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a b s t r a c t 

This paper conducts a simulation study of low-speed Autonomous Vehicles (AVs), referred to as “pods ”, platooning 

in shared urban environments. The proposed on-demand transport service can help solve the “last mile ” challenge 

and improve mobility for non-drivers, elderly, and disabled people. To help the industry understands the dynamic 

system for deployment, this paper provides a practical prospect for pod platooning without prior planning. We 

designed a simulation system for the new transport. Non-homogenous Poisson processes were adopted to simulate 

arrivals of user requests. A three-density-zone map was designed from real-world city layouts. Practical time 

and location patterns of user demand were used. The supervision cost reduction as a benefit of platooning was 

estimated. System performance and user experience were evaluated. We identified how deployment can influence 

platooning. We found that platooning can reduce supervision cost by approximately 20% and 14%, during peak 

times on weekdays and midday on weekends respectively. 
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. Introduction 

.1. Background and motivation 

A challenge for public transport and urban planners is a phenomenon

nown as the “last-mile ”, which describes the difficulty in getting people

rom a transportation hub, such as railway and bus stations, to their

estinations [1,2] . A low-speed autonomous transport system consisting

f electric fully autonomous vehicles (EAVs), or colloquially as “pods ”

n the literature, would help solve the last-mile challenge, satisfy the

ncreasing personal travel demand and ensure accessible and convenient

ublic transport for sectors of our society, including elderly, people with

obility issues and non-drivers [3] . 

As an environmentally friendly transport, electric pods, like the type

sed in this study, have the potential to improve people’s mobility at a

ore affordable price than taxis. A unique advantage of the pod service

e propose, comes from its ability to operate in shared spaces. In this

aper, the “shared space ” includes spaces travelled by both pedestrians

nd vehicles, and some suitable car-free pavements for pedestrians. This

eans pods will be able to pick up and drop users where taxis cannot

each. Since pod will typically not travel on road, it would avoid the fast

raffic environment. On one hand, the pod would increase the transport

apacity without increasing traffic on road; on the other hand, pods will
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e able to take shorter routes than other vehicles. For example, pods can

un through a square. 

At present, UK Government legislation requires AVs to be supervised

y a human at all times, either in the vehicle or remotely. This need of a

uman supervisor for each vehicle makes the value proposition of small

ehicles too costly for both passengers and the company. To cope with

his practical difficulty and to make the service commercially viable,

he SWARM project proposes the use of platooning pods [4] . With a

latoon of pods it opens up the possibility of having one supervisor su-

ervising multiple pods (up to 5 in our system), therefore reducing the

umber of supervisors required to manage a fleet, which should ulti-

ately lower operating costs. In other words, several pods running in

 platoon share a supervisor. The idea of sharing in transport makes

 difference. For example, ride-sharing services could help with traf-

c congestion, save energy consumption while satisfying people’s travel

eeds. To name a few studies on it, Fagnant and Kockelman [5] stud-

ed shared autonomous vehicles, Caulfield [6] conducted a case study

n ride-sharing for Dublin. Supervision of operations of an AV fleet has

een studied [7] . 

Research into vehicle platooning originated from studies of traffic

ynamics and behaviours more than 50 years ago [8,9] . Since the trans-

ortation sector is responsible for the largest share of increased oil con-

umption (see e.g. [10–12] ), truck platooning has attracted increased
 February 2021 
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ttention in recent years, due to its advantage of energy saving. This is

ecause vehicles travelling close behind each other can reduce aerody-

amic drag, reducing fuel consumption. Liang et al. [11] studied how

everal scattered heavy-duty vehicles (HDVs) can cooperate to form pla-

oons on highways in a fuel-efficient manner and proposed an algo-

ithm that coordinates neighbouring vehicles pairwise. Many interesting

roblems, such as systems of distributed controllers for HDV platooning

13] , mathematical framework for trucks platooning in road networks

14] and the trade-off between energy savings and delays caused by

latooning [15] have been studied. 

Many aspects of vehicle platoon have been studied, such as planning

trategy, communications technology and control problems. To name a

ew, Feng et al. [16] proposed a composite platoon trajectory planning

trategy to maximize the intersection throughput; Xu et al. [17] pro-

osed a distributed platoon formation framework considering vehicle

ynamics; Gong and Du [18] developed a cooperative platoon control

or a mixed traffic flow including human drive vehicles and connected

nd autonomous vehicles; control strategies for platooning based on

odel predictive control have also been studied (see e.g. [19,20] ). In

ddition, communication technologies have also been studied for pla-

oon, such as V2X (vehicle-to-everything), 5G V2X and V2V (vehicle-to-

ehicle) (see e.g. [21–23] ). 

Moreover, simulation studies have also been conducted for platoon.

o name a few, Teixeira et al. [24] presented a simulation framework

hat unifies vehicular, communications and multi-agent system simu-

ators in order to test the coordination mechanisms more effectively

nd realistically; Elbert et al. [25] developed an agent-based simulation

odel for analysing the trade-off between savings and waiting times

ue to platooning. Bhargava et al. [26] developed a traffic simulation

odel to analyse the impact of tunnel closures necessary for monitoring

he flow of dangerous goods vehicles and abnormal load vehicles. 

Travelling together as a platoon can reduce cost and risk. An efficient

eet management is therefore important. For example, Wesolkowski and

ojtaszek [27] used fleet configuration to improve the scheduling and

illhardt et al. [28] proposed to employ an event-based architecture

or dynamic fleet management and applied it to the coordination of an

mbulance fleet in a medical emergency scenario to reduce response

ime. 

A similar concept of platooning is swarming. Proposed in 1989 [29] ,

warm intelligence has been developed and transferred from robotics to

ransportation studies [30,31] . For example, particle swarm optimiza-

ion has promoted the study of scheduling and routing problems (see

.g. [32–35] ). 

.2. Paper outline 

Most studies about platooning focus on trucks travelling on roads.

lthough pod platooning will not reduce the energy consumption as

ignificantly as truck platooning, it can reduce the number of human

upervisors needed, hence reducing the operation cost. A detailed sim-

lation study on it is of interest to the industry. 

This paper will investigate platooning in shared urban environments

ith the emphasis on supervision cost reduction. To the best of the au-

hors’ knowledge, this is the first simulation study on supervision cost

eduction by EAV platooning. There are many practical questions to

e answered before the industry can provide the service to the public

hrough feasible deployment. For example, how many pods we need

uch that platooning can happen a lot to obtain visible cost reduction,

ow large the operating area should be, how the system would perform

nder different user demand patterns with practical uncertainties, etc.

he answers to these questions can be found from our simulation. 

This paper provides a practical prospect for pod platooning without

rior planning in the real world. The reasons for omitting planning are,

rstly it is simple and does not require central control or orchestration,

nd secondly, it can provide a baseline for other platooning strategies in

uture study. We also incorporated practical uncertainties into the sim-
2 
lation by Monte Carlo method, using suitable stochastic models based

n real data. This simulation study has two main parts. The first part is

o investigate how deployment can influence pod platooning. Study of

his specific problem used the standard (uniform) grid maps. The sec-

nd part is to predict the system performance and user experience in a

ay of service. This service is planned to run from 06:00 to 24:00. The

imulation of one day trial used a three-density-zone map including four

otspots, with higher path density and lower speed limit in the centre.

e considered higher user demand in the centre and at hotspots. Time

atterns of user demand for weekdays and weekends were set based on

eal data and a previous study [36] . 

Practical uncertainties were integrated into the simulations. We

dopted Poisson processes, a type of stochastic processes which can rea-

onably and effectively model customer arrivals, to simulate arrivals of

ser requests. We considered that some users will not show up in time at

he pickup node, resulting in cancellation of the request. We set reason-

ble dynamic probabilities to decide whether pods can “see ” each other

o form a platoon when they are getting close. Random disturbances

ere also considered into pods’ speeds and time for users to get on/off

oard. 

Here are the key findings from the simulation. We identified sev-

ral influencing variables on deployment on platooning opportunity and

elped understand the influence by statistical modelling. We provided

 list of suitable fleet sizes for user demand from low to high levels.

sers’ waiting time during peak and off-peak hours on weekdays and

eekends is evaluated. We found platooning during the rush hours on

eekdays and platooning around midday on weekends can reduce the

upervision cost by roughly 20% and 14% respectively. Therefore it is

orth trying to platoon during these time periods. 

. Methodology and experimental setup 

The “last-mile ” problem can be largely relieved in our transport ser-

ice by setting suitable “pod stops ”. In our experiment, a node is re-

erred to as a “pod stop ”, where users get on and off to start and com-

lete journeys. By setting several pod stops at a residential area, pods

an bring convenience to residents, especially the elderly, people with

obility issues and non-drivers. Notice that our nodes could be set on

uitable pavement at front of a store, and in a square where people sit for

eisure. For example, carrying residents between their houses and stores

r square in the town centre. Now let us investigate the transport system

hich provides the convenient service through a simulation study. 

To investigate the dynamic system of cooperative EAVs, we created

 multi-agent system simulation in MATLAB. Using this simulation as

n experimental platform, we developed an AV platooning algorithm

or simulation purpose. 

The results from our simulation study will eventually be imple-

ented on a fleet of SWARM pods being developed by RDM. These pods,

n example of which is provided in Fig. 1 , are fully electric and can seat

p to 4 passengers. The working parameters of the pod form the basis

f the simulation developed for this study. 

.1. System framework 

The system framework defines a set of rules for which our simulation

re built on. The framework of our system operation has the following

ssumptions in Table 1 : 

This on-demand transport service allows users to request to travel

etween any two nodes on our map immediately. After a user request is

eceived, the closest available pod will be dispatched to pick up the users

t the departure node (we also refer it to “pickup node ”). The pod will

ait the users for up to 3 min at the departure node. Users will use facial

ecognition for identity verification, as it is secure, fast and easy for

sers. After users get on board, a two-minute safety announcement will

e broadcast. Then pod will depart for the destination node according

o the shortest path. 
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Fig. 1. RDM’s SWARM pod at the University of Warwick campus. 

Table 1 

System assumptions. 

Assumption 1: All paths are two-way traffic. 

Assumption 2: Pods can bypass other pods and 

pedestrians. 

Assumption 3: Pods are not running exactly in the middle 

of the path and two pods may “see ”

each other even though there are 

other pods running between them. 

Assumption 4: Pods can wait for users at the departure 

node for up to 3 min, if users have not 

shown up in time, the user request will be 

cancelled. 

Assumption 5: Supervisors only supervise moving pods. 

Pods which already have terminated at 

nodes are not supervised. We always 

have enough supervisors. 

 

n  

“  

o  

t  

c

 

d  

o  

w

2

 

o  

f  

s  

 

a  

u  

h  

r

t  

e  

d  

t  

t  

m  

c  

h  

r

Table 2 

Conditions to join. 

Condition 1: Pods are within 50 m of each other. 

Condition 2: Pods will not terminate at their next nodes. 

Condition 3: Pods are currently travelling, or will have 

the chance to travel, on the same path, 

in the same direction. 

Condition 4: New platoon will have no more than 5 pods. 

Condition 5: Pods have line of sight with each other. 

Fig. 2. Three pod-path cases where platoon can form. The dark grey circles are 

nodes, arrows point to the running directions of the pods next to it. 

Table 3 

Pod-path cases. 

Case 1: Pods are travelling on the same path in the 

same direction. 

Case 2: Pods running on different paths will enter the 

same path with the same direction. 

Case 3: A pod’s current path is the other pod’s next path 

and they will run in the same direction. 
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Our map design is based on undirected graph, where each edge con-

ecting two nodes is referred to as a “path ”. A node is referred to as a

pod stop ”, where users get on and off to start and complete journeys. In

ur simulation, each path can have its local speed limit, all lower than

he legal speed limit 24 km/h. When pods need to move, we always

hose the shortest path as the pod’s route. 

To make the simulation accurate and to integrate as much practical

etails as possible, the time unit for simulation was chosen to be one sec-

nd. In other words, the change of the dynamic system at every second

as simulated. 

.2. Pod platooning 

There are three modes for running pods. Each running pod is in one

f the three modes: (1) running alone, (2) joining by changing speeds to

orm a platoon, and (3) running in a platoon. Pods in a platoon have the

ame speed and are considered to have the same location for simplicity.

When two pods are joining, namely in mode (2), they are referred to

s a “prospective platoon ”, the front pod slows down and rear pod speeds

p. When the distance between them are within 3 m, we consider they

ave joined successfully and become a platoon. In other words, their

unning modes both change from (2) to (3). Sometimes it is “too late ”

o join, pods in mode (2) may not always join together successfully. For

xample, when the front pod has passed their common paths; or the

istance between them is increasing to be far (an edge length) due to

heir original speeds (front pod very fast and rear pod very slow). If

wo pods fail to join, then both pods run alone, namely change their

odes back from (2) to (1). If two pods in a platoon have passed their

ommon paths, which means they will enter different paths, or one pod

as arrived at the destination, then the platoon splits, the remaining

unning pod has its mode changed from (3) to (1). 
3 
A platoon cannot exceed five pods for safety purpose. The commu-

ication for joining is between two pods. For a platoon this is done by

ts leading pod. There are three types of joining and it can happen be-

ween: (1) two single pods which are running alone, (2) a single pod

nd a platoon of fewer than five pods, and (3) two platoons if the they

ave no more than five pods in total. 

Joining can happen at any time and in any location, as long as the

ollowing conditions (in Table 2 ) are met: 

Specifically, Condition 3 includes three pod-path cases, shown in

ig. 2 , where the dark grey circles represent nodes and arrows point to

he running directions of the pods next to it. The three pod-path cases

here platoon can form are specified as follows (see Table 3 ): 

In Case 1, both pods have the same running direction (here from left

o right), it is easy to see that the right pod is at front. So the right (front)

od slows down and the left (rear) pod accelerates for joining. In Case 2,

wo pods will pass the same node and both enter the right path. For Case

, it is not clear to tell which is the front pod. In our simulation, we let

wo pods run as normal, until one pod has reached their common next

ode. Then this pod is set to be the front pod and starts decelerating,

he other pod starts accelerating as the rear pod. If two pods happen to

ass the common node at the same second, then they become a platoon

irectly. In Case 3, the left pod will pass the middle node and enter the

ame (right) path as the right pod, then it becomes Case 1. Obviously

he right pod is at front. 

In Condition 5, we considered that pods may not always be able

o “see ” each other for cooperatively joining. For example, sometimes

here can be pedestrians or other pods travelling between the two pods

nd “blocking view ”. Then the two pods fail to detect each other at that

econd. As long as other conditions still hold, pods still have the chance

o detect each other at next second. This is because pedestrians may

lready walk away and our Assumption 3 in Section 2.1 guarantees that

ods can only be temporary obstacles for line of sight. Simulation of this

ncertainty will be explained in Section 2.3 . 

Low acceleration rate was considered in platooning. The acceleration

ate for both front and rear pods is 0.8 m/s 2 or lower when they are

ot too close. The front pod reduces speed until reaching the very low
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Fig. 3. Map configurations used for simulation; (a) Uniform grid; (b) Three 

density zone map. 
peed 0.5 m/s. The rear pod may run as fast as the speed limit when it is

ver 8 m away from the front pod. When they are getting closer (within

 m), the rear pod’s speed depends on both their distance and the front

od’s speed. A specific speed control was used for this situation to avoid

vertaking. This will be specified in Algorithm 3 in Appendix . 

When two pods are getting close to be within 50 m, they would com-

unicate by the “hand-shake ” protocols, to exchange informations such

s their locations and next paths, to determine platooning or not accord-

ng to the conditions in Table 2 . If pods find conditions to join are all

atisfied, they would identify which is at front and which is at rear, then

ods would change speeds accordingly. So far, we have set conditions

or when pods could join and how they could make it cooperatively. Ev-

ry pod as an agent is equipped with the same platooning rules, and no

entral control is required. For other travelling apart from platooning,

ach pod runs on its own independently as an agent. Hence we have

reated a multi-agent system simulation for pods’ travel. 

Passing node can bring important changes to the prospective pla-

oon. Changes depend on many factors, such as the pod-path case, it

s the front or rear pod that is passing a node, etc. When the pod-path

ase is Case 1: if the front pod only is passing a node, then change the

od-path case to be Case 3; nothing needs to be changed if both the

ront and rear pods are passing a node. (Notice that it is impossible that

he rear pod only is passing a node in Case 1.) For Case 2: if only one

od is passing the node, then it becomes Case 3, otherwise, the platoon

s formed successfully directly as mentioned above. For Case 3: if only

he front pod is passing a node, this means the distance between the

ront and rear pods are too far away (over an edge length), then give up

latooning (this platooning is failed); if only the rear pod is passing a

ode, then it becomes Case 1; if both front and rear pods are passing a

ode, then no setting needs to be changed, in other words pods are still

oining in Case 3. 

When an (already formed) platoon is passing a node, we took these

ctions. Check whether any pod is terminating at this node. If so, drop

he stopping pod. If there is more than one pod remaining running in

he platoon, check whether all the remaining pods are entering the same

ext path. If so, the platoon keeps going; otherwise, this platoon splits.

roup the remaining pods according to their next paths. Let pods going

o the same next path form a new platoon to run away. Any pod whose

ext path is different from all others’ run away alone. 

.3. Uncertainty simulation 

This section explains how we incorporated practical uncertainty into

imulation through Monte Carlo simulation. For user requests, whether

e would receive a request at this second and the requested journey,

hich is consisting of both a departure node and a destination node,

re both decided by uniform random variables. Combining practical ex-

erience and system assumptions, we used a uniform random variable

o set that, 7% users cannot show up at their departure nodes within

 min after their pods’ arrival, and those arriving in time would show

p at a time between 10 s to 3 min equally likely after the pods’ arrival.

hen an identity recognition which takes 10 s would open the door. 

Time for users to getting on board can be varied between seconds to

inutes. In practice, those taking lots of luggage, wheelchair, stroller,

hildren, older people or disabled people would need more time and it

s these people who are very likely to occupy a large proportion of the

otential users, as people travelling with few belongings may either take

 taxi to save time or simply walk to their destinations. Considering this,

e set the average time duration to be 20 s. It is natural and reasonable

o use exponential distribution to simulate the time duration for loading

r unloading passengers. Therefore the relevant time duration in our

imulation follows an exponential distribution with mean 20 s plus a

onstant 5 s for door’s opening and closing. 

As mentioned in Section 2.2 , our simulation considered the uncer-

ainty in Condition 5, which requires pods can “see ” each other. We

sed uniform random variables based on the distance between the two
4 
ods and their pod-path case to decide whether Condition 5 holds. In

ur setting, the closer they are, the more likely that they find each other,

ecause the less likely that they can be blocked by other obstacles. We

lso considered in practice, it would be easier for pods to find each

ther when they are running on the same path. In other words, we set

hat pod-path Case 1 has relatively more chance than other two cases

while the distance is same). 

Since the practical shared environment is rarely smooth like a rail,

e considered small fluctuations in pod’s speed. So the pod’s speed was

et to be normally 80% of the speed limit plus a small noise, without

xceeding the speed limit. As we know, the noise is a normal random

ariable with mean 0. The standard deviation was set to be 0.06, this is

ecause such setting can guarantee the random change of pod’s speed

rom last second is usually not greater than 0.36 m/s. 

After arriving to the destination, those who get on slowly usually

lso get off slowly, and vice versa. So for the same user request, we

imulated the time to unload users through a normal distribution with

ean equivalent to their loading time. 

.4. Map setting and user demand location pattern 

This simulation study has two main parts. The first part is to inves-

igate a specific problem: how deployment would affect pod platooning

nd the benefit of it. To eliminate the influence of randomness of user

equests’ arrivals, we set that fixed numbers of requests can be received

n every second. To eliminate the influence of various map shapes on

his problem, we used the uniform square grid maps, which is shown in

ig. 3 a. On such a map, each edge is of the same length and nodes are

qually distributed. We also set the location pattern of user demand is

niformly distributed. In other words, a journey can be any two different

odes on the map and each node can be requested equally likely. 

The second part of this simulation study is to provide a practical

stimation of the system performance. The map in Fig. 3 b was designed

o be more representative of real-world city layouts, with higher path

ensity in the centre and sparser longer paths in the outer area. We

et three zones and four hotspots. Zone 1 is the centre of the map and

omprised of 25 nodes; zone 2 surrounding zone 1 has 68 nodes; zone 3

s the outer most zone containing 56 nodes. In addition to the 4 hotspots,

he map has 153 nodes in total. The four hotspots represent key focal

oints for people in a city, for example, business centre, train and bus

tations. The whole map is of 3.2 km ×3.2 km. The centre area is of

00 m ×400 m with each edge length 100 m. The inner and outer square

reas have path lengths 200 m and 400 m respectively. The speed limits

or the centre, inner and outer areas were set to be 9 km/h, 15 km/h

nd 22 km/h respectively. 

On the uniform grids, user request would be rejected if there is no

od available. For the three density zone map, we added a waiting list
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Fig. 4. Distribution of distances of requested journeys. 
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Fig. 5. Time pattern of user demand from 06:00 to 24:00 on weekday and week- 
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or user requests to the simulation algorithm. When a pod becomes avail-

ble, waiting requests will be served on a “first come first served ” basis.

We designed the location pattern of user demand such that, hotspots

nd centre get higher travel frequencies than other places. Specifically,

) the probability that each hotspot get requested is 0.06; 2) zone 1

ould be travelled from/to with probability 0.2 and each node would

e requested equally likely, which means the probability of getting re-

uested for each node in zone 1 is 0.008; 3) other 124 nodes would

e requested with probability 0.56 in total and each node would be

equested equally likely, which means each remaining node has the re-

uest probability 0.0045. 

The histogram in Fig. 4 shows the distribution of journey distance

rom 50,000 simulated requests. Around 11% requested journeys have

istance between 1.2 km and 1.3 km. Journeys over 4 km are negligibly

ew. Under this location pattern, most journeys are within 2 km and the

verage journey distance is 1579 m. 

.5. User demand time pattern 

To ensure the second part of the simulation study is as close to prac-

ice as possible, we not only designed a practical map ( Fig. 3 b) and a

ocation pattern of user demand, but also simulated user requests’ ar-

ivals according to Poisson processes and practical time patterns. 

For the simulation of requests’ arrivals, we generated a sequence

f exponential random numbers, to represent the time interval be-

ween two consecutive user requests. Since our simulation time unit

s one second, we discretised the time point. For example, if a

ser request arrives at time 2.3 s, then we treat it as the 3rd

econd. 

Our user demand to travel should have a similar time pattern as the

oad and rail traffic. This user demand was generated based on a previ-

us study [36] , which used traffic count data of all motorised vehicles

n Coventry city centre in a 10 year period. The data sources are Open-

treetMap (OSM) and the Department of Transport [37] . In addition,

e also incorporated visit counts from Google map into our time pat-

ern setting. In this way, we set the time pattern of user demand for

eekday (Mon–Fri) and weekend (Sat–Sun). Fig. 5 shows the Poisson

ate, which means the average number of requests we can receive in

ne second, for each hour from 06:00 to 24:00. 

Fig. 5 a presents time pattern of user demand for a weekday. We set

ush hours in the morning and afternoon. In 06:00–07:00 and 08:00–

9:00, we can expect to receive one request in 2 s. In 07:00–08:00, user

emand would reach the highest level of one request per second. After

9:00 the demand decreases. At noon, the average time intervals be-

ween two consecutive user requests are 8 s. In 16:00–17:00 and 17:00–

8:00, we can expect a request in 1.5 s and 2 s respectively. Later user

emand would decrease. 
5 
Fig. 5 b shows the time pattern of user demand for weekend. Differ-

nt to weekday, there is no rush hours in the morning or afternoon on

eekend. Instead, user demand becomes highest around noon. In 11:00–

4:00, we can expect to receive a request in average 2 s, which becomes

.5 s in 14:00–16:00. Then user demand would drop. At late night, we

ould have slightly higher demand on weekend than on weekday. 

.6. Simulation algorithm 

According to the Poisson rate set in Fig. 5 , we simulated the

rrivals of user requests as a non-homogeneous Poisson process.

lgorithm 1 shows how we simulated user requests in terms of when

foreach hour = 06:00 to 24:00 do 

repeat 
simulate the time interval between two consecutive 

requests by generating an exponential random number 

with rate for this hour ; 

until sum (time intervals) > an hour; 

end 

convert the sequence of time interval generated above as how 

many requests in every second; 

foreach request do 
choose the departure node and destination node randomly 

according to the location pattern; 

end 

Algorithm 1: Generate user requests. 

e receive the request and the requested journey. 

At each second of the simulation, the dynamic system is updated ac-

ording to Table 4 . Steps 3–6 are specified in Algorithm 2–5 in Appendix .

Given user requests, the system would start from finding pods to

erve the requests, which is the Step 1 in Table 4 . Then what will happen

efore departure of the requested journey is simulated in Step 2. Pod’s

peed depends on its running mode, so the first thing once a pod can

ove is to check platooning opportunity, which is Step 3. If a pod can

oin other pods, some status needs to be determined immediately, for

xample, the pod-path case, it is front or rear pod. The speed setting for
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Table 4 

Algorithm steps. 

Step 1: Pod dispatch 

For user request received at this second, find the available pod and dispatch the 

closest one to the departure node, otherwise reject this request (for uniform grid map) 

or add this request to the end of the waiting list (for the zoned map). 

Step 2: Before departure 

If users fail to show up in time at the departure node, cancel the request and set the 

pod free. Otherwise, users would get on board, listen to the safety announcement 

then depart. 

Step 3: Check platooning opportunity 

For all running pods, check whether they can platoon according to the platooning 

conditions (in Section 2.2 ). 

Step 4: Set platooning 

For joining pods in prospective platoons (running mode (2)), determine which pods 

are at front or rear, then set their speeds and check whether the platoon is formed 

successfully at this second according to the distance between the front and rear pods. 

Step 5: Pods running forward 

For all running pods, set speeds and locations at next second. Set speed for platoons 

(running mode (3)) and pods running alone (running mode (1)) at this second. Then 

set location for all running pods at this second. 

Step 6: Check path update 

Check whether any pod is passing a node and determine what to do. Pod within 4 m 

to its next node is considered to be passing that node. Then pod will enter the next 

path or terminate if that node is the destination. 

a: If a joining pod (in a prospective platoon) is passing a node and is not terminating, 

update the pod-path case for this prospective platoon; if it is terminating, drop the 

pod from the prospective platoon, check the remaining pods in this prospective 

platoon and update their running modes. 

b: If a platoon is passing a node, check whether any pod of it is terminating. If so, check 

whether the platoon has more than one pod remaining. If so, check and group 

remaining pods according to their next paths to form new (small) platoons directly 

from the previous bigger platoon. Update running mode for pods entering their next 

paths alone. 

Step 7: After arrival 

After arrival at the destination, wait for users to get off and then set the pod free. 
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p  
 joining pod is complex, as it depends on the distance to other pods.

hese are determined in Step 4. Finally we can let all running pods

ove forward by straightforward settings and this is Step 5. When a

od is passing a node, many corresponding attributes or status, such as

t is terminating or not, the platooning is successful or failed, change of

od-path case, whether other pods in the same prospective platoon can

till try to join as before, may all change consequently. The complicated

hanges caused by this are determined in Step 6. If the pod is arriving at

he destination node, Step 7 tells roughly the pod’s job before it becomes

vailable to other users, which goes back to step 1. 

In Step 6, the distance tolerance for a pod to reach its next node is

 m. This is because the simulation time unit is 1 s and a 4-m toler-

nce can avoid that when pod runs fast, both distances before and after

ts passing are too far to be detected. The maximum legal speed limit

4 km/h is equivalent to 6.667 m/s. So a circle with radius of 4 m can

lways cover the pod’s location at the second right before or after its

assing, even at the maximum speed. 

In addition, the simulation tells pod’s location by both its 2D location

oordinates and tracking the nodes they’ve passed, as the route in this

tudy is a sequence of adjacent nodes. Since rerouting is not considered,

racking nodes can guarantee that temporary changes of pod’s direction

uch as bypassing or turning around will not confuse the system. This is

lso helpful when some paths are very close or an intersection node is

onnecting several paths from close directions. 

.7. Limitations 

As this study is being conducted as part of a project ending soon,

here are some limitations worth discussing. For example, in order to

implify the user generation process and avoid scheduling problem, we

id not consider users’ pre-booking, pre-allocation of pods (to hotspots),

llocation of supervisors and pod charging. To avoid the complexity on

ptimisation, we did not consider request swap, which means that after
6 
 user request was assigned to a pod, another pod closer to the pickup

ode becomes available, then the closer pod will take that request in-

tead. 

We realise that in practice, supervision work may be more than nec-

ssary. For example, when a platoon splits to several pods, each pod

r new smaller platoon will need a supervisor, for simplicity we did not

onsidered that these supervisors should actually get ready before a pla-

oon splits in the simulation. However, these are negligible compared to

he total supervision cost. 

Due to time limits, the low acceleration rate was considered only for

latooning, and more other uncertainties such as pedestrian interference

as ignored but corresponding work may be set later. 

. Results and discussion 

We used Monte Carlo method to simulate what would happen in

he transport service system per second, given the map setting and user

emand patterns, adopting the designed pods’ platooning rules, con-

idering practical uncertainties. Simulation of the dynamic system was

ainly from the pods’ travelling point of view, but also included the in-

uence of users’ behaviours. The transport service is ready for operation

n our simulation, let us start experiment on it. 

Starting by a pre-trial study, we will firstly identify how deployment

ould affect platooning and the consequent benefit, through computer

imulation and statistical regression analysis, in Section 3.1 ; then we

ill find a suitable fleet size before conducting trials for one day of

ervice, according to different patterns of user demand for weekday and

eekend, in Section 2.5 . 

.1. Study using uniform grid map 

In this section, we investigate the influencing variables about de-

loyment on platooning, using the uniform square grid maps. We focus
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Table 5 

12 simulation cases for different pod densities on three maps. 

Map Map area Requests Number of pods 

(km) (km 

2 ) per second 

1 ×1 1 1 50, 100, 150, 200 

3 ×3 9 9 450, 900, 1350, 1800 

5 ×5 25 25 1250, 2500, 3750, 5000 
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Fig. 6. Overall reduced supervision time in percentage for different pod densi- 

ties on three maps; (a) Simulation result; (b) Estimation result of modelling. 

Table 6 

Relevant attributes of the three maps. 

Map Nodes Edges Journey Pod density w.r.t edge 

(km) choices 

1 ×1 121 220 14,520 0.227, 0.455, 0.682, 0.909 

3 ×3 961 1860 922,560 0.242, 0.484, 0.726, 0.968 

5 ×5 2601 5100 6,762,600 0.245, 0.490, 0.735, 0.980 

v  
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t  
n supervision cost reduced by platooning, which is of great interest to

he industry. To quantify this benefit, we calculated the overall reduced

upervision time in percentage, which is defined as 

verall reduced supervision time in percentage 

= 

total reduced supervision time 

total supervision time without platooning 
. 

Total reduced supervision time is the sum of reduced supervision

ime in every second over the simulation time. In every second, the fleet

as: 

educed supervision time = supervision time without platooning 

− supervision time with platooning . 

Since we assume that supervisors would not work on a pod stopping

t a node, the supervision time without platooning is equivalent to the

eet’s travelling time. In one second, this is equivalent to the number of

unning pods. 

Without prior knowledge on map size and fleet size for platooning,

e conducted a pretrial study by simulating different fleet sizes running

n three sizes of maps for different levels of user demand. We found

hat when user demand is fixed at one request per second, platooning

an reduce almost 18% overall supervision time for a fleet of 300 pods

unning on a small map of 1 km ×1 km. However, this benefit is re-

uced to only 1 . 2% when we have 1600 pods running on a large map

f 15 km ×15 km. Since the benefit of platooning on such a large map

s negligible, we decided not to consider such a large area in the for-

al study. The dramatic difference inspired us that, it is the pod density

ith respect to map area that makes a difference instead of the number

f pods. Therefore, we conducted the following study. 

We simulated different pod densities on different sizes of maps but

sing the same request densities. The maps we used for this problem are

niform grid of edge length 100 m. We used three maps of 1 km ×1 km,

 km ×3 km and 5 km ×5 km. A larger area should cover more people and

hus should have higher user demand. We set the user demand to be one

equest in every 1 km 

2 in every second. This is a very high user demand

ver the fleets’ capacities in the trials. So pods are almost always busy in

ervice and most are travelling. For each map, pod densities are chosen

o be 50, 100, 150 and 200 pods in every 1 km 

2 . In total, we simulated

2 cases shown in Table 5 . 

To obtain steady results, we simulated 30 h of the system. Results

re shown in Fig. 6 a. By comparing the three lines, we found that larger

aps can yield more supervision cost saving, under the same request

ensity and pod density. By looking at each line, we found that a higher

od density can reduce more supervision time. 

Based on the simulation result, we obtained the following regression

odel using RStudio after lots of trials: 

Overall reduced supervision time in percentage 

 2 . 8 ∗ 𝑙𝑜𝑔(1 . 6 + 𝐷𝑒𝑛𝑠 _ 𝑒𝑑𝑔𝑒 ) ∗ 𝑙𝑜𝑔( 𝑁𝑢𝑚 _ 𝑗𝑟𝑛𝑒 ) 

− 1 . 5 ∗ 𝑙𝑜𝑔( 𝑁𝑢𝑚 _ 𝑗𝑟𝑛𝑒 ) + 2 . 4 . 

he variable 𝑁𝑢𝑚 _ 𝑗𝑟𝑛𝑒 means number of journey choices, namely how

any ways to choose two different nodes from the map, as departure

nd destination nodes of a journey. For example, the map of 1 km ×1 km

as 121 nodes, then there are 14,520 (121 ∗ 120) journey choices. The
7 
ariable 𝐷𝑒𝑛𝑠 _ 𝑒𝑑𝑔𝑒 means pod density with respect to edge, namely how

any pods we have for each edge, i.e., for every 100 m. Table 6 shows

he numbers of nodes, edges, journey choices and pod density with re-

pect to edges. 

The regression model indicates that, supervision time reduction is

egatively related to the number of journey choices, positively related

o the product of the pod density with respect to edge and the num-

er of journey choices. Moreover, the model tells us two points. Firstly,

he more pods we have over every 100 m on the map, the more su-

ervision time can be reduced by platooning. Secondly, a larger map

as two opposite influences: on one hand, on a larger map, pods can

eliver longer journeys, so during the journey they have more chance

o meet other pods sharing some common paths, which can lead to
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ore platooning; on the other hand, on a larger map, users would

ave more different journey choices, so relatively speaking, pods are

ore likely to run on different paths, which can reduce platooning

pportunity. 

The last column of Table 6 indicates that, while pod density with

espect to map area is equal, a larger map can have slightly higher pod

ensity with respect to the edge. This explains why in Fig. 6 a, a larger

ap can yield more supervision time saving. 

Estimates of the overall reduced supervision time in percentage given

y the model are shown in Fig. 6 b. The adjusted R-squared of the model

s 0.9969, very close to 1. This means the model explains 99.69% vari-

tions of the supervision cost saving. The model has a very good fit and

ives accurate estimates. We also checked that the model residuals are

cceptable, as residuals are normally distributed with mean 0 and no

bvious irregular pattern was found. 

A suggestion from the model is, to reduce supervision cost through

latooning, we need to increase the travelling pod density with respect

o edge, considering that the high user demand keeps most pods travel-

ing. This can be done by increasing the number of travelling pods and

educing the total path length. The influence of pod density with respect

o edge was also confirmed from our simulation trials using maps of dif-

erent path densities but same map size and fleet size. Details on it is

ot given here due to paper length. 

.2. Study using multiple density zone map 

As for the second part of this simulation study, we used the three

ensity zone map in Fig. 3 b and location pattern stated in Section 2.4 to

redict system performance and user experience. Since the user demand

rom 06:00 to 24:00 can vary from one request per second on average,

o two requests per minute on average, we found the suitable fleet sizes

or different levels of user demand. Results are shown in Table 7 . The

rst column shows the average time interval between two consecutive

equests in time unit second. (Due to time limits, for this table, pods’

egular speeds were set to be 90% of the speed limits.) 

These fleet sizes can produce, not only a high fleet efficiency but

lso acceptable waiting time for users. In this paper, we say a fleet has

 high efficiency if most pods are being used and only a few pods are

dle. Acceptable waiting time used for Table 7 means that, users who

equest within the first hour of service can be served immediately, and

equests after two hours can still be served within 15 min. The map of

.2 km ×3.2 km may be used in medium cities such as Coventry and Mil-

on Keynes. This means when shared environments become wide enough

n the future, the list can provide a reference for fleet size. 

To balance the system efficiency and user experience, we tried simu-

ating 460 pods to serve one weekday, but this fleet size is too small and

ead to four-hour waiting time for users. Therefore we chose the fleet

ize to be 500 pods and conducted trials for one day of service in the

ollowing two sections. 
Table 7 

Suitable fleet sizes for user demand from low to high 

levels. 

Average time interval Average number of Suitable 

between requests (s) requests in 1 min fleet size 

1 60 750 

2 30 400 

3 20 270 

4 15 200 

5 12 160 

6 10 140 

8 7.5 100 

10 6 80 

20 3 40 

30 2 27 

F

2

e

8 
.2.1. Weekday trial 

This section shows our simulation result of 500 pods in a weekday of

ervice from 06:00 to 24:00. The normal speed setting was used, namely

he pods’ regular speeds are 80% of the speed limits. 

Fig. 7 a shows the dynamic fleet efficiency in a weekday from

6:00 to 24:00. Fleet efficiency has similar pattern as user demand

hown in Fig. 5 a. During the rush hours in the morning and after-

oon, fleet efficiency keeps at 100%. This means all pods are busy in

ervice in rush hours. During the off-peak hours between 11:00 and

5:00, only 20% to 30% pods are in service and most pods are idle.

t 20:00, only 20% pods are in service. Then fleet efficiency tends to

rop. 

Fig. 7 b shows the total journey length the fleet travelled in each

our. During the rush hours in the morning and afternoon, the fleet of

00 pods can travel 5000 km in an hour. Fleet journey length has similar

attern as fleet efficiency and user demand. 

Fig. 8 shows the dynamic proportions of pods running in different

odes in a weekday. The blue, green and red lines represent pods run-

ing in mode (1), (2) and (3) respectively, namely running alone, joining

nd running in a platoon respectively, as defined in Section 2.2 . The fig-

re shows that there are always more pods running alone than joining

r running in platoons. During rush hours in the morning and after-

oon, over 20% pods are running in a platoon, roughly 30% pods are

ooperatively joining and almost 50% pods are running alone. At noon,

ser demand drops and most pods are idle, so only less than 5% pods

re in platoons. After 22:00, pods joining or in platoons are negligibly

ew. 

Fig. 9 shows the dynamic benefit of platooning with 500 pods

n a weekday. Fig. 9 a shows the percentage of reduced supervisors,
ig. 7. Fleet efficiency and hourly travel distance in a weekday from 06:00 to 

4:00; (a) Fleet efficiency; (b) Number of kilometres the 500 pods travelled in 

ach hour. 
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Fig. 8. Percentage of pods running in three modes in a weekday. Blue dash–

dotted line: pods are running alone – mode (1); Green thick solid line: pods are 

joining – mode (2); Red dashed line: pods are running in a platoon – mode (3). 

Fig. 9. Reduced supervisors needed in a weekday; (a) Percentage reduction in 

supervisors needed; Blue dash–dotted line: the reduced supervisors needed at 

every second; Red thick solid line: hourly average of the reduced supervisors 

needed; (b) Number of supervisors needed with and without platooning; Green 

thick solid line: supervisors needed without platooning; Red dashed line: super- 

visors needed with platooning. 
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Fig. 10. Users’ waiting time for pods’ dispatch, arrivals to the departure nodes 

and departure, in a weekday; (a) Waiting time for pods’ dispatch; (b) Waiting 

time for pods’ arrivals to the departure nodes; (c) Waiting time for departure. 
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ith blue dash–dotted line and red thick solid lines respectively rep-

esenting the reduced percentage in every second and the average in

ach hour. In Fig. 9 b, the red dashed line and green thick solid line

epresent how many supervisors needed with and without platoon-

ng respectively. It can be seen that supervision reduction has simi-

ar time pattern as the fleet journey length, fleet efficiency and user

emand. 

During rush hours in the morning and afternoon, we need approx-

mately 320–330 supervisors, approximately 20% supervisors can be

aved by platooning, and we would need 400 supervisors without pla-

ooning. Around noon, the supervision cost saving by platooning is neg-

igible and the hourly average is only 5%. At 20:00, only 100 pods are

nough to serve the relatively low user demand. After that, supervisors

eeded decreases as user demand decreases and fewer pods are travel-

ing. 

Fig. 10 shows how many minutes the users need to wait on av-

rage since their requests are received, until available pods are dis-
9 
atched, until pods have arrived at the departure nodes, until pods

arrying users depart. When more than one request were received at

he same time, we calculated the average of waiting time for these

equests. 

Waiting time for pods’ arrivals for picking up and departure both

hange rapidly in every second and look like very thick lines. This is

ecause these heavily depend on the distance between departure node

f the new request and destination of the finishing request. Departure

ime also heavily depends on how long users can show up and get on

oard. During the rush hours, all pods are fully used and busy in service.

o the time when any pod becomes available heavily depends on the

eet service capacity, instead of on probability or uncertainty. This is

hy the waiting time for pods’ dispatch is a normal line with only tiny

uctuations. Waiting time for pods’ arrivals for picking up and departure

oth change rapidly in every second and look like very thick lines. This

s because these heavily depend on the distance between departure node

f the new request and destination of the finishing request. Departure

ime also heavily depends on how long users can show up and get on

oard. During the rush hours, all pods are fully used and busy in service.

o the time when any pod becomes available heavily depends on the

eet service capacity, instead of on probability or uncertainty. This is

hy the waiting time for pods’ dispatch is a regular line with only tiny

uctuations. Notice that waiting time for departure does not start from

. This is because, after pod’s arrival to the departure node, it needs to

ait for the users to show up and get on board, then broadcasts safety

nnouncement, before it can depart. 

The three sub-plots all indicate that, users have to wait for very long

ime during rush hours in the morning and afternoon. Waiting time for

ispatch can be longer than an hour in the morning but less than 30 min

n the afternoon, because user demand is higher in the morning. In con-

rast, user requests during off-peak times can be served immediately. If

sers request a pod at 07:30, then they would need to wait for 30 min

efore any pod can be dispatched to them. If a request is made at 17:00,

hen the user would need to wait for 20 min before a pod becomes avail-

ble, and 40 min before departure. 

In summary, platooning during rush hours on weekdays can indeed

educe substantial supervision cost – approximately 20%. Supervision

ost saving, platooning opportunity and fleet efficiency all have sim-

lar time pattern as that of user demand. We notice that, the major-
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Fig. 13. Reduced supervisors needed on weekend; (a) Percentage reduction in 

supervisors needed; Blue dash–dotted line: the reduced supervisors needed at 

every second; Red thick solid line: hourly average of the reduced supervisors 

needed; (b) Number of supervisors needed with and without platooning; Green 

thick solid line: supervisors needed without platooning; Red dashed line: super- 

visors needed with platooning. 
ty of pods are idle at off-peak midday, while users have to wait for a

ong time during rush hours, so the fleet operator may want to adjust

ser demand or deployment to balance the efficiency and user expe-

ience. Besides, the service after 20:00 may be cancelled due to low

emand. 

.2.2. Weekend trial 

This section shows our simulation result of 500 pods on weekend

rom 06:00 to 24:00, with the same speed setting used in Section 3.2.1 .

Fig. 11 shows the dynamic fleet efficiency on weekend from 06:00 to

4:00. Fleet efficiency on weekend has similar pattern as user demand

hown in Fig. 5 b. On weekend, there is no rush hour in the morning or

fternoon, instead we expect to receive more user requests around noon,

hen fleet efficiency can reach the highest level, 80% approximately.

his means 20% pods are still not used in busiest periods on weekend,

nd at most 400 pods are in service. Before 10:00 and after 18:00, less

han 40% (200 pods) are used. Recall that the fleet can travel at most

000 km in an hour on weekdays, while this is reduced to 3300 km on

eekends due to lower user demand. 

Fig. 12 shows the dynamic proportions of pods running in different

odes on weekend. Similarly to weekday, there are always more pods

unning alone than other two modes on weekend. During the busiest

ours around midday, pods’ have the most running and platooning. Ap-

roximately 12% pods are running in platoons, 17% pods are joining

nd 40% pods are running alone. Platooning in other time periods is

egligible. This is in contrast to the weekday, when 25% pods are run-

ing in platoons during rush hours, which is reduced to 12% for week-
Fig. 11. Fleet efficiency on weekend from 06:00 to 24:00. 

ig. 12. Percentage of pods running in three modes on weekend. Blue dash–

otted line: pods are running alone – mode (1); Green thick solid line: pods are 

oining – mode (2); Red dashed line: pods are running in a platoon – mode (3). 

Fig. 14. Users’ waiting time for pods’ arrivals to the departure nodes and de- 

parture, on weekend; (a) Waiting time for pods’ arrivals to the departure nodes; 

(b) Waiting time for departure. 
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10 
nd around noon. On weekend, we have fewer journeys and hence less

latooning. 

Fig. 13 shows that the dynamic benefit of platooning with 500 pods

n weekend. Demand for supervisors is high when pods travel the most,

amely when user demand is high, i.e., around noon for weekend. Ap-

roximately 270 supervisors would be needed if pods do not share su-

ervisors. Platooning can reduce this number to 220. This is in contrast

o the weekday, when we can save up to 25% of the supervisors with

ourly average of 20%. On weekend, these are reduced to 20% and 14%

espectively, due to lower demand and less travel. 

Fig. 14 shows how many minutes the users need to wait on weekend.

he simulation result shows that all user requests can be served immedi-

tely. In other words, users do not need to wait for pods’ dispatch. This

s because we have more than enough pods. 

Recall that fleet efficiency in Fig. 11 shows 500 pods are not fully

tilized. Fig. 14 a shows usually it would take 2–5 min for a pod to arrive

t the departure node after the request is received. This waiting time is
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till less than 10 min at the busiest midday. Fig. 14 b shows that usually

sers can depart for destinations within 10 min. This is much better than

he rush hours on weekdays. 

In summary, compared to weekday, we would need fewer pods, have

ess travel, less platooning and less supervision saving on weekend; al-

hough 14% supervisors can be saved by platooning around noon; the

enefit is that users can be served immediately on weekend and avoid

ong waiting time as in rush hours on weekdays. 

Fig. 13 b shows fewer than 300 pods are running at the same time,

o we simulated 300 pods to serve the weekend and but found it is not

nough. This is because some pods in service are waiting at nodes for

sers. Then according to the fleet efficiency, which indicates at most

0% pods are in service, we estimate that 400 pods should be enough. 

In addition, we also tried different speed settings. Recall that in

ections 3.2.1 and 3.2.2 , pods’ regular speeds are 80% of the speed limits

9 km/h , 15 km/h and 22 km/h for zone 1, zone 2 and zone 3 respec-

ively. We changed the speed setting to be 90% of the speed limits –

2 km/h , 18 km/h and 24 km/h , for weekday trial. Our simulation re-

ults show obvious differences for afternoon rush hours: fleet efficiency

rops from 100% to 85%; percentage reduction in supervisors needed

rops from 20% to 12%; user requests can be served immediately. This

s because the faster travelling increases fleet’s service capacity, to be

reater than user demand. Under previous speed setting, the service ca-

acity is lower than the user demand in the afternoon. With or without

latooning, both numbers of supervisors needed drop slightly. The num-

er of supervisors needed with platooning drops from 320–330 to 300,

lthough slightly less pods are running in a platoon. In the morning,

eet’s hourly travel distance increases from 5000 km to 6000 km; users’

aiting time to be served drops from 70 min to 35 min. We also changed

he speed setting to be 60% of the speed limits – 9 km/h , 15 km/h and

2 km/h , for weekday trial. Our simulation results show more platooning

nd supervision savings, but at the expense of requiring more supervi-

ors, and users’ waiting time is unacceptably long. 

In summary, we found that pods’ faster travel can lead to shorter

aiting time for users, less picking up, less travel, requires fewer super-

isors although less platooning is yielded. Less travel is because faster

elivery means shorter journey times and therefore more available pods.

hen many pods are available, the closest pod would be chosen and dis-

atched to take the request. 

. Conclusions 

This paper presents a simulation study of a low-speed electric au-

onomous transport system, consisting of pods, running on shared urban

nvironments, with ability to cooperate to form platoons. This is the first

imulation study on supervision cost reduction by EAV platooning. The

n-demand transport strategy adopted for this study, is designed to help

ddress the “last mile ” challenge, to ensure accessible convenient public

ransport. 

The main contribution of this paper is that it provides a frame-

ork for low-speed AV platooning in shared urban environments and

 prospect for opportunistic pod platooning without prior planning in

he real world. 

We found from the simulation that platooning can reduce substan-

ial supervision cost. Specifically, approximately 20% supervision cost

uring peak times on weekdays and 14% supervision cost at midday on

eekends can be saved. For a weekday on the multiple density zone

ap, we found that 400 supervisors are sufficient for a fleet of 500 pods

ithout platooning, as not all pods in service are running and pods wait-

ng for users do not need a supervisor. This can be reduced further to

nly 330 supervisors when platooning is employed. 

An most important benefit of platooning is supervision cost reduc-

ion, its influencing factors of it is identified by computer simulation

nd statistical modelling. Corresponding suggestions were provided: in-

reasing travelling pod density with respect to total path length, which

an be done by increasing user demand, and reducing journey choices.
11 
arious practical uncertainties such as noise and users’ absence were

onsidered. Arrivals of requests were simulated by reasonable Poisson

rocesses. Practical time and location patterns of user demand were set.

ystem performance and user experience were evaluated from several

spects. Users usually can be served immediately except rush hours on

eekdays, when they need to wait for long. We also provided a refer-

nce of suitable fleet sizes for different levels of user demand, according

o system efficiency and user experience. 

In addition, our simulation result suggests that the service supplier

ay want to change some business strategies before deployment, for

xample, to balance the fleet efficiency and users’ waiting time caused

y current user demand pattern, and to cancel the service after 20:00

ue to low demand. 

We incorporated practical uncertainties into the simulation by Monte

arlo method, using suitable stochastic models based on real data. The

lgorithms built for this study can be used as a platform for further

nvestigation of practical uncertainties in transport service systems. 

As the transport system studied in this paper is new and still under

evelopment, some problems are still to be addressed, which would re-

uire further research to be conducted. For example, users’ pre-booking,

ods’ pre-allocation, setting main roads and optimising pods’ routes

ithout disturbing user experience. Bringing this service to the real

orld requires contributions from various fields. 
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ppendix A 

for every two pairs of pods running alone do 

if two pods can join then 

create a prospective platoon; 

end 

end 

for every single pod and platoon do 

if pod and platoon can join then 

add the pod into the platoon to form a bigger prospective 

platoon; 

end 

end 

for every two pairs of platoons do 

if two platoons can join then 

add one platoon to the other to form a bigger prospective 

platoon; 

end 

end 

Algorithm 2: Simulation algorithm for Step 3. 

https://doi.org/10.13039/501100006041
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foreach prospective platoon do 

if pod-path Case 1 then 

determine which pods are at front and rear; 

set speeds and update platooning status according to their 

distance ; 

front pods speed( t) = max (0, max (0.5, front pods 

speed( t− 1)-0.8)+noise); 

calculate distance between front and rear pods; 

if distance > 8 m then 

rear pods speed( t) = min ( min (rear pods 

speed( t− 1)+0.8, speedlimit)+noise, speedlimit); 

else if distance > 5 m then 

rear pods speed( t) = min (5 m/s + front pods speed( t), 

speedlimit); 

else if distance > 3 m then 

rear pods speed( t) = min (distance + front pods 

speed( t), speedlimit); 

else 

this prospective platoon becomes a platoon; 

end 

else if pod-path Case 2 then 

for every pod in the prospective platoon do 

speed( t) = min (80%*speedlimit+noise, speedlimit); 

end 

else if pod-path Case 3 then 

determine which pods are at front and rear; 

set speeds and update platooning status according to their 

distance; 

end 

Algorithm 3: Simulation algorithm for Step 4. 

foreach prospective platoon do 

foreach pod in the prospective platoon do 

location( t) = location( t-1) + speed( t); 

end 

end 

foreach pod running alone do 

speed( t) = min (80% * speedlimit + noise, speedlimit); 

location( t) = location( t-1) + speed( t); 

end 

foreach platoon do 
calculate speed and location for the leading pod: 

speed( t) = min (80% * speedlimit + noise, speedlimit); 

location( t) = location( t-1) + speed( t); 

for every pod in the platoon do 

speed( t) = leading pod speed( t); 

location( t) = leading pod location( t); 

end 

end 

Algorithm 4: Simulation algorithm for Step 5. 

R

 

 

 

 

 

 

 

 

 

foreach running pod do 

if distance { location(t), next node } < 4 m then 

if next node is the destination then 

this pod will terminate at the destination; 

if this pod is in a platoon or prospective platoon then 

drop this pod from the platoon or prospective 

platoon; 

end 

else 

this pod will enter the next path; 

end 

end 

end 

foreach platoon do 

if the platoon is passing a node then 

group remaining running pods according to their next 

paths; 

foreach group do 

if this group has only one pod then 

this pod leaves alone; 

else 

these pods become a platoon; 

end 

end 

end 

end 

foreach prospective platoon do 

if both parts are passing a node then 

check platooning opportunity according to pods’ current 

and next paths; 

let corresponding pods become a platoon or a prospective 

platoon; 

update pod-path Case 2 to be Case 1; 

else if only front part is passing a node then 

if pod-path Case 1 then 

check whether this platooning fails due to front part is 

terminating; 

check whether any pods can cooperate to join as 

pod-path Case 3; 

check whether any pods from the same (front or rear) 

part can become a platoon; 

update pod-path Case 2 to be Case 3; 

else if pod-path Case 3 then 

check whether this platooning fails according to 

Section 2.2; 

check whether any pods from the same (front or rear) 

part can become a platoon; 

else if only rear part is passing a node then 

update pod-path Case 2 to be Case 3; 

update pod-path Case 3 to be Case 1; 

end 

Algorithm 5: Simulation algorithm for Step 6. 
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