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Abstract

In this thesis we present an ab initio theory for the calculation of magnetoelasticity
at finite temperature. Magnetostriction, the spontaneous deformation of magnetic materials
under the influence of an applied magnetic field, originates from the balance between elasticity
and magnetoelasticity - the response of magnetic torque to structural distortions of the lattice.
The influence of temperature is modelled through thermal fluctuations of magnetic moments
within the Disordered Local Moment picture. The orders of magnitude-separation between
the timescales of different processes in the electron dynamics allows for the consideration of
a magnetic system as a “frozen” ensemble of magnetic moments, from which a mean-field
statistical model can be built to describe their disorder. The explicit dependence of the local
moments’ free energy on their direction immediately provides an expression for their magnetic
torque. Measuring the linear response of this torque to small, specially chosen strains of the
lattice provides magnetoelastic constants. Green’s function-based Multiple Scattering Theory
is used within Density Functional Theory to model the electronic structure of the disordered
local moments. The use of the Coherent Potential Approximation to construct an effective
medium for the orientational degrees of freedom means that the method is also equipped to
describe arbitrary chemical disorder, allowing for the study of highly-magnetostrictive alloys.

The method has been used to calculate the cubic magnetoelastic constant B1 in bcc
Fe across its ferromagnetic temperature range. Our results reproduce bcc Fe’s anomalous,
non-monotonic magnetoelastic temperature dependence and provide a theory for its origin
based on the competition between the effects of thermal expansion and magnetic disorder-
induced homogenisation on the electronic band structure. Finite-temperature magnetoe-
lasticity in the A2, B2 and D03 phases of Fe1−xGax alloys has also been calculated. Our
results show no evidence of the alloy’s characteristic magnetostrictive enhancement in the
fully-disordered A2 phase. In contrast, the selective-doping of the partially-ordered phases
exhibit significant enhancement of their magnetelasticity, especially the D03 phase which was
found in previous studies to have a detrimental influence. A preliminary study is also car-
ried out on the magnetic properties of highly-magnetostrictive rare earth-transition metal
magnets belonging to the Laves phase REFe2 class (RE=Y,La,Gd-Lu). Calculated values
of temperature-dependent magnetisation show good qualitative agreement with experiment,
including excellent agreement with zero-temperature magnetisation measurements and im-
pressive evaluation of compensation temperatures. Calculations of magnetoelasticity and
magnetocrystalline anisotropy as a function of temperature in GdFe2 provide a model for
itinerant anisotropic phenomena in the REFe2 series.
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Chapter 1

Introduction

In 1842, physicist James Joule observed something quite remarkable, that in the presence

of a magnetic field a sample of iron very subtly changes its shape. This phenomenon is

called magnetostriction, and it will be familiar with any reader who has ever walked past

a transformer and heard its metallic hum, as it subtly vibrates under the influence of a

fluctuating magnetic field. It is in fact a fundamental aspect of all magnetic materials,

though for the majority of ferromagnets the spontaneous deformation is exceptionally tiny,

corresponding to fractional length changes of one to ten parts in a million.[1] For some time

magnetostriction existed primarily as a physical curiosity, up until its extensive use in World

War II in advanced sonar technologies when it was recognised as a precise mechanism for

converting magnetic energy into mechanical energy.[2] Since then even greater progress has

been made in the creation of optimal magnetostrictive alloys. The most exceptional of these

is the rare earth (RE)-transition metal (TM) magnet Tb0.27Dy0.73Fe2 or Terfenol-D, which

combines a gigantic magnetostriction of one part in a thousand - thanks to the superlative

magnetic properties of rare earths - with a sufficiently stable temperature dependence due to

the TM providing a large Curie temperature.[3] Building on the Japanese navy’s work on Fe-

Al alloys (Alfenol), other Fe-based TMs such as Fe0.81Ga0.19 (Galfenol) have been established

as attractive alternatives to Terfenol-D, due mainly to their low cost, impressive mechanical

strength and low criticality in terms of procurement.[4] Apart from launching a new age of

sonar technology, the modern applications of these materials are numerous: medical devices,

actuators, sensors, ultrasonic cleaning, noise control and even devices that can turn ordinary

surfaces into sound speakers.[5]

In brief, magnetostriction is generally understood to arise from two different mecha-

nisms. The first, referred to as extrinsic magnetostriction, is driven by micro-domains within

the material with structures that are of lower symmetry than the rest of the system. Before

the crystal is magnetised these structurally-elongated “islands” are randomly oriented, but as

1



a magnetic field is applied they tend to align and stretch the material around them. Intrinsic

magnetostriction on the other hand derives from the relationship between spin-orbit coupling

- the interaction between a magnetic moment’s spin and orbital components - and the crystal

environment of said moment. If the symmetry of the former must reflect the symmetry of the

latter - a phenomenon called magnetocrystalline anisotropy (MCA) - then we have a funda-

mental connection between the crystal’s magnetism and its structure i.e. magnetoelasticity.

When this property is balanced against the crystal’s stiffness, we end up with a spontaneous

distortion that depends on the direction in which the material is magnetised.

While its underlying mechanisms are fairly well understood in the above terms, mag-

netostriction has still presented a profound challenge in the theoretical study of magnetic

materials. Even building an adequate description of a material’s electronic structure - the

many complex quantum mechanical interactions that take place when electrons are brought

together in condensed matter - has been a significant undertaking in itself. Remarkable steps

forward in this regard have been made in the last century, one of the most celebrated being

Density Functional Theory (DFT).[6, 7] It re-frames many-body quantum mechanics in such

a way that the seemingly-infinite complexity of the interactions between multiple electrons is

contained within an effective mean field, through which “fictitious” non-interacting electrons

move. But the additional problem of describing magnetostriction is not only its origin in

spin-orbit coupling, which requires the consideration of relativistic effects, but also that the

energy scale on which it operates is of the order 0.01 meV/atom, many orders of magnitude

smaller than the total energy of the magnet.[8] A major breakthrough was the formulation of

the torque method, which bypasses the inherent computational difficulty of resolving small

changes in large energy calculations by calculating their rate of change directly.[9] With this,

alongside the further development of electronic structure methods in general and the rapid

increase in the processing capability of computers, the last twenty years have seen significant

progress in calculations of this nature. This includes the successful evaluation of zero tem-

perature magnetostriction in Fe, Ni and Co;[10–14] as well as the RE-TM GdFe2,[15] which

belongs to the same Laves phase family of materials as Terfenol-D. But first-principles calcu-

lation of magnetostriction in the RE-TMs as a whole, including Terfenol-D, carries its own

unique challenges. The difficulty stems from the treatment of the rare earths’ highly-localised

electrons. It is simply not possible to model them using the same local density-based methods

as the highly-mobile, “itinerant” electrons of the TMs. In addition, the distribution of elec-

tronic charge in the vicinity of most RE atoms (all apart from La, Gd and Lu) is anisotropic,

i.e. not spherically symmetrical. It is in fact these properties that underpin these materials’

extraordinary magnetostrictive properties.[16]

For the sake of technological application, it is also essential that we understand how

magnetostriction is affected by temperature. Empirical approaches - models that depend in
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some part on experimental measurements - have been very successful in describing systems

with magnetism that is dominated by highly-localised electrons. They tend to utilise this

behaviour by assuming that the electrons act almost independently on a per-atom basis -

hence the label “single-ion” theory - thus dramatically simplifying thermal averages of mag-

netostriction and other similar properties.[17] It is indeed ironic that the properties that make

rare earths ideal for empirical analysis are precisely why they are so difficult to study on a

first-principles basis. It should not be a surprise then that because the magnetism in TMs

and their alloys originates from itinerant electrons, the single-ion description is not necessar-

ily an appropriate model.[18] Indeed, it was recognized by Callen and Callen in 1963 that the

single-ion model was at variance with experimental measurements of the magnetostriction of

pure and Si-doped Fe.[20] Both materials show an unusual temperature dependence where

magnetostriction actually increases from zero to room temperature, rather than monoton-

ically decreasing along with magnetisation.[19, 20] Having proposed an explanation based

on anisotropic magnon-phonon coupling,[20] subsequent experiments[21–23] led E. Callen to

write thirty years later that the temperature dependence of the magnetostriction of Fe was

still not understood.[24]

We therefore present a method that allows for the ab initio calculation of magne-

tostriction at finite temperature in systems described by itinerant electrons, an exercise that

until now has not been possible. In addition, we will lay the groundwork for the calcula-

tion of magnetostriction in localised-electron systems by detailing a method for determining

their temperature-dependent magnetisation. The theory employs relativistic, Local Density

Approximation (LDA)-based DFT to handle the many-body quantum mechanics, not only

because of its previous success in describing the zero temperature magnetostriction of Gd-

and TM-based alloys, but also because it can be readily adapted to incorporate thermally-

induced magnetic disorder via DLM theory.[25] Central to DLM theory is the assumption

that the electron dynamics of a system are dictated by two well-separated timescales - the fast

process of electrons hopping between atoms and the slow evolution of local molecular fields

as they disorder due to thermally-induced spin waves. With that description of “good” local

moments we are justified in considering the system as having a frozen ensemble of molecular

fields, which are self-consistent in that they simultaneously construct and are constructed by

the fast-moving electronic fluid. From these fields a statistical model can be built to describe

their thermal disorder and the resulting statistical mechanics of their magnetic properties

including, crucially, magnetic torque. For any given thermal disorder, by calculating the re-

sponse of the magnetic torque to small distortions of the crystal structure we can determine

its magnetoelasticity at arbitrary temperatures.[26, 27]

The machinery that is necessary to implement DLM theory within DFT is based on

the use of Green’s functions and Multiple Scattering Theory (MST), a method referred to
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as Korringa-Kohn-Rostoker (KKR)-MST.[28–30] Rather than solve the many-body quan-

tum mechanics of the electronic fluid by determining a basis of atomic wavefunctions, the

Green’s function-formulation of KKR-MST allows for the description of the system as a series

of scattering events. While this choice is seemingly unintuitive, for our purposes KKR-MST

presents a number of distinct advantages over other DFT methods. First, its basis in particle-

scattering provides a robust description of the locality of a given state based on the energy

dependence of its scattering-induced phase shift.[31] This has proven to be an excellent scheme

in determining which states are sufficiently local that their erroneous self-interaction energy,

a by-product of the LDA, requires correction.[32] In combination with the self-interaction

correction scheme devised by Patrick and Staunton,[33] this provides an appropriate method

for treating the highly-localised electrons of the rare earths. Second, the self-averaging prop-

erties of Green’s functions allows for the construction of effective media which reflect the

average behaviour of disordered systems.[34] In other words, through KKR-MST and the

Coherent Potential Approximation (CPA) we are able to efficiently model the many degrees

of freedom that are inherent not only in magnetic disorder, but also in chemical disorder.

The former will provide a route through which we can implement DLM theory, while the

latter will allow us to study alloys with non-stoichiometric atomic formulae - a vital exercise

in the study of materials with giant magnetostriction.

The thesis will begin in chapter 2 with an introduction to magnetism in condensed

matter, beginning with a description of magnetic moments in isolated atoms, before introduc-

ing the influence of a crystal environment and then the itinerant picture of magnetism as an

outcome of a cohesive electronic fluid. This will provide the necessary context for understand-

ing the profound differences between the highly-localised magnetism of rare earths and the

metallic magnetism of TMs. From there, we will discuss anisotropic magnetic phenomena,

specifically MCA and magnetostriction. The physical origins of MCA in spin-orbit coupling

will be established, alongside some of the outcomes of its consideration. Magnetostriction

will then naturally follow as the inevitable result of the MCA and elasticity of a magnetic

system. This will establish the concept of magnetoelasticity. Note that particular attention

will be paid to the magnetostriction and magnetoelasticity of cubic systems, as they are the

focus of the research outcomes of this thesis.

In chapter 3 we will give an overview of DFT as an appropriate method for simulating

electronic structure. This will include its Kohn-Sham formulation, the specific use of the

LDA as a treatment of the exchange-correlation energy, as well as the extension of DFT to

incorporate elements that are essential to the outcomes of the thesis: magnetism, relativity

and finite temperature. We will then follow that with a discussion of KKR-MST, building its

formulation by first considering the scattering a single site and from there the full multiple-site

scattering problem. The inclusion of magnetism and relativity will be covered, as well as the
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elegant and powerful calculation of electron and magnetic densities via the Lloyd formula.[35]

This will be followed by a brief summary the self-interaction correction; its implementation in

KKR-MST and its relevance in the treatment of highly-localised electrons within LDA-DFT.

To close the chapter we will detail the CPA, an effective approach for simulating disorder in

electronic systems. This will require an overview of different types of disorder, a description

of the effective medium as a concept and finally a formulation of the CPA and the effective

medium in the context of KKR-MST.

Having established the computational machinery, chapter 4 will be devoted to de-

tailing DLM theory and from that, our theory of the temperature dependence of intrinsic

magnetostriction. The choice of intrinsic magnetostriction is due to it being an outcome of

the fundamental spin-orbit interactions within the crystal lattice, making it more appropriate

to study using fully relativistic DFT methods than its domain-based counterpart. We will

therefore cover the basics of magnetism at finite temperature, which will help provide a gen-

eral framework of DLM and its underlying statistical mechanics, its formulation in mean field

theory and its implementation via the CPA. To provide appropriate context for the study

of magnetostriction at finite temperature, before detailing our theory we will first discuss

the evolution of empirical models and their applicability, culiminating in crystal field (CF)

theory. The description of our first-principles theory will include an overview of the torque

method, its relation to magnetoelasticity and the calculation of magnetic torque within DLM

theory. Finally we will provide a step-by-step method for calculating the magnetoelasticity of

magnetic materials at finite temperatures, thus concluding the theory chapters of the thesis.

In chapters 5 and 6 we present case studies of TM-magnetostriction. We begin with

an investigation of the magnetoelastic temperature dependence of bcc Fe, which as we’ve

previously alluded to has had a rich history of research concerning its anomalous behaviour.

A study of the magnetic disorder- and volume-dependence of its Density of States (DoS)

reveals that the origin of this behaviour is a result of the delicate balance between thermal

expansion of the lattice and homogenisation of its band structure due to thermal averaging.

In the following chapter we build on the analysis of bcc Fe by studying the effects of chemical-

and magnetic-ordering in the bcc Fe1−xGax, Galfenol. The apparently inexplicable enhance-

ment of Galfenol’s magnetostrictive properties, a property that makes it a viable TM-only

alternative to Terfenol-D, has inspired much research and debate for nearly 20 years now.[36–

40] Even now it is not fully understood. We therefore investigate the magnetoelasticity of

the A2, B2 and D03 phases of Galfenol at non-stoichiometric Ga concentrations, using the

CPA to handle their chemical disorder. Our calculations show that the Ga-dependence of the

magnetoelasticity in A2 phase is mostly stagnant, while the partially-ordered B2 and D03

phases both exhibit a significant enhancement in magnetoelasticity as more Ga is added up

to ∼20%, especially in the D03 phase which shows a ∼15× increase compared to bcc Fe. The
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significance of this result is that it contradicts the previous findings of Wu,[40] who found

that the stoichiometric D03 phase to be detrimental to magnetostriction.

Chapter 7 represents the initial work on a study of the temperature- and alloy-

dependence of magnetostriction in Terfenol-D. We lay the groundwork for this investigation

by presenting calculations of the magnetic moments, Curie temperatures and magnetisation

vs. temperature curves of the cubic Laves phase alloy family, REFe2 (RE = Y, La, Gd-Lu),

of which Terfenol-D is a member. Our calculations of the magnetic moments show excel-

lent agreement with experiment and previous theoretical studies,[41] while calculated Curie

temperatures show good qualitative agreement.[16, 42] The use of a classical-spin model and

our calculated values of paramagnetic exchange parameters provides an impressive model for

magnetisation vs. temperature curves in these compounds. This includes the accurate pre-

diction of compensation temperatures - the temperature at which the ferrimagnetic RE and

Fe moments exactly balance and give a net magnetisation of zero. Finally, we present novel

calculations of the temperature dependence of the MCA and magnetostriction in GdFe2,

effectively modelling the itinerant contributions of these properties in the REFe2 compounds.

To conclude the thesis, we will provide a summary of the research outcomes alongside

a discussion of future work and the outlook of the author.
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Chapter 2

Magnetism and anisotropic

phenomena

In the introduction we discussed the two primary physical mechanisms behind magnetostric-

tion - extrinsic and intrinsic - but regardless of the underlying mechanism, experimental

measurements of magnetostriction in cubic materials are parameterised by the conventional

expression

δl

l
=

3

2
λ001

 ∑
i=x,y,z

α2
i β

2
i −

1

3

+ 3λ111

∑
i=x,y,z

αiαjβiβj , (2.1)

where the fractional change in length of the material δl/l is measured along the direction β

when the material is at saturation magnetisation in the direction α, relative to the crystal

axes. The cubic magnetostriction parameters λ001 and λ111 are therefore the size of the frac-

tional length change along the directions [001] and [111] respectively, when the material is

also magnetised along those respective directions. These high-symmetry directions have been

chosen such that the fractional length change measured in any direction can be expressed

as their linear combination - e.g. λ110 = 1
4λ001 + 3

4λ111 - and other crystal symmetries have

their own linear combinations of magnetostriction parameters.[1] They are determined ex-

perimentally through a number of methods that directly measure the change in length of

a material before and after a field is applied. These include the use of a strain gauge - a

device that changes resistance when subject to small distortions - and the measure of lattice

parameters via x-ray diffraction.[54] The goal of an ab initio method for modelling magne-

tostriction should therefore be the calculation of these parameters, but at this point we are

forced to distinguish between the internal and external mechanisms. Extrinsic magnetostric-

tion resulting from inhomogeneous nano-domain structures means that it is inherently more

difficult to study than its intrinsic counterpart, due in large part to traditional electronic

structure methods - Density Functional Theory (DFT) included - relying on long range order
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to simplify calculations. While previous studies have approximated these nano-domains by

embedding locally-ordered structures inside larger supercells,[55] the vast majority of first-

principles studies of magnetostriction have focused on its intrinsic origins and this thesis is

no different.

With that established, the aim of this chapter is to describe in greater detail the

intrinsic mechanism of magnetostriction - including its physical origins in magnetocrystalline

anisotropy (MCA) - and to derive expressions for the magnetostriction parameters in terms

of quantities that are more readily accessible by electronic structure methods. In order to

do that however we must first discuss an even more fundamental aspect of magnetostriction

and MCA: magnetism. We shall cover some basic concepts in the magnetism of interacting

electrons, with a particular focus on the contrast between the magnetism that arises from

highly localised and itinerant (highly delocalised) electrons. This paradigm is particularly

important for the outcomes of this thesis for two main reasons: First, we aim to study rare

earth (RE)-transition metal (TM) magnets, systems in which these modes of magnetism

coexist. Second, the model on which our theory for finite temperature magnetostriction

depends, Disordered Local Moment (DLM) theory, can very much be considered a marriage of

itinerant electron dynamics and the statistical mechanics of local magnetic moments through

a mean field description.

The first section of this chapter, an overview of atomic magnetism, is based primarily

on some of the excellent work found in Ref.56.

2.1 An introduction to atomic magnetism

2.1.1 Isolated magnetic moments and Hund’s rules

Before we can tackle the behaviour of many-body magnetic systems we must first understand

the magnetism of isolated atoms. Of course in most atoms there are a number of filled energy

shells with zero net orbital momentum L =
∑

i li and spin S =
∑

i si (i denotes each electron

in the shell), so the only directly relevant states are those in the valence shell. The ground

state is determined through the application of Hund’s rules via the Russell-Saunders L-S

coupling scheme, which are

• First rule: in order to minimise Coulomb repulsion through the Pauli Exclusion Prin-

ciple, the total spin S should be maximised.

• Second rule: the total orbital momentum L should be maximised in accordance with

the application of the first rule to further reduce the Coulomb repulsion.

• Third rule: The total angular momentum J = L+S is chosen in order to minimise the

spin-orbit (SO) coupling energy ESO ≈ λL · S, given the results of the first two rules.
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Figure 2.1: A schematic demonstrating the application of Hund’s rules to the 4f REs. Each
arrow corresponds to an eigenstate of the 4f shell, i.e. |slml〉, with purple arrows correspond-
ing to occupied states with s = +1/2 and yellow arrows to s = −1/2, while grey arrows
indicate unoccupied states.

Consider a valence shell with states characterised by the intrinsic spin of the occupant electron

s = ±1/2 and the “magnetic” quantum numbers (l,ml), i.e. eigenvalues of the z-projected

orbital momentum operator l̂z (ml = −l,−l + 1, . . . , l − 1, l). It is energetically favourable

to occupy states with the largest positive values of m (second rule) with alike-spins s (first

rule) that are negative (third rule). Once all m-states are singularly occupied we repeat

this process with the largest negative values of ml and positive spins, though we note that

through rotational symmetry the opposite process is equivalent. A schematic of this is shown

in Fig. 2.1 with the RE 4f orbitals, where l = 3.

The significance of ESO acting as a weak perturbation here is that it allows us to

consider only electrostatic interactions in our determination of L and S in the first two

rules before identifying the eigenstate in the (2L+ 1)(2S + 1) (or equivalently,
∑

J(2J + 1))

manifold that independently minimises ESO. To emphasise this we shall briefly consider cases

where the spin-orbit (SO) interaction is large in comparison to the electrostatic, generally

seen in hydrogen-like atoms with a large atomic number Z due to the SO interaction being

proportional to Z4.[56] Rather than use the Russell-Saunders L-S coupling scheme it is

far more appropriate to adopt j-j coupling, where one considers the SO on each electron

separately with ji = |li − si| . . . li + si, giving us a total angular momentum of J =
∑

i ji.
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Figure 2.2: Depictions of the radial portion of each 3d orbital.

The contrast between the two schemes can be simply demonstrated with

l1 s1 → j1

l2 s2 → j2
...

...
...

↓ ↓ ↓
L S → J

(2.2)

Unlike L-S coupling however there is no equivalent of Hund’s first and second rules here

that intuitively provides the eigenvalue of the
∏
i(2ji + 1) (again, equivalent to

∑
J(2J + 1))

manifold with the lowest energy, they must be calculated manually and compared. Once

the band structure of that manifold has been determined, the electrostatic interaction enters

as a weak perturbation in the way that the SO coupling did in the L-S scheme, however

the ground state often emerges from a relatively simple consideration of the Pauli Exclusion

Principle. While j-j coupling will not have to be used in this thesis, its contrast with the

L-S scheme makes it a useful consideration when trying to understand the energetic origins

of these coupling schemes.

2.1.2 Magnetic moments in a solid and the effect of a crystal field

In completely isolated atoms we saw discrete energy levels from which the ground state could

be reliably determined using coupling schemes that take advantage of well-defined energetic
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hierarchies and perturbation theory. When we bring together multiple atoms into a crystal

structure however, we cannot guarantee that their interaction will not disrupt the validity of

Hund’s rules. The magnitude of this interaction is generally related to the overlap between

the orbitals of the atoms in question, so its effect on the magnetic band structure very much

depends on the locality of the valence orbitals. If the valence states are sufficiently local then

Hund’s rules can still be applied as there is essentially no interaction between the magnetic

states of neighboring ions. We see this clearly in the RE ions Ce3+ → Lu3+, in which the

valence 4f states lie beneath the 5s and 5p shells and are effectively shielded from interatomic

interactions where there is excellent agreement between Hund’s rules and the experimentally

measured values of p = µeff/µB using paramagnetic salts.[56] The exceptions to this are Sm

and Eu, due to the close proximity between excited J states and the ground state allowing

for the occupation of states outside of those predicted by Hund’s rules.[56]

Now we consider cases where the ions cannot be considered completely free of inter-

action between their neighbours, focusing in particular on the interaction of 3d orbitals, the

valence states of TMs, with their crystal environment. The crucial idea here is that the over-

lap between neighbouring orbitals can no longer be ignored and that the splitting of energy

levels between orbitals of different shapes becomes significant enough that Russell-Saunders

L-S coupling is no longer adequate for describing the ground state.

In order to describe the effect of the crystal field (CF) interaction we first consider

some number of d electrons at the centre of a sphere with a negatively charged surface. The

electrostatic interaction between the uniformly distributed charge and the d orbitals, the

radial portion of which are depicted in Fig. 2.2, raises the energy of each of the states equally

due to the spherical symmetry of the charge on the sphere’s surface. If we now concentrate

that charge into distinct points on the surface of that sphere, the spherical symmetry is broken

and while the total energy of the d orbitals will be conserved, their individual energies will

split according to the symmetry of the new environment. To demonstrate this we show

examples of typical CFs found in TM oxides in Fig. 2.3, where we have a magnetic atom

M in tetrahedral and octahedral environments, with the surrounding atoms (ligands) being

the p-states of oxygen anions. Due to the cubic symmetry of these environments, we can

separate the d-orbitals into two degenerate groups: the eg orbitals dxy, dyz and dzx with

lobes pointing between any two principal axes; and the t2g orbitals dz2 and dx2−y2 with lobes

that point along those axes. In the case of the octohedral environment we see that the eg

states are raised in energy by 3∆O/5 due to the increase in electrostatic energy, as their lobes

point directly at the neighbouring p orbitals, while the t2g states are lowered in energy by

2∆O/5. On the other hand in the tetrahedral environment the CF splitting - equal to ∆T -

is essentially opposite, where the lobes of the eg orbitals point between the neighbouring p

orbitals and it is the t2g that have increased overlap and an increase in electrostatic energy.
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Figure 2.3: Schematics showing the effect of metal oxide CFs on the energies of 3d orbitals.
A tetrahedral environment is shown under (a) while (b) shows an octahedral environment.
Green circles are oxygen atoms, blue circles are transition metal atoms.

It is now clear that Hund’s rules will no longer provide the ground state of this system,

so how exactly is it determined? In the case of a strong CF the energy splitting is great enough

to overcome the pairing energy, i.e. the energy penalty of two electrons sharing the same

orbital is overcome by the difference in energy between eg and t2g states. As an example we

consider a Fe2+ atom - which has six d electrons - in an octahedral environment. A strong

CF means that it is energetically favourable for up and down d electrons to pair in the three

lower-energy t2g states, providing a total spin of S = 0. In the weak field case the electrons

prefer to singly occupy both eg and t2g states with up spins before allowing one down spin

to pair with an up spin in a t2g state, maximising the total spin with a value of S = 2.

2.1.3 Orbital quenching

While the TM oxides are useful examples for cleanly demonstrating some of the possible

effects of CFs, we now look to the more fundamental case of 3d ions. What we find when we

compare the ground state magnetism predicted by Hund’s rules with experimentally measured

values of p (once again via paramagnetic salts) is that there is significant disagreement except

in the case of half- and fully-filled d shells where the total orbital momentum L is zero.[56]

This discrepancy is unsurprising due to the significant presence of the CF invalidating the

requirement of Hund’s third rule that the SO energy be the next-most significant contribution

after Coulombic effects. How the effect of the CF manifests here is that it quenches the
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orbital momentum so that L = 0 and the total angular moment is given by J = S (with S

still subjected to the first rule).

To gain a better understanding of orbital quenching, we consider a 3d ion in an

environment such that its crystal potential given by a constant plus a real function. Given

that the total angular momentum operator L̂ = −ir̂ × ∇ is Hermitian it must have real

eigenvalues, however its purely imaginary form implies that the expectation value of a non-

degenerate ground state |0〉, 〈0| L̂ |0〉, must also be purely imaginary. The only possible way

to resolve this is with 〈0| L̂ |0〉 = 0, though it’s important to note that solutions to the z

component of this equation do not preclude solutions that are linear combinations of states

with ±ml. In a more intuitive sense we can interpret orbital quenching as the result of the CF

introducing a significant enough energy penalty on certain orbital states that - rather than

occupy orbital states that are parallel to the spin - electrons prefer to occupy states that have

an average angular momentum of zero. The orbital momentum is never completely quenched

however, as the presence of SO coupling acts as a perturbation which breaks the symmetry

between the ±ml states and produces a (very small) net orbital momentum. As we shall

detail in section 2.2.3, the small and fixed angular momentum means that the SO interaction

provides an anisotropic contribution to the total energy with respect to the direction of the

spin.

2.1.4 Itinerant magnetism and Stoner theory

While we have been able to provide some insight into the magnetism of 3d electrons in a CF,

the above analysis in no way constitutes an adequate understanding of ferromagnetic bulk

TMs. Take bcc Fe, hcp Co and fcc Ni as examples, which according to Hund’s rules - along

with the assumption that the orbital momenta are completely quenched - should exhibit sat-

uration magnetisations of 4, 3 and 2 µB respectively. In reality the values are 2.216, 1.715 and

0.616 µB, a dramatic departure from the theory, not least because they are non-integer.[57]

The crucial piece we are missing here is the electrons’ ability to “hop” between atomic sites

and delocalise over the material, transferring in a continuous manner in momentum-space

between states associated with adjacent atoms and reducing their kinetic energy through the

enlargement of the “box” in which they are contained. The magnetism that arises from such

highly delocalised electron dynamics is referred to as itinerant magnetism and requires us

to (mostly) abandon our description of the crystal as an ensemble of independent magnetic

entities and instead embrace the picture of a coherent electronic fluid.

In order to quantify such a description we take a look at the Density of States (DoS)

N (E), the number of particles in an infinitesimal energy interval E → E + δE. A highly
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idealised expression for the DoS is that of a half-filled s band,

N (E) =
3

4

√
E

E
3/2
F

, (2.3)

where EF is the Fermi energy and we are subject to the conservation of particle number N ,

N =

∫ EF

−∞
dEN (E). (2.4)

Suppose then that we assign N (E) to each spin-resolved DoS n±(E), if the total number of

electrons in each spin channel is

N± =

∫ EF

−∞
dEn±(E), (2.5)

then we have a total particle N = N+ + N− and magnetisation M = N+ − N− of 1 and 0

respectively. We note at this point that this approach is not intended to accurately model

the band structure of a TM, which typically has a complicated mixture of s,p and d bands

around the Fermi level. Our goal instead is to test the stability of these idealised bands

against the emergence of a spontaneous magnetisation, which we set up by rigidly splitting

the up and down spin channels by δE, such that

M =

∫ EF

−∞
dE(n+(E)− n−(E)) =

∫ EF

−∞
dE(n(E − δE)− n(E + δE)). (2.6)

Another consequence of this splitting is the emergence of a molecular field1 with the Hamil-

tonian

Hmol = IM, (2.7)

where I is the molecular field constant. This field - owing to its self-consistent nature - is

simultaneously reinforced by, and reinforces, the magnetisation through a positive feedback

loop. The instability of this situation is reflected in the potential energy of the field,

Emol = −I
∫ M

0
dM ′M ′ = −1

2
IM2, (2.8)

which taken alone implies that the magnetisation is unbounded. The limiting factor is the

1The term “molecular field” is a historical choice and does not refer to the presence of molecules. It
generally refers to local atomic fields that arise from electron dynamics.
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Figure 2.4: Plots of free energy wrt. total magnetisation for ferro- and non-magnetic systems.
Ferromagnetism is unstable at M = 0 and only requires a small perturbation to fall into either
magnetic state. Non-magnetism on the other hand is stable at only M = 0.

resulting increase in kinetic energy,

EK =

∫ EF

−∞
dE(n+(E) + n−(E))E, (2.9)

and thus our minimum energy condition is provided by

∂E

∂M
=

∂

∂M
(EK + Emol) = 0 ⇒ ∂EK

∂M
= IM. (2.10)

To evaluate EK we first substitute Eq. 2.3 into Eq. 2.6, evaluate the integral and then rear-

range to derive an expression for δE in terms of M , which is given by

δE = EF

[
1− (1 +M)2/3

]
, (2.11)

so that we can then substitute it into Eq 2.9 and obtain

EK =
9

20

1

n0

[
(1 +M)5/3 + (1−M)5/3

]
, (2.12)

where n0 = 3/2EF is the non-magnetised DoS at the Fermi level. We may now find the

extrema of the energy using Eq. 2.10, before testing the stability of those extrema by resolving
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the sign of the second derivative at those points. The extrema M0 are therefore given by

(1 +M0)2/3 − (1−M0)2/3

M0
=

4

3
In0 (2.13)

and the second derivative can be written as

d2E

dM2
=

1

4

(
1

n0,+
+

1

n0,−

)
− I, (2.14)

where the spin-resolved DoS at the Fermi level n0,± have been defined as

n± =
1

2
n0(1±M)

1
3 . (2.15)

Naturally there is always a solution at M = 0 corresponding to the nonmagnetic state and

the instability of that state, where d2E/dM2 is negative, implies stable magnetic solutions.

Thus we arrive at the Stoner condition

n0I > 1. (2.16)

The condition states that once the spin-symmetry of a solid’s band structure is broken through

the application of an external field, satisfying the condition meands that the solid will be

able to self-sufficiently maintain the magnetised state. Therefore, materials that satisfy the

condition are ferromagnets.

Computations have shown that the molecular field constant I is approximately con-

stant for the majority of TMs,[58] so the key result here is that a large DoS at the Fermi

level is required in order for ferromagnetism to be stable. Despite beginning from a highly

simplified model, that of a single s band, the applicability of this result and the insights it

provides are profound.

The physical picture is that metallic conduction electrons, the flow of which is medi-

ated by delocalised s, p and d bands, are able to save energy and find a stable magnetic state

when they are spin polarised by an effective magnetic field produced by interactions predom-

inantly among the d-electrons. The exchange splitting of these bands creates local molecular

fields that self-consistently enhance, and are enhanced by, the local magnetic polarisation but

this “bootstrapping” process is ultimately limited by the increase in kinetic energy. If not for

these d bands around the Fermi level, the energy saved by the onset of a local exchange field

is not generally great enough to overcome the kinetic energy penalty and the system cannot

sustain its magnetism without a persistent external field.
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Figure 2.5: Experimentally measured magnetisation vs. applied field curves for Fe, Ni and
Co, where magnetisation is normalised with respect to saturation values.[43] Labels such as
[100] are the Miller indices for the direction in which the samples are magnetised.

2.2 Magnetocrystalline anisotropy

2.2.1 ‘Easy’ and ‘Hard’ Magnetisation

Now that we have given an introduction to the magnetism of bulk materials, we can discuss

one of their fundamental characteristics - that their magnetism is anisotropic. This means

their magnetic properties depend on the direction in which they are magnetised. This fact

is immediately obvious when we apply an external magnetic field to samples of iron, nickel

and cobalt. In each material the rate at which the magnetisation increases with increasing

field depends heavily on the direction in which the field is applied, requiring a greater field to

saturate the magnetisation in certain directions compared to others. It can be seen clearly in

Fig. 2.5 that this dependence on field direction is by no means consistent between different

materials. Iron, which has cubic symmetry, magnetises more easily in the [100] direction

compared with the [111] direction; while nickel, which also has a cubic structure, is more

easily magnetised along [111]. On the other hand, Cobalt - the structure of which consists of

layers of hexagonal planes - exhibits different symmetry entirely, with no degeneracy between

the [100] and [001] directions. In all these cases we are able to recognise what we call

“easy” and “hard” directions of magnetisation, referring to the relative difficulty of achieving

magnetic saturation through an applied field. We call this phenomenon magnetocrystalline

anisotropy (MCA).

We can build a mathematical desciption of MCA by considering the work required

to magnetise a hexagonal crystal - such as Co - at an angle θ to the principal axis. The

anisotropic contribution to Co’s energy density can be expanded as

FK =
∑
n

K ′n sin2n θ. (2.17)

This reflects the symmetry of the crystal in that there are no odd powers of sin θ, as the
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±θ directions are crystallographically equivalent, and that the change in energy around the

hexagonal plane is negligible. The latter point owes to the particularly high symmetry about

the azimuthal angle φ - six-fold - as in general the greater the symmetry along a particular

axis the smaller its corresponding MCA coefficients. Through direct measurements of the

MCA using torque magnetometry, it has in fact been shown that this representation is a

more than adequate description of Co, even when it is truncated such that n ≤ 2, where

K ′1 = 0.41 J/cm3 and K ′2 = 0.1 J/cm3 at room temperature.[59] Altogether this represents a

system that requires a larger field to saturate its magnetisation in any direction parallel to

the hexagonal plane (the “hard plane”) than along the perpendicular axis (the “easy axis”).

Depending on the sign of K ′1 and the size of K ′2 relative to it, a crystal with uniaxial symmetry

can exhibit an easy axis, plane, or cone of magnetisation.[60]

A widely used method for deriving the uniaxial anisotropy constants from magneti-

sation curves was established by Sucksmith and Thompson,[61] which relates the measured

magnetisation in the hard plane Mab with the easy axis magnetisation M0 at an applied field

B through
(BM0/2)

(Mab/M0)
≡ η = K1 + 2K2(Mab/M0)2. (2.18)

A plot of η against (Mab/M0)2 thus provides a straight line with the intercept of K1 and

gradient K2. The Sucksmith and Thompson method has also been used alongside ab initio

as a method for calculating the anisotropy of ferrimagnets.[62]

Another important form of magnetocrystalline anisotropy, especially for the purposes

of this thesis, is that of the cubic crystal, given by

FC
K = K1(α2

xα
2
y + α2

yα
2
z + α2

zα
2
x) +K2α

2
xα

2
yα

2
z. (2.19)

Now there is no longer a single axis that can be easier or harder to magnetise than its

perpendicular plane, but instead three axes with a hierarchy of energies depending on the

sign and relative magnitudes of K1 and K2, referred to as the hard, medium and easy axes.

These are the body diagonals, represented in Miller indices by [111]; the face diagonals [110],

[011] and [101]; and the cube edges [100], [010] and [001] (the Miller indices of equivalent axes

are implied). A specific example is Fe, which at room temperature has K1 = 0.04 J/cm3 and

K2 = 0.02 J/cm3 and thus easy axes of magnetisation along the cube edges, medium axes

along the face diagonals and hard axes along the body diagonals [43]. As the medium axes

can be inferred from the easy and hard axes, they are often not specifically referred to.
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2.2.2 Domain walls

A very well known consequence of MCA and a vital aspect of permanant magnets in general

is the existence of domains and domain walls. Domains are fundamental to explaining how

saturation magnetisations of ∼1 T can be achieved in some ferromagnets through the appli-

cation of fields that are weaker by a factor of up to a million. It turns out that each domain

of the ferromagnet is already at saturation magnetisation, but their individual directions are

randomly distributed such that the system as a whole is demagnetised at zero field. It is then

relatively easy in an energetic sense for an applied field to cause the domains that favour its

direction to grow and those that oppose it to shrink and rotate, leaving the whole system

magnetised. The regions that separate these domains are the domain walls, within which we

must have some sort of mechanism for rotating the magnetisation. If we have two domains

whose magnetisations have an angle of 180◦ between them, then we could for example have a

Bloch wall where the plane of rotation is that of the wall itself; or a Néel wall where the plane

of rotation is orthogonal to the wall. In the case of the Bloch wall the total exchange cost

for a line of N spins - where the exchange energy between each spin is given approximately

by JS2θ2 and θ = π/N - is given by

EBW =
JS2π2

N
. (2.20)

Minimising this energy cost would correspond to N → ∞, i.e. an infinite chain that would

unwind and grow throughout the system, forcing us to conclude that there must be some

contribution to the total energy that prevents this. If in addition we consider the MCA,

which for the chain of spins we can approximate as ∼ NK, then evaluating the minimum of

the total energy with respect to N provides

N = πS

√
J

K
. (2.21)

There are of course far more rigorous treatments of the domain wall problem,[43] but this

simple derivation demonstrates how important it is that MCA exists.

It is natural to wonder however why domains need to exist at all, considering the

existence of their walls costs energy. It is in fact the dipolar field that limits the size of single

domains by allowing energy to be saved through the formation of multiple domains. In short,

the dipolar field manifests as a result of one of Maxwell’s equations,

∇ ·H = −∇ ·M , (2.22)

which tells us that in regions where the magnetisation stops and starts, for example the edge
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of a domain, the magnetic field diverges and produces demagnetising fields. We see this

field in the alignment of iron shavings around a bar magnet. Minimising this field energy

can be pictured by considering a single domain vs. two antiparallel domains. In the single

domain the dipolar field must extend outwards, around the magnet, in order to conserve its

divergence, while in the case of the antiparallel domains the field is able to leave one domain

and immediately close by going into the adjacent domain. Introducing more domains can

eliminate the field almost entirely but the energetic cost will eventually become too great, so

the ground state of the system is that which balances these effects.

2.2.3 Physical origins

MCA clearly either originates from some form of interaction between the magnetisation of an

atom and its crystal environment, but what is the specific mechanism behind it? It can help

our understanding by first covering what that mechanism cannot be. Exchange interactions

between spins for example, with an energy operator of the form

Hex = −J
∑

Si · Sj , (2.23)

can immediately be disregarded as we can rotate all the spins at once with respect to the

crystal with no energy change.

The magnetic dipole-dipole interaction, the fundamental force between two magnetic

moments due to the interaction between their dipole fields, could be a potential candidate

for the source of MCA as the strength of the interaction depends on the directions of the

moments relative to the displacement of the pair. In other words, the interaction cares about

the orientation of the moments with respect to their fixed positions in the crystal. However,

not only is the strength of the interaction several orders of magnitude too weak to account

for typical MCA energies, but in a cubic lattice it can be shown that the MCA due to this

interaction must be zero.[43] It is however well known that dipole interactions are the cause

of a phenomenon referred to as shape anisotropy, which is the contribution to the magnetic

anisotropy from the shape of a given sample. In the kinds of bulk samples with perfect

crystal structures the contribution of shape anisotropy is generally negligible, however its

consideration is fundamental to the study of magnetic thin films and nanowires.[63]

The origin of MCA is in fact a combination of SO coupling and partial orbital quench-

ing. As we covered in section 2.1.2, orbital quenching refers to the effect on ions that cannot

satisfy the conditions for Hund’s third rule, due to having a much greater CF interaction

than SO interaction. We have already discussed in section 2.1.3 the limit where SO strength

goes to zero, in which the system chooses a ground state of 3d orbitals such that the orbital

momentum is quenched. In reality the SO interaction is not small enough for the limit to
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H = 0 H > Saturation Field 

Figure 2.6: A basic demonstration of the field-dependence of intrinsic magnetostriction. Here,
each domain has a strained lattice in the direction of its local magnetisation due to their
intrinsic magnetostriction - resulting from the strain-dependence of MCA. Due to the random
moment orientation without an external field, these strains cancel out, but with a saturating
field the crystal achieves maximum strain.

be entirely valid most of the time, but it can instead be considered a small perturbation of

the energy. We therefore have a mechanism in partial orbital quenching that ties the orbital

momentum with the CF and then through the SO interaction the spin “sees” the lattice

environment. The orbitals are the evidence of the crystal environment which the spin then

interacts with.

If the orbital states are not quenched, for example in a RE where the electrons are

considered highly localised and essentially non-interacting, then the stronger SO interaction

means that the orbital momentum is determined more by the spin (with which it is essentially

parallel and has a value determined by Hund’s rules) than the local crystal environment,

meaning the spin seemingly has no medium through which to interact with it. How then do

RE systems exhibit MCA that is often orders of magnitude greater than TMs? The answer

is that rather than the SO coupling acting as a perturbation to the CF interaction, it is the

exact reverse. The spin now “drags” the orbitals due to the strong SO interaction and the

orbitals interact with the anisotropic CF potential. The mathematical formulation of this

case will be covered in more detail in section 4.2.3.

2.3 Magnetostriction

2.3.1 Magnetoelastic energy

In our discussion on MCA we established that its form is intrinsically tied to the magnetic

material’s crystal symmetry. It is intuitive that a hexagonal lattice with its principal axis

21



along the z-axis should have MCA with a two-fold symmetry about θ and six-fold symmetry

about φ, whereas a cubic lattice should have four-fold symmetry about both. Surely then

there must be some interaction between MCA and elastic deformation of the crystal, as

the latter should in turn cause changes to the former. A cubic crystal for example can

deform into a tetragonal system, thus fundamentally changing its crystal symmetry and

consequently its MCA. By incorporating this interaction into the total energy, we shall see

that changes in magnetisation direction will lead to the spontaneous deformation of the

crystal, i.e. magnetostriction.

We begin with the magnetisation-independent energy density of a cubic system under

a strain that is quantified by the tensor εij ,

Fel =
1

2
c11(ε2

xx + ε2
yy + ε2

zz) +
1

2
c44(ε2

xy + ε2
yz + ε2

zx)

+c12(εxxεyy + εyyεzz + εzzεxx) (2.24)

The first and second elastic terms are the energy contributions from axial and shear strains

respectively, while the third term quantifies the magnitude of transverse strains in response

to a given axial strain. In most materials for example, a stretch in one axis has a correspond-

ing compression in the orthogonal axes, though the exceptions to this (known as auxetic

materials) are quite fascinating and have been the subject of much research.[64]

Now we include the MCA as given in Eq. 2.19, except that now we are allowing the

system to strain we add first order corrections with respect to the strain tensor εij , so that

it is now

FK(α, εij) = FC
K(α) +

∑
i≥j

(
∂FK(α)

∂εij

)C

εij , (2.25)

where the C superscript refers to the cubic configuration. The correction is the mag-

netoelastic energy density Fme, which depends both on the strain and the magnetization

direction. What then are the forms of the various elements of Fme? To answer this we simply

have to consider the symmetry imposed on the system by the various types of strain. The

strain εzz for example elongates the system in the z-axis, meaning that in order to reflect

this the MCA should pick up a term of the form sin2 θ (equivalently α2
z), like that seen in

tetragonal systems with the principal axis defined along the z-axis. Completing the set, we

have
∂FK/∂εxx = B1α

2
x; ∂FK/∂εyy = B1α

2
y;

∂FK/∂εzz = B1α
2
z; ∂FK/∂εxy = B2αxαy;

∂FK/∂εyz = B2αyαz; ∂FK/∂εzx = B2αzαx,

(2.26)

where B1 and B2 are the magnetoelastic constants. From these definitions we can see that B1
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is the rate of change of the MCA as the crystal is strained axially from its cubic configuration,

while B2 is the same for shear strains.

The part of the total energy density of a cubic crystal that depends on magnetisation

direction and strain is therefore given by

F (α, εij) =K1(α2
xα

2
y + α2

yα
2
z + α2

zα
2
x) +K2α

2
xα

2
yα

2
z

+B1(α2
xεxx + α2

yεyy + α2
zεzz)

+B2(αxαyεxy + αyαzεyz + αzαxεzx)

+
1

2
c11(ε2

xx + ε2
yy + ε2

zz) +
1

2
c44(ε2

xy + ε2
yz + ε2

zx)

+c12(εxxεyy + εyyεzz + εzzεxx).

(2.27)

In principle Fme also contains a contribution independent of magnetization direction with

magnetoelastic constant B0, which vanishes for volume-conserving deformations (εxx + εyy +

εzz = 0).[65]

What we have therefore is a system that is cubic when it is demagnetised, due to

the elastic terms only increasing the system’s energy as strain is induced, but upon magneti-

sation the onset of magnetoelastic energy that is linear in strain now makes it favourable

for the system to deform. The magnitude and nature of that deformation should then in

principle depend on the direction of the magnetisation and the balance between elastic and

magnetoelastic energies.

2.3.2 Relating magnetoelasticity to magnetostriction

We now seek to minimise the energy density f with respect to the strain tensor εij , thereby

finding the spontaneous deformation for a given magnetisation direction. Then by comparing

this to the conventional experimental expression for cubic magnetostriction in Eq. 2.1, we can

express the cubic magnetostriction constants λ001 and λ111 in terms of the magnetoelastic

constants B1 and B2 and elastic modulii c11,c12 and c44. Minimisation of Eq. 2.27 provides

the equations

∂F (α, εij)

∂εii
= B1α

2
i + c11εii + c12

∑
j 6=i

εjj = 0,

∂F (α, εij)

∂εij
= B2αiαj + c44εij = 0 (i 6= j),

(2.28)
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to which the set of solutions, the equilibrium strains, are

εii = B1
c12 − α2

i (c11 + 2c12)

(c11 − c12)(c11 + 2c12)
, (2.29)

εij = −B2

c44
αiαj , i 6= j. (2.30)

In order to find the fractional deformation along some direction β given that the system is

under a strain defined by εij , we employ the following expressions for the change in crystal

dimensions,

x+ δx = (1 + εxx)x+
1

2
εxyy +

1

2
εzxz;

y + δy = (1 + εyy)y +
1

2
εyzz +

1

2
εxyx;

z + δz = (1 + εzz)z +
1

2
εzxx+

1

2
εyzy.

(2.31)

Using the definitions l =
√
x2 + y2 + z2 and βx = x/l etc., the above allows for the derivation

of

δ(l2) = 2lδl = 2l2
∑
i≥j

εijβiβj , (2.32)

from which we immediately have
δl

l
=
∑
i≥j

εijβiβj . (2.33)

By substituting in the expressions for the equilibrium strains (2.29), we arrive at

δl

l
= − B1

c11 − c12

 ∑
i=x,y,z

α2
i β

2
i

− B2

c44

∑
i=x,y,z

αiαjβiβj +
3c12B1

(c11 + 2c12)(c11 − c12)
. (2.34)

Other than a residual term which may be ignored as it is independent of α and β - which can

be eliminated by substituting α2
i for (α2

i −1/3) in the definition of the magnetoelastic energy

(see appendix A) - we now have the strain in a form that can be compared with Eq. 2.1, thus

providing the expressions

λ001 = −2

3

B1

c12 − c11
, (2.35)

λ111 = −1

3

B2

c44
. (2.36)

The derivation we have shown is specific to cubic systems, however equivalent expressions

can be determined for systems with other crystal structures using similar considerations of
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how deformations relate to changes in symmetry.[16]

It is important to note that the magnetoelastic constants B1 and B2 are of less im-

portance in experimental contexts than the magnetostriction constants λ001 and λ111, as the

latter are determined directly. In fact in the majority of cases the above derivation is quite

superfluous to experimentalists who are only interested in the mechanical applications of

magnetostriction. It is however important in experimental contexts when deducing whether

changes in magnetostriction with respect to certain factors - temperature, chemical concen-

tration etc. - are due primarily to the material’s elasticity or magnetoelasticity. An example

of this that we will see later is in Galfenol, where its secondary peak with respect to Ga con-

centration corresponds to a dramatic softening of the lattice, as opposed to an enhancement

in magnetoelasticity.[36]

The significance of this result for our purposes is that the (magneto)elastic constants

are parameters that quantify changes in the total energy with respect to strain. It is therefore

possible in principle to determine these constants via a sufficient number of calculations of

a magnetic system’s total energy - or perhaps appropriate derivatives of the total energy -

thus determing the magnetostriction constants indirectly via Eqs. 2.35 and 2.36. The next

chapter will therefore detail the computational machinery with which we can calculate the

total energy of a magnetic system from first principles.
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Chapter 3

Electronic structure from first

principles

In the previous chapter we highlighted the contrast between systems of localised magnetic

moments and the itinerant magnetism of metals. While the former have their own com-

plexities, in terms of magnetism the local moments’ well-defined degrees of freedom (DOF)

make describing them in terms of empirical models - where specifically-constructed Hamil-

tonians are fit to experimental measurements - an effective exercise. Metallic electrons on

the other hand, while certainly not immune to the empirical treatment, often demand a far

more fundamental modelling of their many-body electronic structure to build predictive the-

ories. Achieving this ab initio, i.e. without any special assumptions made about the system

of interest, presents a seemingly impossible challenge. A method that aims to determine

magnetostriction constants within the linear magnetoelasticity model must therefore devise

a way to simplify the vast complexity of the electronic structure. We therefore devote this

chapter to the much-celebrated Density Functional Theory (DFT), which for decades now

has been vital to the theoretical study of solids. First we establish its formalism, in particu-

lar the Hohenberg-Kohn theorem and Kohn-Sham equations, before detailing its relativistic

implementation and with that, its description of magnetism. Having established the DFT

framework, we will detail the Green’s function (GF)-based KKR-Multiple Scattering Theory

(MST) for solving the Kohn-Sham equations, which we will be utilising in the research chap-

ters of this thesis. From there we will discuss the Self-interaction correction (SIC) for highly

localised electrons and its implementation within the KKR-MST framework. Finally, we will

introduce the Coherent Potential Approximation (CPA), a theory for describing disordered

systems through an effective medium.
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3.1 Density Functional Theory

If we attempt to describe the complete quantum mechanical description of electrons within

a crystal structure, it is immediately necessary to assume that on the fast timescale of the

electron motion the position of the atomic nuclei are essentially fixed, otherwise known as the

Born-Oppenheimer approximation [58]. This assumption is more than reasonable however as

the much smaller mass of the electrons means that the timescale of their motion is nowhere

near comparable to the nuclei. Even with this, we still have a highly complex Hamiltonian

given by

Ĥ = − ~2

2me

∑
n

∇2
rn +

1

2

∑
n6=m

e2

4πε0|rn − rm|
−
∑
n,α

Zαe
2

4πε0|rn −Rα|
+

1

2

∑
α,σ′

ZαZβe
2

4πε0|Rα −Rβ|
,

(3.1)

where me, e and rn are the mass, charge and position of the nth electron; ε0 is vacuum

permittivity and Zα and Rα are the atomic number and position of atom α.[6] In its simplest

representation, the many-body Schrödinger equation we wish to solve is thus

ĤΨ (r1, r2, . . . , rN) = EΨ (r1, r2, . . . , rN) . (3.2)

A famous back-of-the-envelope calculation in condensed matter physics estimates the amount

of information required to solve this equation for a boron atom. We have 5 electrons, and thus

15 spatial coordinates. Attempting to calculate 10 data points for each coordinate, a frankly

rather inadequate number, yields a total of 1015 data points. If each data point requires 8

bytes of information, we have 8×1015 total bytes. For context, this is more than the amount

of cloud storage required for Netflix and Amazon’s video libraries, combined! In other words

modelling these systems, even with the Born-Oppenheimer approximation, seems to be quite

the insurmountable task. Fortunately, thanks to the work of Hohenberg and Kohn,[6] we

are able to study these systems in a much more realistic manner by drastically reducing the

number of DOF.

3.1.1 The Hohenberg-Kohn Theorem

Consider the electronic Hamiltonian,

Ĥ = T̂ + Ŵ + V̂ , (3.3)
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where the terms represent the kinetic energy; the interactive potential and the external

potential and are respectively given by

T̂ = − ~2

2me

∑
i

∇2
rn , Ŵ =

∑
n,j 6=m

w(rn, rm), V̂ =
∑
n

Vext(rn). (3.4)

These are simply more compact representations of the terms in Eq. 3.1 and are written in

this way in order to emphasise that the external potential term only contains first order inter-

actions due to the Born-Oppenheimer approximation. For some external potential Vext (r),

there must exist some ground state with the eigenstate Ψ(0). The total ground state energy

of this system is thus

E(0) =
〈
Ψ(0)

∣∣Ĥ∣∣Ψ(0)

〉
=
〈
Ψ(0)

∣∣T̂ + Ŵ
∣∣Ψ(0)

〉
+

∫
drn (r)Vext (r) , (3.5)

where n (r) is the electron charge density. Given that this is the ground state energy, we

know that the expectation value assigned to any other eigenstate with charge density n′(r)

should be greater, i.e.

E(0) <
〈

Ψ′(0)

∣∣∣T̂ + Ŵ
∣∣∣Ψ′(0)

〉
+

∫
drn′ (r)Vext (r) . (3.6)

We proceed by observing that the same argument applies in reverse,

E′(0) =
〈

Ψ′(0)

∣∣∣Ĥ∣∣∣Ψ′(0)

〉
=
〈

Ψ′(0)

∣∣∣T̂ + Ŵ
∣∣∣Ψ′(0)

〉
+

∫
drn′ (r)V ′ext (r) , (3.7)

⇒ E′(0) <
〈
Ψ(0)

∣∣T̂ + Ŵ
∣∣Ψ(0)

〉
+

∫
drn (r)V ′ext (r) , (3.8)

which provides a pair of simultaneous equations that reduce to

E(0) < E′(0) +

∫
drn′ (r) (Vext (r)− V ′ext (r)), (3.9)

E′(0) < E(0) +

∫
drn (r)

(
V ′ext (r)− Vext (r)

)
(3.10)

and when these equations are combined we have

E′(0) + E(0) < E(0) + E′(0) +

∫
dr
(
n (r)− n′ (r)

) (
V ′ext (r)− Vext (r)

)
, (3.11)

⇒ 0 <

∫
dr
(
n (r)− n′ (r)

) (
V ′ext (r)− Vext (r)

)
. (3.12)

By considering the case where n (r) = n′ (r), which physically represents two different poten-

tials corresponding to the same charge density, we have that 0 > 0 and thus prove that this
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is an impossible scenario. With this one-to-one mapping of potential to charge density, the

non-spin polarised many body wavefunction can be expressed as a functional of the charge

density, i.e.

Ψ (r1, r2, ..., rN) = Ψ[n (r)]. (3.13)

Thus the expectation values of the many body wavefunction are also functionals of the density,

most important of which is the total energy

E[n] = 〈Ψ[n]|K̂ + Ŵ |Ψ[n]〉+

∫
drn(r)Vext = F [n] + Eext[n], (3.14)

which upon minimisation must provide the ground state energy and charge density of the

system. We have also defined the universal functional F [n] = K[n] + W [n] here, which is

universal in the sense that its dependence upon the charge density is the always the same,

regardless of the form of V (r) i.e. the crystal structure. The challenge now is to find

an approach that makes the calculation of F [n] and the minimisation of E[n] a tractable

problem.

3.1.2 The Kohn-Sham Equations

An important treatment of this problem was devised by Kohn and Sham,[7] where one invents

a system of non-interacting electrons that shares the same charge density and energy as the

fully interacting system. The charge density is the sum of the densities of the manufactured

states {ψi(r)} of these non-interacting electrons,

n (r) =
∑
i

|ψi (r)|2, (3.15)

and the Kohn-Sham energy functional is

EKS[n] = K0[n] + EH[n] + Exc[n] + Eext, (3.16)

which introduces the non-interacting kinetic energy K0 and the Coulombic Hartree energy

EH, each given by

K0[n] = − ~2

2me

∑
i

∫
drψ∗i (r)∇2ψi (r) , (3.17)

EH[n] =
1

2

∫ ∫
drdr′n (r)

e2

4πε0|r − r′|
n
(
r′
)

=
1

2

∫
drn(r)VH(r). (3.18)

The nature of the exchange-correlation energy Exc becomes clearer when we attempt to

equate the fully interacting energy functional K +W and the Kohn-Sham energy functional,
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providing

K[n] +W [n] + Eext = K0[n] + EH[n] + Exc[n] + Eext, (3.19)

⇒ Exc[n] = K[n]−K0[n] +W [n]− EH [n], (3.20)

thus showing that it represents the difference in energy between our effective medium, made

up of non-interacting states, and the real, many-body system. At this point in our analysis

however the form of the exchange-correlation energy is unknown.

A vital outcome from Hohenberg-Kohn theory is that the unique relationship between

Vext and the charge density n(r) ensures that an ensemble of non-interacting electrons exists

that shares a ground state with the true system.[6, 7] That ground state is found by min-

imising the Kohn-Sham energy functional with respect to the particle density, subject to the

constraint that the total particle number

N =

∫
drn (r) (3.21)

is conserved. We therefore arrive at the Kohn-Sham equations{
− ~2

2me
∇2 + VH(r) + Vxc(r) + Vext(r)

}
ψi (r) = εiψi (r) , (3.22)

where we have defined the exchange-correlation potential

Vxc (r) =
δExc[n]

δn (r)
. (3.23)

poIt is important to note here that the single-particle eigenvalues are not the energies of

electrons in the real system. In fact what they truly represent is still a matter of debate.[32,

66–69]

The process of solving the Kohn-Sham equations is ultimately about self-consistency,

as its solutions depend on governing potentials that themselves are determined by the charge

density n(r). In general then the energy-minimising charge density is found by iteratively

feeding the charge density into the Kohn-Sham equations until the resultant wave functions

reproduce the input density. In step by step terms, this means:

• Begin with an informed guess of the charge density nin (r), for example the free-particle

density.

• Calculate the Hartree and Exchange-Correlation potentials,

e2

∫
nin (r)

4πε0|r− r′|
dr′,

δExc[n
in]

δnin (r)
, (3.24)
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for said density.

• Solve the Kohn-Sham equations,{
− ~2

2me
∇2 + e2

∫
nin(r)

4πε0|r− r′|
dr′ + Vxc[nin](r) + Vext(r)

}
ψout
i (r)

= εout
i ψout

i (r) ,

(3.25)

therefore calculating the single-particle wave functions ψout
i (r) and eigenvalues εout

i .

• Use these solutions to calculate an output density,

nout (r) =
∑
i

∣∣ψout
i (r)

∣∣2, (3.26)

which should differ from the original guess of the density.

• Substitute this new density back into the Kohn-Sham equations and solve again.

• Repeat the above steps until nin (r) = nout (r) within some specified accuracy.

This method is straightforward but in no way guarantees convergence. One way in which

this method may be improved is by introducing “mixtures” of the charge densities from step

to step. A very simple mixing procedure could be given by

nin
new (r) = (1− β)nin

old (r) + βnout (r) , (3.27)

where β is the mixing parameter and takes a value between 0 and 1. A low mixing parameter

encourages the iterations to fluctuate around the initial guess of the density, which can be

very useful if there are multiple stable solutions such as low and high-spin magnetic states.

Once convergence is achieved, the self-consistent charge density and single particle

eigenvalues can be used to calculate the energy of the system,

E[n] =
∑
occ

εi − EH[n] + Exc[n]−
∫

drn(r)Vxc(r), (3.28)

where the sum is over all occupied states.

While we have established the general method for determining the total energy of

electronic solids, we have yet to address the exact nature of the exchange-correlation potential

- other than that it encapsulates the interacting elements of the system. We will address this

in the following section.
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3.1.3 The Local Density Approximation

The exact exchange-correlation functional Exc[n] is still unknown. In fact, it actually cannot

be fully known without an approach that is just as complex as the many-body problem that

DFT aims to simplify.

We shall therefore look at the most widely used scheme for approximating Exc[n],

the Local Density Approximation (LDA).[7] It simplifies the system by assuming that the

exchange and correlation energies in a local region are that of a homogeneous electron gas of

the same density. For an infinitesimal region this implies

dELDA
xc = drn(r)εhom

xc (n(r)) ⇒ ELDA
xc [n] =

∫
drn(r)εhom

xc (n(r)) , (3.29)

where εhom
xc (n(r)) is the exchange-correlation energy density of a homogeneous electronic gas.

An important note here is that εhom
xc (n(r)) is not a functional of the charge density in that it

depends upon the value of n(r) at all points in space at once, but instead only depends on the

value of the charge density at the point r. The energy is then calculated by integrating over

each local, independent region of the density. This is a key aspect of the LDA that makes

the Kohn-Sham equations realistically solvable. In contrast, a complete treatment of the

exchange-correlation potential should in principle depend on the charge density’s interaction

with itself over all space, hence why the LDA is such a dramatic simplification, albeit a highly

powerful and useful one.

We can derive an explicit expression for εhom
xc by linearly decomposing it into its

exchange and correlation components, εhom
x and εhom

c . The exchange energy can be cal-

culated analytically with the Hartree-Fock approximation for a homogeneous electron gas,

εhom
x ∝ n(r)1/3,[59] while the correlation component has often been implemented via param-

eterisations of exact many-body calculations - one example being the many-body quantum

Monte Carlo results of Ceperley and Alder.[70] A particularly simple and powerful parame-

terisation was proposed by Perdew and Wang[71], which we will be using in this thesis.

Other exchange-correlation functionals exist of course but each present their own

caveats. The LDA for example can be insufficiently accurate in predicting equilibrium lattice

parameters[72] and while this is generally improved by the Generalised Gradient Approxima-

tion (GGA),[73] which incorporates gradients of the charge density such that

EGGA
xc =

∫
drf (n (r) ,∇n (r)) , (3.30)

the GGA can often lead to discrepancies in phase stability.[74] Much of the nuance in DFT

is therefore in choosing appropriate exchange-correlation functionals for the required job.
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3.1.4 Magnetism and relativity in Density Functional Theory

Up until now we have neglected magnetism in our model of the many-body quantum system.

In order to reach a DFT formalism that incorporates non-collinear spin polarisation we must

first establish the effect of relativity on our system, as it is the introduction of Lorentz

invariance into the Schrödinger equation that allows spin to manifest.

Before broaching relativistic DFT, we consider the Dirac equation for a single electron

in an external magnetic field described by the vector potential B = ∇×A:

HDΨi(r) =
(
cα · (−i~∇ + eA(r)) + βImec

2
)
Ψi(r) = εiΨi(r), (3.31)

in which c is the speed of light, me is the electron mass,

βI =

(
I2 (0)

(0) −I2

)
where I2 =

(
1 0

0 1

)
, (3.32)

and

α =

(
(0) σ

σ (0)

)
, (3.33)

where σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (3.34)

This is simply a particular form of the relativistic Schrödinger equation. The wavefunctions

Ψi(r) in this case are now made up of four components and are referred to as Dirac spinors,

so in our analogue single-particle Kohn-Sham equations it is natural to expect similar four-

component objects to be associated with the charge density. It can indeed be shown that

the relativistic many-body energy is a functional of the relativistic four-current Jµ(r) =

(n(r), j(r)),[75] which contains within it the charge density and charge current j. The

minimisation of E[n, j] leads to the fully relativistic Kohn-Sham-Dirac equations,

(
−i~cα ·∇ + βImec

2 + Veff(r) + eα ·Aeff(r))
)
Ψi(r) = εiΨi(r) (3.35)

where Veff = Vext + VH + Vxc are as defined in Eq. 3.22 and

Aeff(r) = Aext(r) +AH(r) +Axc(r)

= Aext −
e

c

∫
dr′

j(r′)

|r − r′|
+
δExc[n, j]

δj(r)
.

(3.36)

However as long as our governing equations are defined in terms of the electronic current

there is no straightforward analogue to the LDA, or indeed any other approximation of
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the exchange-correlation potential. To overcome this we invoke the Gordon decomposition,

separating the current into its spin and orbital components.[76, 77] The consideration of both

spin and orbital momenta is the basis of fully relativistic DFT - which we will be utilising

in this thesis - however in systems where the orbital momentum is minimal we can neglect

its contribution and recast the above equations so that the energy is now a functional of the

charge density n(r) and spin density µ(r) - i.e. E[n,µ]. The corresponding Kohn-Sham-

Dirac equations are then

(
−i~cα ·∇ + βImec

2 + Veff(r) + βIσ ·Beff

)
Ψi(r) = εiΨi(r), (3.37)

with

Veff(r) = Vext(r) +
δExc[n,µ]

δn(r)
+

∫
dr′AH(r′) · δj(r)

δn(r′)
(3.38)

and the effective magnetic field

Beff(r) = Bext(r) +
δExc[n,µ]

δµ(r)
+

∫
dr′AH(r′) · δj(r)

δµ(r′)
. (3.39)

The contribution of the final term in each of the above fields is fundamental to the dipole-

dipole interaction, making it very important for shape anisotropy,[77, 78] low-symmetry

magnetics[79] and the stability of domain structures,[80] the latter of which we discussed

in Section 2.2.2. However for the purposes of this thesis the calculation of these terms is

superfluous, so we shall opt to neglect them.

With additional energy scale considerations we can simplify these equations further,[81]

reducing Eq. 3.31 to only two components so that(
− ~2

2me
∇2 + µBσ ·B

)
Φi(r) = εiΦi(r), (3.40)

from which we can derive relatively simple, intuitive expressions for key quantities. The Dirac

spinor is now reduced to

Φi(r) =
∑
σ

φiσ(r) |σ〉 , (3.41)

where

σ = {↑, ↓}, and |↑〉 =

(
1

0

)
, |↓〉 =

(
0

1

)
, (3.42)

from which we have

n(r) =
∑
i

ni(r) =
∑
i

Φ†iΦi(r) =
∑
iσ

|φiσ(r)|2 (3.43)
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and

µ(r) = µB

∑
i

µi(r) = µB

∑
i

Φ†i (r)σΦi(r), (3.44)

where the expression for the spin density µ(r) derives from considering the average of the

Pauli spin matrices. Its components can be found with some simple algebra and are given by

µx(r) = 2µB Re
∑
i

φ∗i↑(r)φi↓(r) (3.45)

µy(r) = 2µB Im
∑
i

φ∗i↑(r)φi↓(r) (3.46)

µz(r) = µB

∑
i

(
|φi↑(r)|2 − |φi↓(r)|2

)
. (3.47)

We now proceed as before and minimise the total energy functional,

E[n,µ] = K0[n,µ] + EH[n] + Exc[n,µ] +

∫
dr (n(r)Vext(r)−B · µ(r)) , (3.48)

with respect to the density matrix

nσσ′(r) =
∑
i

φ∗iσ(r)φiσ′(r), (3.49)

which neatly contains both the charge and spin densities,

n(r) =
∑
σ

nσσ(r), µ(r) = −µB

∑
σσ′

nσσ′(r)σσσ′ . (3.50)

The resultant spin-polarised Kohn-Sham equations are then[
− ~2

2me
∇2 + Vext(r) + VH(r) + Vxc(r)− µBσ · (B(r) +Bxc(r))

]
Φi(r) = εiΦi(r), (3.51)

in which we have used the definition

δExc[nσσ′ ]

δnσσ′
= Vxc(r)I2 + µBσ ·Bxc(r), (3.52)

from which our total energy is now given by

E[n,µ] =
∑
occ

εi − EH[n] + Exc[n,µ]

−
∫

drn(r)Vxc(r)−
∫

drµ(r) · (B(r) +Bxc(r)) ,

(3.53)
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where Bxc(r) is the magnetic field resulting from exchange-correlation interactions.

3.1.5 Density Functional Theory at finite temperature

Not long after Hohenberg and Kohn laid the basis for DFT, Mermin formulated its extension

to finite temperatures by taking advantage of its direct analogues with the theory of grand

canonical ensembles, in particular that of the non-interacting system of fermionic particles.[82]

Put simply, because DFT is fundamentally built on the physics of independent electrons the

introduction of temperature into the system should act only to change the occupation of

those single particle electronic states, a process that can in principle be handled by statistical

mechanics. To summarise Mermin’s work we must therefore begin with a brief introduction

to statistical mechanics and an overview of this type of system.

A grand canonical ensemble is the statistically-driven state space of a system in ther-

modynamic equilibrium with a reservoir, where we use the mechanism of the reservoir in order

to justify controlling the flow of energy and particles such that we can study a system with

specified temperature T and chemical potential ν. Given then that this system is described

by the many-body Hamiltonian Ĥ, we construct the grand potential functional as

Ω[ρ̂] = Trρ̂

(
Ĥ − νN̂ +

1

β
log ρ̂

)
, (3.54)

where 1/β = kBT , N̂ is the particle number operator and ρ̂ is the probability density operator

which along with the trace operator Tr[. . . ] establishes the expectation value of an operator

Â as 〈Â〉 = Trρ̂Â. The grand potential Ω is then provided by the minisation of the grand

potential, which Mermin showed to correspond with the grand canonical density matrix

ρ̂0 =
exp
{
−β(Ĥ − νN̂)

}
Tr exp

{
−β(Ĥ − νN̂)

} , (3.55)

such that the grand potential is

Ω = − 1

β
log
(

Tr exp
{
−β(Ĥ − νN̂)

})
. (3.56)

The primary result here is that by letting Ĥ be the electronic Hamiltonian from Eq. 3.3, ρ̂0

(and by extension Ω) is now uniquely defined by the external potential U(r) in the same way

that n(r) is in the zero temperature case. The crux of Mermin’s work was taking the analogy

to its natural endpoint by determining that ρ̂0 is a functional of n0(r) and providing a finite
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temperature universal function

FT [n0(r)] = Tr

[
ρ̂0[n0(r)]

(
T̂ + Ŵ +

1

β
log ρ̂0[n0(r)]

)]
, (3.57)

showing that DFT can indeed be implemented at non-zero temperatures.

With that established, we ask how exactly the occupation of the single particle eigen-

states εi are affected by thermal excitation. The grand potential is derived from

Ω = − 1

β

∑
i

log
∑
n

exp{−nβ(E − ν)}, (3.58)

where n represents the occupancy of each eigenstate, which in the case of fermionic systems is

simply 0 or 1. By simplifying the above expression and casting it in the form of a Helmholtz

energy, i.e.

Ω =
∑
i

fiεi − TS0 − νN, (3.59)

where fi is the occupation distribution and S0 is the equilibrium entropy, we can derive the

results

S0 = −kB
∑
i

[fi log fi + (1− fi) log (1− fi)] , fi =
1

(1 + exp{β(εi − ν)})
, (3.60)

where fi is now just the Fermi-Dirac distribution. The effect of this is that the single particle

energies are no longer discrete, instead smoothed out over a range of energies. While the non-

magnetic case has been addressed here for the sake of simplicity, the same result can be derived

for magnetic systems except Ω[n(r),µ(r)] is now also a functional of the magnetisation

density µ(r). In the context of the Stoner model this means that an increase in temperature

generally leads to a decrease in exchange splitting, and thus magnetisation. This is due to the

decrease in the Density of States (DoS) at the fermi level that results from the aforementioned

“smoothing” of single-particle energies, thus representing the process of thermally-induced

de-occupation. We stress however that this does not constitute an adequate description

of finite temperature magnetism in iterinant electron systems. We will expand on this in

section 4.1.

3.2 Multiple Scattering Theory

Methods within DFT are ultimately defined by how they solve the Kohn-Sham equations and

the iterative process through which the equilibrium particle density is constructed. While

methods that tackle the eigenvalue problem directly have been very successful, often by
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employing clever, efficient ways of describing the single-particle wave functions,[58, 83, 84] the

alternative approach of the Green’s function (GF)-based Korringa-Kohn-Rostoker (KKR)-

MST offers unique advantages that will be essential to making the challenges set out in later

sections much more realistic to tackle. The sacrifice we make in choosing this path is that we

exchange the more intuitive, familiar picture of wavefunctions with Green’s function (GF)s.

We therefore dedicate this section to understanding GFs and their relation to the description

of electron dynamics as an ensemble of scattering events.

3.2.1 Green’s functions and single-site scattering

MST-based DFT derives from breaking down electronic systems into their individual scatter-

ing events, so we write the potential terms from Eq. 3.22 (summarised by V ) as a collection

of real-space spherical potentials,

V (r) ≈
∑
n

Vn(rn), (3.61)

each centred at the positions {Rn} where rn = r − Rn. Outside of some radius rMT,n,

the “muffin-tin radius”, the potential is set to zero. There are two schemes for choosing

rMT,n: the muffin-tin (MT) scheme where no overlap between potentials is permitted; and

the Atomic Sphere Approximation (ASA) where overlap is allowed in order to minimise the

interstitial region between potentials.1 The radii in the latter scheme are bound by the

requirement that the sum of the ASA spheres is equal to the volume of the crystal’s unit

cell. Alternatively there is the full-potential approach where one has non-spherical potentials,

no interstitial region and no overlap between adjacent potentials, however we shall focus on

the other two methods here. To begin we consider the single-site Kohn-Sham Hamiltonian

Hn = −(~2/2m)∇2 + Vn along with its eigenfunctions ψn and eigenvalues E. Given that

these eigenvalues overlap with the spectrum of the free particle Hamiltonian H0, presumably

in the positive energy region, we can write

(E −H)ψn = 0 and (E −H0)φ = 0 ⇒ (E −H)δψn = Vnφ, (3.62)

where φ are the free particle wavefunctions and ψn = φ+ δψn. The novelty of KKR-MST is

that we seek a relationship between the scattered and un-scattered solutions of the electron

dynamics systems through the use of GFs . We therefore define the GF in terms of Hn as

follows

Gn(z) =
1

(E + iδ)I −Hn
, z = E + iδ, (3.63)

1It is indeed confusing that muffin-tin radii are referred to in both the MT and ASA schemes. Reader,
please bear in mind that this is not the choice of this author.
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from which we have their real space representation,

〈r| Gn(z)
∣∣r′〉 = Gn(r, r′; z) (3.64)

as well as what are referred to as their side-limits

lim
|δ|→0

Gn(z) =

{
G+
n (E); δ > 0

G−n (E); δ < 0
(3.65)

and equivalent expressions for the unperturbed GF G0(z) arising from H0. To relate the

scattered and un-scattered Green’s functions we invoke the Dyson equation,[85]

Gn(z) = G0(z) + G0VnGn, (3.66)

which derives from the combination of Eqs. 3.63 and 3.62. From there we can expand the

Dyson equation by iteratively subsitituting the right-hand side into itself, reformulating it as

Gn(z) = G0(z) + G0(z) (Vn + V G0Vn + . . . )G0(z), (3.67)

and letting us define the T -operator

Tn(z) = Vn + VnG0(z)Vn + VnG0(z)VnG0(z)Vn + . . . (3.68)

⇒ Gn(z) = G0(z) + G0(z)Tn(z)G0(z). (3.69)

We now take the result from Eq. 3.62 and multiply both sides by the side-limits, giving

ψ±n (E) = φ(E) + G±n (E)Vnφ(E), (3.70)

alternatively expressed in terms of the side-limits of the T -operator as

ψ±n (E) = φ(E) + G±0 (E)T ±n (E)φ(E), (3.71)

both of which are referred to as the Lippman-Schwinger equation. This very clearly contex-

tualises the relationship between perturbed and unperturbed states as the before-and-after

of a scattering process, the effects of which are contained within the operator T . Note that

from now on we shall omit the ± notation and the approach to the real energy axis will be

assumed to be taken from the positive region of the complex plane.

The corresponding real space representation of the scattering operator is given by the
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Dyson equation

tn(r, r′, E) = Vn(rn)δ(r − r′) +

∫
dr′′Vn(rn)G0(r, r′′, E)tn(r′′, r′, E), (3.72)

alongside which we have

ψn(r) = φ(r) +

∫
dr′dr′′G0(r, r′, E)tn(r′, r′′, E)φ(r′′), (3.73)

which is a far more useful form as the free particle wavefunctions are then just plane waves,

i.e.

φ(r)→ exp(ik · r) = 4π
∑
L

iljl(knr)Y
∗
L (r̂)YL(k̂), kn =

√
E (3.74)

where L represents the set of quantum numbers (l,m), jl(knr) is the spherical Bessel function

and YL(r̂) are the spherical harmonics.[85] YL(r̂) are simply the eigenfunctions of the orbital

angular momentum operator, so that L̂2YL(r̂) = l(l + 1)YL(r̂) and L̂zYL(r̂) = mYL(r̂), and

as we will see they form the expressions for all relevant quantities along with the spherical

Bessel functions. First there is the free-particle GF, given by

G0(r, r′;E) = − 1

4π

exp(ikn |r − r′|)
|r − r′|

= −ikn
∑
L

jl(knr<)h+
l (knr>)YL(r̂)Y ∗L (r̂′), (3.75)

which is the GF for the Helmholtz wave equation where r> = max{r, r′}, r> = min{r, r′} and

h+
l (x) are spherical Hankel functions (a subset of spherical Bessel functions). Using Eq. 3.73

we then have

ψn(r) =4π
∑
L

ilY ∗L (k̂)Rn,L(r;E)

=4π
∑
L

ilY ∗L (k̂)

[
jl(knr)YL(r̂)− ikn

∑
L′

h+
l′ (knr)YL′(r̂)tn,L′L(E)

]
,

(3.76)

where we have defined the t-matrix in the angular momentum representation as

tn,L′L(E) =

∫ ∫
drdr′jl′(knr

′)Y ∗L′(r̂
′)tn(r′, r, E)jl(knr)YL(r̂). (3.77)

An alternative set of solutions, commonly referred to as the scattering solutions, is given by
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substituting Rn,L(r;E) in Eq. 3.76 with

Zn,L(r, E) =
∑
L′

Rn,L′(r;E)t−1
n,L′L(E)

=
∑
L′

j′l(knr)YL′(r̂)t
−1
n,L′L(E)− iknh+

l (knr)YL(r̂).
(3.78)

Both Zn,L(r, E) and Rn,L(r, E) are regular at the origin (rn → 0) and there is an additional

irregular solution given by[85]

Hn,L(r, E) = −iknh+
l (knr)YL(r̂). (3.79)

These expressions can be used to calculate the wavefunction both inside and outside the

potential boundary rMT, given that the boundary conditions are satisfied, and in doing so we

can determine the t-matrix and thus the solution to the single-site scattering problem. Using

these solutions we may also derive the single-site GF[85]

Gn(r, r′, E) =
∑
LL′

Zn,L(r, E)tn,LL′(E)Z×n,L′(r, E)−
∑
L

Zn,L(r<, E)J×n,L(r>, E), (3.80)

where × denotes the conjugate spherical harmonics and Jn,L(r, E) = jl(knr)YL(r̂).

Before moving on to the multi-site problem, we note that the expansions in the angular

momentum basis that have been employed here must be truncated in order for computation

times to be realistic. Often we find that lmax = 3 provides an adequate trade-off between

accuracy and efficiency.

3.2.2 Multi-site scattering

Having derived the GF-based solutions to the case of a single scatterer, we now expand

the theory to describe an arbitrary number of scatterers by building a description of the

multiple-scattering T -matrix with a corresponding Dyson equation given by

T =
∑
n

V n +
∑
n

V nG0T , (3.81)

where we have employed matrix notation X to denote the angular momentum indices seen

in previous expressions. We shall take advantage of the spherical symmetry of the problem

by expanding G0 in terms of the propagation between two sites, such that

T =
∑
n

V n +
∑
nm

V nG0,nmV m +
∑
nmk

V nG0,nmV mG0,mkV k + . . . , (3.82)
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where G0,nm can be shown to be given by[85]

G0,nm = −4πik
∑
L′′

il−l
′−l′′CL

′′
LL′YL′′(R̂nm)h+

l′′(Rnm), (3.83)

where Rnm = Rm −Rn and

CL
′′

LL′ =

∫
dr̂YL(r̂)Y ∗L′(r̂)YL′′(r̂) (3.84)

are the Gaunt numbers. In terms of the single-site t-matrix, its Dyson equation given in

matrix form by t = V n + V nG0t, the T -matrix can be expressed as

T =
∑
nm

[
tnδnm + tnG0,nm(1− δnm)tm + . . .

]
, (3.85)

which allows us to define the scattering path operator (SPO), τnm,

T =
∑
nm

τnm ⇒ τnm = tnδnm + tn
∑
k 6=n

G0,nkτkm. (3.86)

This definition allows us to intuitively understand τnm as a construct that contains within

it all possible scattering paths that begin at site n and end at site m. As an example we

consider a system of three scatterers, so that the components of the SPO are given byt1 0 0

0 t3 0

0 0 t3

+

t1G0,11 t1G0,12 t1G0,13

t2G0,21 t2G0,22 t2G0,23

t3G0,31 t3G0,32 t3G0,33


τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

 . (3.87)

Now we take a single component, τ21 for example, and after some matrix multiplication we

find that

τ21 = t2
(
G0,21τ11 +G0,22τ21 +G0,23τ31

)
. (3.88)

Here we clearly have each term containing

1. an initial scattering at site 2, t2;

2. a propagation from site 2 to some site k, G0,2k;

3. a SPO that begins at site k and ends at site 1, τk1.
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It then follows that T is the combination of all possible scattering paths. All that remains is

to express the full GF for the system in its real space representation,[85]

G(r, r′, E) =Z(r −Rn, E)τnm(E)Z×m(r′ −Rm, E)

−δnmZ(r< −Rn, E)J×n (r> −Rn, E),
(3.89)

where the vector notation on functions here denotes the one-dimensional angular momentum

basis.

Now we have a mathematical formulation that, despite deriving from the less-than-

intuitive GF approach, paints a simple picture of electronic systems as an ensemble of scat-

tering events where there is a clear differentiation between the local aspects, ti(E), and where

they are situated relative to each other, G(r, r′, E).

3.2.3 Magnetism and relativity in multiple-scattering theory

By expanding the non-relativistic wavefunctions ψn(r) in terms of spherical harmonics we

introduced the angular momentum basis L = (l,m), the combination of the total and z-

projected orbital momentum eigenvalues of YL(r̂). Now if we wish to introduce a spin basis

(which shall be collinear here for the sake of brevity) we simply take the eigenvalues of

ŜzΦs = sΦs, where s = ±1

2
, Φ1/2 =

(
1

0

)
, Φ−1/2 =

(
0

1

)
, (3.90)

allowing us to expand our spherical harmonic basis with

ϕlms(r̂) ≡ Ylm(r̂)Φs (3.91)

However, if we wish to introduce relativistic effects then our basis becomes somewhat more

complicated. The primary consideration is spin-orbit (SO) coupling, meaning we must incor-

porate operators for the total angular momentum Ĵ = L̂+Ŝ and the SO operator K̂ = 2L̂·Ŝ+Î

and implement linear combinations of the spherical harmonic, referred to as spin-spherical

harmonics χκµ(r̂). Our eigenvalue equations become

Ĵ2χκµ(r̂) = j(j + 1)χκµ (3.92)

Ĵzχκµ(r̂) = µχκµ (3.93)

K̂χκµ(r̂) = −κχκµ, (3.94)

where it should be noted that the basis is reduced to Q = (κ, µ) (where µ = −κ,−κ+1, . . . , κ)

because j corresponds uniquely to κ through κ = l if j = l− |s| and κ = −l− 1 if j = l+ |s|.
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Relativistic KKR-MST is ultimately very similar to the non-relativistic case in terms

of its formulation, however the computation is far more expensive due mostly to the increased

size of the basis. A more complete desciption can be found in Refs. [85–88].

3.2.4 Electron and magnetic density calculation

One of the particularly powerful aspects of KKR-MST-DFT is the straightforward relation-

ship between the GF of the Kohn-Sham Hamiltonian and the electron and magnetic densities,

n(r) and µ(r). From Eq. 3.64 we have

G(r, r′, E) = lim
δ→+0

∑
i

ψi(r)ψi(r
′)

E − εi + iδ

=
∑
i

ψi(r)ψi(r
′)

[
P 1

E − εi
− iπδ(E − εi)

]
,

(3.95)

where P denotes the Cauchy principal value, from which it immediately follows that

n(r) = − 1

π
Im Tr

∫ ∞
−∞

dEf(E − ν)G(r, r, E), (3.96)

with f(E) being an suitable occupation function and ν being the chemical potential. The

magnetic density on the other hand is given by

µ(r) = µB
1

π
Im Tr

∫ ∞
−∞

dEf(E − ν)βIΣG(r, r, E), (3.97)

where

βIΣ = βI

(
σ 0

0 σ

)
=

(
σ 0

0 −σ

)
. (3.98)

Integrating over all space provides the total number of electrons,

N(ν) = − 1

π
Im Tr

∫ ∞
−∞

∫
dEdrf(E − ν)G(r, r, E) =

∫ ∞
−∞

dEf(E − ν)N (E), (3.99)

from which we have defined the DoS,

N (E) = − 1

π
Im Tr

∫
drG(r, r, E), (3.100)

i.e. the number of electrons at energy E, where it is now appropriate to assign f(E) as

the Fermi-Dirac distribution defined in Section 3.1.5. An especially useful result from this

analysis is the separation of electrons into their free-particle and scattering contributions,

by expressing the integrated DoS in its energy-dependent GF form and using the Dyson
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equation, giving

N(ν) =
1

π
Im Tr lnG(ν) = N0(ν) + δN(ν) (3.101)

N0(ν) =
1

π
Im Tr lnG0(ν), (3.102)

δN0(ν) =
1

π
Im Tr ln T (ν). (3.103)

These expressions are the fundamental form of the Lloyd formula.[35] Additionally we can

evaluate the expectation value of a generic operator Â with

A(r, r′) =
∑
occ

ψ†i (r
′)Âψi(r) = − 1

π
Im Tr

∫
dEÂG(r, r′, E), (3.104)

which motivates us to now consider a strategy for performing these energy integrals. It is in

fact computationally advantageous to deform the energy contour into the complex plane, as

G(z) is analytic for z = E + i|δ| (hence our earlier simplification of the ± notation). This

is often done either with a semi-circular or rectangular path and in this thesis we will be

utilising the latter.

3.2.5 Self-interaction correction in multiple scattering theory

The fundamental assumption that we make when we apply DFT is that the system we are

interested in can be adequately described as what is essentially a “fluid” of de-localised

electrons. One of the problems with this approach emerged when it became clear that the

necessary use of the Hartree term,

EH[n] =

∫
dr

∫
dr′

n(r)n(r′)

|r − r′|
, (3.105)

in the total energy functional would incur a spurious “self-interaction” energy within the LDA,

evidenced by the Hartree energy’s failure to vanish in the case of single-electron systems.[32]

It turns out that self-interaction can be comfortably ignored for itinerant systems due to

the fast, highly spatial motion of their electrons. Systems in which electrons spend a long

time localised in the vicinity of an atom however, where they are effectively bound, exhibit

enough of this spurious self-interaction that we cannot ignore it. This represents a significant

disconnect between localised and de-localised states within DFT and any investigation of rare

earth systems, including this thesis, must overcome this.

Perdew and Zunger[32] formulated an effective implementation of the self-interaction
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correction,

ESIC[{nασ}] = −
occ∑
ασ

(EH[nασ] + Exc[nασ, 0]) , (3.106)

which explicitly subtracts the self-interacting Hartree and exchange-correlation energies of

the occupied orbitals labelled by α, whose spin channels are labelled by σ. Despite the

deceptively simple form of the energy functional, determining self-consistent self-interaction

potentials is difficult, requiring repeated transformations between real and reciprocal space.

The KKR-MST implementation of the self-interaction correction has a number of

advantages over other implementations,[31] including the natural relationship between the

locality of a particular state and the energy dependence of its phase shift when it is scattered,

with a broader resonance peak corresponding to less localisation. This proves to be an

excellent scheme for determining the state’s locality and thus whether it is a candidate for

application of the Self-interaction correction (SIC). From there, it is a matter of exploring

configurations of SIC-corrected states until the minimum energy is found. An approach

recently proposed by Patrick and Staunton[62] applies the SIC to candidate states according

to Hund’s rules.

3.3 The Coherent Potential Approximation

Disorder is a common phenomenon in electronic systems and it manifests in a multitude of

ways, including

• Chemical disorder: a number of different atoms exist at equivalent crystallographic

sites;

• Positional disorder: the positions of atoms randomly deviate from the ordered, periodic

structure;

• Magnetic disorder: the orientations of magnetic moment are no longer periodic.

These examples are depicted in Fig. 3.1, though it is important to note that these diagrams

do not necessarily paint the whole picture as in reality these systems are not static and their

DOF constantly shift. However if we can reliably assume that the electronic motion occurs on

a much faster timescale than the change in DOF, then we can consider the system effectively

frozen, much like the core assumption of the Born-Oppenheimer approximation. The evolu-

tion of each configuration on the slower timescale is then determined by its energy. Even if

this approximation is valid (and that is certainly not guaranteed) it is clear that there is still

an inherent challenge that these systems pose for electronic structure calculations, as simu-

lating even a single configuration with traditional methods would require prohibitively large
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Figure 3.1: The typical types of disorder found in electronic systems: a) Chemical disorder;
b) Positional disorder; c) Magnetic disorder.

unit cells. An even larger challenge emerges when we consider the calculation of ensemble

averages, where even a modest estimation of the partition function may require the sampling

of many, many different configurations. In order to circumvent this we seek to construct a

fictitious system that reflects the average behaviour of the disordered system, which we refer

to as the effective medium.

3.3.1 The effective medium

Conveniently the formulation of this effective medium, as well as the calculation of ensemble

averages, is facilitated by the KKR-MST method detailed in the previous section. For some

configuration of DOF Eq. 3.104 shows that the properties of the system can be calculated

from the corresponding GF, so it follows that ensemble averages over those configurations

would require the ensemble average of the GF

〈G〉 = G0 +G0〈T 〉G0, (3.107)

where crucially the reference GF is independent of the DOF (note that we shall briefly forgo

precise notation). Now we take advantage of the fact that the free-particle GF G0 holds no

special status in KKR-MST and that any reference Hamiltonian can be used, allowing us to

define an effective medium with

G̃ = G0 +G0T̃G0 (3.108)

as our new reference GF. With the effective medium defined to also be independent of the

DOF, our ensemble average then becomes

〈G〉 = G̃+ G̃〈∆T 〉G̃, (3.109)

47



where 〈∆T 〉 is the average difference between the real SPO T -matrix and the effective medium

SPO T̃ -matrix. The process of constructing an approximation of this effective medium should

therefore be based on minimising 〈∆T 〉, which we shall now tackle with the Coherent Potential

Approximation (CPA).

3.3.2 The single-site coherent potential approximation

The central concept of the single-site CPA is that it approximates a disordered system by

treating the single-site t-matrices as “effective scatterers”, each containing the complexities

of the disordered system. This makes it the KKR-MST-equivalent of mean field theory

in statistical mechanics, in a similar fashion to how DFT is built upon the single-particle

wavefunctions of an effective system.

We build this effective scatterer by supposing that the effective medium, which has

physics that on average reflect the disordered system exactly, can be mapped onto a so-called

coherent potential, Vc(r) =
∑

n Vn(|r −Rn|), from which we have the usual Dyson equation,

defining the corresponding coherent GFs Gc,n and t-matrices tc,n:

Gc,n = G0 +G0tc,nG0, (3.110)

⇒ tc,n = V c,n + V c,nG0tc,n. (3.111)

If the “real” system we wish to approximate has a disorder at site n0 described by a combi-

nation of single-site potentials {Vα,n0(|r −Rn0 |)}, labelled by α and each occurring with a

probability of Pα,n0 , then its Dyson equation in terms of the reference GF Gc,n0
is

Gα,n0
= Gc,n0

+Gc,n0
∆tα,n0

Gc,n0
, (3.112)

where

∆tα,n0
= (V α,n0

− V c,n0
) + (V α,n0

− V c,n0
)Gc,n0

∆tα,n0
, (3.113)

analogous to Eq. 3.109. The condition that our effective medium must satisfy, the CPA

condition, is therefore ∑
α

Pα,n0∆tα,n0
= 0, (3.114)

or equivalently

Gc,n0
=
∑
α

Pα,n0Gα,n0
. (3.115)

With this result in mind we seek the equivalent condition in terms of the SPOs by first

breaking the site n0 down into its individual potentials, meaning we have a lattice with the

coherent potential Vc(r) at each site except n0, where the potential is instead Vα,n0(rn0) and
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essentially acts as an impurity. The T -matrix that satisfies this system then has the Dyson

equation

Gα(n0) = G0 +G0Tα(n0)G0, (3.116)

where (n0) denotes the choice of the site with the impurity. Combining this expression with

Eq. 3.115 provides

T c =
∑
α

Pα,n0Tα(n0), (3.117)

drawing a connection between the coherent T -matrix and the impurity T -matrices. The SPOs

then immediately follow:

τ c,n0n0
=
∑
α

Pα,n0τα(n0),n0n0
, (3.118)

emphasising the CPA as a mean-field approach in which we build a full, self-consistent de-

scription of a system by measuring the effect of a fictitious system on the DOF of a single

site, given that the fictitious system reflects the average behaviour of the DOF at that site.

The above conditions state that self-consistency is achieved when the insertion of an impurity

into the coherent system, itself containing the average scattering behaviour of the coherent

system, leaves the entire system unchanged.

All that remains is to find solutions to the coherent SPO, so we first relate it to the

impurity SPO and t-matrices via

τ−1
α(n0),n0n0

= τ−1
c,n0n0

− t−1
c,n0

+ t−1
α(n0),n0

, (3.119)

a relationship that simply derives from the fact that we are creating the impurity SPO by

removing a coherent scatterer t−1
c,n0

from the coherent SPO and adding an impurity, t−1
α(n0),n0

(mathematically, we can think of the inverse scattering matrices as behaving like potentials).

Some straightforward rearranging then gives us

τα(n0),n0n0
= Dα,n0

τ c,n0n0
, (3.120)

where

Dα,n0
=
[
1−

(
t−1
c,n0
− t−1

α(n0),n0

)
τ c,n0n0

]−1
(3.121)

is referred to as the impurity matrix. The excess scattering matrix on the other hand is given

by

Xα,n0
=

[
τ c,n0n0

−
(
t−1
c,n0
− t−1

α(n0),n0

)−1
]−1

(3.122)

and is defined by

τα(n0),n0n0
= τ c,n0n0

+ τ c,n0n0
Xα,n0

τ c,n0n0
. (3.123)
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Both quantities have corresponding CPA conditions deriving from Eq. 3.118:∑
α

Pα,n0Dα,n0
= 1,∑

α

Pα,n0Xα,n0
= 0,

(3.124)

which finally gives us our route through which to implement the CPA, allowing for the self-

consistent calculation of {t−1
c,n0
} and τ c,n0n0

from {t−1
α(n0),n0

}. While the above conditions

ultimately describe equivalent effective media, the latter excess scattering condition is gen-

erally a preferable method for determining stable solutions.[89]

3.4 Summary

To summarise the content of this chapter, we have broadly described the computational

machinery that is required to implement our ab initio theory for calculating magnetostriction

at finite temperature. That machinery is fundamentally based in DFT - a description of

many-body quantum dynamics that invents an effective system of non-interacting electrons

which are under the influence of atomic potentials that contain the vast complexity of the

many-body interactions. Solutions to the equations of these fictitious electrons - the Kohn-

Sham equations - are obtained through the KKR-MST formalism of DFT, in which electron

dynamics are described not by atomic wavefunctions but instead an ensemble of electron-

atom scattering events. This approach brings with it a number of outcomes that we can

utilise in our theory - including the identification of localised electron states for application

of the SIC, as well as the treatment of chemical and magnetic disorder through the CPA. In

the following chapter we will finally establish our theory and its basis in Disordered Local

Moment theory.
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Chapter 4

Disordered local moments and

finite temperature magnetostriction

In this chapter we will bring together the ideas that we have described throughout the thesis

and discuss Disordered Local Moment (DLM) theory. We will first establish the problem it

aims to tackle: how can we begin to describe the highly complex dynamics of itinerant elec-

tron magnetism at finite temperature? From there we will detail the general framework of the

theory and its underlying statistical mechanics, before describing how it can be effectively im-

plemented into Density Functional Theory (DFT) through Korringa-Kohn-Rostoker (KKR)

Multiple Scattering Theory (MST) and the Coherent Potential Approximation (CPA). We

then discuss a number of existing empirical models for describing anisotropic phenomena at

finite temperature, it is through the framework of DLM theory that we will describe an ab

initio method for calculating the temperature dependence of magnetostriction.

4.1 Disordered local moment theory

4.1.1 Magnetism at finite temperature

In general the type of thermal states that are observable in any system are those that are

energetically accessible, being no more than around kBT above the ground state. For mag-

netic systems there are two primary modes of thermal excitation that satisfy this condition,

characterised by the type of fluctuation that the magnetic moments undergo:[25]

• Longitudinal: The magnitude of the magnetic moments fluctuate due to the transfer of

occupied states between electronic spin channels, referred to as particle-hole excitations.

In the context of zero temperature models of magnetism, this naturally relates to the

Stoner picture of exchange splitting between spin-polarised bands.
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• Transverse: The directions of magnetic moments fluctuate from their equilibrium align-

ment, reducing the average magnetisation. This process is collective, i.e. the moment

orientations deviate coherently according to spin waves excitations (otherwise referred

to as magnons), either spatially or temporally.

The seemingly-intuitive relationship between the picture of fixed, transversely fluctuating

moments and the Heisenberg model for localised moments, such as those of the rare earths,

might lead one to believe that the longtitudinal and transverse mechanisms for thermal exci-

tations can be neatly separated between itinerant and localised moment systems respectively.

This assumption is false. The Stoner model has actually been shown to be insufficient in ac-

curately describing the temperature dependence of real itinerant systems when considered

alone. Not only is the magnetic transition temperature TC typically far too large, there is also

no prescription for the well-evidenced Curie-Weiss law for the magnetic susceptibility,[90]

χ(T ) ≡ dM

dH

∣∣∣∣
H=0

∝ 1

T − TC
. (4.1)

We can demonstrate these shortcomings by considering the Landau expansion for the free

energy of a ferromagnetic Stoner system,

F =
A

2
M2 +

B

4
M4 −MH =

1

2χ0

(
T 2

T 2
C

− 1

)
M2 +

1

4χ0M2
0

M4 −MH, (4.2)

where the 0 subscript denotes values at zero temperature and we have quoted the coefficients

A and B from Ref. 91. By setting H = 0 and using the conditions dF/dM = 0 and

d2F/dM2 > 0, we can derive the results

M2

M2
0

= 1− T 2

T 2
C

,
χ0

χ
=

3M2

M2
0

+
T 2

T 2
C

− 1, (4.3)

which very plainly do not agree with the Curie-Weiss law. Additionally, it can be seen from

the more in depth analysis provided in Ref. [91] that kBTC is proportional to the exchange

splitting of the spin-polarised bands, implying that TC is as much as five times larger than

experimental values.[92] It is in fact transverse fluctuations in the orientations of individual

moments, the onset of disorder, that reduces the average magnetisation. At some temperature

T where 0 < T < TC the ensemble of moments will not be fully ordered but still retain an

average moment, until at TC the average moment disappears entirely despite the size of each

magnetic moment being non-zero, as depicted in Fig. 4.1.

What is key to the shortcomings of finite temperature Stoner excitations is that it

contains no way for the magnetisation direction to fluctuate. We therefore implement fluctu-

ations into the model by casting M in the form of an order parameter such that 〈M〉 = Mn̂z
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Figure 4.1: The disordered local moment picture of the temperature dependence of ferro-
magnets. At T = 0 the moments are in their fully ordered state, corresponding to maximum
magnetisation. As temperature increases, each moment fluctuates from its ordered orienta-
tion such that the net magnetisation decreases. Past the Curie temperature TC the moments
become fully disordered, giving a net zero magnetisation.

and introducing a fluctuation perturbation m so that

〈(M +m)2〉 = M2 + 〈m2
||〉+ 2〈m2

⊥〉, (4.4)

where 〈M2〉 = M2 and 〈m〉 = 0. The exact nature of these fluctuations is not baked into

the theory but even by assuming linear isotropic behaviour, in that 〈m2
||〉 = 〈m2

⊥〉 ∝ T ,

we can restore the Curie-Weiss law and derive far more reasonable estimations of TC,[91]

implying that even itinerant magnets behave in some way like a system of local moments at

finite temperature. This approach has critical predictive shortcomings however, including its

failure to reproduce the T 3/2 dependence of the magnetisation in bulk ferromagnets. These

arise from the assumed temperature dependence of the magnetic fluctuations, as well as their

independence from the bulk order parameter M . Even if these these issues are addressed we

still have a theory that is ultimately empirical, relying on experimental observation in order

to be built upon. A truly ab initio theory of magnetic temperature dependence must look at

the problem on a more fundamental level.

4.1.2 Conceptual framework

One of the primary takeaways from our brief analysis of magnetism at finite temperature

was the apparent contradiction of systems with non-local electrons exhibiting the thermal

behaviour of localised moments. We begin to tackle this issue by following the theory estab-

lished in Ref. [25] and consider the timescales on which electronic motions take place in these

systems. There are three distinct types of motion:
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• The fast process of electron hopping, τhop = ~/w (∼ 10−15 s), through which electronic

interactions are mediated and the magnetic moments are formed;

• The much slower reorientation of those moments, defined as the inverse of spin-wave

frequencies, τwave = 1/ωs (∼ 10−13 s);

• The time τ spent by each electron at a particular magnetic site, where τhop < τ < τwave,

which when averaged over provides the degrees of freedom of that site.

Provided that the magnetisation density averaged over τ inside a unit cell of volume Vn is

Mτ (r), the orientation ên of the moment at that site is then

ên =

∫
Vn

drMτ (r)∣∣∣∫Vn drMτ (r)
∣∣∣ , (4.5)

This represents the temporary breakdown of ergodicity within the time τ . In other words,

even though the values of ên throughout the system are determined by the fluctuation of

spin-waves, the average of which is the normalised magnetisation m = 〈ên〉 (also referred to

as the order parameter), the truncated time average of the magnetisation of a single site is

not equivalent to that ensemble average. This is the essence of local moments. Note that if

instead the time average were taken over τwave, ergodicity would be restored.

The image that arises from this description, viewed at the timescale τ , is that of

“good” local moments with size {µn} and orientation {ên} that are established by the fast

electronic liquid, the dynamics of which are self-consistently determined by said local mo-

ments, seemingly fixed in orientation due to their comparatively slow, thermally-induced

spin fluctuations. The average of those orientations is the order parameter m whose average

direction is n̂, which can then be derived from the statistical mechanics of the system at

temperature T . The reason this separation of timescales is so powerful is that the system

can be studied as if it were a gigantic unit cell of magnetic moments with orientations {ên}
and a thermodynamic grand potential Ω̄ ({ên}) that contains in principle all the information

that is required to solve the system.[25] The magnetisation M(r; {ên)} associated with this

grand potential must therefore satisfy the self-consistent condition∫
Vn

drM(r; {ên}) = µn({ên})ên. (4.6)

Before going into greater detail on the statistical mechanics of the model, we stop and

consider the two key challenges that this description presents:

• How do we handle the inherent complexities of Ω̄ ({ên}) such that it can be made

tractable through some DFT-based procedure?
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• How do we overcome the computational hurdle of a system which, even with a modest

discretisation of orientational configurations, requires such a large number of distinct

unit cells?

In the following section we begin to tackle the first issue by considering approximations of

the grand potential and the statistical mechanics that are governed by it.

4.1.3 The statistical mechanics of disordered local moments

Having reduced the phase space of the problem to a set of local moment orientations {ên},
we now go about tackling the specific statistical mechanics that describe this system. The

first point that must be made is that due its ergodicity, averages over long time periods are

equivalent to averages over the ensemble of all possible orientational configurations. The

probability of any such configuration can therefore be given by

P ({ên}) =
exp

(
−βΩ̄ ({ên})

)∏
m

∫
dêm exp

(
−βΩ̄ ({êm})

) , (4.7)

where we specify the denominator as the partition function

Z =
∏
m

∫
dêm exp

(
−βΩ̄ ({êm})

)
, (4.8)

in terms of which we can express the system’s total free energy

F = − 1

β
lnZ. (4.9)

As Ω̄ ({ên}) is such an incomprehensibly complex object, in principle containing within it

all possible interactions between the local moments, calculating the above quantities must

be achieved through some form of approximation that leaves the problem tractable. An

approach demonstrated by Hubbard[93, 94] and Takahashi[95] recasts the thermodynamic

grand potential as

Ω̄ ({ên}) = H0 ({ên}) +
(
Ω̄ ({ên})−H0 ({ên})

)
, (4.10)

where H0 ({ên}) is some arbitrary trial Hamiltonian, with the aim of expanding F in terms

of
(
Ω̄ ({ên})−H0 ({ên})

)
. Invoking the Peierls-Feynman inequality,[96] which states that F

is bounded from above by its first order approximation F (1), we have

F ≤ F (1) = F0 + 〈Ω̄−H0〉0, (4.11)
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where

F0 = − 1

β
lnZ0, Z0 =

∏
m

∫
dêm exp{(−βH0 ({êm}))},

P0 ({ên}) =
exp{(−βH0 ({ên}))}

Z0

(4.12)

and the averages 〈. . . 〉0 are taken with respect P0 ({ên}). The consequence of this inequality

is that we can find the exact free energy by minimising F (1) with respect to the parameters

that make up our chosen expression for H0, leaving us with the important question of what

that choice will be.

Let us take a brief aside to consider the challenge we are now presented with. Mag-

netic transition metals, systems that we wish to study using this method, have been shown

to exhibit thermal properties that are characteristic of local moment systems despite their

magnetism being inherently itinerant. Through the well-justified seperation of electronic

timescales we have used the grand canonical potential Ω ({ên}) to determine some basic sta-

tistical mechanics, describing the system as an ensemble of disordered local moments without

speculating how exactly those moments interact. In principle though we cannot guarantee

that an itinerant system will not exhibit any high order multi-site interaction (barring those

that can be eliminated through symmetry considerations). In contrast, due to their highly

localised and almost-non-interacting spins, magnetic “insulators” such as the rare earths can

effectively be reduced to a system of lowest-order pair-wise Heisenberg interactions of the

form Jij êi · êj . To reiterate, though we seek to use the mathematical language of interactions

between local moment orientations to describe the thermal fluctuations of itinerant systems,

the underlying physics of those interactions are not the same as those of truly localised elec-

tron systems. It is therefore through the use of the trial Hamiltonian H0 that we seek to

approximate the grand canonical potential, casting our statistical objects F , Z and P ({ên})
in such a way that makes the problem tractable.

4.1.4 Mean field theory

We begin the process of determining an effective trial Hamiltonian with the generalisation

H0 ({ên}) =
∑
n

ω(1)
n (ên) +

∑
n,m

ω(2)
n,m(ên, êm) + . . . , (4.13)

where ω(n) are arbitrary, well behaved functions that describe increasingly complex inter-

actions with each term. The functions, or more specifically the parameters of the chosen
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functions, are determined via the variational relations

∂F (1)

∂ω
(1)
n (ên)

= 0,
∂F (1)

∂ω
(2)
n,m(ên, em)

= 0, . . . . (4.14)

If the full sum were taken then it would describe exactly the grand potential, making the

exercise quite redundant, but this particular choice of generalisation is useful as the trial

Hamiltonian can be built upon term by term until the approximation is sufficient.

For now we choose only the first term and parameterise it such that

H0 ({ên}) = −
∑
n

hn · ên, (4.15)

thus representing a system in which each spin experiences the effect of a local magnetic field

hn, commonly referred to in this context as the Weiss field. The aim here is to take the

complexities of Ω ({ên}) and contain them within the Weiss fields, including any external

fields. This formulation captures the nature of the itinerant magnetic systems, in which

the complicated dynamics of the electron fluid manifest as local exchange fields at atomic

sites which in turn feed back into those dynamics. Fundamentally then this is a mean-field

theory, as the constituent parts which are governed by the larger system affect the system

themselves. Substituting this expression for H0 into Eqs. 4.12, we can derive the new forms

of the partition function

Z0 =
∏
n

Z0,n, Z0,n =

∫
dên exp(−βhn · ên) = 4π

sinh (βhn)

βhn
, (4.16)

where hn = |hn|, as well as the configuration probability

P0 =
∏
n

Pn(ên), Pn (ên) =
exp(βhn · ên)

Z0,i
=
βhn exp(−βhn · ên)

4π sinh (βhn)
, (4.17)

both of which are able to be separated into single-site contributions denoted by the subscript

i, made possible by our choice of the mean-field approach. It is also important to point out the

emergence of the quantity λn = βhn in the above equations, which singularly characterises

the shape of the probability distribution of the local moment orientations at a site i. Using

the probability distribution at each site as a weighting factor, explicit expressions of single-

site average quantities can be derived in terms of that site’s local Weiss field, including the

average orientation:

mn =

∫
dênênPn(ên) =

(
− 1

βhn
+ cothβhn

)
ĥn = L(βhn)ĥn, (4.18)
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where we have defined the Langevin function L(x) = cothx − 1/x. These act as our local

order parameters and specify the magnetic phase of the system, for example a ferromagnet

at zero temperature has {mn} = {1} while the paramagnetic state is {mn} = {0}. More

complex, non-collinear systems on the other hand might require the modulation of spin states

through wave vectors.

Returning to the free energy F0 in Eq. 4.12, its combination with Eqs. 4.15 and 4.17

provides

F0 − 〈H0〉0 =
1

β
〈logP ({ên})〉0 = −TSmag, (4.19)

where we have defined the magnetic entropy Smag as

Smag =
∑
n

Sn(βhn) = −kB
∫

dênPn(ên) logPn(ên)

= kB

[
1 + log

(
4π

sinhβhn
βhn

)
− βhn cothβhn

]
,

(4.20)

from which we have

hn =
∂ [−TSmag]

∂mn
. (4.21)

Using the above, as well as Eqs. 4.11 and 4.19 and with the inclusion of an applied external

field H which couples with the local moments (of magnitude {µn}), we may express the

upper bound on the free energy as

F (1) = 〈Ωint〉0 −
∑
n

µnmn ·H − TSmag. (4.22)

Here we have defined Ωint as the grand canonical potential Ω̄({ên}) in the absence of an

external field, with the dependence on {ên} removed for compactness. As stated earlier,

{mn} are clearly acting as our order parameters in this system and thus we seek to minimise

the free energy with respect to them, yielding the equilibrium condition

∇mnF
(1) = hint

n + µnH − hn = 0 ⇒ hn = hint
n + µnH, (4.23)

in which we have defined the internal Weiss fields

hint
n = −∂〈Ω

int〉0
∂mn

. (4.24)

Let us briefly recap these results from a physical perspective. We have a system of magnetic

moments with fluctuating orientations, their probability distributions described by P (βλn),

and a coexisting electronic structure that produces local exchange fields hint
n . The system
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is in its equilibrium state when at each site the combination of the emergent local field and

the external field H is equivalent to a magnetic field hn that would maintain the local order

parameter m(βhn).

Given no external field is applied, the temperature of each sublattice can be obtained

by

Tn =
hn
kBλn

=
hint
n

kBλn
, (4.25)

which introduces the equilbrium condition that each sublattice must share a common temper-

ature T . For obvious reasons the above equation tells us nothing about T = TC and above,

the paramagnetic state {λn} = {0}, so in order to determine TC we first have to define the

correlation functions

S
(2)
ij ({mn}) = −∂

2〈Ωint〉0
∂mi∂mj

=
∂hint

i ({mn})
∂mj

. (4.26)

We then test the system with an infinitesimally small, site-dependent field Hn, which induces

a small change in the order parameters given by

δmi =
∑
m

χij({mn})Hj , (4.27)

where χij are linear magnetic susceptibility coefficients. Using Eqs. 4.23 and 4.26 we can

derive
∂mi

∂Hj
=
∂mi

∂hi

(
δij +

∑
k

S
(2)
ik

∂mk

∂hj

)
⇒ χij = χ0,iδij + χ0,i

∑
k

S
(2)
ik χkj , (4.28)

in which we have defined the on-site molecular susceptibility χ0,i, the response of order

parameter at site i with respect to its own molecular field. The temperature TC occurs when

the system transitions to the fully disordered paramagnetic state - also referred to in future

chapters as the DLM state - characterised by {mn = 0} and {Pn(ên) = 1/4π}. Slightly

below this transition we can expand the probability distribution such that

Pn(ên) ≈ 1

4π
+

3

4π
mn · ên, (4.29)

which in combination with Eq. 4.18 provides{
mn ≈

βhn
3

}
⇒
{
χ0,n =

β

3

}
. (4.30)
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We then multiply Eq. 4.28 by the inverse susceptibilities,

χ−1χ−1
0 χij = χ−1χ−1

0 χ0,iδij + χ−1χ−1
0 χ0,i

∑
k

S
(2)
ij χkj (4.31)

⇒ χ−1
0 δij = χ−1 +

∑
k

S
(2)
ik δkj (4.32)

⇒ χ−1 =
3

β
δij − S(2)

ij , (4.33)

the result of which, alongside the condition that the determinant of the inverse susceptibility

goes to zero at the phase transition, can be recognised as the eigenvalue problem

det
(
S

(2)
ij − 3kTδij

)
= 0, (4.34)

where the Curie temperature emerges as the largest of these eigenvalues, i.e.

TC = Tmax. (4.35)

Key to the calculation of TC then are the correlation parameters S
(2)
ij . For small {mn} we

can assume only Heisenberg-like fields of the form

hint
i =

∑
j

S
(2)
ij mj , (4.36)

where the correlation parameters now take on the role of exchange parameters, which can be

determined with a sufficient number of evaluations of hint
n as a function of {mn}.

Our goal therefore with this mean-field description of DLM theory is to determine the

dependence of hint
n on the magnetic state characterised by {mn} (or equivalently, {λn}). We

achieve this through the KKR-DFT formalism, which allows for the use of the CPA and thus

the calculation of averages over the magnetic configurations according to H0. Greater detail

on these calculations will be provided in the next section.

4.1.5 Implementation via the coherent potential approximation

The primary challenge that remains is to calculate the statistical average of the grand po-

tential given a set of single-site probability distributions {P0(ên)}. In principle, with a large

enough unit cell, we could set up non-collinear, spin-polarised DFT calculations that give us

the total energy of a system that is magnetically disordered according to these probabilities.

This would be prohibitively costly however, requiring many thousands of uniquely-defined

atomic sites to manage only a modestly fine mesh of orientations. Instead we make clever

use of the CPA to construct an effective medium that approximates the average of the dis-
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= p(  ) + … =

Figure 4.2: The role of partial averages in determining the statistical averages of a system
is demonstrated through local magnetic orientations. The partial average is calculated by
taking a statistical average of the entire system over all sites except one, which itself has a
fixed value of the slowly-varying degrees of freedom (DOF). This is repeated for all possible
values of the DOF, then all the partial averages are weighted by the appropriate probability
and summed.

ordered system in the manner described in section 3.3. While the CPA is generally used to

model chemical disorder, it can just as effectively be used for magnetic disorder, allowing us

to immediately adapt the CPA condition in Eq. 3.118 to fit our mean field DLM framework,

giving us {∫
dênPn(ên)∆tn(ên) = 0

}
. (4.37)

To recap the previous discussion of the CPA and to help establish the updated notation, we

shall note that the scattering matrices ∆tn(ên) here describe the effect of embedding a local

moment with orientation ên in the effective medium at site n. The above condition therefore

states that the average effect of embedding an ensemble of these magnetic orientations should

be zero, in order to exactly reflect the rest of the effective medium. The following analysis is

dedicated to expressing this condition, expressed pictorially in Fig. 4.2, in such a way that we

are able to calculate the scattering matrices {tc,n} and path operators {τ c,nn} of the effective

medium.

The equivalent expression of the CPA condition in terms of total scattering matrices

is

T c =
∏
n

∫
dênPn(ên)T ({ên}), (4.38)

where T c is the T -matrix of the effective medium while T ({ên}) is the T -matrix of the system

whose local moments point along {ên}. The diagonal elements of the associated SPOs for

some site n0 are then

τ c,n0n0
=
∏
n

∫
dênPn(ên)τn0n0

({ên}) =

∫
dên0Pn0(ên0)〈τn0n0

〉ên0
, (4.39)
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where 〈. . . 〉ên0
denotes an average taken over every site except n0, at which the orientation

is fixed in the direction ên0 . It is useful to remind ourselves that τn0n0
({ên}) depends on the

structure-dependent free-particle Green’s function and the single-site scattering potentials,

{tn(ên)}, each of which depend on the orientation of their associated local moment. On the

other hand, τ c,n0n0
is constructed from the free-particle Green’s function and the coherent

potentials, {tc,n}. Invoking Eq. 3.119 and the subsequent manipulations, we find governing

equations for the coherent SPO τ c,n0n0
by starting with

τ−1
c,n0n0

= τ−1
n0n0

({ên}) + t−1
c,n0
− t−1

n0
(ên0), (4.40)

from which we have

τn0n0
({ên}) = Dn0

(ên0)τ c,n0n0
, (4.41)

where we have once again defined an impurity matrix

Dn0
(ên0) =

[
1−

(
t−1
c,n0
− t−1

n0
(ên0)

)
τ c,n0n0

]−1
. (4.42)

We then have the corresponding CPA equations as before, except now in integral form:{∫
dênPn(ên)Dn(ên) = 1

}
, (4.43)

which can be expressed in the more numerically suitable form,{∫
dênPn(ên)Xn(ên) = 0

}
, (4.44)

in which we have defined the excess scattering matrix,

Xn(ên) =
[
τ c,nn −

(
t−1
c,n − t−1

n (ên)
)−1
]−1

. (4.45)

Before we continue we will note a specific case that derives from Eq. 4.44. Setting {Pn(ên) =

1/4π} allows one to derive a simple and exact construction of the paramagnetic or “DLM”

state in which the effective medium is described by a 50-50 “alloy” of spin-up and spin-down

species.[25] An especially powerful application of this result is the efficient determination of

whether an atomic site has “good” local moments, in that the spin-up and spin-down species

have finite moments in the DLM state. The size of these moments in comparison to their

fully ordered value is generally a good measure of the local moment’s stability relative to the

magnetic state.

With that aside, we are now ready to describe the iterative procedure for determining

the self-consistent effective medium for the mean field DLM problem. Naturally, as with
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most DFT-based methods, we begin each iteration with the calculation of the electron and

magnetic moment densities, n(r) and µ(r), except here it is convenient to define single-

site densities nn(r) and µn(r) which are calculated within their associated muffin-tin zones.

Using Eq. 3.89 we can derive the partially averaged Green’s function

〈G(r, r, E)〉ên =Z(r −Rn, E)〈τnn(E)〉ênZ×n (r −Rn, E)

−Z(r −Rn, E)J×n (r −Rn, E),
(4.46)

which along with Eqs. 3.96 and 3.97 allows us to determine the partially averaged densities

〈nn(r)〉ên = − 1

π
Im Tr

∫ ∞
−∞

dEF (E − ν)〈G(r, r, E)〉ên , (4.47)

〈µn(r)〉ên = µB
1

π
Im Tr

∫ ∞
−∞

dEF (E)βnΣ〈G(r, r, E)〉ên , (4.48)

from which we have the full averaged single-site densities

〈nn(r)〉 =

∫
dênPn(ên)〈nn(r)〉ên (4.49)

〈µn(r)〉 =

∫
dênPn(ên)〈µn(r)〉ên (4.50)

We can derive an expression for the scattering path operator 〈τnn(E)〉ên by simply partially

averaging both sides of Eq. 4.41, providing

〈τnn(E)〉ên = Dn(ên)τ c,nn(E), (4.51)

due to only τnn({ên}) depending on the entire ensemble of moment orientations. With a

predetermined set of single-site probabilities {Pn(ên)} and reasonable guesses of the partially

averaged densities, the step-by-step process is thus:

1. Recalling Eq. 3.51, determine the partially average single-site muffin-tin potentials

〈Vn(rn)〉ên = Vext(rn) + (Vxc(r)− µBσ ·Bxc(r))|〈nn(r)〉ên ,〈µn(r)〉ên

+ e2

∫
Vn

dr′
〈nn(r)〉ên

4πE0|r − r′|

+ e2
∑
m6=n

∫
Vm

dr′
〈nm(r)〉ên

4πE0|r −Rn − r′ +Rm|
,

(4.52)

where the first term is the external potential, the second and third terms are the Local

Density Approximation (LDA) exchange-correlation potentials and the last two terms

make up the Hartree potential.
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2. Calculate the single-site scattering t-matrices {tn(ên)} and their corresponding spatial

solutions Zn(r, E) and Jn(r, E) using the single-site potentials. A convenient aspect of

the muffin-tin approach is that we can define a diagonal reference t-matrix whose spin

points along the z-axis,

tref
n =

(
t+n 0

0 t−n

)
, (4.53)

which can simply be rotated along ên using a unitary rotation matrix R(ên) such that

tn(ên) = R(ên)tref
n R(ên)+

=
1

2

(
t+(ên) + t−(ên)

)
I2 +

1

2

(
t+(ên)− t−(ên)

)
σ · ên.

(4.54)

3. Use {tn(ên)}, {Pn(ên)} and the structural information contained within the Green’s

function to solve the CPA condition expressed in the form found in Eq. 4.44, in order

to calculate the components of the effective medium, {tc,n} and {τ c,nn}.

4. Recalculate the partically averaged electronic and magnetic densities using Eqs. 4.47,

4.48 and 4.51.

5. Finally, check if the partially averaged densities are within reasonable agreement with

those that were input at step 1. If not, repeat this procedure from step 1 using the new

densities.

Ideally we would repeat this entire process for any set of single-site orientational probabilities

we wish to investigate. In order to save some computational effort however, if we can justify

that the scattering matrices {tref
n } depend very little on {Pn(ên)} then we may invoke the

rigid spin approximation and use the same tref
n for any set of probabilities. Physically, this

implies that we have “good” local moments whose magnitudes are thermally stable, usually

arising from sufficiently localised d and f electrons.

All that remains is to evaluate 〈Ωint〉0. We can do this by first expressing the grand

potential as

Ωint({ên}) = −
∫ ν

−∞
dν ′N(ν ′; {ên}), (4.55)

where N(ν; {ên}) is the spatially-averaged number of particles up to the chemical potential

ν. This can be calculated with

N(ν ′; {ên}) =

∫
drn(r; {ên}; ν ′) =

∫ ∞
−∞

dEn(E; {ên})F (E − ν ′), (4.56)

where we’ve used the definition of the density of states from Eqs. 3.99 and 3.100. Performing
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an average over the single site probabilities then provides

〈Ωint〉0 =
∏
n

∫
dênPn(ên)Ωint({ên})

= −
∏
n

∫
dênPn(ên)

∫ ν

−∞
dν ′N(ν ′; {ên}).

(4.57)

Finally, by using Eq. 4.56 and integrating by parts we arrive at

〈Ωint〉0 =

∫ ∞
−∞

dEF (E − ν)〈N(E)〉0

−
∫ ∞
−∞

dE

∫ ν

−∞
dν ′

∂〈N(E)〉0
∂ν ′

F (E − ν ′),
(4.58)

where we’ve defined the orientational average of the integrated density of states 〈N(E)〉0 as

〈N(E)〉0 ≡
∏
n

∫
dênPn(ên)N(E; {ên}). (4.59)

The first term in Eq. 4.58 depends only on the single-particle aspects of the grand potential

and is analogous to the magnetic force theorem[97], while the second term represents the

double counting corrections and can be shown to be negligible[25]. Using Lloyd’s formula

from Eq. 3.101, we can show that 〈N(E)〉0 is given by

〈N(E)〉0 = 〈N0(E)〉0 −
1

π
Im ln det

[
tc,n(E)−1 −G0,nm(E)

]
− 1

π
Im
∑
n

〈ln detDn(E, ên)−1〉,
(4.60)

which, noting that the final term is the only one that depends on {ên}, allows us to immedi-

ately determine the local Weiss fields

hint
n = −∂〈Ω

int〉0
∂mn

= − 1

π
Im

∫
dên

∂Pn(ên)

∂mn

∫ ∞
−∞

dEF (E − ν) ln detDn(ên). (4.61)

4.2 Empirical models for anisotropic temperature dependence

In this section we shall describe the evolution of empirical models for the temperature depen-

dence of magnetic anisotropy and magnetostriction. We will begin with Akulov and Zener’s

classical low temperature ml(l+1)/2 power law, where m is the normalised magnetisation,

which establishes a useful picture of how anisotropic phenomena are affected by thermal dis-

order. From there, Callen and Shtrickman’s model[98] evaluates the anisotropy at arbitrary

temperatures through m(T ), revealing that a ml power law emerges at high temperatures.
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Finally, we will discuss crystal field (CF) theory, which presently stands as the most general

possible empirical approach for modelling finite temperature anisotropy.

4.2.1 Akulov-Zener low temperature power law

A central assumption of the Akulov-Zener power law, as well as Callen-Callen and any other

so-called “single ion” approach, is that our magnetic system can be treated as a collection

of isolated magnetic moments whose contribution to the anisotropy depends only on the

local moment orientation and its crystal environment.[17] This allows us to tackle the prob-

lem of a single spin with an anisotropy energy governed by its local symmetry. Recalling

Eq. 2.19, we will first consider the example of a magnetic moment with orientation ê in a

cubic environment, with the single-site effective Hamiltonian

H(ê) = H0 +KC
1 (ê2

xê
2
y + ê2

y ê
2
z + ê2

z ê
2
x), (4.62)

where we have neglected higher order anisotropy terms. Assuming that the anisotropy con-

stant itself is independent of temperature, the free energy density at temperature T is then

FK(T, n̂) = F0(T ) +KC
1 〈α2

1α
2
2 + α2

2α
2
3 + α2

1α
2
3〉T,n̂, (4.63)

where n̂ is the average moment orientation. Equivalently, by rolling the thermal variation of

the orientational average into the anisotropy constant, we have

FK(T, n̂) = F0(T ) +KC
1 (T )(n̂2

xn̂
2
y + n̂2

yn̂
2
z + n̂2

zn̂
2
x), (4.64)

showing that our goal is to find K(T ) by evaluating the dependence of the orientational

average on m(T ) = 〈ê〉T,n̂. At low temperature we can use the approximation 〈êz〉T,[001] =

〈1− θ2/2〉T,[001] and a change in reference frame to find the energy density when the system

is magnetised along [001] and [011],

FCK (T, [001]) ≈ F0(T ) + 2KC
1 (0)[1−m(T )],

FCK (T, [011]) ≈ F0(T ) + 2KC
1 (0)[m(T )− 7/8],

(4.65)

We can then eliminate the direction-independent term, giving us

FCK (T, [011])− FCK (T, [001]) ≈ 1

4
KC

1 (0)[1− 10 (1−m(T ))] =
1

4
KC

1 (T ), (4.66)

KC
1 (T )

KC
1 (0)

≈ 1− 10(1−m(T )), (4.67)
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Figure 4.3: Depiction of the temperature dependence of anisotropy energy. The energy at A′

is greater than at A as the moment thermally fluctuates over a small range of angles and thus
“samples” the energy surface outside of the local minimum. For similar reasons, the energy
at B′ is less than that at B. As a result, as temperature and thermal fluctuations increase,
the anisotropy decreases. Adapted from Ref. 17.

which we can recognise as the first order Taylor expansion of m10 about m = 1, i.e. T = 0,

implying that

KC
1 (T )

KC
1 (0)

≈ m10 T � TC (4.68)

This is Akulov’s classical 10th power law,[99] which Zener[100] would later generalise by

expressing the anisotropy energy of a system with generic symmetry in terms of spherical

harmonics, Y m
l (ê), deriving

K l(T )

K l(0)
≈ ml(l+1)/2, T � TC. (4.69)

Cubic symmetries therefore correspond to l = 4, hence the 10th power law, while uni-

axial symmetries with the leading term KU
1 = sin2 θ have l = 2 and thus a 3rd power

law. Though it is clearly a rather restrictive model, it proves to be accurate for systems

where localised moments are the dominant source of magnetism and is even accurate for

certain itinerant magnets such as iron up to T ∼ 0.65Tc, though it is important to note

that other itinerant magnets can exhibit different behaviour entirely, such as nickel’s 50th

power law.[17] Its straightforward derivation also provides a useful picture of the relationship

between temperature-induced spin fluctations and magnetocrystalline anisotropy (MCA), ac-

centuated by Fig. 4.3.
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4.2.2 Callen-Shtrikman arbitrary temperature model

We now seek to generalise the above results further by determining the dependence of the

anisotropy on m(T ) at an arbitrary temperature. After Akulov and Zener’s contributions to

the single ion model, Van Vleck[101] would determine a much more general expression for

the temperature dependence of anisotropic phenomena in terms of the averages of spherical

harmonics Y 0
l ,

K l(T )

K l(0)
=
〈Y 0
l (S)〉T
〈Y 0
l (S)〉0

, (4.70)

where S can be either quantum or classical spin, i.e. their magnitude and direction may be

discretised or continuous. The key challenge that remained was determining an appropriate

statistical model for the averages, a challenge that could previously be bypassed by working

at low temperatures. Callen and Shtrickman showed that the probability distribution in most

cases is simply

P (m) =
exp{(X(T )m)}

Tr exp{(X(T )m)}
, (4.71)

where X(T ) is an appropriately-chosen function of temperature and m is defined by m ≡ S ·ê.
It turns out that a molecular field theory like that of DLM, where X(T ) ∝ 〈m〉/kBT , is an

ideal candidate, though it is worth noting that the following analysis is not specific to this

choice. In the classical case, where m = cos θ, we have

〈Y 0
l (S)〉T = 〈Y 0

l (m)〉T =

∫
dmY 0

l (m) exp{(X(T )m)}∫
dm exp{(X(T )m)}

, (4.72)

which can be expressed in terms of hyperbolic Bessel functions so that

K l(T )

K l(0)
=
Il+1/2(X)

I1/2(X)
. (4.73)

In order to relate this result to m(T ), we notice that m(T ) is itself a subset of these solutions

where l = 1, as m(T ) = 〈cos θ〉T , so the function X can be evaluated from

X(T ) = Î−1
3/2 (m(T )) , (4.74)

where we have defined Îl+1/2 = Il+1/2/I1/2. With some effort, equivalent results can also

be derived for the quantum mechanical case for different values of S,[17] with small but

meaningful differences compared to the classical limit. In Figure 4.4 we plot the classical

results for l = 2 and l = 4, representing uniaxial and cubic systems respectively. A significant

outcome from this model is the emergence of an lth power law close to the paramagnetic

region, which smoothly transitions to the already-established l(l + 1)/2th power law at low
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Figure 4.4: The magnetic order parameter dependence of the anisotropy energy for uniaxial
(including tetragonal) and cubic crystal symmetries, according to single ion theory. Labels
denote the power laws that describe the associated black curves.

temperatures.

Up until now we have neglected the temperature dependence of magnetostriction in

these models, in truth because the relation between these results and the magnetoelastic

constants is almost trivial. First, for the normal magnetoelastic constant B1, consider the

first derivative of the temperature dependent free energy with respect to u33, which may be

expressed in the form
∂F (T, θ)

∂εzz
=
∂Fel(T )

∂εzz
+B1(T ) cos2 θ. (4.75)

Recalling the derivation of the temperature dependence of the MCA, we proceed by assuming

that the temperature dependence is captured by fluctuations of the moment orientation,

providing
∂F (T, θ)

∂εzz
=
∂Fel(T )

∂εzz
+B1(0)〈cos2 θ〉T,n̂ (4.76)
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and thus, by setting the average orientation parallel to [001], we have

B1(T ) = B1(0)〈cos2 θ〉T,[001]. (4.77)

The temperature dependence is immediately determined by noticing that the averaged quan-

tity is equivalent to that of the uniaxial anisotropy, meaning it exhibits m3 behaviour at low

T and m2 behaviour at high T . This is expected, as the magnetoelastic terms must share

the lowest order symmetry of their corresponding strained structures. This holds true for B2,

which shows the same temperature dependence as the anisotropy of monoclinic structures

(l = 2), as well as with magnetoelastic constants associated with any other symmetry.

4.2.3 Crystal field theory

Presently, CF theory is the most general tractable approach to empirically modelling anisotropic

magnetic phenomena. It is possible to derive all the previous results we have discussed from

its formulation. An excellent overview of the theory and its application to REs and RE-

transition metal (TM) compounds is provided by Kuz‘min and Tishin’s review[47]. Here we

will provide some of the broad strokes of their work while giving particular focus to RE-TM

systems.

Fundamentally, CF theory is still a single-ion approximation, justified by the experimentally-

observed almost-non-interaction of rare earth magnetic moments in elemental and intermetal-

lic systems. In the case of rare earth-transition metal (RE-TM) materials, there is a consistent

hierarchy between the magnitudes of the sub-lattice exchange interactions, namely

JTM-TM � JRE-TM � JRE-RE ≈ 0. (4.78)

One important consequence of this hierarchy is that the temperature dependence of the

magnetisation is dominated by the TM sublattice and the RE-TM exchange only acts to

renormalise TC, while the effect of the RE-RE interaction is negligible. It also means that

we can once again apply the single-ion approximation and focus on a single RE atom, or

more specifically the 4f shell of that atom, that is under the influence of three main fields:

a Zeeman interaction from an applied field B; the exchange field set up by the TM atoms

Bex; and the crystal field that arises from the electrostatic interaction between the 4f orbitals

of the RE atom’s N valence electrons and their local crystal environment. The appropriate

Hamiltonian is then

Ĥ4f = ĤCoulomb + ĤSO + 2µBB̂ex · Ŝ + µBB · (L̂+ 2Ŝ)− e
N∑
i=1

VCF(ri), (4.79)
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where ĤCoulomb and ĤSO are the Coulomb and spin-orbit (SO) interactions within the 4f

shell.

In order to construct the CF potential VCF for each 4f electron, the coordinates of

which are given in real space by ri, we expand them over a suitable basis such as the spherical

harmonics Y m
n (θ, φ), so that

VCF(r, θ, φ) =
∑
n

n∑
m=−n

(
4π

2n+ 1

) 1
2

Vnm(r)Y m
n (r̂). (4.80)

Because the electric charges associated with VCF lie outside the region of the 4f shell, its

radial portion is provided by solutions to Laplace’s equation, i.e.

Vnm = Anmr
n, (4.81)

where Anm are the all-important CF parameters, the various forms of which relate directly

to the anisotropy constants. The CF term of the 4f Hamiltonian in Eq. 4.79 is therefore

ĤCF = −e
N∑
i=1

∑
n

n∑
m=−n

(
4π

2n+ 1

) 1
2

Anm〈rn〉4fY
m
n (r̂i). (4.82)

The key to the tractability of CF theory is the assumption we make as to the energetic

hierarchy between terms in Eq. 4.79. There are a number of different considerations outlined

in Ref. [47], but we shall focus on the single-multiplet approximation which assumes that

ECoulomb � Es-o � Eex ∼ EZeeman ∼ ECF. (4.83)

We can recognise this as a similar underlying assumption to the Russel-Saunders L-S coupling

scheme that was outlined in section 2.1.1, through which L, S and J = L+S are determined.

Ĥex, ĤZeeman and ĤCF can subsequently be treated as perturbations to the ground state 2J+1

manifold, allowing us to write the CF Hamiltonian as

ĤCF = −e
∑
n

n∑
m=−n

(
4π

2n+ 1

) 1
2

Anm〈rn〉4fY
m
n (Ĵ), (4.84)

in which we see that the spherical harmonics are now given in terms of the total angular

momentum.

Before moving on, let us briefly consider the physical picture that these equations

describe. The domination of the Coulomb and SO interactions over the CF interaction, due

in large part to the locality of the 4f shell, means that we can consider a single, isolated atom

whose eigenstates spin and orbital eigenstates |LSJMJ〉 are determined by Hund’s rules.
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The local crystal field, set up by the comparatively small electrostatic interaction between

the orbitals and the nearby atoms, perturbs these states via an effective central potential VCF.

The rigid alignment of the spin and orbital momenta allows us to expand this potential in

terms of spherical harmonics of the total angular momentum, Y m
n (Ĵ), and we can eliminate

certain terms of the expansion by considering the local point symmetry.

We return to the problem by stating the full single-ion Hamiltonian in the single-

multiplet approximation,

Ĥ4f = 2(gJ − 1)µBBex · Ĵ + gJµBB · Ĵ +
∑
n,m

(
4π

2n+ 1

) 1
2

BnmY
m
n (Ĵ), (4.85)

where gJ is the Landé g-factor and we have used an alternative form of the CF parameters,

Bnm = −eAnm〈rn〉4f. From this we have our usual expression for the free energy

F4f(θ, φ) = −kBT lnZ4f(θ, φ), (4.86)

where the partition function is

Z4f(θ, φ) = Tr exp

(
− Ĥ4f

kBT

)
. (4.87)

While there is not an explicit expression for F4f(θ, φ), there are many specific cases and

approximations that one can take advantage of.[47] To conclude this section we shall detail the

linear-in-CF approximation, which is our bridge between CF theory and the MCA constants,

as well as the empirical models for finite temperature anisotropy that we have previously

discussed. The linear-in-CF approximation assumes that the anisotropy energy Ea can be

calculated as a first-order perturbation of F4f in ĤCF, so that

Ea = 〈ĤCF〉T,n̂ =
∑
n

(
4π

2n+ 1

) 1
2

B′n0〈Y m
n (Ĵ)〉T,n̂, (4.88)

where B′n0 are CF parameters in the coordinate system where z is parallel to the direction

of magnetisation n̂. They are related to the usual CF parameters by

B′n0 =

(
4π

2n+ 1

) 1
2

n∑
m=−n

BnmY
m
n (n̂). (4.89)

The thermal averages are given in terms of the generalised Brillouin functions (GBFs) B
(n)
J (x)
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by (
4π

2n+ 1

) 1
2

B′n0〈Y m
n (Ĵ)〉T,n̂ = JnB

(n)
J (x), (4.90)

where we define x through the temperature dependence of the RE magnetic moment,

µRE = −gJµB〈Ĵ〉T,n̂ = sign(1− gJ)gJµBJBJ(x). (4.91)

Finally, through the generalised expression for the anisotropy,

Ea =
∑
n

n∑
m=−n

(
4π

2n+ 1

) 1
2

κnmY
m
n (n̂), (4.92)

we can express the temperature dependence of the anisotropy coefficients in terms of the CF

parameters and GBFs,

κnm = BnmJ
nB

(n)
J (x). (4.93)

4.3 A first principles method for calculating magnetoelasticity

at finite temperature

While the empirical methods that we described in the previous section have been vital for

developing our understanding of anisotropic phenomena, they have some clear limitations.

Reliance on experimental measurements aside, the types of systems that these models apply

to are quite specific, their central assumption being that the dominant contribution to the

anisotropy is from atoms that are effectively non-interacting. It is essential therefore that

we use electronic structure methods to calculate anisotropic quantities, so that we can tackle

itinerant systems from first principles. In this section we will detail some of the challenges

that are inherent to these calculations, the role of the torque method and finally how it can

be implemented into the DLM framework in order to calculate anisotropic quantities at finite

temperature.

4.3.1 Anisotropic energy scales and the torque method

It is generally accepted that the lack of an orbital moment in non-relativistic DFT is an

acceptable compromise in most cases, due mainly to the significant overlap between systems

where the orbital momentum is quenched and the kind of magnetic systems that DFT excels

at modelling. However, though SO coupling is usually expected to be irrelevant on the scale

of total energy calculations, its presence is vital for the emergence of anisotropic phenomena.

This immediately introduces a computational penalty, due simply to the increased number
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of components that are required to solve the relativistic Kohn-Sham equations outlined in

Eq. 3.37.

Accepting this, one may assume that we proceed by simply calculating the difference

in energy density between a number of special angles, thus eliminating the isotropic energies.

Consider a cubic structure with anisotropic free energy given by Eq. 2.19, the anisotropy

constants K1 and K2 are provided by

FC
[011] − F

C
[001] =

1

4
K1, (4.94)

FC
[111] − F

C
[001] =

1

3
K1 +

1

27
K2. (4.95)

As for magnetoelasticity, it could be resolved by deforming the crystal and determining the

response of the MCA. Indeed, this approach has been used for a number of decades now,[102,

103] including in conjunction with the magnetic force theorem, where small perturbations to

of the energy can be calculated using only the band energies.[104] However, with MCA and

magnetoelastic energies ranging between meV and µeV, this approach has proven to be quite

unreliable due to the several orders of magnitude that separates them and the total energy.

In order to adequately resolve these tiny energy differences, highly expensive calculations are

required in which momentum-space is very finely sampled.

A more recent development has been the torque method,[9] which takes inspiration

from the experimental use of torque magnetometry [105] by determining MCA coefficients

through angular derivatives of the free energy, thus eliminating the computational challenge

inherent to resolving small differences between large numbers. To demonstrate this approach,

we consider the energy density for an undeformed cubic crystal,

FC(θ, φ) = F0 +
1

4
K1(sin2 2φ sin4 θ + sin2 2θ)

+
1

4
K2 sin2 2φ sin4 θ cos2 θ,

(4.96)

which has been re-written in terms of θ and φ for the sake of clarity. The magnetic torque

Tθ(φ) = −∂F
C(θ, φ)

∂θ(φ)
, (4.97)

can be understood physically as the angular force that acts upon a system in a manner

that encourages it to align along its easy axis (or easy plane, cone etc.). For our particular
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unstrained cubic system we have an azimuthal torque of

TCθ (θ, φ) = −1

2
K1(2 sin2 2φ sin3 θ cos θ + sin 4θ)

−1

2
K2 sin2 2φ(4 cos3 θ sin3 θ − 2 cos θ sin5 θ).

(4.98)

The calculation of this quantity at an appropriate number of special angles then allows for

the calculation of the MCA coefficents without the need to calculate tiny energy differences.

For example, in the above case we have

TCθ (θ = 22.5◦, φ = 0◦) =
1

2
K1

TCθ (θ = 45◦, φ = 45◦) =
1

4
K1 +

1

16
K2,

(4.99)

which when rearranged gives the simple expressions

K1 = 2TCθ (θ = 22.5◦, φ = 0◦),

K2 = 16TCθ (θ = 45◦, φ = 45◦)− 4K1.
(4.100)

4.3.2 Relating torque to magnetoelasticity

The torque method is just as elegant in calculating the magnetoelastic coefficients. To calcu-

late B1, the uniaxial magnetoelastic constant for cubic systems, we consider a cubic system

strained along the [0 0 1] direction (εzz = uz) with all other strain components set to zero.

From Eq. 2.27 the angular-dependent magnetoelastic contribution to the energy density is

then simply

Fme(uz, αz) = B1uz cos2 θ, (4.101)

and fixing θ = 45◦ gives

Tθ(θ = 45◦) = B1uz. (4.102)

The magnetoelastic constants can thus be understood as the linear response of the magnetic

torque to the structural distortion, which is resolved at a magnetisation direction such that

the torque in the cubic configuration is zero. A distinction should be drawn between the

artificial strain that is used here to determine B1 and the real strain that is observed in

experiment. The latter is governed by the system’s Poisson ratio ν, meaning that a strain in

the z-axis is coupled with perpendicular strains such that ν = −Exx/Ezz = −Eyy/Ezz. It

is not required that the simulated strain maintain Poisson’s ratio however, as its purpose is

only to determine B1.
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4.3.3 Calculating torque within the disordered local moment framework

Now that we have firmly established the relationship between magnetic torque and anisotropic

phenomena, all that remains is to actually calculate it. Working within the DLM framework

established in section 4.1 and following the work of Ref. [26], we seek the angular derivative

of the free energy in Eq. 4.22,

F (n̂) = 〈Ω(n̂)〉0 +
1

β

∑
n

∫
dênP

(n̂)
n (ên) lnP (n̂)

n (ên), (4.103)

which we have re-expressed here without the external field term, dropped the implied “int”

superscript and added the superscript (n̂) to denote the dependence on the average direction

of magnetisation. As the second term, the sum of each single site entropy, is invariant with

respect to n̂ we can write the magnetic torque in terms of the partial average of the grand

potential,

Tθ(φ) =
∂

∂θ(φ)

(∑
n

∫
dêP (n̂)

n (ên)〈Ω(n̂)〉ên

)
, (4.104)

which becomes

Tθ(φ) = − 1

π

∫
dEF (E − ν(n̂))

(∑
n

∫
dên

∂P
(n̂)
n (ên)

∂θ(φ)
ln detD(n̂)

n (ên)−1

)
. (4.105)

Finally, by looking at the form of ∂P
(n̂)
n (ên)/∂θ(φ) we arrive at our principle expression for

the magnetic torque for some set of orientational probability distributions {P (n̂)
n (ên)}:

− 1

π

∫
dEF (E − ν(n̂))

∑
n

(∫
dênβhnP

(n̂)
n (ên) ln detD(n̂)

n (ên)−1

)(
∂n̂

∂θ(φ)
· ên
)
. (4.106)

4.3.4 A first principles method for calculating magnetoelasticity at finite

temperature

Here we shall finally detail our procedure for calculating magnetoelasticity at finite tempera-

ture. This will include specific steps on how to calculate B1, to aid the reader’s understanding

and to establish the methods used for following sections of this thesis. The procedure is as

follows:

1. Perform a self-consistent, scalar-relativistic calculation - in which SO coupling is ne-

glected - on the unstrained system.

2. Perform the steps outlined in section 4.1.5 to find the molecular field hn of each sub-

lattice for some set of probability distributions defined by {λn}. Skip the next step if

there is only one sublattice with a local moment.
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3. Using an appropriate iterative procedure, repeat step 2 until the set {λn} is determined

such that {hn/kBλn = T}.

4. Using the “frozen” atom-centred potentials generated in the first step and the set {λn}
that was found in the previous two steps, perform a non-self-consistent, fully-relativistic

calculation on a strained structure where the magnetic disorder is characterized by {λn},
magnetized along a high-symmetry direction that is appropriate for the determination

of the magnetoelastic constant of interest. In the case of cubic systems, the strain is uz

(no more than 1 %) and the magnetisation direction is n̂ = (1, 0, 1)/
√

2.

5. Repeat the previous step for a set of strains in order to calculate the torque Tθ(φ) at

a fixed angle as a function of u, and extract the magnetoelastic constant as the linear

coefficient. For each strain, it may be necessary to adjust the Fermi energy to preserve

the total number of electrons. In the cubic case, this linear coefficient is found according

to Eq. 4.102.

6. Repeat steps 2 onwards for different temperatures. It is generally the case that for

highly disordered systems (λ < 2), convergence is found more efficiently by fixing the

value of λ for a single sublattice, rather than fixing T .

The scalar-relativistic calculations in step 1 are performed using the KKR-CPA hutsepot

code,[106] treating the DFT exchange-correlation in Eq. 3.23 at the level of the Local Spin-

Density Approximation (LSDA)[107] - an extension of the LDA that incorporates spin-

polarisation - and using either the muffin-tin or atomic sphere approximation scheme to

handle the atomic potentials in Eq. 3.61. Two different forms of potentials are referred to

in our results: FM and DLM. The former refers to the potentials generated by step 1 in the

fully-ordered state, while the latter refers to potentials that are generated in the paramagnetic

state corresponding to T ≥ TC, using the 50-50 alloy analogy as described in section 4.1.5.

In step 2 we solve the Kohn-Sham-Dirac and CPA equations - Eqs. 3.37 and 3.124 respec-

tively - to obtain the Weiss fields, as well as the torques in step 5.[26] We use an adaptive

Brillouin zone sampling scheme to perform integrals over momentum-space,[97] while energy

integrals are performed in the complex plane. Magnetic moment orientations are sampled

in a 250×40 grid that is equally spaced in cos θ′ and φ′, in order to obtain the necessary

numerical precision to resolve the magnetoelastic coupling energies.[108] Due to the SO in-

teraction and also the magnetic disorder, it is necessary to carefully adjust the Fermi energy

between the scalar ferromagnetic and fully-relativistic DLM calculations, so that integrating

the calculated density-of-states yields the correct number of electrons per unit cell.[109]

In the following chapters we will apply this method to study the magnetostrictive

temperature dependence in bcc Fe, the bcc Fe-rich alloy Fe1−xGax and the cubic Laves phase
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RE-TM GdFe2 - providing a model for the itinerant components of the magnetostriction

in Terfenol-D. The latter results will accompany a preliminary study of the temperature-

dependent magnetic properties of the REFe2 cubic Laves phase family of compounds (RE =

Y, La, Gd-Lu).
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Chapter 5

Transition metal magnetostriction

at finite temperature

In this chapter, as well as the one that follows, we seek to scrutinise the method we have

established for calculating the magnetostriction of magnetic materials at finite temperature.

We shall begin by focusing on systems made up only of transition metals. While it is well

known that the rare earth elements are responsible for the giant magnetostriction of mate-

rials like Tb1−xDyxFe2 (Terfenol-D), a recently discovered material - Fe-based alloy Fe-Ga

(Galfenol)[36, 110] - has ∼10% of the magnetostriction of Terfenol-D but has proven to be

a viable alternative due to its low cost and high mechanical strength.[4] Galfenol’s relatively

simple crystal structures, the lingering questions on its zero and finite temperature magne-

tostrictive properties and its real-world applicability makes it an ideal candidate for testing

our method’s treatment of itinerant magnetism. Before addressing Galfenol however, we

focus first on pure Fe.

As we discussed in the introduction to the thesis, bcc Fe is a curious enough case

in itself due to the anomalous temperature dependence of its magnetostriction, which devi-

ates dramatically from single-ion theory. An interesting hint regarding the magnetostriction

of Fe has however been provided by empirical calculations based on a tight-binding model,

which showed that a non-monotonic temperature dependence could arise as a result of a

temperature-dependent electronic band structure.[111] We focus on the tetragonal [001] mag-

netostrictive distortion, its corresponding magnetoelastic constant being B1 as described in

section 2.3.2. While our method could in principle be applied also to study a [111] distortion,

we do not address it in this study owing to the greater difficulty in obtaining an accurate

description of this from zero temperature Density Functional Theory (DFT) calculations.[112]
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Figure 5.1: Torques Tθ calculated for bcc Fe magnetized along the direction n̂ = (1, 0, 1)/
√

2
with a strain applied along the [0 0 1] direction, for different magnetic order parameters m.

5.1 A case study of bcc Fe

5.1.1 Extracting the magnetoelastic constant

We begin by illustrating our method of extracting B1 from the torque calculations. Fig. 5.1

shows Tθ=45◦ calculated as a function of strain for three values of the magnetic order pa-

rameter m, namely m = 1.0, 0.8 and 0.6; m = 1.0 corresponds to the fully-ordered, zero

temperature state. We show data calculated with the cubic lattice parameter a set to 5.20

or 5.40 bohr radii (atomic units, a.u.). 5.20 a.u. (squares in Fig. 5.1) corresponds to the zero

temperature bcc Fe lattice constant obtained from the scalar-relativistic KKR calculations

within the LSDA and muffin tin approximation, while 5.40 a.u. (triangles) corresponds to the

low temperature lattice constant measured experimentally.[48]

The straight line fits of the data of Fig. 5.1 confirms the linear relation between torque

and strain described by equation 4.102. The negative gradient implies a negative value of B1,

and therefore a positive magnetostriction through equation 2.35. However, clearly both the

zero temperature (m = 1) value of B1 and its evolution with temperature depends strongly

on which cubic lattice constant is used. Using the theoretical lattice constant of 5.20 a.u.

finds B1 to decrease in magnitude as the moments become more disordered, while at the

experimental lattice constant of 5.40 a.u. the magnitude of B1 undergoes a peak (steeper

gradient) at m=0.8 compared to m = 1 and 0.6.
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5.1.2 Volume dependence of magnetoelasticity

To further investigate the dependence of B1 on the bcc lattice constant, we extend the

calculations shown in Fig. 5.1 to cover the full range of magnetizations 0 ≤ m ≤ 1 and lattice

parameters 5.20–5.50 a.u. This range includes the lattice parameter measured at the Curie

temperature 1040 K of 5.47 a.u.[48] The data are plotted in Fig. 5.2.

Considering the zero temperature (m = 1) data first we find that, as the lattice

parameter is increased from 5.20 to 5.45 a.u., a monotonic increase in B1 occurs. This

includes a change in sign of B1 between a = 5.40 and 5.45 a.u. from negative to positive, i.e.

going from positive to negative magnetostriction. Expanding the lattice further to 5.50 a.u.

results in a reduction in B1. The dependence of B1 on volume is very strong, particularly

around the experimental lattice parameter of 5.40 a.u.

As the temperature increases (decreasing m) the behavior of B1 is also dependent on

volume. At the theoretical lattice constant the magnitude of B1 decreases monotonically.

As the lattice parameter is increased beyond 5.35 a.u. a second feature develops, which is

a peak in the magnitude of B1 at values of m between 0.7–0.8. This peak remains even

at larger lattice spacings when the zero temperature magnetostriction has changed sign. At

higher temperatures (m < 0.6) the data for the various lattice parameters effectively coalesce,

vanishing at the Curie point m = 0.

5.1.3 Comparison to experiment and previous calculations

As we discussed at the end of chapter 2, experiments do not provide direct access to B1 but

rather measure the fractional change in length λ001.

In Fig. 5.3 we show the previously-reported experimental data[19, 23, 44–47] used

to derive the magnetoelastic constant B1. B1 is calculated as a function of temperature

from the elastic constants and [0 0 1] magnetostriction shown in Figs. 5.3 (b) and (c)

using equation 2.35, and plotted in Fig. 5.3(d). We then use the reduced magnetization

data in Fig. 5.3(a) to map the temperature axis onto m (Fig. 5.2). For this mapping it

is convenient to use the parametrization of the experimental data introduced in Ref. 47,

m(τ) = [1 − sτ3/2 − (1 − s)τp]1/3 with τ = T/TC , s = 0.35, p = 4 and TC = 1044 K. This

parametrization is also shown in Fig. 5.3(a). The bottom half of Fig. 5.2 shows the result-

ing values of B1, derived from two different sets of magnetostriction measurements reported

in Refs. 19 and 23. The experimentally-measured values of B1 show an initial decrease in

magnitude with temperature, followed by an increase to a maximum value at m = 0.85

before decreasing again. As described in the introduction to this thesis, the origin of this

non-monotonic behavior has been debated for well over 50 years.[20, 24, 111] Although there

is disagreement among experimental studies about the presence of another peak in B1 at

81



-15

-10

-5

 0

 5

 10

 15

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-B
1
 (

M
J/
cm

3
)

Reduced magnetisation M(T)/M(0)

Increasing temp.

5.20 a.u.
5.25 a.u.
5.30 a.u.
5.35 a.u.
5.40 a.u.
5.45 a.u.
5.50 a.u.

 0

 1

 2

 3

 4

 0.4 0.5 0.6 0.7 0.8 0.9 1

-B
1
 (

M
J/
cm

3
)

Reduced magnetisation M(T)/M(0)

Tatsumoto et al.
de Lacheisserie and Monterroso

Figure 5.2: Top: The variation in the (negative) magnetoelastic constant B1 with respect to
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-

Figure 5.3: Experimentally-measured values, for bcc Fe, of (a) reduced magnetization
(Ref. 46) (b) elastic constants (Ref. 44 for 0-300K and Ref. 45 for >300K); and (c) mag-
netostriction λ001 (Ref. 19, red circles; Ref. 23, blue triangles). The line connecting the
magnetization data in (a) is the function introduced in Ref. 47 as described in the text. The
magnetoelastic constants calculated using equation 2.35, the elastic constants and the two
magnetostriction datasets are shown in (d).
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much lower temperature,[19, 22, 23] the peak at m = 0.85 is consistently observed, and re-

sults in an enhancement in the magnetostriction λ001 of ∼50% at 800 K compared to its zero

temperature value.[23]

Now considering our calculations, concentrating on zero temperature first, we note

that calculations at both the theoretical and experimental lattice parameters (5.20 and

5.40 a.u.) yield a negative B1 as in experiment. Indeed the calculated values of B1 are

reasonably close to experiment, ranging between -15.0 and -2.5 MJm−3 compared to the

experimental values of -3.3[19] and -4.4 MJm−3.[23] Previous zero temperature calculations

based upon the LSDA but using different methodologies (e.g. full potential rather than the

muffin tin approximation) also found values for B1 in the range between -7.4 and -10.1 MJm−3

when using theoretical lattice parameters[11, 12], while Ref. 13 found that at the experimen-

tal lattice parameter B1 =-8.3 MJm−3. To our knowledge, our study is the first to investigate

the effect on B1 of systematically varying the lattice constant.

Going beyond zero temperature, we now arrive at the novel aspect of our study, which

is being able to compare the temperature dependence of B1 calculated ab initio to experiment

(Fig. 5.2). It is very encouraging to observe that the anomalous peak in the magnitude of B1

observed experimentally appears also in the calculations, for a wide range of lattice constants

(±2% of the experimental value of 5.40 a.u). Given that the calculations are performed with

static ions and no impurities, our results support the idea that the non-monotonic behavior

of B1 in bcc Fe is an intrinsic effect distinct from magnon-phonon coupling,[20] and instead

can be explained in terms of the finite temperature magnetic disorder inducing changes in

the electronic structure[111] and enhancing the magnetoelastic coupling.

5.1.4 Consideration of thermal expansion

In Fig. 5.4 we show the lattice constants of bcc Fe reported in Ref. 48. The data is reported as

a function of temperature in Ref. 48 [Fig. 5.4(a)]; we use the experimentally measured mag-

netization data and parametrization showed in Fig. 5.3(a) to replot the data as a function of

reduced magnetization m in Fig. 5.4(b). The factor of 1.00202×10−10 was used to convert kX

units into metres. It can be seen in Fig. 5.3(b) that a decrease in m from 1.0 to 0.8 corresponds

to an increase in lattice constant of 0.05 a.u. which, as shown in Fig. 5.2, will have a major

effect on B1. We can attempt to account for this thermal expansion by interpolating the val-

ues of B1 calculated at a = 5.40, 5.45, 5.50 a.u. to match the experimentally-measured lattice

constants, making sure to also account for the volume dependence of the magnetization.

Fig. 5.5 shows the result of this interpolation. The main difference compared to the

fixed-lattice calculations in Fig. 5.2 is an initial rapid decrease in the magnitude of B1 as

m decreases from 1.0 to 0.95. We note that this modest decrease in m corresponds to a

temperature interval of 0–450 K and increase in lattice parameter of 0.02 a.u. Accordingly
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the interpolated value of B1 at m = 0.95 lies approximately halfway between the values

calculated for lattice constants of 5.40 and 5.45 a.u, -1.2 MJm−3, which is smaller than

the zero temperature value of -2.5 MJm−3. Increasing the temperature further leads to the

interpolated value coinciding with the 5.45 a.u. calculation at m=0.8 and then subsequently

tracking the 5.45 and 5.50 a.u. calculations.

Considering again the experimental data in Fig. 5.2 we see that the calculations in-

cluding thermal expansion effects provide an explanation for the initial decrease in B1 at low

temperature. According to the zero temperature calculations, increasing the cubic lattice pa-

rameter pushes B1 towards a more positive value, favouring negative magnetostriction. This

sensitivity is particularly large around the experimental zero temperature lattice parameter

(Fig. 5.2). Therefore, as the lattice constant increases due to thermal expansion whilst the

magnetization is effectively constant, the magnitude of B1 decreases. At higher temperature

(m ∼ 0.8) the peak in B1 calculated for the wide range of lattice parameters dominates. Fi-

nally, as the temperature further increases the magnetoelastic constant reduces to zero with

the magnetic order parameter, which we consider further in the next section.

At this point it is natural to ask whether experiments also observe a strong sensitivity

of the magnetostriction to lattice parameter a. Experimentally, Franse et al.[113] determined

that the application of pressure to bcc Fe increases λ001 at a rate of 0.8 × 10−6 kbar−1. In

order to calculate the rate of change of B1 with respect to lattice parameter a we apply the
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plotted on a logarithmic scale and fitted to a power law Amγ .

chain rule to Eq. 2.35, deriving the expression [introducing c′ = (c11 − c12)/2]

∂B1

∂a
= −3

(
λ001

∂c′

∂P
+ c′

∂λ001

∂P

)/
∂a

∂P
. (5.1)

The pressure derivatives ∂c′/∂P [114] and ∂a/∂P [115] are 1.07 and 1.1×10−3a.u. kbar−1 re-

spectively. Therefore experimentally, ∂B1/∂a=-680 MJm−3 a.u.−1. This value is indeed

consistent with our calculations, which at the theoretical lattice parameter (a = 5.20 a.u.)

give ∂B1/∂a=-360 MJm−3 a.u.−1, while at a = 5.40 a.u. give ∂B1/∂a=-1100 MJm−3 a.u.−1.

5.1.5 High temperature power law behavior

In Fig. 5.6 we focus on the high temperature behavior of the magnetoelastic constant, plotted

on a logarithmic scale for lattice parameters a = 5.20, 5.30, 5.40 and 5.50 a.u. For m ≤ 0.25

the data demonstrates good agreement with a power law relationship, which we fit in this

region as B = Amγ with γ = 2.2–2.6, as shown in the figure. We recall that the high

temperature behavior expected from single ion theory[116] is γ = 2. There is reasonable

agreement between single ion theory and the calculations, particularly at a = 5.30, 5.40 and

5.50 a.u., for m ≤ 0.25.

It should be noted however that the m2 behavior predicted by single ion theory is

expected to hold for m ≤ 0.65, which is clearly not the case in the calculations. We also
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tive/negative scales respectively) in bcc Fe for a = 5.30 (red, solid), 5.40 (blue, dashed)
and 5.50 a.u. (green, dotted), where zero energy corresponds to the Fermi energy.

point out that both single ion theory and the DFT-Disordered Local Moment (DLM) picture

are mean-field theories, so while there is agreement between theory and our calculations, they

are unlikely to provide a full description of magnetic properties close to the Curie temperature.

5.1.6 Band filling analysis

In order to investigate the dramatic volume dependence of B1 at zero temperature, we plot

the scalar relativistic Density of States (DoS) of bcc Fe around the Fermi energy Ef at

a = 5.30, 5.40 and 5.50 a.u. in Fig. 5.7. It is clear that an increase in lattice parameter

represents a positive shift of features in the minority DoS relative to Ef , while their shape

remains largely unchanged (features in the majority DoS also shift, but noticeably less so).

We see this in how Ef lies around the centre of the large valley in the minority DoS when

a =5.30 a.u., whereas at 5.40 a.u. Ef is situated at the left hand side of this valley and by

a =5.50 a.u. it lies outside. In terms of magnetostriction, Fig. 5.2 shows that λ001 changes
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Figure 5.8: The variation in zero temperature magnetoelastic constant B1 with respect to
change in lattice parameter from a = 5.20 a.u. (red line and axes) and shift in Fermi energy
(blue line and axes). The arrows indicate which axes the data belong to.

sign between a =5.40 and 5.50 a.u., coinciding with Ef exiting this valley. It should also be

noted that while Ef lies firmly in the centre of this valley between 5.20 and 5.35 a.u., the

volume dependence of B1 is far less than it is when Ef is located around the shoulder.

To confirm the importance of the location of the Fermi level with respect to features

in the electronic structure, in Fig. 5.8 we plot B1 both as a function of lattice parameter (red)

and band filling (blue). The latter calculations were performed by fixing a = 5.20 a.u. and

varying the Fermi energy. There is a striking correlation between the two curves between 5.15

and 5.45 a.u. Outside this range, it is possible that expanding or contracting the lattice no

longer represents a straightforward energy shift in the DoS and that more complex changes

in the shape of the band structure become significant.

With this correlation in mind, we now turn our attention to the DoS of bcc Fe over the

same range of lattice parameters at m = 0.814, plotted in the bottom half of Fig. 5.7, around

which the peak in magnetostriction occurs and the volume dependence has been mostly

suppressed. Here we can see that onset of some magnetic disorder has effectively washed out

finer features of the DoS and introduced new ones. [117] For example, the shoulder over which

Ef passes as the lattice expands when m = 1 is now far less well defined. This means that

the environment around Ef has been somewhat homogenised with respect to different lattice

parameters. This could explain the reduced volume dependence. The origin of the peak in

magnetostriction is less clear however. It is possible that for a = 5.40 and 5.50 a.u. the local

environment around Ef more resembles that seen at 5.30 a.u., where it sits inside the valley
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rather than at the edge, which we know corresponds to an enhancement in magnetostriction

at m = 1.

5.2 Summary and conclusions

We have used density-functional theory in the disordered local moment picture to calculate

the temperature dependence of the magnetoelastic constant B1 for bcc Fe. The calculations

on bcc Fe revealed two key features: a strong dependence of the zero temperature magne-

tostriction on the lattice constant, and a peak in the magnitude of B1 at a magnetic ordering

of m ∼ 0.7–0.8 across a range of lattice constants. Taken together, these features provide an

explanation for the experimentally-observed temperature dependence of B1: a decrease over

the 0–500 K temperature range due to lattice expansion, followed by the peak at m = 0.85

( 800 K). We note that the calculations did not find a peak in B1 at lower temperatures,

which was reported in some earlier experiments[19] but not found in more recent work.[23]

The calculated sensitivity of B1 to lattice parameter is also consistent with experimental

measurements of magnetostriction under pressure.[114]

Our calculations have shown that the peak in B1 with temperature of bcc Fe can be

explained intrinsically and correlates with electronic structure features. We have however

been unable to uncover the precise electronic mechanism for its origin. What is remarkable

is that at zero temperature B1 is highly sensitive to the lattice parameter, yet this sensitivity

is sufficiently suppressed by a relatively small amount of magnetic disorder (m ∼ 0.8; cf.

Fig. 5.2) to yield the peak in B1 across a range of lattice constants.

The success of the theory in describing the temperature dependent magnetostriction of

bcc Fe is very promising, but there are some caveats. Primarily, whilst the calculation of mag-

netoelastic constants from fully-relativistic calculations represents a more complete approach

compared to the second-order perturbation theory approach pioneered by Wang et al.,[9] the

present implementation of our method within DLM theory does not alloy for the resolution

between contributions from different orbitals and spin channels. An implementation of our

method that allows for this resolution will go a long way toward improving its ability to

recognise the governing mechanisms underlying magnetoelastic enhancement/suppresion.

In the following chapter we will consider a natural expansion of this work by study-

ing the bcc Fe-Ga alloy Galfenol. Not only will this test the theory’s treatment of chemical

disorder, but we hope to shed light on the origin of its still-inexplicable magnetoelastic en-

hancement.
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Chapter 6

The effect of partially ordered

phases on the magnetostriction of

Galfenol

The discovery of the Fe-based alloy Galfenol as a promising alternative to the rare earth-based

Terfenol-D has sparked much research and debate on the origin of its magnetostriction-

enhancing properties.[36–40] As shown in Fig. 6.1, up to around ∼ 20% Ga content the

magnetostriction constant λ001 increases by ten times, before sharply decreasing and peaking

again between 25 and 30%. The two prevailing theories behind the initial peak are each

based on intrinsic and extrinsic mechanisms - concepts that we discussed in some detail in

the introduction to the thesis. The extrinsic model, established in Refs. 38 and 39, describes

tetragonal nanoheterogeneities rotating under the application of a magnetic field and en-

hancing the magnetostriction. Although a number of experimental studies have reported the

presence of such tetragonal nanoheterogeneities,[118–120] others have argued that they do

not play a key role.[121, 122]

The intrinsic theory - which our method is designed to measure - supposes that the

enhancement is the result of changes in the electronic structure due to the emergence of short

range ordering as more Ga is introduced, rather than the system being entirely chemically

disordered. These local structures should then fundamentally change the magnetoelasticity of

the system, the linear response of its magnetic torque to deformations, by changing the local

symmetry of some proportion of Fe atoms. Ab initio calculations have been employed to inves-

tigate this theory[40, 123–127], with early calculations using relatively small simulation cells

to calculate the properties of ordered phases at particular stoichiometries, e.g. Fe3Ga, where

it was found that the magnetostriction was highly sensitive to the type of ordering.[40] Larger

supercells allowed the investigation of different stoichiometries, where an increase in magne-
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Figure 6.1: The magnetostriction parameter (3/2)λ100 of Fe1−xGax as a function of Ga
content in percentage units. Symbols refer to different methods of preparing the sample and
more details can be found in Ref. 36, from which we have taken this data.

tostriction was observed with Ga content.[123] Most recently, by using ab initio molecular

dynamics simulations of 128-atom supercells to simulate disordered Fe1−xGax structures, a

peak in magnetostriction was calculated to occur at x = 0.19.[124] The drop in magnetostric-

tion at larger x was assigned to the development of D03-type ordering, which (for Fe3Ga)

was previously calculated to have negative magnetostriction.[40] Interestingly, Ref. 124 did

not find a particular correlation between increased magnetostriction and B2-type ordering,

which had previously been proposed.[40] Rather than using supercells, an alternative method

of simulating compositional disorder is to use the Coherent Potential Approximation (CPA)

to handle arbitrary compositions.[30] Ref. 127 used this approach to calculate the energet-

ics, electronic structure and magnetizations of different Fe1−xGax phases (A2, B2 and D03).

However, the authors of Ref. 127 conclude that, if the increase in magnetostriction with Ga

content is a consequence of the local Fe environment being modified, i.e. short-range order-

ing or clustering, the CPA calculations (which treat disorder through a single site effective

medium approach neglecting short-range order) will not capture such an effect.

Given the uncertainty that still exists in regards to the origin of Galfenol’s magne-

toelastic enhancement, it is essential to fully characterize the intrinsic contribution to the

magnetostriction through the use of our method.
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6.1 Magnetoelasticity of the A2 phase

6.1.1 Zero temperature magnetoelasticity

We begin by exploring the effect of randomly doping Ga into bcc Fe, using the CPA to

model the fully disordered A2 structure, i.e. the Ga atoms being equally likely to occupy all

bcc sites. Fig. 6.2 shows the magnetoelastic constant B1 as a function of Ga concentration,

calculated at zero temperature (m = 1). The most striking feature of Fig. 6.2 is that the

strong sensitivity of B1 to the lattice parameter of bcc Fe (x=0) that was observed in the

previous chapter (section 5.1.2) is suppressed by the addition of Ga. Indeed, at x = 0.20 the

variation in B1 is less than 1 MJm−3 between a = 5.20–5.50 a.u., compared to 27 MJm−3

for bcc Fe. At x = 0.20, B1 is ∼5 MJm−3 for all considered lattice parameters. This value

represents a reduction in the magnitude of B1 with Ga concentration for all cases except a

= 5.40 a.u.

Similar to our treatment of thermal expansion in bcc Fe, shown in Fig. 5.5, in order

to account for the expansion of the lattice at zero temperature as a result of Ga addition we

interpolate our calculations according to the experimentally-measured lattice constant data

in Ref 128, which we have assumed to behave linearly between 5% and 15%. The result of

this interpolation is shown as the dashed line in Fig. 6.2. We see that the enhancement in

B1 is less than 2 MJm−3 even when taking the lattice expansion into account. Therefore, the

zero temperature calculations do not show any clear fingerprint of the ∼ 10× enhancement

of the magnetostriction observed experimentally.[36]
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Figure 6.3: The scalar-relativistic density-of-states (DoS) projected onto the Fe atoms in A2
Fe1−xGax (x = 0, 0.1, 0.2) for a =5.30 (red, solid), 5.40 (blue, dashed) and 5.50 a.u. (green,
dotted). The energy zero corresponds to the Fermi energy.

6.1.2 Effect of A2 Ga doping on the zero temperature density-of-states

In order to investigate the suppression of the volume dependence of B1 with Ga concentration,

in Fig. 6.3 projected onto the Fe atoms for different lattice parameters and Ga concentrations.

In bcc Fe (x = 0), as detailed in section 5.1.6, there are noticeable changes in the DoS close

to the Fermi energy upon varying the lattice parameter due to a shift in the minority DoS

features relative to Ef . The different behavior of these states when magnetized along different

directions generates magnetocrystalline anisotropy (MCA) and magnetostriction.[8] However,

increasing the Ga concentration within the CPA has the effect of smoothing over these fine

features of the DoS, similar to that seen by increasing magnetic disorder in bcc Fe as seen

in Fig. 6.3. We can therefore draw close comparisons between the Ga concentration and

magnetic order dependencies of B1 over different lattice parameters. In both cases there is
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Figure 6.4: The variation in B1 with respect to reduced magnetization m(T ) = M(T )/M(0)
for lattice parameters between 5.20 a.u. and 5.45 a.u. in Fe1−xGax (x = 0.05, 0.10, 0.15, 0.20).
The black, dashed curve on the x = 0.2 graph is a plot of B1(T ) = B1(T = 0)m3, as predicted
by single ion theory. The inset in the bottom right plot is a log-log plot of B1 against m for
x = 0.20 at 5.50 a.u., demonstrating the m2.2 dependence at high temperatures.

a decrease in volume dependence with increasing disorder (chemical and magnetic). Smaller

lattice parameters (5.20–5.30 a.u.) produce a monotonic decrease in −B1 with increasing

disorder, while larger lattice parameters (5.40-5.50 a.u.) mostly produce an increase in −B1.

6.1.3 Finite temperature magnetoelasticity

In Fig. 6.4 we investigate the temperature dependence of B1 of A2 Fe1−xGax for different

Ga concentrations and lattice parameters. As already shown for zero temperature, increasing

the Ga concentration reduces the volume sensitivity of B1 compared to pure Fe (Fig. 5.2). Of

particular interest is the peak in B1 calculated to occur at m ∼0.7–0.8 for pure Fe at certain

volumes. While non-monotonic behavior of B1 with temperature is still observed at low Ga

concentration, the peak in B1 becomes less discernible for x > 0.10. Indeed, for x = 0.20 B1

undergoes a monotonic decrease with temperature at all lattice constants.

Exploring the x = 0.20 data further, recalling that single-ion theory predicts B(T )

approximately ∝ m3 and m2 at low and high temperatures, respectively,[17] in Fig. 6.4 we

compare the calculations against m3 behavior (dashed line). We see that the power law
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relation gives a reasonable account of the calculations. Furthermore, in the inset of Fig. 6.4

we replot B1 versus temperature on a logarithmic scale. In comparison to pure Fe (Fig. 5.6),

the high-temperature power law dependence Amγ holds over a wider range of m (m < 0.6)

when a = 5.50 a.u., with γ = 2.2 throughout.

6.1.4 Comparison with experimental data

We stress that, in light of the previous theoretical and experimental studies of Galfenol out-

lined in the introduction to this chapter, the neglect of short and long-range ordering effects

in the CPA calculations on the simplest A2 structure will unlikely provide an accurate de-

scription of its properties. In particular, as already noted, our calculations do not show a

large enhancement in the magnetoelastic constant B1 around 19% Ga doping. Nevertheless,

we still wish to make a tentative connection of our calculations to the experimental studies of

the temperature dependent magnetostriction of Galfenol reported in Ref. 37. The authors of

that work observed that the anomalous, non-monotonic magnetoelastic temperature depen-

dence of bcc Fe still exists at x = 0.086, but is no longer observed at x = 0.166. This result

is consistent with our calculations, which show a clear suppression of the non-monotonic

thermal behaviour with increasing Ga concentration. Additionally, the data in Ref. 37 shows

that the peak in magnetostriction exhibited at x = 0.086 is broader than that seen in bcc

Fe, which again is reflected in our calculations. It was also observed in Ref. 37 that, at low

temperatures, the temperature dependence of Fe0.834Ga0.166 is well described by the single

ion theory m3 power law. As described in the previous section, at 20 % Ga content our

calculations reflect this behaviour. These comparisons are qualitative at best and based on a

limited set of data. Nevertheless, they do provide a clear motivation to study the tempera-

ture dependence of B1 for other Fe-Ga orderings, to ascertain whether there is some universal

behaviour shared across the different phases.

6.2 Magnetoelasticity of partially-ordered phases

It is clear from our investigation of A2 Fe1−xGax that the doping of Ga in a completely disor-

dered manner is, unsurprisingly, an insufficient model for creating significant magnetostrictive

enhancement. As we discussed in the introductions to this chapter, one of the leading theo-

ries for this enhancement is the presence of particular types of short range order, where some

proportion of Ga atoms have a preference for ordering in the vicinity of Fe atoms such that

the local symmetry of those Fe atoms becomes well structured and resembles phases such as

B2 or D03. The crystal structures of these phases are shown in Fig. 6.5. It was posited by

Wang et al.[124] that it is the sharp onset of significant D03-type local ordering above Ga

concentrations of ∼ 13% that is the cause of the decrease in magnetostriction, which they
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Figure 6.5: Diagrams of the non-stoichiometric A2, B2 and D03 phases of Fe1−xGax. Dashed
lines denote unit vectors. Only one of the 8c sites is shown for the D03 structure (see Eq. 6.4).

justify using the results of Wu’s investigation more than ten years prior,[40] whose results

showed that D03 ordering is detrimental to the size of the magnetostriction. We seek to use

our method for calculating magnetoelasticity to scrutinise these older calculations, resolve

the contributions to the magnetoelasticity from each unique atomic site and also use our

implementation of the CPA to look at non-stoichiometric concentrations of these phases.

With regards to the resolution of magnetoelasticity on a per site basis, we do not refer

to crystallographic sites having unique values of magnetostriction - implying that there is

some degree of internal lattice distortion - but instead we refer to the contribution of each

site to the total magnetic torque and thus their contribution to the torque’s response to an

applied strain. These site-resolved torques are already calculated in the DLM formulation of

the total magnetic torque in Eq. 4.106, so their evaluation only requires us not to perform

the sum over n, giving us

Tθ,n = − ∂

∂θ

(∫
P 0
n(ên)〈Ω〉êndên

)
, (6.1)

from which we have the definition of site-resolved magnetoelastic constants

Tθ=45◦,n = B1,nu. (6.2)

As for the construction of the non-stoichiometric phases, we will outline our approach in

the following section. Informed by our investigation of bcc Fe, we opt to also look at the

volume dependence of the magnetoelasticity in these phases, albeit over a smaller range of

a =5.35-5.50 a.u., focusing in on typical experimental values which we found better reflects

the experimental magnetoelasticity of bcc Fe.
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6.2.1 Construction of non-stoichiometric phases through the CPA

Here we will outline how we have constructed the non-stoichiometric phases that have been

used in this study. First the B2 phase, which in its stoichiometric form (FeGa) has simple

cubic basis vectors with lattice parameter a and the structure:

(1a) a{0, 0, 0} Ga

(1b) a
{

1
2 ,

1
2 ,

1
2

}
Fe

(6.3)

where the first column is the Wyckoff label for that site; the second column shows that site’s

position in Cartesian coordinates; and the third column is the atom type at that site. Then,

in the manner that is demonstrated in Ref. 127, the non-stoichiometric phase is created by

only applying chemical disorder at the sites where Ga is found, through the CPA. In this

case, this means having an occupancy of Fe1−2xGa2x at the 1a site (though the choice of 1b

site is equivalent). The Ga content being 2x here ensures that the system as a whole remains

Fe1−xGax.

As for the D03, its stoichiometric phase (Fe3Ga) has face-centered cubic basis vectors

with lattice parameter 2a (a convention we have chosen in order to more directly compare

the lattice with the B2 phase) and the structure:

(4a) {0, 0, 0} Ga

(4b) a {0, 0, 1} Fe

(8c) a
{

1
2 ,

1
2 ,

1
2

}
Fe

(8c) a
{
−1

2 ,−
1
2 ,−

1
2

}
Fe

(6.4)

As with the B2 phase we only apply the CPA at the site containing Ga, except now its

occupancy is Fe1−4xGa4x in order to once again preserve the atomic formula Fe1−xGax. Note

that the latter two sites are equivalently labelled due to their crystal symmetry being identi-

cal, making it unnecessary to distinguish between them, however their double occurrence is

significant. Diagrams of the D03, B2 and A2 structures (A2 included for completeness) can

be found in Fig. 6.5 (note that the D03 diagram omits one of the 8c sites for compactness).

6.2.2 Zero temperature magnetoelasticity

B2 phase

We begin by calculating the Ga concentration-dependence of the non-stoichiometric B2 phase

of Fe1−xGax over a range of lattice parameters (a = 5.35-5.50 a.u.) at zero temperature, the

results of which we have plotted in Fig. 6.6a alongside experimental data taken from Ref. 36.

Immediately we see that across all lattice parameters we have an overall increase in −B1 at
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Figure 6.6: The total and site-resolved magnetoelastic constant −B1 as a function of Ga con-
tent in non-stoichiometric B2 Fe1−xGax for lattice parameters between 5.35 a.u. and 5.50 a.u..
(a) −B1 for the total system and experimental measurements at room temperature;[36] (b)
site-resolved −B1 at site 1a (see Eq. 6.3); (c) site 1b.

15 % Ga compared with the corresponding value for pure Fe, which means for the lattice

parameters 5.45 and 5.50 a.u. there is a change in sign. The next-most obvious trend that is

consistent between lattice parameters is a peak in magnetoelasticity at 15 % Ga and above,

though the widths of these peaks are noticeably distinct and at a =5.45 a.u. there is a unique

trough at 20 % Ga. To confirm the veracity of this feature, which does not appear for any

other lattice parameter in this group, additional data points were taken at 17.5 % and 22.5 %

Ga content, which appear to confirm its existence. An especially notable aspect of the peaks

for a =5.35,5.40 and 5.45 a.u. (we refer to the first peak in the latter case) is that they are

in reasonable agreement with the experimentally measured peak in the magnetoelasticity for

Galfenol, ∼ 15 MJ/cm3. To evaluate the contribution to the magnetoelasticity from each

distinct lattice site, we plot the site-resolved magnetoelasticity as a function of Ga content for

the same range of parameters in Fig. 6.6b, which shows the Ga-doped site (1a), and Fig. 6.6c

which shows the Fe site (1b). By comparing this data on the same scale it is obvious that as

more Ga is added and the total magnetoelasticity peaks, the 1b site accounts almost entirely

for the enhancement. The concentration dependence of the 1a site is comparatively far more

flat, though there is a noticable divergence from the 1b site’s behaviour at Ga content < 10%,

over which −B1,1a consistently decreases. It is noteworthy that we see a similar suppression of

99



-20

-10

 0

 10

 20

 30

 40

 0  5  10  15  20  25

(a)

-B
1
 (

M
J/

m
3
)

Ga conc. (%)

5.35 a.u.
5.40 a.u.
5.45 a.u.
5.50 a.u.

Exp.

-10

 0

 10

 20

 30

 40

 0  5  10  15  20  25

(b)

-B
1
 (

M
J/

m
3
)

Ga conc. (%)

-10

 0

 10

 20

 30

 40

 0  5  10  15  20  25

(c)

-B
1
 (

M
J/

m
3
)

Ga conc. (%)

Figure 6.7: The total and site-resolved magnetoelastic constant −B1 as a function of
Ga content in non-stoichiometric D03 Fe1−xGax for lattice parameters between 5.35 a.u.
and 5.50 a.u.. (a) −B1 for the total system and experimental measurements at room
temperature;[36] (b) combined contribution from sites 4a and 4b (see Eq. 6.4); (c) combined
contribution of the two 8c sites.

the volume dependence with increasing Ga content at the 1a site as that seen in the A2 phase.

When we look specifically at the 1b site on the other hand, there is no clear suppression of

the volume dependence and we can identify a number of trends. First, the initial increase in

magnetoelasticity with Ga content at each lattice parameter is consistently monotonic, while

the size of each peak is essentially unchanged when compared to the system as a whole. This

is due to the 1a site’s magnetoelasticity being almost entirely quenched by the time these

peaks occur. We also see that the peaks in −B1,1b are much easier to resolve, enough so that

we can see an overall trend of the peak appearing at smaller values of Ga content as lattice

parameter increases. In addition, the widths of the peaks seem to decrease as the lattice

expands.

D03 phase

We will now study the magnetoelasticity of the non-stoichiometric D03 phase in the same

way as with the B2 phase, looking at its Ga content and volume dependence. Calculations of

−B1 for a = 5.35, 5.40, 5.45 and 5.50 a.u. and 0 < x < 0.25, including total and site-resolved

values, can be found in Fig. 6.7.
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First we consider the total magnetoelasticity, plotted in Fig. 6.7a, which up to 10 %

Ga content has a striking similarity to the behaviour seen in the B2 phase, with each lattice

parameter converging on a similar value (∼10 MJ/cm3) at 10% Ga, an overall increase com-

pared to their pure Fe values. When a =5.35 a.u. this similarity in concentration dependence

to the B2 phase continues for the entire range of concentrations considered here, as −B1 ex-

hibits a shallow peak of ∼15 MJ/cm3 around x = 20 %. At other lattice parameters however

there is a quite a dramatic departure from the B2 phase for concentrations >10 %, as we see

initial peaks of ∼ 25 and 20 MJ/cm3 for a = 5.40 and 5.50 a.u. respectively, while there is

a very large peak of ∼ 35 MJ/cm3 at a = 5.45 a.u.. The latter is over twice the size of the

peaks observed in the B2 phase and what is observed experimentally. Other notable features

include a split in the peak for a = 5.45 a.u., as well as a sudden and dramatic increase in

−B1 up to ∼35 MJ/cm3 near the stoichiometric phase for a =5.50 a.u..

Moving on to the site-resolved results, we will first note that the contributions of sites

4a and 4b have been combined in Fig. 6.7b, primarily due to their individual contributions

being both very similar and small in proportion to the total magnetoelasticity. Naturally,

we have also combined the contributions of the two 8c sites. With that established, the

immediate observation to be made of the combined 4a and 4b contributions is their almost-

identical behaviour to the 1a site in the B2 phase, with each isovolumetric curve initially

diverging from their corresponding 8c curves by decreasing, before converging upon a small

positive value of −B1 as Ga content increases. As with the 1b site in the B2 phase, the 8c

sites are by far the dominant contributor to the total magnetoelasticity, especially now that

the peaks are generally much larger, so any features in the behaviour of the 8c sites here are

reflected in the total system.

Comparisons between the partially-ordered phases

Thus far we have seen that, in both the B2 and D03 phases, there is a consistent increase

in magnetoelasticity when between 10 and 15 % Ga is doped into the system, across a

significant range of lattice volumes. Based on site-resolved calculations, this enhancement is

driven primarily by the 1b and 8c sites for the B2 and D03 phases respectively, which Fig. 6.5

shows are the only sites whose nearest neighbours change as Ga is added. In the B2 phase

all 8 nearest neighbours change, while in the D03 only 4 sites - at the vertices of tetrahedra

- change. Fig. 6.8 shows that at small x the 1b and 8c sites are almost equivalent in terms

of their magnetoelastic concentration dependence, suggesting that the leading contribution

to the magnetoelasticity at these concentrations is simply the average number of Fe nearest

neighbours, which is equivalent for these sites.

At concentrations greater than ∼10% the behaviour of the two sites diverge, with the

magnetoelasticity of the 8c site continuing to increase while the 1b site’s evolution is com-
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Figure 6.8: Comparisons of the site-resolved magnetoelastic Ga concentration dependence in
Fe1−xGax at sites 1b in the B2 phase and 8c in the D03 phase, for different lattice parameters.
(a) 5.35 a.u. (b) 5.40 a.u. (c) 5.45 a.u. (d) 5.50 a.u..

paratively flat. The enhancement at a =5.45 a.u. is especially profound, with −B1 reaching

values over twice as large as those seen in experimental measurements.[36] Though the be-

haviour beyond 10% Ga content in both phases is highly volume dependent, the conclusion

remains that homogeneously replacing some number of Fe’s nearest neighbours with Ga in a

cubic configuration enhances magnetoelasticity.

Comparisons to previous studies

In sharp contrast with previous findings[40, 129] and the insights made by subsequent investi-

gations that have been informed by those findings,[55, 124, 127] our calculations consistently

show that the D03 phase is not detrimental to the magnetostriction of Galfenol and even

exhibits magnetoelasticity that is more than twice that of the experimentally measured peak.

Not only that, but the B2 phase alone is able to account for the experimentally observed

enhancement in magnetoelasticity, despite the results of Kumagai et al.[129] suggesting that

the A2 phase has the largest magnetoelasticity between it, B2 and D03. It should be noted

however that these results are not necessarily in conflict with the more recent results of Wang

et al., whose optimised super-lattice calculations found large amounts of D03-type order at

Ga concentrations of ∼15 % and above. Their conclusion was that this ordering limits the

growth of the magnetoelasticity and causes its decrease after the peak, whereas our results
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suggest that the onset of B2 and D03-type ordering is necessary for enhancement. This poses

the question: if D03-type ordering is not responsible for the experimentally-observed decrease

in magnetoelasticity, then what type of ordering, if any, is responsible for it? These surprising

results certainly merit further investigation, so we will now look to the DoS of these phases.

6.2.3 Density of states analysis of partially-ordered phases

B2 phase

In order to explain the concentration dependence of these two phases, it is necessary to study

their DoS and try to identify any features that emerge as Ga is added to the system, using

the volume dependence as an additional axis on which to recognise any trends. We start by

plotting the site- and orbital-resolved DoS of the B2 phase at Ga concentrations of 5-25%

and lattice parameters of 5.35-5.50 a.u. in Fig. 6.9, where the left panel shows the eg states

of the 1b site and the right panel shows the t2g states. We do not show the 1a site as, in

a similar fashion to the A2 phase, there is only a slight “smoothing” of the DoS associated

with the increase in chemical disorder. Like in the A2 phase, this process corresponds to

the suppression of the magnetoelastic volume dependence and a benign magnetoelastic Ga

concentration dependence.

The DoS at the 1b site on the other hand is much more sensitive to Ga doping, as we

see a large peak form around Ef in the spin-down channel of the t2g states, which one would

expect given that these states have the largest overlap with this site’s nearest neighbours.

In terms of the volume dependence, we see that there is a slight heightening of the peak as

the volume increases, as well as an energy shift relative to Ef. This energy shift seems to

correspond to the shift in the peak in magnetoelasticity with respect to volume change that

we observe in Fig. 6.6c. We have also plotted the 3d-projected DoS of the Ga atoms, which

show the formation of an equivalent peak, owing to Fe-Ga hybridisation. Thus far these DoS

calculations agree well with the results of Khmelevska et al.,[127] whose approach we have

used here to construct the non-stoichiometric phases.

D03 phase

Now we calculate the site- and orbital-resolved DoS in the D03 phase, the 8c sites in particular,

the results of which are shown in Fig. 6.10. We have neglected to show most of the DoS of

the 4a and 4b sites as their evolution with increasing Ga content is very similar to the 1a

site in the B2 phase, which is not surprising as only their next-next-nearest and next-nearest

neighbours respectively are affected by the substitution. However, we have included the total

DoS at the 4b site in the bottom left panel of the aforementioned figure in order to point out

that there are some notable features that emerge from the next-nearest neighbour ordering.
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Figure 6.9: The orbital-resolved DoS of the 1b site in non-stoichiometric B2 Fe1−xGax for Ga
concentrations between 5% and 25% and lattice parameters between 5.35 a.u. and 5.50 a.u.,
where the left figure shows the DoS of the t2g states and the right figure shows the DoS of the
eg states. The black curve in the right panel is the t2g DoS of the Ga atom at a =5.40 a.u.,
re-scaled to make its features visible. The Fermi level is defined to be at zero energy.
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Figure 6.10: The orbital-resolved DoS of the 8c site in non-stoichiometric D03 Fe1−xGax
for Ga concentrations between 5% and 25% and lattice parameters between 5.35 a.u. and
5.50 a.u., where the left figure shows the DoS of the t2g states and the right figure shows the
DoS of the eg states. The black line in the bottom left panel is the total DoS of the 4b Fe
site at a =5.40 a.u., while the black line in the bottom right panel is the t2g DoS of the Ga
atom at a =5.40 a.u.. Both are re-scaled to emphasise relevant features.
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This includes the splitting of a large peak in the majority-spin channel and the emergence of

a small peak in the minority-spin channel below Ef. The lack of an obvious corresponding

magnetoelastic effect demonstrates the importance of DoS changes occurring close to Ef. It

is noteworthy though that these features coincide with similar features in the DoS of the

8c-eg states. A likely explanation is that, due to the 4b sites next-nearest neighbours being

disordered FeGa (or pure Ga in the stoichiometric state) along the [100] directions - the

directions along which the lobes of the eg orbitals point - these features reflect the Fe atoms

crystal interaction along the Cartesian axes.

Moving on to the 8c-t2g states, we first note that at small Ga concentrations their

DoS resembles the 1b-t2g states very closely, reflecting the similarity of the sites’ change in

magnetoelasticity with respect to Ga content. This confirms the B2 phase can be considered

an effective model for the D03 phase when Ga content is small. As the Ga content is increased

however, the DoS of the two structures diverge quite dramatically, corresponding with the

divergence of their magnetoelastic concentration dependence. Rather than the growth of a

peak that centres around Ef, the t2g states of the 8c site instead exhibits the growth of two

distinct peaks, with the lower energy peak having a greater rate of growth until its intensity

is around twice the other peak. At lower concentrations both peaks mostly reside above Ef,

but as more Ga is added their energies shift until they are situated either side of Ef.

We also observe the same hybridisation of Ga states around Ef as the B2 phase.

Comparing the locations of these peaks with the single peak of the B2 phase and considering

the local environments of the 1b and 8c sites, it is reasonable to conclude that these twin

peaks result from the symmetry-splitting of the single peak.

Unlike the DoS for the B2 phase, there is meaningful disagreement between these

calculations and those of Khmelevska et al.,[127] who did not find evidence of symmetry

splitting in the minority spin channel. Based on the findings of Wu, who postulated that the

symmetry splitting of a large peak in the DoS around Ef is beneficial to magnetoelasticity

based on a similar feature in the “B2-like” structure,[40] Khmelevska et al. concluded that

absence of this symmetry splitting could explain the supposedly weak magnetoelasticity of

the D03 phase. Our calculations show that the symmetry splitting does indeed occur and

that it coincides with an enhancement of the magnetoelasticity relative to the non-split peak

in the B2 phase. Looking closely at the results of Khmelevska et al., the supposed absence of

symmetry-splitting may be a consequence of their energy increments not being small enough

to resolve the feature.

To conclude this section, we will investigate the strange concentration dependence of

the D03 phase when a = 5.50 a.u., in particular the sudden spike in magnetoelasticity around

∼22.5 % Ga content. Looking at the DoS of the t2g at the 8c site, we can see from the volume

dependence that this spike seems to coincide with Ef residing on the “shoulder” of the large
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peak. Given that, in general, a contributing factor to the magnitude of the magnetoelasticity

is the number of states available around Ef, i.e. n(Ef), it may be the close proximity of Ef

and the large peak in the DoS when a = 5.50 a.u. that causes this spike. Indeed, when we

shift Ef by -0.01 Ry so that it aligns with the peak in the DoS we observe a ×2.5 increase in

magnetoelasticity compared to the initial value, up to ∼70 MJ/cm3, representing almost a

5-fold increase in magnetoelasticity over the experimentally-mesured peak of ∼15 MJ/cm3.

A similar result was found by Wang et al.[124]. Though their calculations were performed on

a fully optimised super-lattice, their DoS for Fe81.25Ga18.75 show a twin-peak feature around

the Ef that closely resembles our calculations of the DoS in D03, which one would expect

given that their results show large amounts of D03-type ordering in the super-lattice at this

concentration. They also observed an increase in magnetoelasticity as the Ef was shifted

down in energy, so by using the rigid-band model they found that adding a small amount of

Cu to decrease the number of electrons enhanced magnetoelasticity.

6.2.4 Finite temperature magnetoelasticity
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Figure 6.11: B1 as a function of magnetic order parameter m, calculated in the B2 phase at Ga
concentrations of 15, 20 and 25 % (purple circles, green up-triangles and blue down-triangles
respectively) and the D03 phase at 20 and 25% (orange diamonds and yellow pentagons).
Right panel shows additional experimental measurements from Ref. 36, where an asterisk
denotes the use of interpolation to determine experimental values of c′ in the determination
of B1 (see main text).

Now we shall consider the finite temperature magnetoelasticity of the B2 and D03

phases. We have plotted B1 as a function of order parameter m in Fig. 6.11 for Ga concen-

trations of 15, 20 and 25% in the B2 phase and 20 and 25% in the D03 phase, with lattice

parameters chosen to best reflect experimentally measured values.[130] What we find is a

picture that is reminiscent of the isovolumetric curves of B1 vs. m seen in Figs. 5.2 and 6.4,

where curves with different values of B1 at zero temperature will converge upon similar values

at finite temperature, except these results suggest that this convergence occurs across differ-

107



ent phases and Ga concentrations as well as volumes. This means that phases with smaller

magnetoelasticity at zero temperature, such as the B2 phase with x = 0.20 and x = 0.25 hav-

ing B1 = −5 and -7 MJ/cm3 respectively, will exhibit a flat or even positive slope at m = 1

while phases with larger initial values will quickly drop off as magnetic disorder increases, as

expected from the single ion model.

In order to compare these calculations with experimental data we have adapted the

results in Ref. 36 to produce B1 vs. m using the same procedure as in section 5.1.3, using

measurements of TC as a function Ga content found in Ref. 130 to scale the m vs. T model.

Without measurements of the elastic constant c′ for x =0.206 and 0.222 we cannot determine

B1 at these concentrations directly, so we have interpolated the published values of c′ from

Ref. 36. Note that because magnetostriction was only measured up to room temperature the

experimental data represents a very small range of order parameters, 0.98 < m < 1. Look-

ing at the results of this procedure in the bottom panel of Fig. 6.11, we see that the above

description of convergence at finite temperature appears to be borne out in the real system.

The large T = 0 magnetoelasticity when x = 0.187 and 0.206 corresponds to the usual mono-

tonic decrease with temperature, whereas the comparatively small T = 0 magnetoelasticity

of x = 0.187 and 0.222 is enhanced by the onset of magnetic disorder.

6.3 Summary and conclusions

We have used Density Functional Theory (DFT) in the disordered local moment picture to cal-

culate the temperature dependence of the magnetoelastic constant B1 for non-stoichiometric

phases of Fe1−xGax (0 < x < 0.25): the fully disordered A2 phase and the partially ordered

B2 and D03 phases. In the fully disordered phase our calculations found a weakening of the

magnetoelastic constant with increasing Ga content, and a suppression of the non-monotonic

temperature dependence observed for bcc Fe. The well-known enhancement in magnetostric-

tion at 19% Ga content was absent from these results, suggesting that some Fe-Ga ordering

seems to be necessary to provide an intrinsic explanation for the strong magnetostrictive

properties of Galfenol.

Indeed, our study of the B2 and D03 phases found that both exhibit a significant

enhancement of magnetoelasticity with increasing Ga content, especially in the D03-type

phase where B1 is enhanced by up to ∼20 times compared to pure Fe (compared to the ∼10

times enhancement from experimental alloys). This is in stark contrast to previous studies

that found its contribution to be detrimental,[40] though the origin of this disparity - beside

a general improvement in the accuracy of electronic structure methods over time - is unclear.

Calculations of the DoS in both phases showed the emergence of peaks around the Fermi

level from trailing Fe-Ga bonds, owing to their location being around the “centre” of the d
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bands, as they have not gained energy from anti-bonding nor saved energy from bonding.

Significantly, while a peak in the B2 phase had been reported by Khmelevska et al.,[127]

our calculations have resolved the additional splitting of that peak from the reduced D03

symmetry, a feature to which the magnetoelastic enhancement of Fe1−xGax has previously

been attributed.[40, 124, 127, 131]

Our finite temperature calculations of the partially-ordered phases show good quali-

tative agreement with experiment. Most notably, they reflect the experimentally-measured

trend of Fe1−xGax alloys with lesser zero temperature magnetoelasticity (those just after

the peak) exhibiting an increase in magnetoelasticity as temperature increases, while alloys

with larger zero temperature magnetoelasticity show the usual monotonic decrease that is

characteristic of single ion theory. The similarity of this phenomenon with our results on the

volume dependence of bcc Fe and its suppression due to thermal disorder is striking.

Ultimately, we emphasise that these calculations are not made in order to exactly

model the Fe1−xGax alloys or speculate on the precise origin of their magnetoelastic en-

hancement. It is difficult to accurately map our computations onto the true system, especially

given the complexity of the mixture between types of structural order, both short- and long-

range.[38, 39, 124, 130] We hope however that these calculations provide sufficient evidence

that, contrary to estblished literature,[40] the D03 phase is not only not detrimental to the

magnetostriction, but in fact highly beneficial. Given that our finite temperature calculations

reveal no clear thermal mechanism for the peak in magnetostriction at x = 0.19, we suggest

that its subsequent decrease may be a result of a type of short-range order that has not yet

been considered.
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Chapter 7

A finite temperature study of

highly magnetostrictive rare

earth-transition metal compounds

While the low cost of production and high tensile strength of Galfenol have made it a promis-

ing avenue of research in the realm of magnetic materials, since its discovery in the 1970s

the Laves phase alloy Tb1xDyxFe2 with x =0.73 (Terfenol-D) has remained the most mag-

netostrictive material that we know of, boasting a field-induced strain over ten times that

of Galfenol. A particularly useful (and puzzling) aspect of Terfenol-D in terms of its tech-

nological application is that it simultaneously exhibits highly anisotropic magnetostriction

and isotropic magnetisation. This means that only a small field is required to obtain satura-

tion magnetisation (and thus, magnetostriction) in any direction, making it highly efficient

and precise in terms of converting magnetic energy into mechanical energy, hence its wide

application in technologies like sensors and actuators. At the heart of these extraordinary

phenomena is the fundamental interaction of the highly localised 4f electrons of the rare

earths with the electrostatic field that is created by the symmetry of their atoms’ neighbour-

ing transition metals. As we discussed in section 4.2.3, this is referred to as the crystal field

(CF) potential, and its interaction with the 4f orbitals in the Tb3+ and Dy3+ configurations

are such that their response to changes in magnetic orientation (magnetic anisotropy), as well

as their response to changes in local crystal symmetry (magnetostriction), are intrinsically op-

posed. Besides the technological relevance of these alloys, the sensitivity of their anisotropic

phenomena means that the interplay between thermal and compositional disorder provides

highly complex phase diagrams from which there is much to study experimentally[119, 132]

and theoretically. In terms of the latter, investigations have included the use of ab initio

methods,[41, 133–136] as well as empirical modelling based on CF theory,[137–140] though
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Figure 7.1: Crystal structure of the REFe2 cubic Laves phase compounds. Fe atom positions
are small yellow symbols while the large symbols are the RE atoms - blue for the 8a sites
and red for the 8b sites. Dashed lines indicate the primitive cell.

both approaches have had their limitations. While CF theory is successful in handling arbi-

trary temperatures and compositions, its reliance on fitting CF parameters to experimental

measurement has often lead to ambiguity, in that multiple sets of CF parameters can model

the data.[47] On the other hand, first-principles calculations eliminate ambiguity to some

extent but have been limited by the difficulty of incorporating thermal and compositional

disorder.

As part of an effort to overcome the limitations of both CF theory and first-principles

calculations based on Density Functional Theory (DFT), in this chapter we present calcula-

tions of the temperature dependence of the magnetisation in the Laves phase REFe2 com-

pounds, including evaluations of the spin and orbital moments of the RE and Fe sub-lattices;

Curie temperatures (TC) and their constituent paramagnetic exchange interactions Jij ; and

then a simple model that relates the disorder of the RE and Fe sub-lattice moments that

has been used to successfully predict experimentally measured compensation temperatures.

Finally we present calculations of the magnetocrystalline anisotropy (MCA) and magnetoe-

lasticity as a function of temperature - via magnetic disorder - the results of which have been

used in Ref. 53.
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7.1 Methodology

7.1.1 Construction of the cubic Laves phase

The structure of the cubic Laves phase, atomic formula REFe2, consists of six fcc lattices

arranged as follows:

(8a) a
{

1
8 ,

1
8 ,

1
8

}
RE

(8b) a
{

7
8 ,

7
8 ,

7
8

}
RE
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1
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Fe
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{
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Fe
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4 ,

1
4 ,

1
2

}
Fe

(7.1)

where a is the lattice parameter and the left column shows Wyckoff labels, which denote sites

with equivalent crystal symmetry. This crystal structure is shown in Fig. 7.1. Unless stated

otherwise, calculations are performed with the lattice parameter a equal to experimental

measurements provided by Ref. 42 and 50 (the latter only for YbFe2), which are plotted

alongside additional experimental measurements in Fig. 7.2.

7.1.2 Treatment of 4f states via the self-interaction correction

The presence of highly-localised 4f states in the electronic structure of RE-TMs means that

we can no longer just rely on LSDA-DFT as we did in TM-only systems previously. The

introduction of these atomic-like states means that we cannot assume the local behaviour
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of the electrons are that of a homogeneous fluid and we must in some way account for the

tendency of some states to spend much more time in the vicinity of certain atoms. As we

discussed in section 3.2.5, the Self-interaction correction (SIC) is designed to identify and

correct for states whose self-interaction, an erroneous phenomenon that emerges from the use

of an inexact exchange-correlation energy, is significant enough that it cannot be ignored.

The 4f states being highly-localised make them ideal for application of the SIC. A particu-

larly elegant formulation of the SIC, especially in terms of identifying candidate states, has

been outlined within KKR-CPA theory,[31] referred to as the local self-interaction correction

(LSIC). However, a state being a candidate for the LSIC does not mean its application is

necessary, so a rigorous approach to correcting these candidate states is to consider different

configurations of correction and non-correction and determine that which minimises the total

energy. Another, more intuitive approach proposed by Patrick and Staunton simply applies

the correction according to Hund’s rules as illustrated in Fig. 2.1, which we will be making

use of in this report. More detail on this scheme can be found in Ref. 62.

7.1.3 Calculation of Curie temperatures and exchange parameters

The determination of the Curie temperature TC follows the formulation found in section 4.1.4,

in particular Eqs. 4.34, 4.35 and 4.36. In the case of the REFe2 Laves phase compounds, at

high temperatures the correlation parameters S
(2)
ij describe the strength of the paramagnetic

exchange coupling between RE atoms (JRE-RE) and Fe atoms (JFe-Fe), as well as cross-terms

(JRE-Fe). Formally, from Eq. 4.36 we have the following simultaneous equations given in

matrix multiplication form:(
hRE

2hFe

)
=

(
JRE-RE JRE-Fe

JRE-Fe JFe-Fe

)(
mRE

mFe

)
, (7.2)

which establish the linear relationships between the strengths of the molecular fields {hn}
and the order parameters at each unique site {mn}. Note that hFe is multiplied by two

because there are twice as many Fe sites as there are RE sites. It is not always the case that

the equivalence of the sites depends only on their atomic content, which would imply that

these equations are two-dimensional for any binary compound. Instead the dimensionality of

the problem depends the equivalence of the crystal symmetry for each site. The Laves phase

happens to be a particularly simple case, whereas RECo5 for example has three inequivalent

sites.[33] We also stress the importance of referring to {Jij} as exchange-like or paramagnetic

exchange parameters. In spite of the similar role they play to exchange parameters in a

pair-wise spin model, it is more accurate to say they are coefficients of an order parameter-

expansion of the grand potential 〈Ωint〉0. More detail on this can be found in Ref. [141]. In
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the paramagnetic limit {mn → 0} we have {mn ≈ βhn/3}, where β = 1/kBT , so that our

matrix equation becomes(
hRE

2hFe

)
=

(
JRE-RE JRE-Fe

JRE-Fe JFe-Fe

)(
βhRE/3

βhFe/3

)
, (7.3)

leaving us with an eigenvalue problem from which the smallest value of β will correspond to

TC. This being a 2×2 matrix-eigenvalue problem, the solution is quite compact:

3kBTC =
1

2

(
JRE-RE +

JFe-Fe

2

)
+

1

2

√(
JRE-RE −

JFe-Fe

2

)2

+ 2J2
RE-Fe, (7.4)

which necessarily returns some trivial results, including 3kBTC = JFe-Fe(RE-RE) when JRE-RE(Fe-Fe) =

JRE-Fe = 0. To evaluate the paramagnetic exchange parameters, we perform a least-squares

fit of Eq. 7.2 using small training values of the order parameters.
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7.2 Results

7.2.1 Magnetic moments

The magnetic moments per formula unit have been calculated at zero temperature for the

heavy RFe2 series (RE=Y,La,Gd-Lu) and are plotted in Fig. 7.3. We find excellent agreement

with experimental measurements,[16, 42, 142] as well as with previous calculations made by

Brooks et al.[41] They used the linear muffin tin orbital (LMTO) method[143] and handled

the highly-localised 4f states by fixing their occupation number according to Hund’s rules

and calculated their influence on the spin densities ab initio, referred to as the ”open core”

scheme. Looking at our calculations of the RE moments, the results of which we have

plotted in Fig. 7.4, we see that their orbital contributions follow Hund’s rules almost-exactly,

whereas there is a slight increase in the spin moment compared to the expected values. This

discrepancy in the spin moment is also found by Brooks et al., who were able to attribute

it to the exchange splitting of 5d conduction states. Given that this contribution to the

spin moment decreases with the size of the 4f spin, this being an itinerant component of

the RE spin moment is highly likely. While experimental evaluations of the Fe moment in

the REFe2 compounds are limited, the general consensus for some years was that its size

115



 1.5

 1.6

 1.7

 1.8

 1.9

 2

Y La Gd Tb Dy Ho Er Tm Yb Lu
 13.6

 13.7

 13.8

 13.9

 14

M
a
g
n
e
ti

sa
ti

o
n
/F

e
 a

to
m

 (
µ
Β
)

La
tt

ic
e
 p

a
ra

m
e
te

r 
a
 (

a
.u

.)

Calculated
Pokatilov (1998)

Exp. lattice parameter

Figure 7.5: Magnetic moments per Fe atom calculated at zero temperature (purple circles,
left axis), along with experimental values of lattice parameter taken from Refs. 42 and 50
(green triangles, right axis). Note that there is no experimental data for LaFe2, so we have
chosen to set aLa = aY.

is ∼1.6µB and its exchange interaction with the RE sub-lattice is antiferromagnetic.[16, 42]

This was based on the assumption that the RE moment is strictly dictated by Hund’s rules.

While the anti-ferromagnetic alignment with the RE moments is certainly reflected in our

results, they also suggest that the size of the Fe moment has been underestimated as itinerant

components of the RE spin moments have been neglected. For example, in Fig. 7.5 we see that

GdFe2 has an Fe moment of 1.9µB. As the series progresses and the size of the itinerant RE

moment diminishes however, the assumption made by early experimental measurements is

better justified and we observe an Fe moment of ∼1.5-1.6µB in Er, Tm, Yb and LuFe2. More

recently, experimental measurements of sub-lattice magnetisation using neutron scattering

methods have been published by Pokatilov[142], the results of which confirm the itinerant

component of the RE spin and the previous underestimation of the RE moment. In Fig. 7.5 we

have also plotted the lattice parameter alongside the magnetic moment of the Fe site, showing

that the variation in the Fe moment is closely correlated with the size of the lattice, where we

see a consistent decrease in the Fe moment as the RE series progresses, from µFe = 1.90 µB

for GdFe2 to µFe = 1.52 µB for YbFe2. These lattice parameters clearly demonstrate the

lanthanide contraction phenomenon, where the lattice parameters of RE compounds decrease

as the RE series increases in atomic number due to the relative lack of electronic shielding

from 4f electrons, allowing 6s to occupy states that are closer to the nucleus.[144] We note

also that the size of the Fe moment we have calculated in YFe2 is appreciably larger than
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Figure 7.6: Calculated Curie temperatures of the REFe2 Laves phase compounds as a function
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by electronic structure calculations for GdFe2 (blue up-triangles). Included are experimental
values taken from Refs. 42 and 51 (purple down-triangles), as well as a value of TC for GdFe2

calculated using a self-consistent DLM potential (black cross).

that found by Pokatilov, while the calculated Fe moment of LaFe2 aligns much more closely.

This is in spite of the fact that LaFe2 is expected to have similar properties to YFe2 due to

the singular occupancy of their valence d states. It is not currently known why this disparity

occurs.

7.2.2 Curie temperatures

Using the method outlined in section 7.1.3 we have calculated TC for REFe2 compounds and

plotted them in Fig. 7.6. As well as using lattice parameters determined by experimental

measurements from Ref. 42, we have also calculated the equilibrium lattice parameter for

GdFe2, i.e. the lattice parameter at which the total energy is minimised, and used this

fixed value (aDFT = 13.39 a.u.) for all compounds. Using experimental lattice parameters

we obtain good qualitative agreement with experiment, in that we have an increase in TC

from RE=Y to Gd, followed by a monotonic decrease in TC between Gd and Yb, before we

have a comparatively slight increase in TC for Lu compared to Tm and Yb. Quantitatively

however there is a consistent overestimation of TC of ∼200-500 K across the entire series.

This overestimation can likely be attributed to the use of potentials that are calculated in the

ferromagnetic state at temperatures close to the paramagnetic state, when the more physically
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justifiable approach is to use Disordered Local Moment (DLM) potentials. Discussion on this

choice of potentials in the context of chapter 5 can be found in appendix B. A comparison

of these potentials for bcc Fe can be found in Appendix B.4 and an in depth study can be

found in Ref. 145. However we found that it was difficult and computationally costly to

achieve convergence for the DLM state in these compounds, so we opted to only calculate

TC for GdFe2 and found its value to be ∼680 K, which is a marked improvement on the

value found using the FM potential. It is also worth pointing out that there is a particularly

large overestimation of TC in YFe2 such that it has the second largest value of TC in the

entire series, compared to experiment which predicts it to have the smallest. In a similar

fashion to our evaluation of the Fe moments in the previous section, we find that LaFe2 has

a much smaller Curie temperature (∼850 K) which aligns more closely with the overall trend

we expect from experiment. We also find that the use of the equilibrium lattice parameter

aDFT decreases TC significantly enough that we obtain values that are closer to experiment.

At the same time some of the qualitative agreement is lost, as we see a local minimum in

TC at ErFe2 rather than YbFe2. This implies that the lanthanide contraction, which the

use of the fixed DFT lattice ignores, is a necessary consideration in the atom-dependence

of the Curie temperature. With that in mind, Fig. 7.7 shows how TC changes when we

take GdFe2 at its experimental lattice volume and 1) only change the lattice according to

values for the other REFE2 compounds; 2) only change the atom and keep the lattice volume

fixed; and 3) change both. Labelling this change relative to GdFe2 ∆TC, we see that only

changing lattice volume gives us a similar atomic dependence as the magnetic moment of the

Fe atoms, which is unsurprising given that both properties are intrinsically tied to the size

of the lattice as well as each other. By only changing the atom we find that we can account

for most of the decrease in TC as the RE series progresses, however once we reach TmFe2 we

begin to see an increase in TC. Now if we simply sum the contributions of the two changes

so that ∆TC = ∆TC,∆lat + ∆TC,∆atom, it is reassuring to see that there is close alignment

with our original result where both changes are calculated simultaneously. This summing

also confirms that while the change in atom accounts for most of the change in TC with RE

series progression, the decrease in TC from ErFe2 onwards can be attributed to lanthanide

contraction.

7.2.3 Paramagnetic exchange parameters

Using Eq. 7.4 we can resolve the contribution to TC from the paramagnetic exchange param-

eters JRE-RE, JFe-Fe and JRE-Fe. These parameters are plotted in Fig. 7.8, where each subplot

shows the different configurations of atom and lattice parameter that were considered in the

previous section. While we have made the point that these are not equivalent to the exchange

parameters of a Heisenberg pair-wise spin model, it is expected that they are comparable in
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terms of their relative energy scales.[62] As we discussed in section 4.2.3, the hierarchy of

exchange interactions in RE-TMs is generally expected to be

JTM-TM � JRE-TM � JRE-RE ≈ 0, (7.5)

and according to experiment this is no different in the REFe2 compounds.[146–149] It is

surprising therefore that our calculations show for high-spin REs (Gd-Ho) that the exchange

hierarchy is better described by JFe-Fe � JRE-Fe ≈ JRE-RE. In GdFe2 for example we have

JFe-Fe ∼ 38µRy, JRE-Fe ∼ 15µRy and JRE-Fe ∼ 9µRy. No such discrepancy was found in

an investigation of the RECo5 compounds that used the same methodology.[62] There is

however a difference between the REFe2 and RECo5 in that that the REs in the former lie

much closer to each other inside the lattice. Given that muffin-tin radii of the Gd and Fe

atoms are rMT,Gd = 3.61 and rMT,Fe = 2.67 a.u. respectively, which for both species of atom is

greater than half their nearest neighbour separation, their muffin-tin potentials must overlap

with their nearest neighbours. This is not unusual for the Atomic Sphere Approximation

(ASA) approach as its purpose is to minimise interstitial regions of zero potential. A further

investigation as to whether this is the cause of the discrepancies may be necessary, however

given that this should in principle involve a study of elemental Gd, it is outside the scope of

the present study. Given the following calculations, its impact on our results in a qualitative

sense does not appear to be significant.
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7.2.4 Magnetisation vs. temperature

We now look to study the magnetisation as a function of temperature in GdFe2, TbFe2 and

DyFe2. The results of our calculations can be found in Fig. 7.9. These compounds have

been chosen as GdFe2 is a useful model for the itinerant components of the REFe2 series

due to its lack of orbital moment, while TbFe2 and DyFe2 are relevant due to their large

magnetostriction. The majority of the results show what is expected from experiment,[16,

49, 150] in that there is a monotonic decrease in the total magnetisation with increasing

temperature. In addition we see that as the RE series progresses and JREFE decreases, the

RE moment disorders at a faster rate with respect to temperature, even when temperature

is normalised to T/TC. It is also worth noting that these results have a negative gradient at

zero temperature, while experimental results in general show zero gradient. This is a well-

documented discrepancy that originates from the use of classical statistical mechanics in DLM

theory,[33, 62, 108] where there is not a finite energy gap between the zero-temperature state

and thermally induced, infinitesimal rotations of the local moments. We can use these results

to build a simple model for the relationship between the temperature dependence of the RE

and Fe moments in the REFe2 compounds. First we observe in Fig. 7.9b. that, to a very

good approximation, the shape of the Fe moment temperature dependence is independent

of the RE atom or TC. We can also see that the shape is given approximately by a classic

one-spin model, i.e.

hFe = J ′Fe-FemFe, ⇒ mFe = L
(
βJ ′Fe-FemFe

)
, (7.6)

where we have used m = L(βh) and set J ′Fe-Fe = 3 for the result shown in Fig. 7.9b. This

implies that, if J ′Fe-Fe = 3kBTC, the Fe order parameter for an arbitrary Curie temperature

is governed by numerical solutions to the equation

mFe = L

(
3
TC

T
mFe

)
. (7.7)

Now we substitute this result into the simultaneous equations represented by Eq. 7.3 and after

some simple rearranging we find the following relationship between the RE and Fe molecular

fields:

hRE =
2JRE-REJ̄ − JFe-FeJRE-RE + J2

RE-Fe

JRE-FeJ̄
hFe, (7.8)

where we have used the definition 3kBTC ≡ J̄ . Finally, after applying the inverse Langevin

function L−1(x) we have a temperature-dependent relationship between the order parameters
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of the RE and Fe sub-lattices,

mRE(T ) =
2JRE-REJ̄ − JFe-FeJRE-RE + J2

RE-Fe

JRE-FeJ̄
L−1(mFe)kBT. (7.9)

Calculations of mRE using this model are plotted in Figs. 7.9c and 7.9d. The model’s agree-

ment with ab initio calculations is excellent. This reinforces the picture that the smaller

the exchange interaction between RE and Fe sub-lattices, the greater the drop-off in the

order parameter of the RE. To test the model further, we have plotted its application to

REFe2 compounds between RE=Gd and Yb alongside experimental data in Fig. 7.10, us-

ing paramagnetic exchange parameters calculated with ASA potentials. If we accept the

overestimation of TC due to the use of FM potentials, then we find that the theory agrees

very well with experiment. From these results we can also determine theoretical com-

pensation temperatures of Tcomp,Ho ∼ 800 K, Tcomp,Er ∼ 500 K, Tcomp,Tm ∼ 310 K and

Tcomp,Yb ∼ 120 K, compared with experimental values of Tcomp,Er ∼ 490 K, Tcomp,Tm ∼ 230 K

and Tcomp,Yb ∼ 31 K respectively.[16, 49, 51] A compensation temperature in HoFe2 has not

found in experiments,[16] however it is feasible given the very small size of the negative peak

that it may have not have been measurable under a small applied field. Overall, agreement

with experiment in this regard is also very good.

7.2.5 Anisotropic phenomena vs. temperature

In order to study the itinerant component of the magnetostriction in the cubic Laves phase

compounds, we have used the method set out in section 4.3.4 to calculate the uniaxial magne-

toelastic constant B1 as a function of temperature in GdFe2. In addition, we have calculated

the temperature dependence of the cubic anisotropy constant K1 and the shear magnetoe-

lastic constant B2 using the following torque relationships:

K1 = 4Tθ(n̂ = [101]) and B2 = − 3√
2
uxyTθ(n̂ = [111]), (7.10)

where K1 is evaluated directly from torque calculations of the cubic configuration with n̂

along [101] and B2 is evaluated from least-squares linear fitting of torque calculations with

small shear strains (−0.5% < uxy < 0.5%) and n̂ along [111]. The results of these calculations,

which include values for the whole system as well as site-resolved contributions, are plotted in

Fig. 7.11. We note that the site-resolved parameters labelled subscript Fe (e.g. B1,Fe) derive

from averages of the four Fe sub-lattices in order to account for the rotational transformations

between their local symmetries. Also, negative values of the magnetoelastic constants are

plotted (i.e. −B1 and −B2) so that their sign matches their corresponding magnetostriction

parameters.
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Magnetocrystalline anisotropy

Focusing first on K1 at zero temperature we find a value of ∼ 0.03 MJ/m3, which aligns with

experiment in that it is very small compared to other REFe2 compounds and implies an easy

axis of [001].[16, 42, 151] This is expected given the negligible orbital moment in Gd and its

lack of CF interaction. By looking at the site-resolved contributions to K1 we also find that

the anisotropy of the Gd and Fe sub-lattices are opposite and of similar magnitudes, with

the Gd atoms only slightly dominating over the negative anisotropy of the Fe atoms. This

reflects experimental data which shows that YFe2, in which the non-magnetic Y is expected

to have negligible anisotropy, has an easy axis along [111] and K1 ∼ −0.6 MJ/m3.[151]

Now we introduce thermal disorder into the system and study how K1 changes with

temperature. At high temperatures (T > 1000 K, m < 0.5) we find that K1, as well as its

sub-lattice contributions, varies as m4 where m is the magnetic order parameter of either

the total system or the sub-lattices as appropriate. This is the behaviour expected from

single ion theory, where we take the thermal average of a model where the moment samples

the anisotropic energy surface as it disorders. A much more in depth discussion of this

model can be found in section 4.2. We observed similar behaviour in the magnetoelasticity

of bcc Fe in section 5.1.5 from which we posited that the thermal averaging of the density of

states suppresses itinerant contributions to the magnetoelasticity as magnetic order decreases,

leaving only single ion-like behaviour. These results further support this picture. It is also

noteworthy that on a per-atom basis, the contributions to the anisotropy from the Gd and Fe

sub-lattices become almost identical within this high-temperature range. At low temperatures

where we expect itinerant contributions to dominate, the behaviour of the anisotropy is much

more complex and deviates completely from monotonic single ion description. K1,Fe for

example has a negative anisotropy at zero temperature, undergoes a slight peak at ∼ 100 K,

before increasing and becoming positive at ∼ 300 K and peaking once again at ∼ 600 K. On

the other hand, K1,Gd has a negative slope at low temperature and exhibits local minima and

maxima at ∼ 200 K and ∼ 400 K respectively. In K1 we therefore observe local minima and

maxima at ∼ 150 K and ∼ 500 K, with the latter corresponding to a small region between

∼ 100 K and ∼ 200 K where the total anisotropy becomes very slightly negative.

Magnetostriction

Turning our attention to magnetostriction, we first consider the zero temperature values of

the magnetoelastic constants B1 (Fig. 7.11, middle panel) and B2 (Fig. 7.11, bottom panel).

Without experimental measurements of the elastic modulii we cannot compare these results

with experiment directly as we did in chapters 5 and 6. We therefore opt to use the elastic
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modulii calculated by Wu[11] and with

λ001 = −2

3

B1

c12 − c11
and λ111 = −1

3

B2

c44
, (7.11)

we can approximate values of the magnetostriction from our calculated magnetoelastic con-

stants. With that established, our zero temperature calculations correspond to values of

λ001 = 61 and λ111 = −90 ppm, the former agreeing well with the experimental measured

value of λ001 = 39 ppm[16] and Wu’s value of λ001 = 44 ppm. If we resolve the contributions

from the Gd and Fe sub-lattices we see that the majority of the magnetostriction derives

from the Gd, especially in B1 where the contribution from the Fe is effectively zero. While

the Fe sub-lattice contribution to B2 is more significant, its magnitude is stil less than a third

that of the Gd sub-lattice.

With regards to the calculated temperature dependence of the magnetoelasticity, both

B1 and B2 behave quite differently to the anisotropy. Apart from a small region where

B1,Fe goes through a peak in its magnitude at 600 K, the thermal behaviour of B1 is mostly

dominated by the Gd sub-lattice, with a peak at very low temperature followed by monotonic

decrease in its magnitude. This contrasts with the delicate balance we saw between sub-lattice

contributions to K1. As we saw in the high-temperature behaviour of K1, as well as B1 in

Chapter 5, B1/2 and their sub-lattice components approximately follow the single ion model

at magnetic ordering of m < 0.3, which in these cases means a power law of m2. The most

notable aspect of the temperature dependence of B2 is that B2,Fe is approximately static up

to ∼ 900 K, while −B2,Gd exhibits a steady monotonic increase over the same range. This

means that at low temperature the thermal variation of B2 is dominated by the Gd sub-lattice

as we saw with B1, whereas at temperatures greater than T ∼ 600 K Fe is dominant. The

decrease in −B2,Gd continues until it changes sign at ∼ 900 K.

7.3 Summary and conclusions

We have calculated from first principles the temperature dependence of magnetic proper-

ties in the Laves phase REFe2 compounds (RE=Y,La,Gd-Lu), including Curie temperatures

and site-, spin- and orbital-resolved magnetic moments, by utilising the DLM picture of

temperature-dependent magnetic disordering, while handling the highly localised 4f elec-

trons of the rare earth elements with self-interaction-corrected DFT-based DFT. In addition

we have calculated the temperature dependence of anisotropic quantities, the cubic magne-

tocrystalline anisotropy K1 and the magnetoelastic constants B1 and B2, in GdFe2.

Our calculations accurately determine the zero temperature magnetisation of these

compounds, reproducing experiment as well as previous DFT-based ab initio calculations that
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show the magnetic moments of the rare-earth elements are primarily determined by Hund’s

rules and carry an additional itinerant spin moment that decreases as the RE series progresses.

The sizes of the itinerant Fe moments however are governed by magneto-volume effects, where

the Fe moment diminishes as the volume of the lattice decreases due to lanthanide contraction.

As for Curie temperatures, our results show strong qualitative agreement with ex-

periment, reproducing the decrease in Curie temperature across the series from Gd to Yb

and the slight increase in TC that follows in LuFe2. By studying the volume dependence

GdFe2 alongside calculations of other REFe2 compounds at a fixed volume, we have been

able to show that the atom-dependence of TC is not only a result of the suppression of the

exchange coupling between Fe and RE sub-lattices, but also due to lanthanide contraction.

The strength of the RE-RE and RE-Fe exchange interactions were found to be appreciably

greater than experimental data shows, as well as that seen in the same same calculations

made on other RE-TM compounds such as RECo5. This has been partially attributed to

the close proximity of the RE atoms and the resulting overlap of their ASA potentials. Pro-

hibiting overlap with the use of muffin-tin potentials notably decreased the strength of the

exchange interactions and slightly improved the values of TC in terms of comparison with

experiment. The dominant source of systematic error in our determinaton of TC however is

the use of frozen FM potentials near the paramagnetic limit. Much better agreement with

experiment is achieved in GdFe2 when self-consistent, paramagnetic potentials are used in-

stead. The difficulty of the generation of these potentials however means their application

is limited until a more in-depth investigation on their stability is carried out. For now, we

accept the pseudo-systematic overestimation of TC as a necessary and predictable artifact of

the existing method.

From calculations of the temperature dependence of the total and site-resolved mag-

netisation in GdFe2, TbFe2 and DyFe2, we have been able to devise an effective model that

relates the magnetic ordering of the Fe and RE sub-lattices. Using a TC-enhanced classical

model of the Fe ordering, evaluations of the full temperature dependence in the remaining

REFe2 compounds (RE=Ho-Yb) have been made using only the paramagnetic exchange pa-

rameters that previously provided TC (using Eq. 7.4). The model’s qualitative agreement

with experimental data is very good, especially if the previously-mentioned overestimation of

TC is accounted for. It also evaluates with reasonable accuracy the compensation tempera-

tures of ErFe2, TmFe2 and YbFe2, as well as a possible compensation temperature in HoFe2

that has not been observed in experiment.

Finally, our results for the temperature dependence of anisotropic phenomena in

GdFe2 show reasonable agreement with limited experimental data. We have attributed the

difference in the zero temperature easy axis between GdFe2 and YFe2 to the dominance of

the positive Gd sub-lattice anisotropy over that of the Fe sub-lattice. Our data also provides
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additional evidence for the high temperature behaviour of anisotropic quantities being well-

described by single ion theory, even in systems where itinerant magnetism is dominant. This

follow from our analysis in section 5.1.5.

In their totality, the results published in this chapter represent a necessary step in

the determination of the temperature and concentration dependence of magnetostriction in

Tb1−xDyxFe2. Not only is it essential to determine the relationship between magnetic order

and temperature in TbFe2 and DyFe2, but our data on GdFe2 also provides a model for

the itinerant components of the MCA and magnetostriction in REFe2 compounds. These

results, alongside an ab initio theory of temperature-dependent magnetostriction based on

CF theory, can be found in Ref. 53.
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Chapter 8

Summary and outlook

In this thesis we have presented an ab initio theory for the calculation of magnetostriction at

finite temperature. The magnetoelasticity of a magnetic material is determined by measur-

ing the response of its magnetic torque - the angular restoring force that acts on magnetic

moments with orientations that are out of equilibrium - to small distortions of the crystal

lattice. Our work expands on the zero temperature method pioneered by Wu et al.[10] by

incorporating thermally-induced magnetic disorder via Disordered Local Moment theory. In

this picture, self-consistent molecular fields are maintained by the quantum dynamics of the

many-body electronic fluid. The highly-disparate timescales on which this fluid and the de-

grees of freedom of the molecular fields evolve, the latter being much slower, allows for the

consideration of the system as a frozen ensemble of local moments with well-defined ori-

entations, {ên}. With an appropriate description of the statistical mechanics of these local

moment orientations, one can determine the temperature associated with a given orientation-

dependent probability distribution, P ({ên}). Due to its definition as the angular derivative

of the free energy, the magnetic torque can then be immediately calculated from the explicit

dependence of the disordered local moments’ free energy on P ({ên}). Calculating the mag-

netic torque as a function of small strains, for some P ({ên}), thus allows for the calculation

of magnetoelastic constants at arbitrary temperatures.

In order to handle a sufficiently fine mesh of local moment-degrees of freedom, a task

that in principle requires a prohibitively large unit cell, the formalism of the method within

Density Functional Theory utilises the Coherent Potential Approximation. While its historic

use has been in the treatment of chemical disorder, the analogy between chemical elements

and local moment directions has proven to be more than appropriate. Its implementation also

means that the method is readily able to model non-stoichiometric alloys, a crucial exercise

in the study of magnetostrictive materials.

We began our application of the theory in chapter 5 with a case study on the fi-
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nite temperature magnetostriction of bcc Fe, based on work we had already published in

Ref. 27. The research regarding the anomalous magnetostrictive temperature dependence of

Fe has spanned more than fifty years now. It deviates dramatically from the empirical single-

ion theory by exhibiting multiple local extrema over its ferromagnetic temperature range.

After demonstrating the linear dependence of the magnetic torque on small deformations

of the lattice we presented calculations of both the volume- and temperature-dependence

of bcc Fe’s magnetoelasticity, showing a fundamental relationship between the two. With

additional calculations of the density of states, our work revealed that the anomalous magne-

tostrictive temperature dependence is the result of a delicate balance between bcc Fe’s large

magnetoelastic volume dependence, the thermal expansion of the lattice and the magnetic

disorder-induced homogenisation of its band structure. Special attention was also paid to the

high temperature behaviour of the magnetoelasticity, which showed single-ion-like behaviour

at sufficiently high temperatures. This was attributed to the suppression of itinerant magne-

toelasticity as fine features of the density of states are washed out due to thermal averaging

of the band structure.

As a follow-up to the work on bcc Fe, chapter 6 was a study of chemical- and magnetic-

ordering in the bcc Fe-Ga alloy, Galfenol. The dramatic ten-fold enhancement of Galfenol’s

magnetostrictive properties with respect to bcc Fe, in spite of Ga being non-magnetic, has

motivated a wide range of research for almost 20 years and its exact mechanism is still

contested.[36–40] With Galfenol being one of the most viable transition metal-only alterna-

tives to Terfenol-D, it is both technologically and scientifically relevant and an ideal case study

for itinerant magnetostriction. After providing an introduction to the alloy and the existing

theories behind its magnetostrictive enhancement, we presented calculations of magnetoelas-

ticity in the fully-disordered A2 phase at zero and finite temperatures, utilising the Coherent

Potential Approximation to efficiently model the system at non-stoichiometric Ga concen-

trations. They showed no clear mechanism for magnetostrictive enhancement, confirming

the necessity for the consideration of ordered structures. Building on our already-published

work on the A2 phase,[27] the non-stoichiometric B2 and D03 phases were investigated using

the scheme established by Khmevelvska et al.[127] Our calculations on the partially-ordered

phases showed that both exhibit a significant enhancement in magnetoelasticity as Ga is

doped at specific atomic sites. The enhancement exhibited by the D03 phase is especially

noteworthy, not only due of its extraordinary magnitude - a ∼15× increase compared to

bcc Fe - but also because this result contradicts previous band structure calculations that

found the stoichiometric D03 phase to be detrimental to magnetostriction.[40] Based on these

findings, as well as further calculations of the partially-ordered phases at finite temperature,

we concluded that the established intrinsic theories of Galfenol’s magnetostrictive properties

need to be reconsidered and that the emergence of some type of ordering other than D03 -
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either short or long range - is likely responsible for the fall in Galfenol’s magnetostriction

after the peak at ∼ 19% Ga content.

In Chapter 7 we presented calculations of the magnetic moments, Curie tempera-

tures and magnetisation vs. temperature curves in intermetallic materials of the cubic Laves

phase REFe2-type (RE=Y, La, Gd-Lu). In addition, calculations of the magnetocrystalline

anisotropy and magnetoelasticity at finite temperature were performed on GdFe2, in an ef-

fort to model the itinerant components of the anisotropic phenomena in the REFe2 series.

These results are part of a preliminary study on the temperature- and alloy-dependence of

magnetostriction in Terfenol-D, which is a member of the REFe2 Laves phase class. The treat-

ment of the highly-localised electrons of the rare earths was handled by the self-interaction-

correction procedure proposed by Patrick and Staunton, in which localised 4f states are

shifted in energy if they are occupied according to Hund’s rules in the Russell-Saunders L-S

coupling scheme.[33] Our calculations of the magnetic moments showed excellent agreement

with experiment[16, 42] and previous theoretical studies,[41] while calculated Curie temper-

atures showed very good qualitative agreement but were systematically overestimated - an

expected by-product of the use of ferromagnetic potentials to describe the paramagnetic state

in Disordered Local moment theory. Using a classical-spin model to describe the magnetic

disorder on the Fe sub-lattice - combined with calculated values of paramagnetic exchange

parameters - we provided a model for the magnetisation as a function of temperature in

each compound that agreed well with experimental measurements, especially when the over-

estimation of Curie temperatures is accounted for. A particularly successful outcome of

this approach was the reasonable prediction of compensation temperatures - the tempera-

ture at which the sub-lattice disorder is such that the ferrimagnetic RE and Fe moments

exactly balance, making the total magnetisation pass through zero before the Curie temper-

ature. We concluded our research chapters with the novel calculation of finite temperature

magnetostriction and magnetocrystalline anisotropy in GdFe2. Comparing our results with

limited experimental measurements we found good qualitative agreement in terms of the

zero temperature magnetocrystalline anisotropy,[151] showing that the sublattice-anisotropy

of Fe and Gd are of opposite sign and similar magnitude, with Gd’s being slightly larger.

For measurements of zero temperature magnetostriction we found excellent agreement with

experiment and previous theoretical studies.[15, 37] The introduction of thermally-induced

magnetic disorder in both the magnetocrystalline anisotropy and magnetostriction provided

more evidence for the dominance of single-ion behaviour at high temperatures, while their low

temperature behaviour deviated quite significantly from the single-ion model, as one would

expect from an itinerant system.

We will now conclude the thesis with a number of possible avenues for further appli-

cation of the theory, along with potential extensions and improvements. First we will address
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extensions of our research that do not require any changes or improvements to the current

implementation of the theory. Concerning our investigation of partially-ordered phases in

Galfenol, our results do not provide a sufficiently robust mechanism for the decrease in mag-

netoelasticity at Ga concentrations of > 19%, so there is clear scope for further calculations

of structures other than A2, B2 and D03. A hint regarding the nature of the short range order

at these concentrations is provided by calculations carried out by Staunton et al. on Fe-Al

alloys, which also utilised Disordered Local Moment theory.[152] Their calculations show that

Fe0.8Al0.2 in its paramagnetic state corresponds to B2-type short-range order, while the low

temperature ferromagnetic state has a much more complex structure that is not described

by either B2- or D03-type ordering. Given that Galfenol’s magnetostrictive enhancement is

influenced by its temperature-dependent preparation[36] - i.e. whether it is slow-cooled or

quenched from temperatures above the paramagnetic phase transition - these results suggest

that the unidentified structure may be the origin of the suppression of magnetostriction.

An ab initio study of Galfenol’s short-range order, potentially through the use of a many-

body Monte Carlo method, alongside a similar magnetoelastic investigation of the emergent

structures as our B2 and D03 calculations is required to test such a theory.

With regards to our preliminary study of the REFe2 Laves phase compounds, we

acknowledge the need for a greater review of their itinerant magnetostriction and magne-

tocrystalline anisotropy, as it is not obvious that GdFe2 should be a sufficient model for these

components. It would therefore be pertinent to carry out a study of the itinerant components

of anisotropic phenomena in the rest of the REFe2 series. Another aspect of the study that

should be addressed further is the systematic overestimation of the Curie temperatures, due

to the use of ferromagnetic potentials in the paramagnetic state. We reported the calculated

Curie temperature for GdFe2 using a paramagnetic potential, which compared much more

favourably to experiment, but the convergence of paramagnetic states in the other compounds

was found to be too difficult to pursue within the scope of that investigation. Additional effort

should therefore be made to efficiently determine these paramagnetic states. Considering the

relative lack of interaction between the RE and Fe potentials, it may be possible to pursue

a method in which the paramagnetic Fe potentials are obtained for an analogue system and

considered “frozen” with respect to the choice of rare earth element.

We will now acknowledge and discuss some areas in which the theory can be improved

upon:

1. The implementation of a treatment for localised 4f electron states in the determina-

tion of magnetoelasticity, thus allowing for the study of magnetostriction in non-Gd

rare earth-transition metal magnets including Terfenol-D. This would follow a similar

procedure as outlined in Ref. 153, in which appropriate crystal field coefficients (as we

defined in section 4.2.3) are calculated ab initio through the combination of spherically-
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symmetric 4f charge densities and the construction of crystal field potentials through

the use of of Kohn-Sham potentials. Adapting the yttrium analogue method to describe

magnetoelasticity is conceptually straightfoward, requiring the calculation of the crys-

tal field coefficients when the lattice is subjected to small deformations. The method

has already been used to calculate cubic crystal coefficients in TbFe2 and DyFe2,[153]

but work has very recently been published[53] that incorporates magnetostriction and a

linear model for chemical disorder to provide a description of Terfenol-D’s morphotropic

phase diagram.[132] This would represent a dramatic expansion of the theory’s appli-

cability.

2. Currently, the method is only able to determine the temperature dependence of magne-

toelasticity: the linear response of magnetic torque to small deformations of the crystal

lattice. Eqs. 2.35 and 2.36 tell us that magnetostriction is proportional to magnetoe-

lasticity, but also inversely proportional to elasticity. A complete ab initio theory of

magnetostriction at finite temperature would therefore be able to calculate the tempera-

ture dependence of the elastic constants. With this we would forgo the need to compare

our results with experiment indirectly, via the combined experimental measurements

of magnetostriction and elastic constants. The first-principles determination of elastic

constants for given magnetic disorder could proceed via the calculation of either the

quadratic response of the scalar-relativistic total energy to small strains of the lattice

according to Eq. 2.24; or the linear response of the stress - the first strain derivative

of the total energy - to small strains. The former approach has already been employed

within the disorder local moment picture in Refs. 154 and 155. To this author’s knowl-

edge a method based on the latter has not yet been formulated, but it would likely

require an implementation of the widely-applied stress theorem.[156] Its implications

not only include the evaluation of elasticity, but also the first-principles determina-

tion of equilibrium lattice parameters as a function of temperature; the evaluation of

magnetoelastic constants directly from the relativistic calculation of a material’s zero

strain-stress; and the ability to identify internal structural distortions, an effect that has

been linked with extraordinary magnetostriction.[134] The opinion of this author is that

a relativistic stress theorem, implemented within the disordered local moment picture,

would represent a profound leap in the study of magneto-structural phenomena.

In conclusion, we are confident that the content of this thesis represents a significant

step forward in the first principles calculation of magnetostriction, a phenomenon that is

central to a number of modern technologies. Not only does the implementation of the Coher-

ent Potential Approximation greatly enhance our ability to study non-stoichiometric alloys

- materials that are essential to the advancement of magnetostrictive applications - but the
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capability of our method in describing the magnetostriction of itinerant systems at finite

temperature ab initio is a truly important achievement, as evidenced by the insight it has

provided on the previously-unexplained magnetostrictive temperature dependence of Fe.
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Appendix A

Conventional cubic

magnetostriction proof

Here we will briefly follow Neel’s 1954 pair interaction model [157] in order to contextualise

the definition of the conventional magnetostriction parameters λ001 and λ111 in Eq. 2.1. We

begin with the interaction energy between magnetic moments, which when their interatomic

distance r is allowed to vary is given by

w(r, φ) = g(r) + l(r)(cos2 φ− 1

3
) + q(r)(cos4 φ− 6

7
cos2 φ+

3

35
) + . . . , (A.1)

where φ is the angle between the moments’ magnetisation and their displacement axis. The

magnetisation direction-independent term g(r) is the exchange interaction and l(r) is the

dipole-dipole interaction, but only the latter contributes significantly to the magnetostriction,

so we write the pair energy as

w(r, φ) = l(r)

(
cos2 φ− 1

3

)
. (A.2)

We now introduce the direction cosines of magnetisation αi and interatomic displacement βi

(i = 1, 2, 3) in order to rewrite eq. A.2 as

w(r, φ) = l(r)

{
(α1β1 + α2β2 + α3β3)2 − 1

3

}
. (A.3)

In order to determine the strain-dependent contribution, the magnetoelastic energy fme, we

begin with the particular case of a simple cubic lattice with deformation described by the

strain tensor uij . For a particular pair situated along the x-axis (with corresponding cosines
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β1 = 1, β2 = 0, β3 = 0) the pre-strained pair energy is

wx(r, φ) = l(r0)(α2
1 −

1

3
). (A.4)

Upon deformation, the interatomic seperation r0 becomes r0(1 + u11) and the interatomic

direction cosines become β1 ≈ 1, β2 = 1
2u12 and β3 = 1

2u31. The subsequent change in pair

energy is thus

∆wx =

(
∂l

∂r

)
r0u11(α2

1 −
1

3
) + l(r0)α1α2u12 + l(r0)α3α1u31. (A.5)

After determining similar expressions for ∆wy and ∆wz, the energy contributions from all

nearest neighbour pairs N in the simple cubic lattice can be summed to provide

Emagel =N

(
∂l

∂r

)
r0

{
u11(α2

1 −
1

3
) + u22(α2

2 −
1

3
) + u33(α2

3 −
1

3
)

}
+2Nl(r0)(u12α1α2 + u23α2α3 + u31α3α1).

(A.6)

For the cases of body-centred and face-centred cubic lattices, only the coefficients of the linear

strain terms change, allowing the cubic magnetoelastic energy to be generalised to an energy

density of the desired form:

fme =B1

{
u11(α2

1 −
1

3
) + u22(α2

2 −
1

3
) + u33(α2

3 −
1

3
)

}
+B2(u12α1α2 + u23α2α3 + u31α3α1).

(A.7)

Following the energy-minimisation procedure described in section 2.3.2 will then provide an

expression for magnetostriction that exactly corresponds to Eq. 2.1 - i.e. without superflous

constant terms.
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Appendix B

Computational method

comparisons

Here we carry out comparisons of different computational methods in the context of chapters 5

and 6.

B.1 Torque vs. Strain: Validity of linear regime

In Fig. B.1 we plot the torque Tθ (θ = π/4) as a function of tetragonal strain εzz at

a =5.40 a.u., where the frozen potential approximation has not been used and thus the

potentials generated in Step 1. of the method in section 4.3.4 are generated in the strained

system. We see that, compared to the results shown in Fig.5.1, there is a more significant

non-linear contribution when m ∼ 1. At m = 0.72 we observe almost zero non-linear depen-

dence. However, it is worth noting that using either a quadratic or linear fitting procedure

(shown on the left and right of the figure respectively) leads to the same value of B1 within 3

significant figures, so the system can still be reasonably considered within the linear regime.

B.2 Muffin-tin vs. Atomic sphere approximation

In Figure B.2 we compare B1 vs. m curves at a =5.20 and 5.40 a.u. when using muffin-tin

(MT) (used in the chapters 5 and 6 of the thesis) and Atomic Sphere Approximation (ASA)

potentials. All other variables in the method are consistent with the main article.

We find that the use of the ASA potentials leads to some quantitative changes to B1

at particular temperatures, e.g. B1 ∼ 4 MJ/m3 at zero temperature compared to ∼ 2 MJ/m3

when using MT at a =5.40 a.u.. It is clear however that the key features of the temperature

and volume dependence are very similar between the two methods, such as the peak in B1
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Figure B.1: Torque Tθ (θ = π/4) as a function of tetragonal strain εzz for different magnetic
order parameters m, while using strained potentials i.e. no frozen potential approximation
(FPA). Left: Data fitted with quadratic function A+B1x+Cx2, where B1 is the magnetoe-
lastic constant. Right: Data fitted with linear function A+B1x. Included on each graph are
values for B1 for each fitting procedure.
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(right) approximations.
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Figure B.3: Magnetoelastic constant B1 as a function of order parameter m at a =5.20 a.u.
(squares, red) and a =5.40 a.u. (triangles, blue), using the frozen (left) and self-consistent
i.e. strained (right) potentials.

of ∼8 MJ/m3 at m =0.8 when a =5.40 a.u., as well as the decrease in B1 with increasing

lattice parameter and the convergence of isovolumetric curves at high temperature.

B.3 Frozen vs. self consistent potentials

In Figure B.3 we compare B1 vs. m curves at a =5.20 and 5.40 a.u. when using frozen

potentials and self consistent potentials, referring to whether the potentials generated in

Step 1 of the method in 4.3.4 are done so in the cubic or strained system respectively. All

other variables in the method are consistent with chapters 5 and 6.

There are certainly quantitative differences inB1 between the frozen and self-consistent

distortions at certain values of m. For example at m = 1 the frozen distortion gives

B1 = −2.5 MJ/m3 at a = 5.40 a.u. while self consistent distortions give B1 = −1.7 MJ/m3.
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Figure B.4: Top: Magnetoelastic constant B1 as a function of order parameter m at
a =5.20 a.u. (left) and a =5.40 a.u. (right), using ferromagnetic (FM) potentials (circles,
grey) and Disordered Local Moment (DLM) potentials (triangles, black). Middle: Order
parameter m as a function of temperature T at a =5.20 a.u. (left) and a =5.40 a.u. (right),
using FM potentials (circles,grey) a and DLM potentials (triangles,black). Bottom: Magne-
toelastic constant B1 as a function of temperature T at a =5.20 a.u. (left) and a =5.40 a.u.
(right), using FM potentials (circles,grey) and DLM potentials (triangles,black).

The initial decrease in B1 between m =1 and 0.95 at a =5.40 a.u. is greater in the frozen

case also, almost twice as much. However key features such as the volume dependence, the

location and magnitude of the peak in B1 (around m =0.8 and B1 =-8 MJ/m3) and the

isovolumetric convergence at high temperature are entirely consistent. These results show

that the conclusions we arrive at in 5 and 6 are not meaningfully affected by this choice, nor

the choice of MT or ASA potentials.

141



B.4 Ferromagnetic vs. paramagnetic potentials

In Fig. B.4 we compare B1 vs. m, m vs. T and B1 vs. T when using either DLM or

FM potentials. We see that significant disparities arise between the B1 vs. m curves when

m > 0.6, such as the lack of a prominent peak in B1 in the DLM case. As this is the region in

which the FM potential is more physically justified, it should be considered a more reliable

description of the system. We can see that the B1 vs. m curves converge upon the same

behaviour as m decreases, with significant agreement achieved around m = 0.5. This means

that studying only the behaviour of the FM potential, at least for this particular system, is

sufficient for the entire ferromagnetic range.

Also plotted in Fig. B.4 is a comparison between choice of potential with regards to

magnetic order as a function of temperature for a =5.20 a.u. and a =5.40 a.u. Here we see a

significant difference between the choice of potential at high T and, as should be expected, we

have a better estimate of TC when using DLM potentials. Due to the good agreement between

the two potentials at low T , using only the DLM potential provides a better description of

the system.

Difficulty arises when considering B1 vs. T , which does not have an obvious choice

of potential for its entire ferromagnetic range. In this case a fully self-consistent approach

should be employed based on the comparative energies of the two potentials.[145]
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Appendix C

Additional computational details

In this appendix we will provide additional details on the computations that have been used

in the research chapters of this thesis.

First there is the calculation of the ferromagnetic and disordered local moment po-

tentials, i.e. step 1 of the method detail in section 4.3.4. As we noted in that section, these

scalar-relativistic DFT calculations are performed using the KKR-CPA hutsepot code,[106]

treating the DFT exchange-correlation in Eq. 3.23 at the level of the LSDA[107] and using

either the muffin-tin or atomic sphere approximation scheme to handle the atomic poten-

tials in Eq. 3.61. In addition, calculations inside the Brillouin zone are performed using a

20 × 20 × 20 mesh that samples momentum-space. For a single unit cell, the calculations

using this mesh take ∼ 10-20 seconds to converge when using 28 parallel processors, while

calculations of larger unit cells with order n increase the workload by a factor of ∼ n2

(where n ≤ 6).

Some of the additional considerations, such as self-interaction corrections and the

CPA, increase time of calculation further. In the case of the former, calculations of crystals

with 6 unit cells and a 20 × 20 × 20 Brillouin zone can take up to one hour longer. The

addition of the CPA tends to be less expensive, increasing calculation time by a factor of k,

where k is the average number of different potentials being averaged at each atomic site.

In step 2 of the method, the relativistic Kohn-Sham dirac equations are solved. For

zero temperature calculations this takes longer than the scalar-relativistic calculations of

step 1, with single-unit cells taking ∼ 1 minute, while the growth with unit cell size is similar

(∼ n2). For finite temperature calculations however, the necessity of the CPA means that a

single unit cell can take ∼ 15 minutes, though it should be noted that higher temperature

calculations are faster due to the greater electronic temperature entering the Guassian smear-

ing of single particle energies (see section 3.1.5). Finally, to achieve convergence on electron

number and temperature it generally takes ∼ 5-10 iterations of the above calculations.
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