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Abstract

This thesis consists of three essays on information economics. It broadly deals with

understanding how and why can players be motivated to research. Researching helps us to

achieve better outcomes and make better decisions by seeking better ideas and information.

While this is a relevant question for organizations seeking to innovate, it is also applicable for

societies in general in the current times. Chapter One deals with supervisor-agent relationships

in organizations where supervisors give feedback to their employees on the ideas that they

generate. Best implementation requires the supervisor to shoot down more mediocre ideas

honestly. However, this potentially discourages the agent. The paper shows that supervisors

are only honest with agents who have a high belief in their ability to succeed. Overconfidence

is, therefore, potentially welfare improving. Chapter Two studies the effect of increased

competition in the modern digital environment on the quality of reporting by media outlets.

Two opposing forces determine how media outlets resolve the competing demands for speed vs.

accuracy – preemption and reputation. The paper shows that more competitive environments

may be more conducive to reputation building. Therefore, it is possible to have better reporting

in a more competitive world. Finally, in Chapter Three, I return to the question of innovation

in organizations. This paper solves for the optimal delegation mechanism that grants an agent

the authority to take time off from his current task to pursue creative endeavors. Driven by a

high intrinsic motivation, the agent would like to take time off for any idea. The principal, on

the other hand, would like the agent only to pursue ideas that have a high potential to succeed.

In the optimal mechanism, the principal is inefficiently harsh on the agent who gets time off.

Creativity, therefore, only receives a limited opportunity.

vii



Chapter 1

Feedback on Ideas

1.1 Introduction

Employees are often assigned tasks with two distinct phases: in the first phase, ideas

are generated; in the second phase, the best idea is implemented. Furthermore, it is common for

supervisors to give feedback to their employees in this process. For instance, a partner in a law

firm supervises an associate developing a litigation strategy, a project manager in a technology

firm supervises an engineer solving a bug in app development, and a senior designer in an

architecture firm supervises a junior designer looking for a design solution. One can trace such

examples of feedback and supervision outside of corporate organizations as well; for instance, a

professor supervising her grad student in a university.

This paper studies the supervisor’s problem. Supervisors face the following trade-

off. On the one hand, honest feedback encourages employees to discard bad ideas. On the

other hand, such feedback can be demoralizing and discourage both idea generation and effort

implementation. We build a model to describe how this trade-off shapes the supervisor’s

feedback, the employee’s effort, and the employee’s trust in the supervisor.

We consider a supervisor-agent model with two phases: experimentation and imple-

mentation. In the experimentation phase, the agent sequentially generates ideas at a cost,

receives feedback from the supervisor on her ideas, and selects an idea to implement. In the

implementation phase, the agent decides how much effort to put into completing her chosen

idea. The agent’s ability is initially unknown, and the agent and supervisor share a common

prior. Importantly, we assume the supervisor does not internalize the agent’s cost of effort. This

misalignment of preferences means that dishonesty is a possibility.1

Ability plays a central role in our model. We assume a high-ability agent both generates

1Note that if providing feedback is costly to the supervisor (such as time costs) this could realign the principal’s
and agent’s interests, thereby restoring honesty. We show that the supervisor is more (less) honest when he is more
(less) time constrained, and therefore less (more) willing to supervise.

1



and implements ideas better than a low-ability agent. As a result, the agent’s self-opinion (prior

belief about her ability) affects both the agent’s decision regarding how much to experiment and

her choice of implementation’s effort. Both of these effects, in turn, impact the supervisor’s

feedback.

There are three key findings of our model. First, the supervisor never gives a low

self-opinion agent honest feedback because doing so is demotivating: it discourages effort in

both the experimentation and implementation phases. When negative feedback discourages

further experimentation, the supervisor prefers to falsely encourage the agent to induce her to

put a higher effort in implementation instead. Therefore, negative feedback is only forthcoming

for a high self-opinion agent. Moreover, a high self-opinion agent, independent of her actual

ability, is repeatedly informed about her bad ideas and can end up being “treated more harshly”.

Second, receiving supervisor feedback magnifies performance differences between high

and low self-opinion agents. Because high self-opinion agents receive honest feedback, they

have confidence both in their ability and in the quality of their ideas, which leads to high effort.

Low self-opinion agents, in contrast, lack confidence, which leads to low effort. Receiving more

honest feedback with a higher self-opinion allows the agent not only to experiment more but

also to exert an optimal effort in implementing her chosen idea. Such an opportunity might not

be available to a slightly lower self-opinion agent because she does not receive honest feedback

as often. As a result, she has lower confidence in her idea. Therefore she might end up exerting

too much effort on a bad idea, and too little effort on a good idea.

Third, overconfidence can be welfare improving. The discontinuous change in the

supervisor’s feedback strategy as the agent incorrectly goes from a low self-opinion to a high

self-opinion gives rise to this possibility. The cost of overconfidence in ability is that it leads to

too much effort exertion. However, the benefit of overconfidence is that it can lead to honest

feedback. This benefit may outweigh the cost.

Our results find support in The Sensitivity to Criticism Test from PsychTests which

collected responses from more than 3,600 participants.2 The study revealed that those who

tended to be defensive about negative feedback had lower performance ratings and lower self-

esteem. Moreover, managers were skeptical to give feedback to workers who get defensive.

“If there was an esteem problem, both men and women seemed to block out the constructive

part of the equation and only focus on the criticism”, revealed a manager. This further meant

that the manager would rather “develop the more (talented and) mature employee,” instead of

spending time counseling those who easily got defensive. These ideas further find support in

2https://eu.usatoday.com/story/money/columnist/kay/2013/02/15/at-work-criticism-sensitivity/1921903/

2
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the situational leadership theory developed by Paul Hersey and Ken Blanchard in mid-1970s.

According to Ken Blanchard, “ Feedback is the breakfast of champions.”

Related Literature. Our paper relates to two distinct strands of literature: experi-

mentation and dynamic communication games. Within experimentation, our work falls under

models of motivating experimentation. Previous research has looked at how information can be

optimally delivered to the agents arriving sequentially to experiment (such as Kremer, Mansour

and Perry (2014) and Che and Horner (2015)) or at how information should be designed for a

single agent to motivate her to experiment (such as Renault, Solan and Vieille (2017) and Ely

(2017)).3 Among the two, our setting falls in the latter category. Ely and Szydlowski (2017),

Smolin (2017) and Ali (2017) are the closest in this respect.4 In each of these papers, a principal

must reveal information by balancing the positive effect of good news with the discouraging

effect of no or bad news. Nonetheless, these papers do not address situations where ex-ante

commitment to a disclosure rule is not possible. How the same tradeoff shapes the honesty in

strategic feedback with no commitment is our point of departure from these papers. Thus, our

model is one of communication rather than information design. To the best of our knowledge,

we are the first to study such settings without commitment.

Another point of departure is how the agent responds to honest feedback. In our

setting, the supervisor tries to motivate the agent to exert effort in both the experimentation and

implementation phases. As a consequence, honest feedback can discourage the agent at two

levels. The first is stopping experimentation too early, and the second is exerting low effort in

implementation. Introducing this novel objective makes our setting unique in feedback and

experimentation literature.

Some older papers like Lizzeri, Meyer and Persico (2002) and Fuchs (2007) have looked

at feedback in dynamic settings without experimentation and show that often it is not optimal

to provide feedback.5 Orlov (2013) considers a setting in which providing information to the

agent might benefit the principal in the short-run but may lead to long term agency costs. There

the principal designs an optimal information sharing rule along with a compensation scheme.

Boleslavsky and Lewis (2016) also study dynamic settings with commitment in which the agent

has new information every period. The principal makes sequential decisions, after which he

observes a private signal of the state. These works consider the effect of feedback in settings

with commitment but no experimentation. Our paper connects these two types of literature in a

3See Hörner and Skrzypacz (2016) for a survey on the recent advancements in experimentation and information
design.

4Some other related papers have looked at settings in which a sender commits to dynamic information design to
influence a receiver. See, for example, Bizzotto, Rüdiger and Vigier (2018).

5Both these papers are also concerned with the issue of dynamic moral hazard, and feedback plays an assistive
role to contracting.
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no-commitment setting.6

The other strand of literature related to our work is dynamic communication games. A

few papers like Aumann and Hart (2003), Krishna and Morgan (2004), Forges and Koessler

(2008) and Goltsman, Hörner, Pavlov and Squintani (2009) look at repeated communication

with an action at the end. Our setup is different in that the receiver should decide after each

round whether she wants to experiment again. Golosov, Skreta, Tsyvinski and Wilson (2014)

and Renault, Solan and Vieille (2013) are closer in this sense. They look at situations where the

receiver decides after every round of communication. However, neither has the above-stated

feature of persuasion in two phases.

In this respect, our work relates to dynamic persuasion games. Morris (2001), Honryo

(2018) and Henry and Ottaviani (2019) are a few papers that do not assume commitment by

the sender of information. The seminal paper by Morris (2001) deals with a potentially biased

advisor persuading a decision-maker to choose actions dynamically when reputation matters.

Honryo (2018) and Henry and Ottaviani (2019), however, are closer to our setting. In these

papers, a sender (entrepreneur or researcher) tries to persuade a receiver (venture capitalist

or publisher) to take a favorable action by sequentially disclosing some verifiable or costly

information. We instead have a tradeoff with cheap talk communication. In our model, when

the supervisor persuades the agent to experiment again, he inadvertently also persuades her to

exert lower effort in implementation. It is this feature that creates the main honesty/dishonesty

tradeoff in our model.

Finally, our result on the importance of beliefs in final performance is related to some

of the older research starting with Bénabou and Tirole (2002). This vast line of economics

research is itself based on the original psychology research of Bandura (1977). However, such

research usually looks at the importance of belief absent any external supervision. The presence

of a supervisor drives our results on the effect of higher self-opinion and overconfidence.7

The rest of the paper is structured as follows. In Section 1.2, we describe the basic

model. In Section 1.3, we solve two benchmark cases of the model without supervision, which

help us build intuition and solve the complete game. Then, in Section 1.4, we present the main

analysis of the game with a supervisor without commitment. We move onto presenting how our

results are qualitatively the same in a few extensions and offer new interpretations of our model

in Section 1.5. Finally, we conclude in Section 1.6.

6Orlov, Skrzypacz and Zryumov (2018) is an exception. They look at commitment and no commitment case in
a setting in which an agent tries to convince the principal to wait before exercising a real option. Again, however,
their model does not have experimentation.

7Koellinger, Minniti and Schade (2007) and Hirshleifer, Low and Teoh (2012) are two papers that empirically
show the importance of overconfidence in the context of innovation and creativity.
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1.2 The model

We consider a setting in which an agent (she) works on a project and a supervisor (he)

is responsible for providing feedback. The project involves two distinct stages that proceed

sequentially. The first stage is planning or experimenting with ideas, and the second stage is

execution or implementation of a chosen idea. The agent is responsible for both experimenting

with and implementing ideas for the completion of the project. The supervisor has no com-

mitment power or verifiable signals and provides cheap talk feedback based on what he observes.

Stage 1: Idea generation. The process of idea generation involves multiple rounds t = 1, 2, . . . .

In each round t, the agent decides whether she wants to draw a new idea. The quality of an idea

is determined by its ex-ante potential to succeed θt which could be either high (h) or low (`).

The distribution of θt is given by

θt =


h with probability α,

` otherwise

where α is the ability of the agent. α ∈ {0, q} where zero is “low”, and q ∈ (0, 1) is “high”.

Therefore, only a high-ability agent can come up with a high potential idea, which happens

with probability q. The ability (unlike the idea) remains persistent throughout the play. The

agent and the supervisor only know the distribution of the ability; neither observes it. The belief

that the agent is high-ability at the beginning of round t is denoted by βt, with a common prior

β1 ∈ (0, 1) at the beginning of the game in round 1. For much of the text, we use belief and

self-opinion interchangeably. We assume that the agent possesses a low potential outside option

idea at the beginning in round 1 denoted by θ̄ = `.

Actions and timing: In each round of experimentation the agent chooses It ∈ {0, 1}.

It = 0 denotes the agent’s decision to stay in Stage 1 and experiment with another idea in round

t, i.e., not implement. There is a cost c of experimentation. It could arise from searching the

Internet, looking up for data, reading material, previous works, and seeking inspiration. The

agent produces an idea θ after privately incurring c.

Importantly, we assume that only the supervisor can see the potential of the idea

generated. The supervisor privately observes θt and chooses an announcement about its

observed potential, mt ∈ {`,h}.8 We initially assume limited recall of the agent and the

8We can also start with an arbitrary message space M but since we consider a game of cheap talk with binary
types and we focus on pure strategy equilibria, what matters are the equilibrium mappings from the supervisor type
(what potential of the ideas he observes) to the message space, i.e. what is the meaning of the messages. Here,
messages ` and h have their natural meaning and are understood as the potential of the idea developed.

5



supervisor so that they only talk about the last idea produced (and not the entire history of past

ideas). We present the analysis of perfect recall in which the supervisor is allowed to make

backdated messages in Section 1.5.2.

Alternately, the agent could decide to implement the last idea after the supervisor’s

message. This is denoted by It = 1.

Stage 2: Idea implementation. If the agent decides to move to the idea implementation stage

in t+ 1 following the last message of the supervisor mt, then her idea gets fixed at θ ≡ θt.

Actions and timing: The agent chooses effort e ∈ [0, 1] at cost e2

2 to complete the

project. The final outcome of the project, success or failure, is determined by the following

distribution function

Pr(success) =


e if θ = h,

ke if θ = ` and agent is high-ability, k ∈ (0, 1),

0 otherwise.

The probability of success is a function of the potential of the chosen idea θ, effort exerted

by the agent e and the ability of the agent α. It must be noted that only the high-ability agent

is capable of successful completion of the project. Moreover, only she may obtain a success

even with a low potential idea. Therefore, when the ability is unknown there is an incentive to

implement a low potential idea instead of experimenting again.

We will make the following assumption for mathematical convenience.

q ≥ (q + (1− q)k)2 ≥ k (A)

Intuitively, this assumption implies that in case the agent has a low potential idea, the supervisor

finds it beneficial for the agent to experiment than to implement that idea (with the maximum

possible effort of 1). Further, an additional round of experimentation with feedback is preferred

to an additional round of experimentation without feedback. We explain these ideas further

when presenting the main analysis in Section 1.4.9

Payoffs: Completion of the project yields V . If the completed project is successful, it

yields a normalized value of 1, and zero otherwise. The payoff of the agent is given by

uA = V − Tc− e2

2
9This assumption helps simplify the proofs by providing sufficient conditions. In the absence of this assumption,

all our proofs go through but will be belief dependent, which makes them less obvious and more cumbersome.
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where T is the number of rounds for which the agent has experimented. The payoff of the

supervisor is given by

uS = V.

The payoffs highlight the incentive misalignment between the agent and the supervisor. While

both players prefer success over failure, the agent alone bears the cost of experimentation and

implementation.

Once the payoffs are realized, the game ends. A summary of the timing of the game

is provided in Figure 1.1. We provide an alternate interpretation of the model and additional

examples in Section 1.5.3.

We now turn to the analysis of the game. Before we describe the behaviour of a strategic

supervisor, we describe the benchmark case in the following section without the supervisor.

We then introduce the supervisor in Section 1.4 and search for honest equilibrium feedback

strategies.

1.3 Benchmark: Single agent problem

In this section we look at a setting in which an agent works on the project without any

supervision. This preliminary analysis helps us put bounds on the behavior of the agent and

supervisor when they interact with each other. Two cases are possible – the agent does not

observe the potential of her idea, or she does so perfectly.

1.3.1 No information (NI) about θ

If the agent does not observe the potential of her idea θ from attempting experimentation

at belief β and there is no outside support, then the two alternatives available to her are as

follows:

1. The agent can choose to not experiment and directly implement the project using the

outside option idea. In this case, the agent maxe βke − e2

2 , which yields a maximized

payoff of (βk)2

2 .

2. The agent can choose to experiment once and then execute the resulting idea. In this

case, the agent maxe β(q + (1 − q)k)e − e2

2 − c, which gives a maximized payoff of
β2(q+(1−q)k)2

2 − c.

Observe that the agent does not want to try experimenting more than once in this setting

because experimenting is an additional cost without any added benefit. She will not learn the

quality of the new idea and the odds of coming up with a high potential idea remain unchanged.

The only reason she might want to experiment once is to take the gamble of coming up with
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a high potential idea. She will do so if her belief is high enough. This is illustrated in the

following condition:

expected benefit of experimentation︷ ︸︸ ︷
β2(q + (1− q)k)2

2
≥

cost of experimentation︷ ︸︸ ︷
(βk)2

2︸ ︷︷ ︸
opportunity cost

+ c︸︷︷︸
actual cost

, (C1)

which leads to the following lemma:10

Lemma 1.1. Let c < (q+(1−q)k)2−k2
2 . If there is no information about θ, there exists a unique

threshold βNI0 :=
(

2c
(q+(1−q)k)2−k2

) 1
2 such that

1. if the prior belief β1 ≥ βNI0 then the agent experiments once before finishing the project

by exerting effort β1(q + (1− q)k), and

2. if the prior belief β1 < βNI0 , the agent uses the outside option idea θ̄ = ` to finish the

project by exerting effort β1k.

In the text we will also be interested in how βNI0 responds to changes in the cost of

experimentation c. It is easy to see that a higher cost of experimentation raises this threshold as

it reduces the incentives to experiment ceteris paribus (see Appendix B for other comparative

statics result).

1.3.2 Full information (FI) about θ

When the agent can perfectly observe the outcome of each round of experimentation,

then she potentially wants to experiment at least once. This, as before, depends on her belief

about her ability. But now she uses Bayes’ rule sequentially to update her belief after observing

the potential of the idea from the latest round of experimentation in a way that

βt =


(1−q)βt−1

1−βt−1q
if θt−1 = `,

1 otherwise.

As is standard in good-news models, the agent revises her belief downwards each time

she generates a low potential idea, but her belief jumps to 1 if she generates a high potential one.

The agent enters the implementation phase and finishes the project upon observing θt−1 = h.

10A similar lemma with a belief threshold condition can also be obtained if the agent has no outside option idea.
Denote such a cutoff by βNIφ . Then it can be shown that such a cutoff exists and is given by βNIφ = (2c)1/2

q+(1−q)k .
Obviously, βNIφ < βNI0 . However, we make use of βNI0 in the main analysis – we assume away the possibility of
quitting when there is no support from a supervisor.
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At this point, she does not have an incentive to experiment further as she only bears an additional

cost without any extra benefit. She finalizes the project with the maximum effort of 1 which

leads to the project being successful with certainty, and yields a maximized payoff of 1
2 (the

previous cost of experimentation is sunk). Thus, independent of which round of experimentation

she is at if θt−1 = h then IFIt (βt = 1) = 1 is optimal with eFI(βt = 1) = 1.

On the other hand, after observing θt−1 = ` (with the agent observing low potential

ideas θt′ = ` for all the previous rounds t′ < t − 1 as well) the agent holds a belief βt < 1

about her ability. The agent again faces two choices – to implement the low potential idea or to

continue experimenting. If she chooses to implement her low potential idea then she chooses

the optimal effort to maxe βtke− e2

2 . This yields a maximized payoff of (βtk)2

2 where she exerts

effort βtk according to her belief βt. Depending on her belief βt she might be a high-ability

agent with a positive probability of success. If she chooses to experiment once more, then with

probability βtq she comes up with a high potential idea and exerts maximal effort of 1 thereafter

to finish the project (from above). With probability 1− βtq she comes up with a low potential

idea and she faces the same decision problem but with a lower belief βt+1 < βt < 1. Denote

the value function of the agent at the beginning of round t with belief βt when her last observed

outcome is θt−1 = ` by V`(βt), such that

V`(βt) = max

{
(βtk)2

2
, − c+

βtq

2
+ (1− βtq)V`(βt+1)

}
.

Assuming that the agent wants to start experimenting (the condition for which we will

outline below), we are interested in if and when the agent stops experimenting with repeated

low potential ideas. To do so, let the maximum number of rounds the agent experiments

be T . The agent at belief βT ≡ β after T − 1 rounds will attempt another final round of

experimentation knowing that irrespective of the outcome she will move to implementing her

idea in the following round. So

V`(β) = max

{
(βk)2

2
, − c+

βq

2
+ (1− βq)V`(β′)

}
= −c+

βq

2
+ (1− βq)V`(β′) ≥ (βk)2

2

where

β′ =
(1− q)β
1− βq

and V`(β′) =
(β′k)2

2
,

9



which can be rearranged to

expected benefit of experimentation︷ ︸︸ ︷
βq

2
+ (1− βq)(β′k)2

2
≥

cost of experimentation︷ ︸︸ ︷
(βk)2

2︸ ︷︷ ︸
opportunity cost

+ c︸︷︷︸
actual cost

. (C2)

Lemma 1.2 follows from condition (C2) and captures the optimal behaviour of the agent

under full information about θ. (All proofs are presented in Appendix A.)

Lemma 1.2. If there is full information about θ, the optimal decision rule of the agent IFIt is a

unique belief threshold rule such that

IFIt =


0 if θt−1 = ` and βt ≥ βFI0 ,

1 otherwise.

for c < q(1−k2)
2 . Further, the optimal effort that the agent exerts to implement her idea is given

by

eFI =


βT+1k if θT = ` ,

1 otherwise.

When c ≥ q(1−k2)
2 the agent does not experiment for any belief, and implements her outside

option idea with effort β1k.

Figure 1.2 plots the expected benefit from experimentation (LHS plotted in green) and

the cost of experimentation (RHS plotted in red) from condition (C2) for different levels of

beliefs β. It illustrates the uniqueness result of Lemma 1.2 under the cost condition c < q(1−k2)
2 .

Note that both the benefit and the costs are declining in belief about ability. A lower belief in

ability means that the agent is less likely to get a high potential idea, which reduces the expected

benefit of experimentation. At the same time, for the same reason, it induces the agent to

exert lower effort when implementing the outside option idea, thereby reducing the opportunity

cost of experimentation. However, the fixed component c of the total costs of experimentation

ensures that the costs never go down to zero, which in turn guarantees the existence of the

unique threshold.

Observe that the optimal decision rule does not depend on t but only on the belief β,

which is a function of the potential of the last observed idea. For a given set of parameters, the

maximum number of rounds the agent experiments T is only defined by the prior belief β1. The

agent wants to start experimenting with ideas if β1 ≥ βFI0 , and goes on doing so with repeated
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low potential ideas as long as the belief hits βFI0 . T is therefore determined by how far β1 is

from βFI0 .

It only remains to show how βFI0 varies with a change in parameters. Again, we’ll be

interested in how βFI0 responds to a change in the cost of experimentation. As expected, an

increase in the cost of experimentation raises the threshold belief βFI0 as the agent wants to

experiment fewer rounds now (for any prior).

1.3.3 Comparing βNI0 and βFI0

Lemma 1.3. If c < (q+(1−q)k)2−k2
2 , then both βNI0 and βFI0 exist and are unique with βNI0 >

βFI0 .

Figure 1.3 illustrates why βNI0 > βFI0 . It shows that for any belief β the value of

experimenting is always lower in the case when the agent has no information about her output

of experimentation. Experimentation is merely a gamble to try luck without any learning. This

makes the threshold for experimentation higher under the no information case.

1.3.4 An important definition

Before moving to the main analysis, we introduce some additional terminology that we

will use extensively in the following sections.

Given the no information and the full information belief thresholds βx0 for x ∈ {NI, FI},

define recursively a sequence of belief thresholds {βxi }∞i=0 such that 0 < βxi < 1 and

βxi+1 =
βxi

1−q(1−βxi ) . Starting with the threshold βx0 the sequence identifies βx1 , the belief

that leads to βx0 when the agent correctly finds out that her idea has a low potential to succeed,

and so on. Therefore, βxi+1 is the belief which when updated with the correct information about

a low potential outcome leads to the belief βxi , and this is recursively defined all the way down

to the belief βx0 .

1.4 Strategic supervisor

1.4.1 Preliminaries

The game between a strategic supervisor and an agent in Stage 1 is one of dynamic

cheap talk. The supervisor can costlessly send either of the two messages independent of the

true potential of the idea. Our solution concept is (perfect) Bayesian Equilibrium.

To define the strategies of the agent and the supervisor at any time, we would need to

define the history for each player when they are called upon to make a decision. Round t begins

for the agent after having observed the last message sent by the supervisor mt−1. Accordingly,

a realized history for the agent includes the set of all previous messages sent by the supervisor
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until and including the last message mt−1 and the sequence of past decisions made. Round t

begins for the supervisor after observing the last idea of the agent θt. Accordingly, a realized

history for the supervisor includes, in addition to the history viewed by the agent, the sequence

of all the realized idea potential from the past experimentation.11

For most of the paper, we focus on pure strategy equilibria and limited recall, i.e. we are

interested in whether the supervisor is honest with the agent when he can only send a message

about the last idea generated. A pure strategy for the supervisor in round t is a mapping from

the realized history to the message space {`,h}. The supervisor is honest with the agent if for

any realization of the history the supervisor sends a message that matches the observed potential

of the idea. If the supervisor reveals to the agent the outcome of her last experimentation in

round t starting from a prior βt the agent’s updated posterior in round t + 1 is as in the full

information case:

β`t+1 =
(1− q)βt
1− qβt

if mt = ` , and (1.1)

βht+τ = 1 otherwise. (1.2)

If the supervisor uses the same message independent of the realized history the supervi-

sor is said to lie or babble (see footnote 12). In this case the agent’s posterior belief is the same

as her prior belief. We will assume that when the supervisor is expected to lie the agent does

not consult the supervisor. This rules out the possibility of the supervisor privately learning and

not revealing to the agent the outcome, and the arising deviations.

Given our focus on pure strategies and that the two players share a common prior , the

agent and the supervisor symmetrically update their belief on the agent’s ability. If the agent

stops experimenting (and implements her last idea) because the supervisor is babbling, neither

the agent nor the supervisor have any new information. There is learning only insofar as the

supervisor is honest.

11Let It := (I1, . . . , It) and mt := (m1, . . . ,mt) be the sequence of decisions made by the agent and the
public messages given by the supervisor until round t. Define the set of histories for the agent and the supervisor at
the beginning of round t by HA

t and HS
t respectively. The history for the agent at the beginning of round t is

hAt = (It−1,mt−1) ∈ HA
t ⊂ ({0}t−1 × {`,h}t−1).

This is also the public history of the play of the game up to round t. In addition to the public history, the supervisor
observes θt := (θt, . . . , θt) and an extra decision of the agent to experiment It = 0. The history for the supervisor
at the beginning of round t is

hSt = (θt, It, h
A
t ) ∈ HS

n ⊂ ({`,h}t × {0}t × {`,h}t−1).
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1.4.2 Analysis

What feedback strategy the supervisor employs will depend on how he expects the

agent will respond to it, both in the experimentation phase and the implementation phase. We

begin by discussing the obvious babbling equilibria. Babbling is always an equilibrium for any

prior β1 in the first stage of the game. The agent does not learn about the true potential of the

last idea as the supervisor is always expected to send the same message. This is equivalent

to the single agent decision-making problem without advice and Lemma 1.1 applies. Thus,

the agent experiments once before finishing the project if β1 ≥ βNI0 , otherwise she uses the

outside option idea to finish the project. Neither supervisor type can profitably deviate from

such an equilibrium given the beliefs. The supervisor sends meaningless messages, the agent

correctly believes that there is no information content in the recommendations and she makes

her decision only on the basis of her prior belief.12

In what follows we determine if there exist any pure strategy equilibria in which the

supervisor is honest, and under what conditions. The approach will be to determine the existence

for different ranges of beliefs starting with low ones.13

Proposition 1.1. For any belief β < βFI0 , any communication strategy is an equilibrium and

none induces the agent to experiment.

From Lemma 1.3, we know that βFI0 < βNI0 . The region of beliefs β < βFI0 < βNI0 is

the one in which the agent does not want to experiment with ideas independent of how much

information is provided to her. So all communication strategies are equally informative to the

agent and are an equilibrium. The agent does not consult the supervisor in any equilibria as she

is very pessimistic about her ability to come up with a high potential idea. She does not want to

bear the cost of experimentation at such low beliefs. She simply implements her low potential

outside option idea θ̄ = ` with an effort βk.

A concern when evaluating whether the supervisor can be honest for higher beliefs will

12 When the supervisor babbles, it might be useful to think of babbling in mixed strategies rather than in pure
strategies (see description of mixed strategies in Appendix A). A supervisor babbling in mixed strategies makes
use of both the messages in equilibrium, and the posterior βt after either message remains unchanged. There
are also babbling equilibria in pure strategies. Say the agent conjectures that the supervisor only says m = h

on-the-equilibrium path. We have that Pr(m = h|θ = h) = 1 − Pr(m = `|θ = `) and a potential babbling
equilibrium. While there is no update of beliefs on path, the message m = ` is off path and we would need
to specify beliefs in the information set following this message. Such an equilibrium is supported by any belief
βoffpath ∈ [0, β1).

13The proofs will be presented in terms of a generic belief β wherever possible. The intuition is the same –
whether the agent starts out in the given range with a low potential outside option idea or whether she lands there
after continued experimentation (and ending up with a low potential idea that she is aware of), if she finds herself
there her behavior is the same. If she finds herself in any of the ranges with the knowledge that her idea was definitely
a high potential idea, then she will always immediately implement her idea by exerting effort 1.
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be what he thinks is the possibility of the agent experimenting again after a negative message.

As in the the full information case outlined in Section 1.3.2, the agent experiences a decline

in both the benefit and cost of coming up with a new idea after receiving a truthful negative

messages. With continued discouragement the agent must stop experimenting at belief βFI0 .

However, the supervisor’s payoff is contingent on the agent’s success. This implies that the

he faces a discontinuous drop in the benefit of being honest at βFI0 , whiile the cost is that the

agent exerts a lower effort in implementation. Our first main result and proposition builds on

this intuition. It defines the range of beliefs for which the cost of being honest are higher than

the benefits.

Proposition 1.2. For any belief βFI0 ≤ β < βNI1 , babbling is the unique equilibrium strategy.

The intuition for this proposition is illustrated in steps using Figure 1.4.14

We begin by showing that babbling must be a unique equilibrium strategy of the

supervisor in the range of priors βFI0 ≤ β1 < βFI1 (see Step 1 of Figure 1.4). In this range

of priors, a message about the idea being low potential if expected in equilibrium must lead

to a posterior about ability β`2 < βFI0 . At this point the agent does not want to experiment

any more (from Proposition 1.1). Moreover, after experimenting and learning that her idea

had a low potential to succeed she reduces her effort when implementing the idea. As a result,

the expected probability of success further reduces with the low potential idea. This leads the

supervisor observing a low potential idea to deviate from honesty and always send a positive

message instead.

A positive message is believed by the agent pushing up the posterior of the agent to 1.

The agent best responds by implementing the chosen idea with the maximal effort of 1, which

increases the expected probability of success with a low potential idea. The supervisor is at

the very least able to extract a higher effort on a low potential idea by deviating. Thus, no

equilibria in which the supervisor is honest will survive – babbling is unique in this range of

priors. In such a babbling equilibrium, the agent best responds by not experimenting because

this is identical to a situation with no supervisor and β1 < βNI0 (from Lemma 1.1).

Now, in Step 2 consider the range of priors which when updated with negative messages

lead to posteriors below βFI1 . The same argument as the one highlighted above holds because

such low posteriors lead the agent to implementing the low potential idea with a lower effort.

This time because the supervisor is expected to babble if updated with an honest discouraging

message. Therefore, an agent expecting information can be taken advantage of by supervisor
14Here we discuss the intuition of why honesty cannot be an equilibrium strategy but the proposition is stronger.

The argument will also hold to prove that no informative equilibria will survive in this range of beliefs. Our proof in
Appendix A presents a general proof that allows for mixed strategies as well.
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type who has only observed low potential ideas. This kills honesty and only the babbling

equilibria survive. The same logic can now be extended all the way up to all the prior beliefs

which when updated with a discouraging message about the idea lead to posteriors below βNI0 .

Below βNI0 the agent does not want to experiment when no information is provided by the

supervisor. Such is the case for all prior beliefs β1 < βNI1 (illustrated in Step 3).

The total communication breakdown between the supervisor and the agent in this range

of beliefs is driven by the fear of the supervisor to discourage the agent to the point of no further

experimentation. This is why we call this region of beliefs as those in which the agent has a

low self-opinion. When he sees that the agent has produced a low potential idea the supervisor

finds it beneficial to cajole the agent by calling it a high one, so that at the very least the agent

exerts a high effort to implement a low potential idea. But lying is counter-productive as the

agent expects the supervisor to only provide fake encouragement; neither does she consult the

supervisor nor does she experiment.

This region of beliefs βFI0 ≤ β < βNI1 where the agent has a low self-opinion reflect

pure inefficiencies in the supervisor-agent relationship. From Lemma 1.2 we know that the

agent would continue experimenting with ideas until she produces a high potential idea for

beliefs β ≥ βFI0 if she receives honest feedback. At the same time, the supervisor is also

(always) better off with repeated experimentation until a high potential idea is produced. But

neither can achieve this better outcome because the supervisor is unable to commit to honestly

revealing the result of the agent’s experimentation. Even though the agent is willing to listen to

honest feedback, her reaction to negative feedback is too extreme from the supervisor’s point

of view. If the agent must give up, he prefers she exert the maximum effort instead. Such

inefficiency will be a feature of any communication equilibrium we can construct as babbling is

unique. The supervisor cannot offer any information in equilibrium.

The extent of babbling and that of the resulting inefficiency is determined by the gap

between βFI0 and βNI1 , which is a function of the parameters. An increase in the cost of

experimentation (c) increases both these thresholds and causes babbling for even higher beliefs

(and also no experimentation for higher beliefs). An increase in the probability of generating

a high potential idea (q) reduces the region of babbling. An increase in the success rate from

implementing a bad idea (k) can decrease the inefficiency by reducing the babbling region as it

makes the agent want to experiment more without supervision by reducing βNI0 .

Note, however, the difference in the agent’s best response to such an uninformative

strategy of the supervisor. Since the supervisor babbles in the entire region of beliefs below

βNI1 , from Lemma 1.1 the agent best responds by not experimenting in the region below βNI0
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and by experimenting once in the region between βNI0 and βNI1 . This produces an added source

of inefficiency when she experiments in this region i.e. when the belief is above βNI0 but below

βNI1 . In this case, the agent exerts an inefficient level of effort to implement the idea as she is

unable to observe the potential of her idea without honest supervision. She exerts more effort

on a low potential idea and a lower effort on a high potential idea.

We are now in a position to determine if there are any honest equilibria. The possibility

of honesty opens up for beliefs β > βNI1 because the agent is now willing to experiment at least

once without the supervisor’s support. This happens in the region of beliefs between βNI0 and

βNI1 . The previous threat point for the supervisor now potentially disappears as the supervisor

can guarantee that the agent will experiment even when she is discouraged. In this sense, we call

this the region of high self-opinion. We are now in a position to analyse whether this one extra

round of experimentation (without the consultation of the supervisor) and a high self-opinion is

sufficient for the supervisor to be honest.

Proposition 1.3. For c ≥ κk−(κk)2

2 where κ ≡ k
(q+(1−q)k)2

and for all t ≥ 1,

1. truth-telling is an equilibrium strategy for the supervisor for βt ≥ βNI1 , and

2. babbling is the unique equilibrium strategy for the supervisor for βt < βNI1 .

The agent’s equilibrium strategy is given by

I∗t =


0 if mt−1 = ` and βt ≥ βNI1 , or βNI0 ≤ βt < βNI1 ,

1 otherwise.

The agent’s optimal effort is given by

e∗ =


1 if mt−1 = h,

βt(q + (1− q)k) otherwise.

Proposition 1.3 identifies the necessary and sufficient condition for an honest equilibrium

to arise in the entire region above babbling equilibria, i.e. one of high self-opinion. This is

shown to be when the agent’s cost of experimentation is sufficiently high. To see this, let us

first look at the supervisor’s incentives to be honest in the region of priors βNI1 ≤ β1 < βNI2 .

Here the agent experiments once even when discouraged. At most the agent’s belief can fall

down to βNI0 after a negative message. The supervisor is then willing to discourage the agent

with a negative message only if he can ensure that even after discouragement the agent does not
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reduce her effort significantly. In the absence of further supervision, he can only expect a higher

expected probability of success if she exerts a high enough effort in implementation.

A supervisor who has observed a low potential idea expects the project to be successful

with probability (β`2(q+ (1− q)k))2 from being honest. After receiving a message m1 = `, the

agent correctly believes her current idea has a low potential to succeed and experiments once

again but does not seek supervision because the supervisor is expected to babble. In this case,

the agent then implements the next idea with effort e = β`2(q + (1− q)k). On the other hand, if

such a supervisor deviates from honesty and announcesm1 = h, then he expects the probability

of success to be β`2k. The agent incorrectly believes that her idea had a high potential to succeed

and exerts effort of 1 in implementing a low potential idea. For such a conjectured strategy to

be an equilibrium, we must have that

(β`2)2(q + (1− q)k)2 ≥ β`2k

=⇒ β1 ≥
k

qk + (1− q)(q + (1− q)k)2
:= βtruth

Thus, the supervisor requires agent’s belief to be sufficiently high even after discouragement,

which in turn requires the prior to be large enough. This ensures that the agent exerts a higher

effort in implementing her idea of unknown potential. We call this truth-telling threshold on

prior βtruth.

The truth-telling threshold βtruth is a conditional threshold. It identifies how high the

prior should be such that the supervisor has an incentive to reveal the truth about the agent’s

negative outcome if the agent experiments again without supervision following the negative

message. The supervisor does not directly care about the agent’s cost of experimentation in so

far as she attempts to experiment again with an idea. So βtruth does not depend on c.

Now all we need to do is identify whether the range of priors we are considering

delivers honesty by the supervisor, that is we are interested in if βtruth < βNI2 . Specifically, if

βtruth ≤ βNI1 then truth-telling is an equilibrium for the full range of beliefs above βNI1 and up

to βNI2 . If this condition is satisfied, the supervisor has an incentive to be honest because the

prior is sufficiently high given the parameters. As outlined above, βtruth does not depend on the

cost of experimentation c while βNI1 does. The one free parameter can be used to determine if

truth-telling is an equilibrium. The condition βtruth ≤ βNI1 can then be rearranged to

c ≥ κk − (κk)2

2
where κ ≡ k

(q + (1− q)k)2
< 1.

Intuitively, a lower bound on the cost of experimentation ensures that the agent’s
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no information thresholds βNI0 and βNI1 are high enough. Thus, when the agent decides to

experiment and consult the supervisor her belief in her ability is already high. The supervisor can

then be content with revealing the truth about low potential ideas to the agent. Discouragement

does not lead to quitting with low effort; the agent still experiments once more and does so by

exerting a sufficiently high effort. While the conditional truth-telling threshold βtruth is not a

function of the cost of experimentation c, whether truth-telling is an equilibrium depends on it.

An increase in the cost of experimentation raises the threshold βNI0 (increasing the region of

babbling) but has no effect on βtruth, making it easier to satisfy the condition βtruth ≤ βNI1 and

ensuring truth-telling above βNI1 .

We are now only left with determining why if the supervisor is honest in the range of

beliefs βNI1 ≤ β1 < βNI2 , then he should be honest in the range of beliefs above βNI2 . For

expositional convenience start now with the range of beliefs βNI2 ≤ β1 < βNI3 when it is

an equilibrium for the supervisor to be honest in the next lower range of beliefs. Consider

whether a conjectured strategy of honesty is an equilibrium for the supervisor. A supervisor

who observes a low potential idea can induce another two rounds of experimentation by being

honest at this stage, one with supervision and one without. If, however, he deviates he induces

the agent to exert maximal effort in a low potential task. Under assumption (A), the payoff from

being honest are strictly higher than that from deviating as it is evaluated relative to his private

updated belief β`2. The same line of reasoning can then be extended to any belief above βNI3 as

well so that the supervisor always prefers honestly discouraging the agent and getting her to

experiment more often than making her implement a low potential idea.

What happens when c < κk−(κk)2

2 ? The following corollary identifies the honest

equilibrium.

Corollary 1.1. When c < κk−(κk)2

2 , βNIj ≤ βtruth < βNIj+1 exists such that for all t > 1 for

j ≥ 1

1. truth-telling is an equilibrium strategy for the supervisor for βt ≥ βtruth, and

2. babbling is an equilibrium strategy for the supervisor for βt < βtruth.

The agent’s equilibrium strategy is given by

I∗t =


0 if mt−1 = ` and βt ≥ βtruth , or βNIj−1 ≤ βt < βNIj ,

1 otherwise.
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The agent’s optimal effort is given by

e∗ =


1 if mt−1 = h,

βt(q + (1− q)k) otherwise.

In this case, βtruth > βNI1 and can lie between any βNIj and βNIj+1. We can then again

construct an honest equilibrium above βtruth and a babbling one below. That all of these beliefs

are above βNI0 ensures that the agent experiments once more when a low potential idea is

revealed to her in the presence of future babbling and makes such a strategy an equilibrium.The

two cases discussed here are depicted in Figure 1.5.

It is worth emphasizing at this stage the key intuition driving the results in Propositions

1.2 and 1.3. What action the agent chooses depends on whether she thinks she is capable of

drawing a better idea, and the expected strategy of the supervisor. If the agent has produced a

low potential idea , the supervisor needs to incorporate the downwards effect that his negative

message has on the belief about her ability. A lower belief discourages the agent at two levels.

First is the discouragement to experiment, i.e., stopping experimentation too early. Second is

the discouragement to implement, i.e., exerting low effort in implementing the idea. The second

effect always exists. However, the low self-opinion arises when it is also matched by the first

effect. On the contrary, the possibility of a high self-opinion phase arises when the first effect is

not present.

We conclude this section by presenting an important corollary and our second main

result.

Corollary 1.2. The expected performance of the agent is better under a higher self-opinion.

To see this, first note that the supervisor induces a weakly higher number of rounds of

experimentation under a prior β′ > β. If βNIj ≤ β < βNIj+1, then either βNIj ≤ β < β′ < βNIj+1

or β′ > βNIj+1. In the former case, the agent experiments an equal number of rounds under the

two beliefs. However, in the latter case, the agent experiments more often under belief β′ than

under β. The reason is that it is easier to support the mutual expectation of honesty and repeated

experimentation under a higher belief so that the agent experiments weakly more often under

β′.

However, this has consequences on the agent’s overall performance. Honest feedback by

the supervisor allows the agent to match her effort more closely to the actual potential maximiz-

ing the probability of success. If the agent abandons seeking supervision (and experiments one

final round) in the kth round under belief β, then she should still be seeking honest supervision
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in the round k under belief β′. While the agent with belief β exerts an inefficiently low amount

of effort in a high potential idea in round k, an agent with β′ will exert the efficient level of

effort of 1. An inefficient level of effort reduces the probability of success in a high potential

idea.

Finally, if the idea in round k is a low potential one, then an agent with lower belief

exerts an inefficiently high level of effort in its implementation while the agent with a higher

belief experiments again. Therefore, there is a magnifying effect of a higher belief that results

from the combined effect of better experimentation and better implementation. Conditional on

being high-ability, an a priori better agent who has a higher belief in her ability does better in

expectation.

It is also worth noting that in this context an a priori better agent (who has a higher

self-opinion) will face more “criticism” from the supervisor for the same reason. An agent

with a higher belief in her ability receives discouraging messages more often conditional on

producing the same number of low potential ideas. However, the agent’s incentive to experiment

more often arises precisely out of the supervisor offering honest criticism. In equilibrium, an

agent with a higher belief expects to receive honest feedback more often and is therefore willing

to experiment more often. In return, the supervisor expecting more experimentation offers

more honest feedback to the agent. When the agent’s belief is lower, he fears to discourage the

agent with negative messages. In this sense, an agent with a higher belief is more receptive to

criticism, and that increases her chances of being successful.

1.4.3 Welfare analysis

The previous result (Corollary 1.2) only talks about the benefit of a higher self-opinion.

However, the agent also pays a higher cost under a higher self-opinion owing to the aforemen-

tioned magnifying effect. This particularly hurts a low-ability agent who only pays a higher

costs of experimentation and/or implementation under a higher belief.

The first part of this section shows that the above is not a concern even when evaluating

the agent’s welfare under a higher self-opinion. We show, through a series of lemmas below that

the ex-ante expected utility of the agent is always higher under a higher belief.15 The reason is

that under a higher belief the agent places a greater ex-ante weight on being high-ability and

believes that she is less likely to find herself in the worst situation.

The second part of the section then analyzes if holding an incorrect higher belief

could also be welfare improving. Surprisingly, we show that this is possible. The reason is

15The supervisor is always better off with a higher self-opinion agent because in expectation such an agent
performs better. At the same time, the supervisor doesn’t have to bear any costs.
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the discontinuous change in the supervisor’s feedback strategy as he goes from babbling to

honesty.16

Welfare effect of a correct increase in self-opinion

Lemma 1.4. Any increase in the prior from β to β′ within the region of beliefs βFI0 ≤ β <

β′ < βNI0 , βNI0 ≤ β < β′ < βNI1 , and βNIj ≤ β < β′ < βNIj+1 for j > 1 is welfare improving

for the agent.

This lemma relates to increasing the beliefs of the agent in such a way that only the

cost of exerting effort increases in the eventuality that the project is implemented with a low

potential idea or after not seeking supervision. In such a situation, welfare may increase on

account of better implementation (because of higher effort) but may reduce on account higher

costs of implementing.

Lemma 1.5. An increase in the prior from the region βFI0 ≤ β < βNI0 to the region βNI0 ≤

β′ < βNI1 is welfare improving for the agent.

When the belief increases in such a manner, the agent is expected to conduct a costly

round of experimentation which she did not earlier. Moreover, she is not expected to receive any

feedback in this round. At the same time, her optimal effort choice increases unambiguously

which is both more costly and more beneficial in expectation. From Lemma 1.4, we know that

increasing the effort is always welfare improving when the belief increases. In addition, the

increase in belief also makes it worthwhile to conduct experimentation without supervision

from Lemma 1.1. This leads to an overall increase in welfare.

Lemma 1.6. Let 2c < q(1− (q + (1− q)k)2). An increase in the prior from β = βNIj+1 − ε to

β′ = βNIj+1 is welfare improving for the agent.

Finally, this lemma establishes that just pushing up the belief from an arbitrary region

βNIj ≤ β < βNIj+1 to the next region βNIj+1 ≤ β′ < βNIj+2 is welfare improving. In doing so, the

agent is expected to pay not only an additional cost of experimentation c but also that of some

minimal increase in effort cost in the event of implementing without supervision.

Proposition 1.4. Let 2c < q(1 − (q + (1 − q)k)2). An increase in the prior from β to β′ is

welfare improving for the agent.

The above proposition combines the information from the three lemmas and concludes

that any increase in prior is welfare improving. This highlights the importance of agent’s

16We prove all the statements here assuming that c ≥ κk−(κk)2

2
or that the truth-telling threshold βtruth ≤ βNI1 .

However, this is not required as the proofs go through with a higher βtruth as well.

21



self-opinion – the agent’s confidence in her ability is critical for the overall success of the

project.

Welfare effect of overconfidence

Still more interesting is to explain the effect of overconfidence in our environment. To

introduce the notion of overconfidence, consider the following. Let the agent and the supervisor

hold a common prior belief β about the agent’s ability when the true belief is b.

Definition 1.1. The agent and the supervisor are overconfident about the agent’s ability if

β > b.

Under the above definition of overconfidence, we prove the following proposition:

Proposition 1.5. Overconfidence is sometimes, but not always, welfare improving.

To understand the intuition, consider the welfare of the agent when the correct belief is

b = βNI1 − ε but the common prior is βNI1 . In such a situation, her overconfidence will drive her

to experiment once with a round of honest feedback by the supervisor (and then potentially once

more without any feedback). This would not have been possible under the true belief wherein

she would have simply experimented without any feedback. However, the discontinuous benefit

that arises from the change in supervisor’s feedback strategy at a higher belief (i.e. receiving

honest feedback) outweighs the additional cost that the agent pays for an additional round of

experimentation.

In fact, she is able to reduce her inefficient cost of implementation when the supervisor

honestly reveals that her idea was a low potential one under the overconfident belief. To see this

note that under the true belief she would exert (βNI1 − ε)(q + (1 − q)k). Whereas under the

overconfident belief she would exert βNI0 (q + (1− q)k). Thus, overconfidence (and holding an

incorrect self-opinion) can be welfare improving.

However, the above argument relies on the discontinuous change in behavior of the

supervisor at the threshold. It then follows that when the supervisor’s behavior does not

change, there might not be a benefit of being overconfident. To illustrate this, we show that

overconfidence is welfare reducing when the common prior is βNI0 but the true belief is any

b < βNI0 . In such a situation, holding the incorrect belief only adds to an added cost of

experimentation and implementation without any corresponding benefit. Contrasting this with

Lemma 1.6, it is immediate to see that overconfidence is different from a correct increase in

belief.

1.5 Extensions
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1.5.1 Benevolent supervisor and time-constrained players

We start out by discussing what happens when the supervisor also bears the cost of

experimentation and implementation. In some situations, it is possible that a benevolent

supervisor partially internalizes the costs borne by the agent. Such internalization may arise

from the expert’s (i.e. the supervisor’s) prior experience from when he as an apprentice (agent),

or simply because he works on the project with the agent.

For the two players i ∈ {A,S}, agent (A) and supervisor (S), let the cost of experi-

mentation be ci and the cost of implementation be φie
2

2 . The difference between these costs

for the two players captures any preference conflict between them. In so far as cS < cA and

φS < φA = 1, the preference conflict persists. For a given (cS , φS) > 0, there will be a

“full information” threshold for the supervisor as well. Call this threshold βFIS0 . This reflects

the preferences of the supervisor and determines what are the maximum number of rounds

the supervisor desires the agent to experiment (or the belief threshold equivalently) with full

information about the potential of the ideas.

In the limiting case of cS = φS = 0 studied in the main text, this threshold did not

exist – the supervisor wanted the agent to continue experimenting with complete information

until she ended up with a high potential idea. However, when cS < cA and φS < φA, we have

βFIS0 < βFIA0 so that the supervisor would still like the agent to experiment more than she would

like. In this case, all our results from the main text go through as the fear of discouragement

and the agent abandoning experimentation still persists.

One possible interpretation of such a situation are time-constrained players. To keep

things simple, let φS = φA = 1 so that the supervisor fully internalizes the time cost of

implementing to the agent. Now let cS denote the time cost that the supervisor pays for

providing feedback to the agent. This could happen when the supervisor has some alternate

tasks to perform or requires time to understand the true potential of the agent’s ideas. The

following proposition follows from our discussion.

Proposition 1.6. Let φS = φA = 1.

1. If cS < cA then Propositions 1.1, 1.2 and 1.3 capture the optimal strategies of the agent

and the supervisor.

2. If cS ≥ cA then the supervisor offers honest feedback until he reaches the belief βFIS0 and

the agent experiments with ideas till that point absent a high potential idea.

The intuition is as follows. When the supervisor is time-constrained, he cares both

about the success and about costly supervision from the agent experimenting in pursuit of
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success. In turn, this eliminates the fear of discouragement. Notably, now it is more costly

for the supervisor to keep offering feedback beyond a point over letting the agent implement

a low potential idea. We can then get honest equilibria for some additional ranges of beliefs.

Thus, a more time-constrained supervisor can potentially offer more honest feedback. The next

corollary identifies the condition that makes this possible.

Corollary 1.3. Let φS = φA = 1. If cS ≥ cA such that βFIS0 < βNI1 then the region of beliefs

where honest equilibria exist is larger in the case of cS ≥ cA than cS < cA.

Observe that in the case of cS < cA honest equilibria exist in the region of beliefs

above βNI1 (depending on cA). But from the above proposition, honest equilibria in the case of

cS ≥ cA exist starting from βFIS0 . Thus, the latter case provides the possibility of more honesty

if βFIS0 < βNI1 . However, since there is no closed form solution of βFIS0 , it is not straightforward

to translate this into a condition with only the costs.

Finally, note that if the supervisor does not internalize the cost of exerting effort, there

is no benefit (in terms of more honest equilibria) of even partially internalizing the costs of

experimentation.

Proposition 1.7. If φS = 0, then the equilibrium strategies are given by Propositions 1.1, 1.2

and 1.3.

To understand the intuition, let cS = cA and consider whether honesty is an equilibrium

strategy for βFIA0 ≤ β < βFIA1 (after all, if the supervisor internalizes the full cost of experimen-

tation then the belief thresholds should match). At this belief, if the supervisor is expected to

be honest, then following a negative message the agent abandons experimentation and exerts a

low effort level on the idea. If instead, she receives a positive message, she exerts 1 on her idea.

Now, for a supervisor who has seen a low potential idea and does not internalize the cost of

implementation, there is a strictly positive deviation to giving a positive message. This breaks

down the honest equilibrium (and the existence of βFIS0 ).17

The issue arises here because the supervisor wants the agent to exert the maximal effort

independent of the potential of the idea produced. The supervisor fears discouragement leading

to lower effort in implementation which precludes honesty.

1.5.2 Perfect recall of previous ideas

Here we describe what happens if the agent and the supervisor have perfect recall of

all the previous ideas. In such a situation, the supervisor can potentially make announcements
17It is possible to derive a belief threshold above which the supervisor is expected to be honest in equilibrium

for a generic φS and given cS and cA. This is necessarily different from βFIS0 because that is contingent on the
equilibrium best response of the agent to the supervisor’s strategy.
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about each of the previous ideas after each round of experimentation. Given our attention to

pure strategies, there are two kinds of honest and informative strategies that a supervisor may

employ: immediate honesty and delayed honesty.

In the immediately honest strategy, the supervisor reveals to the agent the outcome of

her experimentation immediately after she experiments. This is implicitly what we assumed all

throughout Section 1.4. In a strategy of delayed honesty, the supervisor provides uninformative

messages for certain rounds and then reveals honestly some or all the previous outcomes.

Observe that a variety of delayed honesty strategies are possible – the supervisor may babble

for any arbitrary number of rounds and then provide information for any arbitrary number of

those rounds, and this may change over time. If the supervisor reveals to the agent the τ ′ ≤ τ

outcomes of her experimentation after τ rounds starting from a prior βt the agent’s updated

posterior in round t+ τ is

β`t+τ =
(1− q)τ ′βt

1− qβt
∑τ ′−1

s=0 (1− q)s
if mt = ` for all τ ′ ideas, and (1.3)

βht+τ = 1 otherwise. (1.4)

The case of τ = τ ′ = 1 corresponds to immediate honesty where the agent expects the

supervisor to reveal the outcome of the experimentation immediately after each round of

experimentation. All other cases fall under delayed honesty.

In case the supervisor is expected to babble, the agent’s posterior belief is the same

as her prior belief. We will assume that when the supervisor is expected to lie about an idea

the agent does not consult the supervisor regarding that idea. This rules out the possibility of

the supervisor privately learning and not revealing to the agent the outcome, and the arising

deviations.18

Note first that the result of Proposition 1.1 remains unaltered. If the agent does not

want to experiment with an immediately honest strategy, she does not want to experiment with

a delayed honesty strategy. By experimenting when the supervisor is expected to reveal the

outcomes after a delay, the agent only bears a higher cost of experimentation to receive feedback

when she is almost convinced that she cannot produce a high potential idea. Thus, implementing

the outside option is the best response of the agent, and all strategies of information revelation

are an equilibrium.

18A formal definition of strategies in this case is complicated. But it is easy to describe what a strategy for the
two players are in words. A strategy for the supervisor when the agent consults him in round t is a mapping from all
the ideas she observes to the set of messages, one for each round of experimentation. A strategy for the agent in
round t is a mapping from the observed messages to a decision to experiment again or implement. If she decides to
implement, she must also decide which idea to implement given the message history.
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Corollary 1.4. Under perfect recall of ideas, for any belief βFI0 ≤ β < βNI1 , babbling is the

unique equilibrium strategy.

The result of babbling being a unique equilibrium in the region of beliefs βFI0 ≤ β <

βNI1 even under perfect recall follows almost directly from Proposition 1.2. To illustrate this

point, start again with a prior belief βFI0 ≤ β1 < βFI1 . In the absence of commitment, a

supervisor who observes only low potential ideas from all the experimentation rounds (after

delaying) is tempted to deviate and call any arbitrary idea a high potential one. This is for the

same reason as before – when such a message is believed, the agent exerts maximal effort on

such an idea assuming it is a high potential one. The supervisor gains from such a deviation

because he increases the effort of the agent on a low potential idea in the absence of more

experimentation. As a result, babbling is the unique equilibrium and the agent best responds by

implementing the low potential outside option idea. The same reasoning can then be extended

to all the beliefs which when updated with a negative message lead to the agent abandoning

experimentation (as the supervisor is going to babble in the following round). This happens all

the way up to the belief βNI1 as before.

For beliefs above βNI1 , we have already identified the condition for immediate honesty

to arise in Proposition 1.3. It is, however, possible to have other equilibria with some delayed

honesty. We identify here a critical feature of such equilibria (if they exist) that allows us to

compare it with the immediately honest equilibrium.

Observation 1.1. In a delayed equilibrium, the supervisor can only induce as many rounds of

experimentation as the ones for which he provides honest feedback eventually.

The above observation merely states that if the supervisor never provides feedback on

some rounds of experimentation that the agent performs, then the agent has no incentive to

experiment. Since the agent never consults the supervisor for rounds in which he is expected to

babble, there is no benefit to the agent from experimenting these extra rounds. This allows us to

focus attention on those strategies in which the outcome of all the rounds of experimentation is

eventually revealed.

Proposition 1.8. The number of rounds of experimentation that an equilibrium strategy of

delayed honesty induces can be no more than that induced by the equilibrium immediate honesty

strategy.

What matters when evaluating the supervisor’s incentive to be honest at the time of final

revelation is the belief from truthfully announcing that all the ideas produced are low potential.
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Say that the belief after such a revelation at round τ is β`τ . This belief can be in one of the

following three ranges: β`τ ≥ βNI1 , βNI0 ≤ β`τ < βNI1 or β`τ < βNI0 (See Figure 1.6).

Observe that a terminal belief in the first and second range can also be attained by an

immediately honest strategy, which is also an equilibrium. For any prior β1, for the agent to

experiment more rounds than what she does under immediately honest strategy her terminal

belief after all the revelations should fall in the third case, i.e. β`τ < βNI0 . However, we argue

that such a strategy cannot be an equilibrium. This is for the same reason as before – a supervisor

who has only observed low potential ideas will prefer to deviate and claim any one of the ideas

to be of high potential than inducing the agent to stop experimenting with a lower belief where

the supervisor only babbles. Thus, equilibrium experimentation possibilities under perfect recall

can be no more than those under limited recall.

1.5.3 Alternate interpretations

Our model more generally speaks to the following type of settings. An informed

sender of information (supervisor) communicates with a less informed receiver of information

(agent) who needs to take a costly action dynamically. Consider, for instance, an entrepreneur

who works on a project experimenting with ideas, privately observing their potential, and

implementing one of them. However, she relies on the finances of a venture capitalist (VC)

who pays for such experimentation and implementation. While the entrepreneur would prefer

to continue experimenting until she receives a high potential idea, the VC would like to cut

funding for experimentation when he is sufficiently pessimistic.

In such a setting, the entrepreneur is the supervisor, while the VC is the agent.19 Costs c

and e2/2 are the money promised by the agent to the supervisor for experimenting with and

implementing ideas. Let α ∈ {0, q} be the state of the project which is determined ex-ante and

remains persistent but potentially unknown to both the parties. θ ∈ {`,h} denotes the potential

of the idea produced by the entrepreneur. The VC decides in each period, whether to fund

experimentation for one extra round or force the entrepreneur to implement the last idea.

We then provide answers to the following questions: When can the entrepreneur credibly

release information? How many chances of experimentation can the entrepreneur extract from

the VC with her revelation strategy? Notably, our inefficiency result shows that even though the

VC would like to continue financing the entrepreneur’s experimentation and the entrepreneur

would like to continue experimenting, she calls off the project too early. However, there are

benefits to be had from the VC both correctly and incorrectly believing that the project is good.

19Which player is the agent and which one is the supervisor is not determined by who is experimenting and
implementing, but by who holds the information and who pays for the action.
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1.6 Conclusion

In this paper, we showed how an employee responds to criticism influences whether

she receives feedback or not. Supervisors may not provide honest feedback to employees who

do not believe in their ability. In turn, this hurts their performance and potentially their future

careers. Moreover, it also hurts organizations as the supervisors provide inefficiently low levels

of honest feedback. In this sense, organizations should seek to hire employees that believe

in their ability to succeed. In fact, our model shows that overconfidence can sometimes be

welfare-improving.

Our results are based on a model of feedback provision in an agent-supervisor envi-

ronment. The agent experiments with ideas to try to solve a problem at hand and a supervisor

offers feedback on whether her ideas have the potential to be successful. We showed the

results for when the supervisor has no commitment power and uses cheap talk messages to

communicate with the agent. We identified the region of beliefs for which the supervisor could

only uniquely babble in equilibrium leading to inefficiency in the relationship. Driven by the

fear of discouraging the agent to the point of abandonment of experimentation, the supervisor is

not able to offer any credible information to the agent. We then showed if there are possible

equilibria in which the supervisor can honestly communicate his information to the agent. A

necessary and sufficient condition for honesty above the babbling threshold was found to be the

costs of experimentation being sufficiently high.

However, our analysis focused only on pure strategy equilibria. The problem involving

mixed strategies is a complicated one that requires determining how the agent responds to the

current message when, in the future, there can be more mixing. Our work shows the further

scope of looking at mixed communication strategies in such dynamic environments in the

absence of commitment. One may also think of introducing new complications in the model

such as those involving different priors of the agent and the supervisor.
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Step 1: Babbling is unique for βFI0 ≤ β1 < βFI1
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Figure 1.4: Uniqueness of babbling equilibria for priors β1 < βNI1
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Figure 1.5: Honest equilibria for different c ranges
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Figure 1.6: Terminal belief possibilities in potential delayed equilibria
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1.8 Appendix

A Proofs from the main text

We present general proofs in mixed strategies, wherever we can. The first section

provides some new mathematical notation for this purpose.

Mathematical notation for mixed strategies

We focus attention on limited recall of previous ideas so that when the agent experiments

one more round, she does not recall the previous ideas she has worked on. As a result, the

supervisor does not need to make back dated messages about all the previous ideas. A strategy

for the agent ρt in round t is a mapping from the last observed message to a possible mixed

decision to continue experimenting with ideas or implementing the last one . We let

ρ
mt−1

t = Pr(It = 1 |mt−1)

be the probability that the agent decides to implement the project following the last message.

Similarly, when the supervisor is called upon, a strategy for the supervisor σt in round t

is a mapping from the last idea to a possible mixed message about its potential. We let

σθtt = Pr(mt = θt | θt)

be the probability of the supervisor being honest about the potential of the observed idea.

Depending on the expected strategy of the supervisor, the agent conditions her action only on

the last message received.

Let the sequence σ̂ = {σ̂ht , σ̂`t}Tt=1 denote the conjectured strategy of the supervisor,

and let ρ̂ = {ρ̂ht , ρ̂`t}Tt=1 denote the conjectured strategy of the agent. Given the conjectured

strategy of the supervisor, the agent updates beliefs about the two unknowns – her ability and the

potential of her previous ideas. The belief about her ability is βt. Let the belief about whether

her idea was as announced by the supervisor be denoted by λt. Observe that:

1. the public history hAt at the beginning of round t can be summarized by the current public

belief βt about the ability of the agent and by the belief about the true potential of the last

idea produced λt, while

2. the private history of the supervisor hSt at the beginning of round t can be summarized by

the current private belief βt about the ability of the agent.20

20Note that we are currently not making any notational distinction between the private and the public beliefs about
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We can now informally describe the notion of equilibrium. We say that a pair of

sequences of conjectured strategies σ and ρ constitute an equilibrium if (1) they are both the

best responses to each other given the beliefs βt and λt for each t, and (2) the beliefs βt and λt

are consistent with what the players are conjectured to do, i.e. σ and ρ. Strategies expressed in

the text without a hat constitute an equilibrium.

When both the messages are expected in equilibrium, either one of the messages will

lead to a higher and the other to a lower βt, or βt remains the same with both the messages.

We will call the former informative strategy and the latter babbling (or lying) strategy. The

supervisor is expected to babble in equilibrium in round t− 1 if σ̂ht−1 = 1− σ̂`t−1, i.e. when the

probability with which the supervisor is expected to reveal a true high potential idea is the same

as the probability with which the supervisor incorrectly calls a low potential idea a high one.

Thus, the agent is equally likely to get a positive or a negative message, and in turn does not

learn from the messages. When the supervisor is expected to be informative, we will assume

without loss of generality that he does so by increasing the posterior after a positive message of

mt−1 = h (and the posterior beliefs fall after a negative message mt−1 = `). So, we assume

that σ̂ht−1 > 1− σ̂`t−1 for informativeness.

We will restrict attention here to informative strategies in which σh = 1, i.e. the

supervisor always truthfully announces that the project has a high potential to succeed when

he sees so. The supervisor cannot credibly commit to lying when θt = h. In any informative

strategy, a positive message mt = h should increase the posterior belief βt+1 of the agent.

When the supervisor sees θt = h, he has no incentive to discourage the agent. If discouragement

leads to another round of experimentation, then the supervisor faces the risk of abandoning the

current high potential idea and never getting a new one. Alternately, if discouragement leads to

implementation then she will do so with a lower effort. In neither case a supervisor who has

observed a high potential idea is better off discouraging the agent. Going forward, we assume

σht = 1, and with some replace σ`t with σt. Then the posterior beliefs about ability is

β`t =
(1− q)βt−1

1− qβt−1
(1.8.A.1)

βht =
(1− σ̂t−1(1− q))βt−1

1− σ̂t−1(1− qβt−1)
(1.8.A.2)

where βmt−1

t = Pr(α = q|mt−1) is the posterior belief of the agent about her ability after

ability. This is to keep things simple. The two will coincide as long as the supervisor is honest. When the supervisor
is not honest, the beliefs diverge only when the agent best responds to a dishonest message by experimenting again.
This plays a role only in checking for deviations when constructing other informative equilibria.
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receiving message mt−1 given the conjecture σ̂t−1. And

λ`t = 1 (1.8.A.3)

λht =
q

q + (1− σ̂t−1)(1− q)
(1.8.A.4)

where λmt−1

t = Pr(θt−1 = mt−1|mt−1) is the belief about whether the supervisor’s message

mt−1 matches the true potential of the idea given the conjectured σ̂t−1.

Thus, the value of a negative message under any informative strategy is the same as in a

truth-telling strategy. When an agent receives mt = ` then she can be sure that θt = ` and she

revises her belief about her ability downwards to the maximum extent. Under this condition, the

agent must decide what to do following a message of mt = h since a positive message cannot

be trusted.

Proof of Lemma 1.2

Proof. Part 1: Existence of βFI0

For a given set of parameters, there is no straightforward closed form solution to the

equation in condition C2. We therefore need to establish the existence of belief threshold(s).

First, it can be verified that both the LHS and RHS of condition C2 are monotonically increasing

and convex in β. We have

∂LHS
∂β

=
q

2
+

(kβ′)2

2

(
2

β
− q
)
> 0

∂2LHS
∂β2

=
k2(1− q)2

(1− βq)3
> 0

and

∂RHS
∂β

= k2β ≥ 0

∂2RHS
∂β2

= k2 > 0.

Second, we show that if 2c < q(1 − k2) then the threshold belief βFI0 is unique.

Consider the range of beliefs 0 ≤ β ≤ 1. Since c > 0 and LHS at β = 0 is zero, RHS cuts the

LHS from above at least once. Now, under the assumption 2c < q(1− k2), it can be verified

that RHS at β = 1 is lower than LHS at β = 1. Since both LHS and RHS are monotonically

increasing, they must intersect at exactly one point. Call that belief βFI0 . Thus, βFI0 exists and

is unique.

Third, we need to show that if there exists a unique threshold belief βFI0 , then 2c <
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q(1− k2). If there is a unique belief threshold then it must be the case that there is a unique

point of intersection of LHS and RHS in condition C2. Again, RHS cuts the LHS from above

because at β = 0 c > 0. Therefore, given the monotonicity of the two functions, a sufficient

condition for uniqueness is LHS|β=1 > RHS|β=1. This gives q
2 + (1− q)k22 > k2

2 + c, which

can be rearranged to 2c < q(1− k2).

Lastly, we need to show that the agent does not experiment when 2c ≥ q(1− k2). This

is so because then the RHS is always above the LHS, so that even experimentation once is not

beneficial. When 2c ≥ q(1 − k2) we have that LHS|β=1 ≤ RHS|β=1. Given that both LHS

and RHS of condition (C2) are increasing convex functions, a concern is that there might be

two points of intersection. However, it is easy to verify that the slope of the RHS is lower than

the slope of the LHS at both β = 0 and β = 1. This precludes such a possibility. Therefore,

the agent does not want to experiment when 2c ≥ q(1−k2) as the RHS is always above the LHS.

Part 2: Optimal decision rule IFIt

Condition C2 is the condition for experimenting in the worst case scenario, that is when

the agent knows she is going to stop after another ` idea. Therefore, it follows that IFIt = 0 in

β ≥ βFI0 if θt−1 = `, i.e the agent continues experimenting.

Next, note that the agent cannot continue experimenting forever after ` ideas because

at the limit the value of experimentation goes to −c. This is so because at the limit the belief

about ability goes to zero while the cost of experimentation is a positive constant. Thus, what

we need to show is that the agent does not want to experiment even once when condition C2

does not hold, i.e. IFIt = 1 for beliefs βt < βFI0 if θt−1 = ` is the optimal decision rule.

Suppose not. Say that for some belief β̃ < βFI0 , it does not pay to experiment just once

but it pays to experiment at least T̃ times and then stop (Note from above, she does not want

to experiment forever). Now at round T̃ − 1 when belief is β̃T̃−1 it must be that condition C2

holds i.e.
β̃T̃−1q

2
+ (1− β̃T̃−1q)

(β̃T̃k)2

2
≥

(β̃T̃−1k)2

2
+ c

But now since β̃T̃−1 ≤ β̃ < βFI0 and we know that for any belief β < βFI0 condition C2 does

not hold, this is a contradiction.

Finally, we have already shown the proof of the choice of eFI in the main text.

Proof of Lemma 1.3

Proof. Fix the parameters such that 2c < (q + (1− q)k)2 − k2. Since, q(1− k2) > (q + (1−

q)k)2 − k2, both βNI0 and βFI0 exist and are unique. To compare βNI0 and βFI0 , we only need
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to compare the LHS of the equation that defines condition (C1) with the LHS of the equation

that defines condition (C2). We can then compare them with a common RHS.

Observe that the LHS of both the conditions are increasing and convex in β. Further,

as β → 0 the LHS in both the conditions also tend to zero. Thus, to establish a relationship

between them it is sufficient to look at the behaviour of the LHS as β → 1. This is equal

to (q+(1−q)k)2

2 for condition C1 and q+(1−q)k2
2 for condition C2. Again, it can be shown that

(q+(1−q)k)2

2 < q+(1−q)k2
2 which is equivalent to q(1 − k2) > (q + (1 − q)k)2 − k2. This

implies that the LHS of condition C1 lies below the LHS of condition C2 for all β > 0. Thus,

βNI0 > βFI0 .

Proof of Proposition 1.2

Proof. We prove this statement in steps by considering different regions of starting prior β1.

There exists a j ≥ 0 ∈ {0, 1, 2, . . . } where belief βFIj is such that βFIj < βNI0 ≤ βFIj+1. The

value that j takes depends on the parameters.

Step 1: Proving babbling is a unique equilibrium for βFI0 ≤ β1 < βFI1

Consider any informative strategy σ̂1 ∈ (0, 1] including the truth-telling strategy. In

any such strategy a message m1 = ` is only used when θ1 = `. So the agent believes such a

message (λ`2 = 1) with the posterior about ability β`2 < βFI0 which makes the agent experiment

only once at t = 1 and then exert e = β`2k (see Proposition 1.1). A message m1 = h instead

leads to a higher belief βh2 ∈ (β1, 1], which can either push the agent to implement her idea

with a higher effort or to experiment again (depending on σ̂1 and σ̂2).

If the agent best responds to m1 = h implementing her idea, she exerts effort e =

βh2 (λh2 + (1− λh2 )k) > β`2k. In this case, the supervisor type θ1 = ` is better off deviating and

sending a message m1 = h and getting a higher expected probability of success of βh2 β
`
2(λh2 +

(1− λh2 )k)k instead of (β`2k)2. If the agent best responds to m1 = h by experimenting again,

then also the supervisor type θ1 = ` is better off always sending the message m1 = h. This is

because the supervisor always prefers experimentation when the current idea is low potential.

Thus, the supervisor has an incentive to deviate in either case.

Thus, only the babbling strategy remains which is always an equilibrium. The agent’s

equilibrium strategy is to implement her outside information idea, i.e. I1 = 1 with e = β1k

since β1 < βNI0 (see Lemma 1.1).

Step 2: Proving babbling is a unique equilibrium for βFI1 ≤ β1 < βNI0

If j = 0, then either βFI0 ≤ β1 < βNI0 < βFI1 or βFI0 < βNI0 ≤ β1 < βFI1 . In either
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case, the scenario highlighted in Step 2 does not exist. Step 1 is sufficient in this case.

If j = 1 then it is enough to show that babbling is the unique equilibrium in the range

βFI1 ≤ β1 < βNI0 with the knowledge that if the posterior β2 < βFI1 then the supervisor

babbles (from Step 1 above). Note that any informative messaging strategy conjecture for

t = 1 with σ̂1 ∈ (0, 1] must lead to a posterior β`2 < β1 < βh2 . Now, as before the value of

message m1 = ` is the same as in truth-telling so that β`2 ∈ [βFI0 , βFI1 ). From Step 1 above,

the supervisor is then expected to babble in t = 2 and the agent best responds by choosing to

implement her low potential idea (I2 = 1) from t = 1 with effort e = β`2k. A message m1 = h

again leads to a higher belief βh2 ∈ (β1, 1], which can either push the agent to implement her

idea with a higher effort or to experiment again (depending on σ̂1 and σ̂2). As before now, the

supervisor type θ1 = ` is better off deviating and sending a message m1 = h. Thus, babbling

is the unique equilibrium strategy of the supervisor.

If j ∈ {2, 3, . . . }, then it needs to be shown that babbling is a unique equilibrium

strategy in the ranges βFI1 ≤ β1 < βFI2 , . . . , βFIj−1 ≤ β1 < βFIj and βFIj ≤ β1 < βNI0 .

Consider first the range βFI1 ≤ β1 < βFI2 . Any posterior β`2 for priors βFI1 ≤ β1 < βFI2 must

map in to the range of beliefs highlighted in Step 1. This implies that supervisor type θ1 = `

cannot credibly commit to sending a message m1 = `. Such a message leads to the agent

implementing with effort e = β`2k. This makes babbling a unique equilibrium strategy for

βFI1 ≤ β1 < βFI2 . The same logic applies to all the ranges of prior belief up to βFIj . Then, in

the range βFIj ≤ β1 < βNI0 the proof is identical to the above described j = 1 case.

Therefore, babbling is the unique equilibrium strategy of the supervisor and the agent

does not experiment, i.e. I1 = 1 and a = β1k.

Step 3: Proving babbling is a unique equilibrium for βNI0 ≤ β1 < βNI1

For j = 0, we have already shown that babbling is a unique equilibrium strategy for

βFI0 ≤ β1 < βNI0 < βFI1 or βFI0 < βNI0 ≤ β1 < βFI1 . Note that since βFI0 < βNI0 , it

must be the case that βFI1 < βNI1 < βFI2 . So, it remains to show that babbling is unique for

βFI1 ≤ β1 < βNI1 . This argument is the same as the one presented below.

Any informative mixing for j ≥ 1 leads to β`2 < βNI0 . The supervisor babbles in the

range of posteriors βFI0 ≤ β`2 < βNI0 from Step 1 and 2 above (and for j = 0 case the supervisor

babbles in the range βFI0 ≤ β`2 < βFI1 ), and the agent chooses to implement thereafter (from

Lemma 1.1). A message m1 = h, on the other hand, is believed and the agent best responds by

either implementing with a higher belief or experimenting again. Therefore, the supervisor can

do better by lying instead when he observes θ1 = ` when he is expected to be informative.
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Proof of Proposition 1.3

Proof. We prove the proposition in two parts.

Part 1: To show that if σ1 = 1 is an equilibrium for βNI1 ≤ β1 < βNI2 , then it must be an

equilibrium for all βNI2 ≤ β1 < 1.

Consider the region of priors βNI2 ≤ β1 < βNI3 . We check whether σ̂1 = 1 is an

equilibrium. Here, the supervisor has an incentive to reveal the truth about θ1 = ` if the

expected probability of success by sending m1 = ` is higher than that from sending the message

m1 = h. If he sends a message m1 = `, the agent at most experiments two more times -

consulting the supervisor after one (which is at β`2 where the supervisor is again honest given

the premise) and not doing so after the other. Therefore, the expected probability of success by

sending m1 = ` is

β`2q + (1− β`2q)(β`3)2(q + (1− q)k)2

By lying the supervisor convinces the agent that her idea has a high potential to succeed

(λ̂h2 = 1)and that she is of ability q (β̂h2 = 1). She then exerts e = 1 to implement her idea.

However, the supervisor has an updated belief of β`2 knowing that θ1 = `. Thus, expected

probability of success by sending m1 = h is β`2k.

The supervisor has an incentive to reveal the truth at this stage if

β`2k ≤ β`2q + (1− β`2q)(β`3)2(q + (1− q)k)2.

It is easy to check that the above condition is always holds with a strict inequality sign under

Assumption (A). So, σ1 = 1 is an equilibrium for βNI2 ≤ β1 < βNI3 .

Now, for any β1 ≥ βNI3 the supervisor can make the agent experiment (and if any of

the following ideas has a high potential to succeed make them exert e = 1 on it) at least three

more times by honestly revealing θ = `. Given Assumption (A), this should always be an

equilibrium.

Part 2: To show that σ1 = 1 is an equilibrium for βNI1 ≤ β1 < βNI2 if and only if c ≥ κk−(κk)2

2

where κ ≡ k
(q+(1−q)k)2

and k < (q + (1− q)k)2.

Suppose c ≥ κk−(κk)2

2 where κ ≡ k
(q+(1−q)k)2

and k < (q+(1−q)k)2. Now consider

the conjectured strategy σ̂1 = 1 for βNI1 ≤ β1 < βNI2 . When the supervisor observes θ1 = `,
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his expected probability of success by sending message m1 = ` is

(β`2)2(q + (1− q)k)2.

Following m1 = `, the agent experiments once more but does not consult the supervisor

thereafter. Thus, she implements her idea of unknown potential by exerting effort e = β`2(q +

(1− q)k). On the other hand by sending a message m1 = h when the gent expects supervisor

to be honest leads her to exert e = 1 in implementing a θ1 = 1 idea. This is so because she

believes in the supervisor’s message, λ̂h2 = 1 and β̂h2 = 1. The expected probability of success

is then β`2k.

Truth-telling is an equilibrium if

(β`2)2(q + (1− q)k)2 ≥ β`2k

=⇒ β1 ≥
k

qk + (1− q)(q + (1− q)k)2
:= βtruth.

σ̂1 = 1 is an equilibrium if for all β1 ∈ [βNI1 , βNI2 ), it is also the case that β1 ≥ βtruth.

This can happen iff βtruth ≤ βNI1 . This condition then be rearranged given βtruth from above

and βNI0 =
(

2c
(q+(1−q)k)2−k2

) 1
2 (from Lemma 1.1), and using the fact that βNI1 =

βNI0

1−q(1−βNI0 )
.

This gives us

c ≥ κk − (κk)2

2

where κ ≡ k
(q+(1−q)k)2

and we need that k < (q + (1− q)k)2. But this is also our premise.

Thus, σ1 = 1 is an equilibrium.

Alternately, suppose σ1 = 1 is an equilibrium for βNI1 ≤ β1 < βNI2 . Then it must be

the case that β1 ≥ βtruth for all β1 ∈ [βNI1 , βNI2 ). Specifically, it must be that βNI1 ≥ βtruth.

This condition can then be rearranged to yield

c ≥ κk − (κk)2

2

where κ ≡ k
(q+(1−q)k)2

and with an added constraint k < (q + (1− q)k)2.

Proof of Lemma 1.4

Proof. It is immediate to see that an increase in belief from β to β′ such that

1. βFI0 ≤ β < β′ < βNI0 is welfare improving. This is because (βk)2

2 > (β′k)2

2 which we

get by replacing the optimal effort e = βk in the expected utility function.

2. βNI0 ≤ β < β′ < βNI1 is welfare improving. This is because (β(q+(1−q)k))2

2 >
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(β′(q+(1−q)k))2

2 which we get by replacing the optimal effort e = β(q + (1 − q)k)

in the expected utility function.

Now consider an increase in belief from β to β′ such that βNIj ≤ β < β′ < βNIj+1 such

that j > 1. Denote the ex-ante expected utility or welfare of the agent at prior β by W (β). We

have that

W (β) =β
q

2
[1 + (1− q) + · · ·+ (1− q)j−1]− βc[1 + (1− q) + · · ·+ (1− q)j ]

+ β(1− q)j [Ke− e2

2
]− (1− β)[(j + 1)c+

e2

2
]

where K = q + (1 − q)k. Similarly, we can write W (β′) keeping in mind that the

maximum number of attempts is still j + 1.

Now, comparing term-by-term, it is obvious that everything other than the comparison

of β′(1− q)jKe′ − ((1− β′) + β′(1− q)j) e′22 with β(1− q)jKe− ((1− β) + β(1− q)j) e22
in W (β′) is greater than that in W (β). Thus it is sufficient to show that

β′(1− q)jKe′ − ((1− β′) + β′(1− q)j)e
′2

2
> β(1− q)jKe− ((1− β) + β(1− q)j)e

2

2

which can be rearranged to

β′(1− q)jKe′ − (1− β′(1− (1− q)j))e
′2

2
> β(1− q)jKe− (1− β(1− (1− q)j))e

2

2

where e = Kβ`j+1 and e′ = Kβ′`j+1.

Now it is easy to check that Ke− e2

2 is increasing in beliefs. So that

Ke′ − e′2

2
> Ke− e2

2

=⇒ Ke′ − (1− β′(1− (1− q)j))e
′2

2
> Ke− (1− β(1− (1− q)j))e

2

2

=⇒ β′(1− q)jKe′ − (1− β′(1− (1− q)j))e
′2

2
> β(1− q)jKe− (1− β(1− (1− q)j))e

2

2

where in the second step the inequality is preserved because a greater number is added to the

LHS than the RHS. And in the third step the inequality is again preserved because Ke′ (which

is greater than Ke) on the LHS is multiplied with a greater number than Ke in the RHS. Hence,

the welfare has increased.
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Proof of Lemma 1.5

Proof. Using the language introduced in Lemma 1.4, we can write W (β) and W (β′) where

β < βNI0 and βNI0 ≤ β < βNI1 as

W (β) =
(βk)2

2
and W (β′) =

(β′K)2

2
− c

Now, if the agent finds herself in [βNI0 , βNI1 ) then Condition (C1) must be slack. This means

(β′K)2

2
− c > (β′k)2

2
>

(βk)2

2

where the second inequality follows from the fact that β′ > β. Hence, the welfare has

increased.

Proof of Lemma 1.6

Proof. We show here the proof of how an increase in belief from β = βNI1 − ε to β′ = βNI1 is

welfare improving. The general proof of an increase in the prior from βNIj+1 − ε to βNIj+1 follows

the same argument.

We can write the ex-ante expected welfare in the two cases as follows:

W (βNI1 − ε) = (βNI1 − ε)Ke− e2

2
− c

W (βNI1 ) = βNI1

q

2
+ βNI1 (1− q)Ke′ − (c+

e′2

2
)(1− βNI1 q)− c

where e = (βNI1 − ε)K and e′ = βNI0 K.

Now, if W (βNI1 ) > W (βNI1 − ε), then substituting for e and e′, letting ε → 0, and

simplifying the inequality by using βNI0 =
(1−q)βNI1

1−qβNI1
gives

βNI1

q

2
− c(1− βNI1 q)− (βNI1 K)2

2
> −K

2

2
(1− q)βNI1 βNI0 .

If the above inequality holds, then we are done.

Let 2c < q(1−K2). Under this assumption, Condition (C2) must hold in a way that k

is replaced with K as

βNI1

q

2
− c > (βNI1 K)2

2
− (1− βNI1 q)

(βNI0 K)2

2
.
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Now, the inequality is preserved if the c on the LHS is reduced. Then rearranging gives

βNI1

q

2
− (1− βNI1 q)c− (βNI1 K)2

2
> −(1− βNI1 q)

(βNI0 K)2

2
.

It is now straightforward to verify that (1− βNI1 q)
(βNI0 K)2

2 = K2

2 (1− q)βNI1 βNI0 , so that our

original hypothesis on welfare comparison holds.

Proof of Proposition 1.4

Proof. From Lemma 1.4 and 1.5, it is immediate that an increase in belief of up to, but not

including the level βNI1 is welfare improving. Now, from Lemma 1.6, an epsilon increase in

belief that pushes the agent in to experimentation with supervision is also welfare improving.

Finally, from Lemma 1.4, any increase in belief of up to but not including the level βNI2 is

welfare improving. This reasoning can then be extended for any increase in belief.

Proof of Proposition 1.5

Proof. To prove the statement, we consider two particular situations, and show how in each

the welfare at the correct and overconfident beliefs differ. Let W (β; b) be the ex-ante expected

utility of the agent when the common prior is β but the correct belief is b.

Part 1: Showing that overconfidence can be welfare improving

Let β = βNI1 but b = βNI1 − ε. The two expected utility functions can be written as

W (b; b) =
(bK)2

2
− c

W (βNI1 ; b) =
bq

2
+ b(1− q)βNI0 K2 − (1− bq)

(
c+

(βNI0 K)2

2

)
− c

We need to show if W (βNI1 ; b) > W (b; b). In order to do so, first observe that
bq
2 > (bK)2

2 . This follows immediately from Assumption (A). So if we are able to show

that

b(1− q)βNI0 K2 − (1− bq)
(
c+

(βNI0 K)2

2

)
≥ 0

then we are done. Rearranging the above and recognizing that b(1−q)1−bq = βNI0 − ε′ where ε′ 6= ε,

we need that
(βNI0 K)2

2
≥ ε′βNI0 K2 + c

But we know from Condition (C1) that

(βNI0 K)2

2
=

(βNI0 k)2

2
+ c.
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Therefore, it is possible to find an ε′ (and consequently ε) such that welfare improves under

overconfidence. This requires ε′ ≤ βNI0
k2

2K2 .

Part 2: Showing that overconfidence can be welfare reducing

Let β = βNI0 but b < βNI0 . The two expected utility functions can be written as

W (b; b) =
(bk)2

2

W (βNI0 ; b) = bβNI0 K2 − (βNI0 K)2

2
− c

This time we need to show that W (βNI0 ; b) < W (b; b). Again using Condition (C1) to

substitute for − (βNI0 K)2

2 − c in W (βNI0 ; b), we can reduce the above to

b < βNI0

(2K2

k2
− 1
)
,

which must always be true because 2K2

k2
− 1 > 1.

Proof of Proposition 1.6

Proof. Let φS = φA = 1. Consider the supervisor who has seen a θt−1 = ` and reveals it

honestly to the agent. His value function is given by

V`S(βt) = max

{
(βtk)2

2
,
βtq

2
− cS + (1− βtq)V`(βt+1)

}
.

where the first term is the value that the supervisor would get if he gets the low idea implemented

and the second term is what he would get if he gets experimentation again. Given his costs, he

would then like the agent to continue experimenting for as long as

βq

2
+ (1− βq)(β′k)2

2
≥ (βk)2

2
+ cS ,

which gives a belief threshold βFIS0 . However, under an honest strategy, the agent would like to

continue experimenting for as long as

βq

2
+ (1− βq)(β′k)2

2
≥ (βk)2

2
+ cA ,

which gives a belief threshold βFIA0 .

Now, if cS < cA then βFIS0 < βFIA0 so that the supervisor would like the agent to

experiment beyond βFIA0 . The supervisor then fears discouraging the agent through honest

43



revelation for any prior belief that leads the agent to a belief lower than βFIA0 . Therefore, the

results of Propositions 1.1, 1.2 and 1.3 hold.

On the other hand if cS ≥ cA, then βFIS0 > βFIA0 . The agent would like to experiment

more than βFIS0 . Consider a belief βFIS0 ≤ β1 < βFIS1 and consider the expected strategy of

honesty. When the supervisor has seen a low potential idea, then by announcing it truthfully he

gets an effort of e = β`2k which is also optimal from the point of view of the supervisor because

φS = 1. This is so because it is an equilibrium strategy for the supervisor to babble tomorrow.

So, even though the agent at this stage would like to experiment again but in the absence of

honesty tomorrow, and β`2 < βNIA0 she prefers to implement. By deviating and calling it a high

potential idea, he induces an effort of 1 on a low-potential idea. However, this is suboptimal

from his perspective, since he would also the full cost of implementation. Thus, there is no

incentive to lie and honesty is an equilibrium.

Proof of Proposition 1.8

Proof. Consider a prior βNIj ≤ β1 < βNIj+1. In an immediately honest equilibrium strategy, the

agent experiments for j rounds with subsequent messages m = ` before reaching the babbling

region so that βNI0 ≤ β`j < βNI1 . In addition, the agent experiments one extra round without

supervision. Now, consider any strategy that reveals some j′ ≤ j outcomes together. Let the

round of eventual revelation be denoted by τ . Now, the agent is induced to experiment a higher

number of rounds in this strategy iff β`τ < βNI0 ≤ β`j . Say that this is the case. We determine

whether such a strategy is an equilibrium.

Observe that at β`τ < βNI0 the agent best responds by abandoning experimentation and

implementing any one of her low potential ideas with an effort β`τk. If the supervisor is honest,

his expected payoff is (β`τk)2. By deviating, and calling any one of the low potential ideas a

high one, the supervisor is able to induce an effort of 1 by the agent on that idea. This gives

the supervisor an expected payoff of β`τk. Since the latter is greater than the former, such an

eventually honest strategy cannot be an equilibrium.
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B Additional proofs not in the main text

Comparative statics of βFI0

Lemma 1.7. βFI0 is increasing in e, increasing in k, and decreasing in q.

Proof. Consider, first, an exogenous increase in e. It is easy to verify that an increase in e raises

the value of the RHS (i.e. of implementing the idea)in condition C2 for every belief level β.

This raises the βFI0 .

Second, consider the effect of an exogenous increase in k.

∂LHS
∂k2

= (1− βq)(β′)2

2
∂RHS
∂k2

=
β2

2
.

Now, since β > β′ and 1 > βq, ∂LHS
∂k2

< ∂2RHS
∂k2

. Thus, the value from implementing increases

by more than the value from experimenting, which leads to a higher βFI0 .

Finally, consider an exogenous increase in q. The RHS remains unchanged with an

increase in q. For the LHS,

∂LHS
∂q

=
β

2
− k2ββ′

(
1− β′

2

)
.

This is positive if 1
2 > k2β′

(
1− β′

2

)
, which is true since

∂k2β′
(

1−β
′
2

)
∂β′ = k2(1− β′) > 0 and

at the limits the inequality holds. As β′ → 0, we have that k2β′
(

1− β′

2

)
→ 0 and as β′ → 1,

k2β′
(

1− β′

2

)
→ k2

2 .

An exogenous increase in k makes executing a low potential idea more attractive and

therefore, leads to a higher βFI0 and reduces the incentives to experiment for long. The agent

desires to finish the project with a sufficiently high belief so that he can exert a higher effort in

implementing a low potential idea (if need be), thereby maximizing the probability of success

even with a poor idea. Finally, an increase in q lowers the belief threshold. This is so because

conditional on being of high-ability, a higher q increases the chances of coming up with a high

potential idea. Therefore, in a world in which ability is unknown it makes experimentation more

attractive and pushes the agent to experiment for longer.

Comparative statics of βNI0

It is straightforward to derive how βNI0 behaves with a change in parameters. A

decrease in the probability of coming up with a high potential idea q or an increase in the cost

of experimentation c has the effect of increasing the threshold. Finally, an increase in k can
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have a non-monotonic effect on βNI0 depending on the initial value. For k < 1−q
2−q , an increase

in k decreases βNI0 . For k > 1−q
2−q , an increase in k increases βNI0 . The intuition behind a

non-monotonic relation between k and βNI0 is as follows. k measures the success rate (for any

given effort level) from a bad idea when the agent is of high-ability. When the agent does not

observe the value of θ from experimentation, then she experiments only as a gamble (and this

gamble is not worth taking more than once). When k increases from a sufficiently low k to begin

with, it makes this gamble more attractive – the agent reasons that even if the gamble fails (i.e.

θ = ` is the outcome of the gamble), she is more likely to succeed because of a higher k. On

the other hand, when k increases further from an already high level, then the gamble becomes

less attractive. This is so because the agent already has an outside option θ̄ = ` available which

then becomes relatively more attractive to finish.
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C Committed supervisor

A note on the enforcement of commitment

Here we present the case of the supervisor committing to an information policy before

the agent starts experimenting with ideas. Before we do so, we should understand how such a

commitment may be enforced. An information disclosure policy is a sequence of revelation

strategies about the observed potential of ideas produced by the agent to which the supervisor

is committed. One may imagine the policy as a sequence of public tests - the supervisor may

or may not observe the true potential of the idea but he designs tests that will reveal to the

agent (and to the supervisor) the true potential of the idea. Thus, commitment to information

disclosure policy is akin to commitment to test designs. This interpretation is in the spirit of

Kamenica and Gentzkow (2011) and Smolin (2017).

Another way in which such a commitment may be enforced is through “presentation”

of ideas to multiple supervisors. Many co-supervisors rather than one main supervisor may

work to discipline each other. This requires that if the optimal disclosure policy involves mixing

by the supervisors then they all should agree on such a mixing and then enforce it (say by

punishing deviations with full disclosure). Alternately, one supervisor’s recommendation may

be cross-examined by another supervisor who has also observed the agent’s idea. However, these

interpretations are not immediate and might not be realistic in many settings. An apprentice

working on a project might only be assigned one expert due to cost concerns. It is also not

obvious how a supervisor might commit to a test design that reveals his private information to

the agent. Because of this limitation, we present the commitment case as an extension of the

model in Section 1.4. We consider here only the flavour of an optimal policy by discussing the

incentives of the supervisor and the agent, and showing how the supervisor can achieve better

outcomes (relative to the equilibrium outcome) for both himself and the agent by committing to

information disclosure policies.

Immediate honesty

Consider first the policy in which the supervisor is committed to revealing the true

potential of the idea after each round of experimentation. We call this a policy of immediate

honesty. As illustrated in Lemma 1.2 such a policy induces the agent to experiment with

continued low potential ideas all the way down to the belief βFI0 . It is immediate that the agent

prefers to experiment more under this policy relative to the equilibrium outlined in Proposition

1.3. Immediate honesty guarantees maximum possible learning to the agent and in the least cost,

which allows the agent to match effort to the true potential of the idea. This helps retain the

47



attractiveness of experimentation insofar as condition (C2) holds. The prior β1 determines how

many more rounds the agent ends up experimenting under this policy relative to the equilibrium.

That the supervisor prefers such a policy is not immediate in the region of beliefs in

which the supervisor is honest in equilibrium as well. While on the one hand such a policy

induces more experimentation (and therefore, a higher probability of the agent producing a

high potential idea), it also depresses the effort of the agent when she does not ever produce

a high potential idea. The agent exerts a higher effort in equilibrium on an idea of unknown

potential (see Proposition 1.3) because of a higher belief. Let β1 > βNI1 such that under both

the equilibrium and the immediately honest policy the agent experiments for t rounds until βNI1 ,

then in equilibrium the agent experiments for one additional round (without supervision) while

under the immediately honest policy she does so for t′ additional rounds with supervision. Note

that t and t′ are functions of β1. The supervisor prefers the immediately honest policy over the

equilibrium policy iff

(β`t+1)2(q + (1− q)k)2 <β`t+1q + (1− β`t+1q)β
`
t+2q+

+ (1− β`t+1q)(1− β`t+2q)β
`
t+3q+

+ . . . + (1− β`t+1q)(1− β`t+2q) . . . (1− β`t+t′q)(β`t+t′+1k)2.

Until round t both policies yield the same payoff to the supervisor. The LHS captures

the additional payoff from one more round of experimentation in t + 1. The RHS captures

increase in the payoff from t′ additional rounds of experimentation with the agent implementing

a low potential idea in round t+ t′ + 1. A sufficient condition for the above to be satisfied is

q > (q + (1 − q)k)2, which we know is satisfied from Assumption (A). Lemma 1.8 follows

from the above discussion.

Lemma 1.8. The immediately honest policy is pareto superior to the equilibrium policy.

Thus, both the supervisor and the agent stand to gain if the supervisor commits to

honesty. However, as we show below, the supervisor can do better than immediate honesty.

Delayed honesty

The supervisor’s preferred policy is driven by the desire to make the agent experiment

more when she has low potential ideas but implement immediately if she gets a high potential

idea. Thus, while on the one hand he wants to be honest with the agent, he also wants the

agent to experiment as often as possible. We show how the supervisor can fulfil these two

objectives through a delayed disclosure policy which we call delayed honesty and quantify the
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gain attainable over immediate honesty.21

A policy is a combination of a disclosure time and what to recommend at that disclosure

time. A disclosure timing rule is a mapping from the current belief βt to a choice of round τ at

which the supervisor requires the agent to show her ideas to him (or equivalently the number

of rounds the agent is required to experiment). He then makes a comment about each of the

τ ideas according to a recommendation policy which is a mapping of {`,h}τ onto itself. A

recommendation policy is honest if the supervisor honestly reveals the type of all the ideas that

the agent has produced. We restrict attention to honest recommendation policies for the time

being and analyse what is the optimal disclosure time τ∗. At the disclosure time τ , the agent

and the supervisor update their belief about the ability sequentially according to Bayes’ rule.

Thus, if the supervisor reveals that any of the ideas are high potential they both update their

belief to 1 and otherwise revise their belief downwards by τ times

β`τ =
(1− q)τβ1

1− qβ1
∑τ−1

t=0 (1− q)t
.

Fix a prior β1 ≥ βFI0 and consider a disclosure policy that requires the agent to

experiment at least τ times to receive feedback from the supervisor. We are interested in finding

out the maximum number of rounds of delay. Let the disclosure policy be such that after the

agent discovers all her ideas were of low potential she quits experimentation and implements

any one her ideas, i.e. β`τ+1 < βFI0 .22 We say that such a policy is implementable if the agent

prefers to experiment τ times and receiving feedback to not experimenting and implementing

her outside option idea.23 This yields the following implementability constraint (IC)

expected benefit of experimentation︷ ︸︸ ︷
1

2
β1[1− (1− q)τ (1− (β`τ+1k)2)] ≥

total cost of experimentation︷ ︸︸ ︷
(β1k)2

2︸ ︷︷ ︸
opportunity cost

+ τc︸︷︷︸
actual cost

. (IC)

Observe that since the agent is expected to carry out multiple rounds of experimentation

without knowing their outcome, she evaluates the possibility of attaining a high potential idea

relative to β1. Conditional on being high-ability, with probability (1− q)τ she expects to attain

21Since we are not focussing on delayed partial disclosure, we will omit any mathematical complexity that comes
with it such as that of defining mixed strategies. We will focus on the supervisor using pure strategies.

22If there is any implementable delayed policy that leads to a posterior above βFI0 , then the same can be achieved
by an immediately honest policy by inducing the same number of rounds of experimentation. We will refer to
delayed honesty policy as the one which leads to posteriors below βFI0 so that more number of rounds are induced
than in immediately honest policy.

23There is no expected benefit to the agent by experimenting less than τ times since given the policy the
supervisor does not reveal any information to the agent when this is the case.
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only low potential ideas to implement, and with the remaining probability she expects at least

one high potential idea. Therefore, with probability β1(1− (1− q)τ ) she receives 1/2 and with

probability β1(1 − q)τ she will revise her belief down to β`τ+1 after the supervisor honestly

reveals all her τ ideas are low potential. At this point, she will implement any one of her

low potential ideas to obtain an expected benefit of
(β`τ+1k)2

2 . Finally, there is no benefit of

experimentation if the agent is of low-ability type. This is captured in the LHS of IC condition

as the expected benefit of experimentation.

If the agent instead opts for implementing her low potential outside option idea, she

expects to receive a payoff of (β1k)2

2 . As illustrated in the RHS, she must forego this expected

benefit when she decides to experiment, in addition to paying the cost of experimentation c for

τ rounds. The IC condition thus puts a limit on the maximum number of rounds the agent is

willing to experiment when she is at a belief β1 and the supervisor is committed to revealing all

the information after those rounds.

We next analyse the supervisor’s incentives under such a policy. The supervisor’s

ex-ante expected payoff from a τ -implementable policy is

β1[1− (1− q)τ (1− (β`τ+1k)2)].

The supervisor, like the agent, only sees the potential of the ideas once they are presented to him

– he evaluates the probability of at least one high potential idea among the τ attempts according

to β1. Does the supervisor benefit from a higher or a lower τ? While on the one hand a higher τ

reduces the probability of the agent only producing low potential ideas, but on the other hand it

also depresses the effort of the agent in case of such event. The following lemma shows that the

first order effect of reduced probability dominates the second order effect of reduced effort so

that the supervisor is always better off inducing a higher τ .

Lemma 1.9. Under assumption (A), the supervisor’s payoffs are increasing in the number of

rounds the agent experiments τ .

Proof. Consider the expected probability of success from a τ -implementable policy:

β1[1− (1− q)τ (1− (β`τ+1k)2)] (1.8.C.5)

Now consider the expected probability of success from a τ + 1-implementable policy:

β1[1− (1− q)τ+1(1− (β`τ+2k)2)] (1.8.C.6)

50



Subtracting equation (1.8.C.5) from (1.8.C.6) and looking at the condition for it being positive,

we get

q + (1− q)(β`τ+2k)2 − (β`τ+1k)2 > 0

This always the case since q > k from Assumption (A), which implies q > (β`τ+1k)2. Therefore,

the payoff of the supervisor is increasing in the number of rounds of experimentation.

Supervisor’s maximization problem therefore reduces to getting the agent to experiment

as many rounds as possible. This is solely determined by the IC condition. It is immediate that

the expected benefit of experimentation to the agent under such a policy, although increasing in

β1, is bounded above by 1/2. Consequently, for a higher β1 the agent should want to experiment

more number of rounds but up to a limit. This limit is imposed by the bounded benefits on the

one hand, and the increasing cost of experimentation on the other. Our objective is to determine

the maximum (β1, τ) combination that is implementable with such a policy.

For this purpose, fix τ . Now, if there exists a prior belief that makes the IC condition

bind, then it must be the minimum prior that does so. Define this minimum prior belief by β̄τ .

So for any belief β1 ≥ β̄τ the agent finds it optimal to at least experiment τ times. Observe that

β̄τ must be increasing in τ since the agent must have a higher belief to induce him to experiment

more often by paying a higher cost. Let β̄ τ̄ be the maximum of this increasing sequence so that

τ̄ gives the maximum number of rounds that are implementable and β̄ τ̄ is the minimum prior

that can induce those many rounds. Proposition 1.9 follows from the above discussion.

Proposition 1.9. The maximum number of rounds τ∗ the supervisor can delay honestly revealing

the outcomes and therefore induce experimentation at prior β1 is given by

β̄τ
∗ ≤ β1 < β̄τ

∗+1 if β1 ≤ β̄ τ̄ ,

and is equal to τ̄ if β1 > β̄ τ̄ .

We end this section with the following observation.

Observation 1.2. The supervisor weakly prefers a policy of delayed honesty to immediate

honesty when delayed honesty is implementable, i.e. when β1 ≤ β̄ τ̄ .

Ali (2017) derives the same result when determining the optimal dynamic disclosure

policy in a slightly different environment. In his setting, the agent needs two consecutive

successes in order to be successful in the project. The experiments yield success with a positive

probability only if the project is of a good type. Ali shows that the more informed party always

has an incentive to delay information revelation while the less informed party would prefer early
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revelation. While we do not solve for the optimal policy here, we showed here delaying may be

preferred by the supervisor to immediately revealing the outcome.

For priors above β̄ τ̄ , a combination of immediate honesty and delayed honesty may

be preferred by the supervisor. The prospect of finding out the outcome of experimentation

immediately after experimenting makes the agent assess future costs probabilistically. Since it

might be determined immediately that the last idea had a high potential to succeed, the agent

then does not have to bear future costs of experimenting. This reduces the expected cost of

experimentation to the agent and makes her willing to experiment. So for higher beliefs, where

the agent is not willing to pay a lump sum cost for experimenting with delayed honesty, the

supervisor can induce experimentation with immediate honesty. The supervisor can then commit

to delayed honesty when the agent reaches a lower belief. However, immediate honesty might

provide too much incentive to the agent and the supervisor might do better by committing to a

mixed revelation for high beliefs.24

24We do not consider these policies in this paper as our primary objective is to highlight the tensions when the
supervisor does not have commitment power. We merely want to show how the supervisor can do better when there
is commitment in the relationship, and what incentives shape a “preferred” policy.
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Chapter 2

The Newsroom Dilemma

2.1 Introduction

On April 18, 2013, the New York Post plastered its cover page with a picture of two

men under the headline “BAG MEN: Feds seek these two pictured at Boston Marathon.” The

Post was hinting that the duo was responsible for the Boston Marathon bombings and had

carried the bombs in their bags. They were innocent, and the Post was wrong. 16-year-old

Salaheddin Barhoum and 24-year-old Yassine Zaimi later filed a lawsuit, and the New York

Post’s credibility was damaged. Similarly, in September 2008, Bloomberg incorrectly reported

that United Airlines was filing for bankruptcy. Before Bloomberg issuing a correction, United

Airlines’ stock price nosedived 75 percent.

Media critics often cite such examples to argue that competitive pressures in the modern

digital environment have pushed outlets towards early release of less accurate information

(Cairncross, 2019).1 Matt Murray, Editor-in-Chief of the Wall Street Journal, acknowledged in

a recent interview that the Internet had created both time and competitive pressures. However,

part of the pressure, he noted, “is to stay true to what has worked and works (really) well,

which is reporting verified facts.” In a similar vein, some media scholars argue that the fears

surrounding the effect of competition may be overblown (Knobel, 2018; Carson, 2019).

In this paper, we discuss why competition among media outlets might not privilege

speed over accuracy. We consider the implications of competition on audience welfare and

information dissemination. We argue that two opposing forces determine the resolution of the

speed-accuracy tradeoff: preemption and reputation. While preemption pushes outlets towards

speed, reputation gives media outlets a reason to engage in careful, detailed reporting.

1This, of course, is a cause of concern for modern democracies. Media outlets, through fact-checking and
investigative journalism, deliver revelations that have a profound impact on the society and its institutions. For
instance, The Hindu’s Bofors scam exposé in India in 1987 brought the topic of political corruption to center stage
and lead to the defeat of the government in power in 1989. More recently, the New York Times’ exposé on sexual
abuse in Hollywood and corporate America has reignited discussions on gender discrimination in the workplace.
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We build a two-period model in which two career-concerned media outlets compete

against one another and fear preemption. There is a topic on which the outlets may publish

stories. Both outlets receive an initial informative signal about the topic. They may research the

topic further at a cost, which depends upon their ability. We model research as generating a

perfectly-informative signal about the topic. There is a scoop value associated with being the

first outlet to publish a story on the topic. In addition to valuing scoops, outlets also care about

their reputations. Reputation depends upon an audience’s inference about the outlet’s ability to

research.

Our model yields three main results. The first two speak to the changes in the media

landscape brought about by the Internet. The last result deals with how a source disseminates

information to media outlets facing the speed-accuracy tradeoff.

Effect of the Internet. One effect of the Internet has been to increase competitive pressures.

The Internet has reduced barriers to entry and contributed to a 24-hour news cycle where

reporters are always on deadline. Consequently, pressure on media outlets to be the first to

publish have increased.

In our model, while competition can push media outlets to publish more quickly, it can

also have the opposite effect – to push outlets to research stories more thoroughly. We find

that in more competitive environments, it is easier for outlets to build reputation. This effect

increases outlets’ willingness to hold back on stories and research them thoroughly. Importantly,

our argument relies upon the assumption that the audience does not observe the amount of time

outlets spend researching stories but they do observe which outlet publishes first. Knowing the

sequence of publication rather than the amount of research, allows for additional observational

learning with competition. Consequently, it gives better outlets a reason to differentiate when

facing competition.2

We show that when there is a high scoop value, competition drives media outlets

to publish more quickly; in contrast, when there is a low scoop value, competition drives

media outlets to research stories more. Therefore, the model suggests that breaking news-

type stories such as those on terrorist attacks, malfeasance of senior government officials or

adverse economic shocks, will suffer particularly from problems of accuracy in the Internet age.

In contrast, outlets do better research on non-urgent stories that do not influence immediate

decision-making. Examples include: revelations of sexual abuse by Hollywood executives, how

terrorist organizations work, and illegal data hacking that is used to influence public opinion.3

2We discuss in detail the new media studies literature in Section 2.1.1 and show some anecdotal support for our
main finding.

3The first story was publishished in both the New York Times and the New Yorker. https://www.newyorker.co
m/news/news-desk/from-aggressive-overtures-to-sexual-assault-harvey-weinsteins-accusers-tell-their-stories.
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A second effect of the Internet has been to improve what quickly-released stories look

like. Journalists can quickly “contact people, access government records, file Freedom of

Information Act requests, and do searches” (Knobel, 2018). Similarly, Chan (2014) argues that

“digitization brings better access to sources and data.” At the same time, however, the cost of

doing in-depth research has not changed much. For instance, one would not expect the cost

of conducting interviews and building trustworthy sources to have changed significantly. We

model such an effect as improving the quality of the initial signal without changing the cost of

research.

We find that a better initial signal can reduce the welfare of the audience. When initial

signal becomes better, the audience is less able to attribute correct information by the media

outlets to their ability to conduct in-depth research. The audience instead assign it to better

initial signal of the outlets that is due to better technology. Thus, reputational concerns get

diluted and timing pressures become more salient, making the media outlets move towards

speed. Moving towards speed reduces overall welfare only if a significant proportion of audience

values better reporting. However, it improves welfare if the audience does value early reporting.

It is easy to map the above examples from the previous paragraphs to the relevant situation for

audience welfare.

Information dissemination by a source. Our model is also useful for determining how a

strategic source shares its information with competing media outlets. Notably, it helps explain

why politically-motivated sources may share rumours with multiple outlets to get “unverified

facts” out to the audience.

Our model predicts that a source who is merely interested in getting potentially incorrect

information out without further research can exploit the time pressures that competing media

outlets face. We show that when media outlets are intrinsically driven to explore issues, it is

better to share information with all the media outlets to get the information out quickly. More

intrinsically motivated media outlets are more likely to do further research independent of the

competition. However, by sharing with all the media outlets and creating competitive pressures,

additional time pressure can be created. Thus, politicians with propaganda may still hold media

outlets hostage even without explicitly capturing or buying them off.

There are, however, situations when such a source shares information only with one

media outlet for the quick release of information. The source is likely to do so when media

outlets are not intrinsically motivated, and the information is not urgent. When the information

The second story appeared on the New York Times after the reporters researched for more than a year and a half.
https://www.nytimes.com/interactive/2018/04/04/world/middleeast/isis-documents-mosul-iraq.html. The third story
broke out in The Guardian. https://www.theguardian.com/us-news/2015/dec/11/senator-ted-cruz-president-campaig
n-facebook-user-data.
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is not urgent, there is a general tendency for competing media outlets to investigate further

independent of their intrinsic motivation. In this situation, sharing information with just one

outlet gets the information out more quickly.

It is worth emphasizing that our model generally covers settings that have elements of

preemption and career concerns. For instance, competing researchers working to solve similar

problems and hoping to convince a market about their ability face a similar newsroom dilemma.

Technology firms face a speed-accuracy tradeoff as they build products and technology to

match consumer preferences. Our main results have a natural interpretation in these situations.

Notably, better research in competitive environments requires that the initial research idea is not

too well-developed.

2.1.1 Stylized facts and new media studies literature

The speed vs. accuracy tradeoff is commonly recognized in the media studies literature.

The BBC Academy website observes that “every journalist has to resolve the conflicting

demands of speed and accuracy. [...] If you are working on a breaking news story, it is important

to remember that first reports may often be confused and misleading. [...] That is why it is

important to weight the facts you have.”

The terms of this tradeoff hinge on the surrounding environment. The literature high-

lights two critical determinants of the rise of “speed-driven journalism” in the modern digital

environment. The first one is increasing competitive pressure. Lionel Barber, the Editor of

Financial Times, points out, “Technology has (also) flattened the digital plain, creating the

illusion that all content is equal. It has made it possible for everyone to produce and distribute

content that looks equally credible”. Thus, outlets cannot only count on their pre-existing

reputation to attract readers, and being the first to break the news is increasingly important.

Rosenberg and Feldman (2008) note, “Why do experienced journalists telecast unscreened

material in volatile situations? Because they can, and because they are driven by powerful,

rush-to-report hard instinct, the one commanding them to beat or at least keep astride of the

competition and not be left behind”.

The second is the 24-hour news cycle (Lee, 2014; Starbird, Dailey, Mohamed, Lee

and Spiro, 2018), which leads to the possibility of being preempted at any point in time.

Newspapers used to have editions making it possible to verify information up until the night

before publication, almost without fear of someone else breaking the news. That is no longer

the case. As Howard Kurtz from Washington Post describes, “In the last year, the pendulum has

swung in our newsroom to putting things on the Web almost immediately [...] everybody wants

it now-now-now. [...] But the sacrifice (clearly) is in the extra phone calls and the chance to
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briefly reflect on the story that you are slapping together” (Rosenberg and Feldman, 2008).

Importantly, however, reputational concerns remain relevant. Reuters Handbook of

Journalism states “Reuters aims to report facts, not rumors. Clients rely on us to differentiate

between fact and rumor, and our reputation rests partly on that”. Note that reputation is based

on the ability to check the facts before releasing them, which is also how we model it. Knobel

(2018) summarizes her interviews with the editors by saying that they realize that readers can be

induced to pay for quality journalism. She quotes Rex Smith, editor of the Albany Times Union,

“What can separate great journalism from everything else is our commitment to the journalism

of verification and watchdog reporting. It will give us credibility that other organizations do not

have.”

Some new literature from media studies paints a more positive image of the future

of watchdog reporting. While not exactly the same as reporting accurate stories, watchdog

reporting, which includes investigative journalism and fact-checking, takes time. We show

here the data from Knobel’s study in support of our theoretical results in Table 2.1. The table

shows an increasing share of accountability reporting among a sample of 9 US newspapers for

1991-2011. 2001 in her sample marks the year that the Internet and social media took off in

a big way, and became an essential source of news for the audience. We can see how almost

all newspapers have increased their accountability reporting since then. The increase is visible

for both deep and simple accountability reporting, and across newspaper groups. While the

increase may be due to several reasons, her data together with the interviews hint at similar path

to that which we outline in this paper.

The model we build tries to combine these insights into a unified analysis of the speed-

accuracy tradeoff and the competing forces that determine its direction.

2.1.2 Contributions to related economics literature

We primarily contribute to the literature on media competition and quality of news by

explicitly modeling the newsroom dilemma. The newsroom dilemma, or the speed-accuracy

tradeoff, is surprisingly understudied in the field despite agreement among media scholars on

its importance. One exception is Andreottola and De Moragas (2017). They look at the political

economy impact of a similar speed-accuracy tradeoff and find that competition leads to a release

of less accurate information. Our paper differs because we explicitly model the reputational

concerns of media outlets. We identify conditions where the additional information transmitted

by the presence of competitors overcomes the preemption concerns.

Some new literature has also started exploring theoretically the effect of the Internet

on the media landscape. In Angelucci and Cagé (2019), for instance, the authors show that an
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Internet-driven drop in the advertising revenues leads to a smaller newsroom, decrease in prices

and a move towards “soft” information. Similarly, Armstrong (2005) looks at the relative effect

of advertising-only with a subscription-based funding mechanism on journalistic quality. All

of these papers and others (Ellman and Germano, 2009; Gentzkow, 2014) build on two-sided

market models (Rochet and Tirole, 2003, 2006) and are concerned with pricing decisions. We

do not explicitly model advertising and pricing concerns. We instead subsume them under either

preemption or reputational concerns.

Some recent papers that do not look at pricing explicitly but explore the political con-

sequences of new media or of media competition are Sobbrio (2014), Allcott and Gentzkow

(2017), Barrera, Guriev, Henry and Zhuravskaya (2017), Chen and Suen (2016), Perego and

Yuksel (2018) and Vaccari (2018). For instance, Chen and Suen (2016) look at media competi-

tion and endogenous attention allocation. They do not have the speed-accuracy tradeoff, but

they show that increased competition reduces outlets’ investment in reporting quality, increasing

the overall influence of the media industry. Perego and Yuksel (2018) and Vaccari (2018) look

at the distortive effect of competition on information provision by biased outlets, and as a

consequence on the level of information voters can acquire. In both cases, competition can

increase distortions. In this paper we abstract from outlets’ political motivations to focus on

their incentives to provide good quality journalism.

Focusing more on the reputation-building and signaling in media markets, Gentzkow

and Shapiro (2006) model media bias and reputation building, showing that competition reduces

bias. The model explores an entirely different tradeoff looking at the content of the reporting

directly, rather than the timing. Also, the “positive” effect of reputation comes from a different

channel – with competition the reader is more and more likely to learn the actual state eventually.

Our model does not have this feature as the audience eventually learn the actual story, and

competition does not affect the revelation incentives in this way. Gentzkow and Shapiro (2008)

later provide an outline of a model that may incorporate reputation-building incentives like

ours but they do not consider preemption. Shapiro (2016) shows that reputational concern

for unbiasedness may induce journalists to report evidence as ambiguous even when it is not.

Preemption concerns and endogenous choice of research are not considered there.

Our modelling strategy shares some features with Hafer, Landa and Le Bihan (2018)

and Hafer, Landa and Le Bihan (2019). Like us, they have a two period model where competing

outlets can acquire information about a politically relevant state of the world and choose when

to release it. However, we do not focus on media bias and on the possibility of claiming credit

for a story, but rather on the trade off between time pressure and quality of journalism. See Prat
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and Strömberg (2013) and Strömberg (2015) for recent developments in the political economy

of media literature, and other related papers.

We also contribute to the literature on strategic information release. We differentiate

from Guttman (2010) and Guttman, Kremer and Skrzypacz (2014) by adding reputational

concerns and endogenizing the information acquisition choice. Therefore, our results are

driven by completely different incentives. Relatedly, Aghamolla (2016) looks at a model of

(anti-)herding between financial analysts with endogenous information acquisition. While

observational learning is critical in such herding models, reputation building drives such

incentives in our model. Observational learning is relevant for the audience in our model

because it signals the type of the outlet. Gratton, Holden and Kolotilin (2017) look at a model

in which a sender strategically releases a stream of information to influence perceptions about

herself. They show that better sender types release the information earlier and expose themselves

to scrutiny. This is in contrast with our model, where better outlets release information later.

Preemption concerns drive the incentives in our model, which produces our different result.

Finally, we also contribute to the literature on preemption games and R&D races by

adding reputational concerns. Preemption games have long been studied in economics (Fuden-

berg, Gilbert, Stiglitz and Tirole, 1983; Fudenberg and Tirole, 1985), but our paper contributes

to the more recent literature on preemption games with private information (Hopenhayn and

Squintani, 2011, 2015; Bobtcheff, Bolte and Mariotti, 2016). It is worth noting that Bobtcheff et

al. (2016) have a similar “separating” result for different types of firms, but in a set up without

reputation. Here we point out that reputation, combined with actions that partially reveal an

opponent’s type, can be a different force leading to separating strategies in preemption games.

2.2 A model of the newsroom dilemma

We build a simple two-period model indexed by t = 1, 2 featuring three players: two

strategic media outlets i, j and a fixed mass of audiences. We also consider a version with just

one media outlet.

State of the world. The state of the world ω is binary and unknown to the players. Formally,

ω ∈ Ω := {a, b} with common prior Pr(ω = a) = 1
2 . Ω pertains to the topic on which the

media outlets are digging a story, and the relevant information for the audience. This could be,

for instance, who is responsible for a terrorist attack, whether a senior government official is

involved in corruption or not, who is an appropriate candidate to vote for in the election, etc.

Media outlets. Initially, each outlet privately observes a signal si about the state of the world in

t = 1. We call this the story that the outlets have. We assume that si is free and i.i.d. conditional

on the state. Its precision is Pr(s = ω|ω) = π > 1
2 . The two outlets decide simultaneously
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at this stage whether to publish their signals, or conduct further research. The decision di for

outlet i in t = 1 is, therefore, to choose from {pub, res} where pub is publish immediately, i.e.

in t = 1, and res is do more research and then publish in t = 2.

Publishing is equivalent to endorsing a particular state of the world (independent of

whether published in t = 1 or 2). When an outlet publishes its story it sends a message

m ∈M = {ã, b̃} where ω̃ means endorsing state ω.

Conducting further research (and then publishing in t = 2) is costly. In particular, there

is a type specific cost of research that perfectly reveals the true state of the world in t = 2.

Outlets can be of two types, high or low quality, depending on how efficient they are at digging

into stories, and this is the private information of each individual outlet. Formally, the type of

outlet i is θi ∈ {h, l} with a common prior Pr(θi = h) = q = 1
2 . The types are independent.

θ = l faces an infinite cost of conducting research. The low quality outlet never digs

stories further and chooses d = pub in t = 1. The cost c for the high quality outlet is private

information of that outlet, and is story-specific. It comes from a uniform distribution F with

support [−ε, c̄] and is drawn independently for each high quality outlet. ε is greater than zero

but small to capture the idea that some high quality outlets may still want to conduct research

even in the absence of other rewards.4 We assume c̄ ≥ 2 so that the support of the distribution

F is sufficiently large.

Finally, the assumption on q is just for analytic convenience. A generic q ∈ (0, 1) would

not alter the results, qualitatively. We show this case in Appendix C.

Audience. The audience enters the game when one or both of the outlets publish their story,

and their story is revealed (i.e. m). They only rationally form beliefs about the types of the

outlets. They enter with the knowledge of the priors and an understanding of the competition

between the outlets. Other than this, the precise information of the audience at the time of belief

formation is denoted by the set I.

We assume that the audience observes the sequence of publication but not the actual

time of publication, or whether the outlets conducted research. The sequence, as distinguished

from the timing, shows whether the outlets moved sequentially or simultaneously. Under this

assumption, the audience will be able to determine the actual time of publication (i.e. t = 1, 2)

only if the outlets moved sequentially. It can be summarized by t̃i ∈ {I, II,∅}, which shows

whether outlet i was first, second, or it moved simultaneously with j. This assumption is

4Interviews with editors often confirm such motivations; often they feel a sense of responsibility in their
positions. For instance, Knobel quotes Marcus Brauchli, Washington Post’s former editor, “Doing investigative
journalism is in the Post’s DNA and has been as long as any of us have been around in journalism.” Similarly, Kevin
Riley, the Editor of the Atlanta Journal-Constitution explains, “People want us to do this. They don’t think anyone
else will if we don’t.”
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discussed in more details in Section 2.2.2 and its implications are described in the main analysis

2.3.

In addition, after both the outlets publish their stories, the state is revealed exogenously.

If mi = ω, then outlet i is said to be right, or R. Otherwise, the outlet is wrong, denoted by

W . We call this the outcome O of verification. The audience sees the outcome. Therefore, the

information of the audience I at the end of the game is denoted by a tuple (Oi
t̃
, Oj

t̃
) that consists

of four pieces of information, i.e. the position of each outlet in the sequence of publication and

their outcomes. Using I, the audience updates its beliefs about each outlet’s type. Denote the

posterior belief about θ = h by γ(I) when the information held by the audience is I.

Payoffs. Currently, we do not illustrate the payoffs of the audience as they only form beliefs. We

will, however, place more structure on its preferences at a later stage and explain the source of

outlets’ payoffs. For the time being, we only focus on the outlets’ payoffs, which are composed

of three elements.

1. The first is a scoop value v to the first outlet publishing the story. It captures the preemptive

nature of the media market, highlighted for example in Besley and Prat (2006). v can be

interpreted as the mass of audience that is drawn to the first media outlet breaking the

story.

2. The second is a reputation value of γi or the audience’s posterior on the quality of outlet

i calculated after revelation of the true state. This captures the extent to which the outlets

care about their reputation. For instance, future audience of the outlets might depend

on their reputations. We assume that reputation enters linearly in the outlets’ payoffs.

Importantly, the audience cares about whether the outlet is high or low type, not about c.

A new c is drawn for every new story and only the high type has the ability to conduct

further research.

3. The third is the cost c that the high type outlet chooses to pay if it does research in period

1.

Timing. The timing of the game can now be summarized as follows:

0. Nature draws ω, θi and θj . θ is privately observed by each outlet. ω is unobserved.

1. At t = 1 each outlet privately observes si. A cost c of digging into the story is drawn

from a uniform distribution F [−ε, c̄] for the high type.

2. The outlets simultaneously decide di ∈ {pub, res} and if di = pub then also choose m.

As stated before, this is a relevant decision only for the high type. The low type always
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chooses pub.

3. If both outlets publish, the game ends. Otherwise, the game goes to period 2.

4. At t = 2, the state is revealed to every outlet that chose di = res. Those who did not

publish in t = 1, publish now by choosing m.

5. Once both the outlets have published, the state ω is revealed to the audience. They observe

I and update beliefs on the type of each outlet. Payoffs are realized.

2.2.1 Solution concept and equilibria selection

The solution concept we use is the Perfect Bayesian Nash Equilibrium in pure strategies.

We focus on equilibria where outlets optimally follow the signal they receive, i.e they endorse

the state that is more likely to be the true one given their signal. We call such equilibria

signal-based equilibria.5 For the rest of the paper, we use “equilibrium” and “signal-based

equilibrium” interchangeably.

2.2.2 Discussion of assumptions

Before proceeding to the analysis, it is worth discussing our assumptions in detail.

The first assumption we make is regarding what the audience observes about the timing

of the game. The fact that the audience only observes the content of what was published (i.e, m)

and the sequence of publication (i.e., t̃ but not the actual t) captures the idea that it is unaware

of how much the outlets researched story. We believe this is a realistic assumption in that the

amount of research is hardly observable from outside the newsroom. Of course, the amount of

research conducted maps in a probabilistic way into the accuracy of a story, which the audience

can check more easily. We allow for such a possibility by letting the audience observe whether

the story is true or false.

The important consequence of this assumption is that player i’s decision to publish/not

publish can potentially convey information about player j’s type. For example, if the two outlets

move sequentially and only a high type is expected to conduct research, moving later is a signal

of the first outlet being a low type. We show how relaxing this assumption changes our result in

Section 2.3.4.

The second assumption we make is about who possesses stories on a topic. In reality,

competing media outlets are often unaware of whether their competitors are also exploring

the same story. We assume that both of the media outlets are aware that their competitor also
5This means that we ignore equilibria where outlets choose to endorse one particular state to signal their type.

Those equilibria may exist, but we argue that they do not make much sense given the environment we are considering.
Alternatively, we can assume that signals are hard information, but the reader cannot infer the level of precision: the
result would be exactly the same.
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possesses the story. Doing so pushes the incentives of the outlets the most towards speed. Still,

we show that more research is possible under competition. Including such a possibility further

adds to the complications of the model.

The third assumption we make is that outlets build a reputation on their consistent

types, and not on the cost of digging into each independent story. Given that different outlets

usually have different expertise, it is reasonable to assume that they face different costs when

exploring different stories. For instance, The Wall Street Journal is a business-centric daily and

has invested in building sources and methods for dealing with business stories (such as avoiding

lawsuits when potentially sensitive corporate information is published). However, in general,

some outlets have a culture of researching while others do not. Their type captures this.

We also make a few assumptions for tractability reasons. First, we do not allow for

the outlets to “sit on information” or wait for a period before publishing.6 Second, we assume

that the audience correctly finds out the state at the end of the game. Third, we assume that

the media outlet correctly finds out the state upon choosing to research. Almost all of these

assumptions can be relaxed to some degree without altering our predictions.

Finally, it is worth emphasizing that there is an informational value of the news to

the audience in our model. They want to know the actual state, which allows them to make

decisions or form opinions. Our model, therefore, does not deal with the entertainment value of

news where the audience enjoys getting the information.

2.2.3 Preliminary observations and strategies

We start with a few simplifying observations. All the proofs are in Appendix A.

Observation 2.1. If an outlet decides to publish in t = 1, it follows its signal s, i.e sendsm = s.

If an outlet decides to do research and then publish in t = 2, it follows the outcome of research.

Observation 2.1 follows from the fact that in t = 1 the most informative signal is s.

Therefore, the most likely state is the one given by the signal. This is a standard result in this

type of environment and follows from the flat priors on the state. Moreover, in t = 2 the outlet

choosing to research has learned the actual state and therefore, publishes it (independent of

what the original signal s stated). Thus, as long as there is a gain in matching the state, each

outlet follows its last signal, which is also the most informative one.

There is also a useful result arising from our particular signal structure and flat prior

over the state.

Lemma 2.1. If each outlet follows its last signal when publishing, the following results hold:

6We can show that for a sufficiently high v and relevant off-path beliefs, the outlets never choose to wait.
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1. The probability of matching the state after only s is π.

2. Regardless of whether i decides to publish or research, from its point of view the expected

probability of player j matching the state without research is π.

Lemma 2.1 will be helpful in writing the incentive compatibility conditions for the

players. Doing so will require each outlet to consider whether the other will do research and the

subsequent probability of matching the state.

It is useful to define precisely the strategies we will focus our attention on. Note first

that the only relevant and meaningful decision that deserves our attention is the one of the high

type outlet in period 1. From the the outlet’s point of view, this will be a threshold strategy

where the threshold is defined on the cost c of research. The high outlet conducts research if

the realized cost c is less than some threshold cD (where subscript D represents the case of a

two firm duopoly).7 From the other outlet’s (and the audience’s) point of view, define σi, the

conjectured probability that outlet i chooses to research further in t = 1, conditional on outlet i

being a high type. Therefore,

σi = Pr(c ≤ cD) = F (cD) =


0 cD < −ε

cD+ε
c̄+ε −ε ≤ cD ≤ c̄

1 cD > c̄

We are now ready to move to the equilibrium analysis arising in different market

configurations.

2.3 Competition leads to better reporting

2.3.1 Newsroom dilemma with a single firm: Monopoly

Let us start with the simplest case: there is a single media outlet and its type is known

to the audience.

Proposition 2.1. If there is one media outlet and θ is known to the audience, then the high

quality outlet conducts research with probability F (0) = ε
c̄+ε .

In this case, none of the aforementioned incentives are at play. There is obviously no

preemption risk and there is nothing to do in terms of reputation. Every type of outlet gets

v + 1{θ = h} so it is pointless to pay any cost for researching. The outlet is driven to research

only because of its intrinsic motivation.

7Similarly, the case of single firm monopoly is denoted by a threshold cM and in general, by a subscript M .
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The case of monopoly with unknown type is more interesting. Proposition 2.2 summa-

rizes the main result.

Proposition 2.2. If there is one media outlet and θ is not known to the audience, there exists a

unique equilibrium in which the high quality outlet conducts research in t = 1 iff

c ≤ (1− π)(γ(R)− γ(W )) := cM

where γ(R) and γ(W ) are the audience beliefs about the outlet’s quality after it gets the state

right and wrong respectively. As a consequence, σ∗ = F (cM ) = cM (σ∗)+ε
c̄+ε .

Note that the preemption risk is absent in this case as there is only one outlet. v does not

play any role in the threshold above. But a high outlet is incentivized to do research to build a

reputation for being a high quality. However, this reputation cannot be based on the observation

of sequence or timing. The only relevant thing that the audience observes is whether the outlet

is right or wrong, i.e. whether m = ω or not after the state is verified. Therefore, if the high

outlet is expected to choose to research with probability σ, the two relevant belief updates are

γ(R) =
σ + (1− σ)π

σ + (1− σ)π + π
and γ(W ) =

(1− σ)(1− π)

(1− σ)(1− π) + (1− π)
=

1− σ
2− σ

from Bayes’ rule. Now, it must be that the additional cost c of choosing d = res is more

than compensated by the expected reputational gains from endorsing the correct state. This is

captured in cM of Proposition 2.2.

2.3.2 Newsroom dilemma with two firms: Duopoly

The main effect of competition is the introduction of preemption risk. When preemption

is relevant and reputation building is not, then the equilibrium where the high quality outlet

conducts research becomes even rarer than in Proposition 2.1. Proposition 2.3 below highlights

this.

Proposition 2.3. If there are two media outlets and θ is known to the audience, there exists a

unique symmetric equilibrium in which the high quality outlets conduct research with probability

σ∗D = F
(
−v

2

)
.

Intuitively, there is nothing to gain from conducting research in terms of reputation as θ

is known. The only reason to investigate further is if there is an intrinsic motivation to do so.

But now there is a preemption risk that reduces the incentives to investigate. However, if v is

sufficiently small relative to the intrinsic motivation (i.e. if v < 2ε), there will still be some

high outlets willing to investigate.
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The case of competition plus hidden types is the most interesting one. In this case,

both the preemption and reputation building concerns are simultaneously relevant and interact

with each other. Before we present the key proposition, we discuss how the audience updates

beliefs in this environment. Recall that the audience observes both the outcome of verification

O ∈ {R,W} and the sequence of publication t̃ ∈ {I, II,∅} for both i and j. Suppose now that

a high quality outlet chooses to research with probability σi. Then, for a given conjectured level

of σi and σj , the relevant audience’s on-path beliefs need to be defined for the following events:

{(R∅, R∅), (R∅,W∅), (W∅,W∅), (W∅, R∅), (RI, RII), (WI, RII), (RII, RI), (RII,WI)}

where the first outcome-sequence element in each information set is outlet i’s and the second is

outlet j’s.8

It can be shown that there are three relevant set of events for belief updating. The first is

when both the outlets get the state correct and they publish simultaneously.

γi(R∅, R∅) =
σiσj + (1− σi)(2− σj)π2

σiσj + (2− σi)(2− σj)π2
:= γi(∅)

Here the audience is unable to determine the actual timing of publication. It cannot distinguish

as to whether both conducted research (which happens only if both are high types) or both

published immediately (either because they are both low types, or because there is only one

high type and it faced a high cost, or because both are high types but they faced high costs).

With some abuse of notation, we denote the updated belief under “no information about timing”

event by γ(∅).

The second is when the audience is able to determine that outlet i moved in t = 1.

γi(R∅,W∅) = γi(W∅,W∅) = γi(W∅, R∅) = γi(RI, RII) = γi(WI, RII) =
1− σi

2− σi
:= γi(1)

This, of course happens when i moves first and j moves second (independent of whether i

gets the state correct or not). But the audience is also able to understand it when the outlets

move simultaneously and at least one of them gets the state incorrect (since researching further

perfectly reveals the state). Here the only uncertainty for the audience is whether the outlet is

a high quality one that faced a high cost or a low quality one. We denote the updated belief

under the “published in period 1” event by γ(1). Observe how in these events the presence of a

8Note that it never happens that an outlet moves second in the sequence and gets the state incorrect. Any outlet
that moves second has conducted research and matches the state perfectly. Therefore, any event with WII does not
occur on-path.
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competitor conveys to the reader some additional information about the type of each outlet.

Finally, the third is when the audience is able to determine that outlet i moved in t = 2.

γi(RII, RI) = γi(RII,WI) = 1 := γi(2)

This only happens when outlet i moves second and gets the state correct, which in turn is only

possible if it is a high quality outlet. Therefore, the updated belief under “published in t = 2"

event is γ(2) = 1.

Using these updated beliefs, a high quality outlet’s incentive compatibility can be written

as follows. For any given conjectured σj and audience’s beliefs, a high quality outlet i with cost

ci chooses to research further if

expected payoff from research︷ ︸︸ ︷
1

2

[
σj
(v

2
+ γi(∅)

)
+ (1− σj)γi(2)

]
+

1

2
γi(2)− ci ≥

1

2

[
σj(v + γi(I)) + (1− σj)

(v
2

+ π2γi(∅) + (1− π2)γi(1)
)]

+
1

2

(v
2

+ π2γi(∅) + (1− π2)γi(1)
)

︸ ︷︷ ︸
expected payoff from publication

which further simplifies to

ci ≤ 1

2

[(
γi(∅)− γi(1)

)
(σj − (2− σj)π2) + (2− σj)

(
1− γi(I)

)]
− 1

2
v := ciD (2.1)

Proposition 2.4 then follows:

Proposition 2.4. If there are two media outlets and θ is not known to the audience, there exists

a unique and symmetric equilibrium where σi∗ = σj∗ := σ∗ = F (cD) such that

cD =
1

2

[
(γ(∅)− γ(1)) (σ∗ − (2− σ∗)π2) + 1

]
− 1

2
v

where γ(∅) = (σ∗)2+(1−σ∗)(2−σ∗)π2

(σ∗)2+(2−σ∗)2π2 and γ(1) = 1−σ∗
2−σ∗ .

Looking now at the cost threshold cD of Proposition 2.4, we can see the negative effect

of v. If preemption concerns are very salient (i.e. v is high), then separation happens for a

smaller range of c making research less likely. On the other hand, the positive side of the

condition is given by the expected reputational gains of matching the state (and publishing

second).

2.3.3 Competition may lead to better reporting

The comparison between monopoly and duopoly when reputation building is relevant

(Propositions 2.2 and 2.4) provides interesting insights.

67



Lemma 2.2. The reputational gains are always higher in duopoly than in monopoly.

The reason lies in the availability of additional information in the case of duopoly. First,

the presence of two outlets allows the audience to compare their contents, i.e. which states

outlets i and j endorsed. Second, it allows the audience to observe the sequence of publication

of the two outlets. Together, these two factors allow outlet i to publish after outlet j, match the

state correctly, and signal its type more easily. In turn, this makes outlet i more willing to pay

the cost of research. However, the additional preemption concerns in duopoly counterbalance

this positive information effect, and makes cD decreasing in v. The two effects combined yield

our first main result pertaining to the effect of Internet-driven competition on reporting.

Proposition 2.5. There exists a nonempty interval of v values where σ∗D > σ∗M .

Basically, what Proposition 2.5 says is that there is a nonempty set of parameters where

research is more likely in duopoly than in monopoly. Therefore, competition may lead to better

reporting.

A good way to illustrate Proposition 2.5 is Figure 2.1. The orange line is F (cD), the

green line is F (cM ) and the blue one is the 45◦ line. The equilibrium probability of research

is given by the point of intersection of Fc(cD) and Fc(cM ) with the 45◦ line. It is clear that

σ∗D > σ∗M for sufficiently small v.

Intuitively, reputational gains in monopoly are given by the increased probability of

getting the state right. In duopoly, the audience can use one extra piece of information – the

action of the other outlet, which includes the outcome of verification and the sequence of

publication. Hence, competition induces a trade off between those two forces pushing in

opposite directions. Importantly, this trade off is not obvious. The main point of Proposition 2.5

is precisely to point out that, contrary to the wisdom of the crowd in media studies literature,

competition does not necessarily lead to a faster release of less accurate information.

2.3.4 The role of audience’s information

The previous results relied critically on what the audience observes from the competition,

or simply the “transparency”. To build further intuition, here we analyze how changing

the transparency affects our result. In general, the effect of transparency on the possibility

that competition induces better reporting is non-monotonic. To see why, consider the two

other possibilities – nothing about the timing is observable and the timing of research is fully

observable. Our original assumption lies in the middle of this increasing transparency spectrum.

Of course, the content of publication is always visible to the audience, i.e. the audience observes

m.
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Unobservable timing or zero transparency. Suppose the audience observes neither the timing

of publication nor the sequence of publication. It simply consumes the content of the outlet

publishing the story. In this case, the behavior of the monopolist is exactly as before. Hence,

cM = (1−π)(γ(R)−γ(W )) does not change. In the case of duopoly, however, the endorsement

of the other outlet does not matter anymore in the updating. The audience considers each outlet

separately because nothing about the timing is observed. Therefore, γ(R, .) = γ(R) and

γ(W, .) = γ(W ). The consequence is summarized in the following corollary.

Corollary 2.1. If neither time nor the sequence of publication are observable,

c′D = cM −
1

2
v

and therefore, c′D < cM for every strictly positive v.

Intuitively, there are no additional reputational gains because it is not easier to “look

good” in the presence of a competitor. In fact, the reputational part of the cost threshold is

exactly the same. But the additional risk of preemption pushes cD down.

Observable timing or full transparency. If the timing of publication is observable, the

monopolist can fully differentiate itself by publishing in period 2. This is possible because the

audience can now perfectly distinguish between period 1 and 2, and therefore, is fully aware of

whether research was conducted or not. Moreover, this is true in duopoly as well. In fact, the

actual content of the publication does not matter for the reputation-building, and differentiation

is driven entirely by the timing. As a consequence, the logic applies as before. The reputational

part of the threshold is the same, but preemption concerns reduce the incentives to investigate

and conduct research.

Corollary 2.2. If the timing of publication is observable,

c′′M = 1− γ(1) and c′′D = 1− γ(1)− 1

2
v

where γ(1) = 1−σ
2−σ . Therefore, c′′D < c′′M for every strictly positive v.

Note that now the cost thresholds are bigger than in the previous information envi-

ronments. This is so because now maximum distinction is possible between the two outlets.

Therefore, the actual levels of reputational benefits are also higher. This is captured in the belief

updating,

γ(1) =
1− σ
2− σ

but now γ(2) = 1.
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It is worth emphasizing that both of these extreme transparency assumptions are some-

how problematic. Completely unobservable timing clashes with the idea of a scoop value,

or more generally with the preemptive nature of the media market. If the audience has no

understanding of when the publication happened, there is nothing to gain from being first. There

are only gains from ultimate publication. This is obviously not true in reality. Completely

observable timing, on the other hand, implies that the reader perfectly understands exactly how

much research went into an article. Therefore, the whole differentiation happens on the time

dimension, rather than on the truthfulness of the story. Again, this hardly seems true in reality.

2.4 Stories and the effect of better initial information

We are now in a position to discuss what kinds of stories are susceptible to more

speed-driven journalism and what aren’t. To do so, we place more restrictions on audience

preferences.

Let there be a unit mass of audience. For any given story, a fraction u of this audience

requires the information urgently. The audience seeks out the information because it has to

take an action (for example, vote or form opinions). Let this action be denoted by α ∈ {a, b}.

Formally, if α = ω, then the urgent audience gets a payoff of 1, and 0 otherwise. u is story-

specific and when the outlets get a story they also learn perfectly the value of u. The idea is

that those stories with a relatively high u are more urgent than others. These could include, for

example, information about whether a company has gone bankrupt, or whether the police caught

the terrorists, etc. Non-urgent readers, instead, derive utility from high quality journalism. For

simplicity, we assume that they derive utility of 1 from reading a well researched article, and

that they acquire the content only if they are sure that it has been researched.

Given these preferences, the audience can pick its most preferred outlet. Type u audience

always picks up the first outlet to publish the story, and 1− u picks the second one. Therefore,

u is akin to v, or the scoop value from the previous analysis. When both of the outlets publish

simultaneously, then only u types are available. This audience chooses one of the outlets

randomly. In addition, we assume that the entire mass of audience is available for reputation

building.

First, observe that nothing changes relative to the monopoly case discussed in Proposi-

tion 2.2. As there is no sense of time order, the audience preference for urgency does not alter

the equilibrium. However, now the duopoly case looks different. Noting that the belief updating
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remains the same, the new condition for outlet i conducting research becomes

expected payoff from research︷ ︸︸ ︷
1

2

[
σj
(u

2
+ γi(∅)

)
+ (1− σj)(1− u+ γi(2))

]
+

1

2
(1− u+ γi(2))− ci ≥

1

2

[
σj(u+ γi(1)) + (1− σj)

(u
2

+ π2γi(∅) + (1− π2)γi(1)
)]

+
1

2

(u
2

+ π2γi(∅) + (1− π2)γi(1)
)

︸ ︷︷ ︸
expected payoff from publication

,

which simplifies to

ci ≤ 1

2

[(
γi(∅)− γi(1)

)
(σj − (2− σj)π2) + (2− σj)

(
1− γi(1)

)
− σj(1− u)

]
+ 1− 3

2
u := c̄iD.

(2.2)

Observe in condition (2.4) that the incentives to research have increased. By researching

and being the second one to publish the story, the outlet gets an additional 1− u readers on top

of building a perfect reputation. Said another way, this dilutes preemption concerns as both the

first and the second mover have their respective markets. Therefore, we first need to check if a

symmetric and unique equilibrium c̄D exists à la Proposition 2.4.

Proposition 2.6. Let there be a fraction u of audience available to the first outlet publishing

and let c̄ ≥ 2.5. If there are two media outlets and θ is not known to the audience, there exists a

unique and symmetric equilibrium where σ̄i∗ = σ̄j∗ := σ̄∗ = F (c̄D) such that

c̄D =
1

2

[
(γ(∅)− γ(1)) (σ̄∗ − (2− σ̄∗)π2)− σ̄∗(1− u)

]
+

3

2
(1− u)

where γ(∅) = (σ̄∗)2+(1−σ̄∗)(2−σ̄∗)π2

(σ̄∗)2+(2−σ̄∗)2π2 and γ(1) = 1−σ̄∗
2−σ̄∗ .

Note that while v was unbounded, u ∈ [0, 1]. But an increase in the fraction of urgent

audience u still has a negative effect on c̄D and decreases σ̄∗. Therefore, a high fraction

of impatient audience pushes the outlets towards speed. The next proposition compares the

probabilities of research in the no-competition monopoly case with the duopoly case on the

basis of u.

Proposition 2.7. There exists an interior u, ū ∈ (0, 1) such that

• for stories with u < ū, c̄D > cM so that research by high outlets in duopoly is more likely

than in monopoly (σ̄D > σM );

• for stories with u > ū, c̄D < cM so that research by high outlets in duopoly is less likely

than in monopoly (σ̄D < σM ); and
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• for stories with u = ū, c̄D = cM so that research by high outlets in duopoly is equally

likely as in monopoly (σ̄D = σM ).

We can therefore see that competitive environments are better for research on non-urgent

topics. A good example is the recent New York Times exposé on sexual abuse in Hollywood. It

is reasonable to believe that sexual abuse in the movie industry does not directly impact a large

fraction of society. Yet, it was an important finding that will have a long-run impact as women

come forward and demand justice, and organizations respond. On the flip side, investigations

and research on urgent topics is less likely in competitive environments. The example of terrorist

attacks fits perfectly in this setting. In fact, after the Boston Marathon Bombings in April 2013

there was much confusion in the media and articles were published without fact-checking. The

intuition is simple: when a large fraction of the audience seeks information quickly, outlets

compete to be the first one to publish the news.

We can now also make assessments about the audience’s welfare.9 The audience’s

welfare V is defined as follows

V =

[(
1

2

)2

+ 2
1

4
(1− σ̄∗) +

(
1

2

)2

(1− σ̄∗)2

]
πu+ 2

1

4
σ̄∗(1− u) +

(
1

2

)2

(1− (1− σ̄∗)2)u

=
(2− σ̄∗)

4
πu+

1

2
σ̄∗(1− u) +

(
1

2

)2

(1− (1− σ̄∗)2)u.

The first term is the probability that the two outlets move together but do not research further, i.e.

they publish in t = 1. As a result, the probability of matching the state is π and only fraction

u of the audience gets this payoff. The second term is the probability that there is a second

mover outlet that does research and therefore, the remaining fraction 1− u receives this payoff.

Finally, the third is when both outlets move together in t = 2 after researching further. In this

case, they match the state perfectly but fraction 1− u does not receive this payoff.

As discussed in Section 2.1, another important effect of the Internet has been to make

it easier to conduct preliminary research. Emails and social media make it particularly easy

to share pictures, video and text from any part of the world. One way to interpret it is as an

increase in π or the precision of s. This, Knobel (2018) argues, should lead to better reporting.

We show below that that is not necessarily true. Our next proposition shows that the overall

effect of an increase in π on V is dependent on the kind of story u being explored.

Proposition 2.8. There exists an interior u, ūV ∈ (0, 1), such that if u < ūV an increase in

precision π of initial signal s decreases the overall welfare V .

9Note that even if the audience knows that outlets may be publishing without research, it is still better to listen
to the outlets rather than to follow the priors in decision-making.
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The intuition for this somewhat surprising result is easy. The equilibrium probability of

research falls as precision π increases. This is because a higher π reduces the reputational gain

that comes with separation. The audience attributes correctly matching the state more to better

initial information that comes costlessly due to better technology rather than actual research.

Preemption concerns, therefore, become more salient and push the outlets towards speed. Of

course, this is not a concern if the outlets were inclined towards speed-driven journalism to begin

with. However, it reduces the welfare and hurts the audience when the outlets are more accuracy

driven. This happens when the proportion of urgent audience type seeking the information is

low and then π increases.

Formally, the welfare of the urgent audience increases with an increase in π.

∂Vu
∂π

=
(2− σ)2

4
+

[
−π2− σ̄

2
+

1− σ̄
2

]
∂σ̄

∂π
> 0

because (2−σ̄)2

4 > 1−σ̄
2 . And the welfare of the patient audience reduces due to an increase in π,

∂V1−u
∂π

=
1

2

∂σ̄

∂π
< 0.

When the fraction of urgent audience is low enough, an increase in π hurts an average audience

member. Better preliminary research is good news for the audience only if separation does not

happen and is not desired. However it also discourages separation, which hurts the audience

when it is desired.

2.5 Information dissemination by a source

We now turn back to our original model and discuss the case of a strategic source. We

can use our model to determine how a source can share information with media outlets.

In general, our strategic source’s preferences are summarized by the following objective

function,

1{publication in t = 1}+ µPr(matching the state).

Therefore, the source has a preference for speed vs. accuracy. The parameter µ ≥ 0 captures the

weight that the source places on accurate information from at least one outlet vis-à-vis having at

least one outlet publishing in period 1. For instance, a concerned citizen or an employee in a

firm witnessing some wrongdoing might have a high preference for accuracy. On the flip side, a

politically-motivated source who merely wants to get some potentially incorrect information

out quickly will have a low preference for accuracy. We want to determine whether a source

wants to share information with one or both the outlets to fulfill her objective.
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In line with our model, we will assume that if the source shares a story with both of the

outlets, both are aware that the other also possesses the same story. Therefore, the information

is shared “publicly”.10 But when the source shares information with just one outlet, we will

assume that the other is unaware. This allows the outlet with a story to effectively behave as a

monopolist from our analysis in Section 2.3.1. In addition, we assume that the source possesses

a story of a fixed precision π. She makes her decision about who to share the story with at

the beginning of the game before time 0. The type of the outlet is still each outlet’s private

information; the source does not have this information when making her decision.

First, we make a simple observation that follows from our analysis of monopoly and

duopoly. (In what follows, we drop the star notation for convenience with an understanding that

we are talking about equilibrium values.)

Corollary 2.3. The equilibrium probability of research by a high outlet in monopoly σM > 0

while in duopoly is σD ≥ 0.

Corollary 2.3 is an important one. It highlights that while in monopoly the probability

of research is always positive; in duopoly it might be zero if v is sufficiently high. This corollary

will help us outline the behavior of a source who is aware of how high v is associated with her

story.

Second, we write down the expected utility of the source for the equilibrium research

probabilities that will be induced in the following subgame. The expected payoff from sharing

information with one outlet is

1

2
(1 + µπ) +

1

2
[σMµ+ (1− σM )(1 + µπ)] (2.3)

The first term reflects what the source gets if she gives the story to a low quality outlet, and the

second term is for giving it to a high quality outlet. Similarly, the expected payoff from sharing

information with both the outlets is

1

4
(1 + µπ) +

1

4
[1 + µ(σD + (1− σD)π)]2 +

1

4
[(1− σD)2(1 + µπ) + 2σD(1− σD)(1 + µ) + σ2

Dµ].

(2.4)

Again, the first term reflects the source’s payoff from facing two low type outlets. The second is

the payoff from facing one high type and one low type outlet. Note that in this case the story is

always published in the first period, but the high outlet matches the state only if it does research.
10One may imagine a politician revealing some negative evidence about a competitor on Twitter as an example.

It is common for news outlets to pick up this information and relay it, either as is or after further fact-checking and
investigations.

74



The third term is the payoff from facing two high type outlets. Here, the possible situations are

that neither researches; one researches, or both research. The following lemma helps simplify

the source’s optimal response for a given σM and σD.

Lemma 2.3. The source’s best response can be summarized as follows:

• The source prefers to share the story with both the outlets unambiguously for any µ > 0

if σ
2
D
2 ≤ σM ≤

σD(4−σD)
2 .

• Otherwise, the source prefers to share the story with both outlets if

µ(1− π)(2σM − σD(4− σD)) ≤ 2σM − σ2
D

The lemma shows that there is a range of equilibrium σM and σD for which the source

always prefers to send information to both the outlets independent of µ. Interestingly, this

region lies around the σD = σM line. Therefore, the lemma shows that for σM and σD close to

each other there is reason to prefer both outlets. To understand why, let us break this down into

two further statements.

First, there are parameters where one outlet alone is more likely to research than when

it is competing with another (i.e. σM > σD) and µ is very large, and yet the source prefers to

share the story with two outlets. This happens because a lower σD is compensated by a higher

probability of investigation from more firms. But this requires σD and σM to be close to each

other. To see this, let us compare the total probability of research (and matching the state) from

sharing the story with one vs. both the outlets. When shared with one it is equal to 1
2σM . When

shared with both it is given by

1

4
[σ2
D + 2σD(1− σD)] +

2

4
σD = σD −

σ2
D

4
.

Therefore, despite σM > σD the source shares the story with both outlets if σD −
σ2
D
4 ≥

1
2σM .

This condition simplifies to give us our upper bound

σM ≤
σD(4− σD)

2
.

Second, there are parameters where one firm is less likely to research than two (i.e.

σM < σD) and µ is very low, and yet the source prefers to share the story with two outlets. This,

on the other hand, happens because competition between two firms ensures the story comes

out quicker despite each independent outlet researching with a higher probability. To see this,
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we now compare the total probabilities of the story being published in t = 1 under the two

scenarios. When shared with one, this probability is equal to 1
2 + 1

2(1− σM ) = 1− σM
2 . When

shared with both it is given by

1

4
+

2

4
+

1

4
[(1− σD)2 + 2σD(1− σD)] = 1−

σ2
D

4
.

So, now despite σM < σD the source shares the story with both outlets if 1− σ2
D
4 ≥ 1− σM

2 .

This condition simplifies to

σM ≥
σ2
D

2
,

giving us our lower bound. But note again that for this argument to work σD and σM should

not be too different from each other. When this is the case, then what the source does depends

on her preference µ (captured in the second bullet point of Lemma 2.3).

In Figure 2.2, the shaded gray region shows the combinations of σD and σM where

the source always prefers to share stories with both outlets. The region is enclosed between

σ = σD(4−σD)
2 (green) and σM =

σ2
D
2 (orange), which includes σM = σD (blue).

We now look at possible equilibria that can arise in the σD − σM space relative to the

source’s preferences. We begin by plotting an equilibrium frontier for a given c̄ and ε.

Definition 2.1 (Equilibrium frontier). The equilibrium frontier is given by the combination of

equilibrium σD and σM generated by varying π ∈ [.5, 1] for v = 0 and a fixed c̄ and ε.

The equilibrium frontier, therefore, shows the maximum equilibrium value that σD can

take for any equilibrium σM (since σD is decreasing in v from Corollary 2.3 and we are setting

v = 0 ). As proved in Lemma 2.2, when v = 0, σD > σM . Therefore, the frontier lies to the

right of the 45◦ line. In addition, note that it is upwards sloping. The positive slope is a result of

the fact that both σM and σD are decreasing functions of π.11 A north-east movement along the

frontier arises due to a decrease in π. Figure 2.2 plots the equilibrium frontier for c̄ = 2 and

ε = 1 in red.12

Once we have the equilibrium frontier, it is easy to see the set of all possible equilibrium

values that might arise for different parameter ranges. Particularly, increasing v is a leftward

movement from the frontier along the same σM . For v sufficiently high, σD = 0 while σM > 0

(see Corollary 2.3). We are now left with comparing these equilibrium values with what the

source wants.

11The proofs have been omitted from the main text for the sake of brevity.
12We choose a high value of ε for graphical representation only. When ε is low, the range of σM and σD is also

small, and it becomes difficult to clearly see the equilibria graphically.
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Proposition 2.9. For a source with preferences given by µ ≥ 0,

• there exists an ε > 0 small enough and two thresholds v̄ > v such that if v < v the

source sends the story to both if µ ≥ σ2
D−2σM

σD(4−σD)−2σM
1

(1−π) , if v̄ ≥ v ≥ v the source

always sends the story both, and if v > v̄ the source sends the information to both if

µ ≤ 2σM−σ2
D

2σM−σD(4−σD)
1

(1−π) ;

• there exists an ε > 0 large enough and a threshold ¯̄v such that if v ≤ ¯̄v the source

sends the story to both, and if v > ¯̄v the source sends the information to both if µ ≤
2σM−σ2

D
2σM−σD(4−σD)

1
(1−π) .

Our third main result follows by setting µ = 0 in the above proposition. It pertains to

the situation where the source only cares about getting the story out quickly independent of

whether it is accurate or not. Political actors are often interested in doing so to highlight their

achievements or to bring out potentially damaging information about their competitors. Twitter

and other social media platforms are one way to communicate such stories, which are then

picked up by media outlets and relayed to the public without further research.

Corollary 2.4. When the source does not care about accuracy, i.e. µ = 0,

• there exists an ε > 0 small enough and v̄ such that for v < v̄, the source sends the story

to one outlet, and sends to two in all other cases, and

• there exists an ε > 0 large enough such that the source sends the story to both outlets.

The proof of both Proposition 2.9 and its corollary is by construction. The idea is

that when ε is small, (at least a part of) the frontier lies below the orange line in Figure 2.2.

Therefore, there arise two thresholds on v where only the middle part lies between the two

curves. For a ε high enough, there is only threshold on v as depicted in the figure. One can

easily get the result of Corollary 2.4 by setting µ = 0 in Proposition 2.9.

Consider the intuition for the case of µ = 0. When the intrinsic motivation to conduct

research is high then independent of whether only one outlet has the story or both, the outlets

are more likely to conduct research. This is, however, not something a µ = 0 source desires. By

sending to both, she is able to create preemption risk as well (even for a low v). This improves

on the situation of sending to one as the outlets are more driven towards speed. On the other

hand, when intrinsic motivation is low, outlets are less likely to research. Now, the source

does not always want to share the story with both. Notably, when v is low the source wants to

share information with just one. Sending to both risks the outlets trying to separate by doing

research, thereby increasing the overall probability of research. However, again when v is high,
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the source is happy to share the story with both as preemption concerns will become salient for

the outlets.13

2.6 Conclusion

There have been increasing concerns in the past decade about how the Internet has

altered the incentives of media outlets. Notably, media critics have argued that increasing

competition in the Interent era has pushed outlets towards speed-driven journalism. Our

model shows that conventional wisdom about the effect of competition and the modern digital

environment on the media market should be taken cum grano salis. We prove that competition

in itself may make it easier for high quality outlets to engage in more research-driven journalism

to separate themselves from the low quality outlets. For this to happen, it must be that the

action of one of the outlets is somehow informative about the type of the other. This result and

intuition finds support in some of the new media studies literature such as in Knobel (2018) and

Carson (2019).

It is, however, worth emphasizing the importance of a “sophisticated” audience in

generating the better-reporting result. We need the audience to place importance on the accuracy

of stories, and not always seek quick information. Gentzkow and Shapiro (2008) suggest

that scoop value is usually not too high in the media markets. But at the same time, some

media scholars have argued that the audience usually seeks information earlier on social

media. Similarly, our model shows the importance of the audience observing the sequence of

publication. This might also be an issue if technology perfectly “flattens the digital plain” (see

Section 2.1.1).

Our paper is one of the first to incorporate preemption and reputation concerns in a

single model by thinking of a natural setting where both incentives play a role. However,

there is further scope for research here. For instance, one may expand the model to include

news media bias. Bias and the speed-accuracy tradeoff can interact in interesting ways. If

bias makes reputational gains less salient (e.g. because future readership does not depend

on reputation) then it should push toward speed. On the other hand, if bias implies a less

informative publication and hence a smaller “scoop value”, then it may actually push toward

accuracy.

Our model also produces important testable predictions about how the modern digital

environment has altered the media landscape. First, we should see better reporting of non-urgent

issues in the Internet-age as the outlets try to build a reputation on such stories. Second, the

13The intuition for the general case presented in Proposition 2.9 is similar but it is not easy to make sharp
predictions like we could with µ = 0 case. However, some additional predictions can be made by choosing specific
µ values. For instance, when v is very high so that σD = 0, the source prefers to send to one outlet only if µ > 2.
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effect of the Internet on the reporting of breaking-news type stories is ambiguous. It might

improve because of better source information but might deteriorate because of more time

pressure.
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2.7 Tables

Table 2.1: Deep (first row) and simple (second row) accountability reporting (as a % of total front-page
stories in April) in a sample of 9 newspapers in the US for 1991-2011 in five-year gaps

Newspaper group Newspaper 1991 1996 2001 2006 2011 Average

Large
Wall Street Journal 1.28 2.33 5.88 5.26 4.85 4.03

30.77 22.09 23.53 22.11 27.18 25.06
Washington Post 1.51 3.55 4.23 2.72 7.74 3.80

25.63 27.41 31.92 37.50 36.13 31.43
New York Times 0.34 0.93 4.35 5.43 3.19 2.46

10.51 9.29 18.26 19.57 28.72 15.82

Metropolitan
dailies

Albany Times Union (NY) 6.35 1.22 3.45 4.12 3.61 3.64
47.62 23.17 28.74 17.53 36.14 26.37

Denver Post 0.00 4.85 1.80 3.06 5.13 2.92
23.33 22.33 28.83 29.59 43.59 28.96

Minneapolis Star Tribune 2.46 1.15 1.83 2.86 5.00 2.68
31.97 36.78 22.02 34.29 41.00 32.89

Atlanta Journal-Constitution 1.20 0.00 1.06 1.75 11.84 2.30
14.97 11.11 13.30 30.70 48.68 20.52

Small
Bradenton Herald (FL) 0.93 1.61 1.14 1.27 1.44 1.26

19.44 33.87 32.95 21.52 19.42 24.16
Lewiston Tribune (ID) 0.00 0.00 0.00 0.00 1.45 0.32

22.22 15.25 40.74 28.33 23.19 25.80
Average 1.26 1.81 2.92 3.25 4.46 2.69

21.52 19.78 24.46 27.26 32.59 24.94

Source: The Watchdog Still Barks: How Accountability Reporting Evolved for the Digital Age. Knobel (2018).
The author analyzed the content of every front-page story that was published in the month of April (randomly
selected) in five-year gaps starting 1991 in a select sample of 9 newspapers. The stories chosen for deep and simple
categories involved the following procedure. First, the author eliminated stories that were breaking news. Second,
she eliminated stories that had no relation to public policy or politics. In all, she analyzed 1,491 stories in depth using
content analysis. Simple accountability reports/stories are those that took a few hours or days to complete, relying on
straightforward reporting such as interviews or reviewing published documents. Deep accountability reports/stories
are those that took weeks or months to develop and would have remained secret without the journalists’ work.
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2.8 Figures
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Figure 2.1: Equilibrium σ∗D and σ∗M for when π = .6, v = .3, c̄ = 2 and ε = .1
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2.9 Appendix

A Proofs from the main text

Proof of Observation 2.1

Proof. Suppose that the outlet chooses d = pub. Without loss of generality, suppose that si = a.

It is easy to see that Pr(ω = a|si = a) > Pr(ω = b|si = a) because

π 1
2

π 1
2 + (1− π)1

2

>
(1− π)1

2

π 1
2 + (1− π)1

2

which is true because π > 1
2 .

Proof of Lemma 2.1

Proof. First part. Without loss of generality, suppose that si = a. Then, if i chooses to publish,

it will endorse state a, i.e. send message m = a. by Bayes’ rule,

Pr(ω = a|si = a) =
π 1

2

π 1
2 + (1− π)1

2

= π

as claimed.

Second part. We are interested in the probability that j matches the state from choosing

d = pub when i has received a signal si. This is equal to

Pr(sj = a|si)Pr(ω = a|sj = a and si) + Pr(sj = b|si)Pr(ω = b|sj = b and si) (2.9.A.1)

Note that, for a generic sj , by Bayes’ rule we have that Pr(sj |si) = Pr(sj and si)
Pr(si) and

Pr(ω = sj |sj and si) =
Pr(sj and si|ω = sj)Pr(ω = sj)

Pr(sj and si)

As a consequence, (2.9.A.1) can be simplified to

Pr(sj = a and si|ω = a)Pr(ω = a)

Pr(si)
+

Pr(sj = b and si|ω = b)Pr(ω = b)

Pr(si)
(2.9.A.2)

However, since signals are independent conditional on the state,

Pr(sj and si|ω = sj) = Pr(sj |ω = sj)Pr(si|ω = sj)

Moreover, Pr(sj |ω = sj) = π. Hence, (2.9.A.2) becomes
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π
Pr(si|ω = a)Pr(ω = a) + Pr(si|ω = b)Pr(ω = b)

Pr(si)
= π

as claimed.

Proof of Proposition 2.2

Proof. Suppose that a high type outlet chooses d = res with probability σ. Reminding

ourselves from the main text that

γ(R) =
σ + (1− σ)π

σ + (1− σ)π + π

γ(W ) =
(1− σ)(1− π)

(1− σ)(1− π) + (1− π)
=

1− σ
2− σ

from Bayes’ rule and using the fact that a low type outlet always chooses pub.

A high type outlet optimally chooses res if

γ(R)− c ≥ πγ(R) + (1− π)γ(W ) =⇒ c ≤ (1− π)(γ(R)− γ(W )) := cM

In equilibrium the conjectured σ must be equal to the actual one, hence it must be that

σ∗ = F (cM (σ∗)) =
cM (σ∗) + ε

c̄+ ε
. (2.9.A.3)

We need to check if such a fixed point exists. To do so, three observations are in

order. First, note that both the LHS and RHS of the above are continuous in σ∗. Second,

LHS(σ∗ = 0) = 0 < RHS(σ∗ = 0) = ε
c̄+ε (as cM = 0 at σ∗ = 0). Third, LHS(σ∗ = 1) =

1 > RHS(σ∗ = 1) = F (1−π
1+π ). Therefore, the above is true.

Finally, we need to check for the uniqueness of the fixed point. Note that

∂RHS
∂σ∗

=
1− π
c̄+ ε

[
π(1− π)

(σ∗ + (1− σ∗)π + π)2
+

1

(2− σ∗)2

]
> 0,

but the sign of

∂2RHS
∂(σ∗)2

=
2(1− π)

c̄+ ε

[
− π(1− π)2

(σ∗ + (1− σ∗)π + π)3
+

1

(2− σ∗)3

]

is not clear immediately. ∂
2RHS
∂(σ∗)2 > 0 requires

−π(1− π)2(2− σ∗)3 + (σ∗ + (1− σ∗)π + π)3 > 0 (2.9.A.4)
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It is easy to see that the LHS of (2.9.A.4) is strictly increasing in σ∗ for all π ∈ (0.5, 1].

Moreover, the LHS of (2.9.A.4) when we substitute σ∗ = 0 is −1 + 2π > 0. As a consequence,

the RHS of (2.9.A.3) is strictly increasing and convex. Combined with the above, it means that

there is only one fixed point in the [0, 1] interval.

Proof of Proposition 2.3

Proof. If θ is known, then by choosing pub in t = 1 a high quality outlet receives a payoff of

1

2

v

2
+

1

2

[
vσ +

v

2
(1− σ)

]
+ 1{θ = h},

where σ is the (symmetric) probability that the high quality competitor engages in more

research. By instead choosing res and publishing in t = 2 a high type outlet gets a payoff of
1
2σ

v
2 + 1{θ = h} − c. Comparing the two, each outlet is willing to investigate iff c ≤ −v

2 .

As a consequence, σ∗D = F
(
−v

2

)
in symmetric equilibrium. Research happens with positive

probability when −v
2 > −ε, which can be rearranged to v < 2ε.

Proof of Proposition 2.4

Proof. We complete this proof in several steps. To begin with, we conjecture that whenever an

outlet chooses to publish, it is optimal to endorse the state suggested by the signal. This will be

verified at the end of the proof.

Step 1: We begin by showing that in any signal-based equilibria outlets’ period 1 decisions on

whether to research or publish is described by a threshold on c. This follows from the discussion

in the text. Let σi and σj be the conjectured strategies. Then equation (2.1) defines the threshold

ciD for outlet i.

ci ≤ 1

2

[(
γi(∅)− γi(1)

)
(σj − (2− σj)π2) + (2− σj)

(
1− γi(1)

)]
− 1

2
v := ciD (2.1)

where γ(∅) = σiσj+(1−σi)(2−σj)π2

σiσj+(2−σi)(2−σj)π2 and γ(1) = 1−σi
2−σi . The problem is identical for

player j.

Step 2: Next, we show that for any σj there is only one σi that solves the equilibrium fixed

point for player i.

Given that cost is uniformly distributed in [−ε, c̄] and that, in equilibrium the conjectured

probability of investigation must be equal to the actual probability, the equilibrium levels of σi
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and σj must be the solutions of

σi = F (ciD(σi, σj)) and σj = F (cjD(σj , σi))

where

F (ciD(σi, σj)) =


0 ciD(σi, σj) < −ε
ciD(σi,σj)+ε

c̄+ε −ε ≤ ciD(σi, σj) ≤ c̄

1 ciD(σi, σj) > c̄

and

f(ciD(σi, σj)) =


0 ciD(σi, σj) < −ε

1
c̄+ε −ε ≤ ciD(σi, σj) ≤ c̄

0 ciD(σi, σj) > c̄

We want to show that, for every σj , there is only one σi that solves σi = F (ciD(σi, σj)).

1. The LHS is linear, with slope equal to 1, starting at 0 and ending at 1.

2. As ciD(σi = 1, σj) < 1 < c̄, the RHS evaluated at σi = 1 < 1 = LHS at σi = 1;

3. The RHS evaluated at σi = 0 is greater than or equal to zero.

4. For any σj , both LHS and RHS are continuous in σi.

Hence, they cross at least once and there is at least one solution to this fixed point problem.

To show that they cross only once, we need to show that the slope of the RHS is never

above 1. First, note that the slope of the RHS is either 0 or f(ciD)
∂ciD
∂σi

. Second, ∂γi(∅)
∂σi

=

(σj−(2−σj)π2)π2(2−σj)
(σiσj+(2−σi)(2−σj)π2)2

, whose sign depends on the sign of (σj − (2 − σj)π2) and ∂γi(1)
∂σi

=

−1
(2−σi)2 < 0. Using these we can write ∂ciD

∂σi
= 1

2

[
(σj−(2−σj)π2)2π2(2−σj)
(σiσj+(2−σi)(2−σj)π2)2

+ 2−π2(2−σj)
(2−σi)2

]
where

both terms are always positive. Third, we can show that the sign of ∂2ciD
∂(σi)2

is ambiguous, but
∂3ciD
∂(σi)3

≥ 0. As a consequence, the second derivative is always increasing in σi and the first

derivative is convex in σi. So, ∂c
i
D

∂σi
|σi=1 >

∂ciD
∂σi
|σi=0, and ciD reaches its steepest point around

σi = 1. Therefore, it is enough to show that ∂c
i
D

∂σi
|σi=1 ≤ 1. This requires

2(σj+(2−σj)π2)2 ≥ (σj−(2−σj)π2)2π2(2−σj)+(σj+(2−σj)(1−π2)(σj+(2−σj)π2)

which further simplifies to

(σj + (2− σj)π2)2(2− σj − 2 + σj) ≥ −4σj(2− σj)2π4.
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This latter condition is always verified (strictly for positive σj , weakly when σj = 0).

Now, combining the above with the fact that ciD(σi = 1, σj) < 1, implies that they

cannot cross more than once.

Step 3: Third, we show that if an equilibrium exists, it is unique for c̄ ≥ 2.

Define σ̂i(σj) the optimal σi for a given σj . In equilibrium, it must be that

σ̂i(σ̂j(σi)) = σi (2.9.A.5)

Rearranging, the equilibrium is the solution of σ̂i(σ̂j(σi)) − σi = 0. Differentiating

with respect to σi, we obtain ∂σ̂i

∂σ̂j
∂σ̂j

∂σi
− 1 = 0. For the equilibrium to be unique (conditional on

its existence), it is now sufficient to show that the LHS is negative. This implies that only one

fixed point of (2.9.A.5) can be found. This happens when ∂σ̂i

∂σ̂j
and ∂σ̂j

∂σi
are between −1 and 1.

As the players are identical, it is enough to show that this holds for one of them.

To show the above, begin by noting that σi(σj) is implicitly defined by the unique

solution of σi−F (ciD(σi, σj)) = 0. (Going forward we drop theˆnotation with an understanding

that we are concerned with optimal responses.) As ∂ciD
∂σi
|σi=1 ≤ 1, we can use implicit function

theorem. Therefore,

∂σi

∂σj
=

∂F (ciD)

∂σj

1− ∂F (ciD)

∂σi

(2.9.A.6)

Consider first the denominator of (2.9.A.6). From Step 2, we know that it is always

positive. Moreover, it will be smaller the bigger is ∂F (ciD)

∂σi
. On the other hand, it is the biggest

when ∂F (ciD)

∂σi
is zero. When ∂F (ciD)

∂σi
is non-zero, it is linear and increasing in ∂ciD

∂σi
. As this

reaches its maximum for σi = 1, we simply replace it and look for a maximum with respect to

σj .

maxσj
∂ciD
∂σi
|σi=1 =

1

2

[
(σj − (2− σj)π2)2π2(2− σj)

(σj + (2− σj)π2)2
+ 2− π2(2− σj)

]
=

1

2

[
2− 4σj(2− σj)2π4

(σj + (2− σj)π2)2

]
= 1

where the second equality is a rearrangement and the third one follows from the fact that this is

maximized for σj = 0.

As a consequence, maxσi,σj
∂F (ciD)

∂σi
= 1

c̄+ε and the smallest the denominator can be is
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1
c̄+ε .

Second, consider the numerator. ∂F (ciD)

∂σj
is either zero or 1

c̄+ε
∂ciD
∂σj

. Further, note that

∂ciD
∂σj

=
1

2

[
∂γi(∅)

∂σj
(σj − (2− σj)π2) + γi(∅) + π2(γi(∅)− γi(1))− 1

]
. (2.9.A.7)

Finding the overall maximum and minimum is complicated, so we look for sufficient

conditions. We start out by looking at ∂γ
i(∅)
∂σj

. After few algebric manipulations, we derive

∂γi(∅)

∂σj
=

2σiπ2

(σiσj + (2− σi)(2− σj)π2)2

Its sign is positive, but it is hard to determine the maximum. We proceed as follows. First, note

that
∂2γi(∅)

∂(σj)2
=

−4(σi − (2− σi)π2)σiπ2

(σiσj + (2− σi)(2− σj)π2)3

whose sign is ambiguous. However,

∂3γi(∅)

∂(σj)3
=

12(σi − (2− σi)π2)2σiπ2

(σiσj + (2− σi)(2− σj)π2)4

which is positive. This implies that (for any σi) ∂γi(∅)
∂σj

is a convex function in σj which is

maximized either at σj = 0 or at σj = 1. By substitution,

∂γi(∅)

∂σj
|σj=0 =

σi

2π2(2− σi)2

∂γi(∅)

∂σj
|σj=1 =

2σiπ2

(σi + (2− σi)π2)2

Still we are left to determine the maximum possible value of ∂γi(∅)
∂σj

because the

comparison is not straightforward. But we can show that for every π, maxσi
∂γi(∅)
∂σj
|σj=0 >

maxσi
∂γi(∅)
∂σj
|σj=1. To prove this, first see that

maxσi
∂γi(∅)

∂σj
|σj=0 =

1

2π2

But to get maxσi
∂γi(∅)
∂σj
|σj=1,

∂

∂σi

(
∂γi(∅)

∂σj
|σj=1

)
=

∂

∂σi

(
2σiπ2

(σi + (2− σi)π2)2

)
=

2π2(σi + (2− σi)π2)− 4(1− π2)σiπ2

(σi + (2− σi)π2)3

(2.9.A.8)

Note that the relevant expression in (2.9.A.8) is always positive for σi ≤ 2π2

1−π2 . For a sufficiently
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high π, this includes the whole range of values of σi. Hence, the function is maximised at

σi = 1, and

maxσi
∂γi(∅)

∂σj
|σj=1 =

2π2

(1 + π2)2
.

But now it is easy to see that 1
2π2 ≥ 2π2

(1+π2)2
requires 1 + 2π2 − 3π4 ≥ 0, which is always true

for π ∈ (0.5, 1]. Therefore, our claim of maxσi
∂γi(∅)
∂σj
|σj=0 > maxσi

∂γi(∅)
∂σj
|σj=1 is true.

However, for low π, we have that argmaxσi
∂γi(∅)
∂σj
|σj=1 = 2π2

1−π2 ∈ [0, 1]. In particular,

this happens for π2 ≤ 1
3 . Even in this case, it is easy to show that 1

2π2 ≥
2π2

(
2π2

1−π2

)
(

(1−π2)
(

2π2

1−π2

)
+2π2

)2

requires π2 ≤ 2
3 , i.e. it is always the case in the range of parameters of interest. As a

consequence, we have that maxσi
∂γi(∅)
∂σj
|σj=0 > maxσi

∂γi(∅)
∂σj
|σj=1. Since we want ∂γ

i(∅)
∂σj

as

big as possible, we can set it as 1
2π2 for our sufficiency conditions.

Given this, the lowest value the numerator of ∂σi

∂σj
from (2.9.A.6) can be found by

making the relevant replacement from above to (2.9.A.7). Therefore,

minσi,σj
∂F (ciD)

∂σi
≥ 1

c̄+ ε

1

2

[
1

2π2
(−2π2)− 1

]
=
−1

c̄+ ε
.

To see this, note thatminσi,σj (σj−(2−σj)π2) = −2π2,minσi,σjγi(∅) ≥ 0,minσi,σj (γi(∅)−

γi(I)) ≥ 0. Therefore, our first sufficient condition for the uniqueness of the equilibrium is

− 1
c̄+ε

1− 1
c̄+ε

> −1,

which simplifies to c̄ ≥ 2, as assumed.

Looking now at the upper bound, again by replacing in (2.9.A.7) note that

maxσi,σj
∂F (ciD)

∂σi
≤ 1

c̄+ ε

1

2

[
1

2π2
(1− π2) + 1 + π2 − 1

]
=

1

2(c̄+ ε)

[
1− π2

2π2
+ π2

]
.

To see this, note thatmaxσi,σj (σj−(2−σj)π2) = 1−π2,maxσi,σjγi(∅) ≤ 1,maxσi,σj (γi(∅)−

γi(I)) ≤ 1. Therefore, our second sufficient condition for the uniqueness of the equilibrium is

1
2(c̄+ε)

[
1−π2

2π2 + π2
]

1− 1
c̄+ε

< 1

The numerator is maximised at π = 1
2 , hence the condition simplifies to c̄ + ε > 15

16 . Again,

this is satisfied for c̄ ≥ 2.

Step 4: Fourth, we show that a symmetric equilibrium where σi∗ = σj∗ = σ∗ always exists.

Therefore, it is also unique among the set of signal-based equilibria.
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Because of symmetry, the equilibrium must be the fixed point of

σi = σj = σ∗ = F (cD(σ∗)) (2.9.A.9)

where from (2.1)

cD(σ∗) =
1

2

[(
(σ∗)2 + (1− σ∗)(2− σ∗)π2

(σ∗)2 + (2− σ∗)2π2
− 1− σ∗

2− σ∗

)
(σ∗ − (2− σ∗)π2) + 1

]
− 1

2
v

Looking at (2.9.A.9), note that both LHS and RHS are continuous on the [0, 1] interval.

Moreover, RHS(σ∗ = 0) ≥ 0 = LHS(σ∗) and RHS(σ∗ = 1) < 1 = LHS(σ∗ = 1). As a

consequence, there exists a solution in the [0, 1] interval. From the previous steps, we know that

this solution is unique.

Step 5: Finally, we show that in the symmetric equilibrium it is optimal to endorse the state

suggested by the most informative signal.

Assume that player j behaves as in the equilibrium described above. Now, by endorsing

the wrong state in period 2 player i shifts beliefs from γi(2) = 1 to γi(1) if it is the only one

publishing in that period, and from γi(∅) to γi(1) if both outlets publish in period 2. In both

cases, sticking to the correct state is at weakly dominant.

If outlet i chooses to publish in period 1, by endorsing the least likely state outlet i

is indifferent if it is the only one to publish in that period. If instead outlet j publishes in

period 1 as well, the expected reputation of outlet i by endorsing the state suggested by the

signal is π2γi(∅) + (1− π2)γi(1). By endorsing the opposite state, the expected reputation is

πγi(1) + (1− π)
[
πγi(∅) + (1− π)γi(1)

]
. Again, the former is strictly bigger than the latter

because γi(∅) ≥ γi(1).

Proof of Lemma 2.2

Proof. To show this, we compare the cost threshold in monopoly and duopoly shutting down

the preemption concerns, i.e. assuming v = 0. We want to show that in this case cD > cM .

This would require

1

2

[
(γ(∅)− γ(1)) (σ − (2− σ)π2) + 1

]
> (1− π)(γ(R)− γ(W )) (2.9.A.10)

Observe that γ(1) = γ(W ) = 1−σ
2−σ . Moreover, define γ(∅)−γ(1) := A. We can now rearrange

equation (2.9.A.10) so that it becomes

1

2
[Aσ + 1] > (1− π)(γR −X) +

1

2
A(2− σ)π2 (2.9.A.11)
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∂2A

∂σ2

Zero

Figure 2.A.1: Proof of Lemma 2.2: Proving ∂2A
∂σ2 > 0. Orange plane: ∂

2A
∂σ2 , blue plane: 0.σ+0.π

in π − σ space.

Now, after the relevant substitutions A can be simplified as A = σ2

(2−σ)(σ2+(2−σ)2π2)
.

As a consequence,

∂A

∂σ
=

2σ(2− σ)(σ2 + (2− σ)2π2)− σ2(σ2 + 3(2− σ)2π2 − 2σ(2− σ))

((2− σ)(σ2 + (2− σ)2π2))2
(2.9.A.12)

Signing (2.9.A.12) is not easy in its current form. However, it is clear that limσ→0
∂A
∂σ = 0.

Moreover, we can rearrange A in a more tractable way. In particular, A = 1
(2−σ)(1+π2B2)

where

B = 2−σ
σ . Since B > 0 and ∂B

∂σ = − 2
σ2 < 0, it is now easy to see that

∂A

∂σ
=

1 + π2B − 2π2B ∂B
∂σ (2− σ)

((2− σ)(1 + π2B2))2
> 0.

The sign of ∂
2A
∂σ2 is even more complicated, but as A is defined over just two parameters,

σ ∈ [0, 1] and π ∈ (0.5, 1], we can prove graphically that ∂
2A
∂σ2 > 0. In particular, Figure 2.A.1

shows that ∂
2A
∂σ2 (the orange plane) is always strictly above the zero (blue plane) for the entire

set of relevant parameters.

It is now straightforward to see that in equation (2.9.A.11) ∂LHS
∂σ > 0 and ∂2LHS

∂σ2 > 0 so

the LHS is strictly increasing and convex. Moreover, ∂RHS∂σ > 0.

To complete the proof, we show that LHS(σ = 0) >RHS(σ = 1) for all π ∈ (0.5, 1).

This requires
1

2
>

1− π
1 + π

+
1

2

π2

1 + π2
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which further simplifies to

1− 3π + 2π2 − 2π3 < 0

Noticing that the LHS of the above is strictly decreasing in π, and it remains negative for both

π = 1
2 and π = 1, completes the proof.

Proof of Proposition 2.5

Proof. This follows directly from the strict inequality of equation (2.9.A.10) and the fact that v

only reduces its LHS, without affecting the RHS.

Proof of Corollary 2.1

Proof. The behavior of the monopolist is unchanged with respect to Section 2.3.1. Looking at

the duopoly case, by Bayes’ rule

γi(R, .) =
(1− σi)π + σi

(1− σi)π + σi + π
= γi(R)

γi(W, .) =
1− σi

2− σi
= γi(W )

Therefore, the cost threshold for research is given by

1

2

[
σj
(v

2
+ γi(R)

)
+ (1− σj)γi(R)

]
+

1

2
γi(R)− c ≥

1

2

[
σj
(
v + πγi(R) + (1− π)γi(W )

)
+ (1− σj)

(v
2

+ πγi(R) + (1− π)γi(W )
)]

+
1

2

(v
2

+ πγi(R) + (1− π)γi(W )
)
,

which simplifies to

c ≤ (1− π)(γi(R)− γi(W ))− 1

2
v := c′D (2.9.A.13)

Note that the first part of (2.9.A.13) is the same as cM , and the only term that changes

is −1
2v, making it smaller than cM .

In terms of existence and uniqueness of the equilibrium in this set up, note that σi∗ and

σj∗ are the solution of the same fixed point problem, i.e.

σ∗ = F (c′D(σ∗))

where c′D = cM − 1
2v. The same logic of the proof of Proposition 2.2 applies here as well.

Hence the equilibrium exists and it is unique and symmetric.
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Proof of Corollary 2.2

Proof. Consider first the case of monopoly. Here, only the high quality outlet can publish in

period 2, and this is observable. As a consequence,

γ(2) = 1

γ(1) =
1− σ
2− σ

The monopolist chooses to investigate when c ≤ 1− γ(1) := c′′M .

In duopoly, the beliefs are updated the same way. Each outlet is considered indepen-

dently and only the timing matters. The threshold is, therefore, given by

1

2

[
σj
(v

2
+ 1
)

+ (1− σj)
]

+
1

2
− c ≥ 1

2

[
σj
(
v + γi(1)

)
+ (1− σj)

(v
2

+ γi(1)
)]

+
1

2

(v
2

+ γi(1)
)
.

It follows then that c′′D = 1− γi(1)− 1
2v = c′′M −

1
2v < c′′M as claimed.

In terms of existence and uniqueness, note that σ∗ is the solution of

σ∗ = F (c′′(σ∗))

The RHS is continuous on the [0, 1] interval and, irrespective of the market structure, it is

either strictly increasing and convex or flat. Moreover, RHS(σ∗ = 0) ≥LHS(σ∗ = 0) and

RHS(σ∗ = 1) < 1 =LHS(σ∗ = 1) since c̄ > 1.

Proof of Proposition 2.6

Proof. We proceed in steps as outlined in Proposition 2.4. We drop the bars from σ for

convenience.

Step 1: We begin by showing that in any signal-based equilibria outlets’ period 1 decision on

whether to research or publish is described by a threshold on c. This follows from the discussion

in the text. Let σi and σj be the conjectured strategies. Then equation (2.2) defines the threshold

ciD for outlet i.

ci ≤ 1

2

[(
γi(∅)− γi(1)

)
(σj − (2− σj)π2) + (2− σj)

(
1− γi(1)

)
− σj(1− u)

]
+ 1− 3

2
u := c̄iD

(2.2)

where γ(∅) = σiσj+(1−σi)(2−σj)π2

σiσj+(2−σi)(2−σj)π2 and γ(1) = 1−σi
2−σi . The problem is identical for player j.

Step 2: Next, we show that for any σj there is only one σi that solves the equilibrium fixed
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point for player i.

All of the definitions from Proposition 2.4 remain unaltered.

We want to show that, for every σj , there is only one σi that solves σi = F (c̄iD(σi, σj)).

1. The LHS is linear, with slope equal to 1, starting at 0 and ending at 1.

2. Now, c̄iD(σi = 1, σj) = ciD(σi = 1, σj , v = 0) + (1− u)(1− σj

2 ), where each term is

less than or equal to 1. But since c̄ ≥ 2.5, therefore c̄iD(σi = 1, σj) < c̄. As a result, the

RHS evaluated at σi = 1 < 1 = LHS at σi = 1;

3. The RHS evaluated at σi = 0 is greater than or equal to zero.

4. For any σj , both LHS and RHS are continuous in σi.

Hence, they cross at least once and there is at least one solution to this fixed point problem.

Further, note that c̄iD behaves the same way as ciD with respect to σi. Therefore, the rest

of the proof in this step is as before.

Step 3: Third, we show that if an equilibrium exists, it is unique for c̄ ≥ 2.5.

Other than changing the relevant definitions to include σ, nothing changes in this step

until we evaluate ∂c̄iD
∂σj

∂c̄iD
∂σj

=
1

2

[
∂γi(∅)

∂σj
(σj − (2− σj)π2) + γi(∅) + π2(γi(∅)− γi(1))− (2− u)

]
.

(2.9.A.14)

Again, the rest of the proof remains unaltered until we find the first sufficient condition.

The lowest value of the numerator of ∂σi

∂σj
from (2.9.A.6) can be found by making the relevant

replacement from above to (2.9.A.14). Therefore,

minσi,σj
∂F (c̄iD)

∂σj
≥ 1

c̄+ ε

1

2

[
1

2π2
(−2π2)− (2− u)

]
=
−1

c̄+ ε

(
3− u

2

)
.

Therefore, our new first sufficient condition for the uniqueness of the equilibrium is

− 1
c̄+ε

(
3−u

2

)
1− 1

c̄+ε

> −1,

which simplifies to c̄ ≥ 5−u
2 . The highest value possible of 5−u

2 is 2.5 at u = 0, which is

assumed.
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Looking now at the upper bound, again by replacing in (2.9.A.14) we get

maxσi,σj
∂F (c̄iD)

∂σi
≤ 1

c̄+ ε

1

2

[
1

2π2
(1− π2) + 1 + π2 − 2 + u

]
=

1

2(c̄+ ε)

[
1

2π2
+ π2 − 3

2
+ u

]
.

Therefore, our second new sufficient condition for the uniqueness of the equilibrium is

1
2(c̄+ε)

[
1

2π2 + π2 − 3
2 + u

]
1− 1

c̄+ε

< 1

The numerator is maximised at π = 1√
2

, hence the condition simplifies to c̄+ ε > u+2
2 . Again,

this is satisfied for c̄ ≥ 2.5 since 5−u
2 > u+2

2 for u ∈ [0, 1].

Step 4: Fourth, we show that a symmetric equilibrium where σi∗ = σj∗ = σ∗ always exists.

Therefore, it is also unique among the set of signal-based equilibria.

Because of symmetry, the equilibrium must be the fixed point of

σi = σj = σ∗ = F (cD(σ∗)) (2.9.A.15)

where from (2.2)

cD(σ∗) =
1

2

[(
(σ∗)2 + (1− σ∗)(2− σ∗)π2

(σ∗)2 + (2− σ∗)2π2
− 1− σ∗

2− σ∗

)
(σ∗ − (2− σ∗)π2)− σ∗(1− u)

]
− 3

2
(1− u)

(2.9.A.16)

Looking at (2.9.A.15), note that both LHS and RHS are continuous on the [0, 1] interval.

Moreover, RHS(σ∗ = 0) ≥ 0 = LHS(σ∗) and RHS(σ∗ = 1) < 1 =LHS(σ∗ = 1). As a

consequence, there exists a solution in the [0, 1] interval. From the previous steps, we know that

this solution is unique.

Step 5: Finally, we show that in the symmetric equilibrium it is optimal to endorse the state

suggested by the most informative signal.

This is true because now there is more incentive to build a reputation. Since reputation

requires matching the state, there is even less reason to not endorse the state suggested by the

most informative equilibrium.

Proof of Proposition 2.7

Proof. We drop the bars for convenience. First, note that c̄D is decreasing in u. This is so

because it can be rearranged as

c̄D =
1

2

[
(γ(∅)− γ(1)) (σ∗ − (2− σ∗)π2)− σ∗

]
+

3

2
− u

(
3

2
− σ∗

2

)
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RHS

LHS

Zero

Figure 2.A.2: Proof of Proposition 2.7: Proving LHS < RHS. Orange plane: RHS, blue plane:
LHS and green plane: 0.σ + 0.π in the π − σ space.

where 3
2 −

σ∗

2 > 0 for any σ∗ ∈ [0, 1]. Also, cM and σ∗M do not change with u.

Second, consider the case when u = 1. We will show that c̄D < cM . This requires

1

2

[
(γ(∅)− γ(1))(σ − (2− σ)π2)

]
< (1− π)(γ(R)− γ(W )).

Using the terminology introduced in Lemma 2.2, we can rewrite the above as

1

2
Aσ < (1− π)(γ(R)− γ(W )) +

1

2
A(2− σ)π2.

Now, both the LHS and the RHS of the above equation are only functions of two variables, π

and σ, which are defined on compact and continuous sets. Therefore, we can plot them in a

graph (see Figure 2.A.2) and check that the above is true.

Third, consider the case of u = 0. We want to show that c̄D > cM . This is equivalent

to showing that

1

2

[
(γ(∅)− γ(1))(σ − (2− σ)π2)− σ

]
+

3

2
> (1− π)(γ(R)− γ(W )).

We showed in Lemma 2.2 that cD(v = 0) > cM . It is easy to check that c̄D(u = 0) = cD(v =

0) + 1− 1
2σ where 1− 1

2σ > 0 for all σ ∈ [0, 1]. Therefore, c̄D(u = 0) > cD(v = 0) > cM .

Combining the three parts above, our result follows.
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Proof of Proposition 2.8

Proof. We drop the bars for convenience. Reminding ourselves that

V =

(
(2− σ∗)

4

)
πu+

1

2
σ∗(1− u) +

(
1

2

)2

(1− (1− σ∗)2)u,

we first take the first derivative of V with respect to π (we drop the stars and D in what follows

for convenience).

∂V

∂π
= u

(2− σ)2

4
+

[
−πu(2− σ)

2
+

1− u
2

+ u
(1− σ)

2

]
∂σ

∂π

= u
(2− σ)2

4
+

1− u(2π + σ(1− π))

2

∂σ

∂π
(2.9.A.17)

Now, we need to show under what conditions ∂σ
∂π < 0. Reminding that σ is implicitly

defined by (2.9.A.15) define

K := σ −
[

1

2

[
(γ(∅)− γ(1)) (σ − (2− σ)π2)− σ(1− u)

]
+

3

2
(1− u)

]
1

c̄+ ε
− ε

c̄+ ε

Further, using the definitions in the proof of Lemma 2.2, we can rewrite K as

K = σ − 1

2(c̄+ ε)

[
A(σ − (2− σ)π2)− σ(1− u)1

]
− 3

2(c̄+ ε)
(1− u)− ε

2(c̄+ ε)

Differentiating and simplifying, we first obtain

∂K

∂π
= − 1

2(c̄+ ε)

[
−2πB2(σ − (2− σ)π2)

(2− σ)(1 + π2B2)2
− 2π

1 + π2B2

]
=

1

2(c̄+ ε)

1 +B

(1 + π2B2)2
> 0,

and second we obtain

∂K

∂σ
= 1− 1

2(c̄+ ε)

[
∂A

∂σ
(σ − (2− σ)π2) + (1 + π2)A− (1− u)

]
= 1 +

1

2(c̄+ ε)
(1− u)− 1

2(c̄+ ε)

[
∂A

∂σ
(σ − (2− σ)π2) + (1 + π2)A

]
= 1 +

1

2(c̄+ ε)
(1− u)− 1

c̄+ ε

∂cD
∂σ

where cD is the cost threshold we derived in Proposition 2.4.

We can now show that ∂cD∂σ ≤ 1 in the neighborhood of the equilibrium σ. The proof

for this is presented in Proposition 2.12 (Appendix C) for a generic prior q. Therefore, it is also
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true in our special case of q = 1
2 .

Putting these two facts together and using the Implicit Function Theorem, we can now

conclude that ∂σ∂π < 0.

Finally, we want to find the condition under which ∂V
∂π < 0. From (2.9.A.17), this

happens when

u
(2− σ)2

4
<

1− u(2π + σ(1− π))

2

(
−∂σ
∂π

)
,

where
(
−∂σ
∂π

)
:= σπ > 0. This can then be rearranged to

u <

(
(2− σ)2

2

1

σπ
+ 2π + σ(1− π)

)−1

:= ūV

Now, it is easy to see that the denominator of ūV > 1 because 2π > 1. Therefore, ūV exists

and lies between 0 and 1.

Proof of Lemma 2.3

Proof. Comparing the source’s expected utility given by expressions in (2.3) and (2.4) and

simplifying gives the following condition to prefer two firms:

µ(1− π)(2σM − σD(4− σD)) ≤ 2σM − σ2
D (2.9.A.18)

Now we discuss different cases based on possible values of σM and σD.

Case 1: v is very high so that σD = 0. Substituting in 2.9.A.18 gives that the source prefers to

send the story to both outlets if

µ ≤ 1

1− π
> 1

Therefore, if v is very large it is possible that µ > 1 (so that the source cares relatively more

about matching the state) and σD = 0 (so that in duopoly no one does research), but still the

source prefers to share information with both the outlets. This happens because π > .5 and the

source still cares about getting the information out quickly.

Case 2: v is high enough so that σD < σM . Now, the RHS of equation (2.9.A.18) is greater

than zero. But first, σD might not be too small so that in the LHS < 0 i.e. 2σM ≤ σD(4− σD).

In this case, sending to both is always preferred independent of µ. Therefore, sending to both is

preferred if

σD < σM ≤
σD(4− σD)

2
.

Second, σD might in fact be very small so that on the LHS> 0 i.e. 2σM > σD(4−σD).
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In this case, sending to both is preferred only if

µ ≤
2σM − σ2

D

2σM − σD(4− σD)

1

(1− π)
.

Case 3: v is small so that σD > σM . Again there are two possible situations. First, consider

the case in which σD is not too large so that the RHS of equation (2.9.A.18) is still positive,

i.e. 2σM ≥ σ2
D =⇒ σM ≥

σ2
D
2 . Now, in this case we want to see whether the LHS can be

negative i.e. if σM < σD(4−σD)
2 . But this must be true because σD > σM and we know that

σD(4−σD)
2 > σD. Therefore, the LHS is negative and the RHS is positive, so the condition

outlined in (2.9.A.18) is satisfied. Sending to both is always preferred if

σ2
D

2
≤ σM < σD.

Second, σD might in fact be very large so that the RHS is negative, i.e. σM <
σ2
D
2 . Now,

it cannot be that the LHS is positive because that requires σM > σD(4−σD)
2 which contradicts

σM < σD. Therefore, LHS must also be negative. From condition (2.9.A.18), the source prefers

both outlets only if

µ ≥
σ2
D − 2σM

σD(4− σD)− 2σM

1

(1− π)
.

Case 4: v is such that σD = σM := σ. When this is the case, the condition (2.9.A.18) reduces

to

−µ(1− π)(2− σ) < (2− σ)

which is always true. Therefore, sending to both is preferred.

Our result follows from combining all the above cases.

Proof of Proposition 2.9

Proof. The proof is by construction. We have already constructed the equilibrium frontier and

the set of all possible equilibria for a given c̄ and ε.

We now show what happens as ε → 0. Consider σM first. From Proposition 2.2,

observe that as ε → 0 LHS(σ = 0) = 0 ≈ RHS(σ = 0) = ε
c̄+ε → 0 in equation (2.9.A.3).

Therefore, for any π the only fixed point equilibrium→ 0.

Now, consider σD at v = 0. Fix a π. We know that as ε → 0, since cD(σ = 0) = 1
2 ,

we have that RHS(σ = 0) → 1
2c̄ in equation (2.9.A.9). But this is strictly greater than

LHS(σ = 0) = 0. Therefore, the equilibrium fixed point σD > 0 and also σ2
D
2 > 0. Moreover,

this is true for any π.
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Therefore, in the σD − σM space as ε → 0, the equilibrium frontier lies below the

σM =
σ2
D
2 line.

Now, let us look at what happens as ε → ∞. Given that the fixed point is defined by

σ∗ = c∗+ε
c̄+ε , both σM and σD approach 1 (without ever being exactly equal to 1). However,

because the frontier is defined for v = 0 case, the frontier lies close to and to the right of the

σM = σD line.

Combining the two observations above with Lemma 2.3, we get our proposition.

99



B Allowing for sitting on information

In this appendix, we show that allowing outlets to “sit on information” (i.e. just refrain

from publishing until period 2 without acquiring the additional signal) does not preclude the

equilibrium outlined in Proposition 2.4. We prove it formally for sufficiently low π and then

use mathematical simulation to argue that it holds more generally. Uniqueness of such an

equilibrium (among signal-based equilibria), however, is not obvious anymore. We make only

one change with respect to the model described in Section 2.2. Now di ∈ {res, pub, wait},

where di = wait means that the outlet does not acquire the second signal but still publishes in

period 2.

This addition poses some challenges in the tractability of the model because the choice

is no longer just between two options and strategies are not necessarily just thresholds in c.

However, even in this more complicated setup we can show a few results. First, for sufficiently

low π, it is possible to find values of v such that the equilibrium described in Proposition 2.4

exists; waiting is never a best response if the other player never waits and σ∗D > σ∗M . Second,

we can simulate the model showing that we can assign values to v such that, for the resulting

equilibrium σ∗D, publishing in period 1 is better than waiting and at the same time σ∗D > σ∗M .

We begin with the following lemma considering that we are interested in the (candi-

date) equilibrium strategies described in Proposition 2.4 where di = wait is never played in

equilibrium.

Lemma 2.4. It is always possible to find off path beliefs such that, for sufficiently high v,

Eui(di = wait) ≤ Eui(di = pub).

Proof. Note that γ(WII, .) is off-path in the equilibrium we are considering. For any γ(∅) and

γ(1) as defined above, the expected utility from choosing di = wait is

1

2
σj
(v

2
+ πγ(∅) + (1− π)γ(1)

)
+

(
1

2
(1− σj) +

1

2

)
(π + (1− π)γ(WII, .)) (2.9.B.19)

On the other hand, the expected utility from publishing immediately is given by

1

2
σj (v + γ(1)) +

(
1

2
(1− σj) +

1

2

)
(
v

2
+ π2(γ(∅)− γ(1)) + γ(1)) (2.9.B.20)

Comparing (2.9.B.19) and (2.9.B.20) and solving for v, we find that Eui(di = wait) ≤
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Eui(di = pub) when

v ≥ σjπ(γ(∅)− γ(1))− (2− σj)
[
π2γ(∅) + (1− π2)γ(1)− π − (1− π)γ(WII, .)

]
(2.9.B.21)

Therefore, it is possible to find v and γ(WII, .) such that the above condition is satisfied.

This makes intuitive sense as a sufficiently high scoop value should always deter sitting

on information. From now on, we set γ(WII, .) = 0 and we define v̄ := σjπ(γ(∅)− γ(1))−

(2− σj)
[
π2γ(∅) + (1− π2)γ(1)− π

]
.

We can now move to the main proposition.

Proposition 2.10. For sufficiently low π, it is possible to find values of v such that the equi-

librium described in Proposition 2.4 exists. In such an equilibrium, waiting is never a best

response if the other player follows the equilibrium strategies and σ∗D > σ∗M .

Proof. Suppose that player j always publishes when low type and chooses just between pub-

lishing or researching when high type. Moreover, suppose that the audience conjectures that

both players use the equilibrium strategies described by Proposition 2.4. For this to be an

equilibrium in the new setup, it is sufficient to prove that, given the correct audience’s beliefs

updating, for every σ, Eui(di = wait) ≤ Eui(di = pub). To show this, first we prove through

Figure 2.B.3 that ∂v̄
∂π > 0. Moreover, Figure 2.B.4 shows that there exists a range of π such

that argmaxσv̄(π) = 1. In the figure, it happens for π ∈ [.5, .6]. As a consequence, for every

v ≥ v̄(σ = 1, π ∈ [0.5, 0.6]) it is true that, for every σ, Eui(di = wait) ≤ Eui(di = pub). In

other words, if the audience conjectures an equilibrium where no types and no players choose

to wait and the choice for the high type is just between publishing and researching described by

a threshold strategy on c, behaving in this way is an equilibrium strategy for the outlets.

Finally, Figure 2.B.5 plots cM and cD(v̄(σ = 1)) for sufficiently small π, proving

that we can still increase v from v̄(σ) maintaining the necessary condition for σ∗D > σ∗M , i.e.

cD ≥ cM .

When π > 0.6, we can show the existence of our candidate equilibrium through

mathematical simulations. Consider for example the following set of parameters: π = 0.75,

v = 0.7, c̄ = 2, ε = 0.1. In this case, the equilibrium described in Proposition 2.4 (assuming

it still exists) gives a solution σ∗D = 0.118219.14 Suppose now that player i expects player j

to never wait and choose to research (if it is high type) with probability 0.118219. Further,

14We simulated the model with Mathematica. The code is available upon request.
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Figure 2.B.3: Proof of Proposition 2.10: Proving ∂v̄
∂π > 0. Orange plane: ∂v̄

∂π , blue plane:
0.σ + 0.π in the π − σ space.

Figure 2.B.4: Proof of Proposition 2.10: Proving argmaxσv̄(π) = 1. Orange plane: v̄(π), blue
plane: 0.σ + 0.π in the π − σ space for π ∈ [0.5, 0.6].
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Figure 2.B.5: Proof of Proposition 2.10: Proving cD(v̄(σ = 1)) > cM . Orange plane:
cD(v̄(σ = 1)), blue plane: cM in the π − σ space for π ∈ [0.5, 0.6].

suppose the audience think that both outlets never wait and research (if they are high types)

with probability 0.118219. In this case, Eui(di = wait) = 0.754218 and Eui(di = pub) =

0.841236. Hence, there is no incentive to choose waiting instead of publishing, and the

meaningful choice is just between researching and publishing. The solution to this problem is

the same as that described by Proposition 2.4. Finally, Figure 2.B.6 shows that, for π = 0.75

and v = 0.7, it is still true that cD ≥ cM for every σ. More generally, Figure 2.B.7 plots cM

and cD (in the π − σ space) by replacing v with the corresponding v̄. Still, cD is above cM

throughout the entire range of parameters of our model.
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Figure 2.B.6: cD > cM for π = 0.75 and v = 0.7. Orange line: cM , blue line: cD as a function
of σ)

Figure 2.B.7: cD(v = v̄ > cM for every combination of σ and π. Orange plane: cD(v = v̄),
blue plane: cM in the π − σ space.
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C Generic prior on the type

This appendix shows that our main results are qualitatively unaffected by the assumption

of prior Pr(θi = h) = 1
2 . In this section, we assume a generic prior Pr(θi = h) = q ∈ (0, 1),

leaving the rest of the model unchanged. We consider monopoly, duopoly and their comparison

for when θ is unknown to the reader.

Monopoly

The proposition of the main result is unchanged in monopoly, as q enters only in the

readers’ beliefs updating.

Proposition 2.11. If there is one media outlet and θ is not known to the audience, there exists a

unique equilibrium in which the high quality outlet conducts research in t = 1 iff

c ≤ (1− π)(γ(R)− γ(W )) := cM

where γ(R) and γ(W ) are the audiences’ beliefs about the outlet’s quality after it gets the state

right and wrong respectively. As a consequence, σ∗ = F (cM (q)) = cM (q,σ∗)+ε
c̄+ε .

Proof. Suppose that a high type outlet chooses d = res with probability σ. Reminding

ourselves from the main text that by Bayes’ rule,

γ(R) =
q(σ + (1− σ)π)

q(σ + (1− σ)π) + (1− q)π

γ(W ) =
q(1− σ)(1− π)

q(1− σ)(1− π) + (1− q)(1− π)
=
q(1− σ)

1− qσ
.

A high quality optimally chooses res if

γ(R)− c ≥ πγ(R) + (1− π)γ(W ) =⇒ c ≤ (1− π)(γ(R)− γ(W )) := cM (q)

In equilibrium the conjectured σ must be equal to the actual one, hence it must be that

σ∗ = F (cM (q, σ∗)). (2.9.C.22)

We need to check if such a fixed point exists. To do so, three observations are in

order. First, note that both the LHS and RHS of the above are continuous in σ∗. Second,

LHS(σ∗ = 0) = 0 < RHS(σ∗ = 0) = ε
c̄+ε (as cM (q) = 0 at σ∗ = 0). Third, LHS(σ∗ = 1) =

1 > RHS(σ∗ = 1) = F
(

(1−π)q
q+(1−q)π

)
, so the equilibrium is the solution of σ∗ = cM (q,σ∗)+ε

c̄+ε and

LHS and RHS must cross at least once.

105



Finally, we need to check for the uniqueness of the fixed point. To show this, it is

sufficient to prove that the derivative of the RHS with respect to σ is smaller than 1. Note that

∂RHS
∂σ∗

=
1− π
c̄+ ε

[
π(1− π)q(1− q)

(q(σ + (1− σ)π) + (1− q)π)2
+

q(1− q)
(1− qσ∗)2

]
> 0

Moreover, we can rewrite the equation as

∂RHS
∂σ∗

=
(1− π)q(1− q)

c̄+ ε

[
π(1− π)

(q(σ + (1− σ)π) + (1− q)π)2
+

1

(1− qσ∗)2

]

It is easy to see that, in the range of parameters of the model, (1 − π)q(1 − q) ≤ 1
8 ;

π(1−π)
(q(σ+(1−σ)π)+(1−q)π)2

≤ 1 because π(1− π) is at most 1
4 and q(σ + (1− σ)π) + (1− q)π is

at least 1
2 (when σ = 0 and π = 1

2 ); 1
(1−qσ∗)2 ≤ 1. As a consequence,

∂RHS
∂σ∗

<
1

8
[1 + 1] < 1

and this completes the proof.

Duopoly

For the case of duopoly, we look directly at symmetric equilibria, showing that there

exists a unique symmetric equilibrium.

Proposition 2.12. If there are two media outlets and θ is not known to the audience, there exists

a unique symmetric equilibrium where σi∗ = σj∗ := σ∗ = F (cD(q)) such that

cD(q) =
[
(γ(∅)− γ(1)) (qσ∗ − (1− qσ∗)π2) + 1− q

]
− 1

2
v

where γ(∅) = q((σ∗)2q+(1−σ∗)(1−qσ∗)π2)
(qσ∗)2+(1−qσ∗)2π2 and γ(1) = q(1−σ∗)

1−qσ∗ .

Proof. We focus directly on symmetric equilibria where each high type outlet uses a threshold

strategy on c in the decision on whether to publish or investigate. Define σ as the probability

(from the point of view of the other players) that a high quality outlet chooses to do research.

For the same logic as in Proposition 2.4, the threshold is given by

ci ≤
[
(γ(∅)− γ(1)) (qσ − (1− qσ)π2) + (1− qσ) (1− γ(1))

]
− 1

2
v := cD(q) (2.1)

where, by Bayes’ rule, γ(∅) = q(σ2q+(1−σ)(1−qσ)π2)
q2σ2+(1−qσ)2π2 and γ(1) = q(1−σ)

1−qσ .

Given that cost is uniformly distributed in [−ε, c̄] and that in equilibrium the conjectured
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probability of investigation must be equal to the actual one, the (symmetric) equilibrium level

of σ, if it exists, must be the solution of

σ = F (cD(q, σ)) (2.9.C.23)

where

F (cD(q, σ)) =


0 cD(q, σ) < −ε

cD(q,σ)+ε
c̄+ε −ε ≤ cD(q, σ) ≤ c̄

1 cD(q, σ) > c̄

and

f(cD(q, σ)) =


0 cD(q, σ) < −ε

1
c̄+ε −ε ≤ cD(q, σ) ≤ c̄

0 cD(q, σ) > c̄

Note that:

1. The LHS of equation (2.9.C.23) is linear, with slope equal to 1, starting at 0 and ending

at 1;

2. RHS(σ = 0) ≥ 0 =LHS(σ = 0);

3. RHS(σ = 1) < 1 =LHS(σ = 1);

4. Both LHS and RHS are continuous in σ.

Hence, they cross at least once and there is at least one solution to this fixed point problem.

To show uniqueness, we can rewrite cD(q) as

cD = AE + 1− q − 1

2
v

where A := γ(∅)− γ(1) = q2(1−q)
(1−qσ)[q2+π2B2]

, B := 1−qσ
σ and E := qσ − (1− qσ)π2.

It is easy to see that ∂E∂σ ≥ 0. Moreover, it is also true that ∂A∂σ ≥ 0. To see this, note that

∂A

∂σ
=
−q2(1− q)

[
−q(q2 + π2B2) + 2π2B ∂B

∂σ (1− σq)
]

((1− qσ) [q2 + π2B2])2
≥ 0

because ∂B
∂σ ≤ 0. However, the sign of E is ambiguous, with E < 0 for σ < π2

q(1+π2)
:=

σT . We claim that the following two conditions are sufficient for uniqueness:

1. ∂cD(q)
∂σ ≤ 1 for σ ≤ σT ;
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2. ∂2cD(q)
∂σ2 ≥ 0 for σ ≥ σT ;

The argument is as follows: as RHS(σ = 0) ≥ 0 =LHS(σ = 0) and RHS(σ = 1) <

1 =LHS(σ = 1), the fixed point is:

1. Only at σ = 0, as RHS(σ = 0) =RHS(σ = σT ) and below that in between. Moreover,

there cannot be any additional crossing point above σT because the RHS would be

coming from below, and, as it is convex, it cannot be that they cross and RHS(σ = 1) <

1 =LHS(σ = 1).

2. If the solution is not at 0, the first time they cross it must be that the LHS comes from

below. There are two sub-cases:

• If the first crossing point is in σ ≤ σT , then there cannot be others in the same

interval as ∂cD(q)
∂σ ≤ 1. Moreover, there cannot be any other crossing point above

σT because the RHS would be coming from below, and, as it is convex, it cannot be

that they cross and RHS(σ = 1) < 1 =LHS(σ = 1).

• If the first crossing point is above σT , it must be unique as a second solution would

violate RHS(σ = 1) < 1 =LHS(σ = 1).

We now prove that the two sufficient conditions outlined above apply to our model.

First, a sufficient condition for ∂cD(q)
∂σ ≤ 1 for σ ≤ σT is ∂E

∂σA ≤ 1. This implies

(1 + π2)q3(1− q) ≤ (1− qσ)(q2 + π2B2). As the RHS is decreasing in σ, this condition must

hold for the highest possible σ, i.e. for σ = σT . Substituting and simplifying, this requires

q(1− q) ≤ 1
π2(1+π2)

. The LHS is at most 1
4 while the RHS is at least 1

2 , hence the condition is

always satisfied.

Second, a sufficient condition for convexity of cD(q) for σ ≥ σT is ∂2A
∂σ2 ≥ 0. To show

that it is always the case, note that

∂2A

∂σ2
= −q2(1− q)

∂2D
∂σ2 D

2 − 2D ∂D
∂σ

2

D4
(2.9.C.24)

where D = (1 − qσ)
[
q2 + π2B2

]
, ∂D
∂σ = −q(q2 + π2B2) + π22B ∂B

∂σ (1 − σq) < 0 and
∂2D
∂σ2 = −qπ22B ∂B

∂σ + 2π2
[(

∂B
∂σ

2
+ ∂2B

∂σ2 B
)

(1− σq)− qB ∂B
∂σ

]
> 0. A sufficient condition

for (2.9.C.24) to be positive is 2∂D∂σ
2 ≥ ∂2D

∂σ2 D.
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Figure 2.C.8: Proof of Proposition 2.12: Proving LHS > RHS in (2.9.C.25). Orange plane:
LHS−RHS, blue plane: 0 ∗ x+ 0 ∗ π in the π − x space.

By substitution, this implies

2

[
−q(q2σ2 + π2(1− qσ)2)

1

σ2
− 2π2 (1− qσ)2

σ3

]2

≥
[
qπ22σ

(1− qσ)

σ4
+ 2π2(1− qσ)

1

σ4
+

4(1− qσ)2

σ4
π2 + 2qπ2σ

(1− qσ)

σ4

]
(1− qσ)(q2 + π2B)

σ2

[
−q(q2σ2 + π2(1− qσ)2)− 2π2 (1− qσ)2

σ

]2

≥ 3π2(1− qσ)2(q2σ2 + π2(1− qσ)2)

σ2q2(q2σ2 + π2(1− qσ)2)2 + 4π4(1− qσ)4 + 4π2(1− qσ)2qσ(q2σ2 + π2(1− qσ)2) ≥ 3π2(q2σ2 + π2(1− qσ)2)(1− qσ)2

(2.9.C.25)

where the second line follows by multiplication of both sides by σ4 and the third by dividing

both sides by 2 and working out explicitly the square on the LHS. Note that σ and q always

appear together in the last line of (2.9.C.25). As a consequence, we can redefine σq := x and

check whether the condition holds for x ∈ [0, 1] and π ∈ [0.5, 1]. We prove this graphically

using figure 2.C.8. It plots the difference between LHS and RHS of (2.9.C.25) for the whole

range of possible values of x and π, showing that this difference is always positive. This

completes the proof.

Monopoly-Duopoly comparison

Finally, we show that sufficient conditions for competition leading to more research

than monopoly can be found in this set up as well.

Proposition 2.13. There exists a nonempty interval of v values where σ∗D(q) > σ∗M (q).
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Proof. A sufficient condition for the proposition to hold is that, for some values of v, cD(q) >

cM (q). Setting v = 0, and defining B = 1−qσ
σ note that:

cD(q) = (γ(∅)− γ(1))(qσ − (1− qσ)π2) + 1− q (2.9.C.26)

= qσ
q2(1− q)

(1− qσ)(q2 + π2B2)
− π2(1− qσ)

q2(1− q)
(1− qσ)(q2 + π2B2)

+ 1− q

= (1− q)
(

q3σ

(1− qσ)(q2 + π2B2)
− π2q2

q2 + π2B2
+ 1

)
= (1− q)

(
q2 + (1− qσ)π2B2

(1− qσ)(q2 + π2B2)
− π2q2

q2 + π2B2

)
=

1− q
1− qσ

(
q2 + (1− qσ)π2B2

(q2 + π2B2)
− π2q2(1− qσ)

q2 + π2B2

)

where the first equality follows by substitution and the rest is a series of rearrangements. Note

that, as q ∈ (0, 1), neither 1− q nor 1− qσ are ever 0. Similarly, by substitution,

cM (q) = (1− π)

(
q(σ + (1− σ)π

qσ + q(1− σ)π + (1− q)π)
− q(1− σ)

1− qσ

)
(2.9.C.27)

= (1− π)q

(
σ + (1− σ)π

qσ(1− π) + π
− 1− σ

1− qσ

)
=

(1− π)qσ(1− q)
(1− qσ)(qσ(1− π) + π)

As a consequence, by comparison of (2.9.C.26) and (2.9.C.27), cD(q) > cM (q) implies

q2 + (1− qσ)π2(B2 − q2)

(q2 + π2B2)
>

(1− π)qσ

(qσ(1− π) + π)
(2.9.C.28)

Note that both LHS and RHS of (2.9.C.28) are decreasing in π. The case of RHS is straightfor-

ward. For the LHS, a sufficient condition is

(1− σq)2π(B2 − q2)(q2 + π2B2 − 2πB2(q2 + (1− qσ)π2(B2 − q2)) < 0

This simplifies to −σq2πq2B2 − (1− σq)2πq4 that is always negative.

As a consequence, a sufficient condition for cD(q) > cM (q) is LHS(π = 1) >RHS(π =

0.5). By substitution, this implies

q2 + (1− qσ)(B2 − q2)

(q2 +B2)
>

qσ

1 + qσ
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After few simplifications and substituting back the value of B, we obtain

σ2q2 2qσ − 1

σ2
+

(1− qσ)3

σ2
> 0

A sufficient condition for this to hold is

1− 3qσ + 2q2σ2 + q3σ3 > 0

Noticing that qσ is bounded between 0 and 1, the condition is always satisfied and this completes

the proof.
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D Monopoly with public signal

In this appendix we assume that the audience learns the actual timing with positive

probability z in monopoly. This helps us establish that additional learning in our benchmark

duopoly model happens not only because the timing is revealed with some probability but also

because the audience uses additional information from outlets matching the state. In this set up,

the outlet does not know whether the audience has learned the timing or not when taking its

decision. Then, the condition for doing research is

zγM (2) + (1− z)γM (∅)− c ≥ zγM (1) + (1− z)(πγM (∅) + (1− π)γM (1)) (2.9.D.29)

Note that γM (2) = γ(2) = 1 and γM (1) = γ(1) = 1−σ
2−σ . However,

γM (∅) =
σ + (1− σ)π

σ + (1− σ)π + π
6= γ(∅) =

σ2 + (1− σ)(2− σ)π2

σ2 + (2− σ)2π2

because in duopoly the audience can learn also from the other player getting the state wrong.

Hence, it is confused only if both outlets publish simultaneously and they both get the state

right.

For comparison, we can write the duopoly condition for v = 0 a bit differently. Define

χ the probability that the opponent behaves in a way that reveals the timing to the reader. Note

that χ is “artificial” because it is the probability that j does not research when player i does (i.e.
1
2(1− σj) + 1

2 on the LHS) and vice-versa (i.e. 1
2σ on the RHS). In such cases, the action of

player j is fully revealing of the timing, irrespective of the endorsement. The duopoly condition

for research is then

χγ(II) + (1− χ)γ(∅)− c ≥ χγ(I) + (1− χ)(π2γ(∅) + (1− π2)γ(I)) (2.9.D.30)

Comparing (2.9.D.29) and (2.9.D.30) reveals that they are similar, but not identical.

Even if we set z = χ, the difference in γ(∅) and in the π2 term of the RHS is still there.

Hence, our result is not just due to the fact that the publication timing of the opponent reveals

information about the timing of the other player. The content of the endorsements plays a role

as well.
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Chapter 3

Optimal Innovation Time-off

3.1 Introduction

Employee-driven innovations have become critical for the growth of big organizations

in recent decades. Employees are usually more capable of identifying new ideas and problems

with current workstreams and finding their solutions. First-hand experience working with the

technology and specific expertise gives them a distinct advantage in the innovation process.1

For instance, almost half of Google’s products have been employee-driven innovations. Paul

Buchheit, credited with developing GMail in Google, initially sought to refine the emailing

experience after identifying that it was difficult to search within specific email inboxes. He later

developed AdSense technology to recommend advertisements based on email searches, which

now makes Google around $10 billion each year in revenue.2

Recognizing the importance of employee-driven innovations, many firms have intro-

duced policies of innovation time-off for their employees. For instance, Google permits its

employees to take 20% time-off from their regular work to work on a project of their choice.

Similarly, LinkedIn runs a yearly time-off program called the InCubator to support its employees’

ideas.

However, there are apparent tradeoffs for organizations in providing employees with

time off to work on their creative endeavors. On the one hand, employees would need to take

time off from regular tasks to work on their projects that may lead to innovations and higher

future profits for the firm. But on the other hand, providing the time off induces the agent

to work on potentially unfruitful avenues, which is costly to the organizations as it diverts

resources away from present tasks. In the presence of this tradeoff, we ask how a firm should

1This is especially true for tech firms in Silicon Valley that spend millions of dollars in their recruitment
processes to select the best candidates who are of the highest ability.

2Another example of successful employee-driven innovation is Flickr. It originally a side project for the team at
Ludicorp whose sole product at the time was a web-based game called Game Neverending. See Tate (2012) for
more examples and anecdotes.
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optimally delegate authority to its employees to work on their creative projects.

(Currently) We build a simple two-period delegation model to answer this question. In

our model, a principal (she) finances an agent’s (he) work. The agent either works on a regular

task, or he may request to work on his creative task. The regular task brings a normalized zero

net benefit to either player. The creative task involves the agent working on his idea, which has

the potential to generate a breakthrough and a higher payoff of 1 for both players. However,

the type of idea that the agent possesses in any period is his private information and may be

either high or low. A high-type idea has a higher ex-ante potential to succeed and generate a

breakthrough than a low-type one. While the agent would like to gain authority to work on his

idea independent of its type, the principal only finds it profitable to finance a high idea. In each

period, the agent may draw a new idea if he does not already have a high idea.

The principal designs an optimal delegation policy which is contingent on past observed

outcomes. One may imagine several plans that the principal may use. Fixed probability of

granting authority across periods, declining probability, increasing probability, or a combination

of the three depending on the previous outcome are a few examples. Our main result shows

that the optimal mechanism resembles a time-based screening contract in which the agent may

choose to seek authority today or tomorrow. If the agent seeks authority today, then he faces

a potential future punishment for lack of performance. Specifically, the principal reduces the

probability of granting authority in the next period when he does not produce a breakthrough

in the first period. If the agent does not seek authority today, then the principal rewards him

with more authority tomorrow independent of his type. Thus, in the optimal policy, the principal

punishes the persistent good type but not the bad type. Either way, creativity only gets a limited

opportunity.

There is some anecdotal evidence to support this observation. Google managers are

known to clamp down on those employees that take the 20% time off but do not produce

breakthroughs sufficiently quickly. In a Quora blog post3, a Google employee writes:

“Unofficially, 20% projects are no longer encouraged. They led to many problems

because it took a great deal of time away from an employee’s primary team (without

any measurable successes).”

While at the same time, some successful employees mention how it is important to define the

objectives of their projects to be able to benefit from the time-off policy. Defining objectives

allows the managers to measure success and reward (or punish) accordingly in their projects.

3See https://www.quora.com/How-does-Google-company-\T1\textquoterights-Google-Innovation-Time-Of
f-20-time-policy-work-in-practice
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The intuition for the above result is as follows. The principal needs to give sufficient

incentives to a low-type agent to deter seeking authority in the first period. She achieves

this by using the future probability of authority in each contingency, i.e., if he does not seek

authority and if he does and fails to produce a breakthrough. Therefore, she rewards the agent

for continuing work on the regular task and also punishes him for seeking authority and not

providing a breakthrough. Consequently, only the high-type agent gets penalized in the optimal

incentive-compatible mechanism.

It is interesting to note that it is not possible to achieve the desired honesty of the

low-type using just one of the tools. The principal not only rewards the low-type but also

punishes the high-type in the optimal policy. In doing so, she faces an intertemporal tradeoff.

Punishing the agent following failures not only relaxes the low-type’s first-period incentive

constraint but also makes the high-type’s second-period constraint tighter. However, this hurts

the principal as a high potential idea is persistent and taking away authority from such an agent

reduces her expected payoff. The principal, therefore, tries to minimize the adverse effect on the

high-type while at the same time maintaining the low-type’s incentive to report honestly. How

she uses the two tools optimally to balance the two effects depends on the various parameters.

We show that somewhat counterintuitively, the principal may sometimes grant authority

to the agent even when ex-ante expected benefit of doing so is lower than the cost. It will

never happen if we restrict the mechanism to a single period. However, in two periods, the

intertemporal tradeoff kicks in. In such situations, it is more costly not to give authority to

high types than to fund the low-type’s creativity. Thus, while the principal is forced to punish

the high-type agent for failing, she does so to the minimum possible extent. In this sense, the

first-period high-type agent subsidizes the low-type in the optimal mechanism.

However, if the ex-ante cost of financing creativity is too high, then there is a discon-

tinuous fall in the probability of getting authority for both the types in the second period. In

this case, the principal would rather completely take away authority from the high-type, and

risk not getting a breakthrough, than grant authority to the low-type. Again, while the principal

must offer some authority to the low-type, she does so to the minimum extent. In this sense, the

first-period low-type taxes the first and the second-period high-type in the optimal mechanism.

Related literature. Starting with Holmstrom (1982) there is a vast literature on del-

egation of authority in economics. Aghion and Tirole (1997) were the first to formalize the

collaborative role played by employees in an organization. They showed that employee initiative

could be increased by formal delegation and reducing the level of managerial effort. In contrast,

Rantakari (2012) showed that employee initiative might be increased by combining formal
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authority (of the manager) and limited but positive involvement of the manager. This result was

achieved by combining the Aghion-Tirole model with elements of costly monitoring. While

ours is a model of employee initiative, we deal with the issue of dynamic delegation of authority.

A number of papers have started exploring this issue recently in different contexts; Frankel

(2016), Guo (2016), Datta (2017), Guo and Horner (2017), Li, Matouschek and Powell (2017)

Lipnowski and Ramos (2018) are a few.

Among these, Guo (2016) and Datta (2017) deal with the delegation in environments

where the principal learns about ex-ante private information of the agent owing to experimenta-

tion. While it is common to model innovation in an experimentation-type framework, we do not

explicitly need to include experimentation and learning in our model. All we require is ex-ante

uncertainty over when breakthrough occurs and better information of the agent. Moreover, we

are interested in the question of where ideas come from and when are they developed further.

Our concern is not how a given idea is developed.

Guo and Horner (2017) is the closest in this sense to our paper. In their setting, a

principal commits to an allocation policy for a perishable good (much like delegating authority)

when the agent’s type is persistent. While the agent would like the good either way, the principal

interested in maximizing efficiency would want to grant the good only if the agent is of high

type. However, there are two critical points of departure for us. First, we have a one-sided

persistence of type only. In our model, only the good-type is persistent. For us, an agent who

has discovered a good idea would prefer to see it through than drawing another idea, which at

best is the same as the current idea. Moreover, we require that there might not be an immediate

conclusion of the creative task. Second, we allow for breakthroughs to be observable. As we

discuss in our analysis, these two features together produce our fundamental intertemporal

tradeoff and produce our main result.

Other papers such as Li et al. (2017), Rantakari (2017) and Lipnowski and Ramos (2018)

do not assume commitment by the principal and are interested in the equilibrium allocation

rules that arise in similar settings using perfect public equilibrium (PPE). In Li et al. (2017),

the authors show how good early choices of subordinates are rewarded with later authority.

Consequently, they make more selfish decisions that end up hurting organizations in the long

run. Lipnowski and Ramos (2018) build a model in which a principal sequentially delegates

project choice to an agent who can assess its quality but has lower standards of acceptance.

Similar to Li et al. (2017), they show that in equilibrium, the principal incentivizes the current

good selection of projects by allowing future bad choices.

A common theme between this literature and our paper is the idea of linking incentives
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across periods or decisions. By controlling allocation or decision rights to some other (or future)

units, the principal creates value to eliciting private information today. This feature appears

in several different contexts, including in papers that look at relational contracts and optimal

contracts.

Jackson and Sonnenschein (2007) prove that the limitation imposed by incentive con-

straints on attaining social efficiency can be reduced by increasing the number of copies of

the decision problem and thereby linking them. In a similar spirit, Malenko (2018) develops a

model of dynamic capital budgeting in which an agent with a desire to overinvest in projects

privately sees the arrival and quality of investment opportunities. A principal allocates resources

to the agent to be spent on these investment opportunities. The optimal mechanism involves

the principal setting a dynamic spending account that gets replenished with time at a specific

rate. Additionally, the mechanism outlines a threshold limit above which the agent can pass

the project to the principal for auditing. Similarly, Möbius (2001) and Hauser and Hopenhayn

(2008) build models of favor trading and show how the number of favors exchanged between

players may be used to determine how many new favors can be exchanged.

Two related papers are Boleslavsky and Kelly (2014) and Casella (2005). In the context

of environmental regulation, using a two-period model Boleslavsky and Kelly (2014) show how

the regulators may vary the strength of regulations over time when the firm privately learns its

compliance costs. However, again, neither do they have one-sided state persistence nor do they

do they have a verifiable signal of the state (since the latter is not a concern in their setting).

Similarly, Casella (2005) develops a mechanism of storable votes that allows an agent to gain

more influence in future democratic decision-making by giving up the right to vote today when

she expects future preferences to be strong.

The rest of the the paper is organized as follows: in Section 3.2 we present what our

general model will look like. However, we focus currently on the simplified version of the

model presented in Section 3.3. We discuss the model and present all the relevant results within

the section itself.

3.2 The general model

We present here the general model that we expect to solve after solving the simple

two-period model.

Players, Tasks and Types: An agent (he) is in an employment relationship with a

principal (she) through time t = 0, 1, 2, .... The two players are denoted by i ∈ {A,P} and

share a common discount factor δ. While in the relationship, the agent could potentially work

on one of the two tasks in any given period: regular or own. The regular task corresponds to
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working on assigned projects. Conducting the regular task gives a payoff of ri > 0 to each

player with certainty.

While working on the regular task, the agent has the ability to come up with new ideas

and create own tasks. The agent costlessly comes up with an own task in each period, which

could either have a low or a high potential to succeed, denoted by θ ∈ {l, h}. This is the type

of the own task and is agent’s private information. The prior probability of drawing a high

potential own task in period t is pt. If the agent works on own task of type θ, then the probability

of success or breakthrough in any given period is θ with 0 < l < h < 1 – a high potential

task is more likely to succeed in any given period. Upon achieving a breakthrough in own task,

each player gets a payoff of vi from then on in perpetuity. We will assume that success in own

task is sufficiently rewarding such that ri < δvi. If the agent fails, then both players get 0 in

that period. We denote the outcome of conducting own task by y ∈ {S, F}, success or failure

respectively i.e. either a breakthrough is observed or not.

The higher payoff to the agent from conducting own tasks pertain to the intrinsic

motivation for working on own ideas. Moreover, upon achieving success in own tasks, the

principal may reward the agent with promotions and more autonomy to further conduct own

task which gives the agent vA in perpetuity. The higher payoffs to the principal from achieving

success in own task pertain to the benefits of getting an innovation.

We will assume that the principal can observe the outcome y of conducting any task and

also the realized payoff. This implies that the principal can perfectly distinguish between the

agent conducting regular vs. own task but cannot distinguish between low potential and high

potential own task.

Note that since there is nothing better than a high potential idea, the agent stops drawing

new ideas after getting a high potential idea. By drawing a new idea he risks losing his current

high idea. But may continue drawing ideas if she has a low potential idea, because there is only

a potential benefit of doing so. Thus the high type is fully persistent.

Conflict of Preferences: While both players agree on the need for innovation, there is a

conflict on which type of ideas should be pursued. We will assume

hvP > rP and hvA > rA

but lvP < rP and lvA > rA

This implies that while the agent always prefers to conduct own tasks, the principal would rather

have him conduct the regular task when she has a low potential own task. In other words, the

agent’s intrinsic motivation to “scratch the itch” is sufficiently high independent of the type of
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the task he has drawn. However, the principal would like the agent to do so if she has a high

potential own task.

Policy and Payoffs: Given the realized θt and the policy (defined next), the agent sends

a message mt ∈ {l, h}. A policy (or mechanism) is a sequence of probabilities of granting

authority to the agent to conduct own task for every period t denoted by at as a function of

previous messages, outcomes and authority decisions.

at : {l, h}t+1 × {S, F}t × {0, 1}t → ∆({0, 1})

Timing: The timing of the game is as follows:

1. Initially, the principal commits to a mechanism at(.) for t = 1, 2, ....

2. In t = 1, the agent draws his type θ1 and reports it to the principal. The principal chooses

according to a1(θ1). Outcome y1 is realized if a1 = 1, otherwise the game moves to

t = 2.

3. For all t > 1, the agent reports his θt to the principal and she chooses whether to grant

authority using at(.).

3.3 Two-period case: model and analysis

We present here a modified two-period version of the model. Consider the following

changes. An agent and a principal are in an employment relationship for two periods t = 1, 2.

The principal bears a cost of 0 < c < 1 per period for financing the agent’s work. If the agent

works on the regular task, then the principal breaks even and gets 0. The agent also has no

intrinsic motivation to do the regular task and gets 0 from conducting it. On the other hand,

both the agent and the principal get a benefit of 1 from success in own task.

However, there is a preference conflict between the agent and the principal captured by

the following assumption on parameters: h > c > l while 1 > h > l > 0. This implies that

while the principal would like the agent to only pursue high potential ideas, the agent would

like to have the authority to conduct own task independent of its potential to succeed. Thus, the

agent has lower standards. The relationship ends after getting a success in own task or at the

end of the second period, whichever happens first. All the other parameters of the problem are

as above.

The principal designs a delegation mechanism which defines for every t the probability

of granting authority to the agent to work on his own task at. Using the revelation principle,

we restrict attention to those mechanisms in which the agent reports his type and the principal
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decides whether authority must be granted.

To begin with, let us look at the principal’s first-best policy. The first-best is given by

the situation in which the principal can perfectly observe the type of the agent’s own task in

each task.

Proposition 3.1. The principal chooses at = 1 whenever θt = h, and at = 0 otherwise in the

first-best policy.

It is easy to see why the above is the case. As h > c > l, the expected payoff of the

principal is always positive whenever the agent has a high-potential own task. Alternately, it is

negative when the agent has a low-potential own task.4

Next, let us look at two extreme policies that the principal may adopt under the second-

best. The first is to never grant any authority and the second is to always grant authority.

Lemma 3.1. If the principal never grants authority, then her expected payoff is zero. If the

principal always grants authority, her expected payoff is

p1h+ (1− p1)l − c+ δ
[
p1(1− h)(h− c) + (1− p1)(1− l)(p2h+ (1− p2)l − c)].

Going forward, we need to determine if the principal can do better than these two

mechanisms, and if so, when. Below, we will call all other non-extreme mechanisms as interior

mechanisms.

Note first that in t = 1, there is no outcome to condition a1 on. Therefore, the principal

chooses a1 as a function of m1 which could be either h or l. With some abuse of notation, we

denote this by a1(h) and a1(l) respectively. In t = 2, however, the principal may condition her

decision on three variables – the present report, the past report and the past outcome, which

could either be a failure or that no authority was granted.5 We denote the principal’s period 2

decision by a2(m2;m1, y1) where mt ∈ {h, l} and y1 ∈ {F,∅} is the outcome of the previous

period which could be either that the authority was granted but the agent failed to produce a

breakthrough (F ) or that he wasn’t granted authority (∅). Observe that there are many variables

that one must determine in the optimal mechanism. In the following paragraphs, we show how

the problem can be reduced significantly.

Lemma 3.2. The optimal interior mechanism does not condition second period delegation

decision on the reports in that period.
4Note that the agent does not need to be incentivized to participate in the mechanism. He always gets 0 by being

in the employment relationship with the principal. It can also be assumed to be the value of the outside option.
5If authority was granted in the first period and it generated a success, then there is no further need for making

authority decisions as the relationship comes to an end.
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This follows almost immediately from the fact that the game ends after the second

period. The principal is not able to incentivize truth-telling by offering any future rewards or

punishments in the second period. Incentive compatibility requires that she offers the same

authority to the agent independent of her second period type. Thus, period 2 decisions can only

be based on the past decisions and outcomes, and not on the present reports. This reduces our

problem to determining the following probabilities in the second period: a2(l, F ), a2(l,∅),

a2(h, F ) and a2(h,∅). These probabilities of granting authority reflect the principal’s decision

for when 1) the agent reported low but was given authority and failed, 2) the agent reported low

and was not given authority, 3) the agent reported high and was given authority but failed, and

4) the agent reported high but was not given authority in period 1.

We can now write the principal’s authority design problem as follows:

maximize
at(m, y)

p1(h− c)
[
a1(h) + a1(h)(1− h)δa2(h, F ) + (1− a1(h))δa2(h,∅)

]
+ (1− p1)

[
a1(l)(l − c) + δ(p2h+ (1− p2)l − c)(a1(l)(1− l)a2(l, F ) + (1− a1(l))a2(l,∅))

]
subject to a1(h) + δ

[
a1(h)(1− h)a2(h, F ) + (1− a1(h))a2(h,∅)

]
≥ a1(l) + δ

[
a1(l)(1− h)a2(l, F ) + (1− a1(l))a2(l,∅)

]
, (IC)h

a1(l)l + δ(p2h+ (1− p2)l)
[
a1(l)(1− l)a2(l, F ) + (1− a1(l))a2(l,∅)

]
≥ a1(h)l + δ(p2h+ (1− p2)l)

[
a1(h)(1− l)a2(h, F ) + (1− a1(h))a2(h,∅)

]
, (IC)l

where at(m, y) = {a1(h), a1(l), a2(l, F ), a2(l,∅), a2(h, F ), a2(h,∅)} is the set of all delega-

tion probabilities that the principal chooses.

Lemma 3.3. The low type’s incentive constraint (IC)l binds in the optimal interior mechanism.

The intuition is straightforward. Fix any incentive compatible mechanism in which both

the ICs are slack, specifically (IC)l is non-binding. Now, if the principal increases a1(h) while

satisfying (IC)l then the ex-ante expected profits increase on account of a higher probability of

breakthrough for the high type without inducing any deviation by the low type. This means that

optimality requires (IC)l to bind.

Lemma 3.4. Let p2 > l and δ < δ < δ̄ where δ = l
p2h+(1−p2)l and δ̄ = p2

p2h+(1−p2)l . It is

always optimal for the principal to grant authority following a high report and not following a

low report in period 1, i.e. a1(h) = 1 and a1(l) = 0.

The above lemma shows that the first-best optimal delegation policy is the same as the

second-best optimal delegation policy in the first period. In the presence of future discounting,

the principal prefers not to distort incentives in the first period. The first sufficiency condition on

the discount factor, δ < δ̄, ensures that future is not too valuable, which might lead to pushing
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all authority decisions to the second period. The second sufficiency condition δ > δ ensures

that the future is sufficiently valuable to the agent so that the low type does not want to deviate

today and inefficiently seek authority. (All proofs are presented in Appendix A)

Using Lemma 3.4, it is easy to reduce the principal’s interior maximization problem to

maximize
a2(h, F ), a2(l,∅)

p1(h− c)
[
1 + (1− h)δa2(h, F )

]
+ (1− p1)δ(p2h+ (1− p2)l − c)a2(l,∅)

subject to 1 + δ(1− h)a2(h, F ) > δa2(l,∅) (IC)h

a2(l,∅) =
l

δ(p2h+ (1− p2)l)
+ (1− l)a2(h, F ) (IC)l

where we only need to determine two variables a2(h, F ), a2(l,∅). Moreover, note that (IC)h is

slack at the optimum. Therefore, the optimal interior mechanism is the solution to above linear

program as outlined by the following proposition.

Proposition 3.2. Let p2 > l. For δ < δ < δ̄ the optimal interior mechanism is given by the

following delegation probabilities:

• a∗1(h) = 1 and a∗1(l) = 0,

• if c < c̄ where c̄ = p1h(1−h)+(1−p1)(1−l)(p2h+(1−p2)l)
1−(p1h+(1−p1)l) ,

a∗2(h, F ) =
1

1− l

(
1− l

δ(p2h+ (1− p2)l)

)
< 1 and a∗2(l,∅) = 1,

• if c = c̄, then any a∗2(h, F ) and a∗2(l,∅) that satisfies

a∗2(l,∅) =
l

δ(p2h+ (1− p2)l)
+ (1− l)a∗2(h, F ),

• if c > c̄,

a∗2(h, F ) = 0 and a∗2(l,∅) =
l

δ(p2h+ (1− p2)l
< 1, and

• any a∗2(h,∅) ∈ [0, 1] and a∗2(l, F ) ∈ [0, 1].

The above proposition characterizes the optimal mechanism for different cost ranges.

Observe how the probabilities of delegation switch for the different types between first and the

second period. An agent who is of high type in the first period must suffer some punishment

in the second period for failing to achieve a breakthrough. This is despite the high type being

fully persistent. At the same time, a low type must be rewarded for waiting to get a high idea
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when he presently doesn’t have one. This implies that the first period low type must get a higher

probability of delegation in the second period independent his future type. Thus, the principal

buys period 1 efficiency from the low type agent by inefficiently offering rewards to the low

type and punishments to the high type in period 2.6

We note here that the flipping of delegation probabilities for the two types is unique

to our environment and arises from the two differentiating features of our model – observable

outcomes and persistent high type. These two features together generate a tradeoff for the

principal. On the one hand, the possibility of conditioning future delegation on the past

performance relaxes the low type’s constraint by making deviations less likely today. But on the

other hand, since the high type is fully persistent, it hurts his incentives tomorrow. This in turn

reduces the expected payoffs of the principal as she must knowingly take away authority from

someone who brings in positive expected profits. Such an intertemporal tradeoff is resolved

by the principal by switching delegation probabilities across periods for the two types in the

optimal mechanism.

Why must the principal use both the tools? This is best understood by looking at (IC)l

when a1(h) = 1 and a1(l) = 0;

a2(l,∅) =
l

δ(p2h+ (1− p2)l)
+ (1− l)a2(h, F )

It is easy to see that two delegation probabilities work complementarily. An increase (decrease)

in one is accompanied by an increase (decrease) in the other in order to maintain incentive

compatibility of the low type. However, given the incentive compatibility of the high type,

the principal would like to increase a2(h, F ) to the maximum possible extent independent of

a2(l,∅). This might not always be doable or in the interest of the principal. The two cost cases

depict this.

To begin with, note that given the linearity of the principal’s objective function and the

IC constraints, the solution must be an extreme point. Now, when the cost of delegating is low

enough, i.e. lower than c̄, then the principal prefers to still offer authority to the high type with

a positive probability and simultaneously with probability 1 to the low type. However, when the

cost is high, then financing the high type for a second period while simultaneously delegating to

an ex-ante unknown type becomes too costly. In this situation, the principal would rather give

no authority to the high type and restrict the delegation probability to the minimum for the low

type. We explain this point further using the corollary below. For this purpose, let p1 = p2 = p.

6Since it never happens that a low type is offered authority and the high type is not offered authority in the first
period, a2(h,∅) and a2(l, F ) do not matter in anyone’s decision-making, and we may assign any probabilities to
them.
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Corollary 3.1. Let p1 = p2 = p. For c̃ ≤ c < c̄ where c̃ = ph + (1 − p)l is the ex-ante

expected benefit of delegation, the optimal mechanism involves

a2(h, F ) =
1

1− l

(
1− l

δ(ph+ (1− p)l)

)
< 1 and a2(l,∅) = 1.

The above corollary shows that even if the ex-ante expected benefit of granting authority

is lower than the cost of doing so, the principal optimally delegates authority with probability 1

to such an agent some times. Observe that this would not be the case if this was a single period

mechanism. In a single period, the principal would never offer authority to an agent who is too

costly to fund. The difference arises because of how the principal resolves the aforementioned

intertemporal tradeoff. See Figure 3.1 in relation to the explanation below.

When c < c̃, i.e. the cost of delegating is lower than the the expected benefit of

delegating, then the preferences of the principal and period 1 low type agent are more aligned.

On an average, she expects to gain by granting authority to period 1 low type in period 2. At the

same time, she would like to continue granting authority in period 2 to period 1 high type. This

is reflected in her isoprofit lines. The slope of the isoprofit line in (a2(h, F ), a2(l,∅)) space

is negative. To remain at a given profit level, the principal must increase a2(l,∅) following a

decrease in a2(h, F ). This leads to an easy resolution of the tradeoff in the optimal mechanism;

the principal happily gives authority to the low type while holding the punishment to the high

type to a minimum.

But when c > c̃, i.e the cost of delegating authority to period 1 low type in period

2 is higher than the expected benefit, then the preferences are less aligned. This means that

the principal would like to take away authority from the low type i.e. reduce a2(l,∅). At the

same time, the desire to not punish the high type agent in period 2 remain. Thus, to maintain a

given profit level a reduction in a2(h, F ) must be accompanied by a reduction in a2(l,∅). The

intertemporal tradeoff now has a bite - the principal must decide between using a2(h, F ) more

intensely or less intensely.7 By choosing a lower a2(h, F ), she can minimize the punishment to

the high type but it comes at the cost of inefficiently giving authority to the low type in period 2.

Alternately, she can reduce the inefficiency by increasing the high type’s punishment tomorrow,

i.e. a higher a2(h, F ). How this tradeoff is resolved now depends on a second cost threshold c̄.

c̄ reflects the cost threshold at which the principal is indifferent between how the tradeoff

is resolved. This implies that for c̃ ≤ c < c̄ the principal still prefers to grant authority to period

1 low type in period 2. This is so because in this range of cost parameters the principal’s cost of

7Note that not using a2(h, F ), i.e. setting a2(h, F ) = 1 is not an option for the principal because (IC)l must
be respected at all times. Setting a2(h, F ) = 1 breaks (IC)l as it requires an a2(l,∅) > 1 to match it.
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taking away authority from a high type is higher than the cost of inefficiently granting authority

to the low type. Thus, the high type agent ‘subsidizes’ the low type in the optimal mechanism.

But when c > c̄, the cost of granting authority to the low type is higher than the cost of taking

away authority from the high type. Thus, the principal prefers to set a2(h, F ) = 0 and minimize

a2(l,∅) in the process. The low type, in this case, ‘taxes’ the high type.

Finally, the optimal mechanism is evaluated by comparing the principal’s payoffs from

the optimal interior mechanism with the extreme mechanisms outlined in Lemma 3.1.

Proposition 3.3. Let l < p2 <
l

1−(h−l) . For δ < δ < δ̄ the optimal mechanism is given by cost

thresholds c, c̄ and ¯̄c where c < c̄ < ¯̄c such that

• if c < c, the principal always grants authority in the optimal mechanism;

• if c ≤ c < c̄, the principal grants authority as follows in the optimal mechanism

a∗1(h) = 1 , a∗1(l) = 0 , a∗2(h, F ) =
1

1− l

(
1− l

δ(p2h+ (1− p2)l)

)
< 1 and a∗2(l,∅) = 1,

and any a∗2(h,∅) ∈ [0, 1] and a∗2(l, F ) ∈ [0, 1];

• if c̄ ≤ c < ¯̄c, the principal grants authority as follows in the optimal mechanism

a∗1(h) = 1 , a∗1(l) = 0 , a∗2(h, F ) = 0 and a∗2(l,∅) =
l

δ(p2h+ (1− p2)l)
< 1,

and any a∗2(h,∅) ∈ [0, 1] and a∗2(l, F ) ∈ [0, 1];

• if c ≥ ¯̄c, the principal never grants authority.

The above proposition outlines the overall optimal mechanism for different cost ranges.

As expected, we show that when the cost of granting authority is too low or too high, the

principal prefers to implement the extreme mechanism instead of the interior one. When the

cost is low, the principal always grants authority; when the cost is too large, the principal never

grants authority. In between, the principal prefers the optimal interior mechanism.

3.4 Conclusion

We showed using a simple two-period model how organizations may limit the creativity

of their employees. Organizations end up being inefficiently harsh on employees who are

capable of achieving breakthroughs in own ideas to limit the behavior of those employees

who do not have good ideas. Such mechanisms are, therefore, not likely to be successful in

promoting creativity among the employees. Our model suggests that organizations must look

for alternative ways of fostering creativity.
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A few points are in order about the model that we built in this paper. First, there are

some obvious issues in extending our model to more than two periods. Since we need that

the agent’s outcome is observable, when we expand our model to include many periods, the

problem blows up immediately. Second, this is not a model of experimentation even though we

are attempting to model innovation. By assuming that θ is perfectly known to the agent, we

are essentially killing any learning, a standard of experimentation models. One may introduce

the tradeoff between the regular task and own task as one between exploitation and exploration

à la Manso (2011) in our current two-period framework. However, it is not clear what new

insights we obtain from doing so. Third, there are no monetary transfers in our model. This

is so because we are interested in employee-driven innovation where the employer-employee

are already in a relationship and the employee wants to conduct innovation driven by intrinsic

motivation. Finally, we can extend our model in meaningful ways to include moral hazard or

multiple types. Our model, therefore, shows further scope of research.
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3.5 Figures
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Figure 3.1: Optimal delegation mechanism for different c ranges
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3.6 Appendix

A Proofs from the main text

Proof of Lemma 3.4

Proof. We know from Lemma 3.3 that (IC)l binds in the optimal mechanism. Rearranging

(IC)l and substituting in the principal’s expected profit function we get:

p1(h− c)
[
a1(h) + a1(h)(1− h)δa2(h, F ) + (1− a1(h))δa2(h,∅)

]
+ (1− p1)

[
a1(h)l + δ(p2h+ (1− p2)l)(a1(h)(1− l)a2(h, F ) + (1− a1(h))a2(h,∅))

]
− (1− p)c

[
a1(l) + a1(l)(1− l)δa2(l, F ) + (1− a1(l))δa2(l,∅)

]
It is now easy to verify that

∂πP
∂a1(l)

= −(1− p1)c
[
1 + δ(1− l)a2(l, F )− δa2(l,∅)

]
< 0

since 1 > δa2(l,∅). Now, given the linearity of the profit function in a1(l), it is immediate that

the principal should set a∗1(l) = 0 in the optimal mechanism.

Now, substitute a∗1(l) = 0 and (1−a1(h))a2(h,∅) = a2(l,∅)−a1(h) l
δ(p2h+(1−p2)l)−

a1(h)(1− l)a2(h, F ) from (IC)l in the original profit function and maximize with respect to

a2(h):
∂πP
∂a1(h)

= p1(h− c)
[
1− δ(h− l)a2(h, F )− l

p2h+ (1− p2)l

]
which is always positive for δ < δ̄ = p2

p2h+(1−p2)l . Thus, a∗1(h) = 1.

Moreover, since a2(h, F ), a2(l,∅) are numbers between 0 and 1, from (IC)l we get the

second sufficiency condition

l

δ(p2h+ (1− p2)l)
< 1 =⇒ δ > δ =

l

p2h+ (1− p2)l
.
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Proof of Proposition 3.2

Proof. Substitute a∗1(h) = 1 and a∗1(l) = 0 in the IC conditions and the principal’s profit

function. This reduces the principal’s optimization problem to

maximize
a2(h, F ), a2(l,∅)

p1(h− c)
[
1 + (1− h)δa2(h, F )

]
+ (1− p1)δ(p2h+ (1− p2)l − c)a2(l,∅)

subject to 1 + δ(1− h)a2(h, F ) > δa2(l,∅) (IC)h

a2(l,∅) =
l

δ(p2h+ (1− p2)l)
+ (1− l)a2(h, F ) (IC)l

First, note that (IC)h must be slack at the optimum. Second, by the fact that we have

already assumed δ < δ̄, it is easy to verify that a2(h, F ) < 1.

Now, given the linearity of the profit function and the IC constraints it is easy to

derive the optimal mechanism by comparing the slopes of the isoprofit lines and (IC)l. In the

(a2(h, F ), a2(l,∅)) space, the slope of the isporofit line is given by

−p1(h− c)(1− h)

(1− p1)(p2h+ (1− p2)l − c)

and the slope of (IC)l is 1− l.

• If p2h + (1− p2)l > c, then the slope of isoprofit line is negative. Moreover, a higher

profit is a shift of the isoprofit line to the right. This implies that in the optimal mechanism

a∗2(l,∅) = 1 and a∗2(h, F ) = 1
1−l

(
1− l

δ(p2h+(1−p2)l)

)
.

• If ph + (1 − p)l < c, then the slope of the isoprofit line is positive and a higher profit

is a shit of the line to the right and down. Two cases are possible depending on the

comparison of slopes

p1(h− c)(1− h)

(1− p1)(c− p2h+ (1− p2)l)
≶ 1− l

=⇒ c ≶ c̄ =
p1h(1− h) + (1− p1)(1− l)(p2h+ (1− p2)l)

1− (p1h+ (1− p1)l)
.

• If c < c̄, then the isoprofit line is steeper than (IC)l. The optimal mechanism as in the

case above, i.e. a∗2(l,∅) = 1 and a∗2(h, F ) = 1
1−l

(
1− l

δ(p2h+(1−p2)l)

)
.

• If c > c̄, then the isporofit line is flatter than (IC)l. The optimal mechanism now is

a∗2(l,∅) = l
δ(p2h+(1−p2)l) and a∗2(h, F ) = 0.
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This completes the proof of Proposition 3.2 and Corollary 3.1.

Proof of Proposition 3.3

Proof. Begin by rewriting the value to the principal of always granting authority to the agent.

From Lemma 3.1 we know that it is equal to

p1h+ (1− p1)l − c+ δ
[
p1(1− h)(h− c) + (1− p1)(1− l)(p2h+ (1− p2)l − c)].

Using the fact that c̄ = p1h(1−h)+(1−p1)(1−l)(p2h+(1−p2)l)
1−(p1h+(1−p1)l) , we can simplify the above as

p1h+ (1− p1)l − c+ δ[1− (p1h+ (1− p1)l)](c̄− c). (3.6.A.1)

Consider first the situation of c = c̄. From Proposition 3.2, we know that

a∗1(h) = 1 , a∗1(l) = 0 , a∗2(h, F ) = 0 and a∗2(l,∅) =
l

δ(p2h+ (1− p2)l)
< 1,

and any a∗2(h,∅) ∈ [0, 1] and a∗2(l, F ) ∈ [0, 1] is an optimal interior mechanism. At this

optimal mechanism, the value to the principal is

p1(h− c) + (1− p1)l

(
1− c

p2h+ (1− p2)l

)
. (3.6.A.2)

Comparing the value to the principal from (3.6.A.1) with (3.6.A.2), it is easy to see that the

latter is better. Therefore, at c = c̄, the principal prefers the optimal interior mechanism.

It also now immediately follows, that for the case c > c̄, either the interior mechanism

is optimal or the extreme where no one is granted authority is optimal. The extreme mechanism

where the agent always gets authority can not be optimal anymore since such a mechanism

performs worse than the extreme one outlined above. To check whether it is optimal to grant no

authority we need to check if

p1(h− c) + (1− p1)l

(
1− c

p2h+ (1− p2)l

)
> 0.

Simplifying the above gives the condition,

c <
(p1h+ (1− p1)l)(p2h+ (1− p2)l)

p1p2h+ (1− p1p2)l
:= ¯̄c.

Finally, we now need to determine what happens when c < c̄. Observe that at c = 0, the

extreme mechanism where the agent always gets authority is better than the interior mechanism.
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Reminding ourselves that the optimal mechanism from Proposition 3.2 is given by

a∗1(h) = 1 , a∗1(l) = 0 , a∗2(h, F ) =
1

1− l

(
1− l

δ(p2h+ (1− p2)l)

)
< 1 and a∗2(l,∅) = 1,

and any a∗2(h,∅) ∈ [0, 1] and a∗2(l, F ) ∈ [0, 1]. The value to the principal is

p1h

(
1− 1− h

1− l
l

c̃2

)
+ δ

(
p1h

1− h
1− l

+ (1− p1)c̃2

)
(3.6.A.3)

where c̃2 = p2h + (1 − p2)l. Also, at c = 0, the value to the principal from the extreme

mechanism is given by

p1h+ (1− p1)l + δ(p1h(1− h) + (1− p1)c̃2(1− l)). (3.6.A.4)

Comparing (3.6.A.4) with (3.6.A.3) we get that the extreme mechanism gives a higher value if

1− p1 + p1h
1− h
1− l

1

c̃2
> δ

(
(1− p1)c̃2 + p1h

1− h
1− l

)
,

which is always verified because c̃2 < 1 and under the assumption p2 <
l

1−(h−l) , we have that

δ < 1.

Combining the above with the fact that the interior optimal mechanism is better for the

principal at c = c̄ and that the value is a linear (decreasing) function of c, it must be that there

exists a c ∈ (0, c̄) where

• for c < c, the principal prefers the extreme mechanism where the agent always gets the

authority, and

• for c ≥ c, the principal prefers the optimal interior mechanism.

This completes the proof.
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