times s−1 and s. Now suppose u � uj � v for some j ∈ {1, 2, . . . , ku}
and that v is the tth vertex of the tree when the vertices are written in lexicographical

order. Then the Lukasiewicz path W must travel around the vertices of the subtrees

τu1(T ), τu2(T ), . . . , τuj−1(T ) before coming to the subtree τuj (T ) containing v. Each

time it traverses a complete subtree, it finishes at a height one lower than when it

starts, so the total number of such subtrees traversed before reaching τuj (T ) is equal

to Ws − infs≤r≤tWr, and the total number of such subtrees yet to be traversed is

equal to

wts := inf
s≤r≤t

{
Wr −Wr−

}
.

Hence wts gives the number of siblings of uj “to the right” of uj , and is precisely the

discrete analogue of xts.

This construction also provides a natural way to define a measure on Tα as

the image of Lebesgue measure on [0, 1] under the projection π.

Finally, we note that the law of the stable tree is characterised by the nor-

malised Itô excursion measure N(1) for the α-stable excursion that we introduced in

Section 2.5.3.

3.2 Random looptrees

A large part of this thesis is concerned with stable looptrees, which can be informally

thought of as the dual graphs of stable trees. They were first formally introduced

by Curien and Kortchemski in [CK14], motivated by their appearance as scaling

limits in various planar map percolation models and building in particular on the

2011 work [LGM11] of Le Gall and Miermont. We will shortly give their formal

definition in terms of an α-stable Lévy excursion, but we start by defining discrete
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looptrees for better intuition.

Accordingly, let T be a discrete tree. The discrete looptree Loop(T ) is con-

structed by replacing each vertex u ∈ T with a cycle of length equal to the degree of

u in T , and then gluing these cycles at various points according to the tree structure

of T . This is best illustrated by an example, such as that in Figure 3.4.

Figure 3.4: Discrete tree and its associated looptree.

We will be focusing on the case of α-stable looptrees. In [CK14, Theorem

4.1], Curien and Korthemski showed that if Tn is a critical Galton Watson tree

conditioned to have n vertices and with offspring distribution ξ satisfying ξ([k,∞)) ∼
ck−α for some α ∈ (1, 2), then we can define the stable looptree Lα as the random

compact metric space satisfying

n
−1
α Loop(Tn)

(d)→ CαLα

as n →∞, where Cα = (c|Γ(−α)|)
−1
α . (Their result also allows for the inclusion of

slowly-varying functions in the offspring distribution, but for sake of clarity we will

mostly not include these in this thesis).

Recall from Section 3.1 that Tdisc denotes the set of all plane trees. We set

Ldisc = {Loop(T ) : T ∈ T} to be the corresponding set of discrete looptrees.

3.2.1 Continuum looptrees

By comparison with the convergence for stable trees in (3.3), we would like to

construct Lα as the looptree version of the Lévy tree Tα. This gives the intuitive

picture of stable looptrees: heuristically, we replace each branch point of Tα by a

loop with length proportional to the size of the branch point, and glue these loops

along the tree structure of Tα. We explain below how Tα and Lα can be coded from

the same Lévy excursion to reflect this intuition.

It was shown in [Mie05, Proposition 2] that if we define the width of a branch

point at t ∈ [0, 1] by

lim
ε↓0

1

ε
µ({v ∈ Tα, d(π(t), v) ≤ ε}),
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then the limit almost surely exists and is equal to ∆t. This is therefore the natural

candidate for the length of the loop at the point t in Lα.

In the construction of stable trees, recall that for a point t ∈ [0, 1], the

ancestors of t correspond to points s < t such that Xexc
s = infs≤r≤tX

exc
r . In [CK14,

Section 2.3], the authors define a distance function between two points s, t ∈ [0, 1]

with s � t by taking all points s � r � t (which corresponds to points that are

ancestors of t but not of s), and summing the shortest distance across each of the

corresponding loops. Since the loop corresponding to the point r has length ∆r,

this corresponds to setting:

d(s, t) =
∑
s≺u�t

min(xtu,∆u − xtu).

We now outline this formal construction given in [CK14]. We make the

construction slightly more general by giving the definition for any excursion f with

only positive jumps, but the construction is identical to that of [CK14, Section 2.3].

Firstly, we define the set of excursions of lifetime ζ ∈ (0,∞) with only positive

jumps to be

Eζ := {e ∈ D((0, ζ),R+) : e(0) = e(ζ) = 0, e(x) > 0 and e(x)−e(x−) > 0∀x ∈ (0, ζ)}.

We then define E+ =
⋃
ζ∈(0,∞)Eζ to be the set of finite excursions with only positive

jumps.

Then take any f ∈ E+, say with lifetime ζf . The function f plays the

role of the Lukasiewicz path for the underlying tree structure. Recall that jumps

represented branch points in the usual tree coding system. For each t ∈ [0, ζf ],

if f has a jump at time t let ∆t denote the size of that jump, and otherwise let

∆t = 0. For every t ∈ [0, ζf ] with ∆t > 0, we equip the segment [0,∆t] with the

pseudodistance

δt(a, b) = min{|a− b|(∆t − |a− b|),∆t}, for a, b ∈ [0,∆t]. (3.5)

The quantity δt corresponds to the distance associated with traversing the loop

associated to the branch point at t.

In keeping with the notation for trees, for s ≤ t we set Its(f) = infr∈[s,t] fr,

and xts(f) = Its(f) − fs− . We use these quantities to define a pseudodistance d on

[0, 1] which will ultimately be used to define Lf as a quotient space. For s, t ∈ [0, ζf ]

we again write s ≺ t if s � t and s 6= t. Then, suppressing the notational dependence

on f , if s � t set

d0(s, t) =
∑
s≺u�t

δu(0, xtu). (3.6)
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For general s, t ∈ [0, 1], set

df (s, t) = ds∧t(x
s
s∧t, x

t
s∧t) + d0(s ∧ t, s) + d0(s ∧ t, t). (3.7)

Heuristically, the second term represents the total distance along the interior of the

path between the points corresponding to s and t in our looptree (and similarly for

the third term), whilst the term ds∧t(x
s
s∧t, x

t
s∧t) represents the distance between the

ancestors of s and t across the loop corresponding to s ∧ t. Note that the sum in

(3.6) is countable since a càdlàg function can only have countably many jumps.

The proof of [CK14, Proposition 2.2] also applies in this general framework

to show that df is a continuous pseudodistance on [0, ζf ]. We can therefore define

an equivalence relation ∼f on [0, ζ] by setting s ∼f t if df (s, t) = 0. We define the

continuum looptree associated with f by

Lf = ([0, ζf ]/ ∼f , df ).

We will use pf : [0, ζf ] → Lf to denote the canonical projection for our

looptree Lf , and we let νf be the projection of Lebesgue measure on [0, ζf ] onto Lf
via pf .

Definition 3.2.1. (Stable looptree, cf [CK14, Definition 2.3]). For α ∈ (1, 2), the

α-stable looptree is the random looptree LXexc, where Xexc is an α-stable, spectrally

positive Lévy excursion conditioned to have length 1. We denote it by Lα.

A simulation by Igor Kortchemski is shown in Figure 3.2.1.

We let Lc denote the space of continuum looptrees, i.e.

Lc = {Lf : f ∈ E+}.

We also set L = Ldisc ∪ Lc.
The proof of [CK14, Theorem 4.1] can be extended to this general framework

to give the following (deterministic) result.

Proposition 3.2.2. (cf [CK14, Theorem 4.1]). Let (τn)∞n=1 be a sequence of trees

with |τn| = n and corresponding Lukasiewicz paths (Wn)∞n=1, and let f be a function

in Dexc([0, ζ],R) for some ζ ∈ (0,∞). Additionally let νn be the uniform measure

that gives mass 1 to each vertex of Loop(τn). Suppose that (Cn)∞n=1 is a sequence of

positive real numbers such that

(i)
(

1
Cn
Wn
bntc(τn)

)
0≤t≤1

→ f in the Skorokhod-J1 topology as n→∞,

(ii) 1
Cn

Height(τn) → 0 as n→∞.
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Figure 3.5: Stable looptree with α = 1.07, by Igor Kortchemski.

Then

dGHP

((
Loop(τn),

1

Cn
dn,

ζ

n
νn, ρn

)
,
(
Lf , df , νf , ρf

))
→ 0

as n→∞.

Proof. The result follows exactly as in the proof of [CK14, Theorem 4.1] by defining

a correspondence Rn between Lf and Lfn to consist of all pairs (t, λn(t)), where λn

is the Skorokhod homeomorphism that minimises the Skorokhod distance between

fn and f .

The following proof that the measures also converge appeared previously in

[Arc17, Proposition 5.3.5]. Let Fn = Loop(τn) t Lf endowed with the metric

DF (x, y) =


1
Cn
dn(x, y) if x, y ∈ Loop(τn)

df (x, y) if x, y ∈ Lf
infu,v∈Rn( 1

Cn
dn(x, u) + d(y, v) + 1

2rn) if x ∈ Loop(τn), y ∈ Lf ,

where rn = dis(Rn).

We claim that dFnP (νn, νf ) → 0 as n → ∞. Recall that |τn| = n, and let

In,i = [ in −
1

2n ,
i
n + 1

2n ]. Take a set An of vertices in Ln, and let

A′n = ∪ui∈AnIn,i.
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Let A′ = p(A′n). We will show that A′ ⊂ Arnn . For any v ∈ A′,∃ s ∈ A′n with

v = π(s) and s ∈ In,i for some ui ∈ An. It follows that i = bnsc or dnse, and hence

(ui, v) ∈ Rn, so DF (ui, v) = 1
2rn and A′ ⊂ Arnn .

Also note that νn(An) = ν(A′) by construction, and so νn(An) ≤ ν(Arnn ).

Similarly, take any set B ⊂ Lf . We use the same argument to show that

ν(B) ≤ νn(Brn). Let B′ = p−1(B), and

Bn = {ui ∈ Ln : ∃ s ∈ B′ with s ∈ In,i}.

Clearly B′ ⊂ ∪ui∈BnIn,i and so

ν(B) = Leb(B′) ≤ |Bn|
n

= νn(Bn).

If ui ∈ Bn, then there exists s ∈ B′ with s ∈ In,i and so (ui, π(s)) ∈ Rn. Hence

Bn ⊂ Brn , so νn(Bn) ≤ νn(Brn) and ν(B) ≤ νn(Brn).

It follows that dFnP (νn, ν) ≤ rn → 0 as n→∞.

The second condition that 1
Cn

Height(τn)→ 0 as n→∞ is important because

it ensures that in the limit, distances in the rescaled discrete looptrees come from

the loop structure and not from the height of the corresponding tree. More formally,

in the proof of the theorem it is used to make a comparison between the expressions
1
Cn

∑
un�vn x

vn
un and

∑
u�v x

v
u for the discrete and continuum trees respectively. For

any vn ∈ Loop(τn) and v ∈ Lf we have∑
un�vn

xvnun = Height(vn) +Wn(vn),

∑
u�v

xvu = f(v).
(3.8)

Then if v and vn are in correspondence with each other, after being careful with

left and right limits we can essentially apply the result that 1
Cn
Wn(vn) → f(v) to

deduce that the 1
Cn

∑
un�vn x

vn
un also converges to

∑
u�v x

v
u in the limit. To obtain

this result, it is therefore crucial that the contribution from the height function goes

to zero.

If, however, we replace the sequence of rescaled discrete looptrees with a

sequence of continuum looptrees, say coded by the functions (fn)∞n=1 each with

support [0, 1] and such that fn → f in the Skorokhod topology as n→∞, then the

height function won’t appear in any of the new terms in (3.8) and so the continuum

analogue of condition (ii) of Theorem 3.2.2 is not required for convergence of the

corresponding looptrees.

In this sense, condition (ii) reflects the fact the looptree Loop(τn) isn’t quite
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the same as the looptree LWn . Condition (ii) is precisely what is required to say

that the difference between Loop(τn) and LWn becomes negligible in the limit.

Hence, in the continuum, the same proof gives the following result.

Proposition 3.2.3. Let (fn)n≥1 be a sequence in E+, and f ∈ E+ be such that

fn → f as n→∞ with respect to the Skorokhod-J1 topology. Additionally let ν and

νn be the appropriate projections of Lebesgue measure onto the spaces Lf and Lfn
respectively. Then

dGHP

((
Loop(τn), dn, νn, ρn

)
,
(
Lf , df , νf , ρf

))
→ 0

as n→∞.

Again, the result follows exactly as in the proof of [CK14, Theorem 4.1]

by defining a correspondence between Lf and Lfn to consist of all pairs (t, λn(t)),

where λn is the Skorokhod homeomorphism that minimises the Skorokhod distance

between fn and f .

3.2.2 Re-rooting invariance for stable trees (and looptrees)

In [DLG05], Duquesne and Le Gall prove that stable Lévy trees are invariant under

uniform rerooting. More formally, if U is a uniform point in [0, 1], and we define a

new height function H [U ] : [0, 1]→ R from the original height function H by

H [U ](x) =

H(U) +H(U + x)− 2 minU≤s≤U+xH(s) if U + x ≤ 1

H(U) +H(U + x− 1)− 2 minU+x−1≤s≤U H(s) if U + x > 1,

then H [U ] (d)
= H. This property is just saying that if we pick a uniform point

U ∈ [0, 1], and reroot the tree Tα at π(U), then the resulting tree has the same

distribution as the original one.

A substantial part of Chapter 4 will be devoted to proving precise volume

bounds for stable looptrees. We will prove most of these for the volume of a ball at

a uniform point in Lα, and then extend to almost all of Lα by Fubini’s theorem. In

the proof, we will use a couple of decompositions for stable trees based on defining a

“spine” from this uniform point to another point in the tree; the rerooting invariance

result means that we can equivalently consider our uniform point to be the root,

when convenient.

Note that the problem of uniform rerooting invariance of continuum frag-

mentation trees was also considered in the paper [HPW09], where the authors ad-

ditionally show that stable trees are the only fragmentation trees for which this

property holds. Duquesne and Le Gall also prove a similar result for rerooting at
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an (independent) deterministic point u ∈ [0, 1] in the paper [DLG09]. Moreover,

Curien and Kortchemski consider a similar property for stable looptrees in [CK14,

Remark 4.6].

3.2.3 Notions of height

At some points in this thesis, we will refer to the “corresponding” or “underlying”

stable tree of Lα, by which we mean the stable tree Tα coded by the same excursion

that codes Lα. We let Lα denote a compact stable looptree conditioned on ν(Lα) =

1, but at various points we will let L̃α denote a generic stable looptree coded by an

excursion under the Itô measure but without any conditioning on its total mass. We

will also let L1
α denote a stable looptree but conditioned so that its underlying tree

has height 1. However, we will make this notation explicit at the time of writing.

The height of a stable tree T̃α is defined as Hmax = supu∈T̃α dT̃α(ρ, u). As the

height process is almost surely continuous, this maximum is almost surely realised by

at least one u ∈ T̃α. Moreover, we see from [DW17, Equation (23)] (and references

therein) that there is almost surely a unique u ∈ T̃α that attains this maximum,

which we denote by uH . If L̃α is the corresponding stable looptree, we define three

notions of its height:

(i) We define its LW -Height to be the looptree distance from ρ to uH ,

(ii) We define its L-Height to be supu∈L̃α dL̃α(ρ, u).

(iii) We define its Lm-Height to be max X̃exc
s , where X̃exc is the Lévy excursion

coding L̃α.

In general, these are not the same. Note however that the Lm-Height is at least as

big as the L-Height, since X̃exc
s gives the distance to the point in L̃α represented by

s but going “clockwise” around all loops. At times, we will also use the notation

TW -Height and Tm-Height to denote the length of the corresponding spine in the

underlying tree, which we respectively denote by W-spine or m-spine.

3.3 Infinite critical trees and looptrees

We now introduce a construction of infinite critical trees and looptrees, which arise

naturally in the study of infinite critical percolation clusters. In the case where ξ

is a supercritical offspring distribution, it is easy to define an infinite tree T∞ with

offspring distribution ξ simply by defining T to be a standard Galton-Watson tree

with offspring distribution ξ (as in Definition 3.1.2) and conditioning on |T | =∞.

In the case where ξ is critical (or subcritical), this conditioning does not

really make sense since {|T | = ∞} is a null event. However, motivated by the
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study of critical percolation clusters on the planar lattice, Kesten in [Kes86b] made

a sensible definition of an infinite critical Galton-Watson tree T crit
∞ and showed that

it arises as a local limit as n → ∞ of critical Galton-Watson trees conditioned to

have height at least n. Informally, T crit
∞ consists of an infinite spine (or backbone)

of vertices which all have a size-biased version of ξ as their offspring distribution.

All other vertices have children according to ξ.

Definition 3.3.1. [AD15, Definition 1.3.1]. Let ξ be a critical offspring distribu-

tion, and define its size biased version ξ∗ by

ξ∗(n) = nξ(n).

The Kesten’s tree T crit
∞ associated to the probability distribution ξ is a two-type

Galton-Watson tree distributed as follows:

• Individuals are either normal or special.

• The root of T crit
∞ is special.

• A normal individual produces only normal individuals according to ξ.

• A special individual produces individuals according to the size-biased distribu-

tion ξ∗. Of these, one of them is chosen uniformly at random to be special,

and the rest are normal.

Almost surely, the special vertices form a unique infinite backbone of T∞.

Note that this is one-ended. Aldous in [Ald91a] coined the term sin-trees for such

trees, since they have a single infinite spine.

The reason for taking a size-biased distribution is because this arises naturally

on conditioning the height of a finite Galton-Watson tree to be large, e.g. see [GK99,

Remark, p.5]. In fact, we have the following local limit theorem. This was originally

proved by Kesten in [Kes86b] under a second moment condition, but was proved with

the given condition in [Jan12, Theorem 7.1]. In fact the result there is stated for a

different topology, but the Gromov-Hausdorff convergence follows as a consequence.

Theorem 3.3.2. ([Kes86b], [AD15, Theorem 2.1.1], [Jan12, Theorem 7.1]). Let ξ

be a critical offspring distribution with ξ(0)+ξ(1) < 1 and define T∞ as in Definition

3.3.1. Let Tn be a Galton-Watson tree with offspring distribution ξ conditioned on

having height at least n. Then

Tn
(d)→ T crit

∞

with respect to the Gromov-Hausdorff-vague topology as n→∞.

Remark 3.3.3. We can take a similar local limit in the subcritical case but in this

case the limiting tree will almost surely have a finite spine, ending with a vertex of

infinite degree. See [Jan12] for more on this case.
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Kesten originally made this definition in [Kes86b] to make a comparison to

the incipient infinite cluster (IIC) of critical percolation on the planar lattice. We

will see that similarly constructed infinite discrete looptrees have similar connections

to the IIC on random planar triangulations.

Kesten’s construction has been imitated in the continuum by Duquesne in

[Duq09], who constructs continuum sin-trees and shows that these arise as the ap-

propriate local limit of compact continuum trees conditioned on being large. By

analogy with the compact continuum case, Duquesne’s construction involves defin-

ing two height functions from two independent Lévy processes in the same way as

done with the excursion in (3.4). These respectively code the tree structure on the

left and right sides of the spine in the usual way.

The construction was further extended to infinite discrete looptrees in [BS15],

where the authors define the infinite looptree associated with a critical offspring

distribution ξ to simply be Loop(T crit
∞ ), where T crit

∞ is constructed as in Definition

3.3.1. This infinite looptree thus inherits the structure of having a loopspine with

loop sizes determined by a size-biased version of ξ, to which usual compact discrete

looptrees are grafted. The local limit theorem of Theorem 3.3.2 thus passes directly

to the looptree case by continuity of the Loop operation (see [BS15, Corollary 2.3]).

Finally, Kesten’s construction of Definition 3.3.1 was extended to critical

multi-type Galton Watson trees in [Ste18, Theorem 3.1] satisfying an analogous

local limit theorem. Richier in [Ric18a] then used this to define an infinite two-

type looptree and showed in [Ric18b] this also arises as a similar local limit under

appropriate conditions.

The concept of an infinite stable looptree has thus left a gap in the literature

which is now filled by the construction given in Chapter 5. This extends the con-

struction of infinite discrete looptrees in the same way that Duquesne’s continuum

sin-trees extend the construction of their discrete counterpart. The resulting local

limit theorem allows us to prove various volume convergence results for compact

stable looptrees in Chapter 4.
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Chapter 4

Brownian Motion on Compact

Stable Looptrees

The main purpose of this chapter is to study Brownian motion on stable looptrees,

and in particular to get precise bounds on its heat kernel. This is useful to gain

initial insights into the more general decorated tree model considered in Chapter

6, but looptrees are also an interesting fractal model in their own right: they have

close connections to many random planar map models, such as causal maps and

stable shredded spheres [BCS19], as well as describing the boundary structure of

many statistical mechanics models.

Our analysis of the Brownian motion is achieved by defining a resistance

metric on stable looptrees as outlined in Section 4.1.1. The key ingredient in the

proofs of the heat kernel bounds will be to prove precise volume bounds for looptrees

with respect to this resistance metric and indeed the bulk of the chapter is concerned

with proving Theorems 4.0.5 and 4.0.4. These are also interesting results in their

own right as they give insight into the fractal properties of stable looptrees, such as

behaviour of Hausdorff and packing measures. There are two main approaches used

to prove the volume results: one uses self-similarity properties of looptrees obtained

from spinal decomposition results, and the other uses fluctuation results for Lévy

excursions and map these over to stable looptrees using their construction in terms

of a stable Lévy process excursion.

The main results of this chapter are as follows. We assume that α ∈ (1, 2)

throughout. Firstly, for x ∈ Lα, let B(x, r) denote the open ball of radius r around

the point x. The volume results in this chapter will be true regardless of whether

this is defined using the shortest distance metric introduced in Section 3.2, or using

the effective resistance metric which we define shortly in Section 4.1.1. Recall that

ν can be thought of as a uniform probability measure on Lα.

We will use the bold font P to denote the law of Lα on Ω, and E the
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corresponding expectation.

We first recall the following random walk scaling limit result that was proved

in [Arc17]. Throughout, we fix some critical offspring distribution ξ in the domain

of attraction of an α-stable law, and let an be such that∑n
i=1 ξ

(i) − n
an

(d)→ Zα

as n → ∞, where (ξ(i))∞i=1 are independent copies of ξ, and Zα is an α-stable

random variable. Since α ∈ (1, 2), this entails that ξ((n,∞]) = n−αL(n) and that

an = n
1
α L̃(n), for some (related) slowly-varying functions L and L̃. We let Tn denote

a discrete Galton-Watson tree with offspring distribution ξ, conditioned to have n

vertices.

Theorem 4.0.1. [Arc17, Theorem 5.4.1], [Arc19, Theorem 1.1]. Let Tn be as

above, let Z(n) denote a discrete-time simple random walk on Loop(Tn), and let

(Bt)t≥0 denote Brownian motion on Lα. There exists a probability space (Ω′,F ′,P′)
on which we can (pointwise) define isometric embeddings of (a−1

n Loop(Tn))n≥1 and

Lα into a common metric space (M,dM ) so that

a−1
n Loop(Tn)→ Lα

almost surely with respect to the Hausdorff metric. In this metric space, we also

have that (
a−1
n Z

(n)
b4nantc

)
t≥0

(d)→ (Bt)t≥0

as n → ∞, by which we mean that, almost surely on (Ω′,F ′,P′), the laws of these

processes converge weakly on the space D([0,∞),M) endowed with the uniform topol-

ogy.

Theorem 4.0.2. There exists C ∈ (0,∞) such that r−αE[ν(B(ρ, r))]→ C as r ↓ 0.

This is actually just a corollary of the following convergence result:

Theorem 4.0.3. There exists a random variable V : Ω→ (0,∞) such that

r−αν(B(ρ, r))
(d)→ V

as r ↓ 0. Moreover, for any p ∈ [1,∞), r−αpE[ν(B(ρ, r))p]→ E[V p] as r ↓ 0.

Here V denotes the volume of a unit ball in an infinite stable looptree, as

will be introduced later in Chapter 5.

We start with the following global (uniform) volume bounds for small balls

in Lα, which demonstrate both upper and lower fluctuations of logarithmic order.
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Theorem 4.0.4. P-almost surely, there exist constants C1, C2 ∈ (0,∞) such that

for all r ∈ (0,Diam(Lα)):

inf
u∈Lα

ν
(
B(u, r)

)
≥ C1r

α(log r−1)−α (4.1)

sup
u∈Lα

ν
(
B(u, r)

)
≤ C2r

α(log r−1)
4α−3
α−1 (4.2)

lim sup
r↓0

(
supu∈Lα ν(B(u, r))

rα log r−1

)
> 0. (4.3)

lim inf
r↓0

(
infu∈Lα ν(B(u, r))

rα(log r−1)−(α−1)

)
<∞. (4.4)

We also have the following local (pointwise) results.

Theorem 4.0.5. P-almost surely, for ν-almost every u ∈ Lα we have:

lim inf
r↓0

(
ν(B(u, r))

rα(log log r−1)−α

)
> 0, (4.5)

lim sup
r↓0

(
ν(B(u, r))

rα(log log r−1)
4α−3
α−1

)
<∞, (4.6)

lim sup
r↓0

(
ν(B(u, r))

rα log log r−1

)
> 0 (4.7)

lim inf
r↓0

(
ν(B(u, r))

rα(log log r−1)−(α−1)

)
<∞. (4.8)

By applying results of [Cro07], we are also able to deduce the following heat

kernel bounds for Brownian motion on Lα. We start by giving the quenched results.

Theorem 4.0.6. Almost surely, there exists t0 ∈ (0,∞) such that

ct
−α
α+1 (log t−1)−(3+2α)(2+α)(α+ 4α−3

α−1
) ≤ pt(x, x) ≤ Ct

−α
α+1 (log t−1)α

for all x ∈ Lα and all t ∈ (0, t0). Moreover, it holds almost surely that

lim inf
t↓0

infx∈Lα pt(x, x)

t
−α
α+1 (log t−1)−1

<∞,

lim sup
t↓0

supx∈Lα pt(x, x)

t
−α
α+1 (log t−1)α−1

> 0.

We can also use the local volume bounds of Theorem 4.0.5 to deduce point-

wise heat kernel estimates. Note however that one of the lower bounds in Theorem

4.0.7 is missing. Heat kernel lower bounds are generally more subtle to obtain than

upper bounds, and in particular in this case we need some global volume control to
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apply the chaining arguments of [Cro07] that are used to prove the corresponding

global bound in Theorem 4.0.6.

Theorem 4.0.7. Almost surely, for any ε > 0 we have for ν-almost every x ∈ Lα
that

lim inf
t↓0

pt(x, x)

t
−α
α+1 (log log t−1)

−1
α+1

<∞

lim sup
t↓0

pt(x, x)

t
−α
α+1 (log log t−1)

α
α+1

<∞

lim sup
t↓0

pt(x, x)

t
−α
α+1 (log log t−1)

α−1−ε
α+1

> 0.

We can similarly apply the results to get off diagonal heat kernel bounds.

The constants θ1, θ2 and θ3 are deterministic and we will give their values in Section

4.4.

Theorem 4.0.8. Almost surely, there exists t′0 ∈ (0,∞) such that for all x, y ∈ Lα
and all t ∈ (0, t′0), we have

pt(x, y) ≤ Ct
−α
α+1 (log t−1)α exp{−c̃d̃1+ 1

α t
−1
α (log t−1d̃)−θ3(α+ 4α−3

α−1
)},

pt(x, y) ≥ ct
−α
α+1 (log t−1)−θ1(α+ 4α−3

α−1
) exp{c̃′d̃1+ 1

α t
−1
α (log t−1d̃)θ2(α+ 4α−3

α−1
)},

for all x, y ∈ Lα and all t ∈ (0, t′0). Here d̃ = d̃(x, y) can denote the distance between

x and y with respect to either the shortest distance metric on Lα, or the effective

resistance metric, since the two are equivalent.

A key step in these heat kernel estimates are bounds on the expected exit

times from balls, for which we can show the following. Here τA = inf{t ≥ 0 : Bt /∈ A}
for any A ⊂ Lα.

Proposition 4.0.9.

Ex

[
τB(x,r)

]
≥ crα+1(log r−1)−2(α+ 4α−3

α−1
)(α+1)(log(r−1(log r−1)2(α+ 4α−3

α−1
)))−α

Ex

[
τB(x,r)

]
≤ Crα+1(log r−1)

4α−3
α−1 .

We also give an annealed result for the transition density at the root, averaged

over the law of Lα.

Theorem 4.0.10. There exists C ′ ∈ (0,∞) such that

t
α
α+1 E[pt(ρ, ρ)]→ C ′

as t ↓ 0.
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In light of these results, it also natural to investigate the associated eigenvalue

counting function of the Laplacian ∆ associated with (Bt)t≥0. More precisely, let R

be the effective resistance metric on Lα (we will construct this properly in Section

4.1.1), and let (E ,F) be the Dirichlet form associated with the space L2(Lα, ν)

through the relation

R(x, y)−1 = inf{E(f, f) : f ∈ F , f(x) = 0, f(y) = 1}

(this is P-almost surely well-defined: see [CH10, Section 1] for more details on the

construction for stable trees; the same principles apply for stable looptrees). We

say that λ > 0 is an eigenvalue of (E ,F , ν) with eigenfunction f (assumed to be

non-trivial) if

E(f, g) = λ

∫
Lα
fg dν

for all g ∈ F . The eigenvalue counting function N(λ) is then defined as the number

of eigenvalues of (E ,F , ν) that are less than or equal to λ. Due to the representation

E(f, g) = −
∫
Lα(∆f)g dν, any eigenvalue of the operator ∆ is also an eigenvalue of

(E ,F , ν). Since Lα is compact and (E ,F) is consequently regular, the converse also

holds. Similar arguments to [CH10] then lead to the following result.

Theorem 4.0.11. (i) For any ε > 0, as λ→∞,

E[N(λ)] ∼ Cλ
α
α+1 +O(λ

1
α+1

+ε).

(ii) P-almost surely, N(λ) ∼ Cλ
α
α+1 as λ → ∞. More over, in P-probability, the

second order estimate of part (i) holds.

We start by explaining how resistance can be used to define Brownian motion

on stable looptrees, and use the theory to prove that it arises as an appropriate

scaling limit of random walks on discrete looptrees. We also discuss convergence of

some associated quantities, including transition densities, mixing times and blanket

times of these random walks. We then move on and prove the volume and heat

kernel bounds outlined above, and conclude by discussing the spectral asymptotics

in Section 4.5.

4.1 Scaling limits for random walks and associated quan-

tities

Looptrees fall nicely in to the framework of Section 2.4. The main purpose of

the present section is to apply the results outlined there to firstly define Brownian

motion on stable looptrees, and then prove various scaling limit results about it.
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4.1.1 Construction of a resistance metric on stable looptrees

To define Brownian motion on stable looptrees, we first define a resistance metric on

them. This is similar in spirit to the metric constructed by Curien and Kortchemski

that we introduced in Section 3.2, but we will sum the effective resistance across

loops rather than the shortest-path distance. It turns out that these resistance

looptrees are in fact homeomorphic to those of Curien and Kortchemski, which

means that the shortest distance metric can equivalently be used to prove the precise

volume bounds of Theorems 4.0.4 and 4.0.5, making the problem far more tractable.

Additionally this means that the invariance principle of Theorem 4.1.6 arises as

a direct consequence of [CK14, Theorem 4.1] and Theorem 3.2.2. However, the

advantage of writing the convergence with respect to the resistance metric means

that we get similar random walk convergence results as a direct consequence.

To define a resistance looptree for a discrete looptree Loop(T ), we view

Loop(T ) as an electrical network and equip it with the resulting effective resis-

tance metric. Each edge of each loop has unit length and the distance between two

points x and y in Loop(T ) is defined to be the effective resistance between them

(calculated using the series and parallel laws).

In the continuum, again let f ∈ E+, with lifetime ζf . This time, if f has a

jump of size ∆t > 0 at point t, equip the segment [0,∆t] with the pseudodistance

rt(a, b) =
( 1

|a− b|
+

1

∆t − |a− b|

)−1

=
|a− b|(∆t − |a− b|)

∆t
(4.9)

for a, b ∈ [0,∆t]. The quantity rt corresponds to the resistance across the loop

associated to the branch point at t. Note that rt(a, b) corresponds to the effective

resistance of two parallel edges of resistance |a−b| and ∆t−|a−b|, and by Rayleigh’s

Monotonicity Principle it follows that rt(a, b) ≤ min{|a − b|,∆t − |a − b|} (this is

also shown algebraically in Lemma 4.1.1).

Now recall that for s ≤ t we set Its(f) = infr∈[s,t] fr, and xts(f) = Its(f)−fs− .

We use these quantities to define a pseudodistance R on [0, 1] which will ultimately

be used to define our resistance looptree as a quotient space. Note in particular the

similarity to expression (3.5) in Section 3.2. For s, t ∈ [0, 1] we again write s ≺ t if

s � t and s 6= t. Then, if s � t set

R0(s, t) =
∑
s≺u�t

ru(0, xtu). (4.10)

For general s, t ∈ [0, 1], set

R(s, t) = rs∧t(x
s
s∧t, x

t
s∧t) +R0(s ∧ t, s) +R0(s ∧ t, t). (4.11)
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It will also follow from Lemma 4.1.1 that can use the same projection p :

[0, 1]→ LRα to denote the canonical projection for our resistance looptree. Heuristi-

cally, the second term represents the total effective resistance along the interior of

the path [[p(s ∧ t), p(s)]] in our looptree (and similarly for the third term), whilst

the term rs∧t(x
s
s∧t, x

t
s∧t) represents the resistance between the ancestors of s and t

across the loop corresponding to π(s ∧ t).
Note that our metrics R0 and R are then defined analogously to the metrics

d0 and d of Section 3.2.1. The metric d is essentially a shortest path metric on the

looptrees and we give a comparison with R in the following lemma.

Lemma 4.1.1. ([Arc17, Lemma 5.1.4]). For any s, t ∈ [0, 1], we have

1

2
d(s, t) ≤ R(s, t) ≤ d(s, t).

Proof. Note that, for any x, y ∈ [0, 1]:(
2

min{x, y}

)−1

≤

(
1

x
+

1

y

)−1

≤

(
1

min{x, y}

)−1

.

Thus taking x = |a− b|, y = ∆t − |a− b| we obtain 1
2δt(a, b) ≤ rt(a, b) ≤ δt(a, b) for

all t ∈ [0, 1] and for all a, b ∈ [0,∆t].

It follows that for two points s, t ∈ [0, 1], d(s, t) = 0 if and only if R(st) =

0. Moreover, the following proposition is therefore a direct consequence of the

corresponding result for d given in [CK14, Proposition 2.2].

Proposition 4.1.2. Almost surely, the function R(·, ·) : [0, 1]2 → R+ is a continu-

ous pseudodistance.

We can therefore make the following definition.

Definition 4.1.3. Let X be an α-stable Lévy excursion. The corresponding α-stable

resistance looptree is defined to be the quotient metric space

LRα = ([0, 1]/ ∼, R).

Recall from Section 3.2.1 that the authors define the α-stable looptree as

Lα = ([0, 1]/ ∼, d)

in [CK14]. In many places we will abuse notation slightly to write LRα = (Lα, R), to

minimise new notation.

The next result is a direct consequence of Lemma 4.1.1.
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Corollary 4.1.4. [Arc17, Corollary 5.1.5], [Arc19, Corollary 4.3]. The looptrees

Lα and LRα are homeomorphic.

The proof of the next proposition is not enlightening so we just give the

statement.

Proposition 4.1.5. [Arc17, Proposition 5.1.6], [Arc20, Proposition 4.4]. R is a

resistance metric in the sense of Definition 2.4.1.

Given a realisation of Lα, recall we defined its root to be the equivalence

class of 0 in Lα, and define the measure ν to be the projection of Lebesgue measure

on [0, 1] onto Lα via p.

This proposition allows us to define a Brownian motion on Lα to be the

diffusion naturally associated with (Lα, R, ν, ρ) in the sense of Section 2.4. The

results of the next section give further justification to this definition.

As a result of Lemma 4.1.1 we also have the following result by exactly the

same proof as Proposition 3.2.2

Proposition 4.1.6. Let (τn)∞n=1 be a sequence of trees with |τn| → ∞ and corre-

sponding Lukasiewicz paths (Wn)∞n=1, and let f be a function in Dexc([0, ζ],R) for

some ζ ∈ (0,∞). Additionally let νn be the uniform measure that gives mass 1 to

each vertex of Loop(τn). Suppose that (Cn)∞n=1 is a sequence of positive real numbers

such that

(i)
(

1
Cn
Wn
b|τn|tc(τn)

)
0≤t≤ζ

→ f as n→∞,

(ii) 1
Cn

Height(τn) → 0 as n→∞.

Then

dGHP

((
Loop(τn),

1

Cn
Rn,

1

|τn|
νn, ρn

)
,
(
Lf , Rf , νf , ρf

))
→ 0

as n→∞.

4.1.2 Random walk scaling limits

In light of Proposition 5.5.1, we define Brownian motion on Lα to be the diffusion

associated with (Lα, R, ν, ρ) as in Section 2.4.1. We now show that this is the scaling

limit of random walks on discrete looptrees.

Proof of Theorem 4.0.1. It follows from Proposition 4.1.6, separability and the Sko-

rokhod Representation Theorem that there exists a probability space on which the

looptree convergence Proposition 4.1.6 holds almost surely. Without loss of gener-

ality, we assume this space is (Ω,F ,P): we will show that P-almost surely on this

space, the laws of the given stochastic processes converge weakly.
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The stochastic process Y (n) naturally associated with (Loop(Tn), Rn, νn, ρn)

in the sense of Section 2.4.1 is a continuous time random walk that jumps from

its present state to each of its neighbouring vertices at rate 1. Since every vertex

of these discrete looptrees has degree 4 (we consider self-loops as undirected), this

amounts to an exp(4) waiting time at every vertex.

Now define processes (Z̃
(n)
t )t≥0 and (Ỹ

(n)
t )t≥0 by Z̃

(n)
t = a−1

n Z
(n)
b4nantc, and

Ỹ
(n)
t = a−1

n Y
(n)
nant. It follows from Theorem 2.4.3 that almost surely as n → ∞, we

have the weak convergence

(Ỹ
(n)
t )t≥0 → (Bt)t≥0. (4.12)

To deduce the result for Z̃(n) in place of Ỹ (n), we will show that we can couple

the processes Y (n) and Z(n) so that they almost surely have the same limit. To do

this, note that we can obtain Y (n) from Z(n) by sampling a sequence of independent

exponential(4) random variables (w
(n)
i )∞i=1, letting S

(n)
m =

∑m
i=1w

(n)
i for all m ∈ N,

and setting Y
(n)
t = Z

(n)
m for all t ∈ [S

(n)
m , S

(n)
m+1). In particular, Y

(n)

S
(n)
m

= Z
(n)
m for all

m.

Fix some T < ∞. Since the limit process (Bt)t≥0 is almost surely continu-

ous, the convergence of (4.12) actually holds with respect to the uniform topology.

By again appealing to the Skorokhod representation theorem along with a func-

tional law of large numbers, we can therefore restrict to a probability space where(
(Ỹt)t∈[0,T ],

(
(nan)−1S

(n)

b4Cαn1+ 1
α tc

)
t∈[0.T ]

)
→ ((Bt)t∈[0,T ], t) jointly almost surely.

By composing these continuous limits, we therefore deduce that

(Z̃t)t∈[0,T ] =
(
Ỹ
nanS

(n)
b4nanc

)
t∈[0,T ]

→ (Bt)t∈[0,T ],

uniformly almost surely. This proves that the distributional result holds for arbitrary

T <∞, and we extend to all time by applying [Bil68, Lemma 16.3].

Remark 4.1.7. 1. It also follows from [CH08, Theorem 1 and Proposition 14]

that the transition densities of the discrete time random walks on any compact

time interval will converge to those of (Bt)t≥0 under the same rescaling when

we isometrically embed in the space (M,dM ) as described above. This can be

metrized using the spectral Gromov-Hausdorff distance, introduced in [CHK12,

Section 2]. It also follows by an application of [CHK12, Theorem 1.4] that for

any p ∈ [1,∞), the rescaled Lp-mixing times for Loop(τn) will converge to

those of Lα. We expect that we can prove similar convergence results for

blanket times using ideas of [And20], and that the sequence of cover times will

be Type 2 in the sense of [Abe14, Definition 1.1].

2. Now that we have constructed a resistance metric on Lα, it is possible to
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adapt the arguments of [SS19, Theorem 3.2] and combine with Proposition

4.1.6 to show that, in certain regimes, random outerplanar maps endowed with

the effective resistance metric and uniform measure converge to (Lα, R, ν),

which implies a similar scaling limit for variable speed random walks on these

outerplanar maps.

4.2 Extremal volume bounds

In this section we prove the extremal bounds of Theorems 4.0.4 and 4.0.5, namely

(4.6), (4.5), (4.1), (4.2). Recall that P denotes the law of Lα, and we let U be

Uniform([0, 1]). For ease of intuition, we define the open ball B(u, r) using the

metric d rather than R.

4.2.1 Infimal lower bounds

We prove the lower volume bounds of Theorems 4.0.4 and 4.0.5 via the following

proposition.

Proposition 4.2.1. There exist constants c, C, r0 ∈ (0,∞) such that for all r ∈
(0, r0) and all λ ∈ (0, 1

2r
−α),

P
(
ν(B(p(U), r)) < rαλ−1

)
≤ C exp{−cλ

1
α }.

The proof of Proposition 4.2.1 uses ideas from the proof of the upper bound

on the Hausdorff dimension of Lα that was given in [CK14, Section 3.3.1]. It relies

on the fact that for any s, t ∈ [0, 1] with s ≤ t,

d(p(s), p(t)) ≤ Xexc
s +Xexc

t − 2 inf
s≤r≤t

Xexc
r . (4.13)

This result appears as [CK14, Lemma 2.1]. Consequently, we can lower bound the

volume of small balls in Lα by upper bounding the oscillations of Xexc. We use

the notation Diamf (p([a, b]) to denote the diameter of the set p(a, b) defined from f

using the distance function of (3.7), but with f in place of Xexc.

We first give a technical lemma which appeared previously in [CK14, Section

3.3.1] and uses an argument from [Ber96]. The final claim follows by bounded

convergence.

First recall that for a function f : [0,∞)→ R and [a, b] ⊂ [0,∞), we define

Osc[a,b]f := sup
s,t∈[a,b]

|f(t)− f(s)|.
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Lemma 4.2.2. Let E be an exponential random variable with parameter 1, and let

X be a spectrally positive α-stable Lévy process conditioned to have no jumps of size

greater than 1 on [0, E ]. Let Õsc = Osc[0,E]X. Then there exists θ > 0 such that

E
[
eθÕsc

]
<∞. Moreover, E

[
eθÕsc

]
↓ 1 as θ ↓ 0.

Remark 4.2.3. The same results holds if E is set to be deterministically equal to

1 rather than an exponential random variable. The proof is almost identical to the

one above, with one minor modification.

Proof of Proposition 4.2.1. First, note the inclusion

{ν(B(p(U), r)) < rαλ−1} ⊂
{
p([U,U + rαλ−1]) ∩Bc(p(U), r) 6= ∅

}
⊂
{
DiamXexc(p[U,U + rαλ−1]) > r

}
.

By applying the Vervaat transform, the absolute continuity relation (2.12) and scal-

ing invariance, we get that

P
(
DiamXexc(p[U,U + rαλ−1]) > r

)
≤ (1− rαλ−1)

−1
α ||p1||∞

p1(0)
P
(
DiamX(p[0, 1]) > λ

1
α

)
.

To bound the latter quantity, let N be the cardinality of the set {t ∈ [0, 1] : ∆t > 1},
where ∆t = Xt − Xt− now denotes the jump size of X rather than Xexc, and let

t1, . . . , tN be its members in increasing order of size. Additionally let t0 = 0 and

tN+1 = 1, and C̃α = α−1
Γ(2−α) , so that N ∼ Poi(C̃α). We then have:

P
(
DiamX(p[0, 1]) > λ

1
α

)
≤
∞∑
n=1

e−C̃α(C̃α)n

n!
P

(
N∑
i=1

Osc[ti,ti+1]X > λ
1
α

∣∣∣∣∣ N = n

)

≤
∞∑
n=1

e−C̃α(C̃α)n

n!
E
[
eθÕsc

]n
exp{−θλ

1
α },

where Õsc is as in Remark 4.2.3. Note that N and (Õsc[ti,ti+1])i≤N are not indepen-

dent, but we certainly have ti+1 − ti ≤ 1 for all i, and hence by Lemma 4.2.2 and

Remark 4.2.3 we can choose θ small enough that Cθ := E
[
eθÕsc

]
< ∞. The result

follows from noting that

P
(
DiamX(p[0, 1]) > λ

1
α

)
≤ e(Cθ−1)C̃αe−θλ

1
α .

By taking a union bound, the same argument can be used to give a bound

on the global infimum.
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Proposition 4.2.4. There exist constants c, C, r0 ∈ (0,∞) such that for all r ∈
(0, r0) and all λ ∈ (0, 1

2r
−α),

P

(
inf
u∈Lα

ν
(
B(u, r)

)
< rαλ−1

)
≤ Cr−αλ exp{−cλ

1
α }.

Proof. By the same reasoning as in the proof of Proposition 4.2.1, we have:

{ inf
u∈L

ν(B(u, r)) < rαλ−1}

⊂
{
DiamXbr(p[krαλ−1, (k + 1)rαλ−1 ∧ 1]) >

1

2
r for some k = 0, . . . , br−αλc

}
,

and hence

P

(
inf
u∈L

ν(B(u, r)) < rαλ−1

)
≤ P

(
DiamXbr(p[krαλ−1, (k + 1)rαλ−1 ∧ 1

2
]) >

1

2
r for some k = 0, . . . , b1

2
r−αλc

)
+ P

(
DiamXbr(p[

1

2
∨ krαλ−1, (k + 1)rαλ−1 ∧ 1]) >

1

2
r for some k = b1

2
r−αλc, . . . , br−αλc

)

≤ Cθr−αλ
||p 1

2
||∞

p1(0)
e−θλ

1
α ,

where the final line follows by Proposition 4.2.1.

Proof of infimal lower bounds in Theorems 4.0.4 and 4.0.5. Take c as in Proposi-

tion 4.2.1, and M > c−1. Set

g(r) = Mrα(log log r−1)−α, and Jr = {ν(B(p(U), r)) < g(r)}.

Taking λ = M(log log r−1)α in Proposition 4.2.1 we see that P(Jr) ≤ C(log r−1)−cM ,

and since M > c−1 we have by Borel-Cantelli that P(J2−k i.o.) = 0. Hence there

almost surely exists K ∈ N such that Jc
2−k

occurs for all k ≥ K. On this event,

ν(B(p(U), r)) ≥ 2−αg(r) for all sufficiently small r, or equivalently,

lim inf
r↓0

(
ν(B(p(U), r))

rα(log log r−1)−α

)
≥ 2−αM. (4.14)

To deduce the result for ν-almost every u ∈ Lα we apply Fubini’s theorem.

Letting

F (Lα, u) = 1

{
lim inf
r↓0

(
ν(B(u, r))

rα(log log r−1)−α

)
≥ 2−αM

}
,
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we have from above that∫ 1

0
E[F (Lα, u)] du = E[F (Lα, p(U))] = 1.

By Fubini’s theorem, this implies that almost surely, F (Lα, u) = 1 for Lebesgue

almost every u ∈ [0, 1], and consequently for ν-almost every u ∈ Lα. This proves

(4.5).

The proof of the global bound (4.1) is similar. Take c as in Proposition 4.2.1,

choose some A > αc−1, and set ε = A − αc−1. Then, setting λ = (A log r−1)α we

have by Proposition 4.2.4 that:

P

(
inf
u∈Lα

ν
(
B(u, r)

)
< rα(A log r−1)−α

)
≤ Crε(log r−1)α.

Consequently, letting

Kr =
{

inf
u∈Lα

ν
(
Br(u)

)
< rα(A log r−1)−α

}
,

we have by Borel-Cantelli that P(K2−k i.o.) = 0. Hence, there almost surely exists

a K0 <∞ such that for any r < 2−K0 we have (4.1), or more precisely that:

inf
u∈Lα

ν
(
B(u, r)

)
≥ 2−αrα(A log r−1)−α.

4.2.2 Supremal upper bounds

In this section we prove (4.2) and (4.6) using the following Williams’ Decomposition.

By appealing to uniform re-rooting invariance, we will treat p(U) as the root of the

looptree throughout.

Williams’ decomposition

The Williams’ Decomposition of [AD09] gives a decomposition of a stable tree T̃α
along its spine of maximal height. In the Brownian case α = 2, this corresponds

to Williams’ decomposition of Brownian motion. Letting Hmax = supu∈T̃α dT̃α(ρ, u),

we see from [DW17, Equation (23)] (and references therein) that there is almost

surely a unique uh ∈ T̃α such that dT̃α(ρ, uh) = Hmax. We define the Williams’ spine

(or W-spine) of T̃α to be the segment [[ρ, uh]], and take the Williams’ loopspine (or

W-loopspine) in the corresponding looptree Lα to be the closure of the set of loops

coded by points in [[ρ, uh]]. A main result of [AD09] is a theorem which firstly gives

the distribution of the loop lengths along the W-loopspine, and additionally the
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distribution of the fragments obtained by decomposing along it.

Given the spine from ρ to uh, and conditional on Hmax = H, the loops along

the W-loopspine can be represented by a Poisson point measure
∑

j∈J δ(lj , tj , uj)

on R+× [0, H]× [0, 1] with a certain intensity. A point (l, t, u) corresponds to a loop

of length l in the W-loopspine, occurring on the W-spine at distance t from the root

in the corresponding tree T̃α, and such that a proportion u of the loop is on the

“left” of the W-loopspine, and a proportion 1− u is on the “right”. In [AD09], this

is written in terms of the exploration process on T̃α, but we interpret their result

below in the context of looptrees.

We note that when stating this result, we are not conditioning on the total

mass of T̃α: only the maximal height. The mass will depend on its height via the

joint laws for these under the Itô excursion measure.

Theorem 4.2.5. (Follows directly from [AD09, Lemma 3.1 and Theorem 3.3]).

(i) Conditionally on Hmax = H, the set of loops in the W-loopspine forms a

Poisson point process µW-loopspine =
∑

j∈J δ(lj , tj , uj) on the W-spine in the

corresponding tree with intensity

1{[0,1]}(u)1{[0,H]}(t)l exp{−l(H − t)
−1
α−1 }du dt Π(dl),

where Π is the underlying Lévy measure, with Π(dl) = 1
|Γ(−α)| l

−α−1
1(0,∞)(l)dl

in the stable case. We will denote the atom δ(lj , tj , uj) by Loopj.

(ii) Let δ(l, t, u) be an atom of the Poisson process described above. The set of

sublooptrees grafted to the W-loopspine at a point in the corresponding loop

can be described by a random measure M (l) =
∑

i∈I δ
(l)(Ei, Di), where Ei is a

Lévy excursion that codes a looptree in the usual way, and Di represents the

distance going clockwise around the loop from the point at which this sublooptree

is grafted to the loop, to the point in the loop that is closest to ρ. This measure

has intensity

N(·, Hmax ≤ H − t)× 1{[0,l]}(D)dD.

In particular, the sublooptrees are just rescaled copies of our usual normalised

compact stable looptrees, and each of these is grafted to the loop on the W-

loopspine at a uniform point around the loop lengths.

Remark 4.2.6. Point (ii) is a slight extension of the results of [AD09], where the

authors write that the intensity of subtrees incident to the W-spine at a node of

“degree” l has intensity lN(·, Hmax ≤ m − t). However, it follows from [DLG05,

Equation (11)] and the remarks below it that the corresponding sublooptrees are

actually distributed uniformly around the corresponding loop.
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Encoding the looptree structure in a branching process

The Williams’ decomposition suggests a natural way to encode the fractal structure

of Lα in a branching process or cascade. Specifically, we let ∅ denote the root vertex

of our cascade. This represents the whole looptree Lα (in particular, ∅ should

not be confused with ρ, which is the root of Lα). By performing the Williams’

decomposition on Lα and removing the W-loopspine, the fragments obtained are

countably many smaller copies of Lα, which we view as the children of ∅ in our

branching process, and index by N. Moreover, to each edge joining ∅ to one of

its offspring i, we associate a random variable m(∅, i) which gives the mass of the

sublooptree corresponding to index i. The root of a sublooptree is the point at

which it is grafted to the W-loopspine of its parent.

We can then perform further Williams’ decompositions of these sublooptrees.

More precisely, if i is a child of ∅, we can decompose along its W-loopspine from its

root to its point of maximal tree height to obtain a countable collection of offspring

of i that correspond to the fragments obtained on removing this W-loopspine, and

label the offspring as (ij)j≥1. By repeating this procedure again and again on the

resulting subsublooptrees, we can keep iterating to obtain an infinite branching

process.

Remark 4.2.7. It may seem more straightforward to use a spinal decomposition

to a uniform point (as in [HPW09]) as the basis of this iteration, rather than the

Williams’ decomposition. However, this leads to technical difficulties in the case

when V is chosen so that p(V ) is a point too close to p(U), and it is convenient to

avoid this by instead decomposing along the maximal spine in the underlying tree.

We index this process using the Ulam-Harris labelling convention defined in

Section 3.1. Using the notation of [Nev86], an element of our branching process will

be denoted by u = u1u2u3 . . . uj , and corresponds to a smaller sublooptree L ⊂ Lα.

Its offspring will all be of the form (ui)i∈N, with corresponding roots (ρui)i∈N, where

ui here abbreviates the concatenation u1u2u3 . . . uji, and each will correspond to

one of the further sublooptrees obtained on performing a Williams’ decomposition

of L.

Moreover, to each edge joining u to its child ui we associate a random vari-

able m(u, ui). These give the ratios of the masses of each of the sublooptrees that

correspond to the offspring of u, so that
∑∞

i=1m(u, ui) = 1 for all u ∈ U . Given a

particular element u = u1u2 . . . uj of the branching process, the overall mass of the

corresponding sublooptree is then given by Mu =
∏j−1
i=0 m(ui, ui+1), where here we

let u0 denote the root ∅.
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Main argument for supremal upper bound

The simplest way to upper bound the volume is to sum the masses of all the subloop-

trees that are incident to the W-loopspine at a point within distance r of p(U), giving

ν(B(p(U), r)) ≤
∞∑
i=1

Mi1{ρi ∈ B(p(U), r)}. (4.15)

We would like to use this to bound P(ν(B(p(U), r)) ≥ rαλ). However, this

approach is not very sharp since the probability that there is such an incident

sublooptree of mass greater than rαλ is of order λ
−1
α , and when this happens the

bound on the right hand side of (4.15) is immediately too large. However, if this

event occurs, it is actually likely that this sublooptree is not completely contained

in B(p(U), r), and so we are not really capturing the right asymptotics for the

behaviour of ν(B(p(U), r)) by applying (4.15).

To refine the argument we instead repeat the same procedure around the

W-loopspine of the larger sublooptree. If there are no larger (sub)sublooptrees inci-

dent to the (sub)W-loopspine close to the (sub)root, then we conclude by summing

the smaller terms; otherwise, we can keep repeating the same procedure and it-

erating further until eventually we reach a stage where there are no more “large”

sublooptrees to consider.

This iterative process corresponds to selecting a finite subtree T of U in such

a way that the elements of T correspond to the large sublooptrees around which

we perform further iterations. The offspring distribution of T will be sufficiently

subcritical that the process will die out fairly quickly. Conditioning on the extinction

time and then on the total progeny of T , we bound the volume of the ball B(p(U), r)

by the sum of the masses of all the small sublooptrees that are grafted to the W-

loopspine of each of the large sublooptrees.

Below, we describe how we select T generation by generation as a subtree of

U . Throughout, we take:

β1 =
α− 1

4α− 3
, β2 =

α− 1

4α− 3
, β3 =

2α− 1

2α(4α− 3)
, β4 =

1

4α− 3
.

Note that 2β3− 1
α(1−β1−β2) = 0. Also fix some κ ∈

(
0,
(

1
3e2

Γ(1− 1
α)
)α)

. We need

κ to be sufficiently small to ensure that T is sufficiently subcritical, but we will not

be taking any kind of limit as κ ↓ 0.
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Iterative Algorithm 1

Start by taking ∅ to be the root of T . Recall this represents the whole looptree

Lα.

1. Perform a Williams’ decomposition of Lα along its W-loopspine.

2. Consider the resulting fragments. To choose the offspring of ∅, select

the fragments that have mass at least κ−1rαλ1−β1−β2 , and such that

the subroots of the corresponding looptrees are within distance r of the

root of ∅.

3. Repeat this process to construct T one generation at a time. Given

an element u = u1u2 . . . uj ∈ T , there is a corresponding sublooptree

Lu in Lα with root ρu and Mu := ν(Lu) ≥ κrαλ1−β1−β2 . Consider

the fragments obtained in a Williams’ decomposition of Lu, and select

those that correspond to further sublooptrees that are within distance

r of ρu, and also such that they have mass at least κ−1rαλ1−β1−β2 (i.e.

with Mu1u2...ujuj+1 =
∏j
k=0m(uk, uk+1) ≥ κ−1rαλ1−β1−β2), to be the

offspring of u.

4. For each u = u1u2 . . . uj ∈ T , set

Su =
∞∑
i=1

Mui1

{
ρui ∈ B(ρu, r)

}
1

{
Mui < κ−1rαλ1−β1−β2

}
.

As explained above, in the event that T is finite we then have that:

ν(B(p(U), r)) ≤
∑
u∈T

Su.

Since the Williams’ decomposition involves conditioning on the height of

the corresponding stable tree rather than its mass, we will prove this theorem by

rescaling each sublooptree corresponding to an element of T to have underlying

tree height 1, and then using Theorem 4.2.5 to analyse the fragments. Most of the

effort in proving the supremal upper bounds is devoted to proving the following

proposition.

Proposition 4.2.8. There exist constants c̃, C̃ ∈ (0,∞) such that for all r < 1 and

all λ > 1,

P(ν(B(p(U), r)) ≥ rαλ) ≤ C̃λ
α−1
4α−3 e−c̃λ

α−1
4α−3

.
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The volume results (4.2) and (4.6) follow from Proposition 4.2.8 by Borel-

Cantelli, similarly to those in the previous section. We sketch this below, and prove

Proposition 4.2.8 afterwards.

Proof of supremal upper bounds, assuming Proposition 4.2.8. Take c̃ as in Proposi-

tion 4.2.8, and choose A > c̃−1. Taking λr = A(log log r−1)
4α−3
α−1 in Proposition 4.2.8

and applying Borel-Cantelli we deduce that P(I2−k i.o.) = 0, where

Ir = {ν(B(p(U), r)) ≥ rαλr}.

Similarly to the proof of the infimal bounds, it follows that

lim sup
r↓0

(
ν(B(p(U), r))

rα(log log r−1)
4α−3
α−1

)
≤ 2αA

almost surely, and we extend to ν-almost every u ∈ Lα using Fubini’s theorem as

before. This proves (4.6).

To prove the global bound (4.2), we have to do a bit more work. First take

some ε > 0, and define W to be the set of sets{
p([ncα(α+ ε)−αrα(log r−1)−α(1+ε), (n+ 1)cα(α+ ε)−αrα(log r−1)−α(1+ε))) :

n ∈ {0, 1, . . . bc−α(α+ ε)αr−α(log r−1)α(1+ε)c}
}
,

where c takes the same value as it did in Proposition 4.2.4. It then follows from

Proposition 4.2.4 that

P(W is an r-covering of Lα) ≥ 1− Cc−α(α+ ε)αrε(log r−1)α(1+ε) (4.16)

for all sufficiently small r. Moreover, assuming that W is indeed an r-covering of

Lα, and letting

W r = {x ∈ Lα : d(x, y) ≤ r for some y ∈W}

be the r-fattening of W for any set W ∈ W, say with

W = p([ncα(α+ ε)−αrα(log r−1)−α(1+ε), (n+ 1)cα(α+ ε)−αrα(log r−1)−α(1+ε))),

we have that W r ⊂ B(p(ncα(α+ ε)−αrα(log r−1)−α(1+ε), 2r). It hence follows that

{ sup
u∈Lα

ν(B(u, r)) ≤ rαλr} ⊂
{
{W is an r-covering of Lα} ∩ {ν(W r) ≤ rαλr∀W ∈ W}

}
,
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and consequently,

P

(
sup
u∈Lα

ν(B(u, r)) ≥ rαλr
)

≤ P(W is not an r-covering of Lα)

+ P
(
∃n : ν(B(p(ncα(α+ ε)−αrα(log r−1)−α(1+ε)), 2r)) ≥ rαλr

)
.

(4.17)

It follows from re-rooting invariance at deterministic points that for any n,

P
(
ν(B(p(ncα(α+ ε)−αrα(log r−1)−α(1+ε)), 2r)) ≥ rαλr

)
= P(ν(B(ρ, 2r)) ≥ rαλr)

= P(ν(B(p(U), 2r)) ≥ rαλr) ,

and hence by applying a union bound and Proposition 4.2.8, we see that

P
(
∃n : ν(B(p(ncα(α+ ε)−αrα(log r−1)−α(1+ε)), 2r)) ≥ rαλr

)
≤ C ′r−α(log r−1)α(1+ε)λ

α−1
4α−3 e−c̃λ

α−1
4α−3

.

In particular, taking λ = λr = ((α + ε)c̃−1 log r−1)
4α−3
α−1 , where c̃ is as it was

in Proposition 4.2.8, we obtain

P
(
∃n : ν(B(p(ncα(α+ ε)−αrα(log r−1)−α(1+ε)), 2r)) ≤ rαλr

)
≤ C ′rε(log r−1)1+α(1+ε).

(4.18)

By combining equations (4.16), (4.17) and (4.18), we therefore see that

P

(
sup
u∈Lα

ν(B(u, r)) ≥ rαλr
)
≤ C ′rε(log r−1)1+α(1+ε).

Hence, letting Jr = {supu∈Lα ν(B(u, r)) ≥ rαλr}, we have that P(J2−k i.o.) = 0

as before. This implies (4.2), since similarly to before, we deduce that there exists

r0 > 0 such that for all r ∈ (0, r0),

sup
u∈Lα

ν(B(u, r)) ≤ 2αrα(log r−1)
4α−3
α−1 .

For a given looptree L̃α and a given R > 0, we let IR denote the set of points

in the W-loopspine that also fall within distance R of the root. Formally,

IR =
⋃
s�uH

{t ≥ s : X̃exc
t = inf

s<r≤t
X̃exc
r , d(ρ, p(t)) < R},
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where X̃exc is the Lévy excursion coding L̃α. IR can be endowed with a natural

notion of length, denoted |IR|, which can be thought of as the sum of the lengths

of loop fragments contained in IR. Formally, this can be defined as the Lebesgue

measure of the closure of the set {X̃exc
t : t ∈ IR}.

To bound the progeny of T , we can then use the Williams’ decomposi-

tion to view the sublooptrees grafted to the W-loopspine as a Poisson process on

D([0,∞), [0,∞))× IR. In particular, the number of sublooptrees with mass greater

than m will be stochastically dominated by a Poisson with parameter |IR|N(ζ > m),

where N denotes the Itô excursion measure and ζ denotes the length of an excursion

under this measure. |IR| will be roughly of order R, but the purpose of the next

lemma is to control this more precisely.

Lemma 4.2.9. Let (L1
α, ρ

1, d1, ν1) be a compact stable looptree conditioned so that

its underlying tree has height 1, but with no conditioning on its mass. Take R ≤
λ−β4, and let IR and |IR| be as above. Then

P
(
|IR| ≥ 3Rλ2β3

)
≤ C(e−cλ

β4(α−1)
+ e−cλ

2β3
) ≤ Ce−cλ

α−1
4α−3

.

Proof. It is possible that |IR| may be of order greater than R if, for example, many

of the loops close to the root have spinal branch points distributed such that they

split the loop into two very unequal segments. We show that this occurs only with

very low probability.

First note that, by Theorem 4.2.5(i), the loops that fall on the first half of

the W-spine stochastically dominate a Poisson point measure
∑

j∈J δ(lj , tj , uj) with

intensity

1{[0,1]}(u)1{[0, 1
2

]}(t)l exp{−l2
1

α−1 }du dt Π(dl). (4.19)

Elements of the set (tj)j∈J correspond to distances along the spine in the underlying

tree, but we will consider them as time indices throughout the remainder of this

proof. We will model the loop lengths using a subordinator, where a jump of the

subordinator of size ∆ at time t corresponds to a loop of length ∆ which in turn

corresponds to a node at a distance t along the W-spine in the associated stable

tree.

To prove the bound, we first condition on existence of a loop in the W-

loopspine with length l greater than 4R and with u ∈ [1
4 ,

3
4 ]. We say that such a

loop is “good”. We also say that a loop is “goodish” if it just has length at least 4R,

with no restriction on u. We then select the closest good loop to ρ. Given such a

loop, the number of goodish loops between ρ and the first good loop is stochastically

dominated by a Geometric(1
2) random variable. Letting this number be N , |IR| can
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then be upper bounded by the random variable

2R(N + 1) +
N+1∑
i=1

Q(i),

where Q(i) denotes the sum of the lengths of all the smaller loops on the W-loopspine

that are between the (i− 1)th and ith goodish loops, and the term 2R(N + 1) comes

from selecting a segment of length at most R in each direction from the “base point”

around each of the goodish loops. Each Q(i) can be independently approximated

by an (α− 1)-stable subordinator run up until an exponential time and conditioned

not to have any jumps greater than 4R.

First let the number of good loops on the first half of the W-spine be equal

to M . From (4.19), it follows that M stochastically dominates a Poisson random

variable with parameter

κR =
1

4

∫ 8R

4R
l exp{−l2

1
α−1 } Π(dl) ≥ 1

4

∫ 8R

4R
l−α exp{−8R2

1
α−1 }dl ≥ C̃R1−α,

where C̃ = 1
4(α−1)(41−α − 81−α) exp{−8 · 2

1
α−1 } is just a constant. Hence,

P(M = 0) ≤ e−cR1−α ≤ e−cλβ4(α−1)
. (4.20)

We henceforth condition on M > 0. Next, note that for any loop of length at least

4R, the probability that it is good is at least 1
2 (independently of the other loops),

and so if we examine all such loops of the W-loopspine in order from ρ, as described

in the previous paragraph, we have that N + 1 is stochastically dominated by a

Geo(1
2) random variable. Hence, for any θ > 0, we have by a Chernoff bound that

P
(
N + 1 ≥ λ2β3

)
≤ P

(
Geo

(1

2

)
≥ λ2β3

)
≤ Ce−λ2β3 . (4.21)

To bound
∑N+1

i=1 Q(i), we again use (4.19). Conditionally on M > 0, (4.19)

implies that the times between each successive pair of goodish loops in the W-

loopspine will each be independently stochastically dominated by an exp(2κR) ran-

dom variable, which we denote by ER. Hence, the sum of the smaller jumps between

each pair can be stochastically dominated by SubER , where Sub is a subordinator

with Lévy measure

cl−α1{l≤4R}dl,

Also let E be an exp(2C̃) random variable (recall that κR = C̃R1−α). It further
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follows by rescaling that

P

(
N+1∑
i=1

Q(i) ≥ Rλ2β3

)
≤ P

(
N+1∑
i=1

Sub
(i)
ER ≥ Rλ

2β3

)
≤ P

(
N+1∑
i=1

Sub
(i)′

E ≥ λ
2β3

)
,

where Sub(i) are independent copies of Sub, and Sub(i)′ are independent copies of a

subordinator similar to Sub but with Lévy measure

cl−α1{l≤4}dl.

It then follows by Lemma 4.2.2 that there exists θ > 0 with Cθ := E
[
eθSub′E

]
< 3

2 .

For such θ, we hence have

P

(
N+1∑
i=1

Q(i) ≥ Rλ2β3

)
=
∞∑
n=1

P

(
N+1∑
i=1

Sub
(i)′

E ≥ Rλ
2β3

∣∣∣∣∣ N + 1 = n

)
P(N + 1 = n)

≤
∞∑
n=1

(3

2

)n
e−θλ

2β3
(1

2

)n
= C ′′θ e

−θλ2β3 .

(4.22)

To conclude, we combine the results of (4.20), (4.21) and (5.12) by writing

P
(
|IR| ≥ 3Rλ2β3

)
≤ P(M = 0) + P

(
N + 1 ≥ λ2β3

∣∣∣M > 0
)

+ P

(
N+1∑
i=1

Q(i) ≥ Rλ2β3

∣∣∣∣∣M > 0

)
≤ C

(
e−cλ

β4(α−1)
+ C ′θe

−cλ2β3).

The second technical lemma will allow us to bound the total progeny of T by

comparing it to a subcritical Galton-Watson tree with Poisson offspring distribution.

Lemma 4.2.10. Let T̃α be a compact stable tree, and L̃α be its corresponding com-

pact stable looptree, both coded by the same excursion E under the Itô measure N(·)
but conditioned to have lifetime ζ at least κ−1rαλ1−β1−β2. Let ρ be the root of L̃α,

and perform a Williams’ decomposition of L̃α along its W-loopspine. Let N denote

the number of resulting sublooptrees obtained that are of mass at least κ−1rαλ1−β1−β2

and are also grafted to the W-loopspine within distance r of the root of L̃α. Then

P(N ≥ n) ≤ Ce−cλ1−β1−β2−αβ4 + C(e−cλ
β4(α−1)

+ e−cλ
2β3

) + P(Poisson(Kα) ≥ n) ,
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where Kα = 3
(
Γ
(
1− 1

α

))−1
κ

1
α . The constants c and C also depend on κ, but κ is fixed

and the precise dependence will not be important, so we suppress this notationally.

Proof. Let H be the height of T̃α, and let E(H) be the rescaled excursion given by

E(H) =
(
H
−1
α−1E

H
α
α−1 t

)
0≤t≤H

−α
α−1 ζ

.

The excursion E(H) codes a tree conditioned to have height 1 (this can be seen from

combining [GH10, Lemma 5.8, Part 3] with [DW17, Equation (26)], for example).

Moreover, in the corresponding looptree, N now denotes the number of sublooptrees

of mass at least H
−α
α−1κ−1rαλ1−β1−β2 that are grafted to the W-loopspine within

distance R := H
−1
α−1 r of ρ.

We wish to bound R so that we can apply Lemma 4.2.9. To do this, note by

monotonicity and scaling invariance that

P
(
R ≥ λ−β4

∣∣∣ ζ ≥ κ−1rαλ1−β1−β2
)
≤ P

(
H ≤ κ

α−1
α λ

−(α−1)(1−β1−β2)
α λβ4(α−1)

∣∣∣ ζ = 1
)

≤ Ce−cλ1−β1−β2−αβ4 ,

where the final line holds by [DW17, Theorem 1.8]. Then, conditioning on R ≤ λ−β4

(i.e. H ≥ rα−1λβ4(α−1)), we have by Lemma 4.2.9 that

P
(
|IR| ≥ 3Rλ2β3

∣∣∣ R ≤ λ−β4) = P
(
|IR| ≥ 3H

−1
α−1 rλ2β3

∣∣∣ H ≥ rα−1λ−β4(α−1)
)

≤ C(e−cλ
β4(α−1)

+ e−cλ
2β3

).

By Theorem 4.2.5(ii), the sublooptrees grafted to the W-loopspine at points in

IR form a Poisson process of sublooptrees coded by the Itô excursion measure,

but thinned so that none have height large enough to violate the condition that

the end of the W-spine corresponds to the point of maximal height in the tree.

We can therefore stochastically dominate this by the classical, unthinned version

of the Itô excursion measure of Section 2.5.3. Since N(ζ ≥ t) = Ĉαt
−1
α , where

Ĉα = (Γ(1 − 1
α))−1 (e.g. see [GH10, Proposition 5.6]), it follows that conditionally

on |IR| ≤ 3Rλ2β3 = 3H
−1
α−1 rλ2β3 , N is stochastically dominated by a Poisson random

variable with parameter:

3Ĉα(κ−1H
−α
α−1 rαλ1−β1−β2)

−1
α H

−1
α−1 rλ2β3 = 3Ĉακ

1
α .
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To conclude, we write:

P(N ≥ n) ≤ P
(
H ≤ rα−1λβ4(α−1)

∣∣∣ ζ ≥ κ−1rαλ1−β1−β2
)

+ P
(
|IR| ≥ 3H

−1
α−1 rλ2β3

∣∣∣ H ≥ rα−1λ−β4(α−1)
)

+ P
(
Poisson(3Ĉακ

1
αλ2β3− 1

α
(1−β1−β2)) ≥ n

)
≤ C(e−cλ

1−β1−β2−αβ4
+ e−cλ

β4(α−1)
+ e−cλ

2β3
) + P

(
Poisson(3Ĉακ

1
α ) ≥ n

)
.

Armed with these lemmas, there are now two key steps to the main argu-

ment. One of these is to bound the number of times we need to reiterate around

larger sublooptrees as described by the algorithm, and the other is to bound the

contributions of smaller terms from each of these iterations.

As is usual, we will let |T | denote the total progeny of the tree T . The first

main result is the following.

Proposition 4.2.11. There exist constants c, C ∈ (0,∞) such that

P
(
|T | ≥ λβ1

)
≤ Cλ

α−1
4α−3 e−cλ

α−1
4α−3

.

Proof. The main ingredient in this proof is the main theorem of Dwass from [Dwa69],

that for a Galton-Watson tree with total progeny Prog and offspring distribution ξ,

it holds that

P(Prog = k) =
1

k
P

(
k∑
i=1

ξ(i) = k − 1

)
,

where the ξ(i) are i.i.d. copies of ξ. In particular, if ξ ∼ Poisson(θ) for some θ < 1
e2

we see by writing the sum explicitly and applying Stirling’s formula that

P(Prog ≥ k) =
∑
j≥k

1

j
P(Poisson(jθ) = j − 1) ≤ c

θ

∑
j≥k

j
−3
2 (eθ)j ≤ c

θ
k
−3
2 (eθ)k. (4.23)

This isn’t a priori applicable since in our case T is not quite a Galton-Watson

tree. However, it follows from Lemma 4.2.9 that for any k > 0, we have

P(|T | ≥ k) ≤ k
[
Ce−cλ

1−β1−β2−αβ4
+ C(e−cλ

β4(α−1)
+ e−cλ

2β3
)
]

+ P
(
|T ′| ≥ k

)
,

where T ′ is a Galton-Watson tree with Poisson(Kα) offspring distribution. Accord-

ingly, setting θ = Kα (which is less than 1
e2

by our choice of κ) and k = λβ1 we see

that

P
(
|T ′| ≥ k

)
≤ Ce−λβ1
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so combining with the above we deduce that

P
(
|T | ≥ λβ1

)
≤ λβ1

[
Ce−cλ

1−β1−β2−αβ4
+ C(e−cλ

β4(α−1)
+ e−cλ

2β3
)
]

+ Ce−λ
β1
,

which gives the result on substituting for the βi.

Proposition 4.2.12. Conditional on |T | ≤ λβ1, we have that

P
(
∃u ∈ T : Su ≥ rαλ1−β1

)
≤ Cλ

α−1
4α−3 e−cλ

α−1
4α−3

.

Proof. Take u ∈ T , and let Lu be the corresponding (sub)looptree that forms part

of Lα. By the same arguments used in Proposition 4.2.11, we can use Lemma 4.2.9

to show that, letting R = H
−α
α−1 r, we have

P
(
|IR| ≥ 3Rλ2β3

)
≤ P

(
R ≥ λ−β4

)
+ P

(
|IR| ≥ 3Rλ2β3

∣∣∣ R ≥ λ−β4)
≤ Ce−cλ1−β1−β2−αβ4 + C(e−cλ

β4(α−1)
+ e−cλ

2β3
)

We now condition on {|IR| ≥ 3Rλ2β3}. Again dominating the thinned Itô excursion

measure by the classical Itô excursion measure as we did in the proof of Propo-

sition 4.2.12, we have that H
−α
α−1Su is stochastically dominated by a subordinator

with Lévy measure Cαx
−1
α
−1
1{x ≤ H

−α
α−1κ−1rαλ1−β1−β2}dx, run up until the time

3H
−1
α−1 rλ2β3 . Note that the Lévy measure coincides with that of an α−1-stable

subordinator, conditioned to have no jumps greater than κ−1H
−α
α−1 rαλ1−β1−β2 .

Hence, letting Subord be an α−1-stable subordinator, and conditioning on

|IR| ≤ 3Rλ2β3 , we have by scaling invariance that:

P
(
Su ≥ rαλ1−β1

∣∣∣ |IR| ≤ Rλ2β3
)

= P
(
H
−α
α−1Su ≥ H

−α
α−1 rαλ1−β1

∣∣∣ |IR| ≤ Rλ2β3
)

≤ P
(
Subord

H
−1
α−1 rλ2β3

≥ H
−α
α−1 rαλ1−β1

∣∣∣ no jumps more than κ−1H
−α
α−1 rαλ1−β1−β2

)
≤ P

(
Subord1 ≥ κλ1−β1−2β3α

∣∣∣ no jumps more than 1
)
.

By the arguments of Lemma 4.2.2, it follows that there exists θ > 0 such that

E
[
eθ Subord1

]
<∞ when conditioned to have no jumps greater than 1, so, as before,

the latter probability can be bounded by Ce−cλ
1−β1−2β3α .

Combining these, we see that

P
(
Su ≥ rαλ1−β1

)
≤ Ce−cλ1−β1−β2−αβ4 + C(e−cλ

β4(α−1)
+ e−cλ

2β3
) + Ce−cλ

1−β1−2β3α
.

The result follows on taking a union bound and substituting the value of each βi.
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We are now able to prove Proposition 4.2.8.

Proof of Proposition 4.2.8. Note that, on the event {|T | ≤ λβ1 , Su ≤ rαλ1−β1∀u ∈
T}, we have that

ν(B(ρ, r)) ≤
∑
u∈T

Su ≤ |T | sup
u∈T

Su ≤ λβ1rαλ1−β1 = rαλ.

Hence, by combining the results of Propositions 4.2.11 and 4.2.12, we see that

P(ν(B(ρ, r)) ≥ rαλ) ≤ P
(
|T | ≥ λβ1 or Su ≥ rαλ1−β1 for some u ∈ T

)
≤ Cλ

α−1
4α−3 e−cλ

α−1
4α−3

.

(4.24)

4.3 Attaining extremal volumes

In this section, we show that up to logarithmic and log-logarithmic factors, the

extremal volume bounds of Theorems 4.0.4 and 4.0.5 are attained, namely proving

(4.3), (4.4), (4.7) and (4.4).

In order to apply the second Borel-Cantelli lemma to prove these results, we

will need a level of independence across different parts of the looptree. We achieve

this by using a spinal decomposition result which enables us to split Lα into a series

of smaller sublooptrees, which are independent of each other after rescaling. We

detail this decomposition below.

4.3.1 Spinal decomposition from the root to a uniform point

In [HPW09], it was shown that if we define the spine of a stable Lévy tree Tα to be

the unique path from the root to a uniform point, then Tα can be broken along this

spine and that the resulting fragments form a collection of smaller Lévy trees. This

gives a similar decomposition result for looptrees.

We define the decomposition formally as follows. Let U ∼ Uniform([0, 1]), so

that p(U) is a uniformly chosen vertex in Lα, and let ρ be its root. We say that the

loopspine from ρ to p(U), denoted SU , is the closure of the set of loops corresponding

to ancestors of U . To form the fine spinal decomposition, first let (Loi )
∞
i=1 be the

connected components of Lα \ SU , and then for each i ∈ N let Li be the closure of

Loi in Lα. Then almost surely, each Li can be written in the form Loi
.
∪ ρi for some

ρi ∈ Lα \ Loi . Note that by uniform rerooting invariance, we can also replace the

root with an independent uniform point in Lα.
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If the fragment Li has mass αi, define a metric di and a measure νi on Li by

di = α
−1
α
i d|Li , νi =

ν(· ∩ Li)
αi

.

Additionally let p(Ui) be a vertex in Li chosen uniformly according to νi. We then

have the following result, which is a consequence of [HPW09, Corollary 10], which

gives the corresponding result for Lévy trees.

Theorem 4.3.1. {(Li, di, νi, ρi, p(Ui))}i∈N is a collection of independent copies of

(Lα, d, ρ, ν, p(U)). Moreover, the entire family is independent of (αi)i∈N, which has

a Poisson-Dirichlet (α−1, 1− α−1) distribution.

In the looptree case, we can add some further information about the arrange-

ment of the sublooptrees around the loopspine. It follows as a direct consequence of

equation (11) and the paragraph following it in [DLG05] that they are distributed

uniformly around the loopspine (in the natural way with respect to the “length” of

the loopspine).

Representations of the Poisson-Dirichlet distribution

In order to apply Theorem 4.3.1, we will use the following constructive characterisa-

tion of the Poisson-Dirichlet distribution. This construction is the GEM construc-

tion of [Ewe90], so named after Griffiths, Engen and McCloskey.

Firstly, let (Zk)
∞
k=1 be a sequence of independent beta random variables with

respective parameters (1− α−1, 1 + (k − 1)α−1). Set

Mk = (1− Z1)(1− Z2) . . . (1− Zk−1)Zk.

Then the random vector (M1,M2, . . .) is distributed as a size-biased ordering of

a Poisson-Dirichlet(α−1, 1 − α−1) random variable. See [PY97, Proposition 4] or

[Pit96] for a proof.

We will use the following lemma in Section 4.3.2 to prove lower bounds on

extremal supremal volume values.

Lemma 4.3.2. Let (M1,M2, . . .) be a sequence of random variables constructed

via a stick-breaking construction from an independent sequence of random variables

(Z1, Z2, , . . .), each taking values in [0, 1]; that is

M1 = Z1,

M2 = (1− Z1)Z2,

Mn = (1− Z1)(1− Z2) . . . (1− Zn−1)Zn
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for all n ≥ 1. Let (g(n))n≥1 be any sequence of numbers taking values in [0, 1]N.

Then

P(Mn ≥ g(n) |M(l) < g(l)∀l < n) ≥ P(Mn ≥ g(n)) .

Proof. This is immediate on noting that Mn = (1−
∑n−1

i=1 Mi)Zn.

Lemma 4.3.3. Letting Mk be the kth GEM random variable, we have for any c′ > 0

that:

P
(
Mk ≥ c′k−α

)
≥ c−1(1− c′)2.

Proof. The proof is an application of the Paley-Zigmund inequality, which says that

for any non-negative random variable X with finite variance, and any θ ∈ [0, 1],

P(X ≥ θE[X]) ≥ (1− θ)2E[X]2

E[X2]
. (4.25)

By taking X = Mk, we have (recalling that Mk = Zk
∏k−1
i=1 (1 − Zi), where Zi are

independent Beta(1− α−1, 1 + (i− 1)α−1) random variables) that:

E[Mk] = E[Zk]

k−1∏
i=1

E[1− Zi] ≥
1− α−1

2 + (k − 2)α−1

k−1∏
i=1

1 + (i− 1)α−1

2 + (i− 2)α−1

=
α− 1

k + 2(α− 1)

k−1∏
i=1

i+ α− 1

i+ 2(α− 1)

≥
(3

2

)α
k−1k−(α−1)

=
(3

2

)α
k−α

whenever k ≥ K, say, and similarly

E
[
M2
k

]
= E

[
Z2
k

] k−1∏
i=1

E
[
(1− Zi)2

]
≤ α− 1

(3α+ k − 2)(2α+ k − 2)

k−1∏
i=1

2α+ i− 1

3α+ i− 2

α+ i− 1

2α+ i− 2

=
α− 1

(3α+ k − 2)(2α+ k − 2)

2α+ k − 2

2α− 2

k−1∏
i=1

α+ i− 1

3α+ i− 2

≤ ck−2kk−(2α−1)

= ck−2α.
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It therefore follows from (4.25) that

P
(
Mk ≥ c′k−α

)
≥ P

(
Mk ≥ c′

(3

2

)α
k−α

)
≥ c−1(1− c′)2.

4.3.2 Supremal lower bounds

We now prove (4.3) and (4.7), starting with a probabilistic bound. The proof re-

lies on using the relation (4.13) to compare volume fluctuations with stable Lévy

oscillations.

Proposition 4.3.4. There exist constants c, C ∈ (0,∞) such that for all r < 1 and

all λ > 1,

P

(
ν(B(p(U),

1

2
r)) ≥ rαλ

)
≥ Ce−cλ.

Proof. As explained in Section 4.2.1, we know that

{Osc[p(U),p(U)+rαλ]X
exc ≤ r} ⊂ {ν(B(p(U), r)) ≥ rαλ}.

It follows from the relation pt(x) = t
−1
α p1(xt

−1
α ) that

p1−rαλr (r)
p1(0) ∧ p1−rαλr (−r)

p1(0) → 1 as

r ↓ 0 whenever λr = o(r−α). Consequently, by applying the Vervaat transform and

the absolute continuity relation, we have for all sufficiently small values of r that

P(ν(B(p(U), r)) ≥ rαλ) ≥ P
(
Osc[p(U),p(U)+rαλ]X

exc ≤ r
)

≥
{p1−rαλ(r)

p1(0)
∧ p1−rαλ(−r)

p1(0)

}
P
(
Osc[0,rαλ]X ≤ r

)
≥ 1

2
P
(
T 0

[−1,1] > 2αλ
)
,

where T xI denotes the exit time of X from the interval I, conditioned on X0 = x.

It follows from the discussion below [Ber97, Theorem 2] that there exist de-

terministic constants c1, c2 such that P
(
T 0

[−1,1] > 2αλ
)
∼ c1e

−c2λ. The proposition

follows.

We cannot directly use Proposition 4.3.4 to prove the lower supremal bounds

since we do not have the necessary independence to immediately apply the second

Borel-Cantelli lemma. However, we can achieve this by performing a spinal decom-

position, and considering volumes in different fragments, which are independent of

each other. To do this, we will use a spinal decomposition to a uniform point, de-

tailed below. The advantage of this over the Williams’ decomposition in this case

is that it allows us to control the masses of individual fragments more explicitly.
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Main argument for supremal lower bound

Using Theorem 4.3.1, we can construct an argument as follows. First take some

ε > 0 with 0 < ε� 1. Given r ∈ (0, 1), and λr a decreasing function of r such that

λr
λ2r
→ 1 as r ↓ 0, define the interval Jr = [r−1λ

−(1+ε)
α

r , 3
2r
−1λ

−(1+ε)
α

r ]. It is easy to

verify that for all sufficiently small r, the intervals Jr and J2r are disjoint.

Our strategy is as follows. We use the spinal decomposition of Section 4.3.1,

between p(U) and an independent uniform point p(V ). Recall the GEM distribution

introduced there, that gives a size biased representation (M1,M2, . . .) of the Poisson-

Dirichlet distribution. Letting I ′r denote the segment of loopspine that intersects

B(p(U), r) (analagously to IR defined in Section 4.2.2), there is probability of order

at least λ−( 1
α

+ε) that there is a n ∈ Jr such that the sublooptree with Poisson-

Dirichlet mass given by the GEM random variable Mn is grafted to the loopspine at

a point in I ′r
2
. Say this sublooptree is Li,r, with root ρi being the point at which it

is grafted to the loopspine. The mass of the ball B(p(U), r) is then lower bounded

by the mass of B(ρi,
1
2r) ∩ Li,r. We can then rescale the looptree Li,r, and the

corresponding unit ball, to compute that this mass is at least rαλ with at least

polynomial probability. We repeat this argument along the sequence rn = 2−n.

Since the corresponding intervals Jrn are disjoint (provided we start at a sufficiently

large value of n), and the rescaled looptrees from the spinal decomposition of Section

4.3.1 are independent, we obtain the necessary independence to apply the second

Borel-Cantelli Lemma.

Proof of supremal lower bound in Theorem 4.0.5. Let

L =
∑

U∧V≺t�U
∆t +

∑
U∧V≺t�V

∆t + δU∧V (xUU∧V , x
V
U∧V )

be the length of the loopspine, and let Nr be the total number of sublooptrees in

the spinal decomposition that are incident to the loopspine at a point in I ′r
2

and

have mass corresponding to a GEM index in Jr. Then, conditional on L = l, Nr

stochastically dominates a random variable that is Binomial(b1
2r
−1λ

−(1+ε)
α

r c, rl−1).

Hence, the probability that this number is non-zero is at least of order l−1λ
−(1+ε)
α

r .

Conditional on {Nr ≥ 1}, let nr be an index in Jr with corresponding

sublooptree Lr that is incident to the loopspine at a point in I ′( r
2

). Note that

ν(Lr) stochastically dominates the Poisson-Dirichlet GEM weight Mkr , where kr =

3
2r
−1λ

−(1+ε)
α

r , and hence we have by Lemma 4.3.3 that there exists cp > 0 such that

P

(
ν(Lr) ≥

1

2
rαλ1+ε

r

)
≥ P

(
Mkr ≥

1

2
rαλ1+ε

r

)
≥ cp.
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Conditional on there being such a sublooptree Lr, say of mass m ≥ 1
2r
αλ1+ε

r ,

we know that

P

(
ν(B(ρi,

1

2
r) ∩ Li,r) ≥ rαλr

)
= P

(
ν(B(ρ,

1

2
rm

−1
α )) ≥ m−1rαλr

)
≥ Ce−cλrn

by Proposition 4.3.4 (note in particular that m−1rαλr ≤ 2λ−εr → 0 as r ↓ 0 so it is

fine to apply the result here).

Hence, letting Ar be the event that there exists a sublooptree incident to

the loopspine at a point in I ′r
2

with GEM index nr ∈ Jr, and such that the ball

of radius 1
2r in this sublooptree has mass at least rαλr, we deduce that P(Ar) ≥

Cl−1λ
−(1+ε)
α

r e−cλr .

Now, letting rn = 2−n, we have that there exists a finite N such that the

intervals Jrn and Jrm are disjoint whenever m,n ≥ N , and hence since each subloop-

tree is distributed uniformly around the perimeter of the loopspine independently

of the others, then the events that there exist sublooptrees with GEM index in Jrn

(respectively Jrm) within distance 1
2rn (respectively 1

2rm) from the root are inde-

pendent events. Moreover, if the sublooptrees described in the events Arn and Arm

exist, then they are independent once rescaled by Proposition 4.3.1. Thus the only

dependence between the events Arn and Arm is in whether these sublooptrees have

masses greater than c′rαnλ
1+ε
rn (respectively c′rαmλ

1+ε
rm ), but here the only dependence

is that all the Poisson-Dirichlet masses must sum to 1, and hence in actual fact

P
(
Arn

∣∣ Acrm for all N ≤ m < n
)
≥ P(Arn) by an application of Lemma 4.3.2.

Hence,

∞∑
n=N

P
(
Arn

∣∣ Acrm for all N ≤ m < n
)
≥
∞∑
n=N

P(Arn) ≥
∞∑
n=N

Cl−1λ
−(1+ε)
α

rn e−cλ,

so setting λr =
C−1

2
2 (log log r−1) we see that P(Arn i.o. | Length(Sσ) = l) = 1. Since

L is almost surely finite, we can integrate over possible values of l to deduce that

P(Arn i.o.) = 1.

The result at (4.7) follows by applying Fubini’s theorem similarly to the

previous extremal volume bounds.

The proof of the global bound given in (4.3) uses a similar decomposition

approach, but this time we perform two subsequent spinal decompositions. This is

illustrated in Figure 4.1. Firstly, let (M1,M2, . . .) denote the GEM masses obtained

on performing a first spinal decomposition of Lα. Then, for each of the resulting

fragments (L1, L2, . . .), rescale to obtain a sequence of independent stable looptrees

(L1
α,L2

α, . . .), each with mass 1. For each n ∈ N, we perform a further spinal

decomposition of Lnα and denote the resulting GEM masses by {Mn,1,Mn,2, . . .}, and
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Figure 4.1: Illustration of the Double Decomposition. NB Between any two loops,
there are countably many more loops, so loops do not really touch each other like
this.

corresponding looptrees by {Ln,1, Ln,2, . . .}, and by {Ln,1α ,Ln,2α , . . .} after rescaling

again to have mass 1. We take rn = 2−n, Rn = M
−1
α
n rn, λn = C∗ log r−1

n and

λ′n = C∗ logR−1
n , where C∗ is a specific constant to be specified later. We also

define the events:

Bn = {rαn ≤M2
n}, Cn,m = {Mn,m ≥ Rαnλn},

Dn,m = {ν(B(ρn,m, Rn) ∩ Ln,m) ≥ Rαnλn}, An,m = Cn,m ∩Dn,m.

Also set Nn = 2
−1
α r−1

n (log r−1
n )

−1
α , and define the event

An = Bn ∩
( Nn⋃
m=1

An,m

)
.

The key point is to observe that An ⊂ {supu∈Lα ν(B(u, rn)) ≥ rαnλn}, so it is

sufficient to show that P(An i.o.) = 1. The next lemma gives a means to overcome

the dependencies between the GEM masses and apply the second Borel-Cantelli

Lemma. It should be intuitively clear, but we give a proof for completeness.

Lemma 4.3.5. Let An, Bn, An,m, Cn,m, Dn,m, Nn be as above. Then

(i) P(An | Acm∀m < n) ≥ P(An),

(ii) P
(
An,m

∣∣∣ Acn,l∀l < m
)
≥ P(An,m).

Proof. First, note that since the individual looptrees in the spinal decomposition

are independent of each other and of their original masses once rescaled, we can

make the following observations:

• An,m is independent of Bl for all m and all l ≤ n,
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• Bn is independent of Al,m for all m and all l ≤ n,

• Conditional on Cn,l, Dn,l is independent of Dn,k for all k < l.

Figure 4.1 may be helpful to keep track of the dependencies. In fact, the only

dependence between these events is of the form described by Lemma 4.3.2.

We start by proving (i). First note that by the first independence stated

above, we have that

P(An | Acm∀m < n)

= P

(
Bn ∩

( Nn⋃
m=1

An,m

) ∣∣∣∣∣ Acm∀m < n

)

= P(Bn | Acm∀m < n) P

(
Nn⋃
m=1

An,m

∣∣∣∣∣ Acm∀m < n

)

= P(Bn | Acm∀m < n) P(Bn | Acm∀m < n) P

(
Nn⋃
m=1

An,m

∣∣∣∣∣ Acm∀m < n

)
.

(4.26)

We focus on the first term in the final line above. By the second independence

stated above, we have that

P(Bn | Acl∀l < n)

= P(Bn | (∪mAl,m)c t ((∪mAl,m) ∩Bc
l ) ∀ l < n)

=
∑

ω∈{0,1}n−1

P(Bn | E(ω)) P(E(ω) | (∪mAl,m)c t ((∪mAl,m) ∩Bc
l ) ∀ l < n)

=
∑

ω∈{0,1}n−1

P
(
Bn
∣∣ E′(ω)

)
P(E(ω) | (∪mAl,m)c t ((∪mAl,m) ∩Bc

l ) ∀ l < n) ,

where for ω ∈ {0, 1}n−1:

E(ω) =
( ⋃
l:ωl=1

(∪mAl,m)c
)
∩
( ⋃
l:ωl=0

((∪mAl,m) ∩Bc
l )
)
,

E′(ω) =
( ⋃
l:ωl=0

((∪mAl,m) ∩Bc
l )
)
.

Since Bn is independent of ∪mAl,m, we can apply Lemma 4.3.2 to deduce that

P(Bn) ≥ P(Bn | E′(ω)) for all ω. Substituting this into the final line, we obtain

P(Bn | Acl∀l < n) ≥
∑

ω∈{0,1}n−1

P(Bn) P(E(ω) | (∪mAl,m)c t ((∪mAl,m) ∩Bcl ) ∀ l < n)

= P(Bn) .
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We can use the same kind of expansion and apply Lemma 4.3.2 to show that

P

(
Nn⋃
m=1

An,m

∣∣∣∣∣ Acm∀m < n

)
≥ P

(
Nn⋃
m=1

An,m

)
.

Point (i) then follows from the final line of (4.26). The proof of the point (ii) is

almost identical, so we omit it.

Armed with the lemma, we prove the global infimum upper bound as follows.

Proof of supremal lower bound in Theorem 4.0.4. Recall from Theorem 4.3.1 that

the rescaled looptree Lnα is independent of Mn. It follows that the event Bn is

independent of ∪Nnm=1An,m, and hence

P(An) = P(Bn) P
(
∪Nnm=1An,m

)
. (4.27)

We bound each of these terms separately. Firstly, by Lemma 4.3.3, we have that

there exists c̃p > 0 such that

P

(
Mk ≥

1

2
k−α

)
≥ c̃p

for all k ≥ 1. Recalling that rn = 2−n, we see that

P(Bn) = P
(
Mn ≥ r

α
2
n

)
≥ P

(
Mn ≥

1

2
n−α

)
≥ c̃p. (4.28)

To bound the second term in (4.27), we apply point (ii) of Lemma 4.3.2, which

implies that

P

(
Nn⋃
m=1

An,m

)
≥ 1−

Nn∏
m=1

(1−P(An,m)) .

Recalling that Nn = b2
−(2α+1)

α r−1
n (log r−1

n )
−1
α c ≤ 2

−(α+1)
α r−1

n (log r−1
n )

−1
α , we again

apply (4.28) to deduce that

P(Cn,m | Bn) = P(Cn,m) = P
(
Mn,m ≥ Rαn(log r−1

n )
)
≥ P

(
Mn,m ≥

1

2
m−α

)
> cp

whenever m < Nn. To conclude, note that conditional on Cn,m, we have that

M−1
n Rαn(log r−1

n ) ≤ 1 and hence we can apply Proposition 4.3.4 to deduce that

P(Dn,m | Cn,m, Bn) ≥ P

(
ν(B(ρ,M

−1
α
n Rn)) ≥M−1

n Rn(log r−1
n )

)
≥ Ce−ĉλn .
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Here we are specifically taking ĉ to be the constant in the exponent of Proposition

4.3.4. Combining, we see that

P

(
Nn⋃
m=1

An,m

)
≥ 1−

Nn∏
m=1

(1−P(An,m)) ≥ 1− (1− Ce−2ĉλ′n)Nn

≥ 1− exp{2
−(α+1)

α r−1
n (log r−1

n )
−1
α Cr2ĉC∗

n }

Hence, by choosing C∗ > (2ĉ)−1, we see that P
(
∪Nnm=1An,m

)
→ 1 as n → ∞, and

in particular that we can lower bound it by a non-negative constant uniformly in n.

Combining this with (4.27) and (4.28), we see that there exists a constant c > 0 such

that P(An) ≥ c for all n ≥ 1. It then follows from Lemma 4.3.5 and Borel-Cantelli

that P(An i.o.) = 1.

The conclusion follows since on the event Dn,m, we can rescale the ball

B(ρn,m, Rn) ∩ Ln,m back to its original size in the original looptree to obtain a ball

of radius rn with volume at least rαn2λ′n. Moreover, on the event Bn we also have

that λn ≤ 2λ′n, so this volume is actually lower bounded by rαnλn = rαn log r−1
n .

4.3.3 Infimal upper bounds

We now prove (4.4) and (4.8). The method we use to prove upper bounds on infimal

extrema is a simpler version of that used in Section 4.2.2 based on the Williams’

decomposition. We can again control the masses of fragments in the decomposition

by comparison with an α−1-stable subordinator. In this case however, we do not

need to worry about reiterating around larger fragments since the presence of such

fragments is a rare event and thus should not affect the infimal behaviour of the

subordinator.

Let H be the height of the spine in the corresponding tree Tα. As in Section

4.2.2, we start by rescaling Lα by H to form the looptree (L1
α, d

1, ρ1, ν1), which now

has mass H
−α
α−1 and has a corresponding underlying stable tree that has height 1.

Note that

{ν(B(ρ, r)) ≤ rαλ−1} = {ν1(B1(ρ1, rH
−1
α−1 )) ≤ Rαλ−1}.

where again R = rH
−1
α−1 . As explained in the Lemma 4.2.10, and using the notation

we introduced there, it follows from properties of the Itô excursion measure that

ν1(B1(ρ1, R)) is stochastically dominated by Y (|IR|), where Y is an α−1-stable

subordinator, and IR denotes the length of W-loopspine that intersects B1(ρ1, R).

A jump of Y of size ∆ at a time t corresponds to a sublooptree coded by an Itô

excursion of lifetime equal to ∆, and grafted to the W-loopspine at a point that

informally is at a clockwise distance t “through” IR. Moreover, since we have
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rescaled the looptree to have tree height 1, there is no constraint on its total mass,

and therefore no dependence between different jumps of Y .

For technical reasons we will in fact model this by two independent α−1-

stable subordinators, Y (l) and Y (r), corresponding to the left and right sides of the

W-loopspine respectively. We set Y = Y (l) + Y (r).

The comparison relies on the following result, which gives the limiting be-

haviour of the infimum of an α−1-stable Lévy subordinator.

Theorem 4.3.6. [Ber96, Section III.4, Theorem 11]. Let (Wt)t≥0 be an α−1-stable

Lévy subordinator. Then, almost surely,

lim inf
t↓0+

Wt

tα(log log t−1)−(α−1)
= α−1(1− α−1)α−1.

To deduce a similar result for (Yt)t≥0 in place of (Wt)t≥0, note that the only

difference between the two subordinators is the constant in the Lévy measure. Hence

we have the same result for (Yt)t≥0, but just with a different constant on the right

hand side. We will denote this constant by cα.

Proof of local infimal upper bound in Theorem 4.0.5. Set f(t) = tα(log log t−1)−(α−1)

for t > 0. By Theorem 4.3.6, there almost surely exists a sequence (rn)n≥1 with

rn ↓ 0 such that

Y (3rnH
−1
α−1 ) ≤ (cα + 1)f(3rnH

−1
α−1 )

for all n. Since f(3rnH
−1
α−1 ) ≤ 2·3αrαnH

−α
α−1 (log log r−1

n )−(α−1) whenever rn ≤ H
−1
α−1 ,

we can extract a subsequence if necessary so that

Y (3rnH
−1
α−1 ) ≤ 2 · 3α(cα + 1)rαnH

−α
α−1 (log log r−1

n )−(α−1)

and also rn+1 <
1
2rn for all n ≥ 1. Set Rn = rnH

−1
α−1 .

Note that since the process Y depends only on the total length of the W-

loopspine, and not on its microscopic structure, it follows from Lemma 4.2.9 that

there exists a constant Cp > 0 such that

P(|IRn | ≤ 3Rn) ≥ Cp

for all n. More specifically, we let An be the event described by taking λ = 1

in the proof of Lemma 4.2.9 that ensures that |IRn | ≤ 3Rn, consisting of the three

subevents:

(i)n There exists a good loop in the W-loopspine with total length in [4Rn, 8Rn].

(ii)n There are no goodish loops in the W-loopspine occurring between the root and

the first good one.
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(iii)n The sum of the lengths of the smaller loops up until the first good loop is

upper bounded by Rn.

The proof of Lemma 4.2.9 ensures that P(An) ≥ Cp for all n, but to apply the

second Borel-Cantelli Lemma we need to lower bound P(An | Acm∀m < n) instead.

To do this, note that conditional on Acm∀m < n:

• The probability of the event described in (i)n is unaffected by the events of Am

for m < n, since the sets [4Rn, 8Rn] are disjoint for different n and therefore

can be viewed as independent thinned Poisson processes along the W-spine of

the tree.

• Conditional on (i)cm occurring for all m < n, the probability that there is only

one goodish loop before the first good one at level n− 1 is lower bounded by

P
(
Geo(1

2) = 1
∣∣ Geo(1

2) 6= 0
)

= 1
2 .

• Conditional on there only being one such goodish loop at level n − 1, the

probability that the good loop at level n occurs before the goodish loop at

level n − 1 is at least 1
2 . If this occurs, then the probability of the events in

(ii)n and (iii)n is unaffected.

It follows that

P(An | Acm∀m < n) ≥ 1

4
Cp

for all n, and therefore P(An i.o.) = 1 by the second Borel-Cantelli Lemma.

To conclude, note that on the event An we have

ν1(B1(ρ1, Rn)) ≤ Y (3Rn) ≤ 2 · 3α(cα + 1)Rαn(log log r−1
n )−(α−1),

and hence scaling back to the original looptree we see that

ν(B(ρ, rn)) ≤ 3α(cα + 1)rαn(log log r−1
n )−(α−1).

for all sufficiently large n. This proves the local result (4.8).

To prove the global bound, we perform two subsequent spinal decompositions

of Lα, exactly as illustrated in Figure 4.1 in the previous section. Recall from there

that we let (M1,M2, . . .) denote the GEM masses obtained on performing a first

spinal decomposition of Lα, as described in Section 4.3.1. Then, for each of the

resulting fragments (L1, L2, . . .), rescale to obtain a sequence of independent stable

looptrees (L1
α,L2

α, . . .), each with mass 1. For each n ∈ N, we perform a further spinal

decomposition of Lnα and denote the resulting GEM masses by {Mn,1,Mn,2, . . .}, and

corresponding looptrees by {Ln,1, Ln,2, . . .}, and by {Ln,1α ,Ln,2α , . . .} after rescaling.

We also let Un,m denote a point chosen uniformly in Ln,m according to the natural
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volume measure. We take rn = 2−n, Rn = M
−1
α
n rn, λn = (C∗ log r−1

n )α−1 and

λ′n = (C∗ logR−1
n )α−1, where C∗ is a constant to be specified later. We also define

the events:

Bn = {rαn ≤M2
n}, Cn,m = {dLnα(ρm,n, Um,n) ≥ Rn},

Dn,m = {νLnα(B(Un,m, Rn) ∩ Ln,m) ≤ Rαnλn−1}, An,m = Cn,m ∩Dn,m.

We also set Nn = r
−1
2
n . We then define the event

An = Bn ∩
( Nn⋃
m=1

An,m

)
.

The key point is to observe that An ⊂ {supu∈Lα ν(B(u, rn)) ≤ rαnλn
−1}, and hence

it is sufficient to only show that P(An i.o.) = 1. Similarly to the previous section,

the next lemma gives us a means to overcome the dependencies between the GEM

masses and apply the second Borel-Cantelli Lemma. Its proof is almost identical to

that of Lemma 4.3.5, so is omitted.

Lemma 4.3.7. Let An, Bn, An,m, Cn,m, Dn,m, Nn be as above. Then

(i) P(An | Acm∀m < n) ≥ P(An),

(ii) P
(
An,m

∣∣∣ Acn,l∀l < m
)
≥ P(An,m).

Proof of global infimal upper bound in Theorem 4.0.4. Now, note that it follows from

[Ber96, Section III.4, Theorem 12] and the local argument given above that

P
(
ν(B(p(U), r) ≤ rαλ−1

)
≥ Ce−cλ

1
α−1

. (4.29)

We will apply this to prove that P(An) ≥ Ce−cλ
1

α−1
as well. Firstly, note that by

Lemma 4.3.3 there exists a constant c > 0 such that P(Bn) > c for all n. Then, since

the looptrees in the spinal decomposition are independent of their original masses

after rescaling (see Theorem 4.3.1), it follows that
⋃Nn
m=1An,m is independent of Bn.
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Next, we note that:

P

(
Cn,m

∣∣∣∣ Bn,m ≤ r−1
2
n

)
= P

(
dLnα(ρm,n, Um,n) ≥ Rn

∣∣∣∣ Bn,m ≤ r−1
2
n

)
≥ P

(
dLnα(ρm,n, Um,n) ≥ r

1
2
n

∣∣∣∣ m ≤ r−1
2
n

)
≥ P

(
νLα(Lm) ≥ 1

2
r
α
2
n

∣∣∣∣ m = r
−1
2
n

)
P

(
dLα(ρm, Um) ≥ r

1
2
n

∣∣∣∣ νLα(Lm) =
1

2
r
α
2
n

)
≥ C,

where C > 0. The final line follows since by Lemma 4.3.3 the first term in the

penultimate line above can be uniformly lower bounded by a constant, and the

second term can also be uniformly lower bounded by a constant by scaling invariance.

To conclude, we note from (4.29) that P(Dn,m | Cn,m, Bn) ≥ Ce−cλn
1

α−1
for

all n, and all m ≤ Nn. Combining these, we see that P(Am,n) ≥ Ce−cλn
1

α−1
. We

therefore deduce from Lemma 4.3.7(ii) that

P(An) ≥ P(Bn)
(

1−
(
1−P(An,m | Bn)

)Nn) ≥ C ′(1−
(
1− Ce−cλn

1
α−1 )Nn)

≥ C ′
(

1− exp{−NnCe
−cλn

1
α−1 }

)
≥ C ′

(
1− exp{−r

−1
2
n Ce−cC

∗ log r−1
n }
)
.

Choosing C∗ so that C∗ < 1
4c
−1, we obtain that

P(An) ≥ C ′
(

1− exp{−r
−1
4
n C}

)
≥ 1

2
C ′

for all sufficiently large n. Applying Lemma 4.3.7(i) and the second Borel-Cantelli

Lemma, we deduce that P(An i.o.) = 1, which implies (4.4).

4.3.4 Volume convergence results

Here we briefly note a convergence result for ν(B(ρ, r)). In Chapter 5, we introduce

the infinite stable looptree L∞α , which is defined from two stable Lévy processes

rather than a Lévy excursion, arises as the local distributional limit of compact

stable looptrees as their mass goes to infinity (Theorem 5.0.1), and provides the

machinery to prove the following result. We prove this in Section 5.4.1.

Theorem 4.3.8. There exists a random process (Vt)t≥0 : Ω → D([0,∞), [0,∞))
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such that the finite dimensional distributions of the process

(
r−αν(B̄(ρ, rt))

)
t≥0

converge to those of
(
Vt
)
t≥0

as r ↓ 0, and Vt denotes the volume of a closed ball of

radius t around the root in L∞α . Moreover, for any p ∈ [1,∞), we have that

r−αpE
[
ν(B̄(ρ, r))p

]
→E[V p

1 ]

as r ↓ 0, and V1 is a (0,∞)-valued random variable with all moments finite.

This is proved as Theorem 5.4.5.

4.4 Heat kernel estimates

Although we used the shortest distance metric to prove the volume results of The-

orems 4.0.5 and 4.0.4, the result of Lemma 4.1.1 ensures that they also hold true

with respect to the resistance metric R. This allows us to apply results of [Cro07]

to deduce the heat kernel bounds of Theorems 4.0.6 and 4.0.7. Most of our results

follow from a direct application of those of [Cro07], so we refer the reader there for

further background.

To get some off-diagonal results, we need to verify the Chaining Condition

(CC) of [Cro07, Section 4.2].

Definition 4.4.1. (Chaining Condition (CC), [Cro07, Section 4.2]). A metric space

(X,R) is said to satisfy the chaining condition if there exists a constant c such that

for all x, y ∈ X and all n ∈ N, there exists {x0, x1, . . . , xn} ⊂ X with x0 = x and

xn = y such that

R(xi, xi+1) ≤ cR(x, y)

n
.

It is easy to verify that CC holds for (Lα, R, ρ, ν). Recall from [CK14, Corol-

lary 4.4] that Lα is almost surely a length space when endowed with the short-

est distance metric d. The chaining condition for (Lα, d, ρ, ν) therefore holds as a

straightforward extension of the midpoint condition for length spaces, with c = 1+ε

for any ε > 0 (though it actually holds with c = 1). It hence follows from Corollary

4.1.1 that Lα endowed with the resistance metric R also satisfies the condition, with

c = 2(1 + ε) (in fact c = 2 works) instead.

In the notation of [Cro07], we can take any ε > 0 to satisfy point (i) of the

conditions given in Section 2 of that paper, and take b = ε to satisfy point (iii).

We also let fl(r) = C(log r−1)−α, fu(r) = C(log r−1)
4α−3
α−1 , and βl = βu = α, and

θ1 = (3 + 2α)(2 + α). The first part of Theorem 4.0.6 then follows by a direct

application of [Cro07, Theorem 1], with γ1 = θ1(α+ 4α−3
α−1 ).
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We can similarly apply the results to get off diagonal heat kernel bounds.

Again in the notation of [Cro07], take θ2 and θ3 satisfying

θ2 > θ1(1 + α), θ3 > (3 + 2α)(1 + 2α−1),

and let γi = θi(α + 4α−3
α−1 ) for i = 2, 3. Theorem 4.0.8 then follows by a direct

application of [Cro07, Theorem 3].

The results of [Cro07, Proposition 11] can also be applied to give bounds on

expected exit times from a ball of radius r. Indeed, letting τA = inf{t ≥ 0 : Bt /∈ A}
for any A ⊂ Lα, we deduce the following.

Proposition 4.4.2.

Ex

[
τB(x,r)

]
≥ crα+1(log r−1)−2(α+ 4α−3

α−1
)(α+1)(log(r−1(log r−1)2(α+ 4α−3

α−1
)))−α

Ex

[
τB(x,r)

]
≤ Crα+1(log r−1)

4α−3
α−1 .

The results of the propositions above all follow from the fact that the global

volume fluctuations are at most logarithmic. We can also use the fact that these

logarithmic fluctuations are indeed attained infinitely often as r ↓ 0 to deduce that

the heat kernel will indeed experience similar fluctuations.

The volume results as stated in Theorem 4.0.5 do not quite fall into the

framework of [Cro07, Theorem 2], since we have only shown that the infimal and

supremal volumes achieve extremal logarithmic fluctuations values infinitely often

as r ↓ 0, rather than eventually, which is what is required to apply the theorem.

However, by repeating the proof given there with our weaker volume assumptions

instead we are able to deduce the (weaker) results that make up the second part of

Theorem 4.0.6.

Again using [Cro07], the local volume fluctuation results of Theorem 4.0.5

can also be used to bound pointwise fluctuations for the transition density pt(x, x).

However, the conclusions of [Cro07, Theorem 20] also require the condition

lim inf
r↓0

R(x,B(x, r)c)

r
> 0

to hold for ν-almost every x ∈ Lα in order to get lower bounds on the heat kernel.

This does not quite hold in our case but from the proof of [Cro07], we see that

the following proposition is sufficient. For clarity in the next proof, we let BR(x, r)

(respectively Bd(x, r)) denote the open ball of radius r at x defined with respect to

the resistance (respectively geodesic) metric.

Proposition 4.4.3. Almost surely, taking cα as in Section 4.3.3, we have that for

ν-almost every x ∈ Lα, there exists a sequence rn ↓ 0 such that both of the following
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conditions hold:

(i) ν(BR(x, rn)) ≤ 2(cα + 1)rαn(log log r−1
n )−(α−1) for all n,

(ii) Reff(x,BR(x, rn)c) ≥ 1
64rn.

Proof. The proof uses a standard technique for lower bounding the effective resis-

tance as given in [BK06, Lemma 4.5], by defining M(ρ, r) to be the smallest number

m such that there exists a set Ar = {z1, z2, . . . , zm} such that d(ρ, zi) ∈ [ r4 ,
3r
4 ] for

each i, and every path γ from ρ to Bd(ρ, r)
c must pass through at least one of the

points in A. The proof of [BK06, Lemma 4.5] combined with Lemma 4.1.1 then

entails that

Reff(ρ,BR(ρ, r)c) ≥ r

16M(ρ, r)
. (4.30)

The result exactly as stated in [BK06] is written for discrete trees. However, by

combining with Lemma 4.1.1, the same proof shows that (4.30) holds for Lα, just

with an extra factor of 2.

In what follows, we will therefore assume that all distances are defined with

respect to the shortest-distance metric d. As in earlier sections, we will prove the

result at a uniform point p(U), which we can suppose to be the root, and extend

to ν-almost every x ∈ Lα by Fubini’s theorem. As in Sections 4.2.2 and 4.3.3, let

λr = 2(cα+1)(log log r−1)α−1, choose H to be the height of the stable tree associated

with Lα, and rescale time by H
−α
α−1 and space by H

−1
α−1 in the Lévy excursion coding

Lα to give a new looptree L1
α such that the new underlying tree associated to L1

α has

height 1. From the arguments of Section 4.3.3, it follows that almost surely, there

exists a sequence (rn)n∈N with rn ↓ 0 such that |I
1
4
rnH

−1
α−1
| ≤ 3

4rnH
−1
α−1 , and all

sublooptrees grafted to the W-loopspine at a point in I 3
4
R have mass at most rαnλ

−1
rn

for all n. We will show that, with high probability, we also have R(x,Bd(x, rn)c) ≥
crn for each n ∈ N.

Now let r = rn for some n ∈ N, and R = rH
−1
α−1 . By construction, we then

have:

• |I 1
4
R| ≤

3
4R,

• Any sublooptrees grafted to the W-loopspine at a point in I 3
4
R have mass at

most rαλ−1
r .

To bound M(ρ, r), first let Nr denote the number of sublooptrees grafted to the W-

loopspine of L1
α at a point in I 3

4
R and with diameter at least 3

4R. It follows by con-

struction that any such sublooptrees also have mass at most Rαλ−1
r . Consequently,

Nr is stochastically dominated by a Poisson random variable with parameter:

|I 1
4
R|N

(
Diam(L̃α) ≥ 3

4
R, ζ ≤ Rαλ−1

r

)
,
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where N(·) here denotes the Itô excursion measure, and L̃α is a looptree coded by an

(unconditioned) excursion under N . The point is that the two events Diam(L̃α) ≥
3
4R and ζ ≤ Rαλ−1

r are in conflict with each other and hence the Itô measure of the

given set is small. Indeed, since N(·) codes a Poisson point process, we have the

necessary independence from the Poisson thinning property so that:

N
(
Diam(L̃α) ≥ 3

4
R, ζ ≤ Rαλ−1

r

)
≤ N

(
Diam(L̃α) ≥ 3

4
R
)
P

(
ν(B(ρ′, R)) ≤ Rαλ−1

r

∣∣∣∣ Diam(L̃α) ≥ 3

4
R

)
.

To bound each of these terms, note first by the scaling property of looptrees and

the Itô measure that

N
(
Diam(L̃α) ≥ t

)
= Ĉαt

−1

for some constant Ĉα ∈ (0,∞), and hence N
(
Diam(L̃α) ≥ 3

4R
)

= ĈαR
−1. Then,

by the same arguments used to prove Proposition 4.2.1, we can bound the second

term by Ce−cλ
1
α
r , and therefore obtain that

N
(
Diam(L̃α) ≥ 3

4
R, ζ ≤ Rαλ−1

r

)
≤ ĈαR−1Ce−cλ

1
α
r .

It hence follows that Nr is stochastically dominated by a Poisson(C ′e−cλ
1
α
r ) random

variable, so

P(Nr > 0) ≤ C ′e−cλ
1
α
r .

By restricting to a subsequence (rnl)l≥1 such that rnl ≤ e−e
l

for all l, we see by

Borel-Cantelli that P(Nrl > 0 i.o.) = 0.

On the event Nr = 0, it follows that any path γ from ρ to Bd(ρ,R) must

leave the ball Bd(ρ,
1
4R) at a point on the W-loopspine. We conclude the argument

by showing that we can then take a set Ar (which we denote by AR in the rescaled

looptree) with cardinality 2.

Recall that, by assumption, we also have that |I 1
4
R| ≤

3
4R. In particular, we

can assume that the particular event defined in Lemma 4.2.9 and then in Section

4.3.3 which leads to this length bound occurs. Moreover, taking λ = 1 in that proof

and 1
4r in place of r, and defining “good” and “goodish” loops as we did there, the

proof ensures that the number of goodish loops encountered before we reach a good

one is at most 1. We claim that this implies that |AR| ≤ 4.

To see why, we refer to Figure 5.5, which shows a representation of (a discrete

approximation of) the W-loopspine. Defining good and goodish loops for the radius
1
4R as in Lemma 4.2.9, we will assume a “worst-case scenario”: that there does

indeed exist a goodish loop, and that the smaller of the two segments that it is
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broken into along the W-loopspine is less than 1
4R in length. Since |I 1

4
R| ≤

3
4R, it

follows that all of the loops that fall between the root and this goodish loop, and

also between this goodish loop and the good loop, are completely contained within

Bd(ρ,
3
4R), and hence we cannot exit Bd(ρ,

1
4R) at a point within these sequences

of smaller loops. We can therefore only exit at points on either the goodish loop or

the good loop pictured, so we can add two points in AR in each of these loops to

cover all possible exit routes, as shown. We rescale back to the original looptree to

get Ar. Note that for any ε > 0, it also follows that we can choose these points to

be within distance 1
4 + ε of ρ.

In the case that the smaller of the two segments of the goodish loop actually

has length larger than 1
4R, we can repeat the argument by treating the goodish loop

as the good loop, and the same result holds.

Figure 4.2: How to select AR. The red segment is a strict subset of B(ρ, 3
4R) and

contains B(ρ, 1
4R).

This proves (4.30), and we deduce the result as claimed.

Remark 4.4.4. In [Arc20, Theorem 6.2], we prove for infinite stable looptrees that

there almost surely exists a constant c > 0 such that, for all r > 0:

cr(log log r−1)
−(3α−2)
α−1 ≤ R(ρ,B(ρ, r)c).

The argument given there also applies in the compact case, so we deduce the same

result for Lα.

Repeating the proof of [Cro07, Theorem 20] along the subsequence of Propo-

sition 4.4.3 gives Theorem 4.0.7. Finally, we refer to Section 5.4.1 for the details of

the proof of Theorem 4.0.10.
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4.5 Spectral properties of stable looptrees

This section concerns results on the eigenvalue spectrum of stable looptrees. The

proofs are just modifications of similar proofs for stable trees given in [CH10], and

are not majorly new. We therefore just outline the heuristics for the proofs, and

explain which parts are different for stable looptrees in place of stable trees.

4.5.1 Brief background

In light of the results of the preceding sections, the purpose of the present section is

to investigate the eigenvalue counting function of the Laplacian ∆ of the Dirichlet

form associated with Brownian motion on Lα.

More precisely, let (E ,F) be the Dirichlet form associated with the space

L2(Lα, ν) through the relation

R(x, y)−1 = inf{E(f, f) : f ∈ F , f(x) = 0, f(y) = 1}.

We say that λ > 0 is an eigenvalue of (E ,F , ν) with eigenfunction f (assumed to be

non-trivial) if

E(f, g) = λ

∫
Lα
fg dν

for all g ∈ F . The eigenvalue counting function N(λ) is then defined as the number

of (in our case they are P-almost surely all distinct) eigenvalues of (E ,F , ν) that are

less than or equal to λ.

The transition density pt(·, ·) analysed in Section 4.4 is the heat kernel of the

associated Laplacian, and due to the representation

E(f, g) = −
∫
Lα

(∆f)g dν,

we see that any eigenvalue of the operator ∆ is also an eigenvalue of (E ,F , ν). Since

Lα is compact and (E ,F) is consequently regular, the converse also holds.

The main result is as follows.

Theorem 4.5.1. (i) For any ε > 0,

E[N(λ)] ∼ Cλ
α
α+1 +O(λ

1
α+1

+ε)

as λ→∞.

(ii) P-almost surely, N(λ) ∼ Cλ
α
α+1 as λ → ∞. Moreover, in P-probability, the

second order estimate of part (i) holds.

The proofs of the results given in this section closely follow the ideas used
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in [CH10] to deduce analogous results for stable trees. More specifically, we use the

spinal decomposition of Theorem 4.3.1 to write the eigenvalues of Lα in terms of the

eigenvalues of all the sublooptrees (L(i)
α )∞i=1, and iterate this relation to deduce the

asymptotics. In particular, the techniques used in [CH10] involve analysing both

the mass and the diameter of the fragments obtained on performing subsequent

decompositions. In the analogous argument for looptrees, the masses are exactly

the same as the tree case and follow a Poisson-Dirichlet distribution, so the main

aspect of the proofs carry over directly. However, there is one crucial difference

in that the diameter of a (normalised) stable tree has finite moments of all orders,

whereas for looptrees the moments are only finite up to a power of α (as we will show

below). As a result, in some places some fine-tuning of the arguments of [CH10] is

required.

To avoid double-counting the eigenvalue 0 when performing subsequent it-

erations, it will be convenient to define the shifted eigenvalue counting function Ñ ,

given by Ñ(λ) = N(λ)−1. It will also be useful to consider the Dirichlet eigenvalue

counting function ND, obtained when we consider Lα to have a boundary consisting

of two distinguished vertices, ρ and σ, which can be thought of as two ends of the

loopspine. ND is defined as the eigenvalue counting function for the restriction of

(E ,F) to the set FD = {f ∈ F : f(ρ) = f(σ) = 0}. Applying [KL93, Corollary 4.7]

entails that

ND(λ) ≤ N(λ) ≤ ND(λ) + 2.

In what follows we will only give proper proofs in the places where the ar-

guments deviate from those of [CH10]. For the most part, we will just give the

intuition behind each step of the general proof strategy employed there.

4.5.2 Setup and main ideas

In what follows we set γ = α
α+1 (though note that in [CH10] it has the different

value of α
2α−1). This is half the spectral dimension of the space. In keeping with the

notation of [CH10], we also let Σk denote the word-space of k-tuples in Nk, and Σ∗ =

∪k≥0Σk. For i = (i1, . . . , ik) ∈ Σk and j ≤ k, let i|j denote the truncation (i1, . . . , ij).

We will use Σ∗ to index the sublooptrees obtained by performing subsequent spinal

decompositions of Lα in the standard way; more formally, let L∅ = Lα, and for i ∈
Σk with k ≥ 1, let Li be the ithk sublooptree obtained by performing another spinal

decomposition on Li|k−1
. Also let ∆i be the Poisson-Dirichlet weight associated to

Li in this decomposition, and set Di =
∏k
j=1 ∆j|k to be the mass of Li in the original

looptree before rescaling.

We let Li denote the normalised version of Li, i.e. where the measure of Li

is rescaled by a factor of D−1
i , and the distance is rescaled by D

−1
α
i . We also let
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Ni, N
d
i , Ñi denote the analogous quantities for the looptree Li.

The main argument in the proof of Theorem 4.5.1 rests principally on the

following two propositions.

Proposition 4.5.2. cf [CH10, Proposition 3.1]. P-almost surely, for all λ ≥ 0:

∞∑
i=1

ND
i (∆

1
γ

i λ) ≤ ND(λ) ≤ N(λ) ≤ 1 +
∞∑
i=1

Ñi(∆
1
γ

i λ)

The intuition behind the first result is that the loopspine, along with the

sublooptrees (Li)
∞
i=1, form a partition of Lα. Any eigenfunction on Lα can be

mapped to an eigenfunction on one of these subspaces by restriction, and conversely

any eigenfunction on one of these subspaces can be extended to an eigenfunction on

Lα by setting it to be zero elsewhere. Since the loopspine has ν-measure zero, it has

no non-trivial eigenvalues so we can discount its contribution. Moreover, P-almost

surely, the rescaled eigenvalues from different sublooptrees will all be distinct, so

this is a genuine correspondence. The extra +1 term on the right hand side arises

from counting the eigenvalue 0.

The scaling factor of ∆
1
γ = ∆1+ 1

α arises since on rescaling a looptree of mass

∆ to have total mass one, E(f, g) =
∫
fgdν will pick up a factor of ∆ from rescaling

the measure, and a factor ∆
1
α from rescaling the distance.

This is proved formally in [CH10, Propositions 3.1 - 3.4] and the same proof

carries over to the looptree case.

The second proposition is the following, which will be our main tool to bound

the number of eigenvalues at each level of the iteration. We give the proof since it

is short.

Proposition 4.5.3. (cf [CH10, Lemma 2.1]). ND(λ) = Ñ(λ) = 0 whenever

λ <
1

Diam(Lα)ν(Lα)
.

Proof. If f is an eigenfunction of (E ,F , ν) with eigenvalue λ > 0 then

(f(x)− f(y))2 ≤ E(f, f)R(x, y) ≤ λDiamR(Lα)

∫
Lα
f2dν.

Integrating over both x and y yields λ ≥ 2
DiamR(Lα)ν(Lα) (a slightly stronger result).

The Dirichlet case is similar.

We will also require the following result on the moments of the diameter of

a stable looptree.

Proposition 4.5.4. E[(Diam(Lα))p] <∞ if and only if p < α.
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Proof. Firstly, note that it follows from (2.12) that

Diam(Lα) ≤ 2 sup
[0,1]

Xexc (d)
= 2(sup

[0,1]
Xbr − inf

[0,1]
Xbr).

Hence, by considering the time reversal of Xbr along with the absolute continuity

relation (2.12), we deduce that

P(Diam(Lα) ≥ 4x) ≤ 2
||p1||∞
p1(0)

[
P

(
sup
[0, 1

2
]

X ≥ x

)
+ P

(
− inf

[0, 1
2

]
X ≥ x

)]
≤ Cx−α.

Here, the last line follows from [Ber96, Section VIII, Proposition 4] for the supremal

term, and the infimal term has exponential tails since X is spectrally positive. It

follows that E[(Diam(Lα))p] is finite whenever p < α.

To prove the converse, note that E[Diam(Lα)] ≥ 1
2E
[
supt∈[0, 1

2
] ∆exc

t

]
, where

∆exc
t = Xexc

t − Xexc
t− . Moreover, letting ∆t denote the corresponding quantity for

the unconditioned process X, we have:

P

(
sup
t∈[0, 1

2
]

∆t ≥ 2x

)
≥ P

(
Poi(cx−α) ≥ 1

)
= O(x−α)

as x → ∞, since the number of jumps on [0, 1] of size exceeding x is a Poisson

random variable with the given parameter. We deduce that E[Diam(Lα)] = ∞
whenever p ≥ α.

4.5.3 Annealed results

We with the proof of the annealed result (i.e. Theorem 4.5.1(i)). We first note that

the first order term can be obtained directly from Theorem 4.0.10 by applying the

Tauberian theorem of [Kor04, Theorem 8.1, Chapter IV]. However, to obtain the

second order term we must give a longer argument.

To apply the results of Propositions 4.5.2 and 4.5.3, it is convenient to think

of the argument λ as a time index and bound the number of eigenvalues as the

population size of a branching process with a certain offspring distribution. In this

setting, it will also be natural to reparametrise time to enable a comparison with a

supercritical Crump-Mode-Jagers process. Accordingly, for all i ∈ Σ∗, we set:

Xi(t) = ND
i (et),

and

ηi(t) = Xi(t)−
∞∑
j=1

Xij(t+ γ−1(log ∆ij)) = ND
i (et)−

∞∑
j=1

ND
ij (∆

1
γ

ije
t),
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ηi is the “error” term acquired at level i in the approximation suggested by Propo-

sition 4.5.2. The point is that on iterating the relation of Proposition 4.5.2, we

obtain

X(t) =
∑
i:|i|<k

ηi(t+ γ−1(logDi)) +
∑
i∈Σk

Xi(t+ γ−1(logDi)). (4.31)

We can then apply Propositions 4.5.3 and 4.5.4 to show that P-almost surely, the

final term on the right hand side converges to zero as k → ∞. Analysing X(t)

therefore reduces to a study of the sum
∑

i∈Σ∗
ηi(t+ γ−1(logDi)).

This can again be bounded using Proposition 4.5.3: indeed, Propositions

4.5.2 and 4.5.3 can be used to show that∑
i∈Σ∗

ηi(t+ γ−1(logDi)) ≤ 2
∑
i∈Σ∗

1{D
1
γ

i Diam(Li) ≥ e−t},

and is therefore stochastically dominated by (twice) the expected population at time

γ(t+logDiam(Lα)) of a Crump-Mode-Jagers branching process in which an individ-

ual gives birth at times (− log ∆i)
∞
i=1. This has Malthusian parameter 1. Standard

results on the expectation of this population then entail that e−γt
∑

i∈Σ∗
ηi(t +

γ−1(logDi)) is bounded by CE[(DiamLα)γ ], which motivates the introduction of

the following quantities.

We set m(t) = e−γtE[Xt] , u(t) = e−γtE[η(t)], and define measures ν and νγ

by ν[0, t] =
∑∞

i=1 P
(
∆i > e−γt

)
, and νγ(dt) = e−γtν(dt). Exactly as in [CH10], one

can then prove the following result.

Lemma 4.5.5. (cf [CH10, Lemma 3.5]).

(i) m is bounded.

(ii) u is in L1(R), and for any ε > 0, u(t) = O
(
e−(α−1

α+1
−ε)) as t→∞.

(iii) νλ is a Borel probability measure on [0,∞), with finite expectation.

We further define the limit

m(∞) =

∫∞
∞ u(t)dt∫∞
0 tνγ(dt)

.

By imitating the proofs of [CH10], we can show that m(t)→ m(∞) as t→∞. We

do not go into details here, but we explain why m(∞) is the natural candidate for the

limit. Indeed, it can be shown by direct computation that if we set I =
∫∞

0 tνγ(dt),

then

I = −γ−1E

[ ∞∑
i=1

∆i log ∆i

]
.
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Moreover, we can write m(t) as

m(t) =

∫ ∞
0

u(t− s)
∞∑
i=1

e−γsP
(
−γ−1 log ∆i ∈ ds

)
. (4.32)

It is then straightforward to show (by inverting a Laplace transform) that

∞∑
i=1

e−γsP
(
−γ−1 log ∆i ∈ ds

)
− I−1ds = δ0(s)ds,

i.e. the Dirac mass at 0. Substituting into (4.32) we therefore deduce that m(t) −
m(∞) = u(t)− I−1

∫∞
t u(s)ds. The result of Theorem 4.5.1(i), including the second

order term in the expansion, then follows from Lemma 4.5.5(ii).

4.5.4 Quenched results

To prove the almost sure convergence of e−γtX(t) to m(t), we follow [CH10, Section

4] and introduce the characteristics below (so-named in the CMJ literature), which

are effectively a truncated version of the quantities of interest. More specifically, we

set ηci (t) = ηi(t)1{t ≤ cn}, and

Xc
i (t) =

∑
j∈Σ∗

ηcij(t+ γ−1∆ij).

We will eventually take a limit to deduce convergence of the untruncated version.

We also define the cutsets

Λt = {i ∈ Σ∗ : D
1
γ

i ≤ e
−t ≤ D

1
γ

i||i|−1
}

Λt,c = {i ∈ Σ∗ : D
1
γ

i ≤ e
−t, e−(t+c) ≤ D

1
γ

i||i|−1
}.

In what follows, rather than repeatedly applying the iteration (4.31) up to a

fixed level Σk, we will apply it up to the level of a certain cutset Λt.

We also write mc(∞) = e−γtE[Xc(t)], which can be checked to converge to

a limit mc(∞) as t→∞. As in [CH10], we then write:

|e−γc(n+n1)Xc(c(n+ n1))−mc(∞)| ≤ S1 + S2 + S3,
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where

S1 =
∣∣∣ ∑
i∈Λcn\Λcn,cn1

e−γc(n+n1)Xc
i (c(n+ n1) + γ−1 logDi)−Dim

c(c(n+ n1) + γ−1 logDi)
∣∣∣

S2 =
∣∣∣ ∑
i∈Λcn\Λcn,cn1

Dim
c(c(n+ n1) + γ−1 logDi)−mc(∞)

∣∣∣
S3 =

∣∣∣ ∑
i∈Λcn

e−γc(n+n1)Xc
i (c(n+ n1) + γ−1 logDi).

As in [CH10, Proposition 4.5], the first two sums both converge to zero as n and

then n1 go to infinity: the first using the strong law of large numbers, and the second

using branching process techniques.

To show that limn1→∞ lim supn→∞ S3(n, n1) = 0, we cannot directly repeat

the proof of [CH10, Proposition 4.5] since this a priori requires existence of higher

moments of Diam(Lα). However, this can be fixed by the following modifications of

[CH10, Lemmas 4.2 - 4.4] which show that X(t) has finite second moment.

Lemma 4.5.6. cf [CH10, Lemma 4.2]. Let i ∈ Σk, j ∈ Σl with k ≤ l, and let

θ ∈ (0, α2 . Let m = m(i, j) denote i ∧ j, δi = Diam(Li) and δ = Diam(Lα). Then:

(i) If m(i, j) < k, then:

P

(
D

1
γ

i δi ≥ e
−t, D

1
γ

j δj ≥ e
−t
)

≤ e2θtE
[
δθ
]2

E

[
∆

2θ
γ

i|m+1

] 1
2

E

[
∆

2θ
γ

j|m+1

] 1
2

E

[
D

2θ
γ

i|m

]
E
[
(D

i|m+1

i )
θ
γ

]
E
[
(D

j|m+1

j )
θ
γ

]
.

(ii) If m(i, j) < k, then:

P

(
D

1
γ

i δi ≥ e
−t, D

1
γ

j δj ≥ e
−t
)
≤ e2θtE

[
δ2θ
]
E

[
D

2θ
γ

i

]
E
[
(Di

j)
θ
γ

]
.

Proof. (i) In the case m < k, which means that j is not a descendant of i, we

proceed as in [CH10, Lemma 4.4] to show that:

P

(
D

1
γ

i δi ≥ e
−t, D

1
γ

j δj ≥ e
−t
)

≤ e2θtE

[
δθi δ

θ
j∆

θ
γ

i|m+1
∆

θ
γ

j|m+1

]
E

[
D

2θ
γ

i|m

]
E
[
(D

i|m+1

i )
θ
γ

]
E
[
(D

j|m+1

j )
θ
γ

]
.

Since j is not a descendant of i, and by Theorem 4.3.1 the looptrees Li|m+1
and

Lj|m+1
are independent, it follows that δi is independent of δj , and moreover
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that they are both independent of ∆
θ
γ

i|m+1
and ∆

θ
γ

j|m+1
. We deduce that

E

[
δθi δ

θ
j∆

θ
γ

i|m+1
∆

θ
γ

j|m+1

]
≤ E

[
δθi

]
E
[
δθj

]
E

[
∆

θ
γ

i|m+1
∆

θ
γ

j|m+1

]
≤ E

[
δθi

]
E
[
δθj

]
E

[
∆

2θ
γ

i|m+1

] 1
2

E

[
∆

2θ
γ

j|m+1

] 1
2

,

and the result follows.

(ii) If m = k then again following [CH10, Lemma 4.4] we have that

P

(
D

1
γ

i δi ≥ e
−t, D

1
γ

j δj ≥ e
−t
)
≤ e2θtE

[
δθi δ

θ
j (D

i
j)

θ
γ

]
E

[
D

2θ
γ

i

]
.

In this case δi and δj are not independent of each other, however by Theorem

4.3.1 they are independent of the Poisson-Dirichlet weight Dj
i . By factorising

and then applying Cauchy-Schwarz, we therefore deduce that

E
[
δθi δ

θ
j (D

i
j)

θ
γ

]
≤ E

[
δ2θ
]

E
[
(Di

j)
θ
γ

]
,

as claimed.

The next two lemmas then follow from Lemma 4.5.6 exactly as per the ar-

gument in [CH10], so we omit the proofs. In fact it is now even easier since we have

removed the dependence on ε considered there.

Lemma 4.5.7. cf [CH10, Lemma 4.3]. For θ ∈ ( γα ,
α
2 ), there exists a finite constant

C such that∑
i∈Σk

∑
j∈Σl

ηi(t+ γ−1 logDi)ηj(t+ γ−1 logDj) ≤ Ce2θt(k + 1)ψk+1
1

(ψ2

ψ2
1

∨ 1
)k
.

Lemma 4.5.8. cf [CH10, Lemma 4.4]. For θ ∈ (γ, α2 ), there exists a finite constant

C such that

E
[
X(t)2

]
≤ Ce2θt.

In light of Lemma 4.5.8, we can modify the exponents given in the proof of

[CH10, Proposition 4.5] to show that S3 is finite. In particular, we define:

ϕc,n1
i (t) =

∞∑
j=1

Xij(t)1{t+ cn1 + log δij ≥ −γ−1 log ∆ij ≥ t+ cn1},

Y c,n1(t) =
∑
i∈Σ∗

ϕc,n1
i (t+ γ−1 logDi),
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and we can then check the conditions of [Ham00, Lemma 3.2] to confirm that there

exists ε > 0 such that

e−γtY c,n1(t) ≤ Ce−cn1(γα−1+ε)

for all sufficiently large t. This is done exactly as in [CH10], except that we take

h(t) = e−(γ(α−1+1)+ε)t (for some sufficiently small ε > 0), and in equation (25) there

we replace the exponent 1+α
2(2α−1) with γα−1 +ε, and we deduce that, P-almost surely

lim
n1→∞

lim sup
n→∞

S3(n, n1) = O(e−(γ(1−α−1)−ε)cn).

Combining with the results for S1 and S2 implies in particular that P-almost surely,

lim
n→∞

|e−γncXc(cn)−mc(∞)| = 0.

Again by taking h(t) = e−(γ(α−1+1)+ε)t, we can then proceed exactly as in [CH10] to

take a limit along the subsequence (cn)n≥1 and deduce that, in actual fact, P-almost

surely

lim sup
n→∞

e−γnc|Xc(cn)−X(cn)| = Ce−n0(γ(1−α−1)−ε)t,

from which we can deduce Theorem 4.5.1(ii) by taking n0 to infinity and using

monotonicity of X.

To prove the second part of Theorem 4.5.1(ii) about the second order term

one can also just repeat the proofs of [CH10, Section 5]. The arguments are the

same and just use the same principles outlined above, so we do not write the details.
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Chapter 5

Infinite Stable Looptrees

The purpose of this chapter is to make a formal definition of an infinite stable

looptree, which we denote by L∞α for α ∈ (1, 2). Our construction is the natural

one in light of the previous constructions of infinite trees and looptrees outlined in

Section 3.3, and is further justified by the following local limit theorem, showing

that L∞α can be characterised as a local limit of compact stable looptrees as their

mass goes to infinity.

Theorem 5.0.1. Let L`α be a compact stable looptree conditioned to have mass `,

and let L∞α be as above. Then,

(L`α, d̃`, ν`, ρ`)
(d)→ (L∞α , d̃∞, ν∞, ρ∞)

as ` → ∞, with respect to the Gromov-Hausdorff-vague topology. Here d̃` and d̃∞

can denote either the geodesic metrics, or the effective resistance metrics on the

respective spaces.

We also prove a similar scaling limit result.

Theorem 5.0.2. Let T∞α denote Kesten’s tree with critical offspring distribution in

the domain of attraction of an α-stable law. Also let νdisc denote the measure that

gives mass 1 to every vertex of Loop(T∞α ). Then

(Loop(T∞α ), a−1
n d̃, n−1νdisc, ρ)

(d)→ (L∞α , d̃∞, ν∞, ρ∞)

with respect to the Gromov-Hausdorff vague topology as n→∞. Here d̃ and d̃∞ can

denote either the graph distances, or the effective resistance metrics on the respective

spaces.

We will see in Section 5.3 that similar results hold for the infinite discrete

looptrees defined in [BS15] and [Ric18a].
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L
disc;m
α

discrete looptree of mass m

Lα

compact continuum stable looptree

L
disc;1
α

infinite discrete looptree

L1

α

infinite continuum looptree

scaling limit as m ! 1, factor m
−1

α

Curien and Kortchemski, 2014

local limit as m ! 1

Richier, 2017

Stefánsson, 2015

taking mass to 1

scaling limit

Theorem 5.0.2

Theorem 5.0.1

scaling limit as m ! 1,

Remark 5.5.4

factor >> m
−1

α

local limit on

Björnberg and

Figure 5.1: Relations between discrete/continuum and compact/infinite looptrees.

In fact, we prove all the remaining equivalences in the following diagram.

Given these two theorems, we are also in the right setting to apply results

of [Cro18] regarding limits for stochastic processes on these spaces. In particular,

we obtain the following results. We let B∞ denote Brownian motion on L∞α ; this

is formally defined in Section 5.5 analogously to the compact case considered in

Chapter 4.

Theorem 5.0.3. Let (B`
t )t≥0 be Brownian motion on L`α, and let (B∞t )t≥0 be Brow-

nian motion on L∞α . Then there exists a probability space (Ω′,F ′,P′) on which we

can almost surely define a metric space (M,RM ) in which the spaces (L`α, R`, ν`, ρ`)
and (L∞α , R∞, ν∞, ρ∞) can all be embedded and such that

(L`α, R`, ν`, ρ`)→ (L∞α , R∞, ν∞, ρ∞)

with respect to the Gromov-Hausdorff-vague topology as ` → ∞, and the required

Hausdorff convergence specifically holds in the metric space (M,RM ). Letting (B`)`≥1

and B∞ be as above, we have that

(B`
t )t≥0

(d)→ (B∞t )t≥0

as `→∞, considered on the space C(R+,M) endowed with the topology of uniform

convergence on compact time intervals.

Theorem 5.0.4. Let (Loop(T∞α ), a−1
n d̃, n−1νdisc, ρ) be as in Theorem 5.0.2. Then

there exists a probability space (Ω′′,F ′′,P′′) on which we can almost surely define

a metric space (M,RM ) in which the spaces (Loop(T∞α ), Ca−1
n d̃, n−1νdisc, ρ) and

(L∞α , d̃∞, ν∞, ρ∞) can all be embedded and such that

(Loop(T∞α ), a−1
n d̃, n−1νdisc, ρ)

(d)→ (L∞α , d̃∞, ν∞, ρ∞)

with respect to the Gromov-Hausdorff-vague topology as n → ∞, and the required

Hausdorff convergence specifically holds on the metric space (M,RM ). Letting Y be
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a simple random walk on Loop(T∞α ), and B∞ be as above, we have that

(a−1
n Yb4nantc)t≥0

(d)→ (B∞t )t≥0

on the space D(R+,M) endowed with the Skorokhod-J1 topology as n→∞.

Again, we will prove a similar result for random walks on the other infinite

discrete looptrees in Section 5.5, along with annealed versions, but the one above is

easiest to state as all vertices have degree 4 in Loop(T∞).

The process B∞ is considered further in Section 5.5 where we prove the

following results about the spectral dimension of L∞α . Recall that the spectral

dimension of L∞α is defined as

dS(L∞α ) = lim
t→∞

−2 log(p∞t (ρ∞, ρ∞))

log t
, (5.1)

where p∞t (·, ·) is the transition density of the Brownian motion B∞ defined above,

i.e. a symmetric ν∞ × ν∞-measurable function on L∞α × L∞α such that

Ex[f(Bt)] =

∫
L∞α

f(y)pt(x, y)ν∞(dy)

for all bounded, ν∞-measurable functions f on L∞α and ν∞-almost every x ∈ L∞α .

We assume that L∞α is defined on the probability space (Ω,F ,P), and let E

denote expectation on this space.

Theorem 5.0.5. P-almost surely, dS(L∞α ) = 2α
α+1 .

In light of Theorem 5.0.5, we call dS(L∞α ) the quenched spectral dimension.

We also define the annealed spectral dimension as

daS(L∞α ) = lim
t→∞

−2 log(E[p∞t (ρ∞, ρ∞)])

log t
.

For a general space, the annealed heat kernel is trickier to bound than the quenched

one defined above, since the expected transition density may not be finite. This is the

case, for example, for the trees with heavy-tailed offspring distributions considered

in [CK08]. In the case of stable looptrees however we are able to bound this using the

volume and resistance estimates of Section 5.4, and then utilise scaling invariance

of L∞α to prove the following (more precise) result.

Theorem 5.0.6. There exists c1 ∈ (0,∞) such that E[p∞t (ρ∞, ρ∞)] = c1t
−α
α+1 . In

particular,

daS(L∞α ) =
2α

α+ 1
.
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Both the quenched and annealed spectral dimensions match those obtained

for the infinite discrete looptrees defined from offspring distributions in the domain

of attraction of an α-stable law in [BS15].

We start by giving the construction of infinite stable looptrees in Section 5.1.

We then prove Theorem 5.0.1 in Section 5.2. In Section 5.3 we prove several scaling

limit results, and in Section 5.4 we consider volume and resistance bounds on L∞α ,

which enables to prove various results for random walk limits in Section 5.5.

We prove the limiting results of Theorems 4.0.2, 4.3.8 and 4.0.10 of Chapter

4 in Sections 5.4.1 and 5.5.3 respectively.

5.1 Construction of infinite stable looptrees

It seems clear that the natural construction of infinite stable looptrees should use two

stable Lévy processes to code each side of the loopspine, in place of the excursion.

This is also the approach suggested in [Ric18a, Section 6] and our construction is

merely the continuum version of the discrete construction of [Ric18a, Section 3],

except that we have essentially turned this construction “upside down” to match

the original coding mechanism for compact looptrees.

We will prove Theorem 5.0.1 for stable looptrees rooted at a uniform point.

By taking a stable looptree coded by an excursion Xexc,` of length `, and taking

a uniform point in U ∈ [0, `], it follows from the Vervaat transformation that the

processes (Xexc,`
t )0≤t≤U and (Xexc,`

t )U≤t≤` are distributed respectively as the the

post- and pre-minimum parts of a stable Lévy bridge. Standard convergence results

then imply that on any compact interval, these converge in distribution to stable

Lévy processes as `→∞, and results of [Mil77] imply that these two processes are

independent of each other. Moreover, if we think of the loopspine as the sequence

of loops coded by jump points at times 0 � t � U , then (Xexc,`
t )0≤t≤U codes for the

loopspine along with everything grafted to the left hand side of it, and (Xexc,`
t )U≤t≤`

codes for everything grafted to the right hand side of it. It therefore seems natural

to replace each of these by unconditioned Lévy process in the infinite volume limit.

We start by writing this below as an equivalent construction of compact

stable looptrees. We give the construction for a looptree of mass `.
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Two-sided Construction of Compact Stable Looptrees

1. Let Xbr,` be a spectrally positive, α-stable Lévy bridge of lifetime `.

Let m = m` be the (almost surely unique) time at which Xbr,` attains

its infimum.

2. Let (X
(2,`)
t )t≥0 be the pre-infimum process, and (X

(1,`)
t )t≥0 be the time-

reversed post-infimum process, extended to stay constant after times m

and 1−m respectively. That is,

X
(2,`)
t =

Xbr
t for t ∈ [0,m],

Xbr
m for t > m;

X
(1,`)
t =

Xbr
`−t for t ∈ [0, 1−m],

Xbr
m for t > `−m.

3. Define a function X` : R→ R by

X`
t =

X
(2,`)
t if t ≥ 0,

X
(1,`)
−t if t < 0.

It should be clear from the Vervaat transform that X` is just a shifted

Lévy excursion.

4. For s, t ∈ R, we define resistances r`, R`0 and R` from X` exactly as in

(4.9), (4.10) and (4.11), but with the superscript ` on all the quantities

involved. We can similarly define distances δ`, d`0 and d` exactly as in

(3.7). Analogously to the normalised case, we then set L`α = (R/ ∼, d`),
and L`α

R
= (R/ ∼, R`), and let p` : R → L`α denote the canonical

projection.

Due to the Vervaat transformation, this construction is entirely equivalent

to the original construction of looptrees using the Lévy excursion, but we have now

split the coding into two functions which define each side of the loopspine. To code

the infinite looptree, we will take limits of each of these functions and use these to

code each side of the infinite loopspine.
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Construction of Infinite Stable Looptrees

1. Let X be an α-stable, spectrally positive Lévy process, and let X ′ be

an α-stable, spectrally negative Lévy process.

2. Define a function X∞ : R→ R by

X∞t =

Xt if t ≥ 0,

X ′−t− if t < 0.

3. Analogously to the compact construction above, if t is a jump point of

X∞ with jump size ∆t and a, b ∈ [0,∆t], set

δ∞t (a, b) = min{|a− b|,∆t − |a− b|},

r∞t (a, b) =
( 1

|a− b|
+

1

∆t − |a− b|

)−1

=
|a− b|(∆t − |a− b|)

∆t
.

Additionally, as before, for s, t ∈ R with s ≤ t set I∞s,t = infr∈[s,t]X
∞
r ,

and x∞s,t = I∞s,t−X∞s− . For s, t ∈ R we again write s ≺ t if s � t (meaning

that x∞s,t ≥ 0) and s 6= t. Then, if s � t set

d∞0 (s, t) =
∑
s≺u�t

δ∞u (0, xtu),

R∞0 (s, t) =
∑
s≺u�t

r∞u (0, xtu).

Then, for general s, t ∈ R, set

d∞(s, t) = δ∞s∧t(x
∞
s∧t,s, x

∞
s∧t,t) + d∞0 (s ∧ t, s) + d∞0 (s ∧ t, t),

R∞(s, t) = r∞s∧t(x
∞
s∧t,s, x

∞
s∧t,t) +R∞0 (s ∧ t, s) +R∞0 (s ∧ t, t).

(5.2)

Finally, define an equivalence relation ∼ on R by setting s ∼ t if and

only if d∞(s, t) = 0. We define the infinite looptrees L∞α and L∞,Rα by

L∞α = (R/ ∼, d∞),

L∞,Rα = (R/ ∼, R∞).

For ease of notation and intuition, we will focus on L∞α rather than L∞,Rα in

the following sections, but the results will hold in the resistance setting by exactly

the same arguments.

As in the compact case, we can define the projection p∞ : R → L∞α , which

is almost surely continuous, and endow L∞α with the measure ν∞ which is defined
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to be the pushforward of Lebesgue measure on the real line to L∞α via p∞.

We also have the following proposition, as a direct consequence of the scale

invariance of the stable Lévy process.

Proposition 5.1.1 (Scale invariance of L∞α ). For any c > 0,

(L∞α , cd̃, ρ∞, cαν∞)
(d)
= (L∞α , d̃, ρ∞, ν∞),

where d̃ here can be equal to either d∞ or R∞.

5.2 Proof of Theorem 5.0.1

The proof of Theorem 5.0.1 essentially stems from the fact that the two sides of the

Lévy bridge used to code a compact stable looptree converge in distribution to a

Lévy process on any compact time interval as `→∞. We first recap the following

result, that also appeared as Proposition 3.2.3.

Proposition 5.2.1. Let (fn)n≥1 be a sequence in D([0, 1],R), and f ∈ Dexc([0, 1],R)

be such that fn → f as n→∞ with respect to the Skorokhod topology. Additionally

let ν and νn be the projections of Lebesgue measure onto the spaces Lf and Lfn
respectively. Then

dGHP

((
Loop(τn), d̃n, νn, ρn

)
,
(
Lf , d̃f , νf , ρf

))
→ 0

as n→∞.

Here d̃ can denote either the shortest-distance metric of [CK14], or the re-

sistance metric of (4.11), but defined using the function f in place of Xexc.

Clearly the result of the proposition will still hold on any compact time

interval, not just [0, 1].

To prove Theorem 5.0.1 we will make use of the following result and apply

Theorem 3.2.3.

Theorem 5.0.1 is proved by applying Proposition 3.2.3 to the following con-

vergence result. The Lévy processes are all normalised as in Section 2.5.1.

Proposition 5.2.2. Let Xbr,` be a spectrally positive, α-stable Lévy bridge of life-

time `, starting and ending at 0, let X be an α-stable, spectrally positive Lévy process,

and let X ′ be an independent α-stable, spectrally negative Lévy process. Also let m`

be the (almost surely unique) time at which Xbr,` attains its minimum. Then, for any

T1, T2 > 0, letting f and g be any bounded continuous functions D([0, Ti],R) → R,

we have that

E
[
f
(

(Xbr,`
t∧m`)t∈[0,T1]

)
g
(

(Xbr,`
((`−t)∨m`)−)t∈[0,T2]

)]
→ E

[
f
(

(Xt)t∈[0,T1]

)]
E
[
g
(

(X ′t)t∈[0,T2]

)]

103



as `→∞.

Before we prove the proposition, we show how we can apply Proposition 3.2.3

to the functions X and X ′ on compact time intervals to prove Theorem 5.0.1.

Proof of Theorem 5.0.1, assuming Proposition 5.2.2. We need to show that for al-

most every r > 0,

Br(L`α)
(d)→ Br(L∞α ). (5.3)

To this end, take some r > 0. We define two times tg(r) and td(r) by

tg(r) = inf{s ≥ 0 : ∆−s ≥ 4r, δ∞−s(x
∞
−s,0) ≥ r}, td(r) = inf{s ≥ 0 : X∞s ≤ X∞−tg(r)−

}.

The purpose of defining tg(r) and td(r) like this is that X∞ codes a compact looptree

on the interval [−tg(r), td(r)], and that Br(L∞α ) is contained in this.

Note that tg(r) is P-almost surely finite, since if Ls is the local time spent

by (X∞−t+)t≥0 at its infimum by time s, normalised so that E
[
e
λX∞

L−1(t)

]
= e−λ

α−1t,

we have from Proposition 2.5.4 that the measure∑
s∈J

δ(Ls,∆s)

is a Poisson point measure of intensity dl · x1{x−α ≥ 4r}dx, where J is the set

{s ≥ 0 : ∆−s ≥ 4r, δ∞−s(x
∞
−s,0) ≥ r}. Moreover, by [Ber96, Chapter VIII, Lemma 1]

we know that L−1 is a stable subordinator of parameter 1− 1
α , and hence Lt →∞

P-almost surely as t→∞. It follows that tg(r) is P-almost surely finite for all r > 0.

Similarly, since lim inft→∞X
∞
t = −∞ P-almost surely, td(r) is also P-almost surely

finite for all r > 0.

For notational convenience, we write tg = tg(r) and td = td(r) from now on.

The compact looptree L`α is coded by an excursion Xexc,` of length `. To

write this as a two-sided construction as described in the previous section, choose

U` uniform on [0, `], and define a function Xbr,` : [−U`, `− U`] by

Xbr,`
t = Xexc,`

t+U`
−Xexc,`

U`

for all t ∈ [−U`, `− U`]. Then Xbr,` codes L`α. Moreover, we can extend Xbr,` to R
by taking it to be constant outside of [−U`, ` − U`], and by Proposition 5.2.2, it is

then the case that (Xbr,`
t )t∈[−tg−1,td+1]

(d)→ (X∞t )t∈[−tg−1,td+1].

Since the interval [−td− 1, tg + 1] is P-almost surely compact, and the space

of càdlàg functions with compact support endowed with the Skorokhod-J1 topology

is separable, it follows by the Skorokhod Representation Theorem and Proposition

5.2.2 that there exists a probability space (Ω,F ,P) on which (Xbr,`
t )t∈[−tg−1,td+1] →

(X∞t )t∈[−tg−1,td+1] almost surely. We henceforth work in this space.
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For each ` > 0, let λ` be the Skorokhod homeomorphism (defined pointwise

on Ω) from [−tg−1, td+1]→ [−tg−1, td+1] that minimises the Skorokhod distance

between these Xbr,` and X∞ on this interval. Then set t`d = λ`(td), and similarly

t`g = λ`(tg).

The correspondence consisting of all pairs [t, λ`(t)] for t ∈ [−tg, td] is a subset

of the correspondence used to minimise the Gromov-Hausdorff distance in the proof

of Proposition 3.2.3, so letting L`,rα = p`((Xbr,`
t )t∈[−t`g ,t`d]) for each ` > 0 and L∞,rα =

p∞((Xt)t∈[−tg ,td]), it follows from Proposition 3.2.3 that dGHP (L`,rα ,L∞,rα ) → 0 as

` → ∞. Since Br(L`α) ⊂ L`,rα and Br(L∞α ) ⊂ L∞,rα , it thus follows that Br(L`α)
(d)→

Br′(L∞α ) for Lebesgue almost every r′ < r. By taking a countable sequence rn →∞
we therefore deduce the result for Lebesgue almost-every r > 0, and the theorem

follows.

We now conclude the proof of Theorem 5.0.1 by proving Proposition 5.2.2.

Proof of Proposition 5.2.2. The key point is that the two sides of the bridge have a

density with respect to the laws of X and X ′, in that for any f, g as in the statement

of the proposition, and any ` > T1+T2, it follows from a minor modification of (2.12)

that

E
[
f
(

(Xbr,`
t )t∈[0,T1]

)
g
(

(Xbr,`
(`−t)−)t∈[0,T2]

)]
= E

[
f
(

(Xt)t∈[0,T1]

)
g
(

(X ′t)t∈[0,T2]

)p`−T1−T2(X ′
T−2
−XT1)

p`(0)

]
,

(5.4)

where pt(·) here denotes the transition density of X. The proof then essentially just

uses the fact that m` and `−m` tend to infinity in probability as `→∞, and then

the fact that with high probability, XT1 and X ′T2 will also not be too large. There

are two main steps. We first note that the quantity

E
[
f
(

(Xbr,`
t∧m`)t∈[0,T1]

)
g
(

(Xbr,`
((`−t)∨m`)−)t∈[0,T2]

)]
− E

[
f
(

(Xbr,`
t )t∈[0,T1]

)
g
(

(Xbr,`
(`−t)−)t∈[0,T2]

)]
is upper bounded by

2||f ||∞||g||∞

(
P
(
m1 <

T1

`

)
+ P

(
m1 > 1− T2

`

))
,

which converges to 0 as `→∞. This allows us to apply (5.4) as follows. First, note

that it follows from the scaling relation pt(x) = t
−1
α p1(xt

−1
α ) that

p`−T1−T2(X ′T2 −XT1)

p`(0)
=

(
`

`− T1 − T2

) 1
α p1

(
(`− T1 − T2)

−1
α (X ′T2 −XT1)

)
p1(0)

.
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We denote this latter quantity by p(`,X,X ′, T1, T2), so that

E
[
f
(

(Xbr,`
t )t∈[0,T1]

)
g
(

(Xbr,`
(`−t)−)t∈[0,T2]

)]
− E

[
f
(

(Xt)t∈[0,T1]

)
g
(

(X ′t)t∈[0,T2]

)]
= E

[
f
(

(Xt)t∈[0,T1]

)
g
(

(X ′t)t∈[0,T2]

)(
p(`,X,X ′, T1, T2)− 1

)]
.

Taking some 0 < ε � 1
α , we decompose on the event {|XT1 | ∨ |X ′T2 | ≤ (` − T1 −

T2)
1
α
−ε} and its complement by writing the latter quantity as the sum

E

[
f
(

(Xt)t∈[0,T1]

)
g
(

(X ′t)t∈[0,T2]

)(
p(`,X,X ′, T1, T2)− 1

)
1{|XT1

| ∨ |X ′T2
| ≤ (`− T1 − T2)

1
α−ε}

]

+ E

[
f
(

(Xt)t∈[0,T1]

)
g
(

(X ′t)t∈[0,T2]

)(
p(`,X,X ′, T1, T2)− 1

)
1{|XT1 | ∨ |X ′T2

| > (`− T1 − T2)
1
α−ε}

]
.

(5.5)

We deal with each of these two terms separately. For the first term, note that by

continuity of the transition density [Ber96, Section VIII.1],

sup
|x|≤2(`−T1−T2)

1
α−ε

{
p1

(
x(`− T1 − T2)

−1
α

)}
→ p1(0)

as `→∞. We apply this by writing:

∣∣∣∣∣∣(p(`,X,X ′, T1, T2)− 1

)
1{|XT1 | ∨ |X ′T2 | ≤ (`− T1 − T2)

1
α
−ε}
∣∣∣∣∣∣
∞

≤ 1

p1(0)

(∣∣∣∣∣(( `

`− T1 − T2

) 1
α − 1

)
sup

|x|≤2(`−T1−T2)
1
α−ε

{
p1

(
x(`− T1 − T2)

−1
α

)}∣∣∣∣∣
+

∣∣∣∣∣ sup
|x|≤2(`−T1−T2)

1
α−ε

{
p1

(
x(`− T1 − T2)

−1
α

)}
− p1(0)

∣∣∣∣∣
)
,

from which we deduce that the first term in (5.5) converges to zero as `→∞, since

f and g are also bounded. To deal with the second term, we upper bound it by

||f ||∞||g||∞
1

p1(0)
||p1||∞P

(
|XT1 | ∨ |X ′T2 | > (`− T1 − T2)

1
α
−ε
)
,

which also vanishes as `→∞. (Note that ||p1||∞ by results of [Zol86, Section I.4]).

It therefore follows by an application of the triangle inequality and the bounds

above that
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E
[
f
(
(Xbr,`

t∧m`)t∈[0,T1]

)
g
(
(Xbr,`

((`−t)∨m`)−
)t∈[0,T2]

)]
− E

[
f
(
(Xt)t∈[0,T1]

)
g
(
(X ′t)t∈[0,T2]

)]
≤ E

[
f
(
(Xbr,`

t∧m`)t∈[0,T1]

)
g
(
(Xbr,`

((`−t)∨m`)−
)t∈[0,T2]

)]
− E

[
f
(
(Xbr,`

t )t∈[0,T1]

)
g
(
(Xbr,`

(`−t)−)t∈[0,T2]

)]
+ E

[
f
(
(Xbr,`

t )t∈[0,T1]

)
g
(
(Xbr,`

(`−t)−)t∈[0,T2]

)]
− E

[
f
(
(Xt)t∈[0,T1]

)
g
(
(X ′t)t∈[0,T2]

)]
→ 0

as `→∞, as claimed. We can then factorise the final term by independence of X

and X ′.

5.3 Scaling limits of infinite discrete looptrees

In this section, we prove that infinite stable looptrees are scaling limits of infinite

discrete looptrees. We start by proving the following proposition, from which Theo-

rem 5.0.2 will follow. Note the analogy with Proposition 4.1.6, and [CK14, Theorem

4.1].

Given an infinite critical discrete tree T∞, we note that it can be coded by

a two-sided Lukasiewicz path indexed by Z in the same way that an infinite critical

continuum tree can be coded by a two-sided Lévy process.

As introduced in Section 3.3, the infinite discrete looptrees defined by Björnberg

and Stefánsson in [BS15] are formed by first taking a critical offspring distribution ξ

in the domain of attraction of an α-stable law, and then forming Kesten’s tree T∞α

as outlined in Section 3.3. This tree has a unique infinite spine of vertices with a

size-biased version of the offspring distribution. The authors define their looptree as

Loop′(T∞α ). Here Loop′ is an operation very similar to Loop, obtained as in Figure

5.2, and dGH(Loop(T∞α ), Loop′(T∞α )) ≤ 2 (see [CK14, Proof of Theorem 4.1]). We

let L∞,1α = Loop′(T∞α ).

Figure 5.2: A tree T and Loop′(T ), for the same underlying tree as in Figure 3.4.

Remark 5.3.1. In various places in other literature, the notation for Loop and

Loop′ is interchanged. We have used the notation of [CK14] since our paper follows

on more naturally from the results there.
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We also make one further definition. Given an infinite critical tree T∞ and

R > 0, we define Loop(T∞)R to be the sublooptree of Loop(T∞) obtained by letting

L be the first loop on the infinite loopspine that is of length greater than 4R, and

such that if we let l1 and l2 be the lengths of the two segments of this loop obtained

by splitting the loop at the two points where it intersects its neighbouring loops in

the infinite loopspine, we have that l1
l1+l2

∈ [1
4 ,

3
4 ]. We then let Loop(T∞)R be the

subset of Loop(T∞) obtained by removing all descendants of all points in L (but not

removing L itself). This definition is the discrete analogue to that of L∞,Rα given

in the proof of Theorem 5.0.1, and is useful since BR(Loop(T∞)) ⊂ Loop(T∞)R, but

Loop(T∞)R has the advantage of being a full looptree, whereas BR(Loop(T∞)) may

contain incomplete loops.

Proposition 5.3.2. Let (τn)∞n=1 be a sequence of infinite critical trees (in the sense

of Kesten) with corresponding two-sided Lukasiewicz paths (Wn)∞n=1, and let d̃n

denote either the shortest-distance or effective resistance metric on Loop(τn). Ad-

ditionally let νn be the measure that gives mass 1 to each vertex in Loop(τn), and

let ρn be the root of Loop(τn), defined to be the vertex representing the edge joining

the root of τn to its first child. Suppose that (Cn)∞n=1 is a sequence of positive real

numbers such that

(i) For any compact interval K ⊂ R,
(

1
Cn
Wn
bntc

)
t∈K

(d)→ (X∞t )t∈K as n→∞,

(ii) 1
Cn

Height(Tree(Loop(τn)rCn))
P→ 0 as n→∞, for all r > 0, where Tree is the

inverse operation of Loop, and Loop(τn)R is defined above.

Then (
Loop(τn),

1

Cn
d̃n,

1

n
νn, ρn

)
(d)→
(
L∞α , d̃∞, ν∞, ρ∞

)
as n→∞ with respect to the Gromov-Hausdorff vague topology, where d̃∞ can de-

note either the shortest-distance or effective resistance metric on L∞α , as appropri-

ate. Moreover, the result also holds on replacing Loop by Loop′ in all the statements

above.

Proof. We start by proving the result for Loop. We will prove the result with d̃ = d

and note that the corresponding result for d̃ = R follows by the same arguments.

The proof is again a consequence of Proposition 4.1.6, given which, the proof is

almost identical to the proof of Theorem 5.0.1 (i.e. by defining an increasing se-

quence of sublooptrees that exhaust the whole space, to each of which we then apply

Proposition 4.1.6), so we omit the details. As we did there, take r > 0, and define
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two times tg(r) and td(r) by

tg(r) = inf{s ≥ 0 : ∆−s ≥ 4r, δ−s(x
0
−s) ≥ r},

td(r) = inf{s ≥ 0 : X∞s ≤ X∞−tg(r)−
}.

It then follows by the Skorokhod Representation Theorem that there exists a prob-

ability space (Ω,F ,P) upon which ( 1
Cn
Wn
nt)−(tg+1)≤t≤td+1 → (X∞)−(tg+1)≤t≤td+1

almost surely with respect to the Skorokhod-J1 topology. As in the proof of Theo-

rem 5.0.1, for each n ∈ N let λn be the Skorokhod homeomorphism [−tg−1, td+1]→
[−tg − 1, td + 1] that minimises the Skorokhod-J1 distance between these two func-

tions, and set tnd = λn(td), and similarly tng = λn(tg).

By repeating the arguments of the proof of Theorem 5.0.1, and noting that

condition (ii) above ensures that condition (ii) of Proposition 4.1.6 is satisfied, we

deduce that the looptrees coded by ( 1
Cn
Wn
nt)−tng≤t≤tnd converge to the looptree coded

by (X∞)t≥0. The result then follows as in the proof of Theorem 5.0.1.

To prove the same result for Loop′ in place of Loop, first note that

dGH(Loop(T∞α ), Loop′(Tα∞)) ≤ 2.

Therefore, the Gromov-Hausdorff convergence of Proposition 4.1.6 holds with Loop(τn)

replaced by Loop′(τn), and the Prohorov convergence of measures of that proposi-

tion holds by the exactly the same arguments. As a consequence, we can just repeat

exactly the same proof for Loop′.

In particular, the result applies taking τn = T∞α for all n, and Cn = an. In

this case, 1
Cn

Height(Tree(Loop(τn)(rCn))) will be of order rα−1n−
2−α
α L(n) for some

slowly-varying function L, so point (ii) of Proposition 5.3.2 holds by an appplication

of Markov’s inequality. We therefore deduce both Theorem 5.0.2, and Theorem 5.3.3

below, as a corollary.

Theorem 5.3.3. Take Loop′(T∞α ) as above, with ν ′ the measure on Loop′(T∞α ) such

that ν ′(x) = 1 for all x ∈ Loop′(T∞α ). Then

(Loop′(T∞α ), a−1
n d̃, n−1ν ′, ρ)

(d)→ (L∞α , d̃∞, ν∞, ρ∞)

with respect to the Gromov-Hausdorff vague topology as n → ∞. Here d̃ (respec-

tively d̃∞) can denote either the geodesic metric d (respectively d∞), or the effective

resistance metric R (respectively R∞).
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Looptrees defined from two-type Galton Watson trees

In practice in the context of random planar maps, it is often convenient to define

discrete looptrees from alternating two-type Galton-Watson trees. In particular,

Richier in [Ric18a, Section 3] gives the following definition, illustrated in Figure 5.3.

Given an infinite alternating two-type Galton-Watson tree T (as defined in Section

3.1), say with white vertices at even height and black vertices at odd height, draw

a loop around each black vertex by connecting its ith white child to its (i + 1)th

white child for all i, and join its parent to both its first and last white child. Then

delete the black vertices and their incident edges; we denote the resulting structure

by Loop2(T ).

Figure 5.3: A two-type tree and its looptree.

We now take a two-type tree T∞,2α with offspring distribution (ξ◦, ξ•) such

that:

• (ξ◦, ξ•) is critical, i.e. E[ξ◦]E[ξ•] = 1.

• ξ◦ is shifted geometric with parameter 1− p ∈ (0, 1), i.e. ξ◦(k) = (1− p)pk for

all k ≥ 0.

• ξ• is in the domain of attraction of an α-stable law.

Before stating the scaling result, we briefly introduce two related concepts.

One of these is the Janson-Stefánsson bijection of [JS15], which gives a bijection be-

tween alternating two-type Galton-Watson trees and one-type Galton-Watson trees.

Given an alternating two-type Galton-Watson tree T , we denote its image under this

bijection by ΦJS(T ). ΦJS(T ) has the same vertex set as T , but different edges, and

is constructed as follows: for every white vertex that is not equal to the root, label

its offspring as u1, . . . , uk in lexicographical order, and label its parent u0. Then

draw an edge joining ui to ui+1 for each i ∈ {0, . . . , k−1}, and draw an edge joining

uk to u. See Figure 5.4.

110



The bijection is such that each white vertex in T is therefore mapped to a

leaf in ΦJS(T ), and each black vertex in T with k offspring is mapped to a vertex in

ΦJS(T ) with k + 1 offspring.

The second concept is a (final) related loop operation Loop. Given a (one-

type) tree T , Loop(T ) is obtained by first forming Loop′(T ), and then for each

vertex u ∈ Loop′(T ), contracting each edge joining u to its rightmost child. Loop(T )

therefore has the property that multiple loops can be grafted at the same vertex,

which is not the case with Loop(T ) and Loop′(T ) (but is the case with the two-type

operation Loop2).

(a) ΦJS(T ).
(b) Loop′(ΦJS(T )) and Loop(ΦJS(T )).

Figure 5.4: Illustrations for the two-type tree T in Figure 5.3.

The proof of the two-type scaling result then proceeds by applying the

Janson-Stefánsson bijection to the two-type tree, and using the following facts, which

we state without proof, but which should be plausible from looking at Figure 5.4.

(i) For any plane tree T endowed with a measure giving mass 1 to every ver-

tex, dGHP (Loop′(T ), Loop(T )) ≤ 4Height(T ) (see [Ric18b, Equation (48)] for

Gromov-Hausdorff version, then the Prohorov bound on measures follows by

same reasoning).

(ii) If T is an alternating two-type tree, then Loop2(T ) = Loop(ΦJS(T )) ) (see

[CK15, Lemma 4.3]).

(iii) Let T be an alternating two-type Galton-Watson tree with offspring distribu-

tions ξ◦ and ξ• such that ξ◦ is shifted geometric with parameter 1− p ∈ (0, 1),

i.e. ξ◦(k) = (1 − p)pk for all k ≥ 0, and E[ξ◦]E[ξ•] ≤ 1. Then ΦJS(T ) is a

one-type Galton-Watson tree with offspring distribution ξ, where ξ is such that

ξ(0) = 1− p and ξ(k) = pξ•(k − 1) for all k ≥ 1 (see [JS15, Appendix A]).
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Moreover, under the criticality assumption, this implies that

∑n
i=1 ξ

(i) − n
an

(d)→ Zα if and only if

∑n
i=1 ξ

(i)
• − 1−p

p n

p
−1
α an

(d)→ Zα. (5.6)

We are now ready to state and prove the convergence result.

Theorem 5.3.4. Let Loop2(T∞,2α ) be above, with (an)n≥1 as in (5.6), and let ν2 be

the measure on Loop2(T∞,2α ) such that ν2(x) = 1 for all x ∈ Loop2(T∞,2α ). Then

(Loop2(T∞,2α ), a−1
n d̃, n−1ν2, ρ)

(d)→ (L∞α , d̃∞, ν∞, ρ∞)

with respect to the Gromov-Hausdorff vague topology as n → ∞. Again, here d̃

(respectively d̃∞) can denote either the geodesic metric d (respectively d∞), or the

effective resistance metric R (respectively R∞).

Proof of Theorem 5.3.4. Using the points above, we will show that there exists a

probability space on which we can define both T∞,2α and a one-type Galton Watson

tree T̃α satisfying the assumptions of Proposition 5.3.2 such that, for all r > 0,

dGHP (Br
(
(Loop2(T∞,2α ), a−1

n d̃, n−1ν ′, ρ)
)
,Br
(
(Loop′(T̃α), a−1

n d̃, n−1ν ′, ρ)
)
→ 0

(5.7)

almost surely as n → ∞. As a result, we deduce that these two looptrees have the

same Gromov-Hausdorff-Prohorov vague limit.

To do this, we first make a definition. As in the one-type case, it follows

that T∞,2α almost surely has a unique infinite spine on which vertices instead have a

size-biased offspring distribution (see [Ste18, Section 3.1]). Analogously to previous

definitions, for any R > 0 we say that a loop on the corresponding loopspine is

R-good if it has length at least 4R and if the two points at which it is connected

to adjacent loops on the loopspine are separated by distance at least R. We then

let L2
α(R) denote the subspace obtained by taking the union of all the loops up to

and including the first R-good loop on the loopspine, along with any sublooptrees

grafted to them. The reason for this definition is that BR(Loop2(T∞,2α )) ⊂ L2
α(R),

and L2
α(R) is a full looptree (i.e. does not contain partial loops). We also let T 2

α(R)

denote the (two-type) tree such that Loop2(T 2
α(R)) = L2

α(R) (this is well-defined

since Loop2 is a bijection).

Set T̃ r,nα = ΦJS(T 2
α(ran)). We make the following observations, based on the

facts above.

1. By Fact (ii) above, Loop
(
T̃ r,nα

)
= L2

α(ran).

2. By Fact (i) above, dGHP

(
Loop

(
T̃ r,nα

)
, Loop′

(
T̃ r,nα

))
≤ 4Height

(
T̃ r,nα

)
.
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Moreover, n
−1
α Height

(
T̃ r,nα

)
→ 0 in probability as n→∞ since:

P
(
Height

(
T̃ r,nα

)
≥ εn

1
α + 1

)
≤ P

(
Height

(
T 2
α(rn

1
α )
)
≥ εn

1
α + 1

)
= (1− pr,n)εn

1
α

≤ exp{−Cr−αn−
α−1
α εn

1
α },

where pr,n = 1
2P
(
ξ̂• ≥ rn

1
α

)
∼ Crαn

α−1
α as n→∞ by assumption, since ξ̂• is

a size-biased version of ξ•.

3. By construction and Fact (iii) above, Br
(
Loop′

(
T̃ r,nα

))
= Br

(
Loop′

(
T̃α
))

, where

T̃α = limn→∞ T̃
r,n
α (the Janson-Stefánsson bijection is such that this is well-

defined). Moreover, T̃α is distributed as Kesten’s critical tree with offspring

distribution ξ.

These three points imply that (5.7) holds with T̃α as in Point 3 above. Then,

T̃α satisfies the conditions of Proposition 5.3.2 (in particular, condition (ii) of the

Proposition holds by similar arguments to those in Point 2 above), so we deduce

that

(Loop′(T̃α), a−1
n d̃, n−1ν ′, ρ)

(d)→ L∞α

as n→∞. Since these T∞,2α and T̃α are defined on a common probability space, (5.7)

therefore implies the same distributional result for (Loop2(T∞,2α ), a−1
n d̃, n−1ν ′, ρ).

Remark 5.3.5. In [Ric18a], these two-type looptrees are coded by upward skip-free

random walks in a similar way to the one-type case. It is also possible to write an

analogous result to Proposition 5.3.2 in this case, under more general assumptions

on the coding functions.

5.4 Volume bounds and resistance estimates for infinite

stable looptrees

In this section, we prove precise estimates on the volume and resistance growth

properties of infinite stable looptrees. These are of interest in their own right but

in Section 5.5 we also use these to obtain bounds on the heat kernel, and use the

resistance estimate to verify that the non-explosion conditions of Theorem 2.4.3 in

order to deduce similar limiting results for stochastic processes.

Similarly to Chapter 4, we can prove the following volume results. The

results holds regardless of whether we define the balls in terms of R∞ or d∞, since

the two metrics are equivalent.
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Theorem 5.4.1. (cf [Arc19, Theorem 1.4]). P-almost surely, we have:

lim sup
r↑∞

(
ν∞(B∞(ρ∞, r))

rα(log log r)
4α−3
α−1

)
<∞, lim sup

r↑∞

(
ν∞(B∞(ρ∞, r))

rα log log r

)
> 0,

lim inf
r↑∞

(
ν∞(B∞(ρ∞, r))

rα(log log r)−α

)
> 0, lim inf

r↑∞

(
ν∞(B∞(ρ∞, r))

rα(log log r)−(α−1)

)
<∞.

Moreover, P-almost surely, for ν∞-almost every u ∈ L∞α we have

lim sup
r↓0

(
ν∞(B∞(u, r))

rα(log log r−1)
4α−3
α−1

)
<∞, lim sup

r↓0

(
ν∞(B∞(u, r))

rα log log r−1

)
> 0,

lim inf
r↓0

(
ν∞(B∞(u, r))

rα(log log r−1)−α

)
> 0, lim inf

r↓0

(
ν∞(B∞(u, r))

rα(log log r−1)−(α−1)

)
<∞.

Theorem 5.4.2. P-almost surely, there exists a constant c > 0 such that for all

r > 0,

cr(log log(r ∨ r−1))
−(3α−2)
α−1 ≤ R∞(ρ∞, B∞(ρ∞, r)c) ≤ r.

These results are obtained as a consequence of the following propositions.

Proposition 5.4.3. There exist constants c, c′, C, C ′ ∈ (0,∞) such that for all

r > 0, λ > 1:

C exp{−cλ
1

α−1 } ≤ P
(
ν∞(B∞(ρ∞, r)) < rαλ−1

)
≤ C ′ exp{−c′λ

1
α }

Ce−cλ ≤ P(ν∞(B∞(ρ∞, r)) ≥ rαλ) ≤ C ′λ
α−1
4α−3 e−c

′λ
α−1
4α−3

.

Proposition 5.4.4. There exist constants C, c ∈ (0,∞) such that for all r > 0, λ >

1:

P
(
R∞eff(ρ∞, B∞(ρ∞, r)c) ≤ rλ−1

)
≤ Ce−cλ

1
4 .

By applying Borel-Cantelli arguments along the sequence rn = 2n (respec-

tively rn = 2−n) in Propositions 5.4.3 and 5.4.4, we obtain the results of Theorems

5.4.1 and 5.4.2 for the regime r ↑ ∞ (respectively r ↓ 0). For any R ∈ (0,∞), the

local results can then be extended to ν∞-almost every u ∈ L∞,Rα by uniform re-

rooting invariance (recall that (L∞,Rα )R≥0 is a sequence of nested compact looptrees

that exhaust L∞α ). Taking R→∞ then gives the result.

We do not prove the volume results since the proofs are essentially the same as

those of the analogous results in Chapter 4, except that at some stages we decompose

along the infinite loopspine rather than the W-loopspine (which is technically more

straightforward anyway), and we are already dealing with Lévy processes so we do

not need to use absolute continuity to compare an excursion with an uncondtioned

process.
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5.4.1 Applications to volume limits in compact stable looptrees

As a result of Theorem 5.0.1, we are able to prove various volume convergence

results that are exploited in [Arc19] to study Brownian motion on compact stable

looptrees. The main applicable result is the following theorem. Here we let ν denote

the intrinsic measure on a compact stable looptree Lα as defined in Section 3.2.1,

conditioned so that ν(Lα) = 1. We also let B(ρ, r) denote the open ball of radius r

around the root in Lα, and B̄(ρ, r) its closure.

Theorem 5.4.5. There exists a random variable (Vt)t≥0 : Ω → D([0,∞), [0,∞))

such that the finite dimensional distributions of the process

(
r−αν(B̄(ρ, rt))

)
t≥0

converge to those of
(
Vt
)
t≥0

as r ↓ 0, and Vt denotes the volume of a closed ball of

radius t around the root in L∞α . Moreover, for any p ∈ [1,∞), setting V := V1 we

have that E[V p] <∞, and that

r−αpE
[
ν(B̄(ρ, r))p

]
→E[V p]

as r ↓ 0.

Remark 5.4.6. We have taken closed balls rather than open ones simply so that

V is càdlàg. We conjecture that the volume processes are in fact continuous, and

that the convergence of the theorem can be extended to hold uniformly on compacts.

However, due to the complex nature of looptrees, this is not straightforward to prove.

In particular it is difficult to replicate the argument used to prove a similar result for

stable trees, since looptrees do not have such a straightforward regeneration structure

around the boundary of a ball of radius r.

Proof. By the separability of Proposition 2.2.4, we can work on a probability space

on which L`α → L∞α almost surely as ` → ∞. By standard results on metric

space convergence, it follows that almost surely on this space, ν`(B`(ρ`, t)) →
ν∞(B∞(ρ∞, t)) for all t such that ν∞(∂B∞(ρ∞, t)) = 0 (e.g. see [GM17b, Lemma

2.11]), and therefore for Lebesgue almost every t. Moreover, by scaling invariance

of L∞α , there are no “special” values of t, so we deduce that for any fixed sequence

0 < t0 < t1 < . . . < tn <∞, the convergence almost surely holds simultaneously for

all of the points ti, 0 ≤ i ≤ n.

Since (ν`(B`(ρ, t)))t≥0
(d)
= (`νB(ρ, `

−1
α t))t≥0, by writing ` = r−α we therefore

deduce the result as stated. In particular, it follows that ν`(B`(ρ`, 1))
(d)→ V as

`→∞.

We claim that V ∈ (0,∞) almost surely, with all moments finite. This follows
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immediately from the exponential upper tails of Proposition 5.4.3, namely that

P(V ≥ λ) ≤ Cλ
α−1
4α−3 e−cλ

α−1
4α−3

. (5.8)

We now prove that the moments of r−αν1(B(ρ1, r)) converge to those of V . To see

this, we observe that the arguments used to prove (5.8) and the compact analogue

in [Arc19, Proposition 5.4] can be applied uniformly along the sequence L`α to give

constants c, C ∈ (0,∞) such that

P`
(
ν`(B`(ρ, r)) ≥ rαλ

)
≤ Cλ

α−1
4α−3 e−cλ

α−1
4α−3

for all ` ≥ 1. It follows that the sequence (r−αp(ν`(B`(ρ, r)))p)`≥1 is uniformly

integrable for all p ≥ 1 and so setting Cp = E[V p] we deduce that

r−αpE[(ν1(B(ρ1, r)))
p]→ Cp

for all p ≥ 1.

5.4.2 Resistance bounds

We now turn to proving the resistance bounds. We use a version of the iterative

procedure used to prove the volume bounds of Section 4.2.2, which we again index

by a subcritical branching process, to count the number of sublooptrees intersecting

the boundary of a ball of radius r. More formally, we will define another subtree

Tres ⊂ U , but this time selecting sublooptrees of large diameter, rather than of large

volume, to form the offspring at each step. Since this argument is not given in

Chapter 4, we write it more carefully.

Recall that in Section 3.2.3 we defined several notions of height of a compact

stable looptree:

(i) We defined its LW -Height to be the looptree distance from ρ to uH ,

(ii) We defined its L-Height to be supu∈L̃α dL̃α(ρ, u).

(iii) We defined its Lm-Height to be sup X̃exc
s , where X̃exc is the Lévy excursion

coding L̃α.

Note that Lm-Height(L̃α) ≥ L-Height(L̃α) ≥ LW -Height(L̃α).

The Lm-Height is P-almost surely realised by a unique point in L̃α, which

we denote um. We refer to (the closure of) the set of loops coded by the ancestors of

um as the m-loopspine. In order to control the lengths of the loops on the m-spine

we use Proposition 2.5.4, the absolute continuity relation (2.12), and the scaling

relation pt(x) = t
−1
α p1(xt

−1
α ). In particular, on applying the Vervaat transform to
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Xexc to form the bridge Xbr, the points mmin,mmax ∈ [0, 1] respectively attaining

the minimum and maximum of Xbr are uniform random variables on [0, 1] (they are

not independent of each other, but we will only control them using a union bound,

so this is not a problem).

Suppose that A is a measurable event involving loop lengths and sublooptrees

on the m-loopspine. If mmin,mmax respectively denote the new locations of the

minimum and maximum of Xbr obtained from applying the Vervaat transform to

Xexc, we can therefore apply the absolute continuity relation (2.12) twice on the

intervals [0,mmax ∨ mmin] and [mmax ∧ mmin, 1] to control the probability of the

event A. In particular, if {mmin,mmax ∈ (e−c̃λ
p
, 1− e−c̃λp)}, we can therefore apply

the absolute continuity relation (2.12) twice on the intervals [0, 1 − e−c̃λp ] for both

the Lévy bridge and also the time-reversed reflected bridge defined by X̃br
t = Xbr

1−t
to control the probability of the event A. Using subscripts to denote which law we

are working under, we can then compare PXexc(A) and PX(A) as follows: suppose

that PX(A) ≤ Ce−cλ
p

for some p > 0 and some constants c, C ∈ (0,∞). We can

then write

PXexc(A) ≤ P
(
mmin /∈ (e−c̃λ

p
, 1− e−c̃λp) or mmax /∈ (e−c̃λ

p
, 1− e−c̃λp)

)
+ EXexc

[
1{A}1{mmin,mmax ∈ (e−c̃λ

p
, 1− e−c̃λp)}

]
≤ 4e−c̃λ

p
+ e

c̃
α
λp ||p1||∞

p1(0)
EX
[
1{A}1{mmin,mmax ∈ (e−c̃λ

p
, 1− e−c̃λp)}

]
≤ 4e−c̃λ

p
+ e

c̃
α
λp ||p1||∞

p1(0)
PX(A)

≤ 4e−c̃λ
p

+ e
c̃
α
λp ||p1||∞

p1(0)
Ce−cλ

p
.

(5.9)

Therefore, provided that we originally chose c̃ so that c̃
α < c, we get that

PXexc(A) ≤ Ce−cλp as well, just with slightly different values of the constants c and

C.

In what follows, we will therefore use the fact given in Proposition 2.5.4

that under the law of X, the jump sizes corresponding to the ancestors of a new

maximum follow a size-biased version of the original Lévy measure (by reflection and

time-reversal, the same result holds for a new backwards minimum). Additionally,

[Ber92b, Corollary 1(iii)] combined with the Strong Markov property at times of

hitting successive maxima implies that under the law of X, the sublooptrees grafted

to the loopspine up to a given maximum are coded by the Itô excursion measure

but precisely conditioned not to have m-height so large that it would create a new

maximum of X (as should be expected). We will not explicitly repeat the argument

of (5.9) each time we make the comparison between X and Xexc, and instead just
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directly use the law given in Proposition 2.5.4 since we always obtain a bound of

the form that can be dealt with as in (5.9).

We now define some terminology, in keeping with that used in Section 4.2.2

wherever possible.

Firstly, given R > 0, we say that a loop on the m-loopspine is “good” if it

has length at least 4R, and if the associated uniform random variable (that dictates

the ratio of the two segments it splits into on either side of the loopspine) is in

the interval [1
4 ,

3
4 ]. We say the a loop is “goodish” if it just has length at least

4R. Additionally, for any R > 0, and any (unconditioned) compact looptree L̃α
(respectively any infinite looptree L∞α ), we let ImR be the closure in L̃α (respectively

L∞α ) of the union of all the loops in the m-loopspine (respectively infinite loopspine)

that intersect B̃(ρ̃, R) (respectively B∞(ρ∞, R)). Additionally, we let |ImR | be the

sum of the lengths of these loops.

We start by giving a technical lemma. Using the size-biased distribution for

loop lengths on the m-loopspine, the proof is almost identical to that of Lemma

4.2.9. We have only included it since we refer to parts of it later in the prof of

Proposition 5.4.4.

Lemma 5.4.7. (cf Lemma 4.2.9). For any h > 0, λ > 1, R < λ−1− h
α−1 ,

P

(
|ImR | ≥ 3Rλ

∣∣∣∣ Lm-Height(L̃α) ≥ 1

2

)
≤ Ce−cλh∧1 .

Proof. We use a similar strategy to Lemma 4.2.9. Indeed, we first condition on

existence of a good loop in the m-loopspine. We then select the closest good loop to

ρ. Given such a loop, the number of goodish loops between ρ and the first good loop

is stochastically dominated by N − 1, where N is a Geometric(1
2) random variable.

|ImR | can then be upper bounded by the random variable

2RN +

N∑
i=1

Q(i), (5.10)

where Q(i) denotes the sum of the lengths of all the smaller loops on the m-loopspine

that are between the (i − 1)th and ith goodish loops, and the term 2RN comes

from selecting a segment of length at most R in each direction round each of the

goodish loops. Using the size-biased bound for the loop lengths, each Q(i) can

be independently approximated by an (α − 1)-stable subordinator run up until an

exponential time and conditioned not to have any jumps greater than 4R.

Since we model the loop lengths by a subordinator indexed by the m-spine
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of the underlying tree, we upper bound the probability in question by:

P

(
|ImR | ≥ 3Rλ, Tm-Height(L̃α) ≥ Rα−1λh

∣∣∣∣ Lm-Height(L̃α) ≥ 1

2

)
+ P

(
|ImR | ≥ 3Rλ, Tm-Height(L̃α) ≤ Rα−1λh

∣∣∣∣ Lm-Height(L̃α) ≥ 1

2

)
.

(5.11)

The first of these terms can be upper bounded by Ce−cλ using exactly the same

arguments as in Lemma 4.2.9, the point being that if the m-spine in the underlying

tree is long enough, then there is plenty of time for a good loop to occur in the

corresponding subordinator. To summarise more concretely:

• The number of good loops on the m-loopspine is stochastically dominated by

a Poisson(cλh) random variable, so P(@ a good loop ) ≤ e−cλh .

• N is Geometric(1
2), so P(N ≥ λ) ≤ Ce−cλ.

• P
(∑N

i=1Q
(i) ≥ Rλ

)
≤ Ce−cλ. Indeed, by Proposition 2.5.4 and indepen-

dently for each i, we can model each term Q(i) by an (α − 1)-stable subor-

dinator Sub(i) with all jumps greater than 4R removed, run up until a time

ER ∼ exp(cR
−1
α−1 ). We also let Sub(i)′ denote a rescaled version of Sub(i), in-

stead with all jumps greater than 4 removed, and let E ∼ exp(c). By rescaling

Sub(i) and choosing θ so that E
[
eθSub

(i)′
]
< 3

2 (which we can do by Lemma

4.2.2), we then have that

P

(
N∑
i=1

Q(i) ≥ Rλ

)
=

∞∑
n=1

P

(
N∑
i=1

Sub
(i)′

E ≥ λ

∣∣∣∣∣ N = n

)
P(N = n)

≤
∞∑
n=1

(3

2

)n
e−θλ

(1

2

)n
= Cθe

−θλ.

(5.12)

This deals with the first term in (5.11). If the m-spine is prohibitively short,

then this logic cannot be applied, however we can remedy this by noting that if

the Tm-Height is unusually small in relation to the Lm-Height, then this essentially

forces the loop sizes to be large compared to what we would normally expect.

More concretely, in this case, let M ′ be the total number of goodish loops

on the m-loopspine (i.e. the total number of loops of length at least 4R). Using the
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subordinator representation of the loop lengths, we then have that

P

(
M ′ ≤ λ, Tm-Height(L̃α) ≤ Rα−1λh

∣∣∣∣ Lm-Height(L̃α) ≥ 1

2

)
≤ cP

(
M ′ ≤ λ, Lm-Height(L̃α) ≥ 1

2
, Tm-Height(L̃α) ≤ Rα−1λh

)
≤ cP

(
SubRα−1λh ≥

1

2
− 4Rλ

∣∣∣∣ no jumps of size at least 4R

)
,

where the third line follows by removing any jumps corresponding to goodish loops

from Sub, and Sub is a subordinator with (time-dependent) jump measure

Cα1{[0,1]}(u)1{[0,Hm]}(t)l
−αpen(l,Hm, t)du dt dl.

Note that Sub is almost an (α− 1)-stable subordinator, but with the extra penalty

against larger jumps. We therefore let Subα−1 denote an (α−1)-stable subordinator.

It follows that for any k > 0, and any t, x, y > 0:

P(Subt ≥ x | no jumps of size at least y)

≤ P
(
Subα−1

t ≥ x
∣∣ no jumps of size at least y

)
= P

(
Subα−1

kα−1t
≥ kx

∣∣ no jumps of size at least ky
)
.

Taking k = R−1λ
−h
α−1 , we therefore see that

P

(
M ′ ≤ λ, Tm-Height(L̃α) ≤ Rα−1λh

∣∣∣∣ Lm-Height(L̃α) ≥ 1

2

)
≤ P

(
Subα−1

1 ≥ 1

2
R−1λ

−h
α−1 − λ1− h

α−1

∣∣∣∣ no jumps at least 4λ−
h

α−1

)
≤ E

[
eθSub

α−1
1

]
e−θλ

for sufficiently small θ > 0, where the existence of the exponential moment in the

last line follows from Remark 4.2.3, and we recall that R < λ−1− h
α−1 by assumption.

We can then proceed exactly as in the second and third bullet points above to

deduce that the second term in (5.11) is upper bounded by Ce−cλ. This completes

the proof.

Armed with this, we can prove the probabilistic resistance bound as follows.

Proof of Proposition 5.4.4. By scaling invariance of L∞α , it is sufficient to prove the

result for r = 1.

Take R = λ−2t, for some positive constant t that will be specified later. The

aim will be to bound the cardinality of a set A ⊂ L∞α such that any path from

B∞(ρ∞, R) to B∞(ρ∞, 1)c must pass through at least one point in A. Do to this,
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we will define a tree Tres ⊂ U , obtained similarly to Tvol in the box above, but with

two important differences:

• Rather than decomposing along the W-loopspine in the second and subsequent

steps, we decompose along the m-loopspine.

• Rather than reiterating around sublooptrees of larger mass, we reiterate around

those with large L-Height: specifically, those that are grafted to the m-loopspine

within distance R of the root, and with Lm-Height at least 1
2 . We decompose

along the m-loopspine rather than the loopspine to the point achieving the

L-Height purely because it is more convenient to use absolute continuity and

Proposition 2.5.4 to control loop lengths on the m-loopspine. However, an ex-

pression analogous to (4.19) should also be true in the case of this loopspine.

We will show that, with sufficiently high probability, the total progeny of Tres

is at most 1
2λ

t, and that, on this event, we can pick a set A of cardinality at most

λ2t. In this case we are done: since A is a cutset, we then have that

R∞eff(ρ∞, B∞(ρ∞, 1)c) ≥ R∞eff(ρ∞, A), (5.13)

and due to the underlying tree structure this latter quantity is lower bounded by

the resistance of 2|A| edges connected in parallel, each of resistance λ−2t. More

precisely:

R∞eff(ρ∞, A) ≥ (|A|λ2t)−1 ≥ 1

2
λ−4t.

We will then optimise over t to obtain the result.

To this end, we now turn to bounding |Tres|. As commented on page 118,

the sequence of sublooptrees incident to the m-loopspine at a point in ImR can

be stochastically dominated by those coded by the classical Itô excursion mea-

sure along this segment, so the offspring distribution of a particular u ∈ Tres will

be Poisson(C̃|Im,uR |), where C̃ = N(Lm-Height ≥ 1
2), and we have added an ex-

tra superscript u to denote the dependence on u. By applying Lemma 5.4.7 with

h = (α − 1)(2t − 1), it then follows exactly as in Proposition 4.2.11 that, if T̂ is a

Galton-Watson tree with Poisson(C̃λ−t) offspring distribution, then

P
(
|Tres| ≥ λt

)
≤ λtP

(
|ImR | ≥ Rλt

∣∣∣∣ Lm-Height(L̃α) ≥ 1

2

)
+ P

(
|T̂ | ≥ 1

2
λt
)

≤ CλtCe−cλt(h∧1) + Ce−cλ
t
.

Assuming now that |Tres| < 1
2λ

t, we claim that we can pick a set A of

cardinality at most λ2t. In fact, rather than just assuming that |Tres| < 1
2λ

t, we

can assume that all of the events we conditioned on in order to construct the event

{|Tres| < 1
2λ

t} do indeed occur. In particular, we can assume that:
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(i) For each u ∈ Tres, lettingNu be the number of goodish loops on the m-loopspine

between ρu and the first good loop, we have that Nu < λt.

(ii) For each u ∈ Tres, letting Q
(i)
u denote the sum of the length of the shorter loops

between successive goodish loops on the m-loopspine,

Nu∑
i=1

Q(i)
u < Rλt = λ−t.

(iii) |Tres| < 1
2λ

t.

Assuming this, we now describe how we select the set A. This is illustrated in

Figure 5.5 below which represents the m-loopspine of some u ∈ Tres. In particular,

on this m-loopspine, we can pick two points on each of the goodish loops, and two

points on the first good loop, to be in A. Moreover, these points can be chosen so

that they are within distance R + λ−t of the “base point” of the loop (see Figure

5.5). If one of the goodish loops violates the condition that the length of its shorter

segment is less than R, we can instead treat it as the first good loop.

From the assumptions above, we deduce the following:

(i)′ For all u ∈ Tres, the number of points of A contained in L(u)
α is at most 2Nu

which by (i) above is in turn at most 2λt.

(ii)′ |A| ≤ |Tres|2λt = λ2t.

(iii)′ Points in A that are selected as points in the looptree corresponding to u are

within distance |ImR |+ λ−t of ρu, i.e. distance 2λ−t of ρu.

(iv)′ All points in A are within distance |Tres|λ−t + λ−t of ρ∞, which is at most 1
2

by (iii) above.

(v)′ Therefore, any sublooptree grafted to the m-loopspine of L(u)
α for some u ∈ Tres

that has L-Height less than 1
2 , will not intersect B(ρ, 1)c. In other words, A

is really a cutset.

From the probabilistic bounds above, and since we set h = (α − 1)(2t − 1),

we therefore deduce that

P

(
R∞eff(ρ∞, B∞(ρ∞, 1)c) ≤ 1

2
λ−4t

)
≤ CλtCe−cλt(h∧1) + e−cλ

t

≤ CλtCe−cλt(2t−1)(α−1)
+ Ce−cλ

t
.

In particular, choosing t > α
2(α−1) , we obtain

P

(
R∞eff(ρ∞, B∞(ρ∞, 1)c) ≤ 1

2
λ−4t

)
≤ Ce−cλt ,
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Figure 5.5: How to select A. The red segment contains the portion of B(ρ∞, R)
intersecting the m-loopspine. NB This is a simplified diagram since no loops are
actually adjacent.

or equivalently,

P
(
R∞eff(ρ∞, B∞(ρ∞, 1)c) ≤ λ−1

)
≤ Ce−cλ

1
4 .

5.5 Random walk limits

5.5.1 Brownian motion and spectral dimension of L∞α

As in the case of compact looptrees, the looptree convergence results can be used to

give a collection of limit results for random walks and Brownian motion on sequences

of looptrees. Before we do this, we have to show that R∞ is in fact a resistance

metric, and that the resistance form associated with the metric space (L∞α , R∞) is

regular, which implies that it is also a regular Dirichlet form on the space L2(L∞α , ν)

and so is naturally associated with a stochastic process. This is done in the following

two propositions.

Proposition 5.5.1. P-almost surely, R∞ is a resistance metric in the sense of

Definition 2.4.1.

Proof. This follows from [Arc19, Proposition 4.4], in which we prove the same result

for compact stable looptrees. In particular, any finite set of points V in L∞α is

contained in B(ρ∞, r) for some r > 0. Taking such an r, we then define tg(r) and

td(r) exactly as we did in the proof of Theorem 5.0.1; that is, we set

tg(r) = inf{s ≥ 0 : ∆−s ≥ 4r, δ∞−s(x
∞
−s,0) ≥ r}, td(r) = inf{s ≥ 0 : X∞s ≤ X∞−tg(r)−

}.

As in previous proofs, it then follows that B(ρ∞, r) ⊂ p∞([−tg(r), td(r)]), and
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p∞(−tg(r)) = p∞(td(r)). Moreover, p∞([−tg(r), td(r)]) codes a compact stable loop-

tree, which, in keeping with earlier notation, we denote by Lα(r). We endow it with

a metric and a measure by restricting R∞ and ν∞ to Lα(r).

It then follows exactly as in [Arc19, Proposition 4.4] that R∞ restricted to

Lα(r) is a resistance metric on Lα(r), and that we can therefore construct a weighted

network with vertex set V with matching effective resistance. The same network

will therefore work for L∞α .

Proposition 5.5.2. P-almost surely, the resistance form associated with the metric

space (L∞α , R∞) is regular.

Proof. We let (E∞,F∞) denote the resistance form on L∞α associated with the re-

sistance metric R∞ as in (2.8). According to Definition 2.4.2, we need to show that

for any f ∈ C0(L∞α ) and any ε > 0, we can find g′ ∈ F∞ ∩ C0(L∞α ) such that

||f − g′||∞ ≤ ε. The key point is that by cutting off the infinite loopspine of L∞α
at an appropriate cutpoint, any such f is also a compactly supported function on

a compact stable looptree, and therefore approximable on this compact looptree,

since all resistance forms on compact spaces are regular. Formally, we proceed as

follows.

First, note that since f is compactly supported, then its support must be

contained in B(ρ∞, r) for some r > 0. Taking such an r, we then define tg(r) and

td(r) exactly as we did in the proof of Theorem 5.0.1; that is, we set

tg(r) = inf{s ≥ 0 : ∆−s ≥ 4r, δ∞−s(x
∞
−s,0) ≥ r}, td(r) = inf{s ≥ 0 : X∞s ≤ X∞−tg(r)−

}.

As in previous proofs, it then follows that B(ρ∞, r) ⊂ p∞([−tg(r), td(r)]), and

vr := p∞(−tg(r)) = p∞(td(r)). Moreover, p∞([−tg(r), td(r)]) codes a compact sta-

ble looptree, which, in keeping with earlier notation, we denote by Lα(r). We endow

it with a metric and a measure by restricting R∞ and ν∞ to Lα(r), and denote the

associated resistance form by (Er,Fr).
The key point is the following: by [Kig12, Theorem 8.4], and the one-to-

one correspondence given by (2.8) and its continuum extension on compact spaces,

(Er,Fr) is obtained as the trace of (E∞,F∞) on Lα(r), and is such that for any

f ∈ Fr, Er(f, f) = E∞(h(f), h(f)), where h(f) is the unique harmonic extension of

f to L∞α .

Now take f ∈ F∞. Note that, necessarily, f(vr) = 0, since f is continuous.

Moreover, vr is a point on the infinite loopspine that cuts ρ∞ off from∞. Arbitrarily,

we now choose a new point v′r on the loopspine, coded by a jump point of X∞, that

also separates ρ∞ from ∞, but such that R∞(ρ∞, v′r) > R∞(ρ∞, vr). It follows

that v′r is coded by jump point of X∞ at a time that we denote by −tg,2(r), where

tg,2(r) > tg(r) and −tg,2(r) � 0. For any s with −tg,2(r) � s ≺ −tg(r), set as =
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δs(x
∞
s,0), and bs = ∆s− δs(x∞s,0), so that as gives the length of the “shorter” segment

of the corresponding loop in the loopspine, and bs gives the length of the “longer”

segment (see Figure 5.6). Set

dmin =
∑

−tg,2(r)�s≺−tg(r)

as, dmax =
∑

−tg,2(r)�s≺−tg(r)

bs.

These are defined so that dmin gives the looptree distance between vr and v′r, and

dmax gives the “longer distance” between them, which is the length of the path

between them that traverses the longer side of all the loops in the loopspine that lie

between vr and v′r (see Figure 5.6).

ρ
1

vr
v
0

r

Lα(r)

Lα(r)
0

bs

as

to 1

Figure 5.6: Illustration of how we cut the infinite loopspine.

Additionally, let

td,2(r) = inf{s ≥ 0 : X∞s ≤ X∞−tg,2(r)−
}.

Then p∞([−tg,2(r), td,2(r)]) codes another compact stable looptree which we denote

by Lα(r)′, satisfying Lα(r) ⊂ Lα(r)′ ⊂ L∞α .

Since Lα(r) is compact, it follows that (Er,Fr) is regular, so there exists

g ∈ Fr ∩ C0(Lα(r)) with ||f |Lα(r) − g||∞ ≤ ε. We therefore define a function

g′ ∈ C0(L∞α ) by setting g′ = g on Lα(r), g′ = 0 on L∞α \ Lα(r)′, and extending

harmonically on Lα(r)′ \ Lα(r).

Since g approximates f |Lα(r) in the supremum norm, it follows that |g(vr)| ≤
ε, and moreover it then follows by the maximum principle for harmonic functions

that ||g′Lα(r)′\Lα(r)||∞ ≤ ε. Consequently, ||f − g′||∞ ≤ ε. It therefore just remains

to show that E∞(g′, g′) <∞.

Let (E ′r,F ′r) denote the restriction of (E∞,F∞) to Lα(r)′. Since the spaces

Lα(r),Lα(r)′\Lα(r) and L∞α \Lα(r)′ are disjoint, and g′ is the harmonic extension of

g′|Lα(r)′ to L∞α , it follows by bilinearity and from consistency properties of resistance
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forms and their traces given in [Kig12, Section 8] that

E∞(g′, g′) = E ′r(g′|Lα(r)′ , g
′|Lα(r)′). (5.14)

However, since Lα(r)′ is simply a compact looptree, this is automatically finite.

As a result, we deduce that the resistance metric space is naturally associated

with a Hunt process on (L∞α , R∞), which we call Brownian motion on L∞α and denote

by B∞.

5.5.2 Quenched results

We can apply Theorem 2.4.3 to the results of Theorems 5.0.1 and 5.0.2 to deduce

convergence results for stochastic processes on the corresponding spaces. The only

additional detail in the proofs of these results is that we have to check that the

non-explosion condition at (2.9) is satisfied, i.e. that

lim
r→∞

lim inf
`→∞

R`(ρ`, B`(ρ`, r)c) =∞

almost surely, where R` here denotes the resistance metric on L`α.

Local limits

The local limit theorem of Theorem 5.0.1 immediately allows us to apply Theorem

2.4.3 to deduce that Brownian motion on L`α converges in distribution to Brownian

motion on L∞α as `→∞ on compact time intervals. Indeed, it follows from Theorem

2.2.4 and the Skorokhod Representation Theorem that there exists a probability

space on which the convergence on Theorem 5.0.1 holds almost surely. Moreover,

the explosion condition is satisfied as an immediate consequence of Proposition

5.4.4. In particular, the arguments used to prove Proposition 5.4.4 are also valid for

compact stable looptrees, so we deduce that the resistance bounds of Proposition

5.4.4 almost surely hold along the sequence (L`α)`∈N.

Theorem 5.0.3 then follows by a direct application of Theorem 2.4.3.

Scaling limits

We can also deduce similar results from Theorems 5.0.4, 5.3.3 and 5.3.4. In this case,

the non-explosion condition is satisfied as a result of [BS15, Lemma 3.5], which says

that for Loop′(T∞α ), there exist q, C ∈ (0,∞) such that

P
(
Reff(ρ,B(ρ, r)c) ≤ rλ−1

)
≤ Cλ−q. (5.15)
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In light of Proposition 5.4.4, we conjecture that there should in actual fact be

exponential tail decay, but polynomial decay is sufficient for our purposes here.

Indeed, to verify (2.9), we need to show that

lim
r→∞

lim inf
n→∞

n
−1
α Reff(ρ,B(ρ, rn

1
α )c) =∞

P-almost surely. This follows directly from applying a Borel-Cantelli argument along

a suitable subsequence using the probabilistic bound (5.15). Moreover, the same

applies for Loop(T∞α ) since Reff(ρ,Br(Loop(T∞α ))c) ≥ Reff(ρ,Br−1(Loop′(T∞α ))c).

Similarly, the result also holds for the two-type looptree Loop2(T∞,2α ), since

Reff(ρ,Br(Loop(T∞α ))c) ≥ Reff(ρ,Br−Height(Tree(Loop′(T∞α )r))(Loop
′(T∞α ))c), and also

r−1Height(Tree(Loop′(T∞α )r))→ 0 in probability, with exponential tail decay (as in

Point 2 of the proof of Theorem 5.3.4), allowing further Borel-Cantelli arguments.

In all the different versions of infinite looptrees that we have considered,

the Gromov-Hausdorff-Prohorov convergence holds with the uniform measure on

vertices of the looptree, and the associated stochastic process is therefore a variable

speed random walk.

In the case of Loop(T∞α ), all vertices have degree 4, so in this case the stochas-

tic process is actually a constant speed random walk, with exp(4) waiting times at

each vertex. However, by applying Kolmogorov’s Maximal Inequality to the time

index of this stochastic process (as in the proof of [Arc19, Theorem 1.1]) we can

show that the waiting times average out sufficiently well over time so the scaling

limit result will also hold for a simple random walk on Loop(T∞α ) (although sped up

deterministically by a factor of 4).

Theorem 5.0.4 therefore follows by an immediate application of Theorem

2.4.3 to Proposition 5.3.2.

In the case of Loop′(T∞α ), all internal vertices have degree 4, and all leaf

vertices have degree 2. This corresponds to the fact the the only significant difference

between Loop(T∞α ) and Loop′(T∞α ) is that in Loop′(T∞α ) the loops corresponding to

leaves are missing, and has the effect that (on average) the random walk waits twice

as long at leaf vertices compared to internal vertices. This reflects the fact that

the random walks on Loop(T∞α ) and Loop′(T∞α ) can (almost, technically only after

adding one extra vertex to the loop containing the root in Loop(T∞α )) be coupled

so that they move identically at internal vertices, but so that a random walk on

Loop′(T∞α ) remains in its present position whenever the random walk on Loop(T∞α )

traverses a loop corresponding to a leaf vertex (note this can be traversed in either

direction). It therefore makes sense that we should be taking a scaling limit of the

variable speed random walk on Loop′(T∞α ), rather than the constant speed one.

We similarly have to take a variable speed random walk on Loop2(T∞,2α ),

although there is not such a simple coupling in this case. In the next theorem, we

127



let L∞,1α = Loop′(T∞α ), L∞,2α = Loop2(T∞,2α ), Y var,i denote a variable speed random

walk on L∞,iα , and νi denote the measure giving mass 1 to each vertex. The non-

explosion condition is again satisfied by the same arguments as in Section 5.5.2

above. We then have the following analogues of Theorem 5.0.4.

Theorem 5.5.3. Take i ∈ {1, 2}. There exists a probability space (Ω′,F ′,P′) on

which we can almost surely define a common metric space (M,RM ) in which the

spaces (L∞,iα , a−1
n d̃, n−1ν ′, ρ) and (L∞α , d̃∞, ν∞, ρ∞) can all be isometrically embedded

and such that

(L∞,iα , a−1
n d̃, n−1νi, ρ)

(d)→ (L∞α , d̃∞, ν∞, ρ∞)

with respect to the Gromov-Hausdorff-vague topology, and the convergence specifi-

cally holds on the metric space (M,RM ). Letting Y var,i and B∞ be as above, we

have that

(a−1
n Y var,i

bnantc)t≥0
(d)→ (B∞t )t≥0

on the space D(R+,M) as n→∞.

Remark 5.5.4. We could also prove other convergence results, for example by taking

increasing sequences of increasingly rescaled discrete looptrees to approximate L∞α ,

in some sense combining Theorems 5.0.1 and 4.1.6, and deduce similar convergence

results for random walks, exactly as we did in the cases above. This corresponds to

the diagonal line in Figure 5.1.

5.5.3 Heat kernel convergence and spectral dimension

To conclude, we now show how Theorem 5.0.1 can be applied to give results on

the heat kernel of Brownian motion on compact stable looptrees. First, note that

it follows from the scaling invariance of Proposition 5.1.1 that the annealed heat

kernel for L∞α satisfies the scaling relation

E[p∞t (ρ, ρ)] = k
α
α+1 E[p∞kt (ρ, ρ)] (5.16)

for any k > 0. Similarly, if we let p`t denote the transition density of Brownian

motion on a looptree coded by an excursion of length `, we have that

E
[
p1
t (ρ, ρ)

]
= k

α
α+1 E

[
pk

1
α+1

kt (ρ, ρ)

]
.

Setting k = t−1 we see that

t
α
α+1 E

[
p1
t (ρ, ρ)

]
=E

[
pt
−1
α+1

1 (ρ, ρ)

]
.
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Moreover, since we are in a resistance framework, it follows from [CH08, Theorem

2 and Proposition 14] that

t
α
α+1 p1

t (ρ, ρ)
(d)→ p∞1 (ρ, ρ)

as t ↓ 0. To deduce that the corresponding expectations also converge, we just

need to show that E[p∞1 (ρ, ρ)] is finite. However, since the transition density can be

bounded by bounding the volume and resistance growth (by a continuum version

of [KM08, Proposition 1.4], for example), the exponential tail decay of Propositions

5.4.3 and 5.4.4 also give an upper exponential tail decay for the transition density.

We therefore deduce that E[p∞1 (ρ, ρ)] is finite, so we can apply similar arguments

to those in the previous section to deduce that

t
α
α+1 E

[
p1
t (ρ, ρ)

]
→ E[p∞1 (ρ, ρ)]

as t → ∞. This is stated as [Arc19, Theorem 1.8], where Brownian motion on Lα
is studied more closely.

Similarly, it also follows from [KM08, Theorem 1.5, Part II] (adapted to the

continuum) that the heat kernel p∞t (ρ, ρ) almost surely experiences at most log-

logarithmic fluctuations around a leading term of t
−α
α+1 as t ↑ ∞ and as t ↓ 0, and

therefore that the quenched spectral dimension of Lα is almost surely equal to 2α
α+1 .

To establish the annealed spectral dimension, we take k = t−1 in (5.16) to

deduce that

E[p∞t (ρ, ρ)] = t
−α
α+1 E[p∞1 (ρ, ρ)] .

Since E[p∞1 (ρ, ρ)] is finite, this implies that the annealed spectral dimension is also

equal to 2α
α+1 . This concludes the proof of Theorem 5.0.6.
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Chapter 6

Random Walks on Decorated

Galton-Watson Trees

As outlined in the introduction, the purpose of this chapter is to consider random

walks on a generalised decorated tree model. This time we work purely in the

discrete setting and we will therefore consider limits as t, r → ∞. As in previous

chapters, we will take α ∈ (1, 2] and assume that the underlying tree has critical

offspring distribution satisfying ξ([k,∞)) ∼ ck−α as k →∞ and in order to take the

appropriate limits we will assume it is conditioned to survive, by which we mean it

is constructed as Kesten’s tree according to Definition 3.3.1. One could also add a

slowly-varying function to the offspring distribution and carry this through all the

computations, but we have omitted this for sake of clarity. We will denote this tree

by T∞α .

Informally, we construct our decorated tree from T∞α using the same proce-

dure as for constructing looptrees, but rather than inserting a loop of length n at a

vertex v of degree n, we insert a connected graph Gn that has a n boundary vertices.

Similarly to the looptree construction, we uniquely identify each boundary vertex of

Gn with an edge incident to v, and then if v ∼ v′ in T∞α we glue their corresponding

graphs at the two vertices identified with this edge. Gn may be random (e.g. an

Erdös-Rényi graph on n vertices) or deterministic (e.g. the complete graph on n

vertices); in the random case we sample independently for each vertex, conditional

on the boundary size. We call the resulting structure T dec
α , and we let the vertex of

T dec
α that corresponds to the edge in T dec joining ρ to its leftmost child be the root

of T dec
α . See Figure 6.1 for an illustration for a finite tree.

In this chapter we consider a simple random walk on T dec
α . Our aim is

to establish the exponents governing the behaviour of the simple random walk, in

terms of those for the underlying tree and those for the inserted graphs. We focus

particularly on the displacement exponent, and the spectral dimension; as indicated
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Figure 6.1: An example of a decorated tree, and its underlying Galton-Watson tree.

in the introduction, we will define these by the following limits, provided these exist.

(i) The spectral dimension, dS = −2 limn→∞
log p2n(x,x)

logn ,

(ii) The displacement exponent, ddis = limn→∞
log supk≤n d(0,Xk)

logn .

As outlined in the introduction, here pn(x, y) = Px(Xn=y)
deg y is the transition density

of the simple random walk, and the limit in (i) does not depend on the choice of x.

The quantity dw = 1
ddis

is also known as the walk dimension, and can be naturally

contrasted with the fractal dimension of T dec
α , denoted df , given by

df =
limr→∞ log (Vol(B(x, r)))

log r
.

We will see that, as is commonly the case for sufficiently homogeneous graphs, the

relation

dS =
2df
dw

holds on T dec
α . This will hold as a consequence of verifying the conditions of [KM08].

As outlined in Section 2.4.2, the values of these exponents depend on the

resistance growth and volume growth of T dec, so we will have to make some as-

sumptions on the growth of these quantities on the inserted graphs. Moreover, if

we wish to understand how fast the random walk moves with respect to the graph

metric (or some other metric different to the resistance metric), then we will have

to make an assumption on this metric too.

Given n ∈ N, we let (U
(1)
n , U

(2)
n ) denote a uniform pair of distinct points on

the boundary of Gn, dn be the graph metric on Gn (in fact the same results will

hold for an arbitrary metric), and Reff denote effective resistance on Gn when each
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edge has weight 1. We then set

dUn = dn(U (1)
n , U (2)

n ), RUn = Reff(U (1)
n , U (2)

n ),

Diam(Gn) = sup
x,y∈Gn

dn(x, y), Diamres(Gn) = sup
x,y∈Gn

Reff(x, y).

We also let Vol(Gn) denote the number of edges of Gn, or equivalently (the factor

of 2 is not important) µ(Gn), where µ(x) = deg x for all x ∈ Gn, as in Section 2.4.2

(although the volume growth results will also hold on an arbitrary measure on Gn

and extending to T dec
α by superposing the measures).

We will assume the following.

Assumption 6.0.1.

(D) Metric growth. There exists d ≥ 1, k > 0 and constants c, C ∈ (0,∞) such

that

P
(
dUn ≥ n

1
d

)
≥ c, P

(
Diam(Gn) ≥ λn

1
d

)
≤ Ce−cλk .

(R) Resistance growth. There exists R ≥ 1, kr > 0 and constants c, C ∈ (0,∞)

such that

P
(
RUn ≥ n

1
R

)
≥ c, P

(
Diamres(Gn) ≥ λn

1
R

)
≤ Ce−cλkr

(V) Volume growth. There exists v ≥ 1 such that EITHER:

(i) There exists constants c, C ∈ (0,∞) and ε > 0 such that

P(Vol(Gn) ≥ nv) ≥ c, P(Voln(Gn) ≥ λnv) = O(λ
−(α+ε)

v ),

as λ→∞, uniformly in n ≥ 1. OR:

(ii) There exists mv > 0 and constants c, C ∈ (0,∞) such that for all n ≥ 1, λ ≥ 1,

cλ−mv ≤ P(Vol(Gn) ≥ λnv) ≤ Cλ−mv .

Remark 6.0.2. (i) We believe that the requirements of stretched exponential tail

decay in (D) and (R) above should not be strictly necessary and are endeav-

ouring to weaken this assumption to something akin to (V). At the moment

the stretched exponential decay is necessary in order to prove a bound on the

“decorated height” of a typical finite Galton-Watson tree, but the proof involves

decoupling the effect from high degree vertices and large values of λ, which is

unlikely to be optimal. In Section 6.8 we give a heuristic for a proof that

wouldn’t involve this, in which case we could write assumptions similar to that

of (V).
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(ii) (V)(ii) corresponds to the case when the appropriate tails on the inserted graphs

are heavier than the tails of the degree distribution of the underlying tree. As

a result, graphs with large volume will not necessarily correspond to those in-

serted at vertices of large degree, so it is important to know the tail decay more

precisely. If we instead had mv + ε and mv − ε as the exponents on λ in point

(V)(ii), we would also end up with plus or minus ε on the various exponents

in Theorem 6.0.5.

The exponents d,R and v can be thought of as the internal exponents gov-

erning the behaviour of the inserted graphs, conditional on their boundary size.

Necessarily v > 1, and in planar cases where the boundary is itself connected we

also have d,R > 1.

The stretched exponential decay is not necessary to obtain the upper volume

bounds that we will present below. In this case we can instead assume the following.

Assumption 6.0.3.

(D′) Metric growth. There exists d ≥ 1 such that EITHER:

(i) There exists constants c, C ∈ (0,∞) and ε > 0 such that

P
(
dUn ≥ n

1
d

)
≥ c, P

(
dUn ≥ λn

1
d

)
= O(λ−d(α−1+ε)),

as λ→∞, uniformly in n ≥ 1. OR:

(ii) There exists md > 0 and constants c, C ∈ (0,∞) such that for all n ≥ 1, λ ≥ 1,

cλ−md ≤ P
(
dUn ≥ λn

1
d

)
≤ Cλ−md .

(R′) Resistance growth. There exists R ≥ 1 such that EITHER:

(i) There exists constants c, C ∈ (0,∞) and ε > 0 such that

P
(
RUn ≥ n

1
R

)
≥ c, P

(
RUn ≥ λn

1
R

)
= O(λ−R(α−1+ε)),

as λ→∞, uniformly in n ≥ 1. OR:

(ii) There exists mR > 0 and constants c, C ∈ (0,∞) such that for all n ≥ 1, λ ≥ 1,

cλ−mR ≤ P
(
RUn ≥ λn

1
R

)
≤ Cλ−mR .

(V′) Volume growth. There exists v ≥ 1 such that EITHER:

(i) There exist constants c, C ∈ (0,∞) and ε > 0 such that

P(Vol(Gn) ≥ nv) ≥ c, P(Voln(Gn) ≥ λnv) = O(λ
−(α+ε)

v ),
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as λ→∞, uniformly in n ≥ 1. OR:

(ii) There exists mv > 0 and constants c, C ∈ (0,∞) such that for all n ≥ 1, λ ≥ 1,

cλ−mv ≤ P(Vol(Gn) ≥ λnv) ≤ Cλ−mv .

Assumption (R′) above is only necessary if one wants to understand volume

growth with respect to the resistance metric.

In fact, as remarked above, the exponential tail decay is only used in the

proof of one proposition which controls the decorated height of a decorated Galton-

Watson tree. When proving the volume lower bounds, it is only necessary to control

this when volumes are concentrated close to the leaves, since we then need to control

distances all the way to the extremities of the underlying tree. It turns out that this

is only the case when v < α; otherwise, there is enough volume located in internal

parts of the tree that we don’t need to control these distances in order to catch

enough volume close to the root, and we can instead assume the following.

Assumption 6.0.4.

(D′′) Metric growth. There exists d ≥ 1 such that EITHER:

(i) There exists constants c, C ∈ (0,∞) and ε > 0 such that

P
(
dUn ≥ n

1
d

)
≥ c, P

(
dUn ≥ λn

1
d

)
= O(λ−d(α−1+ε)),

as λ→∞, uniformly in n ≥ 1. OR:

(ii) There exists md > 0 and constants c, C ∈ (0,∞) such that for all n ≥ 1, λ ≥ 1,

cλ−md ≤ P
(
dUn ≥ λn

1
d

)
≤ Cλ−md .

(R′′) Resistance growth. There exists R ≥ 1 such that EITHER:

(i) There exists constants c, C ∈ (0,∞) and ε > 0 such that

P
(
RUn ≥ n

1
R

)
≥ c > 0, P

(
RUn ≥ λn

1
R

)
= O(λ−R(α−1+ε)),

as λ→∞, uniformly in n ≥ 1. OR:

(ii) There exists mR > 0 and constants c, C ∈ (0,∞) such that for all n ≥ 1, λ ≥ 1,

cλ−mR ≤ P
(
RUn ≥ λn

1
R

)
≤ Cλ−mR .

(V′′) Volume growth. There exists v ≥ α such that EITHER:
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(i) There exist constants c, C ∈ (0,∞) and ε > 0 such that

P(Vol(Gn) ≥ nv) ≥ c > 0, P(Voln(Gn) ≥ λnv) = O(λ
−(α−1+ε)

v ),

as λ→∞, uniformly in n ≥ 1. OR:

(ii) There exists mv > 0 and constants c, C ∈ (0,∞) such that for all n ≥ 1, λ ≥ 1,

cλ−mv ≤ P(Vol(Gn) ≥ λnv) ≤ Cλ−mv .

The exponents d,R and v can be thought of as the internal exponents gov-

erning the behaviour of the inserted graphs, conditional on their boundary size. To

understand the how these quantities behave for a graph inserted at a typical ver-

tex of T∞α , we have to “compose” the bounds of Assumption 6.0.1 with the degree

distribution of a typical vertex. From Definition 3.3.1, this depends on whether the

vertex is on the backbone of T∞α (we denote this by ‘s’, for spinal), or contained in

a subtree (we denote this by ‘f ’, for fragmental). Accordingly, we have to define

two sets of exponents for each of d,R and v. For the purposes of these definitions,

we take md,mR and mv = ∞ in the cases where we have not specified the specific

exponent for the tail decay.

We take sdα = d(α− 1) ∧md, s
R
α = R(α− 1) ∧mR and svα = 1

v (α− 1) ∧mv.

We take fdα = dα ∧md, f
R
α = Rα ∧mR and fvα = α

v ∧mv.

Later we also set tvα = fvα∧1
α , yα = fvαα(α−1)sdα

sdα(α−1)(fvα∧1)+αfvα
.

We will see in Section 6.3 that, roughly speaking, for a vertex v on the

backbone of T∞α , and corresponding graph G(v), P(Diam(G(v)) ≥ x) � x−s
d
α as

x→∞, and similarly for the other exponents.

Given these exponents, we are now in a position to state the exponents of

interest for the decorated tree. We start with the volume growth, which heuristically,

can be understood by comparing with a ball in the tree. The volume of a ball of

radius r in the tree T∞α is of order r
α
α−1 (this follows from [Duq09, Theorem 1.5], for

example); informally this is because there are precisely r backbone vertices within

distance r of the root, and between them, they have of order r
1

α−1 offspring, so that

there are approximately r
1

α−1 subtrees grafted to the backbone within distance r of

the root. Amongst these subtrees, the largest one will have volume of order r
α
α−1

and height of order r, and due to the very heavy tails of the fragments, the volume

of the whole ball will be on the same order as the volume of this maximal fragment.

There are also other ways of understanding this exponent (e.g. see the arguments of

[CK08] which involve decomposing at heights), but the one described here is most
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insightful for understanding the proofs in this chapter.

One can also apply this logic in the decorated metric: to go distance r along

the decorated backbone in T dec
α , one must sample approximately rs

d
α∧1 backbone

vertices in T∞α , resulting in r
sdα∧1
α−1 subtrees. Moreover, if a subtree has progeny n,

then the volume of its decorated version will be approximately n
1

fvα∧1 , so that the

volume of the largest subtree will be of order r
α(sdα∧1)

(α−1)(fvα∧1) .

This argument neglects to include volume contributions from graphs inserted

at backbone vertices. In the case of considering volume growth of T∞α , this contri-

bution is of order r so is clearly insubstantial compared to that of the fragments. In

fact, on a critical tree it is the case that asymptotically, almost all the mass is con-

centrated close to the leaves. However, on the decorated model, since the backbone

vertices have (on average) the highest degrees in the tree, it is natural to expect

that as the volume exponent v increases, the balance between the volumes of graphs

on the backbone and those in the fragments is shifted. In fact the critical point is

when v = α, and above this value the backbone contribution is of the same order as

that of the fragments (the backbone contribution can never dominate the fragment

contribution, though).

We therefore define the decorated volume exponent

ddec
α =

α(sdα ∧ 1)

(α− 1)(fvα ∧ 1)
. (6.1)

We also let BT dec
α

(ρdec
α , r)) denote a ball of radius r around the root of T dec with

respect to the graph metric. The main volume growth theorem is as follows.

Theorem 6.0.5 (Volume growth). (i) Upper bound. Suppose that (D′), (V′) hold.

Then, P-almost surely, for all ε > 0 there exists r0(ε) < ∞ such that for all

r ≥ r0(ε),

Vol(BT dec
α

(ρdec
α , r)) ≤


rd

dec
α (log r)

α+ε
(fvα∧1)(α−1) if sdα < 1,

rd
dec
α (log r)

1+ α+ε
(fvα∧1)(α−1) if sdα = 1,

rd
dec
α (log r)

α+ε
(fvα∧1)yα if sdα > 1.

(ii) Lower bound. Suppose that (D), (V) hold. Then, P-almost surely, for all ε > 0

there exists r0(ε) <∞ such that for all r ≥ r0(ε),

Vol(BT dec
α

(ρdec
α , r)) ≥ rddecα (log r)

−(α+ε)
α−1

−ddecα (1+ 1
k

).

(iii) Improved lower bound. Suppose that mv ∧ 1 ≥ α
v and (D′′), (V′′) hold. Then,
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P-almost surely, for all ε > 0 there exists r0(ε) <∞ such that for all r ≥ r0(ε),

Vol(BT dec
α

(ρdec
α , r)) ≥ rddecα (log r)

−1
svα .

These logarithmic fluctuations are not optimal in many cases, and in partic-

ular can often be improved to log-logarithmic when inserting deterministic graphs

(although not always, T∞α being an example where the upper fluctuations are gen-

uinely logarithmic). However, although we make some comments on how the argu-

ments can potentially be fine-tuned at appropriate parts of the proof, our emphasis

here is on determining the correct leading term exponent for the volume growth,

rather than the optimal fluctuations.

We have graphed the volume exponent in Figure 6 below. There are two

cases for the graph, depending on which of sdα and fvα exceeds one “first”. In both

cases, there are up to three regimes. The case where both of the exponents exceed 1

can be thought of as the “tree regime”: in this case the relevant tails on the inserted

graphs are not heavy enough to impact the exponents, so we see the same exponent

appearing as for an undecorated tree. The case where both of the exponents are

less than 1 can be thought of as the “graph regime”, and we lose the dependence

on α. This reflects the fact that as the offspring tails get heavier (i.e. as α ↓ 1), it

is easier for a finite critical Galton-Watson tree to be “large” by having one vertex

of macroscopic degree (cf [CK14, Proposition 3.6]), so that we essentially just see

one macroscopic copy of the inserted graph in the decorated tree. In the case of a

decorated Kesten’s tree, we essentially just see a one-dimensional sequence of graphs

glued along the backbone of T∞α . As α ↑ 2, however, the vertex degrees become more

balanced, and the contribution from any one single vertex is less significant, so we

can regain some tree structure and eventually recover it entirely once the distance

and volumes across typical inserted graphs have finite expectation.

Depending on which of sdα and fvα tip over 1 first, we also see an intermediate

regime where we “see” the effect of either volumes or distances in the inserted graphs,

but not both.

We can use similar considerations to those discussed above to either establish

the volume growth exponents with respect to the resistance metric, or otherwise

add up resistance contributions along the backbone and along paths in subtrees to

compare resistance to the graph distance. Again, there are two regimes depending

on whether resistance across a typical spinal vertex has finite expectation or not:

as result, we will also see a factor of sRα ∧ 1 in the exponents below. We can then

combine the resistance and volume estimates using results of [KM08] to identify the

random walk exponents.
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Figure 6.2: Different phases of the decorated volume exponent. NB, we do not
necessarily see all three phases for one given model.

Accordingly, set

dspec
α =

2α(sRα ∧ 1)

α(sRα ∧ 1) + (α− 1)(fvα ∧ 1)
,

ddis
α =

(sRα ∧ 1)(α− 1)(fvα ∧ 1)

(α− 1)(fvα ∧ 1)(sdα ∧ 1) + α(sRα ∧ 1)(sdα ∧ 1)
.

In what follows, we let assume that the decorated tree T dec
α is defined on the

probability space (Ω,F ,P), and let P(·) denote the law of a simple random walk on

T dec
α , started from the root. This is also a random variable on (Ω,F ,P). In terms

of the random walk results, we have the following.

Theorem 6.0.6 (Quenched random walk results). Under Assumption 6.0.1:

P×P-almost surely,

ddis(T dec
α ) : = lim

n→∞

log supk≤n d
dec(ρdec

α , Xk)

log n
= ddis

α ,

ds(T dec
α ) : = −2 lim

n→∞

log p2n(ρdec
α , ρdec

α )

log n
= dspec

α .

The annealed results follow similarly from [KM08, Proposition 1.4].

Theorem 6.0.7 (Annealed random walk results). Under Assumption 6.0.1,

dEdis(T dec
α ) : = lim

n→∞

log E
[
E
[
supk≤n d

dec(ρdec
α , Xk)

]]
log n

= ddis
α ,

dEs (T dec
α ) : = −2 lim

n→∞

log E
[
p2n(ρdec

α , ρdec
α )
]

log n
≥ dspec

α .

In general it is not possible to get an upper bound on the annealed spectral

dimension, since this quantity is infinite on the underlying tree T∞α . This is because

the expected volume of a unit ball is infinite in this case, as established by Croydon
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and Kumagai [CK08]. This does not mean that it is always infinite in the decorated

case (e.g. see [BS15, Theorem 1.2] for the corresponding result for discrete loop-

trees), but one must insert graphs that sufficiently “spread out” different branches

of the tree. In particular, we will see in Section 5.5 that we can obtain an upper

bound whenever the probabilistic tail decay for obtaining unusually large volumes

is sufficiently strong.

We conclude the introduction by commenting briefly on the finite variance

case of α = 2. It was shown in [KR20, Theorem 2] that the metric space scaling limit

of any finite variance discrete looptree is the Brownian CRT, meaning that the loops

do not persist in the scaling limit, building on [CHK15, Theorem 13] which applies

when the offspring distribution has exponential tails. Assuming that R, d ≥ 1 this

would therefore also be the case for our decorated tree model (since then distances

are stochastically no bigger than those in looptrees). If the offspring distribution

has stretched exponential tail decay it will similarly be the case that the volumes of

the inserted graphs will not have a tangible effect. However, if there is polynomial

tail decay in the offspring distribution it is always possible to choose the volume

exponent v large enough that larger volumes persist in the scaling limit; in the same

spirit, if α = 2 and we were to repeat the arguments of this chapter we expect that

we would obtain a volume growth exponent

ddec
2 =

2(sd2 ∧ 1)

(fv2 ∧ 1)
,

with sdα and fvα defined as above. We have not pursued this line of enquiry in this

chapter, but instead note that this kind of model would fall into the framework we

briefly discuss later in Section 7.1.

For all the results in this chapter, we will assume that all the conditions of

Assumption 6.0.1 hold, unless explicitly stated otherwise. The main exception

to this is Section 6.4.1.

6.1 Definition of the model

Formally, we let T∞α denote Kesten’s tree with critical offspring distribution ξ sat-

isfying

ξ(k) ∼ ck−α (6.2)

as k → ∞, for some α ∈ (1, 2], and let d∞α denote the graph distance on T∞α . The

results also hold on incorporating a slowly-varying function, but for sake of clarity

we have not included this here, and just note that the slowly-varying function can
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be carried through all the computations.

In line with the literature, we also let pk = ξ(k). By standard theory,

(e.g. [BGT89, Chapter VIII]), if (Xi)
∞
i=1 are i.i.d. distributed according to ξ,

it follows that a−1
n

∑∞
i=1Xi → Sα, where Sα is an α-stable random variable and

an = (c|Γ(−α)|n)
1
α .

To construct the decorated model, we will suppose that G is a random graph

with some pre-specified distribution, connected, and that Gn denotes a copy of G

conditioned on having n “boundary” vertices (for example, a tree with n leaves, or a

dissection of the n-gon). Informally, the decorated tree T dec
α is obtained inserting an

independent copy of G at every vertex, with boundary length equal to the number

of edges incident to that vertex, and then gluing the inserted graphs along the tree

structure of T∞α . See Figure 6.1.

More formally, we first sample T∞α according to Definition 3.3.1 of Kesten’s

tree, and then independently sample a countable sequence ((G(v), b(v))v∈T∞α , where

G(v) is an independent copy of Gdeg v, and b(v) is a uniform bijection from the

boundary vertices of G(v), to the edges of T∞α that are incident to the vertex v.

Given a vertex x ∈
⋃
v∈T∞α G(v), if x ∈ G(v) we say that v = VT (x). We then define

an equivalence relation
e∼ on the vertices of

⋃
v∈T∞α G(v) by saying that x

e∼ y if and

only if b(VT (x))(x) = b(VT (y))(y), in other words that they are both in bijection

with the same edge of T∞α .

We then set

T dec
α =

⋃
v∈T∞α

G(v)/
e∼ .

If ρ is the root of T∞α , we also define the root of T dec
α to be the vertex x ∈ G(ρ) such

that b(ρ)(x) is equal to the edge joining ρ to its first child, and denote this vertex

by ρdec
α .

We let ddec
g denote the graph distance on T dec

α . If [[VT (x), VT (y)]] = v0, v1, . . . , vn

denotes the path of (internal) vertices between VT (x) and VT (y) in T∞α , this can be

constructed by setting

ddec
g (x, y) =dG(v0)

(
x, b(v0)−1(v0v1)

)
+

∑
1≤i≤n−1

dG(vi)

(
b(vi)

−1(vi−1vi), b(vi)
−1(vivi+1)

)
+ dG(vn)

(
b(vn)−1(vn−1vn), y

)
,

(6.3)

where dG(vi) represents the graph distance on G(vi).

If v ∈ T∞α , let Tv be the subtree of T∞α rooted at v. This corresponds to

a subgraph of T dec
α consisting of the graph

⋃
u∈Tv G(u). We denote this graph by

T dec
α (v).

We also endow the space T dec
α with a measure µ such that µ(x) = deg x for
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all x in T dec
α . The volume assumptions on the number of edges really correspond to

assumptions on the measure µ.

We will assume that T∞α and the set (G(v), b(v))v∈T∞α are all defined on the

probability space (Ω,F ,P). We denote the law of a random walk on T dec
α by P:

this law is therefore also a random variable on the probability space (Ω,F ,P).

Notation. Throughout, c and C will denote constants bounded from above

and below, but values may change on each appearance.

6.2 Technical lemmas

In this section we collect some technical lemmas regarding sums of stable random

variables. These will be used regularly in the proofs.

Remark 6.2.1. Since we are not including slowly-varying functions in the tails of

our random variables, this means that any “1-stable” random variable will fall into

an infinite mean regime for the purposes of this chapter. In most of our proofs we

have to deal with the infinite mean and finite mean regimes separately; however,

since all of our phase transitions will ultimately be continuous, we don’t expect that

adding a slowly-varying function will change the result when any of the tail decay

exponents are equal to −1, but may just mean that the finite mean proof method is

required instead.

Lemma 6.2.2. Let (Xi)
n
i=1 be i.i.d. such that P(X1 > x) ∼ cx−β, for some β ∈

(0, 1], and let T (k) = inf{i ≥ 1 : Xi > k} (or equal to infinity if this set is empty).

Set

S(k) =
T (k)−1∑
i=1

Xi.

(i) If β ∈ (0, 1), then there exist c, C ∈ (0,∞) such that P
(
S(k) ≥ λk

)
≤ Ce−cλ.

(ii) If β = 1, then there exist c, C ∈ (0,∞) such that P
(
S(k) ≥ λk log k

)
≤ Ce−cλ.

Proof. (i) The proof is essentially the same as the argument for a similar result

on [CK14, p. 25]. Let Sn =
∑n

i=1Xi, H0 = 0, and Hk = inf{n ≥ 0 : Sn > k}
be the hitting time of k for the random walk (Sn)n≥1. Then, if S(k) ≥ kλ it

must be the case that Hkλ ≤ T (k). Therefore, we can write

P
(
S(k) ≥ kλ

)
= P

(
Hkλ ≤ T (k)

)
≤ P

(
H2k ≤ T (k), H4k ≤ T (k), H6k ≤ T (k), . . . ,H2b 1

2
λck ≤ T

(k)
)

≤
2b 1

2
λc∏

i=1

P
(
H2ik ≤ T (k)

∣∣∣ H2(i−1)k ≤ T (k)
)
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Since there are no jumps exceeding k before time T (k), it follows that SH2ik
≤

(2i + 1)k for all i ≥ 1. Moreover, since T (k) has a geometric distribution, it

therefore follows from the memoryless property that for all i ≥ 1:

P
(
H2ik ≤ T (k)

∣∣∣ H2(i−1)k ≤ T (k)
)
≤ P

(
Hk ≤ T (k)

)
.

Therefore, the exponential decay will follow once we can show that P
(
Hk ≤ T (k)

)
can be bounded below 1 uniformly in k. To show this, we use Wald’s equality

to write:

P
(
Hk ≤ T (k)

)
= P

(
S(k) ≥ k

)
≤ E

[
S(k)

]
k−1 ≤ cE[X1 | X1 < k] kβk−1 → 0

as k →∞.

(ii) If β = 1, we can use the same proof but we consider P
(
S(k) ≥ Cλk log k

)
for

a sufficiently large constant C, and use that E[X1 | X1 < k] ≤ c log k in the

final line.

We will also need the following lemmas for the infinite mean case. The result

should be standard; however we couldn’t find a specific proof in the literature, so

have provided one for completeness. It will be used at multiple times throughout

this chapter.

Lemma 6.2.3. Let (Xi)i≥1 be i.i.d. and such that P(Xi ≥ x) ∼ cx−β for some

β ≤ 1. Let Sn =
∑n

i=1Xi.

(i) If β < 1, then there exists a constant c′ <∞ such that for each n ≥ 2,

P
(
Sn ≥ n

1
β λ
)
≤ c′λ−β

as n→∞.

(ii) If β = 1, then there exists a constant c′ <∞ such that for each n ≥ 2,

P
(
Sn ≥ λn

1
β log n

)
≤ c′λ−β

as n→∞.

Proof. We give the proof in case (i); the proof is the same in case (ii) and we just

import an extra log term from the application of Lemma 6.2.2. The proof is no

doubt standard and this particular formulation follows a similar strategy to the
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analysis on [Dur10, Chapter 3, p.160]. Decompose Sn as the sum Ŝn + S̃n, where

Ŝn =

n∑
i=1

Xi1{Xi ≥ n
1
β }, S̃n =

n∑
i=1

Xi1{Xi < n
1
β }.

We condition on the number of terms of Ŝn, which is stochastically dominated by

Binomial(n, 2cn−1) for large enough n.

Given that Nn := |{i ≤ n : Xi ≥ n
1
β }| = m, S̃n can be dealt with using

Lemma 6.2.2: since we have m+1 copies of the sum considered there, it is necessary

for one such copy to be at least λn
1
β

2(m+1) in order that S̃n ≥ λn
1
β

2 . Similarly, to control

Ŝn, note that it is necessary that at least one term of Ŝn is at least λn
1
β

2m in order

that Ŝn ≥ λn
1
β

2 . Moreover, P
(
X1 ≥ λn

1
β

2m

∣∣∣∣ X1 ≥ n
1
β

)
≤ 4βmβλ−β for all sufficiently

large λ. We can therefore write:

P
(
Sn ≥ λn

1
β

)
≤ P

(
Ŝn ≥

λn
1
β

2

)
+ P

(
S̃n ≥

λn
1
β

2

)

≤
n∑

m=0

(
n

m

)
(2cn−1)m(1− 2cn−1)n−m

×

[
P

(
Ŝn ≥

λn
1
β

2

∣∣∣∣∣ Nn = m

)
+ P

(
S̃n ≥

λn
1
β

2

∣∣∣∣∣ Nn = m

)]

≤
n∑

m=0

(
n

m

)
(2cn−1)m(1− 2cn−1)n−m

[
mβ+14βλ−β + Cme

− λ
2(m+1)

]
≤

n∑
m=0

1

m!
e−2c

(
2c

1− 2cn−1

)m [
Cmβ+1λ−β

]
≤ λ−β

∞∑
m=0

Cmβ+1

m!

(
2c

1− 2cn−1

)m
≤ Cλ−β.

We also have a bound for the lower tails.

Lemma 6.2.4. Let (Xi)i≥1 be i.i.d. and such that P(Xi ≥ x) ∼ cx−β for some

β ≤ 1. Let Sn =
∑n

i=1Xi. Then there exists a constant c > 0 such that for each

n ≥ 2,

P
(
Sn ≤ n

1
β λ−1

)
≤ e−cλβ

as n→∞.
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Proof.

P
(
Sn ≤ n

1
β λ−1

)
≤ c′λ−β ≤ P

(
@i ≤ n : Xi ≥ n

1
β λ−1

)
≤ (1− n−1λβ)n ≤ e−

1
2
λβ

for all sufficiently large n.

We also have the following tail bounds for the finite mean case.

Lemma 6.2.5. Let (X(i))∞i=1 be i.i.d. non-negative such that P
(
X(1) > x

)
∼ cx−β

as x→∞ for some β > 1. Then, for all λ > E
[
X(1)

]
+ 1,

P

(
n∑
i=1

X(i) ≥ λn

)
= o(n−(β−1)),

P

(
n∑
i=1

X(i) ≤ λ−1n

)
= o(n−(β−1)).

If the random variables are not independent, we still get that for any ε > 0 there

exists c <∞ such that

P

(
n∑
i=1

X(i) ≥ λn

)
= cλ−(β−ε).

Proof. In the independent case, this follows from applying [Pet75, Theorem 28] to

the sum of recentred random variables.

If the random variables are not independent, we can apply Hölder’s inequality

with p = β − ε to get that

P

(
n∑
i=1

X(i) ≥ λn

)
≤ E

[(
n∑
i=1

X(i)

)p]
n−pλ−p ≤ npE

[(
X(1)

)p]
n−pλ−p ≤ cλ−(β−ε).

Lemma 6.2.6. Let X be a random variable, and suppose that P(X ≥ x) ∼ cx−β

as x → ∞ for some β < 1. Then there exists a constant c ∈ (0,∞) such that

1− E
[
e−θX

]
∼ cθβ as θ → 0.

Proof. This follows from the Tauberian theorem of [Kor04, Chapter IV, Theorem

8.2].

Lemma 6.2.7. Let X be a random variable, and suppose that P(X ≥ x) ∼ cx−β

as x → 0 for some β > 0. Then there exists a constant c ∈ (0,∞) such that

E
[
e−θX

]
∼ cθ−β as θ →∞.

Proof. This is a standard Tauberian theorem, for example see [Ber96, p.10].
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Lemma 6.2.8. Let β > 0, and let X be a random variable with P(X > x) ∼ cx−β as

x→∞, and let f be a function of X such that there exists z > 0 and a function p(λ)

such that P(f(X) ≥ λnz | X = n) ∼ p(λ) for all sufficiently large n, and p(λ) → 0

as λ→∞.

(i) If z ≤ 1 and f(x) ≤ x for all x, then

P(f(X) ≥ k) .



k−
1
z
β if p(λ) = o(λ

−β
z ),

k−
1
z
β log k if p(λ) � λ

−β
z ,

k−(β+m(1−z)) if p(λ) � λ−m,m < β
z

k−β if p(λ) decays sub-polynomially.

Additionally,

P(f(X) ≥ k) &


k−

1
z
β if p(λ) = o(λ

−β
z ),

k−(β+m(1−z)) if p(λ) � λ−m,m < β
z

k−βp(k1−z) if p(λ) decays sub-polynomially.

(ii) If there exists j > 0 such that P(f(X) ≥ k | X = j) > 0 for arbitrarily large

k > 0, then

P(f(X) ≥ k) .


k−

1
z
β if p(λ) = o(λ

−β
z ),

k−
1
z
β log k if p(λ) � λ

−β
z ,

k−m if p(λ) � λ−m,m < β
z .

In addition,

P(f(X) ≥ k) &

k−
1
z
β if p(λ) = o(λ

−β
z ),

k−m if p(λ) � λ−m,m < β
z .

Proof. (i) This is just a computation. We first assume that p(λ) � λ−m. We can

then write

P(f(X) ≥ k) ≤ P
(
X ≥ k

1
z

)
+

k
1
z∑

x=k

P(X = x)P
(
f(X) ≥ kx−zXz

)

≤ ck−
β
z +

k
1
z∑

x=k

cx−(β+1)k−mxmz

≤ k−
β
z + k−m

∫ k
1
z

k
x−(β+1)+mzdx.
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Computing the integral gives the stated upper bound. The proof is the same

in the non-polynomial cases.

The lower bound is simpler - if m ≥ β
z , we write:

P(f(X) ≥ k) ≥ P
(
X ≥ k

1
z

)
P
(
f(X) ≥ k

∣∣∣ X ≥ k 1
z

)
≥ ck

−β
z p(1).

If instead m < β
z :

P(f(X) ≥ k) ≥ P(X ≥ k)P(f(X) ≥ k | X ≥ k) ≥ k−βk−(1−z)m

= k−β−(1−z)m.

Again, the proof is the same as in the non-polynomial cases.

(ii) The proof is the same as above, except that the sums and integrals start at 1,

rather than k.

Remark 6.2.9. 1. In most cases we will consider we will in fact have (stretched)

exponential tail decay for p(λ).

2. The assumption of part (i) of this theorem would be relevant in the case where

X is the boundary length of an inserted graph, and f(X) denotes the two-point

function for two points on the boundary. If G is a planar graph and there is

always an option to travel between two vertices directly round the boundary,

then we would have a constraint of the form f(X) ≤ X and the distance

cannot be arbitrarily large. For more general graphs, or in the case where

f(X) is instead the volume of G, then we are instead in the setting of part

(ii).

6.3 Decorated bounds for finite Galton-Watson trees

In this section we prove some results on volume and distance on finite decorated

Galton-Watson trees. Since T∞α is constructed to have one infinite backbone to

which many finite fringe Galton-Watson trees are grafted, these estimates will be

crucial when we prove the volume and resistance bounds for T dec
α in Sections 6.4

and 6.5.

We will assume throughout that λ is implicitly a function of n (or of x in

Proposition 6.3.16), and that for all ε > 0, λ = λn = o(nε) (or λ = λx = o(xε) in

Proposition 6.3.16).
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6.3.1 Bounds for undecorated Galton-Watson trees

In this section, we assume that T is a critical Galton-Watson tree with offspring

distribution ξ, with ξ satisfying (6.2). Note that T is almost surely finite. The

strategy will be to first give the relevant exponents for undecorated trees (these are

already known), and then use Lemma 6.2.8 to compute the corresponding exponents

for decorated trees.

Progeny bounds

Theorem 6.3.1. There exists a constant c ∈ (0,∞) such that

P(|T | ≥ k) ∼ ck
−1
α

as k →∞.

Proof. This follows directly from [CK15, Proposition A.3(i)]. Alternatively, we can

prove it directly: by the main theorem of [Dwa69],

P(|T | ≥ k) =

∞∑
n=k

1

n
P

(
n∑
i=1

ξ(i) = n− 1

)
.

Since ξ is aperiodic, the conditions of the local limit theorem on p.236 of [GK54]

are satisfied, and we therefore deduce that

anP

(
n∑
i=1

ξ(i) = k

)
− pα

(k − n
an

)
→ 0

uniformly in k, where pα is the density of Zα. Since pα is continuous, taking k = n−1

gives that for any ε > 0,

pα(0)− ε
an

≤ P

(
n∑
i=1

ξ(i) = n− 1

)
≤ pα(0) + ε

an

for all n ≥ Nε. Therefore, for any k ≥ Nε we deduce that:

∞∑
n=k

1

n

pα(0)− ε
an

≤ P(|T | ≥ k) ≤
∞∑
n=k

1

n

pα(0) + ε

an
.

In particular, since necessarily an = cαn
1
α (see [BGT89, Section 8.3.2]), we deduce

that

(pα(0)− ε)
∞∑
n=k

1

n1+ 1
α

≤ P(|T | ≥ k) ≤ (pα(0) + ε)

∞∑
n=k

1

n1+ 1
α

.
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The result then follows since

∞∑
n=k

1

n1+ 1
α

∼ ck
−1
α

as k →∞.

Lemma 6.3.2. There exists a constant q > 0 such that 1 − E
[
e−θ|T |

]
∼ qθ

1
α as

θ → 0.

Proof. This is a direct consequence of Lemma 6.2.6, with β = 1
α .

Height bounds and associated spinal decomposition

At various points, we will also need to perform spinal decompositions along various

choices of spine in T . For this, the following results will be useful.

Lemma 6.3.3. As n→∞,

P(Height(T ) ≥ n) ∼ cn−
1

α−1 .

Proof. This follows directly from [Sla68, Theorem 2], which gives the probability

for an offspring distribution with (1 + α)-stable tails. In particular, rearranging

equation (1.2) there and replacing α with α− 1 gives the result.

We also give the following (elementary) result. We include the proof for

completeness.

Lemma 6.3.4. The function h : N→ [0, 1], x 7→ P(H = x) is non-increasing in x.

Proof. Let ξ(0) denote the number of offspring of ρ, and conditional on {ξ(0) = n},
let T (i) denote the subtree emanating from the ith offspring of ρ. We then write:

P(H = x+ 1) =

∞∑
n=0

P
(
ξ(0) = n

)
P
(
H = x+ 1

∣∣∣ ξ(0) = n
)

≤
∞∑
n=0

pn

n∑
i=1

P
(
Height(T (i)) = x

)
P
(
Height(T (j)) ≤ x∀j 6= i

)
≤
∞∑
n=0

npnP(H = x)

= P(H = x) ,

where the final line follows since ξ is critical.

At many points in this paper we will perform a spinal decomposition of a

tree along its leftmost spine of maximal height. We denote the vertices of this spine
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by s0, s1, . . . , sH where s0 = ρ and si is the parent of si+1 for all i < H. It is

well-known [GK99, Remark below Proposition 2.2] that the offspring distribution

of spinal vertices is asymptotically size-biased as H → ∞, but we will need the

following precise formulation of this result.

Proposition 6.3.5. Take the notation as above, and let ξ(n) denote the number of

offspring of sn. Then, for every C > 0 there exists a constant c ∈ (0,∞), uniform

in n and k, such that for all n ∈ N and all k ≤ Cn
1

α−1 :

P
(
ξ(n) ≥ k

∣∣∣ H ≥ (1 + ε)n
)
≥ ck−(α−1).

Proof. We first prove a corresponding result for P
(
ξ(n) = k̃

∣∣∣ H ≥ (1 + ε)n
)

, and

then obtain the result by summing over k̃ ≥ k. In particular, letting

PHj = pkP(H < m− n)j−1 P(H < m+ 1− n)k−j
P(H = m− n)

P(H = m)
,

it follows from [GK99, Lemma 2.1] and then Lemma 6.3.4 that

P
(
ξ(n) = k

∣∣∣ H ≥ (1 + ε)n
)

=
∑

m≥(1+ε)n

P(H = m | H ≥ (1 + ε)n)

k∑
j=1

PHj

≥
∑

m≥(1+ε)n

P(H = m | H ≥ (1 + ε)n) kpkP(H < εn)k−1

= kpkP(H < εn)k−1 .

Then, by Lemma 6.3.3, we know that P(Height(T ) ≥ εn) ≤ 2(εn)−
1

α−1 , so if k ≤
Cn

1
α−1 then

P(H < εn)k−1 ≥ (1− 2(εn)−
1

α−1 )Cn
1

α−1 ≥ e−3Cε
− 1
α−1

for all sufficiently large n, so that P
(
ξ(n) = k

∣∣ H ≥ (1 + ε)n
)
≥ e−3Cε

− 1
α−1

kpk.

To prove the result as stated, we then write

P
(
ξ(n) ≥ k

∣∣∣ H ≥ (1 + ε)n
)
≥

∑
k≤k̃≤2k

P
(
ξ(n) = k̃

∣∣∣ H ≥ (1 + ε)n
)

≥
∑

k≤k̃≤2k

e−3Ckpk

≥ ck−(α−1)L(k).
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We also note the following (unconditioned) probabilistic upper bound, which

follows even more straightforwardly from [GK99, Lemma 2.1].

Proposition 6.3.6. Take the notation as above, and let ξ(n) denote the number of

offspring of sn. Then there exists c <∞ such that

P
(
ξ(n) ≥ K

)
≤ cK−(α−1).

Proof. Given ξ(n) = k, let T1, T2, . . . , Tk denote the subtrees rooted at each of the

offspring of sn, listed in lexicographical order. Then

P
(
ξ(n) ≥ K

)
≤
∑
k≥K

pk

k∑
j=1

P

(
Height(Tj) = sup

i≤k
Height(Tk)

)
≤
∑
k≥K

kpk ≤ cK−(α−1).

Vertex degrees

We will also need the following result on the degree of a typical vertex.

Lemma 6.3.7. Let Tn be a Galton-Watson tree with offspring distribution ξ but

conditioned to have n vertices. Let vU be a uniformly chosen vertex of Tn. Then

there exists a constant c such that for all n ≥ 1,

P(deg(vU ) ≥ k) ≤ ck−α.

Proof. Recall that the vertex degrees of the vertices of Tn correspond to (one less

than) each of the jump sizes of the Lukasiewicz path W (n), which is conditioned to

first hit −1 at time n. Since vU is uniform amongst the vertices of Tn, its label in

the lexicographical ordering is uniform amongst {1, . . . , n}. Letting U denote this

label, it follows from the (discrete) Vervaat transform (e.g. see [Kor17, Proposition

10]) that the U th cyclic shift of W (n), i.e. the random walk W̃ (n) given by

W̃ (n)(t) =

W (n)(U + t)−W (n)(U) if U + t ≤ n

W (n)(U + t− n)−W (n)(U) if U + t > n

is a random walk bridge from 0 to −1, by which we mean that W̃ (n) has the law

of W but conditioned on Wn = −1. In particular, W̃ (n) has a density with respect

to the unconditioned walk W , and moreover deg vU is equal to W̃ (n)(1) − 1. We

deduce that

P(deg vU ≥ k) = P
(
W̃ (n)(1) > k

)
= E

[
1{W̃ (n)(1) > k}pn−1(−W̃ (n)(1)− 1)

pn(−1)

]
.
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Moreover, by the local limit theorem on p.236 of [GK54], we have that

anP(Wn = k)− p̃α
( k
an

)
→ 0

uniformly in k, where p̃α is the density of a centred stable random variable Yα

(different to Zα from before, which is almost surely non-negative), and such that

p̃α(0) = |Γ(−1
α )|−1 > 0. It follows from this that the ratio pn−1(−W̃ (n)(1)−1)

pn(−1) is

bounded uniformly in k, which gives the result.

Lemma 6.3.8. For all k ≥ 1, there exist constants c, C > 0 such that

ck−1 ≤ P

(
sup
v∈T

(deg v) ≥ k
)
≤ Ck−1

Proof. The proof is essentially the same as above: given |T | = n, and applying the

Vervaat transform and absolute continuity relation on the first bn2 c vertices as in

the previous proof, we get that

P

(
sup
v∈Tn

deg v ≥ n
−1
α λ

)
≥ 1− (1− cn−1λ−α)

n−1
2 ≥ 1− e−cλ−α ≥ cλ−α

P

(
sup
v∈Tn

deg v ≥ n
−1
α λ

)
≤
∑
v∈Tn

P
(

deg v ≥ n
−1
α

)
= nP

(
deg vU ≥ n

−1
α

)
≤ cλ−α.

Then, since P(|T | ≥ n) ∼ cn
−1
α , we can apply Lemma 6.2.8 with β = z = 1

α ,m = α

to deduce the result.

6.3.2 Decorated height bounds

Spinal decomposition

If T dec is the decorated version of a finite Galton-Watson tree T , we define the

decorated height of T dec by

Heightdec(T dec) = sup
x∈T dec

ddec
g (ρdec

α , x).

At some points in this chapter it will be necessary to decompose along a path

achieving maximal decorated height, rather than the maximal tree height, and we

give similar results for the offspring distribution along this spine below.

The path in T dec joining ρdec
α to the point achieving maximal decorated

height corresponds in a natural way to a path in T joining ρ to a leaf (if this point

is not unique, we will take the leftmost path). Analogously with the notation above

we call this path the decorated spine and denote this by sdec
0 , sdec

1 , . . . , sdec
Hdec , where
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Hdec denotes the length of this decorated spine. We also let ξdec
n denote the number

of offspring of sdec
n .

Note in particular that Hdec gives the length of the decorated spine in the

underlying tree, rather than the length with respect to the decorated metric, so

Hdec ≤ H.

The purpose of this section is to establish the tail decay of the decorated

height of decorated trees. This is the point at which we use the stretched exponential

decay of Assumption (D).

Proposition 6.3.9. Assume that Assumption (D) holds, and take k as in the as-

sumption. Then, if d(α− 1) 6= 1:

P
(
Heightdec(T dec) ≥ n(log n)1+ 1

k

)
≤ n

−(sdα∧1)
α−1 .

If instead d(α− 1) = 1:

P
(
Heightdec(T dec) ≥ n(log n)2+ 1

k

)
≤ n

−(sdα∧1)
α−1 .

Before giving the full proof, we give a lemma. This lemma show that it was

important to condition on survival in Proposition 6.3.5 in order to get the size-biased

lower bound on the offspring distribution of the Williams’ spine.

Lemma 6.3.10. Set

h̃d = sup
v∈T

∑
ρ�u�v

(deg u)
1
d

ṽh = arg max
v∈T

∑
ρ�u�v

(deg u)
1
d .

(breaking ties by taking the vertex with the leftmost path). Then, if d(α− 1) 6= 1,

P
(
h̃d ≥ k

)
≤ ck

−(d(α−1)∧1)
α−1 .

If instead d(α− 1) = 1,

P
(
h̃d ≥ k log k

)
≤ ck

−(d(α−1)∧1)
α−1 = ck

−1
α−1 .

Proof. It is shown in the construction on [GK99, p.3] that the offspring distribution

of each vertex on the Williams’ spine of a Galton-Watson tree can be independently

stochastically dominated by a size-biased version of the offspring distribution for

that tree (this does not mean that the vertex degrees themselves are independent

of each other, just that they can be independently stochastically dominated). This

is achieved by building the Galton-Watson tree recursively, by starting at the tip of
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the Williams’ spine and working backwards towards the root, and the size-biased

distribution corresponds to a heaviest tail one could possibly obtain during this

process, and specifically arises when conditioning the tree to survive forever beyond

the current vertex.

The same logic applies to the case when we are maximising
∑

ρ�u�v(deg u)
1
d

along all paths in the tree: once ṽh is identified, we can work backwards from

ṽh to construct the appropriate spine recursively, write down a similar expression

to [GK99, Equation (1)] that determines the offspring distribution, which in turn

implies that there exists a constant c ≤ ∞ such that

P(deg(s̃i) ≥ k) ≤ ckpk (6.4)

for all k ≥ 0, i ≤ H̃. Moreover, the algorithm on [GK99, p.3] is insightful because

at each step the only dependence on the previous steps is through the restriction

that the heights of the subtrees sprouting from the non-spinal offspring of the next

spinal vertex must not exceed the height of the Williams’ spine, and the bound (6.4)

holds for deg(s̃i) regardless of the value of deg(s̃i+1). Conditional on the value of H̃,

we can therefore bound
∑H̃

i=1(deg s̃i)
1
d by a sum

∑H̃
i=1Xi, where Xd

i independently

satisfy the tail bound of (6.4).

We will in fact condition on H rather than H̃, since the law of H is well-

understood, and use the fact that H̃ ≤ H by definition. More precisely, we will first

show that for any ε > 0, there exists a constant c <∞ such

P

 H̃∑
i=0

(deg s̃i)
1
d ≥ n

1
d(α−1)∧1λ

∣∣∣∣∣∣ H = n

 ≤ cλ−(αd−ε) (6.5)

for all n ≥ 1, λ ≥ 1. We will then apply Lemma 6.2.8 by composing with the law of

H.

To this end, we write the following:

P

 H̃∑
i=0

(deg s̃i)
1
d ≥ n

1
d(α−1)∧1λ

∣∣∣∣∣∣ H = n


≤ P

(
|T | ≥ n

α
α−1λε

∣∣∣ H = n
)

+ P

(
sup
v∈T

deg v ≥ n
1

α−1λd−ε
∣∣∣∣ H = n, |T | < n

α
α−1λε

)

+ P

 H̃∑
i=0

(deg s̃i)
1
d ≥ n

1
d(α−1)∧1λ, sup

v∈T
deg v < n

1
α−1λd−ε

∣∣∣∣∣∣ H = n


(6.6)
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We bound each of these terms separately. Firstly, by [Kor17, p.3],

P
(
|T | ≥ n

α
α−1λε

∣∣∣ H = n
)
≤ P

(
|T | ≥ n

α
α−1λε

∣∣∣ H ∈ [n, 2n]
)

=
P
(
|T | ≥ n

α
α−1λε

)
P
(
H ∈ [n, 2n]

∣∣∣ |T | ≥ n α
α−1

)
P(H ∈ [n, 2n])

≤ Cn
−1
α−1λ

−ε
α

n
−1
α−1

e−cλ
ε(1−ε)

.

Secondly, by Lemma 6.3.7 and a union bound,

P

(
sup
v∈T

deg v ≥ n
1

α−1λd−ε
∣∣∣∣ H = n, |T | < n

α
α−1λε

)
≤ cn

α
α−1λεn

−α
α−1λ−α(d−ε)

≤ cλ−α(d−ε′).

Finally, to deal with the final probability, we use the bound at (6.4) and the fact

that this holds independently for each of the vertices s̃i to deduce that we are in the

setting of Lemma 6.2.2 with β = d(α− 1).

If d(α−1) ≤ 1, then we can use Lemma 6.2.2 with k = n
1

d(α−1)λ1−ε′ to apply

a Chernoff bound which gives

P

 H̃∑
i=0

(deg s̃i)
1
d ≥ n

1
d(α−1)λ, sup

v∈T
deg v < n

1
α−1λd−ε

∣∣∣∣∣∣ H = n

 ≤ Ce−cλε .
Therefore, in this case, we can take a union bound, and the worst decay is coming

from the second term of (6.6), which gives the result of (6.5). We can therefore

combine this with Lemma 6.3.3 to plug into Lemma 6.2.8: taking β = 1
α−1 , z =

1
d(α−1)∧1 and m = αd− ε, we deduce that

P
(
h̃d ≥ k

)
≤ ck

−(d(α−1))
α−1 .

whenever d(α− 1) ≤ 1.

If instead d(α − 1) = 1, we instead inherit the extra log term from Lemma

6.2.2 so we get that

P
(
h̃d ≥ k log k

)
≤ ck

−(d(α−1))
α−1 .

If instead d(α− 1) > 1, we get from Lemma 6.2.5 that

P

 H̃∑
i=0

(deg s̃i)
1
d ≥ nλ, sup

v∈T
deg v < n

1
α−1λd−ε

∣∣∣∣∣∣ H = n

 ≤ Cn−(d(α−1)−1).

Since we are assuming that λ = λn = o(nε) for all ε > 0, this gives arbitrarily good
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polynomial decay in λ, so we can again apply Lemma 6.2.8 with β = 1
α−1 , z = 1 and

m = 2
α−1 (say) to get the result.

Proof of Proposition 6.3.9. We prove the case d(α − 1) 6= 1; the proof in the case

d(α − 1) = 1 is the same, but we have to incorporate an extra log term to apply

Lemma 6.3.10. Let Dsup = supv∈T
Diam(G(v))

(deg v)
1
d

. Then

Heightdec(T dec) ≤ Dsup
Hdec∑
i=1

(deg sdec
n )

1
d ,

so that

P
(
Heightdec(T dec) ≥ n(log n)1+ 1

k

)
≤ P

(
Dsup ≥ (log n)1+ 1

k

)
+ P

Hdec∑
i=1

(deg sdec
n )

1
d ≥ n

 .

It follows from Lemma 6.3.10 that P
(∑Hdec

i=1 (deg sdec
n )

1
d ≥ n

)
≤ n

−(sdα∧1)
α−1 . To control

the first term, note that it follows from a union bound that

P
(
Dsup ≥ (K log |T |)

1
kλ
)
≤ C|T |1−cKλk .

Therefore, since P(log |T | ≥ k) ≤ Ce−
1
α
k, we deduce that

P(Dsup ≥ x) ≤ P
(

log |T | ≥ xk
)

+

∫ xk

1
Ce

−u
α e
− x

u
1
k du ≤ Ce−cx

k
α + Cxke−x

k
k+1

≤ Cxke−x
k
k+1

,

so that P
(
Dsup ≥ (K log n)1+ 1

k

)
≤ C(log n)k+1n−K . The result therefore follows

on choosing some K > sdα∧1
α−1 .

We also have the following lower bound.

Proposition 6.3.11. Assume (D′). Then there exists a constant c ∈ (0,∞) such

that

P
(
Heightdec(T dec) ≥ n

)
≥ cn

−(sdα∧1)
α−1

Before we give the proof of the lower bound, we will need the following result

on distances across the graphs corresponding to spinal vertices along the decorated

spine.

Lemma 6.3.12. For an arbitrary vertex sn on the Williams’ spine, let dU (sn)

denote the distance between the two vertices of G(sn) that correspond to edges joining

sn to neighbouring spinal vertices (so these are two distinct uniform vertices in

G(sn)). Then, there exist C, c, c′ ∈ (0,∞) such that
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(i) For all k ≥ 1,

P
(
dU (sn) ≥ k

)
Ck−s

d
α

(ii) For all 1 ≤ k ≤ c′n
1

sdα :

P
(
dU (sn) ≥ k

∣∣ H ≥ 2n
)
≥ ck−sdα

Proof. This follows from Proposition 6.3.5 and Lemma 6.2.8.

Remark 6.3.13. 1. The same bounds also hold for distances across vertices sn

on the infinite backbone of T dec
α .

2. Under (D) we have that sdα = d(α− 1).

Proof of Proposition 6.3.11. Heightdec(T dec) stochastically dominates
∑H

2
n=1 d

U (sn),

so we will bound this latter quantity.

To do this, first note that by Lemma 6.3.3, P
(
H ≥ nsdα∧1

)
≥ cn

−(sdα∧1)
α−1 .

Then, if sdα ≤ 1, we have by Lemma 6.3.12 that there exists a constant c > 0

(deterministic), such that

P

 H
2∑

n=1

dU (sn) ≥ cn

∣∣∣∣∣∣ H ≥ nsdα∧1

 ≥ P

(
∃n ≤ H

2
: dU (sn) ≥ cn

∣∣∣∣ H ≥ nsdα) ≥ 1

2
.

If sdα > 1 then the same result holds by the Law of Large Numbers. This proves the

result.

6.3.3 Decorated volume bounds

We now give the asymptotics for the tail decay for the volume of T dec. Recall the

fragmental volume exponent fvα defined by

fvα =

α
v if mv ≥ α

v

mv if mv <
α
v .

Recall also that tvα = fvα∧1
α .

Proposition 6.3.14. If fvα 6= 1,

P
(

Vol(T dec) ≥ x
)
≤ x

−(fvα∧1)
α
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as x→∞. If fvα = 1,

P
(

Vol(T dec) ≥ x log x
)
≤ x

−(fvα∧1)
α

as x→∞.

Proof. Note that applying the Vervaat transform and then the absolute continu-

ity allows us to treat the different vertices in T as though they are independent.

Therefore, if fvα 6= 1 the result follows by two applications of Lemma 6.2.8: firstly,

by similar arguments to those in Lemma 6.3.7, it follows that P(deg(v) ≥ k) ≤
ck−α for all v ∈ Tn, so taking β = α, z = v,m = mv in Lemma 6.2.8(ii) gives

P(Vol(G(v)) ≥ x) ≤ x−fvα .

Then, since Vol(T dec
n ) =

∑
v∈Tn Vol(G(v)), we get from Lemma 6.2.3 that

P
(

Vol(Tn) ≥ λn
1

fvα∧1
)
≤

cλ−f
v
α if fvα < 1,

cn−(fvα−1) if fvα > 1.

Then, using Lemma 6.3.1, we can apply Lemma 6.2.8(ii) again with β = 1
α , z =

1
fvα∧1 ,m = fvα to deduce the result.

If instead fvα = 1, we have to incorporate the extra log term from Lemma

6.2.3, but the proof is the same on applying Lemma 6.2.8(ii) and setting f(n) =
Vol(Tn)

logn there.

Corollary 6.3.15. There exists a constant q > 0 such that, if fvα 6= 1,

1−E
[
e−θVol(T )

]
∼ qθ

fvα∧1
α

as θ → 0. If fvα = 1,

1−E
[
e−θVol(T )

]
≥ qθ

fvα∧1
α .

Proof. This is a direct consequence of Lemma 6.2.6, with β = fvα∧1
α .

We will also need the following proposition to relate the height of T to the

volume of T dec. Typically we will apply the result with x being some power of the

radius r.

Proposition 6.3.16. For any q < 1, ε > 0 there exist constants c, C ∈ (0,∞) such

that for all x > 0, λ > 1,

P

(
Height(T ) ≤ cx

(fvα∧1)(α−1)

α

∣∣∣∣ Vol(T dec) ≥ xλ
)

≤

Ce−cλ
q−ε

+ c(xλ1−q)−(fvα−1) if fvα > 1,

cλ−f
v
α(1−ε) if fvα < 1.
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If fvα = 1, then

P

Height(T ) ≤ c
(

x

log x

) (fvα∧1)(α−1)

α

∣∣∣∣∣∣ Vol(T dec) ≥ xλ

 ≤ Ce−cλq−ε + c(xλ1−q)−(fvα−1).

Proof. We need to consider the cases fvα ≤ 1 and fvα > 1 separately.

Case 1: fvα > 1. We again write Vol(T dec) =
∑

v∈T Vol(G(v)). As noted in

the proof of the previous proposition, we have that P(Vol(G(v)) ≥ x) ≤ x−fvα for all

v in T . Therefore, for q ∈ (0, 1), we have by Lemma 6.2.5 that

P
(
|T | ≤ xλq

∣∣∣ Vol(T dec) ≥ xλ
)
≤ P

(
xλq∑
i=1

X(i) ≥ xλ

)
≤ c(xλ1−q)−(fvα−1)

where (X(i))∞i=1 are i.i.d. and satisfying P
(
X(1) ≥ x

)
≤ cx−f

v
α , and the final line

follows from Lemma 6.2.5. It then follows from [Kor17, p.5] that for any ε > 0,

there exist c, C ∈ (0,∞) such that

P
(
Height(T ) ≤ x

α−1
α

∣∣∣ |T | ≥ xλq) ≤ Ce−cλq−ε
Applying a union bound we therefore deduce that

P
(
Height(T ) ≤ cx

α−1
α

∣∣∣ Vol(T dec) ≥ xλ
)
≤ Ce−cλq−ε + c(xλ1−q)−(fvα−1).

Since we will assume that λ = λx = o(xε), the second term gives arbitrarily high

polynomial tail decay in λ.

Case 2: fvα < 1. The proof is essentially the same as Case 1 above, except

that now X(1) has heavier tails, so that by Lemma 6.2.3(i):

P
(
|T | ≤ xfvαλq

∣∣∣ Vol(T dec) ≥ xλ
)
≤ P

xf
v
αλq∑
i=1

X(i) ≥ xλ

 ≤ cλ−(fvα−q).

Then, [Kor17, p.5] gives that for any ε > 0, there exist c, C ∈ (0,∞) such that

P

(
Height(T ) ≤ x

fvα(α−1)

α

∣∣∣∣ |T | ≥ xfvαλq) ≤ Ce−cλq−ε ,
so that this time a union bound with q = 2ε gives

P

(
Height(T ) ≤ cx

fvα(α−1)

α

∣∣∣∣ Vol(T dec) ≥ xλ
)
≤ cλ−fvα(1−ε).

Case 3: fvα = 1. The proof is the same as Case 1, but we pick up an extra logarithmic

term as usual.
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6.4 Volume bounds for T dec
α

In this section we prove volume bounds for T dec
α . The proof for the upper bounds

follow a similar strategy to those used for stable looptrees in Section 4.2.2, but more

care is need to deal with the variability of the inserted graphs.

Recall that

ddec
α =

α(sdα ∧ 1)

(α− 1)(fvα ∧ 1)
.

We will show that this is the correct volume growth exponent for T dec
α .

We have stated the volume bounds with respect to the decorated metric

as defined by (6.3), since these are of independent interest aside from determining

the random walk exponents. However, the construction in (6.3) can be generalised

to give alternative metrics by replacing dG(vi) with an arbitrary metric on G(vi)

and the proofs of the volume bounds are equally applicable in the general case. In

particular, on replacing sdα with sRα we obtain the exponent for volume growth with

respect to the effective resistance metric.

6.4.1 Upper bounds

For Section 6.4.1, we will assume that all conditions (D′) and (V ′) of As-

sumption 6.0.3 hold.

The main result is as follows. Recall that tvα = fvα∧1
α , and

yα =
fvαα(α− 1)sdα

sdα(α− 1)(fvα ∧ 1) + αfvα
.

Proposition 6.4.1. Assume that conditions (D′) and (V ′) of Assumption 6.0.3

hold. For any ε > 0, r, λ > 1, there exist constants c, C ∈ (0,∞) such that

(i) If fvα 6= 1, then:

P

(
Vol(BT dec

α
(ρ, r)) ≥ r

α(sdα∧1)
(α−1)(fvα∧1)λ

)
≤

Cλ−t
v
α(α−1)+ε + Cλ−s

v
α+ε if sdα ≤ 1,

Cλ−t
v
α·yα+ε + Cλ−s

v
α+ε if sdα > 1.

(ii) If fvα = 1, then:

P
(

Vol(BT dec
α

(ρdec
α , r)) ≥ λrddecα log r

)
≤ Cλ−tvα(α−1−ε).
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Remark 6.4.2. 1. The tail decay here is not optimal. In all of the propositions

in the rest of the section, the precise tail decay is not important for our purpose,

other than that it is of polynomial form.

2. In the case fvα > 1 and sdα < 1 it is possible to tweak the proofs in the next sec-

tion to get stretched exponential decay for the upper volume bounds, similarly

to how we did for looptrees in Chapter 4, as long as there is some extra local

control on volumes of small balls in the inserted graphs. This is certainly true

in the case of discrete looptrees, which will be discussed in Section 6.7.2. For

the sake of clarity, we have not pursued this here and just focus on establishing

the main exponents. If fvα ≤ 1 the tail bound here in Proposition 6.3.16 is oth-

erwise a limiting factor in analysing Iterative Algorithm 2. Obtaining tighter

decay would allow one to obtain more precise information on the appropriate

volume gauge functions for T dec
α . In particular, overall stretched exponential

rather than polynomial tail decay for the likelihood of large volumes would in-

dicate that there are at most log-logarithmic fluctuations in the volume, rather

than logarithmic (as we saw for stable looptrees in Chapter 4).

The upper bound in Theorem 6.0.5(i) follows from this proposition by apply-

ing Borel-Cantelli along the subsequence rn = 2n, just as we did for stable looptrees

in Sections 4.2.1 and 4.2.2.

Heuristics

Fix r ≥ 1. Before starting the proof, we briefly outline the strategy, which has

several steps.

1. Consider the vertices of the underlying tree along its backbone in sequential

order of their distance from the root, and label them in order as ρ = s0, s1, . . ..

2. We will make an appropriate choice of a vertex si so that all of BT dec
α

(ρdec
α , r) is

completely contained within the inserted graphs corresponding to the segment

of backbone from ρ to si and the decorated subtrees attached to these graphs.

3. We will first bound the quantity

Nf
r =

∑
j≤i

deg(sj),

which corresponds to the number of subtrees attached to the backbone within

(decorated) distance r of the root. More specifically, we will show that, w.h.p.

as r, λ→∞ appropriately, Nf
r ≤ r

sdα∧1
α−1 λ.
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4. On this event, we proceed as follows. We first set

Spiner =
⋃
j≤i

G(sj) ∩BT dec
α

(ρ, r), ∂Spiner =
⋃
j≤i

∂G(sj) ∩BT dec
α

(ρ, r),

where ∂G(v) denotes the set of boundary vertices of G(v). We then continue

by analysing the tree structures of all the decorated subtrees that are grafted

to a vertex v ∈ ∂Spiner. Recall that such a vertex v corresponds to an edge

of the underlying tree T∞α joining a backbone vertex to one of its offspring.

Let this offspring vertex be w = wv. By Definition 3.3.1, Tw is a critical

Galton-Watson tree, again with offspring distribution ξ. We let T dec
v denote

the corresponding decorated subtree, including vertex v.

Given p > 0, it is then the case that:

Vol(BT dec
α

(ρ, r)) ≤
∑

v∈∂Spiner

Vol(T dec
v )1{Vol(T dec

v ) ≤ rddecα λp}

+
∑

v∈∂Spiner

Vol(BT dec
α

(v, r) ∩ T dec
v )1{Vol(T dec

v ) ≥ rddecα λp}

+
∑
j≤i

Vol(G(sj)),

(6.7)

5. The first term in the sum above can be controlled using the conditioning that

Vol(T dec
v ) ≤ rd

dec
α λp. To control the second term, the key observation is that

the number of terms in the sum is very small. In fact, the expected number

terms less than one. Moreover, conditioned on Vol(T dec
v ) > rd

dec
α λp, the local

geometry of of T dec
v looks very much like that of T dec

α . This suggests that

the natural thing to do is to repeat the decomposition described above on

any subtree T dec
v satisfying Vol(T dec

v ) > rd
dec
α λp, by decomposing along its

Williams’ spine.

This allows us to write a decomposition analogous to (6.7) but instead for a

large subtree T dec
v . Of course the same problem may again occur in that the

second sum will be non-trivial, but once again we can solve this by reiterating

around any subtrees appearing in the sum, and then repeat around further

large subtrees as necessary. The hope is that there will not be too many

large subtrees appearing throughout this process so that we will not have to

reiterate too many times. To prove that this is indeed the case, we index the

large subtrees by a branching process. More specifically, we define a tree Tvol,

where the root “represents” the whole original tree T dec
α . The offspring of the

root then represent the large subtrees (i.e. of volume greater than rd
dec
α λp)

grafted to Spiner, and so on. This branching process will have a subcritical
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offspring distribution so that we can use a theorem of [Dwa69] to control its

total progeny.

6. At the end of the process, it is then the case that Vol(BT dec
α

(ρ, r)) is upper

bounded by

∑
u∈Tvol

Vol(Spiner(u)) +
∑

v∈∂Spiner(u)

Vol(T dec
v )1{Vol(T dec

v ) ≤ rddecα λp}

 .

We make this more precise in the next subsection. The main argument follow-

ing it then focuses on bounding |Tvol|, and typical terms of the form Vol(Spiner(u))

and
∑

v∈∂Spiner(u) Vol(T dec
v )1{Vol(T dec

v ) ≤ rddecα λp}.

Main argument

Important: in what follows we will prove Proposition 6.4.1(i), i.e. we will

assume that fvα 6= 1. This is for the sake of clarity. If fvα = 1, we end

up picking up an extra logarithm every time we apply Lemma 6.2.4(ii), but

the arguments are otherwise identical; we give the details at the end of the

subsection.

As described above, each vertex v ∈ Tvol corresponds to a subtree of T∞α ,

obtained as a “large” fragment on performing a spinal decomposition of the subtree

corresponding to its parent in Tvol. Before giving the construction of Tvol, we give

a more precise definition of “large”. Set dα = sdα∧1
α−1 , and define v(r, λ) = rdαλ. We

will show in Propositions 6.4.4 and 6.4.5 that v(r, λ) gives a good upper bound for

the total number of fragments obtained when performing a spinal decomposition of

a “large” subtree up to distance r from the root. Now take some κ < (e − 1)−1.

We will condition on Nf
r ≤ v(r), so in order for the expected number of “large”

fragments to be less than κ, we want to define a function f(r, λ) so that

v(r, λ)P
(

Vol(T dec) ≥ f(r, λ)
)
≤ κ.

Recall from Proposition 6.3.14 that P(Vol(T ) ≥ k) ≤ k−t
v
α as k → ∞. Clearly,

P
(
Vol(T dec) ≥ k

)
is a decreasing function of k, decaying to zero as k → ∞, so we

can define its inverse h by h(p) = inf{x > 0 : P(|T | ≥ x) ≤ p}, and set f(r, λ) =

h(κv(r, λ)−1). Using the asymptotics for v and the probabilistic tail decay, it follows

that we can take

f(r, λ) = cκr
dα
tvα λ

1
tvα = cκr

ddecα λ
1
tvα . (6.8)

Accordingly, in the algorithm below we will take f(r, λ) to be defined by
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(6.8) and take Vol(T dec) ≥ f(r, λ) as our definition of a “large” fragment.

We will assume throughout that for all ε > 0, λ = λr = o(rε) as r →∞.

Remark 6.4.3. As remarked in Remark 6.4.2, in the case fvα > 1 and sdα < 1 it is

possible to tweak the proofs in the next section to get stretched exponential decay for

the upper volume bounds, similarly to how we did for looptrees in Chapter 4, as long

as there is some extra local control on volumes of small balls in the inserted graphs.

This is the main motivation for defining Iterative Algorithm 2, since it provides a

framework for doing this. Otherwise, we can instead condition on |Tvol| = 1, which

limits us to polynomial tail decay but makes the argument simpler.

Iterative Algorithm 2

Start by defining ∅ to be the root of Tvol. This represents the initial tree T∞α .

Given an element x ∈ Tvol, representing a subtree T (x) of T∞α , or equivalently

a decorated subtree T dec(x) of T dec
α , we proceed inductively as follows:

1. Consider a decomposition of T (x) along either its infinite backbone (if

x = ∅), or otherwise its W-spine. Let Spiner(x) consist of all vertices in

G(u) for some u along this spine that fall within distance r of the root

of T dec
α (x), with respect to the metric ddec

g .

2. Each v ∈ Spiner(x) corresponds to an edge of T (x) joining a backbone

vertex to one of its offspring, which we denote by wv. We let Twv be the

subtree of T∞α rooted at wv, and let T dec
v denote the corresponding dec-

orated subtree, including vertex v. For each v ∈ Spiner(x), if T dec
v has

total volume at least f(r, λ), then add a child to x ∈ Tvol corresponding

to the subtree T dec
v . Otherwise discard the subtree.

3. Repeat this process inductively to construct Tvol one generation at a

time.

4. For each x ∈ Tvol, set

Fx =
∑

v∈∂Spiner(x)

Vol(T dec
v )1{Vol(T dec

v ) ≤ f(r, λ)},

Sx =
∑

v∈Spiner(x)

Vol(G(v)),

which respectively give the sum of the volumes of the smaller fragments

discarded in step 2 above, and the volume contribution from the spine

of T dec(x).
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As explained above, on the event that |Tvol| is finite, we then have that

Vol(BT dec
α

(ρ, r)) ≤
∑
x∈Tvol

(Fx + Sx). (6.9)

In order to use this algorithm to bound Vol(BT dec
α

(ρdec
α , r)), we will need to control

the following quantities:

1. The number of fragments obtained on decomposing a single large subtree as

described above.

2. The quantity |Tvol|.

3. A typical term of the form Fx, for x ∈ Tvol; in other words the sums of volumes

of small fragments obtained on decomposing a single large subtree as described

above.

4. A typical term of the form Sx, for x ∈ Tvol; in other words the spinal volume

of a single large subtree considered above.

We consider these one by one in the next subsections. At many points,

this will involve adding up sums of random variables with exponents corresponding

to those we introduced in Assumption 6.0.1 and Section 6.3. In many cases, the

relevant exponent may be more than or less than 1, so we will have to consider two

regimes: one in which the sum follows law of large numbers type behaviour, and the

other in which the tails are heavier and we see behaviour more like that of a stable

subordinator. This will eventually give rise to several phase transitions in the value

of ddec
α , which can also be surmised from its expression as

ddec
α =

α(sdα ∧ 1)

(α− 1)(fvα ∧ 1)
.

Controlling the number of fragments

We start with the case sdα ≤ 1. This result holds either along the infinite backbone of

T dec
α , or decomposing along the Williams’ spine of a finite decorated Galton-Watson

tree.

For r > 0, we let Nf
r denote the number of decorated subtrees that are

grafted to the decorated backbone within decorated distance r of ρdec
α .

Proposition 6.4.4. Suppose that sdα ≤ 1. Suppose that we are decomposing along

the infinite backbone of T∞α , or along the Williams’ spine of a finite Galton-Watson

tree T , as described in Iterative Algorithm 2. In the latter case, assume that this

tree is conditioned on Vol(T dec
v ) > f(r, λ) = cκr

ddecα λ
1
tvα . Take any ε > 0. Then, if r
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is sufficiently large and λ > 1, and if fvα 6= 1, then

P

(
Nf
r ≥ r

sdα
α−1λ

)
≤ Cλ−(α−1)+ε.

Proof. Take some ε > 0, and set Nr = rs
d
αλε. Consider the sequence of spinal

vertices s0, s1, . . . , sNr . We will show that, with high probability, Spiner does not

extend to graphs corresponding to spinal vertices beyond sNr , in which case Nf
r is

bounded by
∑Nr

i=1 deg(si). More precisely, first note by Proposition 6.3.16 that

P
(
Height(T ) ≤ 2rs

d
αλε
)
≤ Cλ

−fvα
tvα ≤ Cλ−(α−1−ε′).

Then, given that Height(T ) > 2rs
d
αλε, we know from Lemma 6.3.12(ii) that P

(
dU (si) ≥ k

)
≥

ck−s
d
α for all k ≤ rλε′ , and all i ≤ rsdαλε. Therefore, setting dspine(j) =

∑
i�j d

U (si)

P(dspine(Nr) ≤ r) ≤ P
(
@i ≤ Nr : dU (si) ≥ r

)
≤ (1− cr−sdα)r

sdαλε ≤ e−cλε .

Also, by Lemma 6.2.3,

P

(
Nr∑
i=0

deg(si) ≥ r
sdα
α−1λ

)
≤ P

(
N
−1
α−1
r

Nr∑
i=0

deg(si) ≥ λ1−ε′
)
≤ Cλ−(1−ε′)(α−1)

Combining these in a union bound, we deduce that

P

(
Nf
r ≥ r

sdα
α−1λ

)
≤ Ce−cλεβ + Cλ−(1−ε′)(α−1) ≤ C ′λ−(1−ε′)(α−1).

We now turn to the case of sdα > 1. The proof of Proposition 6.4.4 is still

valid in this case, but the exponent is no longer optimal.

Recall that yα = fvαα(α−1)sdα
sdα(α−1)(fvα∧1)+αfvα

.

Proposition 6.4.5. Take the setup as in Proposition 6.4.4, except suppose that

sdα > 1. Then, for all sufficiently large r and all λ > 1, ε > 0,

P
(
Nf
r ≥ r

1
α−1λ

)
≤ Cλ−yα+ε.

Proof. The proof is very similar to the previous one, except that now we set Nr =

rλε. Then, taking z > 0 (to be chosen precisely later),

P
(
Height(T ) ≤ 2rs

d
αλz
)
≤ Cλ−f

v
α(1−ε)

(
1
tvα
− zα

(α−1)(fvα∧1)

)

by Proposition 6.3.16. This time however, the distances add up linearly along the
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spine of T : more precisely, by Lemma 6.3.12, there exists a constant c ∈ (0,∞)

such that P
(
dU (si) ≥ k

)
≥ ck−s

d
α for all k ≤ rλ

z

sdα , and all i ≤ rs
d
αλz. It therefore

follows that dspine(Nr) “almost” stochastically dominates a sum of i.i.d. non-negative

random variables with finite but positive mean. In particular, letting (Yi)
Nr
i=1 be such

a sequence, we have from Lemma 6.2.5 that, provided we choose A a large enough

constant,

P(dspine(Nr) < Ar) = P

(
Nr∑
i=1

Yi < Ar

)
+ P

(
∃i ≤ Nr : Yi ≥ rλ

z

sdα

)
≤ c(rλε)−(sdα−1) + λ−(z−ε)

(Here the second term corresponds to “seeing the difference” between dU (si) and

Y − i, for some i). Then, similarly to above, since (deg(vi))
Nr
i=1 is a sequence with

(α− 1)-stable upper tails, we again have by Lemma 6.2.3 that

P

∑
i≤Nr

deg(vi) ≥ r
1

α−1λ

 ≤ cλ−(1−ε̃)(α−1).

To optimise, we can therefore take z = fvαα(α−1)
sdα(α−1)(fvα∧1)+αfvα

, and then apply a union

bound to deduce the result.

Remark 6.4.6. By the same proof, the tail decay in Proposition 6.4.5 can clearly be

improved if fvα > 1, since then we have much better tail decay in Proposition 6.3.16.

Since there are already many subcases to keep track of, we haven’t pursued this

here. The precise exponent we obtained here in Proposition 6.4.5 is not particularly

significant in itself, since this proof is probably not optimal anyway. We do this next.

The bounds of Propositions 6.4.4 and 6.4.5 allow us to control the progeny of

Tvol, so that we can use the strategy outlined in Section 6.4.1 to bound the volume

of a ball of radius r.

Controlling |Tvol|

To bound the progeny of Tvol, the key point is that, in light of Propositions 6.4.4,

6.4.5 and 6.3.14, the offspring distribution off Tvol is roughly Binomial(v(r, λ), κ
v(r,λ)).

We will make this more precise shortly, but in this case, we can apply the following

proposition to bound the progeny of Tvol.

Proposition 6.4.7. Let T̃ be a Galton-Watson tree with Binomial(n, κn) offspring

distribution, for some κ < (e− 1)−1. Then

P
(
|T̃ | ≥ k

)
≤ C

k
e−ck.
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Proof. The main ingredient in this proof is the main theorem of Dwass from [Dwa69],

that for a Galton-Watson tree with total progeny Prog and offspring distribution ξ,

it holds that

P(Prog = k) =
1

k
P

(
k∑
i=1

ξ(i) = k − 1

)
.

Applying this to our case, we deduce that for all θ > 0:

P
(
|T̃ | ≥ k

)
=
∑
j≥k

1

j
P

(
j∑
i=1

ξ(i) = j − 1

)
=
∑
j≥k

1

j
P
(
Binomial(nj,

κ

n
) = j − 1

)
≤
∑
j≥k

1

j
P
(
Binomial(nj,

κ

n
) ≥ j − 1

)
≤
∑
j≥k

eθ

j

(
1 + (eθ − 1)

κ

n

)nj
e−θj

≤
∑
j≥k

eθ

j
exp{(κ(eθ − 1)− θ)j}.

Taking θ = 1 and since κ < (e− 1)−1, we deduce that

P(Prog ≥ k) ≤ C

k
exp{−ck}.

Proposition 6.4.8. Take prog > 0. Then, for any ε > 0,

P(|Tvol| ≥ λprog) ≤

Cλprogλ−(α−1−ε) if sdα ≤ 1,

Cλprogλ−(yα−ε) if sdα > 1.

Proof. Set n = λprog. The key point is that on performing a spinal decomposition

of a discrete Galton-Watson tree T along its infinite backbone or W-spine, the

bounds of Propositions 6.4.4 and 6.4.5 hold for the spine of the resulting large

fragments independently of whether they held for the spine of T . Therefore, we can

first condition on the total number of fragments obtained from each of the first k

elements of Tvol (say according to the lexicographical ordering) each being at most

rdαλ. This has probability at least 1 − Ckλ−(α−1)+ε if sdα ≤ 1, and probability at

least 1− Ckλ−yα+ε if sdα > 1.

Conditional on this, the subtree of Tvol restricted to its first k elements is

stochastically dominated by a Galton-Watson tree with offspring distribution as in

Proposition 6.4.7, with n = rdαλ. Applying the proposition, we deduce that with

probability at least 1 − C
k e
−ck, the progeny of this subtree is strictly less than k.

This implies that Tvol also has progeny strictly less than k.
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By applying a union bound and substituting k = λprog, we therefore deduce

the result.

Remark 6.4.9. Since we are only aiming for polynomial tail decay in λ, we could

instead tweak the powers of λ in previous propositions and then condition on |Tvol| =
1, which would be simpler. However, we can get tighter decay by reiterating, and

this decay can also be improved to stretched exponential in the setting discussed in

Remark 6.4.2.

Controlling the volumes of small fragments

We now turn to bounding a quantity of the form

Fx =
∑

v∈∂Spiner(x)

Vol(T dec
v )1{Vol(T dec

v ) ≤ f(r, λ)}.

In keeping with earlier notation, we set Nf
r (x) = |∂Spiner(x)| for each x ∈

Tvol. We will condition on Nf
r < r

sdα∧1
α−1 λ, and recall from Proposition 6.3.14 that

for v ∈ ∂Spiner(x), P
(
Vol(T dec

v ≥ x
)
≤ c′x−t

v
α as x → ∞. We deduce that this

expression falls into the framework of Lemma 6.2.2, with β = tvα and k = f(r, λ).

The next proposition therefore follows directly from Lemma 6.2.2.

Proposition 6.4.10. There exists a deterministic constant K̃ <∞ such that:

P

 ∑
x∈Tvol

∑
v∈∂Spiner(x)

Vol(T dec
v )1{Vol(T dec

v ) ≤ f(r, λ)} ≥ K̃λprogf(r, λ)

∣∣∣∣∣∣ |Tvol| ≤ λprog


≤ Ce−cλ
prog

.

Proof. For a given x ∈ Tvol, the fragments obtained on performing a decomposition

of T (x) as described in Iterative Algorithm 2 are indexed by the set Spiner(x). For

a given u, all of the fragments are independent of each other, and their volumes

satisfy the tail bound of Proposition 6.3.14. If we let nx denote the number of

these fragments that are “large”, the sum of the smaller fragments therefore falls

into the framework of Lemma 6.2.2, except that we have nx + 1 independent copies

of the sum considered there. More precisely, consider some arbitrary independent

labelling of the vertices in ∂Spiner(x) from 1 to Nf
r (x), and label the corresponding

decorated fragments (T (i,dec))
Nf
r (x)

i=1 . Similarly to the notation of Lemma 6.2.2, let

k = f(r, λ), let T (k,i) be the label of the ith “large” fragment for i ≤ nx, and set

T (k,0) = 0, T (k,nx+1) = Nf
r (x). The sum of the smaller fragments can then be written
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as:

∑
v∈∂Spiner(x)

Vol(T dec
v )1{Vol(T dec

v ) ≤ f(r, λ)} =

nx∑
i=0

T (k,i+1)∑
j=T (k,i)+1

Vol(T (i,dec)),

and each term of the form
∑T (k,i+1)

j=T (k,i)+1 Vol(T (i,dec)) is independently of the same form

as that considered in Lemma 6.2.2. By Lemma 6.2.2, there exists a deterministic

K <∞ such that we can choose θK small enough that

E

exp{θKf(r, λ)−1
T (k,i+1)∑

j=T (k,i)+1

Vol(T (i,dec))}

 ≤ eK
for all sufficiently large r, λ, and all i ≤ nx. Moreover,∑

x∈Tvol

(nx + 1) = 2Vol(Tvol)− 1.

Therefore, applying a Chernoff bound

P

 ∑
x∈Tvol

∑
v∈∂Spiner(x)

Vol(T dec
v )1{Vol(T dec

v ) ≤ f(r, λ)} ≥ K̃λprogf(r, λ)

∣∣∣∣∣∣ |Tvol| ≤ λprog


= P

 ∑
x∈Tvol

nx∑
i=0

f(r, λ)−1
T (k,i+1)∑

j=T (k,i)+1

Vol(T (i,dec)) ≥ K̃λprog
∣∣∣∣∣∣ |Tvol| ≤ λprog


≤ E

exp{θKf(r, λ)−1
T (k,1)∑
j=1

Vol(T (i,dec))}

2λprog

e−θKK̃λ
prog

≤ e2Kλproge−θKK̃λ
prog

.

Therefore, K̃ = 4Kθ−1
K will do the job.

Controlling the spinal volume

Finally, we bound the spinal volume. Recall the spinal volume exponent defined on

page 135 by

svα =

 1
v (α− 1) if mv ≥ 1

v (α− 1),

mv if mv <
1
v (α− 1).

The next result then follows by similar proofs to Propositions 6.4.4 and 6.4.5.

Proposition 6.4.11. Suppose that we are decomposing along the infinite backbone

of T∞α , or along the Williams’ spine of a finite Galton-Watson tree T , as described

in Iterative Algorithm 2. In the latter case, assume that this tree is conditioned on
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Vol(T dec
v ) > f(r, λ) = cκr

ddecα λ
1
tvα . Take any ε′ > 0 and any function g : (0,∞) →

(0,∞). Then, if r is sufficiently large and λ > 1,

P

(
Vol(Spiner) ≥ r

sdα∧1
svα λ

)
≤

Cλ−(svα−ε) if sdα ≤ 1,

Cλ−(svα−ε) ∨ Cλ−(yα−ε) if sdα > 1.

Proof. This follows identically to the proofs of Propositions 6.4.4 and 6.4.5, with

α− 1 replaced by svα (both are less than 1).

Proof of Proposition 6.4.1(i)

Proof of Proposition 6.4.1. The key to the proof is (6.9) which says that

Vol(BT dec
α

(ρ, r)) ≤ |Tvol|
∑
x∈Tvol

(Sx + Fx).

Applying the previous propositions and a union bound, we therefore deduce that

P
(

Vol(BT dec
α

(ρ, r)) ≥ λprog(1 + K̃)f(r, λ))
)

≤ P(|Tvol| ≥ λprog)

+ P

 ∑
x∈Tvol

∑
v∈∂Spiner(x)

Vol(Twv)1{Vol(Twv) ≤ f(r, λ)} ≥ K̃λprogf(r, λ)

∣∣∣∣∣∣ |Tvol| < λprog


+ P

 ∑
x∈Tvol

Vol(Spiner(x)) ≥ λprogf(r, λ)

∣∣∣∣∣∣ |Tvol| < λprog

 .

Now recall from (6.8) that

f(r, λ) = cκr
dα
tvα λ

1
tvα = cκr

ddecα λ
1
tvα .

We also showed in Proposition 6.4.11 that, with high probability as λ→∞,

Vol(Spiner) ≤ r
sdα∧1
svα λ.

We also recall that

fvα =

α
v if mv ≥ α

v

mv if mv <
α
v ,

svα =

 1
v (α− 1) if mv ≥ 1

v (α− 1),

mv if mv <
1
v (α− 1).

We deduce from this that α−1
α (fvα ∧ 1) ≤ svα (with equality if and only if

mv ∧ 1 ≥ α
v ). From the previous propositions we therefore have the following:
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1. P(|Tvol| ≥ λprog) ≤

Cλprogλ−(α−1−ε) if sdα ≤ 1,

Cλprogλ−(yα−ε) if sdα > 1.
.

2. Conditional on |Tvol| ≤ λprog,

P

 ∑
x∈Tvol

∑
v∈Spiner(x)

Vol(T dec
v )1{Vol(T dec

v ) ≤ f(r, λ)} ≥ K̃λprogf(r, λ)


is upper bounded by Ce−cλ

prog
.

3.

P

 ∑
x∈Tvol

Vol(Spiner(x)) ≥ λprogf(r, λ)

∣∣∣∣∣∣ |Tvol| < λprog


≤

Cλ
progλ

−svα
tvα

+ε
if mv ∧ 1 ≥ α

v ,

Cλprogr
−(ddecα −

sdα∧1
svα

)(svα−ε)λ
−svα
tvα

+ε
if mv ∧ 1 < α

v .

It is therefore optimal to take prog = ε, and then replacing λ
1
tvα with λ we

obtain

P

(
Vol(BT dec

α
(ρ, r)) ≥ r

α(sdα∧1)
(α−1)(fvα∧1)λ

)
≤

Cλ−t
v
α(α−1)+ε + Cλ−s

v
α+ε if sdα ≤ 1,

Cλ−t
v
α·yα+ε + Cλ−s

v
α+ε if sdα > 1.

Since svα ≥ tvα(α− 1), this gives the result.

Proof of Proposition 6.4.1(ii)

In the case fvα = 1, we pick up an extra logarithm every time we apply Proposition

6.3.16, which we used to apply the Williams’ decomposition on each subtree in Tvol.

In this case, we instead take

f(r, λ) = cκλ
1
tvα rd

dec
α log r.

Then Vol(T dec) ≥ f(r, λ) implies that |T | ≥ rλz, with sufficiently high probability,

and we can otherwise continue as before.

6.4.2 Lower bounds

Recall that ddec
α = α(sdα∧1)

(α−1)(fvα∧1) . Our result for the volume lower bounds is the

following.
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Proposition 6.4.12. Assume that conditions (D) and (V ) of Assumption 6.0.1

are satisfied. For any ε > 0, there exist constants c, C ∈ (0,∞) such that for all

r > 1, λ > 1,

P
(

Vol(BT dec
α

(ρ, r(log r)1+ 1
k )) ≤ rddecα λ−1

)
≤ Cλ

−(α−1)
α

+ε

The lower bound in Theorem 6.0.5(ii) follows from this proposition by apply-

ing Borel-Cantelli along the subsequence rn = 2n, just as we did for stable looptrees

in Sections 4.2.1 and 4.2.2.

This bound can actually be improved to exponential tail decay in the case

where the inserted graphs are deterministic: see Remark 6.4.15.

The first main weakness of this result is in the inclusion of the log term in the

radius of the ball. This does not affect the overall volume estimates very much, since

the polynomial tail decay indicates that one cannot rule out logarithmic fluctuations

around the volume term, and the tail exponent of α−1
α is unlikely to be optimal

anyway. However, there is a question of whether it should really be there, in the

sense of whether rd
dec
α

Vol(BT dec
α

(ρ,r)) is an O(1) random variable, or whether an extra log

term is really necessary for this.

The log term is arising due to an application of the bound in Proposition

6.3.9, which gives that

P
(
Heightdec(T dec) ≥ n(log n)1+ 1

k

)
≤ n

−(d(α−1)∧1)
α−1

where k is as in Assumption (D). This causes a problem in regimes where the mass

of the decorated tree is concentrated in the leaves, since we must get some distance

from the root in order to pick up enough mass. This typically occurs when we

use “sparse” graphs to decorate the tree: since it is well known that the mass of

undecorated trees is concentrated close to the leaves, we would expect this to remain

true when we use sufficiently empty graphs as decoration (e.g. loops). However, if

we insert graphs with a higher volume growth exponent, it is clear that volumes

of graphs inserted at high-degree (i.e. non-leaf) vertices will start to become more

proportionate to the total mass. In fact, the model undergoes a phase transition

depending on the value of v: if v < α, the mass is still concentrated in the leaves,

whereas if v > α, the mass of graphs inserted at internal vertices will be comparable

to the mass of graphs inserted at leaf vertices (this was also apparent in the proof

of the upper bound on p.170). In this latter regime, we can therefore prove the

following stronger result. The exponent here also does not depend on the tail decay

in Assumption (D) (which is the second main weakness of Proposition 6.4.12), and

the proof is very short.

Proposition 6.4.13. Suppose that mv ∧ 1 ≥ α
v , and that (D′′), (V ′′) hold. Then,
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for any r, λ > 1, and all ε > 0, there exist constants c, C ∈ (0,∞) such that

P
(

Vol(BT dec
α

(ρdec
α , r)) ≤ rddecα λ−1

)
≤

cλ−(svα−ε′) if sdα < 1

(rs
v
α∧1λ−s

v
α(1−ε))−(sdα−1) + e−cλ

ε
if sdα > 1.

If sdα = 1, we get that

P
(

Vol(BT dec
α

(ρdec
α , r log r)) ≤ rddecα λ−1

)
≤ cλ−(svα−ε′).

Proof. Similarly to previous proofs, suppose for now that sdα 6= 1, letNr = rs
d
α∧1λ−s

v
α(1−ε),

and let ρ = s0, s1, . . . , sNr denote the first Nr vertices on the Williams’ spine of T∞α .

Then, by Lemmas 6.2.3 and 6.2.5,

P

(
Nr∑
0=1

Diam(G(si)) ≥ r

)
≤

cλ−(svα−ε′) if sdα < 1

(rs
v
α∧1λ−s

v
α(1−ε))−(sdα−1) if sdα > 1.

Also, note that, by Lemma 6.2.4,

P
(

Vol(BT dec
α

(ρdec
α , r)) ≤ rddecα λ−1

)
≤ P

(
Nr∑
i=0

Vol(G(si)) ≤ N
1
svα
r λ−ε

)
≤ e−cλε .

Then, conditional on
∑Nr

i=1 Diam(G(si)) < r, it follows that

Nr⋃
i=0

G(si) ⊂ BT dec
α

(ρdec
α , r),

so that

P
(

Vol(BT dec
α

(ρdec
α , r)) ≤ rddecα λ−1

)
≤ P

(
Nr∑
0=1

Diam(G(si)) ≥ r

)
+ P

(
Vol(BT dec

α
(ρdec
α , r)) ≤ rddecα λ−1

)
,

which gives the result.

As above, the lower bound in Theorem 6.0.5(iii) then follows from this propo-

sition by applying Borel-Cantelli along the subsequence rn = 2n.

The rest of this subsection is therefore devoted to proving Proposition 6.4.12.

We will use a similar decomposition to the previous section, but this time we will not

keep iterating around further fragments. The key observation is that Vol(BT dec
α

(ρ, r))
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stochastically dominates the sum

Nf
r
2∑

i=1

Vol
(
BT dec

i
(ρdec
i ,

1

2
r)
)
,

where ((T dec
i , ρi))

Nf
r
2

i=1 are i.i.d. decorated rooted finite Galton-Watson trees.

We will therefore have to bound both the number of fragments obtained on

performing such a decomposition, as well as the volume of a typical fragment. The

volumes can be controlled using the estimates of Section 6.3, and the number of

fragments is dealt with in the following proposition.

Proposition 6.4.14. Recall that dα = sdα∧1
α−1 . For any ε > 0 there exists cε ∈ (0,∞)

such that, if sdα 6= 1, then:

P
(
Nf

r
2
≤ rdαλ−1

)
≤

cλ−(α−1−ε′) if sdα < 1

(rs
v
α∧1λ−(α−1)(1−ε))−(sdα−1) + e−cλ

ε
if sdα > 1.

If sdα = 1, then

P

(
Nf

r log r
2

≤ rdαλ−1

)
≤ cλ−(α−1−ε′)

Proof. The proof is the same as that of Proposition 6.4.13, noting that we are instead

summing a quantity with (α− 1)-stable tails rather than svα-stable tails in the final

step.

Remark 6.4.15. In some cases, for example when inserting deterministic graphs

rather than random ones, there may be some deterministic relationship between r

and Nf
r
2

that we can exploit to get better tail decay on the above event (such as

exponential), or even a deterministic result, which will also allow us to improve the

decay in Proposition 6.4.12. We will see in Section 6.7 that this is the case for trees

and looptrees, for example.

Proof of Proposition 6.4.12. Assume for now that sdα 6= 1. As noted above, we will

use the fact that Vol(BT dec
α

(ρ, r)) stochastically dominates the sum

Nf
r
2∑

i=1

Vol
(
BT dec

i
(ρdec
i ,

1

2
r)
)
,

where ((T dec
i , ρi))

Nf
r
2

i=1 are i.i.d. decorated rooted finite Galton-Watson trees. By
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independence, we can therefore write

P
(

Vol(BT dec
α

(ρ, r(log r)1+ 1
k )) ≤ rddecα λ−1

)

≤ P


Nf
r
2∑

i=1

Vol
(
BT dec

i
(ρdec
i ,

1

2
r(log r)1+ 1

k )
)
≤ rddecα λ−1


≤ E

[
E

[
exp{−θVol

(
BT dec

1
(ρ,

1

2
r(log r)1+ 1

k )
)
}
]Nf

r
2

]
eθr

ddecα λ−1

≤ E

[(
E
[
exp{−θVol(T dec

1 )}
]

+ P

(
Heightdec(T dec

1 ) ≥ 1

2
r(log r)1+ 1

k

))Nf
r
2

]
eθr

ddecα λ−1

Recall that ddec
α = α(sdα∧1)

(α−1)(fvα∧1) , dα = (sdα∧1)
α−1 . Take θ = r−d

dec
α λ. By Corollary 6.3.15,

E
[
e−θVol(T dec

1 )
]
≤ 1− q

2
θt
v
α := 1− q

2
r−dαλ

1
α ,

as r, λ→∞, and by Proposition 6.3.9, P
(
Heightdec(T dec

1 ) ≥ 1
2r(log r)1+ 1

k

)
≤ cr−dα

as r →∞.

Also, by Proposition 6.4.14 and Lemma 6.2.7, the rescaled variable r−dαNf
r
2

satisfies E

[
e
ϕr−dαNf

r
2

]
≤ cϕ−(α−1−ε) for all sufficiently large ϕ.

Therefore, for all sufficiently large λ, we deduce that

P
(

Vol(BT dec
α

(ρ, r(log r)1+ 1
k )) ≤ rddecα λ−1

)
≤ eE

[(
1− q

2
r−dαλ

1
α + cr−dα

)Nf
r
2

]
≤ eE

[
exp{−q

4
λ

1
α r−dαNf

r
2
}
]

≤ cλ
−(α−1−ε)

α .

If sdα = 1, we can replace Nf
r
2

with Nf
r log r

2

, and since we are considering a ball of

radius r(log r)1+ 1
k anyway, this does not affect the result.

Remark 6.4.16. 1. We can improve this a bit by considering Nf

r(log r)
1+ 1

k

2

instead

of Nf
r
2
, but there will still be a log discrepancy.

2. In the case where we have either deterministic control on Nf
r
2
, or stretched ex-

ponential tail decay in Proposition 6.4.14, we can also make these adjustments

in the proof above to get stretched exponential tail decay.
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6.5 Resistance on T dec
α

In order to apply results of [KM08] about random walk exponents, we also need to

understand resistance on T dec
α .

In Assumption 6.0.1 we have assumed that the two-point function and di-

ameters of the inserted graphs grow according to the same exponents. It would

still be possible to get some kind of result if this was not the case, but we would

need more information on the local geometry of the inserted graphs. When the two

exponents are equal, it means that we are able to cut the decorated Williams’ spine

at an appropriate cut point such that the cut point is roughly distance r from the

root, and all vertices contained in the decorated graphs corresponding to ancestors

of that cutpoint are also roughly within distance r of the root. The same holds

for the resistance distance, so this gives a concrete way to separate Bdec
res (ρdec

α , r)

from Bdec
res (ρdec

α , 2r)c, for example. However, if the diameters of the inserted graphs

grow differently to the two-point function, then we cannot separate balls just by

exploiting the underlying tree structure.

Recall that the exponent sRα is defined so that, for a vertex si on the infinite

backbone of T∞α , there exist constants c, c′ such that

P(Diamres(G(si)) ≥ r) ≤ cr−s
R
α

P
(
RU (G(si)) ≥ r

)
≥ c′r−sRα

as r →∞.

In what follows, we will use the subscript “res” to denote that distances

are defined with respect to the resistance metric. For example, Bdec
res (ρdec

α , r) refers

to a ball of radius r with respect to the effective resistance metric on T dec
α , and

BT dec
α

(ρdec
α , r) will refers to a ball with respect to the decorated graph metric ddec

g .

The following bound is necessary in order to establish the random walk ex-

ponents.

Proposition 6.5.1. For all ε > 0, there exists a constant c < ∞ such that for all

λ > 1,

P
(
Reff(ρdec

α , Bdec
res(ρ

dec
α , r(log r)1+ 1

kr )c) ≤ rλ−1
)
≤ cλ−(

sRα∧1
α
−ε).

Proof. Fix some k, l > 0 (we will specify these precisely later). Similarly to previous

proofs, we define a number Nr that corresponds to the index of the vertex where

we “cut off” the infinite backbone. This time, we take Nr = rs
R
α∧1λ−k, and first
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observe that, by Lemma 6.2.3 if sRα < 1 and by Lemma 6.2.5 if sRα ≥ 1,

P

∑
i≤Nr

Diamres(si) ≥
1

2
r log r

 ≤
cλ−k if sRα < 1

c(rλ−k)s
R
α−1 if sRα ≥ 1.

(The log term is only really necessary if sRα = 1, but since we will also pick up a log

term from Proposition 6.3.9, this doesn’t make any difference here). Additionally,

by Lemma 6.2.4 if sRα < 1 and Lemma 6.2.4 if sRα > 1,

P

∑
i≤Nr

RU (si) ≤ rλ−k(sRα∧1)−1−ε

 ≤
Ce−cλ

ε
if sRα ≥ 1,

c(rλ−k)s
R
α−1 if sRα > 1.

(6.10)

Moreover, similarly to the proofs of Propositions 6.4.4 and 6.4.5, it follows from

Lemma 6.2.3 that

P

∑
i≤Nr

deg(si) ≥ r
sRα∧1
α−1 λl−

k
α−1

 ≤ cλ−l(α−1).

The three probabilistic bounds above show that, with (quantified) high probability:

• all of the vertices contained in
⋃
i≤Nr G(si) are within resistance distance 1

2r

of the root;

• the number of subtrees joined to the decorated Williams’ spine at a vertex

contained in
⋃
i≤Nr G(si) is at most N

1
α−1
r λl;

• the vertex joining G(sNr−1) to G(sNr) is at resistance at least N
(sRα∧1)−1

r λ−ε

from the root.

Recall also that by Proposition 6.3.9 (with sRα instead of sdα),

P

(
Heightdec

res(T dec) ≥ 1

2
r(log r)1+ 1

kr

)
≤ cr

−(sRα∧1)
α−1

Moreover, conditionally on these three events all occurring, the number of fragments

grafted to the backbone that intersect Bdec
res (ρdec

α , r)c is stochastically dominated by

a Binomial(r
sRα∧1
α−1 λl−

k
α−1 , cr

−(sRα∧1)
α−1 ) random variable - call this Mr. Then

P(Mr ≥ 1) = 1− (1− cr
−(sRα∧1)
α−1 )r

sRα∧1
α−1 λ

l− k
α−1

≤ 1− exp{−2cr
−(sRα∧1)
α−1 r

sRα∧1
α−1 λl−

k
α−1 }

≤ cλl−
k

α−1

177



Moreover, if Mr = 0, then the vertex vr defined to be the vertex at which G(sNr) and

G(sNr+1) intersect is a single point that separates the root fromBdec
res (ρdec

α , r(log r)1+ 1
kr )c,

and itself is at distance at least N
(sRα∧1)−1

r λ−ε from the root, so that

Reff(ρdec
α , Bdec

res (ρdec
α , r(log r)1+ 1

kr )c) ≥ N (sRα∧1)−1

r λ−ε

= r(sRα∧1)(sRα∧1)−1
λ−k(sRα∧1)−1

λ−ε

= λ−k(sRα∧1)−1−ε.

Therefore, combining all the probabilistic bounds obtained with a union bound, and

taking l = k
α(α−1) , we deduce that:

P
(
Reff(ρdec

α , Bdec
res (ρdec

α , r)c) ≤ rλ−k(sRα∧1)−1−ε
)
≤ cλ

−k
α ,

which is equivalent to the stated result.

Remark 6.5.2. 1. Instead taking Nr = rs
d
α∧1λ−k, the same proof gives

P

(
Reff(ρdec

α , Bdec(ρdec
α , r(log r)1+ 1

k )c) ≤ r
sdα∧1
sRα∧1λ−1

)
≤ cλ−(

sRα∧1
α
−ε).

Applying Borel-Cantelli along the subsequence rn = 2n and shifting the log

term over to the other side, we get that, P-almost surely,

Reff

(
ρdec
α , Bdec(ρdec

α , r)
)
≥
(
r(log r)−(1+ 1

k
)
) sdα∧1
sRα∧1 (log r)

−(
α+ε)

sRα∧1

for all sufficiently large r.

2. Similarly to the volume lower bounds, in some cases where we have better con-

trol over the inserted graphs, we may be able to improve this to exponential

decay by introducing an interative process similarly to how we did in Section

6.4.1, but this time reiterating around fragments of large height rather than

large volume. This was the strategy employed in Proposition 5.4.4 in the loop-

tree case.

We will also need the following result in order to determine the random

walk displacement exponent in terms of the intrinsic metric. To save space in the

proposition below we write BR
r = Bdec

res (ρdec
α , r) and Bd

r = Bdec(ρdec
α , r).
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Proposition 6.5.3. P-almost surely, there exists r0 <∞ such that for all r ≥ r0:

Bd

r(s
R
α∧1)(sdα∧1)−1

(log r)

−(α+ε)

sdα∧1

⊂ BR
r ⊂ Bd

r(s
d
α∧1)−1(sRα∧1)(log r)(s

d
α∧1)−1(α+ε)

BR

r(s
d
α∧1)(sRα∧1)−1

(log r)

−(α+ε)

sRα∧1

⊂ Bd
r ⊂ BR

r(s
R
α∧1)−1(sdα∧1)(log r)(s

R
α∧1)−1(α+ε)

Proof. By replacing RU with dU in (6.10), the same proof as in the previous proposi-

tion shows that, with probability at least 1−λ−(
sdα∧1
α
−ε), there exists a single vertex

at distance at least r(sRα∧1)(sdα∧1)−1
λ−1 from the root, separating the root from (BR

r )c.

Therefore, all vertices in (BR
r )c lie at least distance r(sRα∧1)(sdα∧1)−1

λ−1 from the root,

so that Bd

r(s
R
α∧1)(sdα∧1)−1

λ−1
⊂ BR

r . Therefore, setting rn = 2n, λn = (1
2 log rn)

α+ε

sdα∧1 ,

applying Borel Cantelli and using monotonicity similarly to how we did when prov-

ing the volume bounds for stable looptrees, we deduce that almost surely, there

exists r0 <∞ such that

Bd

r(s
R
α∧1)(sdα∧1)−1

(log r)

−(α+ε)

sdα∧1

⊂ BR
r

for all r ≥ r0. By symmetry, we can also use the same argument to go in the other

direction, and also deduce that

BR

r(s
d
α∧1)(sRα∧1)−1

(log r)

−(α+ε)

sRα∧1

⊂ Bd
r .

Note that, if r̃ = rx(log r)−y, then r̃x
−1

(log r̃)x
−1y+ε ≥ r for all sufficiently large r,

so that BR
r̃ ⊂ Bd

r implies that BR
r̃ ⊂ Bd

r̃x−1 (log r̃)x−1y+ε
for all sufficiently large r. The

second inclusion above therefore gives the result as stated.

6.6 Random walk exponents

The purpose of this section is to use the volume and resistance results of the previous

sections to determine the exponents for a simple random walk on T dec
α . To do this,

we will apply results of [KM08].

To directly apply their results to get exponents for the decorated metric d,

we would need to define deterministic functions v and r that govern the volume and

resistance growth of the space, and for a given λ > 1 define

J(λ) =
{
R ∈ [1,∞] : λ−1v(R) ≤ Vol(Bd

R) ≤ λv(R), Reff(ρdec
α , (Bd

R)c) ≥ λ−1r(R)
}

∩
{
Reff(ρdec

α , y) ≤ λr(d(ρdec
α , y))∀y ∈ Bd

R

}
.

and then show that P(R ∈ J(λ)) → 1 as λ → ∞, uniformly in R > 1 (cf [KM08,
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Definition 1.1, Assumption 1.2(1)].

If we ignore the logarithmic discrepancies for a moment, by Propositions

6.4.1, 6.4.12 and 6.5.1 the appropriate volume function to take would be v(R) =

R
α(sdα∧1)

(α−1)(fvα∧1) , and the appropriate resistance function would be r(R) = R(sdα∧1)(sRα∧1)−1
.

However, we encounter some technical difficulties with the final condition in the def-

inition of J(λ), in that it requires Reff(ρdec
α , y) ≤ λr(d(ρdec

α , y)) for all y ∈ BR.

For a general graph, it is usually only possible to achieve this kind of control

uniformly when there is some deterministic relation between the resistance metric

and the intrinsic metric, for example as is the case for random trees and looptrees.

In our decorated tree setting, this is probably still achievable in the case when we

decorate the tree with deterministic graphs, but in the case when the inserted graphs

are random we anticipate that there will be genuine multiplicative fluctuations in

the relationship between the resistance metric and the intrinsic metric (for example

these could be on the order of logR on the ball of radius R), so it is not possible to

bound P
(
Reff(ρdec

α , y) ≤ λd(ρdec
α , y)∀y ∈ Bd

R

)
uniformly in R.

Therefore, we set v(r) = rd
dec
α , and choose U and L to be the exponents given

in Theorem 6.0.5 so that, P-almost surely

v(r)(log r)−L ≤ Vol(BT dec
α

(ρdec
α , r)) ≤ v(r)(log r)U

for all sufficiently large r. We also set r(R) = R
sdα∧1
sRα∧1 , and use Remark 6.5.2 and

Proposition 6.5.3 to choose UR, LR so that

Reff(ρdec
α , (BT dec

α
(ρdec
α , r))c) ≥ r(R)(logR)−LR ,

Reff(ρdec
α , y) ≤ r(d(ρdec

α , y))(logR)UR

for all y ∈ BT dec
α

(ρdec
α , R)c, and for all sufficiently large R. We also define the set

J̃(λ) =
{
R ∈ [1,∞] : λ−1v(R)(logR)−L ≤ Vol(BT dec

α
(ρdec
α , r)) ≤ λv(R)(logR)U

}
∩
{
R ∈ [1,∞] : Reff(ρdec

α , (BT dec
α

(ρdec
α , r))c) ≥ λ−1r(R)(logR)−LR

}
∩
{
R ∈ [1,∞] : Reff(ρdec

α , y) ≤ λr(d(ρdec
α , y))(logR)UR∀y ∈ BT dec

α
(ρdec
α , r)

}
.

It then follows from Theorem 6.0.5, Remark 6.5.2 and Proposition 6.5.3 that

P
(
R ∈ J̃(λ)

)
→ 1 as λ→∞, uniformly in R > 1.

If we instead had this result with J(λ) in place of J̃(λ), we could apply

results of [KM08] to establish the long term displacement of the random walk up to

constants. Given that we instead have to make do with J̃(λ), it is not trivial to show

that we can carry through these logarithmic corrections in the proofs of the results
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of [KM08] to essentially just get logarithmic corrections on the final results, since

some estimates in [KM08] require comparable upper and lower bounds on effective

resistance.

However, these arguments were carried out very precisely in [Cro07], in which

the results of [KM08] were simultaneously adapted to spaces with non-uniform vol-

ume and resistance fluctuations, and also to spaces in the continuum. Since we are

not working in a continuum model in this chapter, we cannot directly apply the

results of this paper; however, to incorporate the non-uniform fluctuations, we can

write discrete analogues of all of the arguments, and we deduce that the log terms

can indeed be carried through the computations.

Remark 6.6.1. Without the logarithmic discrepancies in Propositions 6.4.1, 6.4.12

and 6.5.1, we could circumvent this problem by instead using the results of [KM08] to

estimate displacement with respect to the resistance metric, and then use Proposition

6.5.3 to account for the fluctuations and state the results in terms of the intrinsic

metric. We would therefore define the set

JR(λ) =
{
r ∈ [1,∞] : λ−1vR(r) ≤ Vol(BR

r ) ≤ λvR(r), Reff(ρdec
α , (BR

r )c) ≥ λ−1r
}
,

where vR(r) = r
α(sRα∧1)

(α−1)(fvα∧1) , and hope to use Propositions 6.4.1, 6.4.12 and 6.5.1 to

show that P
(
r ∈ JR(λ)

)
→ 1 as λ → ∞, uniformly in r > 1, which would allow

us to directly apply [KM08, Proposition 1.3] to give exponents with respect to the

resistance metric.

Ultimately we hope to do this, so for now we have not gone into all the details

for incorporating the non-uniform fluctuations following the strategy of [Cro07].

Before doing so, we define the following exponents, for ease of notation:

1. The walk dimension, eα = α(sdα∧1)
(α−1)(fvα∧1) + sdα∧1

sRα∧1
.

2. The transition density exponent, kα = α(sRα∧1)
(α−1)(fvα∧1)

(
α(sRα∧1)

(α−1)(fvα∧1) + 1
)−1

. Note

that the spectral dimension is 2kα.

3. The displacement exponent, Dα = (sRα∧1)(α−1)(fvα∧1)
(α−1)(fvα∧1)(sdα∧1)+α(sRα∧1)(sdα∧1)

.

The following proposition then follows from [KM08, Proposition 1.3] after

carrying the log terms through the proofs using the techniques of [Cro07] (we do

not give the details).

Proposition 6.6.2 (Probabilistic results w.r.t. intrinsic metric). Let n, r ≥ 1.

181



Then, there exist (explicit) deterministic β
(1)
α , β

(2)
α > 0 such that as θ →∞,

P

(
θ−1 ≤

Eρdecα
[
τdr
]

reα(log r)−(β
(1)
α +β

(2)
α )

)
→ 1,

P

(
Eρdecα

[
τdr
]

reα(log r)β
(1)
α +β

(2)
α

≤ θ

)
→ 1,

P
(
θ−1 ≤ nkαp2n(ρdec

α , ρdec
α ) ≤ θ

)
→ 1,

P× Pρdecα

(
ddec(ρdec

α , Xn)

nDα(log n)β
(2)
α

≤ θ

)
→ 1,

P× Pρdecα

(
θ−1 ≤ 1 + ddec(ρdec

α , Xn)

nDα(log n)−β
(2)
α

)
→ 1.

As written, these exponents are not the most illuminating. Recall though

that in most cases, we anticipate that sRα = R(α − 1), sdα = d(α − 1), fvα = α
v . In

the most extreme cases in which these are all at most 1, the exponents become :

eα = rvd+ d
R , kα =

Rv

Rv + 1
, Dα =

d

R+ vR2
.

This is the setting in which the local graph behaviour dominates the behaviour on

the whole decorated tree, and we no longer see any dependence on α. However, as

d and R decrease, and v increases, we see several phase transitions as the tails of

the various volume and distance quantities become lighter. In particular we obtain

the result of Theorem 6.0.6.

With appropriate control, we can also get quenched and annealed results for

these exponents. We give the quenched result first: again this follows from carrying

the log terms through the proof of [KM08, Proposition 1.5] using arguments of

[Cro07].

Theorem 6.6.3 (Quenched random walk results). Under Assumption 6.0.1, P-

almost surely,

a) There exist constants β1, β2, β3, β4 ∈ (0,∞) such that

(i) There exists R < ∞ such that reα(log r)−β2 ≤ Eρdecα
[
τdr
]
≤ reα(log r)β2 for

all r ≥ R.

(ii) There exists N <∞ such that n−kα(log n)−β1 ≤ p2n(ρdec
α , ρdec

α ) ≤ n−kα(log n)β1

for all n ≥ N .
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(iii) P-almost surely, there exist N,R <∞ such that, conditional on X0 = ρdec
α ,

reα(log r)−β2 ≤ τdr ρdec
α ≤ reα(log r)β2 ∀r ≥ R

rDα(log r)−β2 ≤ sup
k≤n

ddec(ρdec
α , Xk) ≤ rDα(log r)β2 ∀n ≥ N

b) ds(T dec
α ) := −2 limn→∞

log p2n(ρdecα ,ρdecα )
logn = 2kα.

c) limn→∞
log

(
E
ρdecα

[τdr ]
)

log r = eα.

d) Let Wn = {X0, X1, . . . , X
exc
n }, and let Sn =

∑
x∈Wn

deg x. Then P-almost surely,

limn→∞
logSn
logn = kα.

The annealed results follow similarly from the proof of [KM08, Proposition

1.4], again requiring adaptation using the strategies of [Cro07]. In particular we

obtain the result of Theorem 6.0.7.

Theorem 6.6.4 (Annealed random walk results). Under Assumption 6.0.1, we have

that:

a) There exists constants c1, c2 such that c1r
eα(log r)−(β

(1)
α +β

(2)
α ) ≤ E

[
Eρdecα

[
τdr
] ]
≤

c2r
eα(log r)β

(1)
α +β

(2)
α for all r ≥ 1.

b) There exists a constant c3 > 0 such that c3n
−kα(log n)−β1 ≤ E

[
p2n(ρdec

α , ρdec
α )
]

for all n ≥ 1.

c) There exists a constant c4 > 0 such that

c4r
Dα(log r)−β

(2)
α ≤ E

[
Eρdecα

[
ddec(ρdec

α , Xn)
] ]

d) If the tail decay of Proposition 6.4.12 is O(λ−(1+ε)), for some ε > 0, then

E
[
p2n(ρdec

α , ρdec
α )
]
≤ c3n

−kα(log n)−β1 (see [KM08, Remark 1.6(1)]).

6.7 Examples

In terms of exponents, the main results of Section 5.5 are that we established that

the following exponents are given as follows:

1. The volume growth exponent is equal to α(sdα∧1)
(α−1)(fvα∧1) .

2. The spectral dimension is equal to 2α(sRα∧1)
α(sRα∧1)+(α−1)(fvα∧1)

.

3. The displacement exponent is equal to (sRα∧1)(α−1)(fvα∧1)
(α−1)(fvα∧1)(sdα∧1)+α(sRα∧1)(sdα∧1)

.

Below, we give the values of these exponents for several examples of interest.
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Inserted graph Range Volume Spectral dim Displacement

Star (tree) all α
α−1

2α
2α−1

α−1
2α−1

Loop (looptree) all α 2α
α+1

1
α+1

β-stable trees
β
β−1 ≥

1
α−1

α
α−1

2α
2α−1

α−1
2α−1

β
β−1 <

1
α−1

βα
β−1

2βα
β−1+βα

β−1
β−1+βα

Finite variance α ≥ 3
2

α
α−1

2α
2α−1

α−1
2α−1

dissections α ≤ 3
2 2α 4α

2α+1
1

2α+1

β-stable β ≥ 1
α−1

α
α−1

2α
2α−1

α−1
2α−1

dissections* β ≤ 1
α−1 αβ 2αβ

αβ+1
1

αβ+1

Critical α ≥ 3
2

α
α−1

2α
2α−1

α−1
2α−1 .

Erdös-Rényi (n) α ≤ 3
2 2α 4α

2α+1
1

2α+1

Critical α ≥ β α
α−1

2α
2α−1

α−1
2α−1

Erdös-Rényi (nβ)
β+2

2 ≤ α ≤ β β
α−1

2β
β+α−1

α−1
α−1+β

α ≤ β+2
2 2 4

3
1
3

Sierpinski α ≥ log 10−log 3
log 2

α
α−1

2α
2α−1

α−1
2α−1

triangle
log 3
log 2 ≤ α <

log 10−log 3
log 2 α 2α log 2

α log 2+log 5−log 3
log 2

α log 2+log 5−log 3

α < log 3
log 2

log 3
log 2

2 log 3
log 5

log 2
log 5

Complete graph all 2
α−1

4
α+1

α−1
α+1

Table 6.1: Quenched exponents for the models considered below. *conjectural.

6.7.1 Trees

By inserting an appropriate “star” graph at every vertex, or simply repeating the

arguments employed in the previous section directly for trees, we recover and im-

prove some results for random walks on critical Galton-Watson trees with offspring

distribution satisfying (6.2), conditioned to survive. We do not go into the details,

but in this setting Assumption 6.0.1 is effectively satisfied with d = R = ∞, v = 1

for λ > 2 (though to make this rigorous, it easier just to repeat the arguments

directly with these trees in mind). We therefore deduce from Proposition 6.4.1 that

for any ε > 0 there exists C <∞ such that

P
(

Vol(BT (ρ, r)) ≥ r
α
α−1λ

)
≤ Cλ

−(α−1)
α

+ε.

This is not as good as the result in [CK08, Proposition 2.2], where they prove

polynomial tail decay bounded by λ−(α−1−ε). This is not surprising since they

are able to fine-tune their arguments specifically for trees in their paper, by using

generating functions and decomposing at different heights of the tree. Moreover,

corresponding results for volumes of stable trees [DW14, Theorem 1.2], which in

theory could be obtained from probabilistic bounds in a similar way to our results

for stable looptrees in Chapter 4, make it plausible that an exponent of α− 1− ε is
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in fact optimal.

However, for the lower volume bounds we are able to improve the polynomial

tail decay of [CK08, Proposition 2.6] to stretched exponential. The result itself is not

surprising, since corresponding volume results for stable trees [Duq12, Theorem 1.2]

suggest that we should have tighter control on infimal volumes, and our approach

involves a different decomposition to the one that formed the basis of [CK08].

To obtain the better bound, note that we are in the setting of Remark 6.4.15

where we do not need to control the randomness in the definition of Mr, and instead

we can lower bound Nf
r
2

by the sum of the degrees of the first 1
2r vertices along the

backbone. By directly composing the moment generating functions for the sum of

the degrees and the sizes of the incident fragments, it is possible to show that

P
(
Nf

r
2
≤ r

1
α−1λ−q

)
≤ Ce−cλ

α−1
α .

In line with analogous results on stable trees ([Duq12, Theorem 1.2] and [DW14,

Theorem 1.1]), we conjecture that it should be possible to improve this upper bound

to Ce−cλ
β

for any β < α− 1.

As a result of the bounds above, the quenched volume bounds we obtain are

that, P-almost surely,

lim sup
r→∞

Vol(BT∞α (ρ, r))

r
α
α−1 (log r)

1+ε
α−1

= 0, lim inf
r→∞

Vol(BT∞α (ρ, r))

r
α
α−1 (log log r)

−α
α−1

=∞.

In terms of the random walk exponents, we recover the results of [CK08] that the

spectral dimension of the walk is 2α
2α−1 , and the displacement exponent is α−1

2α−1 . For

more detailed results, see [CK08] and [Kor17, Proposition 6].

6.7.2 Looptrees

By inserting deterministic loops at each vertex, we also recover the discrete looptree

model that was considered more thoroughly in [BS15]. In this case, d = R = v = 1.

Moreover, Mr is deterministically at least 1
2r in the proof of Proposition 6.4.14, so

we can omit the final term in the final line in the proof of 6.4.12. We therefore

deduce that for any ε > 0, there exist constants c, C ∈ (0,∞) such that

P(Vol(B(ρ, r)) ≥ rαλ) ≤ Cλ
1

α+1 e−cλ
α−ε
α+1

,

P
(
Vol(B(ρ, r)) ≤ rαλ−1

)
≤ Ce−cλ

1
α−ε .

This first result improves that of [BS15, Equation (3.41)] in which the authors

obtained polynomial tail decay. This second bound agrees with that of [BS15,

Equation (3.18)], which is not surprising since our approach for the volume lower
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bound essentially boils down to the same method as that used for the looptree case

in [BS15]. In terms of volume results, this means that

lim sup
r→∞

Vol(BLoop(T∞α )(ρ, r))

r
α
α−1 (log r)

1
α−1

= 0, lim inf
r→∞

Vol(BLoop(T∞α )(ρ, r))

r
α
α−1 (log log r)

−α2
α−1

=∞.

As previously shown in [BS15], we deduce that both the annealed and quenched

spectral dimensions are 2α
α+1 , and that the displacement exponent is 1

α+1 . See [BS15]

for more details.

6.7.3 Inserting trees

Since we have good control on volumes in trees, we could also insert a Galton-

Watson tree conditioned to have n leaves at each vertex of degree n. To establish

the volume exponents in this case, note that since the number of edges of a tree is

one less than the total number of vertices, we can use [Kor12, Proposition 1.6] to

deduce that, if T is an unconditioned Galton-Watson tree with offspring distribution

ξ̂(x) ∼ cx−β as x → ∞ for some β ∈ (1, 2], and l(T ) is its number of leaves, then

(applying Lemma 6.3.2 and an LDP):

P(l(T ) = n, |T | ≥ λn) =
∑
p≥λn

1

p
P
(
W ′p−n = n− 1

)
P(Sp = n)

≤ 1

λn

∑
p≥λn

(
e−λ

β
+ o(n

−1
β )
)
e−cp

≤ C

λn

(
e−λ

β
+ o(n

−1
β )
)
e−cλn,

where W ′ is a random walk started from zero with jump distribution η(i) = pi+1

1−p0 for

i ≥ 1, and Sp is a sum of p independent Bernoulli(p0) random variables. Using also

the asymptotic of [Kor12, Theorem 3.1(ii)] that P(l(T ) = n) ∼ cn−(1+ 1
β

)
as n→∞,

we deduce that

P(|T | ≥ λn | l(T ) = n) ≤ Ce−λβ + Ce−cλn = o(e−cλ).

Clearly also

P
(
|T | ≤ λ−1n

∣∣ l(T ) = n
)

= 0

for all λ ≥ 2, n ≥ 1, so we deduce that v = 1, svα = α− 1, and fvα = α.

To bound P
(
Diam(T ) ≥ λn1− 1

β

∣∣∣ l(T ) = n
)

, we first bound the quantity

P
(
l(T ) ∈ [n, 2n]

∣∣∣ Diam(T ) ≥ λn1− 1
β

)
by decomposing along the Williams’ spine, which we know has length at least
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1
2λn

1− 1
β . By Proposition 6.3.5, we know that for any vertex v on the Williams’

spine within distance 1
4λn

1− 1
β of the root, there exists a constant c such that for

all x ≤ λn
1
β , P(deg v ≥ x) ≥ cx−(β−1), independently for each such v. There-

fore, by coupling the degree of v with an independent random variable Y satisfying

P(deg v ≥ x) ≥ cx−(β−1) for all x ≥ 0, we get that

E
[
e−θ(deg v−2)

]
≤ E

[
e−θY

]
+ P

(
Y ≥ λn

1
β

)
,

where the latter term corresponds to a “worst-case” scenario on “seeing the differ-

ence” between Y and deg v. In particular, if θ = cn
−1
β then by Lemma 6.2.6

E
[
e−θ(deg v−2)

]
≤ 1− c′n

−(β−1)
β + λ

−1
β−1n

−(β−1)
β ≤ exp{−c′′n

−(β−1)
β }, (6.11)

Therefore, letting v1, v2, . . . v 1
4
λn

1− 1
β

denote the vertices on the Williams’ spine within

distance 1
4λn

1− 1
β of the root, (Ti)

deg vj−2
i=1 denote the subtrees emanating from all of

the non-spinal offspring of vertex vj , l(Ti) denote the number of leaves in each Ti,

using the asymptotic of [Kor12, Theorem 3.1(ii)] that P(l(T ) = n) ∼ cn
−(1+ 1

β
)

as

n → ∞, and then taking θ = n−1 and using (6.11) in the final line below we have

that

P
(
l(T ) ≤ 2n

∣∣∣ Diam(T ) ≥ λn1− 1
β

)
≤ E

[
exp

{
−θ

N∑
i=1

l(Ti)

}]
e2θn

≤ E

exp

−θ
1
4
λn

1− 1
β∑

j=1

deg(vj)−2∑
i=1

l(Ti)


 e2θn

≤ E

[
E
[
e−θl(Ti)

]deg vj−2
] 1

4
λn

1− 1
β

e2θn

≤ E

[
e−cθ

1
β (deg vj−2)

]λn1− 1
β

e2θn

≤ Ce−cλ.
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To recover the desired bound, we then use monotonicity to write

P
(
Diam(T ) ≥ λn1− 1

β

∣∣∣ l(T ) = n
)

≤ P
(
Diam(T ) ≥ λn1− 1

β

∣∣∣ l(T ) ∈ [n, 2n]
)

=
P
(
l(T ) ∈ [n, 2n]

∣∣∣ Diam(T ) ≥ λn1− 1
β

)
P
(
Diam(T ) ≥ λn1− 1

β

)
P(l(T ) ∈ [n, 2n])

=
Ce−cλλ

−1
β−1n

−1
β

n
−1
β

≤ Ce−cλ,

so that the remaining conditions of Assumption 6.0.1 are satisfied, with R = d =
β
β−1 , so that sdα = sRα = β(α−1)

β−1 .

The volume growth exponent of α(sdα∧1)
(α−1)(fvα∧1) is therefore given by

ddec
α =


βα
β−1 if β

β−1 <
1

α−1 ,

α
α−1 if β

β−1 ≥
1

α−1 .

In the first case, the exponent of β
β−1 comes from the volume growth of the

inserted β-stable trees, and this is compounded by a factor of α coming from the

effect of having lots of fragments attached to the backbone of the underlying tree

T∞α . In the latter case, the inserted trees do not contain enough volume to have

an effect and so we pick up a factor of 1
α−1 along the backbone of T∞α , and then a

factor of α from considering all the fragments, just as if we were working directly

with T∞α as in Section 6.7.1.

The random walk exponents can be calculated using the results of Section

6.6 and are given in Table 6.1.

Note that we would expect the same results if we inserted a tree with n

vertices in total, rather than n leaves, at a vertex of degree n, since the leaves

asymptotically make up a constant proportion of the mass of the tree.

6.7.4 Outerplanar maps: inserting dissected polygons

Let Pn be a convex polygon inscribed in the unit disc whose vertices correspond

to the nth roots of unity. A dissection of Pn is obtained from Pn by inserting a

collection of chords that make up distinct diagonals of Pn: see Figure 6.3.

If µ is a critical probability measure on the set {0, 2, 3, 4, . . .}, we can define

a Boltzmann measure on dissections of the n-gon, Pµn, by setting

Pµn(D) ∝
∏

F∈Faces(D)

µdeg f−1.
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root edge root edge

Figure 6.3: A dissection and its inscribed tree and looptree.

For convenience we will assume that the support of µ is the entirety of the set

{0, 2, 3, 4, . . .}. The measure Pµn is then well-defined under sensible assumptions on

the tail of µ.

Letting Dµ
n denote a random Boltzmann-dissection sampled according to Pµn,

Dµ
n is now a natural candidate for decoration at a vertex of degree n in T∞α . We

will view Dµ
n as a metric space (rather than as an embedding in the plane) by giving

each edge of Dµ
n length 1. To establish exponents for the diameter and two-point

function of Dµ
n, we will use a bijection between dissections of Pn and trees with n

vertices, as illustrated in Figure 6.3. It is shown in [Kor14, Proposition 1.4] that, if

Tn is the tree obtained from Dn in this way, then Tn has the law of a Galton-Watson

tree with offspring distribution µ and conditioned on having n leaves.

If Tn is the tree obtained from Dn in this way, the main observation that

will allow us to control the diameter and two-point function of Dµ
n is that Dµ

n looks

a lot like Loop(Tn), as pointed out in [CK14, Section 4.3]. This can be seen from

Figure 6.3.

In [CK14, Section 4.3], the authors prove a scaling limit result for Dµ
n by

defining a correspondence between Dµ
n and Loop(Tn) to consist of all points (a, x) ∈

Loop(Tn)×Dµ
n such that a and x are contained within a common edge in Dµ

n. The

authors then make the observation that if (a, x) and (a′, x′) are in correspondence,

then

|dDµn(x, x′)− dLoop(Tn)(a, a
′)| ≤ Diam(Tn).

This is because a geodesic γa,a′ from a to a′ in Loop(Tn) is obtained by concatenating

a series of subsets of the various loops that fall “between” a and a′, and similarly a

geodesic Γx,x′ from x to x′ in Dµ
n is obtained by concatenating a series of boundary

segments of the faces that fall “between” x and x′. These loops and faces are

naturally in correspondence, and such that that the contribution of a given loop
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to the length of γa,a′ differs from the contribution of the corresponding face to the

length of Γx,x′ by at most 1 (see Figure 6.3 for an illustration). Since the number

of such loops/faces on a given path is bounded by Diam(Tn), we obtain the result.

We can also make a similar observation regarding resistance on Dµ
n, in par-

ticular to compare RLoop(Tn)(a, a
′) and RDµn(x, x′) as above. The principle is similar,

but now we have to take account of the fact that in Dµ
n, neighbouring faces share

edges, whereas in Loop(Tn), neighbouring loops only share vertices. However, since

sharing entire edges rather than vertices can only reduce resistance, it should be

clear by the same logic as above that

RDµn(x, x′) ≤ RLoop(Tn)(a, a
′) + Diam(Tn).

To prove a bound in the other direction, first let F be a face that lies on

the “path” from x to x′ in Dµ
n. Let e and e′ be the edges of the boundary of F

that are respectively closest to x and x′ in Dµ
n, in the sense that they are also on

the boundary on the next face on the “path” from x to x′. Now consider the new

graph obtained by contracting all such edges to a single point (i.e. by identifying

their endpoints, or equivalently updating the edge length to zero). Call this graph

Dµ
n. Dµ

n looks more like a looptree except that now it is possible to have more than

two loops glued at the same vertex. In particular, Dµ
n and Loop(Tn) will both have

the same underlying tree structure, but the loops in Dµ
n along with the appropriate

loop segments will be shorter in Dµ
n, so that R

Dµn
(x, x′) ≤ RLoop(Tn)(a, a

′). However,

by construction, the overall difference between the appropriate lengths in each loop

can be at most 3, so that

RDµn(x, x′) ≥ R
Dµn

(x, x′) ≥ RLoop(Tn)(a, a
′)− 3Diam(Tn).

To control the volume of Dµ
n, we also make the observation that the number

of edges in Dµ
n is equal to the number of vertices of Tn. Also, since resistance and the

shortest-path distance on looptrees can differ by at most a factor of 2, we therefore

have the following bounds. In what follows, we assume that µ has β-stable tails for

some β ∈ (1, 2], in that µ(k) ∼ k−(β−1) as k →∞, or otherwise take β = 2 if µ has

finite variance. We can also recover analogous results in the finite variance case by
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taking β = 2 in what follows, even if the tails aren’t precisely of the given form.

P(Vol(Dµ
n) ≥ nλ) ≤ P(|Tn| ≥ nλ | l(Tn) = n)

P
(
Vol(Dµ

n) ≤ nλ−1
)
≤ P

(
|Tn| ≤ nλ−1

∣∣ l(Tn) = n
)

P
(
Diam(Dµ

n) ≥ n
1
β λ
)
≤ P

(
Diam(Loop(Tn)) + Diam(Tn) ≥ n

1
β λ
∣∣∣ l(Tn) = n

)
P
(
Diam(Dµ

n) ≤ n
1
β λ−1

)
≤ P

(
Diam(Loop(Tn))− Diam(Tn) ≤ n

1
β λ−1

∣∣∣ l(Tn) = n
)

P
(
Diamres(D

µ
n) ≥ n

1
β λ
)
≤ P

(
Diam(Loop(Tn)) + Diam(Tn) ≥ n

1
β λ
∣∣∣ l(Tn) = n

)
P

(
Diam(Dµ

n) ≤ 1

2
n

1
β λ−1

)
≤ P

(
Diam(Loop(Tn))− Diam(Tn) ≤ n

1
β λ−1

∣∣∣ l(Tn) = n
)
.

In fact the control on Diam(Tn) is not strong enough to give stretched exponential

decay, with

P
(
Diam(Loop(Tn)) ≥ n

1
β λ−1

∣∣∣ l(Tn) = n
)
� n−β

in the case of stable tails, although the decay is at least o(λ−d(α−1) in this case. We

will only obtain stretched exponential decay when µ also has stretched exponential

tails. In this case d = R = 2, and v = 1, so we get the results in the table. We also

give conjectural results for the case of β-stable tails, which would hold if we could

prove Conjecture 6.8.2.

We deduce that d = R = β, and v = 1, so that

sdα = sRα = β(α− 1), fvα = α.

which give the results in Table 6.1 when we make the appropriate substitutions.

6.7.5 Critical Erdös-Rényi

Motivated by the example of the IIC on the UIHPT, we can also consider a model

where we insert a connected component of an Erdös-Rényi graph in the critical

window, by which we mean the graph G(n, p) such that p = 1
n + t

n
4
3

for some

t > 0 (see e.g. [Gol20, Section 2] for an introduction to this model and the critical

window).

It is well-known that, at criticality, a connected component of G(n, p) looks

roughly like a critical Galton-Watson tree with an O(1) number of “surplus” edges.

Heuristically, this can be explained as follows: let C denote a connected component of

G(n, p), and let v0 ∈ C. We consider the “exploration tree” rooted at v0, constructed

as follows: first let v0 be the root. Then consider all vertices connected to v0 and

let these form the next generation of the tree. The number of such vertices is

Binomial(n − 1, p); denote this number M1. Then, given a vertex v1 in generation

one, we can repeat this process to find all the new neighbours of v1, and define these
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to be the offspring of v1: the number of offspring is therefore Binomial(n−1−M1, p).

We can repeat this process inductively to explore the cluster in a depth-first way:

this will produce a spanning tree of the cluster, and as long as the total number of

vertices explored remains small compared to n, it is fairly accurate to approximate

the offspring distribution of this tree by a Binomial(n − 1, p) distribution. At any

stage, there is a small probability that a given vertex v also has some neighbours

that correspond to vertices that have already been discovered, so that in order to

reconstruct C from its spanning tree we must add a few extra edges.

To avoid ambiguities, for this construction we will fix t > 0, set pn = 1

n
3
2

+ t
n2

and let Gn have the law of the largest component of G(n
3
2 , pn) conditioned on having

n vertices (by [Ald97, Corollary 2], n is therefore on the natural scale to be the size

of the largest cluster of G(n
3
2 , pn)). Using the tree viewpoint, we can relate the

volume, two-point function and diameter of critical connected Erdös-Rényi graphs

to give the following results.

Proposition 6.7.1. Take Gn as above. Then there exist constants c, c′ ∈ (0,∞)

such that for all n ≥ 1, λ ≥ 1:

(i) P(Diam Gn ≥ λ
√
n) ≤ e−cλ2.

(ii) P(DiamresGn ≥ λ
√
n) ≤ e−cλ2.

(iii) P
(
dU (Gn) ≥

√
n
)
≥ c > 0.

(iv) P
(
RU (Gn) ≥

√
n
)
≥ c > 0.

(v) P(Vol(Gn) ≥ λn) ≤ P(Vol(Gn) ≥ λ+ n) ≤ Ce−cλ
1
3 .

(vi) P(Vol(Gn) ≥ n− 1) = 1.

Proof. We just sketch the proof. For part (i) the result follows by repeating the

proof of the height bound of [AB19, Theorem 1.1] (it does not quite follow directly

since our exploration tree is not quite a critical Galton-Watson tree, but we are close

enough that the proof still works, and being slightly subcritical is intuitively helpful

for this bound anyway since this corresponds to more of a condensation regime).

This also give part (ii) since the resistance is upper bounded by the graph distance.

For part (iii), we first condition on having zero surplus, which has strictly positive

probability in the limit. In this case the exploration tree is again close to a critical

Galton-Watson tree (its law is not tilted, since if the surplus is zero we do not have

to count the options for where we can add extra edges), and the resistance is equal

to the graph distance. The result then follows since the offspring distribution of the

tree is close to Poisson(1), which corresponds to a uniform labelled Galton-Watson
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tree, and in this case the it is known that on rescaling by
√
n the two-point function

satisfies P
(
dU (Tn) = bλ

√
nc
)
∼ λ√

2n
e−

λ2

2 as n→∞ (e.g. see [FDP06]).

To control the volume (i.e. number of edges) we control the surplus. To do

this, note that given a vertex vk in the exploration tree, there can only be extra

edges joining within the same generation, or to an adjacent generation (otherwise

this disrupts the generation structure of the tree). Therefore, if vk is a vertex

of the tree and Dm denotes the mth generation of the tree, we can introduce a

Binomial(|D|vk||+ |D|vk|−1|, pn) random variable which we denote Svk , and the total

surplus is upper bounded by summing these over all vertices in the tree. Then, again

after taking care of the necessary details that our tree is not quite a critical Galton-

Watson tree, we have by [ABDJ13, Theorem 1.1] that P(supm |Dm| ≥
√
nλp) ≤ λ2p.

Then, P
(
Binomial(2n

3
2λp, 1

n
3
2

+ t
n2 ) ≥ λ

)
≤ ce−cλ

1−p
. We take p = 1

3 . On the

complement of these events, the surplus is less than λ, so Vol(Gn) ≤ n + λ, which

gives part (iv).

Remark 6.7.2. The rescaled two point function for a uniform critical random tree

in fact converges to a Rayleigh distribution. This is the same limit as that appearing

in Pearson’s problem [Pea05] on p.1.

We therefore deduce that d = R = 2, v = 1, and the fundamental exponents

take the following values:

fvα = α, sdα = sRα = 2(α− 1).

Rather than forcing all vertices of the inserted critical graph to be boundary

vertices, we could also consider inserting an independent copy of G(nβ) at a vertex of

degree n, for some β ≥ 1 and uniformly choosing n distinct vertices to be boundary

vertices. In this case, it follows from Proposition 6.7.1 that d = r = 2
β and v = β,

so that

fvα =
α

β
, sdα = sRα =

2(α− 1)

β
.

Note that if β > 2, the local geometry always dominates and we never see the tree

geometry.

Remark 6.7.3. We have not written the details, but one would expect the same

result on taking a critical configuration model in place of the Erdös-Rényi graph.

We also anticipate that we could insert a β-stable graph, as considered in [GHS18,

CKG20] and we would get the same results as for inserting β-stable trees by making

similar arguments to the Erdös-Rényi example considered above.
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6.7.6 Sierpinski triangle

In order to gain insight into the effect of inserting fractal-type graphs, one could also

consider the exponents obtained when inserting a Sierpinski triangle. Letting T∆
n be

the nth level approximation to the Sierpinski triangle as defined in [Bar98, Section

2] (also depicted in Figure 6.4), it is always the case that the boundary length of

T∆
n is equal to 3 · 2n: therefore, if m ∈ (3 · 2n, 3 · 2n+1), one would have to do

appropriate “surgery” to the graph Gn+1 in order to define an appropriate version

of “the Sierpinski triangle with boundary length m”. We will not do this is explicitly

here, and just give the appropriate volume bounds for the level n approximation T∆
n .

(a) T∆
1 (b) T∆

2 (c) T∆
3

Figure 6.4: Sierpinski triangles

We can use the self-similarity of the Sierpinski triangle to study resistances,

volumes and diameters of T∆
n as well, and give the (deterministic) results for these

in Table 6.2. The effective resistance bound can be obtained using the ∆ − Y

transformation (e.g. [LP16, 2.3.III]): see also [Bar98, Section 2] for more explicit

computations. Here we assume that 1 and 2 are the labels of two distinct extremal

corners of T∆
n .

Boundary Volume d(1, 2) Reff(1, 2) Diameter Resistance diam

3 · 2n 3n+1 2n 2
3

(
5
3

)n
c32n c4

(
5
3

)n
m c1m

log 3
log 2 1

3m c2m
log 5−log 3

log 2 c′3m c′4m
log 5−log 3

log 2

Table 6.2: Volumes and distances in the nth level Sierpinski gasket, in terms of m
and n, where m is the boundary length.

We can also (crudely) bound the diameters using the bound for the distances

between extremal corners in the table: since to go from any point x ∈ T∆
n to any

other point y ∈ T∆
n we have to pass through at most two triangles at a specific level

m ≤ n (once on the “way up” from x, then once on the “way down” to y), we get

that

Diam(T∆
n ) ≤ 2

2

3

n∑
m=0

2m ≤ c32n, Diamres(T
∆
n ) ≤ 2

2

3

n∑
m=0

(
5

3

)m
≤ c4

(
5

3

)n
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Since the graphs are deterministic, the functions giving the polynomial tail

decay in Asumption 6.0.1 are all zero for sufficiently large λ, so we have that d = 1,

R = log 2
log 5−log 3 , v = log 3

log 2 , and obtain the following exponents:

sdα = α− 1, sRα =
(α− 1) log 2

log 5− log 3
, fvα =

α log 2

log 3
.

We then obtain the results in Table 6.1 by substituting into the expressions given

in Section 6.6.

We also note that the logarithmic terms appearing in the statements of

Propositions 6.3.9, 6.4.12 and 6.5.1 would not need to be included, since the in-

serted graphs are deterministic.

6.7.7 Supercritical Erdös-Rényi or the complete graph

As well as critical Erdös-Rényi, one could also insert supercritical Erdös-Rényi

graphs, as well as the complete graph. It is well-known that, if G(n, p) is the

Erdös-Rényi graph on n vertices and p = λ
n for some λ > 1, then the largest con-

nected component has order n vertices, order n2 edges, and diameter of order log n

(e.g. see [RW10, Theorem 1.1]). The complete graph on n vertices similarly has n

vertices, order n2 edges, diameter 1 and resistance diameter of order 1
n .

To fit these models into the framework of this chapter, we therefore effec-

tively want to take d = R = ∞, and v = 2. Some care is needed to check that we

can really do this, but we can dominate log n by nδ for some sufficiently small δ,

and this also gives us very good control on the tail decay required for Assumption

6.0.1 (D). Additionally, in sufficiently supercritical regimes resistance will actively

stochastically decrease with n which is clearly different to the assumptions of this

chapter; however, since “most” vertices are of low degree it is clear that asymptoti-

cally resistance should still add up in the following way.

To define this model in the supercritical case, we let Gn be the largest con-

nected component of G(Cn, p), conditioned to have n vertices, where C ≥ 1 is an

appropriately chosen constant. Alternatively, we can let Gn be the complete graph

on n vertices.

Setting d = R = ∞ and v = 2 therefore gives the results in the final line of

Table 6.1.

6.8 Relaxing the assumptions

As remarked in the introduction, we believe that the stretched exponential decay

in items (D) and (R) of Assumption 6.0.1 should not really be necessary and are

endeavouring to weaken this assumption. The only place this assumption is required
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is to prove the decorated height bound in Proposition 6.3.9. In this section we

present some heuristics for proving that

P
(
Heightdec(T dec) ≥ n log n

)
≤ cn

−
(
fdα
α
∧ 1
α−1

)

under the weaker assumption given below.

Firstly, recall that fdα = dα ∧ md, s
d
α = d(α − 1) ∧ md, and we proved a

complementary lower bound in Proposition 6.3.11, under the weaker assumption

(D′), that

P
(
Heightdec(T dec) ≥ n log n

)
≥ cn

−
(
sdα∧1
α−1

)
.

Note that

sdα ∧ 1

α− 1
= d ∧ 1

α− 1
∧ md

α− 1
,

fdα
α
∧ 1

α− 1
= = d ∧ 1

α− 1
∧ md

α
.

Therefore, the two exponents are always equal unless md < dα ∧ α
α−1 , which does

not occur in the examples considered in Section 6.7, at least, and is certainly a

weaker assumption than the stretched exponential decay in Assumption 6.0.1. Note

that the case when md < dα ∧ α
α−1 corresponds to the case where there is “more

randomness” coming from the inserted graphs than the underlying tree structure,

and therefore we would not expect to be able to get as much insight from the

underlying Galton-Watson tree anyway.

We believe it should be possible to establish the tail decay under the following

assumption (this was also given as Assumption 6.0.4 in the introduction to this

chapter, but we restate it here for convenience).

Assumption 6.8.1 (same as Assumption 6.0.4).

(D′′) Metric growth. There exists d ≥ 1 such that EITHER:

(i) There exists constants c, C ∈ (0,∞) and ε > 0 such that

P
(
dUn ≥ n

1
d

)
≥ c > 0, P

(
dUn ≥ λn

1
d

)
= O(λ−d(α−1+ε)),

as λ→∞, uniformly in n ≥ 1. OR:

(ii) There exists md > 0 and constants c, C ∈ (0,∞) such that for all n ≥ 1, λ ≥ 1,

cλ−md ≤ P
(
dUn ≥ λn

1
d

)
≤ Cλ−md .

(R′′) Resistance growth. There exists R ≥ 1 such that EITHER:
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(i) There exists constants c, C ∈ (0,∞) and ε > 0 such that

P
(
RUn ≥ n

1
R

)
≥ c > 0, P

(
RUn ≥ λn

1
R

)
= O(λ−R(α−1+ε)),

as λ→∞, uniformly in n ≥ 1. OR:

(ii) There exists mR > 0 and constants c, C ∈ (0,∞) such that for all n ≥ 1, λ ≥ 1,

cλ−mR ≤ P
(
RUn ≥ λn

1
R

)
≤ Cλ−mR .

(V′′) Volume growth. There exists v ≥ α such that EITHER:

(i) There exist constants c, C ∈ (0,∞) and ε > 0 such that

P(Vol(Gn) ≥ nv) ≥ c > 0, P(Voln(Gn) ≥ λnv) = O(λ
−(α−1+ε)

v ),

as λ→∞, uniformly in n ≥ 1. OR:

(ii) There exists mv > 0 and constants c, C ∈ (0,∞) such that for all n ≥ 1, λ ≥ 1,

cλ−mv ≤ P(Vol(Gn) ≥ λnv) ≤ Cλ−mv .

Before outlining the heuristics for proving the result under this assumption,

we briefly recall the setup of Section 6.3.

Let T a Galton-Watson tree as in Section 6.3, and let T dec be the rooted

decorated tree obtained by replacing each vertex with an independent copy of G

with given boundary size, and fusing along the edges of T , exactly as described for

T∞α in earlier sections. Given such a construction, we define the decorated height of

T dec
α by

Heightdec(T dec
α ) = sup

x∈T dec
α

ddec
α (ρdec

α , x).

The path in T dec
α joining ρdec

α to the point achieving maximal decorated height

corresponds in a natural way to a path in T joining ρ to a leaf (if this point is not

unique, we will take the leftmost path). Analogously with the notation above we

call this the decorated spine and denote this by sdec
1 , . . . , sdec

Hdec , where Hdec denotes

the length of this decorated spine. We also let ξdec
n denote the number of offspring

of sdec
n .

Note in particular that Hdec gives the length of the decorated spine in the

underlying tree, rather than the length with respect to the decorated metric, so

Hdec ≤ H.

We provide heuristics for the following result (in fact we also think that the

logarithmic correction should not be necessary in the second case below, but this is
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a secondary issue).

Conjecture 6.8.2. There exists a constant c ∈ (0,∞) such that, if fdα <
α
α−1 , then

P
(
Heightdec(T dec) ≥ n

)
≤ cn

−
(
fdα
α
∧ 1
α−1

)
= cn

−fdα
α

If instead fdα ≥ α
α−1 , then

P
(
Heightdec(T dec) ≥ n(log n)

α

fdα

)
≤ cn

−
(
fdα
α
∧ 1
α−1

)
= n

−1
α−1 .

The following lemma can be proved rigorously, similar to the bound for the

supremal volume in Proposition 6.3.14.

Lemma 6.8.3. There exists a constant c <∞ such that

P

(
sup
v∈T

Diam G(v) ≥ x
)
≤ cx−

fdα
α

To prove Conjecture 6.8.2, we would like to condition first on the height of

the T , which should be comparable to the length of the decorated spine (and is

an upper bound for it regardless), and then understand the diameter of the graphs

inserted at typical vertices on this spine.

The proof of Lemma 6.8.3 relies on the fact that, for a typical (e.g. uniform)

vertex v ∈ T , P(Diam G(v) ≥ x) ≈ cx−f
d
α . Therefore, if the height of the under-

lying tree is h, we expect the volume of the tree to be approximately h
α
α−1 , and

supv∈T Diam G(v) will be approximately h
α

fdα(α−1) , by a union bound.

On the other hand, if v is a typical (e.g. uniform) vertex on the decorated

spine, and P(Diam G(v) ≥ x) ≈ cx−
fdα(α−1)

α , then again we expect the maximal

diameter of a graph on this decorated spine to be roughly of order h
α

fdα(α−1) , again

using a union bound as an approximation (though of course this is not a lower

bound). If the tail decay was heavier than O(x−
fdα(α−1)

α ), we would correspondingly

expect the maximal diameter on the decorated spine to also be of higher order,

which would contradict the fact that it is upper bounded by supv∈T Diam G(v).

Moreover, just as the size-biased bound for the offspring distribution on the

Williams’ spine only holds up to a point depending on the length of the Williams’

spine (cf Proposition 6.3.5), we would also expect that the bound P(Diam G(v) ≥ x) ≈

cx−
fdα(α−1)

α for a typical vertex v on the decorated spine also only holds up to the

point where x is of order h
α

fdα(α−1) . Otherwise, the same union bound heuristics

would give that

P

(
sup
v∈T

Diam G(v) ≥ h
α

fdα(α−1)λ

∣∣∣∣ H = h

)
≈ cλ−

fdα(α−1)

α .
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However, a rigorous application of Lemma 6.8.3 along with results of [Kor17] closely

connecting the height and volume of a discrete Galton-Watson tree gives that

P

(
sup
v∈T

Diam G(v) ≥ h
α

fdα(α−1)λ

∣∣∣∣ H = h

)
≤ cλ−fdα .

It is difficult to prove a precise bound for P(Diam G(v) ≥ x) for a typical

vertex v on the decorated spine since the degrees of vertices on the decorated spine

are not independent. In any case, what we would really need to prove is the following

conjecture. The point is that, assuming P
(
Diam G(sdec

i ) ≥ x
)
≈ x

−fdα(α−1)

α in some

appropriate sense for a typical spinal vertex sdec
i , then conditional on H = h the

decorated diameter should be approximately h

(
fdα(α−1)

α
∧1

)−1

.

Conjecture 6.8.4. (i) If fdα(α−1)
α < 1:

P

Hdec∑
i=1

Diam G(sdec
i ) ≥ h

(
fdα(α−1)

α
∧1

)−1

λ

∣∣∣∣∣∣ H = h

 ≤ cλ−fdαα .

(ii) If fdα(α−1)
α = 1:

P

Hdec∑
i=1

Diam G(sdec
i ) ≥ λh

(
fdα(α−1)

α
∧1

)−1

log h

∣∣∣∣∣∣ H = h

 ≤ cλ−fdαα .

(iii) If instead fdα(α−1)
α > 1:

P

Hdec∑
i=1

Diam G(sdec
i ) ≥ h

(
fdα(α−1)

α
∧1

)−1

λ

∣∣∣∣∣∣ H = h

 ≤ cλ−fdαα log λ.

Given this, Conjecture 6.8.2 would follow from applying Lemma 6.2.8 with

β = 1
α−1 , z =

(
fdα(α−1)

α ∧ 1
)−1

and m = fdα
α (carrying the logarithmic term through

the computation).

In order to prove Conjecture 6.8.4, we can first condition on the event that@i ≤ h : Diam G(sdec
i ) ≥ h

(
fdα(α−1)

α
∧1

)−1

λε


using [Kor17, Theorem 2] and Lemma 6.8.3 above (this step is rigorous).

Case (i) corresponds to the case where the behaviour of the given sum is

dominated by its largest term. In cases (i) and (ii), although the terms of the sum

are not quite independent, we believe (and have informal arguments supporting this)

199



that they can be coupled with and then stochastically dominated by independent

random variables with the same tails, so that the result would follow from Lemma

6.2.2 (in fact we would get stretched exponential decay in λ).

One way to prove case (iii) would be to stochastically dominate it by case

(ii), which just has the cost of the extra log term. To do it directly, we would need

a better bound on the marginals of P
(
Diam G(sdec

i ) ≥ x
)
. By comparison with

Lemma 6.8.3, we hope that decay of x
−fdα
α would be achievable, although this would

not be uniform in h, so the argument could be quite subtle. In this case, the stated

result then follows from Markov’s inequality: firstly we can compute that

E

[(
Diam G(sdec

i )
)p ∣∣∣∣ sup

i
Diam G(sdec

i ) ≤ hλε
]
≤ c log h+ ε log λ,

and then Hölder’s inequality with p = fdα
α gives that E

[(∑Hdec

i=1 Diam G(sdec
i )
)p]
≤

hp(log h+ ε log λ).

However, it seems that a result of the form P
(
Diam G(sdec

i ) ≥ x
)
≤ x

−fdα
α

would not be uniform in h, which causes some difficulties. It seems that it may be

possible to get a sufficient result by using the fact that we can both bound the tails

for a typical term of the form Diam G(sdec
i ) in terms of the tails for the decorated

height, and also bound the tails for the decorated height in terms of the tails for a

typical term of the form Diam G(sdec
i ). We can therefore start with a “bad” bound

for one of these tails, and use these relationships to iteratively update this to a

better bound, and repeat the process as many times as we like. Making this into a

rigorous algorithm is currently work in progress.

It is also possible to get other bounds on the exponent for example using

that the decorated height is upper bounded by
∑H

i=0 supv∈Gi Diam G(v), where Gi

is generation i in the tree, but we do not think this gives the right exponent so have

not pursued this here.
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Chapter 7

Outlook

In this chapter we comment briefly on future research directions leading on from

the results of this thesis.

7.1 FIN diffusions on stable trees: trapping at nodes

Although this is not a planar graph, in the model of Chapter 6 one could also imagine

inserting a copy of the complete graph Kn at a vertex of degree n. By emulating

the proof of the usual stable tree invariance principle [Duq03, Theorem 3.1], one

imagines that it should be possible to show that, if Tn is a critical Galton-Watson

tree conditioned to have n vertices, T com
n is formed from Tn by inserting complete

graphs at every vertex as described in Chapter 6, dn is the graph distance on T com
n ,

and µ̂n(v) is the measure defined on Tn by µ̂n(v) = deg(v) for all v ∈ T com
n , then,

up to constants,

(Tn, n
1− 1

αdn, n
−1
2α µn)

(d)→ (Tα, d, µ̂)

in the Gromov-Hausdorff-Prohorov topology as n → ∞, where µ̂(t) = ∆2
t for t ∈

[0, 1], and ∆1 = Xexc
t −Xexc

t− .

The measure µ̂ is singular with respect to the uniform volume measure µ

on stable trees, which is supported on the leaves, and is instead reminiscent of

that associated with Fontes-Isopi-Newman (FIN) diffusions. FIN diffusions were

first introduced in [FIN02] in one dimension and provide a model for random walks

subject to a polynomial trapping mechanism controlled by an appropriate FIN mea-

sure. FIN diffusions have since been studied on a wider class of graphs [CHK19]

and the natural extension to trees involves trapping in the leaves. Mathematically

this is achieved by weighting the measure µ by a random trapping factor, so that

the resulting FIN measure is absolutely continuous with respect to µ. This kind of

diffusion arises as the scaling limit of the Bouchaud trap model on random trees, for

example [CHK17]. In the model suggested above, one would instead get trapping
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at hubs, which is qualitatively different behaviour. Moreover, it should be possible

to adjust the measure to end up with the degree to some power other than 2 and

obtain a wider class of diffusions.

The model of inserting the complete graph above behaves differently with

respect to resistance since the resistance across Kn behaves asymptotically like 1
n as

n→∞, so the limiting resistance metric would be again have a density with respect

to d depending on the hub sizes. This would essentially just counteract some of the

effect of the higher volume measure at hubs so it is perhaps more natural to just

directly consider trees endowed with different volume measures but the usual notion

of resistance. In this case we would expect there to be a balance between time spent

at leaves and at hubs, similarly to the discrete model in Chapter 6, so that the

limiting measure would instead be of the form Aµ+Bµ̂.

One wonders whether there are natural trapping models that lead to this

kind of behaviour and, if so, it would then be of interest to introduce this model

more thoroughly and establish some of its basic properties.

7.2 Random walks on decorated Galton-Watson trees:

the supercritical case

The work of this thesis concerns critical structures, but one could define similar

decorated models on supercritical Galton-Watson trees. On supercritical structures,

random walks are commonly superdiffusive and can display a rich array of behaviour;

in particular, they sometimes have limiting speed : that is, d(0,Xn)
n converges to a

positive limit almost surely. For example, when considering a random walk on a

supercritical Galton-Watson tree with mean m > 1 one can add a bias parameter

λ which pushes the random walk towards the root, and it was shown in [LPP96]

that there exists an explicit λc ∈ (0,m) such that the speed is non-zero if and

only if λ ∈ (λc,m), and that the speed is unimodal in this region. At first it

seems counterintuitive that adding a bias can initially increase the speed, but this is

actually due to a trapping effect in the dead ends of the tree, which initially becomes

less pronounced when the bias is increased.

It seems plausible that the introduction of extra decoration could similarly

have the potential to increase or decrease the speed of a random walk. To con-

struct a supercritical tree conditioned to survive one must replace the backbone of

Kesten’s tree with an entire supercritical tree with a related offspring distribution,

and then attach smaller Galton-Watson trees (“dangling ends”) to this core simi-

larly to Kesten’s critical construction. Adding decoration will therefore change the

scaling exponents for the times spent in the dangling ends and the time spent mov-

ing through the core; it seems plausible that in some intermediate regimes, it could
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have a greater effect on the exponent of the core so that the random walk spends

proportionally more time moving through the core of the tree and the speed might

therefore be positive.

7.3 Random walk on stable maps

As alluded to in the introduction, stable maps are a class of maps obtained when

the face weights (qk)k≥1 are appropriately “critical” and satisfy qk ∼ ck−α for some

α ∈ (1, 2) (see [Cur, Section 5.2] for more details of this model). They are of

particular interest since they describe a range of statistical mechanics models on

random planar maps. In the dense phase α ∈ (1, 3
2), stable maps have been shown

to have a decorated tree structure in which the underlying Galton-Watson tree has

exponent (α− 1
2)−1 [Ric18b, Theorem 1.2]. Random walks on stable maps have been

considered in [CM19a] where the authors show a universal upper bound of 1
3 on the

displacement exponent. Their argument involves considering an appropriate set of

cut-points and estimating the time required to pass through enough of these cut-

points along with the likelihood of a random walk actually visiting such a cut-point

at any given time.

The use of cut-points in [CM19a] implicitly takes advantage of the tree struc-

ture; another approach might be to directly decompose as in Chapter 6 and try

to estimate resistance across each component of the graph. This would also give

quenched estimates, but estimating resistance is a difficult task. Another approach

that would not necessarily require a resistance estimate might be to consider a sub-

graph that allows a sharpening of the Varopoulos-Carne bound used in [CM19a,

Lemma 1], since this is not necessarily optimal on subdiffusive graphs, e.g. by

choosing a denser subgraph.

7.4 Random walk on a critical percolation cluster

As outlined in the introduction, one example of particular interest falling into the

dense stable map regime mentioned above is that of a critical percolation cluster on

large uniform triangulations, which is conjectured to rescale to the 7
6 -stable map. A

naive approach to study resistance across “large” components would be to emulate

the logic applied by Richier [Ric18a] to study this model on the UIHPT (in some

sense an infinite component); in particular, merely trying to “imitate the same

picture” of the boundary of the critical cluster inside a loop, one might draw that

shown in Figure 7.4.

There are several problems with doing this in practice, one of which is that

to explore the interface in [Ric18a] one considers a specific boundary condition
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(a) Critical cluster boundary, figure from
[Ric18a]. (b) Imitation for a triangulation with large

simple boundary, drawing the boundary of the
open cluster only.

which ensures that one is already on the appropriate interface when one starts

the exploration. In the case of percolating a finite loop however, it seems that

an exploration process would initially be trapped inside a “smaller bubble” of the

cluster which makes this trickier.

This issue is dealt with in the paper [GHS19a] where the authors explore the

full set of percolation interfaces inside a percolated triangulation with open simple

boundary condition by flipping the state of one boundary vertex which creates a

starting point from which to start the exploration. This enables them to prove

a strong result showing that the collection of full cluster boundaries converge to

a conformal loop ensemble with parameter 6 in the scaling limit. In the case of

exploring one critical cluster, it is not necessary to explore all of the interfaces since

we are only interested in the part of the critical cluster that is connected to the

boundary of the loop.

It is also worth noting that, at least in the case of site percolation, there is a

duality between open and closed clusters at criticality since pc = 1
2 . This is clearly

affected by the boundary condition but is reflected in the result of Richier in that we

see a white looptree in the middle of the cluster, and this has the same (probabilistic)

structure as the black (half) looptree appearing along the boundary. This duality

means that the number of open crossings directly “across” a large loop should be

an order 1 random variable (since an open crossing impedes a closed one; this bias

is more pronounced for bond percolation where pc <
1
2 on random triangulations

[BCM19]). In other words, there is a good chance that the vertices contained in the

critical cluster do not extend to the “centre” of the map.

If the picture in Figure 7.4 could be made rigorous then this gives rise to

a fractal approximation by repeating this construction inside the resulting large

faces, as indicated Figure 7.4. On deleting the dead-ends, this is then similar to a

randomised diamond fractal (see [HK10, Alo19] and references therein for more on
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(a) (Almost) critical bond percolation in the
square conformally mapped to the unit disk,
with blue boundary condition. Interfaces
are in green. Image by Jason Miller.

(b) Imitation for a triangulation with large
simple boundary, drawing the boundary of
the open cluster only.

Figure 7.2: Comparison with a simulation.

diamond fractals) and therefore one might hope to study resistance across a large

component by studying resistance across randomised diamond fractals. One would

hope that the resistance has non-trivial polynomial scaling and therefore it should

fall into the framework of Chapter 6.

(a) Deleting the dead ends.
(b) Repeating inside a large
face.

(c) Deleting new dead ends.

Figure 7.3: Diamond fractal construction.

We also briefly remark that a random walk on a critical percolation cluster

should be significantly easier to study on hyperbolic triangulations: in this setting,

the cluster is conjectured to rescale to the Brownian CRT [Cur, Open question

12.12]. In this setting, it seems reasonable that the resistance metric should also

rescale, so that one can recover a full scaling limit for the random walk as well as

the cluster.
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7.5 Spectral properties of decorated Galton-Watson trees

Another question one could investigate is whether one can prove spectral asymp-

totics similar to those presented in Section 4.5 for decorated Galton-Watson trees,

saying on taking an appropriate scaling limit when conditioning the underlying tree

to have n vertices. Working in the discrete setting presents extra challenges anyway

because it is more likely that there will be repeated eigenvalues, but when decom-

posing analogously to Proposition 4.5.2 there are also extra terms to consider since

we cannot necessarily ignore the contributions of graphs inserted on the spine of the

tree. This could allow for more interesting behaviour, however, since when iterating

the result of Proposition 4.5.2 we would have to keep track of an extra term at each

level rather than just the “error term”.

206



Bibliography

[AB19] L. Addario-Berry. Most trees are short and fat. Probab. Theory Related

Fields, 173(1-2):1–26, 2019.

[ABDJ13] L. Addario-Berry, L. Devroye, and S. Janson. Sub-Gaussian tail bounds

for the width and height of conditioned Galton-Watson trees. Ann.

Probab., 41(2):1072–1087, 2013.

[Abe14] Y. Abe. Cover times for sequences of reversible Markov chains on ran-

dom graphs. Kyoto J. Math., 54(3):555–576, 2014.

[AD09] R. Abraham and J-F. Delmas. Williams’ decomposition of the Lévy con-

tinuum random tree and simultaneous extinction probability for popu-

lations with neutral mutations. Stochastic Process. Appl., 119(4):1124–

1143, 2009.

[AD15] R. Abraham and J.-F. Delmas. An introduction to Galton-Watson trees

and their local limits. ArXiv e-prints, June 2015.

[ADH13] R. Abraham, J-F. Delmas, and P. Hoscheit. A note on the Gromov-

Hausdorff-Prokhorov distance between (locally) compact metric mea-

sure spaces. Electron. J. Probab., 18:no. 14, 21, 2013.

[AK16] S. Andres and N. Kajino. Continuity and estimates of the Liouville

heat kernel with applications to spectral dimensions. Probab. Theory

Related Fields, 166(3-4):713–752, 2016.

[Ald91a] D. Aldous. Asymptotic fringe distributions for general families of ran-

dom trees. Ann. Appl. Probab., 1(2):228–266, 1991.

[Ald91b] D. Aldous. The continuum random tree. I. Ann. Probab., 19(1):1–28,

1991.

[Ald91c] D. Aldous. The continuum random tree. II. An overview. In Stochastic

analysis (Durham, 1990), volume 167 of London Math. Soc. Lecture

Note Ser., pages 23–70. Cambridge Univ. Press, Cambridge, 1991.

207



[Ald93] D. Aldous. The continuum random tree. III. Ann. Probab., 21(1):248–

289, 1993.

[Ald97] D. Aldous. Brownian excursions, critical random graphs and the mul-

tiplicative coalescent. Ann. Probab., 25(2):812–854, 1997.

[Alo19] P. Alonso Ruiz. Heat kernel analysis on diamond fractals. arXiv e-

prints, page arXiv:1906.06215, Jun 2019.
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Probab. Stat., 46(2):338–368, 2010.

[GH18] E. Gwynne and T. Hutchcroft. Anomalous diffusion of random walk on

random planar maps, July 2018.

[GHS18] C. Goldschmidt, B. Haas, and D. Sénizergues. Stable graphs: distribu-

tions and line-breaking construction, November 2018.

[GHS19a] E. Gwynne, N. Holden, and X. Sun. Joint scaling limit of site perco-

lation on random triangulations in the metric and peanosphere sense.

arXiv e-prints, page arXiv:1905.06757, May 2019.

213



[GHS19b] E. Gwynne, N. Holden, and X. Sun. Mating of trees for random planar

maps and Liouville quantum gravity: a survey, October 2019.

[GK54] B. Gnedenko and A. Kolmogorov. Limit distributions for sums of inde-

pendent random variables. Addison-Wesley Publishing Company, Inc.,

Cambridge, Mass., 1954. Translated and annotated by K. L. Chung.

With an Appendix by J. L. Doob.

[GK99] J. Geiger and G. Kersting. The Galton-Watson tree conditioned on its

height. 1999.

[GL20] S. Ganguly and J. Lee. Chemical subdiffusivity of critical 2d percola-

tion, May 2020.

[GM17a] E. Gwynne and J. Miller. Random walk on random planar maps: spec-

tral dimension, resistance, and displacement, November 2017.

[GM17b] E. Gwynne and J. Miller. Scaling limit of the uniform infinite half-plane

quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topol-

ogy. Electron. J. Probab., 22:Paper No. 84, 47, 2017.

[GM19] E. Gwynne and J. Miller. Existence and uniqueness of the liouville

quantum gravity metric for ∈ (0, 2), May 2019.

[Gol20] C. Goldschmidt. Scaling limits of random trees and random graphs. In

Random graphs, phase transitions, and the Gaussian free field, volume

304 of Springer Proc. Math. Stat., pages 1–33. Springer, Cham, 2020.

[GRV16] C. Garban, R. Rhodes, and V. Vargas. Liouville Brownian motion.

Ann. Probab., 44(4):3076–3110, 2016.

[Gwy] E. Gwynne. Random surfaces and Liouville quantum gravity.

[Ham00] B. Hambly. On the asymptotics of the eigenvalue counting function

for random recursive Sierpinski gaskets. Probab. Theory Related Fields,

117(2):221–247, 2000.

[HK10] B. Hambly and T. Kumagai. Diffusion on the scaling limit of the critical

percolation cluster in the diamond hierarchical lattice. Comm. Math.

Phys., 295(1):29–69, 2010.

[HPW09] B. Haas, J. Pitman, and M. Winkel. Spinal partitions and invariance

under re-rooting of continuum random trees. Ann. Probab., 37(4):1381–

1411, 2009.

214
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