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Abstract

Urine cytology is a test for the detection of high-grade bladder cancer. In clinical prac-

tice, the pathologist would manually scan the sample under the microscope to locate

atypical and malignant cells. They would assess the morphology of these cells to make a

diagnosis. Accurate identification of atypical and malignant cells in urine cytology is a

challenging task and is an essential part of identifying different diagnosis with low-risk

and high-risk malignancy. Computer-assisted identification of malignancy in urine cytol-

ogy can be complementary to the clinicians for treatment management and in providing

advice for carrying out further tests. In this study, we presented amethod for identifying

atypical and malignant cells followed by their profiling to predict the risk of diagnosis

automatically. For cell detection and classification, we employed two different deep

learning-based approaches. Based on the best performing network predictions at the

cell level, we identified low-risk and high-risk cases using the count of atypical cells and

the total count of atypical and malignant cells. The area under the receiver operating

characteristic (ROC) curve shows that a total count of atypical and malignant cells is

comparably better at diagnosis as compared to the count of malignant cells only. We

obtained area under the ROC curvewith the count ofmalignant cells and the total count

of atypical andmalignant cells as 0.81 and 0.83, respectively. Our experiments also dem-

onstrate that the digital risk could be a better predictor of the final histopathology-based

diagnosis. We also analyzed the variability in annotations at both cell and whole slide

image level and also explored the possible inherent rationales behind this variability.
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1 | INTRODUCTION

Bladder cancer is known to be the ninth most commonly occurring

malignancy globally, with around 430,000 new cases reported in 2012

[1]. Urine cytology is considered to be an important detection tool for

identifying malignancies in the urinary tracts such as bladder cancer. It

is widely used to identify high-grade urothelial cancer (HGUC) and is

not encouraged to be used for low-grade carcinoma due to its low
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sensitivity to it. In clinical practice, pathologists observe cytology

slides under the microscope and identify atypical and malignant cells.

Based on the morphology of these cells, a diagnosis is made leading to

decision making for treatment.

Unlike histology, the digital adoption for urine cytology has been

impeded due to the lack of scanner's ability for z-stacking along with

other limitations related to cytology. The tissue material for histology

has a relatively uniform thickness whereas the cytology material is less

evenly distributed with variable thickness of different cell clusters in a

3D configuration. For this reason, pathologists would frequently need

to focus on different planes to view all the cells. It has been demon-

strated that the availability of more than one focal plane on digital

cytology slides helps with the diagnostic interpretation [2]. Z-stacking

enables the user to look at the sample at different focal planes which

is a built-in property of the microscope. With the advancement in

whole slide scanners, different vendors have started to provide imag-

ing system with an ability for z-stacking which has motivated the

pathologists to scrutinize digital cytology in clinical practice. However,

it comes with a cost of much larger image file size and longer scanning

time [3].

Similar to histology, diagnosis of cytology cases suffer from high

inter and intraobserver variability [4]. In addition to variability in the

assessment of urine cytology, different terms for the same entities are

being used at both individual pathologists and institutional level. This

led to the development of The Paris System (TPS) to provide a consis-

tent and reliable diagnostic tool. An international working group, com-

prising of expert cytopathologists, urologists, and surgical

pathologists, provided criteria for reporting different diagnostic cate-

gories including recommendations for HGUC which is the main pur-

pose of urine cytology. TPS was officially released in 2016 [5] and is

now accepted worldwide. TPS has shown significant improvement in

the assessment of urine cytology specimens with adequate precision

for negative cases. However, studies [6–9] conducted on the inter-

observer variability demonstrated poor interobserver agreement for

other categories. In [9], different distribution of categories was

reported by five cytopathologists on reviewing 149 cases indepen-

dently. The interobserver variation makes the automated diagnosis of

cytology samples challenging.

In a clinical setting, a cytology specimen is examined manually,

under a microscope using a glass slide. Like histology samples, urine

cytology slides can be visualized on a computer screen after digitiza-

tion which is used by occasional labs. The uptake of digital cytology

can encourage the assisted assessment of specimen with computer-

generated results. This would result in the emergence of quantitative

algorithms for analysis, hence enabling the clinicians to obtain non-

subjective and reproducible outcomes.

The main goal of this study is to investigate an automated alterna-

tive to risk stratification of urine cytology slides. The status quo based

on subjective visual analysis is prone to human error and has a large

inter- and intraobserver variability. Therefore, there is a need to inves-

tigate its limitations wrt the intrinsic difficulty of the problem (in both

diagnostic and technical terms). Our contribution in this paper is five-

fold. First, we collected cell-level annotations in an iterative way to

improve the generalizability of the model. TPS criteria were used by

the expert pathologists for labeling. Second, we explored two differ-

ent approaches for cell detection and classification and employed the

best one for whole slide image (WSI) labeling. Third, we presented a

cell count-based approach for identifying high-risk cases. Fourth, we

investigated the interobserver agreement at WSI level and

intraobserver variability at the cell level. Lastly, we investigated the

cytopathology based risk category and our digital risk labeling in cor-

relation with the “gold standard” histopathology based diagnosis.

In the next section, we review previous work on cytology images.

In Section 2, we describe the details of our dataset and our methodol-

ogy for cell segmentation, detection and classification. In Section 3,

we present our results at both cell and WSI level. In Section 4, we dis-

cuss our findings while Section 5 concludes this study.

1.1 | Related work

In the literature, very few studies can be found on automatic analysis

of cytology images in comparison to the work in histology image anal-

ysis. Recently, there has been some work on cell detection, classifica-

tion, and segmentation from cytology images. In [10], GoogleNet and

AlexNet models have been used to distinguish between benign and

malignant microscopic images of breast cytological samples obtained

with fine needle technique. The training and validation dataset was

collected by extracting overlapping patches (comprising number of

cells) from region of interests (ROIs) selected by the pathologist.

Zhang et al. [11] presented a simple convolutional neural network

(CNN) to classify cervical cells in a pap-smear cytology image without

any prior cell segmentation. Their training set comprises patches of

fixed size with nucleus located in the center of the patch. This means

that the network was trained with patches containing partial cell con-

tent. In another study [12], a simple CNN is used to classify the cells

in nasal cytology into one of the seven classes. To train the network

with patches containing whole cell content, they perform cell segmen-

tation via the Otsu algorithm followed by morphological operation

and watershed algorithm. To overcome the problem of unbalanced

classes, they opted random majority undersampling method. Wu et al.

[13] employed AlexNet-based network to identify different types of

ovarian cancer from cytological images captured from different parts

of the tissue sample. These images were then divided and resized into

smaller patches for training.

One recent study [14], which integrates deep learning and mor-

phometric approaches, focuses on automating TPS for the analysis of

urine cytology images. Deep learning is used to assign atypia score to

a given cell while a morphometric approach computes the nucleus to

cytoplasmic ratio. They employed thresholding to segment cellular

content, followed by connected component analysis for extracting cell

patches. Based on their cell classification approach, they have pro-

posed a condensed grid format for an image reconstruction which is

less cellular and smaller in size in comparison to the original image.

The authors have also illustrated the prediction of high-risk cases

based on the cutoff for their employed cell morphological features.
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Sanghvi et al. [15] presented a deep learning-based pipeline for classi-

fying urine cytology images into five TPS categories which can further

be divided into low and high-risk classes. QuPath was used to detect

cells in a WSI and a patch of fixed size was extracted from the center.

The authors employed both cell-level and slide-level features for WSI

classification and validated it using a large cohort. To the best of our

knowledge, [14, 15] are the only studies on risk stratification.

There has been some effort in separating the overlapping cells

from both 1-plane and z-stacked cytology images and is not limited to

[16–19] and [20]. In our study, we perform segmentation to extract

both individual cells and the cluster of cells. This is to ensure that the

whole cell or a cluster is captured inside the bounding box. Therefore,

separating the overlapping cells is not necessary for our approach.

2 | MATERIALS AND METHODS

Atypical and malignant cells are of interest to the pathologist among

various types of cells and contaminant found in a urine cytology sam-

ple. To discriminate between low and high-risk WSIs, we first identify

all the candidate atypical and malignant cells. For our experiments, we

employed two deep learning-based approaches for the identification

of these cells. We chose the best performing method for our WSI-

level classification by setting a threshold on the proportion of the sum

of atypical and malignant cells.

2.1 | Specimen collection, digitization, and labeled
data preparation

The cytology slides used in this study and the associated clinical data

were obtained from the University Hospitals Coventry and War-

wickshire (UHCW) NHS Trust in Coventry, UK. The dataset was pro-

vided after deidentification and informed consent was obtained

from the patients. Each slide was labeled as normal, inflammatory,

cytological atypia (CA), atypia suspicious for malignancy (ASM), or

transitional cell carcinoma (TCC). In this paper, we use the term “ref-
erence” for the diagnostic information obtained from the UHCW

and does not necessarily mean that it was decided by a single

pathologist. All the slides were prepared using a liquid based cytol-

ogy method, ThinPrep and were scanned at 0.275 mm per pixel. The

maximum resolution is 40×. In total, we obtained 398 slides, com-

prising 243 normal, 13 inflammatory, 76 CA, 38 ASM and 28 TCC.

These slides were scanned using an Omnyx VL120 scanner to form a

multilayered pyramid enabling the user to visualize the slide at dif-

ferent resolutions.

2.1.1 | Creation of labeled dataset

We obtained cell-level annotations from an experienced pathologist

and a recently trained pathologist. Both pathologists followed TPS

criteria for labeling cells as normal, atypical, or malignant urothelial

cells. Other cell types present in urine (e.g., squamous, inflammatory,

etc.) were also annotated. Degenerated cells and cells that patholo-

gists were uncertain about were annotated as “others.” The variations

in annotations affect the performance of a trained classifier. We did

the interobserver variability analysis between two pathologists to find

out the highly concordant classes. A set of same visual fields were

presented to both pathologists for independent annotations. High

concordance score was observed in normal, squamous, and inflamma-

tory classes. Considering the variability in the rest of the classes, we

expanded our labeled dataset by presenting different visual fields to

them. We asked the trained pathologist to annotate samples of nor-

mal, squamous, and inflammatory only while the experienced patholo-

gist annotated all the classes.

For network training and validation, annotations were obtained

on the WSIs via a web-based interface. The pathologists marked indi-

vidual cells using a dot in the center of the cell and for the cell clus-

ters, pathologists draw polygon or rectangle around clusters. The

annotations were obtained from pathologists at resolution level 40×.

The details of the sample split to train our initial network are shown in

Supplementary Table 1. More annotations were added to this dataset

while verifying the network predictions by the expert pathologist in

an iterative manner, as shown in Supplementary Figure 1. During the

verification process, 747 normal, 2185 squamous, 2408 others, 2073

debris, 117 inflammatory, 279 atypical, and 88 malignant cells were

added to the training set while 163 normal, 544 squamous, 492 others,

and 511 debris cells were added to the validation set.

2.1.2 | Balancing of labeled dataset

The dataset obtained after initial annotations suffered unbalanced dis-

tribution. Due to unbalanced classes, a classifier does not tend to per-

form well for the minority classes as it does not get sufficient look at

them. To balance the distribution in the training set, we employed

oversampling technique known as synthetic minority over-sampling

technique (SMOTE) [21]. In our initial dataset, it was atypia and debris

class for which most of the annotations were obtained from the

expert pathologist. For network training, we kept 500 samples per

class in the validation set and the remaining samples in the training

set. Except for the atypia class, all other classes were oversampled

until the total number of patches per class including original and over-

sampled patches were equal to the number of patches in atypia class

(4558). Since the dimensionality of patches is not constant due to var-

ious sizes of the cell, we applied SMOTE on patches in batches, with

each batch having patches of similar sizes.

The SMOTE technique generates new samples by manipulating

the feature space by joining the line segments between each minority

class sample and its k nearest neighbors. This is done by computing

the difference between the minority sample and its nearest neighbor,

followed by multiplying the difference with any random number

between 0 and 1. For our experiments, we selected five nearest
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neighbors for synthesis. Examples of images of synthetic cells gener-

ated by the SMOTE technique are shown in Supplementary Figure 2.

2.2 | ROI extraction from whole slide image

In histology slides, a relatively small region of the slide contains tissue

and to reduce the computation time, the tissue region is identified to

avoid processing the background white region. To exclude the back-

ground region, thresholding can be used for histology images at a low

resolution. Like histology images, in the urine WSIs, the cellular con-

tent is confined to a limited portion of the slide. However, unlike his-

tology images, thresholding at low resolution would omit cells in WSIs

with a fewer number of cells.

In Figure 1(A), an example of urine cytology slide from our dataset

is shown at a low-resolution level. The area inside the two fiducial

marks contains cells while the remaining area is noncellular. Hence,

the region outside these two fiducials should be excluded from

processing to reduce the computation time. To achieve this, we adopt

the Otsu thresholding [22] which determines a threshold value by

maximizing the interclass intensity variance. Specifically, we first con-

vert the RGB images into a grayscale image and then an optimal

threshold value is estimated using the Otsu algorithm. A number of

other objects such as the text on the slide and other artifacts were

identified using this threshold value. These were excluded based on

the area-based threshold. The resulting mask for the ROI is shown in

Figure 1(A) and it was carried out at a resolution level of 5×.

2.3 | Cell segmentation

To identify candidate cells, we separated the cellular content from the

background using the thresholding technique. We selected a global

cutoff using the Otsu thresholding, resulting in a segmentation map

for individual cells and cell clusters. We followed a simple process for

obtaining this value which is explained in Algorithm 1. To find an opti-

mal threshold value, the image should contain cells representing the

whole population. We employed k-medoid clustering [23] to select

exemplary cell patches from each class. We set k = 20 resulting in

20 clusters per class since we needed 20 exemplar patches from each

class. A sample closer to the medoid of the cluster was added to the

exemplar bucket. Using these exemplar patches, a big synthetic image

was generated by randomly placing the exemplar patches on a plain

background image retrieved from one of the WSIs. This image was

then converted to HSV from which the saturation channel was used

to find the threshold value using Otsu thresholding. A generated seg-

mentation map for an example visual field is shown in Supplementary

Figure 3.

F IGURE 1 The illustration of our proposed method for cell detection and classification from a whole slide image (WSI). (A) region of interest
(ROI) detection (B) patches of size 5000 × 5000 are extracted from ROI (C) unit which process every patch and output the coordinates and
predicted label of each candidate cell (C1) cell segmentation followed by connected component analysis (C2) patch extraction (C3) label
prediction using a trained classifier [Color figure can be viewed at wileyonlinelibrary.com]
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2.4 | Cell detection and classification

In our study, we applied two different approaches for identifying dif-

ferent types of cells. These approaches comprise of first detecting the

candidate cells either by thresholding or using CNN. The candidate

cells are then classified using different CNNs.

2.4.1 | Our approach

Training data preparation

The annotations were obtained at WSI level and the patches of differ-

ent sizes were extracted from the images depending on the size of

the candidate cells at 40× resolution. For cell clusters, the whole

region surrounded by the polygon or rectangle was extracted while

individual cells for which a dot was placed around the center of the

cell were captured in a different way. For a given dot, cell segmenta-

tion mask was generated for a patch of size 500 × 500 with a dot in

its center, followed by a connected component analysis. A component

having a dot inside or on its boundary was considered as a candidate

cell. A patch capturing the whole candidate cell was extracted and

was saved to the hard drive as an input to the classification network

along with its label information.

Methodology details

In our approach, we applied global thresholding to segment the candi-

date cells, as explained in Section 2.3. The generated mask was further

processed with hole-filling and area-based object removal to avoid arti-

facts. The connected component analysis was performed to compute

the bounding box for each identified object in the mask. The bounding

box was then used to collect input data for the classification network.

For classification, we employed Xception which is the extension of

inception network [24], with depthwise separable convolution opera-

tions replacing inception modules. The network architecture is shown

in Supplementary Figure 4. The input image to the network was resized

to a size of 256 × 256 pixels and was normalized by subtracting mean

from the images. We trained the network for 392 epochs with a batch

size of 20 images. The accuracy and loss curves for the training and val-

idation set are shown in Supplementary Figure 5. The network was

configured by setting focal loss as a loss function and Adam function as

an optimizer. The broad illustration of our proposed pipeline for risk

stratification is shown in Supplementary Figure 6 while the overflow

diagram for cell detection and classification is shown in Figure 1. Our

code for processing a WSI of urine cytology is publicly available

(https://warwick.ac.uk/fac/sci/dcs/research/tia/software/urinecyto).

2.4.2 | RetinaNet detection and classification

Training data preparation

The training of an object detector requires a training set with either

dense annotations or an approach to nullify the effect of unannotated

objects from the loss function. In liquid-based cytology samples, cells

do not often confine to a compact region. Therefore, it results in

regions with sparse annotations, not suitable for the training of object

detectors. To mitigate this problem, we generated synthetic regions

of dense annotations with the cells extracted from the different WSIs.

First, we randomly extracted a background image of size

5000 × 5000 from one of the WSIs; then, the cell patches used in our

previous approach were randomly placed on it. The background white

patches were excluded while training this network.

Methodology details

In our second approach, we employee an object identification method

for simultaneous detection and classification of cells. There are a num-

ber of one-stage and two-stage object detectors, not limited to

[25–32]. We use a one-stage detector which has been shown to per-

form well in terms of both speed and accuracy, known as RetinaNet

[32]. One-stage detectors are faster than two-stage detectors but do

not perform well comparatively due to the class-imbalance problem.

In [32], the class imbalance problem is tackled using a novel focal loss.

We used ResNet as a backbone network for our experiments. We

have used a publicly available code for RetinaNet for our experiments

(https://github.com/fizyr/keras-retinanet).

2.5 | WSI-level classification

The clinical data used in this study comprises TPS categories assigned

by our cytopathologists to each WSI of a cytology slide. The ground

Algorithm 1

Threshold selection for candidate cell segmentation

Result: threshold

1 k 20

2 exemplars_bucket []

3 synthetic_image get_random_bg_image()

4 for iClass 1 to num_classes do

5 X rgb2gray(resize(all_patches, 128))

6 Xpca pca(vectorize(X), 100)

7 clusters, medoids kmedoid(Xpca, k)

8 for iCluster 1 to k do

9 temp min_distance(medoids(iCluster), clusters

(iCluster))

10 exemplars_bucket add_to_bucket

(reshape(temp))

11 end

12 end

13 synthetic_image generate_synthetic_image

(exemplars_bucket, synthetic_image)

14 synthetic_imagehsv rgb2hsv(synthetic_image)

15 threshold otsu_thresholding(synthetic_imagehsv)
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truth (GT) risk-based labels are derived from the relative risk associ-

ated with categories outlined in [4]. It is defined in relation to the

extent of follow-up needed which segregates the cases with a high

risk of malignancy for more aggressive follow-up. We considered the

stated percentage of risk to generate the GT information for classifica-

tion of samples into low and risk cases. We put all the cases with risk

less than 50% to be in low-risk class and the cases with a risk higher

than 50% to be in high-risk class. The low-risk class comprises Normal,

Inflammatory, CA cases while high-risk class contains ASM and TCC

cases. There were some images in our dataset that were not scanned

properly and were not in focus. We excluded these images by setting

a threshold on the number of all identified cells except debris in rela-

tion to the count of cells predicted as debris. Using our system, we

stratified these cases with the count of atypical and malignant cells.

We also conducted some additional experiments with different cell

profiling which are listed in the Supplementary Material Document.

3 | RESULTS

3.1 | Cell-level classification

We evaluated our results obtained with Xception and RetinaNet using

commonly used measures, along with results of some other CNNs,

that is, VGG, MobileNet, Inception, and ResNet. All these networks

were initiated with the pre-trained weights for ImageNet. The

RetinaNet detected more than one cell with slightly different

bounding boxes against a single cell. For evaluation, we computed

these measures for those predictions which lie inside the GT bounding

boxes. The predicted label of a cell with the highest probability was

considered as a final label if there were more than one prediction

against a single GT bounding box.

Among all the models, Xception outperforms all the methods on

our validation set. The evaluation results of all these models are

shown in Supplementary Table 2. Figure 2 shows confusion matrix

and receiver operating characteristic (ROC) using Xception on our val-

idation set. For ROC, atypia and malignant cells are considered as pos-

itive classes while all other classes are considered as negative classes.

The area under the curve is found to be 0.99.

3.2 | WSI-level classification/risk assessment

The UMAP projection of the count of all seven categories of cells is

shown in Figure 3. The UMAP plot shows a clear separation between

high-risk and low-risk classes. However, subclasses have significant

overlap with one another and do not separate clearly. It also demon-

strates that there is variability in low-risk data points in terms of fea-

tures and it is higher in comparison to samples from the high-risk

class which are more closely clustered, except for some outliers. A

low-risk cluster on the bottom left side of the plot shows a significant

overlap between atypia and inflammation which is in line with the fact

that the inflammatory samples tend to show atypical features induced

as a reaction to the treatment. We performed classification of WSIs

on the basis of diagnostically important cells rather than considering

all the cells. Hence we restrict to (1) the count of malignant cells and

(2) the total count of atypical and malignant cells. We found the total

count of atypical and malignant cells to be more discriminating as

compared to the count of malignant cells only. This is demonstrated

in Figure 4(A) and (B). The area under the ROC curve with the count

of atypical and malignant cells is 2% better as compared to that

obtained with the count of malignant cells. The results obtained with

additional cell profiling are demonstrated in the Supplementary Mate-

rial Document.

F IGURE 2 Results of cell classification using the Xception network. The left column shows the confusion matrix and the right column shows
the region of interest (ROC) for binary classification. For binary cell classification, malignant, and atypical cells are considered in a positive class
while all the other classes are kept in a negative class [Color figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

The automatic cell classification in urine cytology images is a challeng-

ing task due to various reasons. This may include inconsistent annota-

tions, classes with a subset of similar features, how the cell samples

are categorized into different classes and changes in the cell appear-

ances due to the treatment. The confusion matrix as shown in

Figure 2 demonstrates that the atypical and malignant cells are mostly

confused with each other and this is due to their overlapping visual

features with respect to TPS criteria. Most of the misclassified cells

belong to the “others” class and this is mainly due to the nature of the

samples, we have placed in this class. It comprises of degenerating

cells however these cells could belong to a normal, atypical, or malig-

nant class. Normal cells change their appearance when the patient is

on medication and are termed as reactive cells and may resemble

atypical cells. Therefore, there are some normal cells misclassified as

F IGURE 3 Supervised UMAP projection of the count of all seven
types of cells predicted by the Xception network. Plus and dot
markers are used for high-risk and low-risk cases, respectively [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 The top row shows the performance of binary classification (low-risk vs. high-risk) at whole slide image (WSI) level using (A) a
count of malignant cells (M) and (B) total count of atypical and malignant cells (A + M). Region of interest (ROC) is shown with 5-cross validation

and the average area under curve using M and A + M is 0.81 and 0.83, respectively. (C) A violin plot displaying the count of predicted atypical and
malignant cells in WSIs belonging to low and high-risk classes. (D) A Venn diagram presenting interobserver variability in labeling the 20 WSIs.
These cases were misclassified by the method wrt the reference but 15 out of those predictions agreed with another pathologist-A. To generate
these results, cells were classified using the Xception network [Color figure can be viewed at wileyonlinelibrary.com]
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atypical cells. We also verified the network predictions for some

benign cases for which the number of malignant cells predicted by the

network was greater than 10. We found that some of these cases had

reactive normal cells and cells with fluffy cytoplasm. This could be

improved by adding these challenging cases to the training set.

In this study, we demonstrated the potential promise of an auto-

mated risk stratification method. There are some limitations of the

proposed method related to how the data were obtained. We

obtained WSIs and their corresponding data from a single center

which may have introduced a bias in our proposed approach. There-

fore, our findings need to be validated with a large-scale study. Addi-

tionally, sourcing annotations from two pathologists may also have

introduced a bias into the machine learning model. However, involving

more pathologists is not necessarily the solution to this problem due

to the potentially larger degree of disagreement between multiple

pathologists, as shown in previous studies such as Reid et al. [33].

4.1 | Annotation variability

We sourced cell-level annotations from two pathologists. The incon-

sistency in their annotations can undermine the performance of the

model, given the model has a tendency to learn the complexity. To

inquire about the inconsistency in the labeled dataset, we randomly

selected some cells from our validation set and asked the expert

pathologist to reannotate them. We selected these cells from our

more concerned classes, normal, atypia, and malignant. We selected

atypia and malignant classes since these are important in terms of

making a diagnosis. The normal class was selected since it was mostly

misclassified as atypia by the network. The variability in the annota-

tions of the same pathologist is demonstrated in Table 1. In addition

to the slide quality and the lack of multiple focal planes, the

intraobserver variability could be due to pathologists' lack of experi-

ence with the digital slides for urine cytology. The intraobserver vari-

ability is a recognized issue in cytology. However, sourcing the

labeling with consensus among different pathologists in an effort to

improve the variability will improve the performance of the model.

4.2 | Performance of RetinaNet

There is a huge difference between the performance of RetinaNet

with ResNet and a ResNet followed by the cell segmentation. This is

partially due to the limitation of the detector in the RetinaNet, missing

several cells. Additionally, the detector resulted in many bounding

boxes for a single candidate object. On choosing a bounding box with

predicted label with the highest probability, further increases the

number of missing cells. In our validation set, we had 5175 cell sam-

ples, out of which 68 cells were missed when no detected object was

ignored. However, selecting the predictions with a probability greater

than 50% resulted in 692 cells to be missed. Contrary to it, the

threshold-based segmentation does not miss any cell, except that it

may fail to segment the whole cell, particularly squamous cell.

4.3 | Correlation between cytology and histology

We also studied a correlation between the cytopathology-based diag-

nosis and histopathology-based diagnosis. We obtained histopathol-

ogy diagnosis for 48 cases along with their cytology and histology

reports. These cases comprises 26 CA and 37 ASM, diagnosed using

the cytology slides. We hypothesized that the cases for which net-

work predicted more number of atypical and malignant cells would be

diagnosed as malignant on performing histology. We observed a trend

of association between cell count and histopathology-based diagnosis

as shown in Supplementary Figure 7. We compared the results of

cytopathology based risk category and our digital risk labeling against

the “gold standard” histopathology-based diagnosis. The confusion

matrix for manual cytopathology-based risk versus manual histopa-

thology based diagnosis is shown in Supplementary Table 3. As can be

seen in Figure 5, the digital risk could be considered a better predictor

of the histopathology-based diagnosis. However, this needs to be vali-

dated with a large-scale multicenter study. To study it further, we

looked into the cytology and histology reports of some of these cases

to understand the grounds for the possible discrepancies between

cytology and histology diagnosis. We came up with the following

rationales for the discrepancies: (1) urine of patients with bladder can-

cer can be negative (i.e., no shedding of malignant cells in urine). (2) In

cases of the instrumented urine sample, at least some abnormal

looking groups of cells can be expected due to this sampling tech-

nique. Also, an intervention or surgical procedure can lead to the

appearance of granulation tissue, inflammation, and reactive atypia.

However, if information about sampling technique and relevant his-

tory is not available to a pathologist, these cells can then get wrongly

labeled as atypical or suspicious. (3) Information about female genital

tract, kidney, or prostate pathology is relevant and should be available

to pathologists. Otherwise, malignant cells from these organs (which

can sometimes be found in urine) could be misdiagnosed as malignant

TABLE 1 Table presenting
intraobserver variability of cell-level
annotations. The Cohen's kappa is 0.15
showing a slight agreement for these
classes; mainly the disagreement is in
between atypical and malignant classes
and in between atypical and others classes

Normal Atypia Malignant Inflammatory Others

Normal (157) 108 18 0 14 17

Atypical (407) 85 138 7 9 168

Malignant (397) 29 212 104 0 52
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urothelial carcinoma cells (i.e., bladder carcinoma). (4) The presence of

calculi/stones or the BCG treatment also results in the appearance of

abnormal-looking cells, thus affecting the cytology diagnosis. (5) Malig-

nant cells can be missed in specimens contaminated by fungal or bac-

terial overgrowth. (6) In histology reports, both high and low-grade

tumors are reported while in cytology detecting low-grade TCC is not

appreciated. (7) A long interval between cytology and histology can be

one of the reasons for the difference in diagnosis.

4.4 | Interobserver variability wrt WSI labeling

All pathologists involved in labeling are fellows of the Royal College of

Pathologist (RCPath) with experience in assessing urine cytology

slides under a light microscope. However, it does not suggest a lack of

disagreement in their diagnosis. Keeping this in mind, we investigated

the concordance of our digital risk with the diagnosis of an indepen-

dent pathologist. We selected WSIs which were misclassified (low-risk

and high-risk cases with high and less number of atypical and malig-

nant cells, respectively) by our method wrt the reference labeling. We

selected 20 such cases from low-risk and high-risk categories and

asked the independent pathologist to assign labels to these WSIs.

Figure 4(D) shows the interobserver variability between the reference

and independent pathologist-A labeling. Out of 20 cases, the

agreement was found for only 5 cases. In other words, our predictions

make a concordance of 0% and 75% with reference and

pathologist-A, respectively. The readers are referred to Supplemen-

tary Table 4 for more details on interobserver variability. This dis-

agreement could be because the reference labeling was carried out in

a clinical setting where pathologists had access to other clinical data

whereas the pathologist P-2 made their decision solely on the basis of

image content. Also, voided and aspirated slides are interpreted

slightly differently by the pathologists. P-1 pathologists knew how the

sample was obtained while the pathologist P-2 did not have this infor-

mation and interpreted all the samples as if they were voided samples.

We observed interrater variability (as shown in Supplementary

Table 4) more between cytological atypia and suspicious cases, both

of which are already considered as contentious and borderline, rather

than between malignant and normal cells. This is similar to findings

reported in [6–8]. Considering this variation, the ROC obtained in this

study could vary on testing the proposed method with WSI labels

obtained from a different pathologist. The interobserver variation in

labeling cells and WSIs makes the automated diagnosis of cytology

samples challenging.

5 | CONCLUSION

In this study, we found that the count of atypical and malignant cells

is more robust in discriminating between low and high-risk cases as

compared to the count of malignant cells only. The difference

between the clinical study and our finding is due to several

interdependent factors including intraobserver variability in annota-

tions for atypical and malignant cells, leading to poor performance of

the classifier in discriminating between the atypical and malignant

cells. Since the cytology material is less evenly distributed (even in

LBC samples), pathologists frequently need to focus on different

planes to view all the cells in a cell cluster. Therefore, due to the

intrinsic nature of cytology samples, z-stacking feature can potentially

help. We believe that the availability of different planes in the images

could improve the annotations and network performance at the same

time. The proposed method for automated risk stratification of urine

cytology slides has demonstrated clear promise. However, before we

can deploy such a system in clinical practice, we will need to conduct

large-scale multicentric trials for establishing the efficacy of the pro-

posed method.
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