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Abstract

In this thesis we investigate the harmonic extension method first popularised

by Caffarelli & Silvestre in [14] which allows the fractional Laplacian to be repre-

sented in terms of data retrieved from the solution uf to a local PDE problem. We

generalise this method to obtain local representations for a family of non-local opera-

tors −ψ(−Lx) where ψ is a complete Bernstein function and Lx is the generator of a

diffusion semigroup on some Banach space using two different approaches; one based

upon stochastic analysis and the other based upon semigroup theory. Underlying

both of these approaches is the Krein correspondence which gives a one-to-one cor-

respondence between complete Bernstein functions and a family of functions known

as Krein strings. We study this correspondence and focus on a particular function

ϕλ called the the extension function which provides the key to understanding the

extension method.

As an application of this method, we show how an obstacle problem associ-

ated with the non-local operator −ψ(−Lx) can be studied via the techniques found

in [9] which can usually only be applied to local problems. Under certain conditions

placed on Lx and the obstacle G, we show that the solution V to this problem lies in

the L2-domain of the operator −ψ(−Lx). Furthermore, if ψ arises as the Laplace ex-

ponent of the inverse local time of a one-dimensional diffusion process, then we show

that the solution will belong to the Lp-domain of the operator −ψ(−Lx) allowing

us to prove a regularity result for V .

v



Chapter 1

Introduction

The aim of this thesis is to investigate a method for expressing a family of non-

local operators in terms of data retrieved from a local PDE problem known as

the harmonic extension technique. The earliest example of the harmonic extension

technique is classical. If f : Rd → R is a smooth, bounded function and uf :

Rd × [0,∞)→ R is a solution to∆xuf (x, y) + ∂2
yuf (x, y) = 0 for all (x, y) ∈ Rd × (0,∞),

uf (x, 0) = f(x) for all x ∈ Rd,
(1.0.1)

(where ∆x denotes the Laplace operator acting on the d-dimensional x-component

of u), then we may express the square root of the Laplacian of f in terms of the

Dirichlet-to-Neumann map of the function uf :

−(−∆x)1/2f(x) = ∂yuf (x, 0),

for all x ∈ Rd.
Naturally, this leads us to ask whether this classical example may be gener-

alised to functions other than λ 7→ λ1/2. The first generalisation was provided by

Caffarelli & Silvestre where this technique was first popularised in their 2007 paper

[14]. In the paper, they consider two related elliptic equations. The first given by∆xvf + 1−α
z ∂zvf + ∂2

zvf = 0 in Rd × (0,∞),

vf (x, 0) = f(x) for all x ∈ Rd,
(1.0.2)
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which can be rewritten in divergence form by noting,

zα−1∇x,z ·
(
z1−α∇x,zvf

)
= ∆xvf + 1−α

z ∂zvf + ∂2
zvf . (1.0.3)

The second equation we can obtain by rescaling the z-coordinate, setting y = cαz
α

where α ∈ (0, 2) and cα = 2−α|Γ(−α
2 )|/Γ(α2 ) (we remark that this explicit constant

cα does not appear in [14], but rather in [46]). We then define a function uf :

Rd × [0,∞)→ R by

uf (x, y) = vf (x, ( y
cα

)1/α).

By applying the chain rule we find that

∂zvf (x, z) = αc1/α
α y1−1/α∂yuf (x, y),

∂2
zvf (x, z) = α2c2/α

α y2−2/α∂2
yuf (x, y) + (α(α− 1)c2/α

α y1−2/α)∂yuf (x, y),

and as vf solves (1.0.2) we see uf solves∆xuf + α2c
2/α
α y2−2/α∂2

yuf = 0 in Rd × (0,∞),

uf (x, 0) = f(x) for all x ∈ Rd.
(1.0.4)

It is then proven that

−(−∆x)α/2f(x) = ∂yuf (x, 0) = lim
z→0

vf (x, z)− v(x, 0)

cαzα
.

A key insight is that by taking the Fourier transform of (1.0.4), we obtain a family

of ODEs indexed by ξ ∈ Rd:−|ξ|2ûf (ξ, y) + α2c
2/α
α y2−2/α∂2

y ûf (ξ, y) = 0 for all (ξ, y) ∈ Rd × (0,∞),

ûf (ξ, 0) = f̂(ξ) for all ξ ∈ Rd.
(1.0.5)

To solve this equation, we note that for each λ ≥ 0 there exists a unique solution

ϕ
(α)
λ to the ODE

α2c2/α
α y2−2/αφ′′(y) = λφ(y),

which is non-negative, continuous and bounded on [0,∞) with φ(0) = 1. The explicit

2



solution to this second order ODE is given by

ϕ
(α)
λ (y) =

21−α/2

Γ(α2 )

(λα/2y
cα

)1/2
Kα/2

((λα/2y
cα

)1/α
)
,

where Kα/2 is the modified Bessel function of the second kind. This function allows

us to write the solution uf to (1.0.4) in terms of its Fourier transform:

ûf (ξ, y) = ϕ
(α)
|ξ|2(y)f̂(ξ).

As ∂yϕ
(α)
λ (0) = −λα/2, we see immediately that

∂yûf (ξ, 0) = −|ξ|αf̂(ξ) =⇒ ∂yuf (·, 0) = −(−∆x)α/2f.

The function ϕ(α), which we call the extension function, is key to understanding the

extension method and the possible non-local operators which may be obtained via

this method.

There have been several papers generalising the extension technique in vari-

ous ways. The first of note was by Stinga & Torrea in [71], in which the technique is

generalised to obtain a similar characterisation for operators of the form −(−Lx)α/2

where Lx is a linear second-order partial differential operator which is non-positive,

densely defined and self-adjoint in L2(X , µ). Their method uses the spectral the-

ory for self-adjoint linear operators on Hilbert spaces which permits them to avoid

using the Fourier transform which is of little use when the operator Lx is spatially

inhomogeneous. Moreover, an alternative method called the method of semigroups

is discussed in the expository article by Stinga [70]. In this article, several explicit

formulas for vf are given in terms of the semigroup associated with the Laplacian,

an example being

vf (x, z) =
zα

4α/2Γ(α2 )

∫ ∞
0

e−z
2/(4t)(et∆xf)(x)

dt

t1+α/2
.

This representation is advantageous in several ways. Heuristically, the formula sug-

gests that the semigroup (et∆x)t≥0 can be replaced by another semigroup (Pt)t≥0

with generator Lx to give a corresponding formula for the harmonic extension as-

sociated with −(−Lx)α/2 without requiring the operator Lx to be a self-adjoint

operator on a Hilbert space. Another advantage is that if the semigroup (Pt)t≥0 is

given by a heat kernel, then we have a pointwise formula for the harmonic extension

which is also unavailable when dealing with a general operator on a Hilbert space.
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However, in almost all works on the extension technique, the authors restrict

themselves to fractional powers. The only work we are aware of where functions ψ

other than fractional powers were systematically treated is in Kwaśnicki & Mucha’s

recent paper [47]. In this paper, they consider a complete Bernstein function ψ and

investigate the extension technique for operators ψ(−∆x) defined in L2(Rd). The key

result used in the paper is known as the Krein correspondence, a one-to-one mapping

between a set of functions known as Krein strings and the set of Stieltjes functions,

first proven by Krein in [45]. Although this one-to-one correspondence allows us

to identify the most general possible operators we may obtain via the extension

method, explicit examples of this correspondence are rare. Nonetheless, some useful

practical examples are calculated in the papers [23, 24] in addition to the fractional

power example. Although explicit examples are rare, the correspondence does have

certain useful properties including a type of sequentially continuity property and the

asymptotics of the Krein string are related to the asymptotics of the corresponding

complete Bernstein function.

In addition to these purely analytic approaches, the extension technique can

be studied probabilistically by considering the underlying stochastic processes asso-

ciated with the elliptic equations (1.0.2) and (1.0.4). Indeed, the Caffarelli-Silvestre

extension technique is related to subordination of a Brownian motion in Rd by the

inverse local time at zero of an independent Bessel diffusion in [0,∞) as proven in

the late 1960’s by Molchanov & Ostrovskii [54]. They proved that the inverse local

time at zero of a Bessel process of dimension δ = 2−α where α ∈ (0, 2) is an α
2 -stable

subordinator (and hence a Brownian motion in Rd independently subordinated by

this inverse local time is a symmetric α-stable process). A useful way of visualising

this procedure is by considering the Rd × [0,∞)-valued process ((Xt, Yt))t≥0 where

(Xt)t≥0 is an Rd-valued Brownian motion and (Yt)t≥0 is an independent Bessel pro-

cess. Then the trace process on {y = 0} given by (XTt)t≥0, where (Tt)t≥0 is the

inverse local time at zero of (Yt)t≥0, is a symmetric α-stable process (see Figure

1). This probabilistic interpretation of the extension method in terms of the trace

process was also studied by Kim, Song & Vondraček in [39].

The question of which subordinators may be obtained in this manner goes

back to Itô & McKean [32] and a partial answer is given by the probabilistic inter-

pretation of the Krein correspondence, independently studied by Knight [42] and

Kotani & Watanabe [44]. Inverse local times of one-dimensional reflected diffusions

have also been investigated by Pitman & Yor in several papers [57, 58] and recently

by Chen & Wang in [20] where a type of perturbation of the Bessel diffusion is inves-

tigated. Additionally, trace processes have been studied extensively in the context

4



Figure 1.1: The first graph is a simulation of a sample path of a two-dimensional
reflected Brownian motion, while the second graph shows the corresponding sample
path of the trace process. For examples of Bessel processes of other dimensions, see
Appendix A.1.
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of Dirichlet forms (see [17, 18, 34]).

In this thesis, we extend the Caffarelli-Silvestre extension technique to obtain

local representations of a larger family of non-local operators −ψ(−Lx) where ψ is

a complete Bernstein function and Lx is a generator of a diffusion semigroup on

some Banach space B. To do this we use two different methods, one based upon

stochastic analysis and another based upon semigroup theory.

In the first approach, we assume (Xt)t≥0 is an Rd-valued diffusion process

given by the solution to an SDE and ψ is a complete Bernstein function associated

with a subordinator (Tt)t≥0 which is given by the inverse local time at zero of a one-

dimensional diffusion process (Yt)t≥0 in natural scale with speed measure m̃ (and

corresponding Krein string m) which is independent of (Xt)t≥0. Then for some

f : Rd → R, we assume that there is a solution to the elliptic PDE,Lxuf ×m(dy) + ∂2
yuf = 0 in Rd × (0, l),

uf (·, 0) = f in Rd,

the precise definition of what we mean by a solution to this equation being given

by Definition 4.3.1. We then prove that uf (Xt, Yt) satisfies an Itô formula under

relatively weak regularity conditions on uf . Then by applying the time change

(Tt)t≥0 to this formula, we are able to show under certain assumptions the pointwise

limit

lim
t↓0

1

t
Ex
[
f(X(Tt))− f(x)

]
= ∂yuf (x, 0) +m0Lxuf (x, 0),

where the second term appears when the diffusion spends positive time at zero.

Now if (Xt)t≥0 is a Feller process with generator Lx, then so is the subordinated

diffusion process (XTt)t≥0 and its generator is given in some sense by the non-local

operator −ψ(−Lx). As the pointwise limit should be related to the generator, the

limit should provide a local characterisation for the operator −ψ(−Lx).

In the second approach, we begin with a semigroup (Pt)t≥0 on some Banach

space B and a complete Bernstein function ψ corresponding to the inverse local

time at zero of a gap diffusion (Yt)t≥0, a process constructed in a similar manner to

a one-dimensional diffusion but where the speed measure does not necessarily have

full support. If we assume (Yt)t≥0 spends no time at zero, then we may consider the

family of bounded operators {Hy}y∈Em defined by the Bochner integral

Hyf =

∫
[0,∞)

(Psf)Py[H0 ∈ ds],

6



where H0 is the first hitting time of zero by (Yt)t≥0. Then under certain assumptions

we can show ∂yHy
∣∣
y=0

f = −ψ(−Lx)f in some sense. Furthermore, when B is a

Hilbert space and (Pt)t≥0 is a symmetric semigroup corresponding to a Hunt process

(Xt)t≥0, we show how the non-local Dirichlet form and corresponding Dirichlet space

associated with the subordinated process (XTt)t≥0 is related to that of the pair

process ((Xt, Yt))t≥0.

As a tractable family of jump processes, subordinated diffusion processes

(and in particular subordinated Brownian motion), have been studied extensively

(see [40, 50, 59, 67, 75]). These processes have practical applications in the field

of financial mathematics [21, 22, 29, 49] and numerous financial models given by

subordinated Brownian motions are detailed in [73]. Therefore, a particular problem

of interest in this field is the optimal stopping problem in which we are given an

Rd-valued Markov process (St)t≥0, a gain function G : Rd → R and a non-negative

interest rate function R : Rd → R, and would like to study the value function

V : Rd → R given by

V (x) = sup
τ

Ex

[
exp

(
−
∫ τ

0
R(Ss) ds

)
G(Sτ )

]
,

where the supremum is taken over almost surely finite stopping times. Of particular

interest in this thesis is the case where (St)t≥0 is a subordinated diffusion process,

certain examples of which have been studied in [48, 49, 50].

Analytically, the solution to the optimal stopping problem should be given

by the solution to the free boundary problem
V ≥ G in Rd,

AxV −RV ≤ 0 in Rd,

AxV −RV = 0 when V > G,

(1.0.6)

where Ax is the infinitesimal generator of the process (St)t≥0. When (St)t≥0 is a

diffusion process (and so Ax is a second-order differential operator), standard PDE

techniques are well-suited to study this problem (see [8, 9]) and the value function

may be computed using finite element or finite difference schemes. Unfortunately,

these techniques can fail when the process has jumps and the infinitesimal generator

is no longer a local operator. However in the case where Ax = −(−∆x)α/2, the free

boundary problem has been studied extensively via the Caffarelli-Silvestre extension

technique (see [6, 7, 15, 16]).

To conclude the thesis, we apply the extension technique to study the free

7



boundary problem (1.0.6) when the operator Ax = −ψ(−Lx) corresponds to the

infinitesimal generator of a subordinated symmetric diffusion semigroup. In partic-

ular, we show how the methods found in [9] to study the solution to the local free

boundary problem can be adapted to the non-local free boundary problem using the

extension method.

8



Chapter 2

Preliminaries

We begin by establishing some of the background theory used throughout this thesis

and notation used.

2.1 Bernstein Functions

We begin by recalling selected definitions and results related to Bernstein functions

as detailed in [65]. Although this family of functions feature in various mathematical

fields, their importance in this thesis is due to the fact that they appear as the

Laplace exponent of subordinators. We recall the following definition.

Definition 2.1.1 (Laplace Transform). Let µ be a measure on [0,∞). Then the

Laplace transform L (µ;λ) is defined by

L (µ;λ) =

∫
[0,∞)

e−λtµ(dt),

whenever the integral converges.

A property that we use frequently in this thesis is that the Laplace trans-

form allows us to convert problems involving convergence of measures into problems

involving pointwise convergence. We recall that a sequence of locally finite mea-

sures (µn)n∈N on [0,∞) converges weakly (resp. vaguely) to a locally finite mea-

sure µ if for all f ∈ Cb([0,∞)), the set of bounded continuous functions (resp.

f ∈ C0([0,∞)), the set of continuous functions vanishing at infinity), we have∫
[0,∞) f dµn →

∫
[0,∞) f dµ. Then if we have a family of finite measures (µn)n∈N,

its weak limit (resp. vague limit) µ exists if and only if limn→∞L (µn;λ) exists for

all λ ≥ 0 (resp. λ > 0) in which case L (µ;λ) = limn→∞L (µn;λ).

9



To characterise the range of the Laplace transform, we require the following

definition.

Definition 2.1.2 (Completely Monotone). A infinitely differentiable function φ :

(0,∞)→ R is completely monotone if

(−1)nφ(n)(λ) ≥ 0,

for all n ∈ N0 and λ > 0.

The importance of this definition is given by the following theorem due to

Bernstein which allows us to characterise the range of the Laplace transform.

Theorem 2.1.3 (Bernstein). Let φ : (0,∞) → R be a completely monotone func-

tion. Then there exists a unique measure µ on [0,∞) such that for all λ > 0,

φ(λ) = L (µ;λ) =

∫
[0,∞)

e−λtµ(dt).

Conversely, whenever L (µ;λ) < ∞ for all λ > 0, λ 7→ L (µ;λ) is a completely

monotone function.

Closely related to completely monotone functions is the set of Bernstein

functions.

Definition 2.1.4 (Bernstein Function). An infinitely differentiable function ψ :

(0,∞)→ R is a Bernstein function if ψ(λ) ≥ 0 for all λ > 0 and

(−1)n−1ψ(n)(λ) ≥ 0,

for all n ∈ N and λ > 0.

We note that a non-negative, infinitely differentiable function ψ : (0,∞)→ R
is Bernstein function if and only if ψ′ is a completely monotone function. Further-

more, every Bernstein function admits a Lévy-Khintchine representation.

Theorem 2.1.5. A function ψ : (0,∞)→ R is a Bernstein function if and only if

its admits the representation

ψ(λ) = a+ bλ+

∫
(0,∞)

(1− e−λt)ν(dt),

where a, b ≥ 0 and ν is a measure on (0,∞) satisfying
∫

(0,∞)(1 ∧ t)ν(dt) <∞. We

call (a, b, ν) the Lévy triplet associated to ψ and ν the Lévy measure.

10



We shall be interested in the behaviour of a Bernstein function at infinity so

we define the following indices first discussed in [12].

Definition 2.1.6 (Blumenthal-Getoor Indices). For a Bernstein function ψ, we

define its lower and upper Blumenthal-Getoor indices by

ind(ψ) = sup
{
ρ > 0 : lim

λ→∞
ψ(λ)
λρ =∞

}
= lim inf

λ→∞

logψ(λ)

log λ
,

ind(ψ) = inf
{
ρ > 0 : lim

λ→∞
ψ(λ)
λρ = 0

}
= lim sup

λ→∞

logψ(λ)

log λ
.

We also have the following useful representations for the indices:

ind(ψ) = sup
{
ρ ≤ 1 :

∫ ∞
1

λρ−1

ψ(λ)
dλ
}
,

ind(ψ) = inf
{
ρ > 0 :

∫ 1

0
yρν(dy) <∞

}
.

Interestingly, pointwise convergence of Bernstein functions implies locally

uniform convergence and this provides us information about convergence of the

corresponding Lévy triplets.

Proposition 2.1.7. Let (ψn)n∈N be a sequence of Bernstein functions such that

limn→∞ ψn(λ) = ψ(λ) exists for all λ > 0. Then ψ is a Bernstein function and for

all k ∈ N0 the convergence limn→∞ ψ
(k)
n (λ) = ψ(k)(λ) is locally uniform for λ > 0.

If (an, bn, νn) and (a, b, ν) are the Lévy triplets for ψn and ψ respectively, then we

have

� limn→∞ νn = ν vaguely in (0,∞); limn→∞
∫

(0,∞) f dνn =
∫

(0,∞) f dν for all

f ∈ Cc((0,∞)),

� a = limR→∞ lim infn→∞(an + νn[R,∞)),

� b = limε→0 lim infn→∞

(
bn +

∫
(0,ε) tνn(dt)

)
.

In both formulae we may replace lim infn by lim supn.

An important subclass of Bernstein functions is given by the family of com-

plete Bernstein functions. This subclass is fundamental to this thesis due to their

role in the Krein correspondence which shall be discussed in the next chapter.

Definition 2.1.8 (Complete Bernstein Function). A Bernstein function ψ is said to

be a complete Bernstein function if its Lévy measure ν(dt) has completely monotone

density with respect to Lebesgue measure (which, abusing notation, we denote ν(t)).

11



An important property of this class of functions is that given any non-zero

complete Bernstein function ψ, the function ψc defined by ψc(λ) = λ
ψ(λ) is also a

complete Bernstein function [65, Proposition 7.1]. Furthermore, there is a family of

functions which are related to complete Bernstein functions are known as Stieltjes

functions.

Definition 2.1.9 (Stieltjes function). A (non-negative) Stieltjes function is a func-

tion h : (0,∞)→ [0,∞) which can be written in the form

h(λ) = b+

∫
[0,∞)

1

λ+ η
σ(dη),

where b ≥ 0 is a non-negative constant and σ is a measure on [0,∞) such that∫
[0,∞)

1
1+ησ(dη) <∞.

The connection to complete Bernstein functions is that a function ψ is a non-

trivial complete Bernstein function if and only if 1
ψ is a non-trivial Stieltjes function

[65, Theorem 7.3]. Therefore, in addition to the Lévy-Khintchine representation of

a complete Bernstein function, we can use these properties to obtain the Stieltjes

representation of ψ:

ψ(λ) = bcλ+

∫
[0,∞)

λ

λ+ η
σc(dη),

as 1
ψc(λ) = bc +

∫
[0,∞)

1
λ+ησ

c(dη) for some bc ≥ 0 and σc is a measure on [0,∞) such

that
∫

[0,∞)
1

1+ησ
c(dη) <∞.

2.1.1 Probabilistic Interpretation

As we have already alluded to, Bernstein functions can be interpreted probabilisti-

cally as the Laplace exponents of a family of increasing [0,∞]-valued Lévy processes

known as subordinators. Detailed properties of this family of processes can be found

in [11].

Let (Ω,F ,P) be a probability space with a complete, right-continuous filtra-

tion (Ft)t≥0. Let T = (Tt)t≥0 be a right-continuous, increasing, adapted process with

values in [0,∞] where∞ serves as a cemetery point for the process such that T0 = 0

almost surely. We denote the lifetime of the process by ζ = inf{t ≥ 0 : Tt =∞}. T
is then called a subordinator if it has independent and homogeneous increments on

[0, ζ).

The law of a subordinator is specified by the Laplace transforms of its one-

dimensional distributions. In fact, using the independence and homogeneity of the

12



increments, the Laplace transform has form,

E[exp(−λTt)] = e−tψ(λ),

for some function ψ : [0,∞) → [0,∞) called the Laplace exponent of T . The

connection between subordinators and Bernstein functions is given by the following

theorem.

Theorem 2.1.10 (de Finetti, Lévy, Khintchine). If ψ is the Laplace exponent of

a subordinator, then ψ is a Bernstein function. Conversely, if ψ is a Bernstein

function, then ψ is the Laplace exponent of a subordinator.

As we have seen, the Lévy-Khintchine decomposition of the subordinator is

given by Theorem 2.1.5 in which case the values a and b correspond to the killing

rate and drift coefficient respectively and ν is the Lévy (or jump) measure of the

subordinator.

2.2 Semigroups & Infinitesimal Generators

Throughout this thesis, the theory of semigroups on Banach spaces is fundamental.

We shall see the extension technique is intimately related to subordination of semi-

groups on Banach spaces. Let (B, ‖ · ‖B) be a Banach space and let (B∗, ‖ · ‖B∗)
denote it topological dual and 〈f, φ〉B the dual pairing between f ∈ B and φ ∈ B∗.

Definition 2.2.1 (C0-contraction semigroup). A semigroup is a family of bounded,

linear operators (Pt)t≥0 on B satisfying

� P0 = I, the identity mapping on B,

� (semigroup property) PsPt = PtPs = Ps+t for all s, t ≥ 0.

A C0-contraction semigroup is a semigroup which also satisfies

� (strong continuity) limt→0 ‖Ptf − f‖B = 0 for all f ∈ B,

� (contraction property) ‖Ptf‖B ≤ ‖f‖B for all f ∈ B and t ≥ 0.

An important family of C0-contraction semigroups for probabilistic applica-

tions is given by Feller semigroups.

Definition 2.2.2 (Feller Semigroup). Let M be a locally compact, separable metric

space and let B = C0(M) be the Banach space of continuous functions f : M → R
vanishing at infinity with uniform norm ‖ · ‖∞. A C0-contraction semigroup (Pt)t≥0

13



on the Banach space C0(M) which is preserves positivity (f ≥ 0 =⇒ Ptf ≥ 0 for

all t ≥ 0) is called a Feller semigroup.

Furthermore, we say that a (homogeneous) Markov process (Xt)t≥0 taking

values in M is called Feller process if the semigroup (Pt)t≥0 defined by Ptf(x) =

Ex[f(Xt)] for f ∈ C0(M) is a Feller semigroup.

Definition 2.2.3 (Sub-Markovian). Let (X ,B, µ) be a σ-finite measure space. A C0-

contraction semigroup on Lp(X , µ) is called a sub-Markovian semigroup if Ptf ≥ 0

µ-almost everywhere for any f ≥ 0 µ-almost everywhere.

Although it is often difficult to describe a semigroup explicitly, the semigroup

property suggests a representation for the family of operators as the exponential of

a (possibly unbounded) operator on a Banach space.

Definition 2.2.4 (Infinitesimal Generator). The (infinitesimal) generator of a C0-

contraction semigroup is the operator (Lx,Dom(Lx)) defined by the strong limit,

Lxf = lim
t→0

Ptf − f
t

,

with domain

Dom(Lx) =
{
f ∈ B : lim

t→0

Ptf−f
t exist as a strong limit

}
.

The generator of a C0-contraction semigroup is a densely defined, closed,

linear operator which is dissipative;

‖λf − Lxf‖B ≥ λ‖f‖B,

for all λ > 0 and f ∈ Dom(Lx). As Lx is closed, Dom(Lx) is a Banach space

endowed with the graph norm ‖f‖Dom(Lx) = ‖f‖B + ‖Lxf‖B.

Proposition 2.2.5. For any t > 0 and f ∈ B,

Ptf − f =

∫ t

0
LxPsf ds,

and if f ∈ Dom(Lx), Ptf − f =
∫ t

0 PsLxf ds and so,

‖Ptf − f‖B ≤ min{t‖Lxf‖B, 2‖f‖B}.

Another way of describing a C0-semigroup is via its resolvent.
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Definition 2.2.6 (Resolvent). For an infinitesimal generator (Lx,Dom(Lx)), let

ρ(Lx) = {z ∈ C : (zI − Lx)−1 is a bounded, linear operator}

and σ(Lx) = C \ ρ(Lx). For z ∈ ρ(Lx),

Rzf = (zI − Lx)−1f.

For a C0-semigroup (Pt)t≥0, the resolvent is given by the Bochner integral

Rzf =

∫ ∞
0

e−ztPtf dt,

for any z ∈ ρ(Lx) and f ∈ B and (0,∞) ⊂ ρ(Lx). The resolvent operators satisfy

the resolvent estimate

‖Rzf‖B ≤
1

Re(z)
‖f‖B,

for all Re(z) > 0 and f ∈ B.

A key result due to Bochner allows us to create a new C0-semigroup from a

given one via subordination [65, Proposition 13.1].

Proposition 2.2.7 (Bochner). Let (Pt)t≥0 be a C0-contraction semigroup on the

Banach space B and let (Tt)t≥0 be a subordinator on a probability space (Ω,F ,P)

with corresponding Bernstein function ψ. Then the Bochner integral

Pψt f =

∫
[0,∞)

(Psf)P[Tt ∈ ds]

defines again a C0-contraction semigroup on the Banach space B called the subor-

dinate semigroup.

Heuristically, the semigroup property of (Pt)t≥0 suggests that the semigroup

can be thought of as the exponential of the operator Lx, (etLx)t≥0. Formally sub-

stituting this representation into the Bochner integral representation for the subor-

dinated semigroup we find,

Pψt f =

∫
[0,∞)

(esLx)P[Tt ∈ ds] = e−tψ(−Lx)f,

which further suggests that the generator of the subordinated semigroup will be

given by the operator −ψ(−Lx) in some sense. Indeed, in the case where Lx is a

self-adjoint operator on a Hilbert space, then the functional calculus for self-adjoint
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operators allows us to make this idea rigorous. However, in the general Banach

space setting, we only have the following partial result due to Phillips.

Theorem 2.2.8 (Phillips). Let (Pt)t≥0 be a C0-contraction semigroup on the Ba-

nach space B with generator (Lx,Dom(Lx)) and let ψ be a Bernstein function with

Lévy triplet (a, b, ν). Let (Pψt )t≥0 and (Lψx ,Dom(Lψx )) be the subordinated semi-

group and its infinitesimal generator. Then, Dom(Lx) is an operator core for

(Lψx ,Dom(Lψx )) and for any f ∈ Dom(Lx),

Lψxf = −ψ(−Lx)f = −af + bLxf +

∫
(0,∞)

(Psf − f)ν(ds),

where the integral is understood as a Bochner integral.

Due to this theorem, we denote the generator of the subordinated semigroup

by (−ψ(−Lx),Dom(−ψ(−Lx))).

We can also extend this functional calculus to include Stieltjes functions. Let

(Rλ)λ>0 be the resolvent corresponding to the semigroup (Pt)t≥0. Then we define

R0 : Dom(R0)→ B by

Dom(R0) = {f ∈ B : R0f = lim
λ→0

Rλf exists in the strong sense}.

It is known that Range(R0) ⊂ Dom(Lx) and we have LxR0f = −f for all f ∈
Dom(R0). Furthermore, R0 is densely defined if and only if Range(Lx) is dense in

B. Given a Stieltjes function h(λ) = b+
∫

[0,∞)
1
t+λσ(dλ), we define

h(−Lx)f = bf +

∫
[0,∞)

Rtfσ(dt),

for f ∈ Range(Lx). We conclude with the following theorem which shows us that

if h is the Stieltjes function corresponding to a complete Bernstein function ψ, then

h(−Lx) is the inverse operator of −ψ(−Lx).

Theorem 2.2.9. Let (Lx,Dom(Lx)) be the generator of a C0-contraction semigroup

on the Banach space B such that the range Range(Lx) is dense in B and let ψ be

a complete Bernstein functions. Then h(λ) = 1
ψ(λ) is a Stieltjes function and

(−ψ(−Lx))−1f = h(−Lx)f,

for all f ∈ Range(Lx) ∩Dom(−ψ(−Lx)).
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2.2.1 Analytic Semigroups

In this subsection we suppose B is a complex Banach space (or if B is a real Banach

space then we consider the complexification defined in [52, Appendix A]) and we

assume that Lx : Dom(Lx) ⊂ B→ B (not necessarily densely defined) is a sectorial

operator in the sense that there exists ω ∈ R, θ ∈ (π2 , π) and M > 0 such that

ρ(Lx) ⊃ Sθ,ω = {z ∈ C \ {ω} : |arg(z − ω)| < θ},

(where arg(z) ∈ (−π, π] denotes the argument of the complex number z) and

‖Rzf‖B ≤
M

|z − ω|
‖f‖B,

for all z ∈ Sθ,ω and f ∈ B. As the resolvent is non-empty, we know the operator

is closed. It is possible to define a (not necessarily strongly continuous) semigroup

(Pt)t≥0 associated with the operator (Lx,Dom(Lx)) which is analytic in the sense

that the mapping (0,∞)→ L(B) : t 7→ Pt is analytic.

Proposition 2.2.10. Let t > 0 and f ∈ B. Then for an analytic semigroup (Pt)t≥0

we know Ptf ∈ Dom(Lkx) for all k ∈ N and for each k ∈ N there is Mk > 0 such

that

‖LkxPtf‖B ≤
Mk

tk
‖f‖B.

We now define some intermediate spaces between B and Dom(Lx).

Definition 2.2.11. Let γ ∈ (0, 1) and p ∈ [1,∞]. Then define the Banach space

DLx(γ, p) =

{
f ∈ B : t 7→ v(t) = ‖t1−γ−1/pLxTtf‖B ∈ Lp((0, 1))

}
,

equipped with norm ‖f‖DLx (γ,p) = ‖f‖B + ‖v‖Lp((0,1)) and let

DLx(γ) = {f ∈ DLx(γ,∞) : lim
t→0

t1−γLxTtf}.

Proposition 2.2.12. Let (Lx,Dom(Lx)) be the generator of an analytic C0-contraction

semigroup (Pt)t≥0 on a Banach space B and let ψ be a complete Bernstein function

with ind(ψ) = γ < 1. Then,

Dom(−ψ(−Lx)) ⊂ DLx(γ,∞).
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Proof. This follows as Dom(−ψ(−Lx)) ⊂ Dom(−(−Lx)γ) ⊂ DLx(γ,∞) by [65,

Corollary 13.36] and [52, Proposition 2.2.15].

For k ∈ N and γ ∈ (0, 1), let

Ck+γ(Rd) =
{
f ∈ Ck(Rd) : [∂αf ]Cγ(Rd) <∞ for all α ∈ Nd with |α| = k

}
,

where [∂αf ]Cγ(Rd) = supx,y∈Rd,x 6=y
|∂αf(x)−∂αf(y)|

|x−y|γ equipped with norm ‖f‖Ck+γ(Rd) =∑
|α|≤k ‖∂αf‖∞ +

∑
|α|=k[∂

αf ]Cγ(Rd). We reference [33, 74] for the definitions and

results on Besov spaces. Using results on real interpolation spaces we have the

following corollary.

Corollary 2.2.13. Let (P
(p)
t )t≥0 be a C0-contraction semigroup on Lp(Rd) with

generator (L(p)
x ,W 2,p(Rd)) and let ψ be a complete Bernstein function with ind(ψ) =

γ < 1. Then Dom(−ψ(−Lx)(p)) ⊂ B2γ
p,∞(Rd) ⊂ C2γ−dp (Rd).

Proof. By [52, Proposition 2.2.2], DL(p)x
(γ,∞) is equal to the real interpolation space

(Lp(Rd),W 2,p(Rd))γ,∞ which itself is equal to B2γ
p,∞(Rd) by [74, Chapter 34] which

is a subset of the Hölder space C
2γ−dp (Rd) by [33, Corollary 3.11.13].

The main example of importance for this thesis is given in [52, Chapter 3.1].

We consider the second order differential operator

p(x,D) =
d∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑
i=1

bi(x)
∂

∂xi
+ c(x)I,

with real, uniformly continuous and bounded coefficients on Rd. We assume further

that the matrix [aij ] is symmetric and satisfies the uniform ellipticity condition.

Proposition 2.2.14. 1. For p ∈ (1,∞) let B = Lp(Rd) and define Dom(L(p)
x ) =

W 2,p(Rd) and let L(p)
x = p(·, D). Then (L(p)

x ,Dom(L(p)
x )) is sectorial.

2. Let B = L∞(Rd) and define

Dom(L(∞)
x ) = {f ∈ ∩p≥1W

2,p
loc (Rd) : f, p(·, D)f ∈ L∞(Rd)}

with L(∞)
x : Dom(L(∞)

x ) → L∞(Rd) : f 7→ p(·, D)f . Then Dom(L(∞)
x ) is con-

tinuously embedded in C1+γ(Rd) for all γ ∈ (0, 1), the closure of Dom(L(∞)
x ) in

L∞(Rd) is the set of uniformly continuous functions in Rd and (L(∞)
x ,Dom(L(∞)

x ))

is sectorial.
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3. Let B = C0(Rd) and define

Dom(L(0)
x ) = {f ∈ ∩p≥1W

2,p
loc (Rd) : f, p(·, D)f ∈ C0(Rd)}

and let L(0)
x : Dom(L(0)

x ) → C0(Rd) : f 7→ p(·, D)f . Then Dom(L(0)
x ) is dense

in C0(Rd) and (L(0)
x ,Dom(L(0)

x )) is sectorial.

In particular, when B = L∞(Rd) we have the following result.

Proposition 2.2.15. Let γ ∈ (0, 1) and let (L(∞)
x ,Dom(L(∞)

x )) be as defined in

Example 2. Then,

DL(∞)
x

(γ,∞) =

C2γ(Rd) if γ 6= 1
2 ,

Λ1
∗ if γ = 1

2 ,

where Λ1
∗ denotes the set of uniformly continuous and bounded functions f such that

[f ]Λ1
∗

= sup
x,y∈Rd,x 6=y

|f(x)− 2f(x+y
2 ) + f(y)|

|x− y|
<∞,

with norm ‖f‖Λ1
∗

= ‖f‖∞+ [f ]Λ1
∗
. Furthermore, the corresponding norms are equiv-

alent.

Of course, this result will apply for functions in C0(Rd). This allows us to

prove the following analogue of [70, Chapter 7] to obtain Hölder estimates for the

operator −ψ(−Lx).

Proposition 2.2.16. Let (P
(0)
t )t≥0 be the Feller semigroup corresponding to (L(0)

x ,Dom(L(0)
x ))

and let ψ be a complete Bernstein function such that ind(ψ) = γ < 1. Let u =

Cβ(Rd) ∩ C0(Rd) for some β ∈ (0, 2].

1. If 0 < 2γ < β with β − 2γ 6= 1, then ψ(−L(0)
x )u ∈ Cβ−2γ(Rd) and

‖ψ(−L(0)
x )u‖Cβ−2γ(Rd) ≤ C‖u‖Cβ(Rd).

2. If 0 < β < 2γ with 2γ − β 6= 1, then ψ(−L(0)
x )u ∈ C1+β−2γ(Rd) and

‖ψ(−L(0)
x )u‖C1+β−2γ(Rd) ≤ C‖u‖C1+β(Rd).

Proof. We only prove the first case, the second case follows by the same reasoning.

We first assume ν([1,∞)) = 0 and a = 0.
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Let u ∈ Dom(L(0)
x ). Then by Proposition 2.2.15, it suffices to show that

‖ψ(−L(0)
x )u‖B ≤ C‖u‖Cβ(Rd) where B = DL(∞)

x
(β−2γ

2 ,∞). Now by Phillip’s theorem

we have,

−∂tP (0)
t ψ(−L(0)

x )u = ∂tP
(0)
t

(∫
(0,1)

(∫ s

0
∂rP

(0)
r udr

)
ν(s) ds

)
=

∫
(0,1)

(∫ s

0
(L(0)

x )2P
(0)
t+rudr

)
ν(s) ds.

For t ∈ (0, 1) we know,∫
(0,t)

(∫ s

0

∥∥∥t1−(
β−2γ

2 )(L(0)
x )2P

(0)
t+ru

∥∥∥
∞

dr
)
ν(s) ds

≤
∫

(0,t)

(∫ s

0

∥∥∥t2−β2 (L(0)
x )2P

(0)
t+ru

∥∥∥
∞

dr
)
tγ−1ν(s) ds

≤
∫

(0,t)

(∫ s

0
[u]Cβ(Rd) dr

)
sγ−1ν(s) ds

=
(∫

(0,t)
sγν(s) ds

)
[u]Cβ(Rd),

and ∥∥∥t1−(β−2γ
2

)

∫
(t,1)

∂tP
(0)
t (P (0)

s u− u)ν(s) ds
∥∥∥
∞

≤ 2

∫
(t,1)

t1−(β−2γ
2

)‖∂tP (0)
t u‖∞ν(s) ds

≤ 2

∫
(t,1)
‖t1−

β
2 ∂tP

(0)
t u‖∞sγν(s) ds

≤
(

2

∫
(t,1)

sγν(s) ds
)

[u]Cβ(Rd).

Therefore,

‖t1−(β−2γ
2

)∂tP
(0)
t ψ(−L(0)

x )u‖∞ ≤ 2
(∫

(0,1)
sγν(s) ds

)
[u]Cβ(Rd).

To obtain the result for general complete Bernstein functions without drift, let the

operator J be defined by

J u = au+

∫
[1,∞)

(P (0)
s u− u)ν(s) ds.
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Therefore,

‖t1−(
β−2γ

2 )∂tP
(0)
t J u‖∞

≤ ‖at1−(
β−2γ

2 )∂tP
(0)
t u‖∞ + t1−(β−2γ

2
)

∫
[1,∞)

‖∂tP (0)
t+su− ∂tP

(0)
t u)‖∞ν(s) ds

≤ tγ
(
a+ 2ν([1,∞))

)
‖t1−

β
2 ∂tP

(0)
t u‖∞

≤ C
(
a+ 2ν([1,∞))

)
‖u‖Cβ(Rd).

Combining these two results, we have for a general complete Bernstein func-

tion ψ,

‖ − ψ(−L(0)
x )u‖Cβ−2γ(Rd) ≤ C‖u‖Cβ(Rd),

for any u ∈ Dom(L(0)
x ) and hence by density this result holds for all u ∈ Cβ(Rd) ∩

C0(Rd).

2.3 Dirichlet Form Theory

When we consider symmetric semigroups on a Hilbert space, it will be useful to

apply certain results from Dirichlet form theory. As we will be concerned with

symmetric Dirichlet forms, the material in this section can be found in [28].

Let H be a real Hilbert space with inner product 〈·, ·〉H. A symmetric form

E : Dom(E ) × Dom(E ) → R is a non-negative definite, symmetric, bilinear form

which is densely defined on H. Given any symmetric form on H, we can define

Eλ : Dom(E )×Dom(E )→ R by

Eλ(·, ·) = λ〈·, ·〉H + E (·, ·).

The space Dom(E ) with inner product E1 is a pre-Hilbert space and we say

the symmetric form E is closed if Dom(E ) is complete with respect to E1. We say

that the symmetric form E is closable if for any (un)n∈N ⊂ Dom(E )

lim
m,n→∞

E (un − um, un − um) = 0, lim
n→∞

‖un‖H = 0 =⇒ lim
n→∞

E (un, un) = 0.

Importantly, there is a one-to-one correspondence between the family of closed sym-

metric forms (E ,Dom(E )) on H and the family of non-positive definite self-adjoint
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operators (L,Dom(L)) on H given byDom(E ) = Dom(
√
−L)

E (u, v) = 〈
√
−Lu,

√
−Lv〉H.

Now let (X ,B, µ) be a σ-finite measure space and consider the real Hilbert

space H = L2(X , µ;R) = L2(X , µ). We assume X is a locally compact, separable,

metric space and µ is a positive Radon measure µ on X such that supp µ = X .

Definition 2.3.1 (Dirichlet Form). A symmetric form E on L2(X , µ) is Markovian

if for all ε > 0 there exists a real function φε with

� φε(t) = t for all t ∈ [0, 1],

� −ε ≤ φε(t) ≤ 1 + ε, for all t ∈ R,

� 0 ≤ φε(t′)− φε(t) ≤ t′ − t whenever t′ < t,

such that u ∈ Dom(E ) =⇒ φε(u) ∈ Dom(E ) and

E (φε(u), φε(u)) ≤ E (u, u).

A Dirichlet form is a closed, symmetric, Markovian form on L2(X , µ).

Given a symmetric form E , a core is a subset C ⊂ Dom(E )∩Cc(X ) such that

C is dense in Dom(E ) with respect to the E1-norm and dense in Cc(X ) with respect

to the uniform norm. E is said to be regular if E possesses a core.

For an µ-measurable function u, the support supp u · m of the measure

u(x)m(dx) is denoted supp u and if u ∈ C(X ) then supp u is the closure of {x ∈
X : u(x) 6= 0}. We say the symmetric form E is local if for any u, v ∈ Dom(E ) such

that supp u and supp v are disjoint compact sets then E (u, v) = 0.

A useful property of Dirichlet forms is given by the following proposition.

Proposition 2.3.2. Let (E ,Dom(E )) be a Dirichlet form on L2(X , µ). Then,

� u, v ∈ Dom(E ) =⇒ u ∨ v, u ∧ v and u ∧ 1 ∈ Dom(E ).

We mention that there is a connection between Dirichlet forms and a family

of Markov processes known as Hunt processes, a family of strong Markov processes

which are quasi left-continuous with respect to the minimal completed admissible

filtration (see [28] for detailed definition). We do not require the theory of Hunt

processes for this thesis but mention that any Feller process is also a Hunt process.
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It is well known that a Dirichlet form (E ,Dom(E )) generates a sub-Markovian

semigroup of symmetric operators on L2(X , µ). It is also well known that for any

regular Dirichlet form (E ,Dom(E )), there exists a Hunt process (Xt)t≥0. We note

that the transition function (pt)t≥0 of the µ-symmetric Hunt process (Xt)t≥0 on X
uniquely determines a sub-Markovian semigroup (Pt)t≥0 on L2(X , µ) and hence a

Dirichlet form (E ,Dom(E )) on L2(X , µ). Moreover, (E ,Dom(E )) admits a diffusion

process if and only if the form E is local.

We conclude this section with a result on the products of Dirichlet forms as

proven in [56]. For any measure space (X , µ) and any real Hilbert space on H we

denote by L2(X , µ;H) the real L2-space of H-valued functions on X . Given linear

spaces L(i) for i = 1, 2 of functions on X (i) respectively, we denote by L(1)⊗L(2) the

linear space generated by {u1 ⊗ u2 : ui ∈ L(i), i = 1, 2} where (u1 ⊗ u2)(x1, x2) =

u1(x1)u2(x2).

Theorem 2.3.3. [56, Theorem 1.4] Let (E ,Dom(E )) be the Dirichlet form of the

direct product of conservative Hunt processes (X
(i)
t )t≥0 for i = 1, 2 associated with

regular Dirichlet forms (E (i),Dom(E i)) on L2(X (i), µ(i)) respectively. Let C(i) be any

cores of E (i), respectively. Then (E ,Dom(E )) possesses C(1) ⊗ C(2) as its core and

admits the following expressions: for any u ∈ Dom(E ),

[X (2) → Dom(E (1)) : x2 7→ u(·, x2)] ∈ L2(X (2), µ(2); Dom(E (1))), (2.3.1)

[X (1) → Dom(E (2)) : x1 7→ u(x1, ·)] ∈ L2(X (1), µ(1); Dom(E (2))), (2.3.2)

and

E (u, u) =

∫
X (2)

E (1)(u(·, x2), u(·, x2))µ(2)(dx2)+

∫
X (1)

E (2)(u(x1, ·), u(x1, ·))µ(1)(dx1).

(2.3.3)

Furthermore, if u = u1 ⊗ u2 and v = v1 ⊗ v2 with ui, vi ∈ Dom(E (i)) for i = 1, 2,

then u, v ∈ Dom(E ) and

E (u, v) = E (1)(u1, v1)〈u2, v2〉L2(X (2),µ(2)) + E (2)(u2, v2)〈u1, v1〉L2(X (1),µ(1)). (2.3.4)

2.4 One-Dimensional Diffusions

In the stochastic approach to the extension method, the results on one-dimensional

diffusions found in [5] are used extensively. We recall some of these results here and

rewrite them for the special cases we shall focus on in this thesis.

In our setting, we consider a one-dimensional diffusion (Yt)t≥0 on a family of
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probability spaces (Ω,F , (Ft)t≥0, {Py}y∈I) taking values in the interval I = [0, l]∩R
where l ∈ (0,∞]. For Borel set A ⊂ I, let

HA(Y ) = inf{t > 0 : Yt ∈ A},

and for any y ∈ I, defineHy = H{y}(Y ), Hy+ = H(y,∞)∩I(Y ) andHy− = H(−∞,y)∩I(Y ).

We recall the process is regular at a point y ∈ I if

Py({Hy+ = 0}) = Py({Hy− = 0}) = 1.

Otherwise we say the point y is singular and

� left-singular if Py({Hy+ = 0}) = 0,

� right-singular if Py({Hy− = 0}) = 0,

� absorbing if Py({Hy+ = 0}) = Py({Hy− = 0}) = 0.

We denote the set of left-singular points K−, the set of right-singular points K+ and

the set of absorbing points E = K+ ∩K−.

We assume the diffusion (Yt)t≥0 has R = (0, l) as the set of regular points

and 0 ∈ K+ \ E and if l < ∞, l ∈ K−. Such a diffusion Y is uniquely determined

by a scale function and a speed measure and its construction, given by [5, Theorem

6.5], is based on a random time change of a Wiener process. We restate the result

for the special case we consider here where the process Y is in natural scale and has

speed measure m̃ on ([0, l] ∩ R,Bor([0, l] ∩ R)).

Theorem 2.4.1. Let A ⊂ R be a Borel set. We define a measure m (which we call

the Krein string corresponding to the diffusion (Yt)t≥0) on R by,

m(A) =

2m̃(A ∩ (0, l)) + m̃(A ∩ {0}) if l =∞,

2m̃(A ∩ (0, l)) + m̃(A ∩ {0}) + m̃(A ∩ {l}) if l <∞,
(2.4.1)

Let (Wt)t≥0 be a Wiener process on a family of filtered probability spaces (Ω,F , (Gt)t≥0, {Py}y∈R)

with shift operators Θ = (θt)t≥0 and local time processes {(Lyt (W ))t≥0}y∈R. We de-

fine A = (At)t≥0,

At =
1

2

∫
R
Lyt (W )m(dy),
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and

A−1
t = inf{s ≥ 0 : As+ > t}.

Then (Yt)t≥0 given by Yt = WA−1
t

is a continuous strong Markov process on the

family of filtered probability spaces (Ω,F , (Ft)t≥0, {Py}y∈I) where Ft = GA−1
t

with

shift operators Θ ◦ A−1 whose set of regular points, left singular and right singular

points is R,K− and K+ respectively.

By [5, Proposition 5.34] the speed measure satisfies,

(S1) m̃(K) <∞ for every compact K ⊂ [0, l),

(S2) m̃([0, l]) <∞ if l <∞ is not absorbing,

(S3) m̃(U) > 0 for any open U ⊂ (0, l),

and hence so does m. Furthermore, any measure satisfying (S1-3) admits a Lebesgue

decomposition into the sum of two singular measures, one of which is absolutely

continuous with respect to Lebesgue measure. By (S3), the density of the absolutely

continuous measure can be chosen to be strictly positive. Without loss of generality,

we can write the Lebesgue decomposition of the measure m̃ as

m̃(dy) =

1
2b
−2(y) dy +m0δ0(dy) + 1

2n(dy) if l =∞ or l <∞ is absorbing,

1
2b
−2(y) dy +m0δ0(dy) + 1

2n(dy) +mlδl(dy) otherwise,

(2.4.2)

where b : [0, l] ∩ R → R is a measurable function, m0 = m̃({0}) and ml = m̃({l}),
and the measure n satisfies n([0, l] ∩ R \ N ) = 0 for some Borel set N ⊂ (0, l) of

Lebesgue measure zero. Note that, since b maps into R, the density b−2(y) is indeed

positive, for all y ∈ [0, l]∩R. Furthermore, for technical reasons, we set b(y) = 0 for

all y ∈ (N ∪ {0, l}) ∩ R, where b−2(y) = ∞ if b(y) = 0 as usual. We also note that

as the measure m̃ satisfies (S1), b−2 is locally integrable in [0, l).

With the above Lebesgue decomposition, [5, Theorem 7.9] yields that Y

solves an SDE of type

dYt =
√

2b(Yt) dBt + dL0
t (Y )− dLlt(Y ), (2.4.3)

where (Bt)t≥0 is a Brownian motion, (Lyt (Y ))t≥0 stands for the symmetric local time
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process of Y at y ∈ [0, l]. By [5, Theorem 5.27], the local time process satisfies∫ t

0
1Γ(Ys) ds =

∫
Γ
Lyt (Y )m̃(dy)

for any Borel set Γ ⊂ [0, l] ∩ R for all t ≥ 0 almost surely.

Remark 2.4.2. In this thesis, m̃ denotes the speed measure of the diffusion (Yt)t≥0

whereas m denotes the Krein string (as introduced for a more general class of pro-

cesses in the following Chapter) corresponding to the diffusion.

26



Chapter 3

Krein Strings and the Krein

Correspondence

3.1 Introduction

Of key importance in this thesis is the connection between gap diffusions reflected

at zero and a certain family of subordinators. The connection between these objects

is provided by Krein’s string theory which is discussed in detail in [26, 38, 44, 65].

We now include the relevant results required for this thesis.

Let m(dy) be a non-negative Borel measure on [0, r] where r ∈ (0,∞]. This

measure is called an inextensible measure on [0, r] if there exists a non-negative

Radon measure (a Borel measure which is finite on compacta) m′(dy) on [0, r) such

that by extending m′(dy) to [0, r] by setting m′({r}) = 0 we have,

m(dy) =

m′(dy) if r +m′([0, r)) =∞,

m′(dy) +∞δr(dy) if r +m′([0, r)) <∞,

where δr is the Dirac delta measure at y = r.

Throughout, we assume m([0, δ)) > 0 for all δ > 0. The inextensible measure

can be obtained as the Lebesgue-Stieltjes measure dm(y) of a non-decreasing, left-

continuous function m : [0,∞) → [0,∞] : y 7→ m([0, y)) (abusing notation we

use the same letter to denote the measure and the corresponding function). In the

literature, this function is known as the Krein string associated with the inextensible

measure, however, in this thesis we shall use the term Krein string to refer to either

the measure m(dy) or the corresponding function m(y). We denote by Em the

support of the measure m on [0, r) and note that 0 ∈ Em and let l = supEm ≤ r.
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As m′(dy) is a σ-finite measure on [0, r), it possesses a Lebesgue decomposi-

tion [27, Theorem 3.8] so there exists a Borel set N ⊂ (0, r), a σ-finite Borel measure

n on N and a locally integrable function h : [0, r)→ [0,∞] such that

m′(dy) = h(y) dy +m0δ0(dy) + n(dy) +mlδl(dy),

where n((0, r) \N) = Leb(N) = 0 and without loss of generality, we set

h(y) =∞,

for y ∈ N . In analogy with the one-dimensional diffusion case, we define a measur-

able function b : [0, r) → [0,∞] by b = 1√
h

(with the convention that b(y) = ∞ if

h(y) = 0 and b(y) = 0 if h(y) =∞).

3.2 L2-theory for Krein Strings

We now review the L2-theory associated with the Krein’s strings as detailed in [26].

The aim of this section is to define a non-positive self-adjoint operator (Gy,Dom(Gy))
associated with the inextensible measure m(dy). We consider the (complex) Hilbert

space L2([0, r),m(dy)) of m(dy)-measurable functions φ : [0, r)→ C such that

‖φ‖2m =

∫
[0,r)
|φ(y)|2m(dy) <∞.

We now define the generalised second order differential operator Gy = d2

dm dy on

certain domains of this Hilbert space. Let Dom0(Gy) be the set of functions u :

[0, r)→ C such that there exists an m(dy)-measurable function g : [0, r)→ C with
∫

[0,ỹ] |g(y)|2m(dy) <∞ for all ỹ < l if l +m[0, l) =∞,∫
[0,l] |g(y)|2m(dy) <∞ if l +m[0, l) <∞,

such that,

u(y) = α+ βy +

∫ y

0

∫
[0,ξ]

g(w)m(dw) dξ.

In this case we write Gyu = g, u′′(y) = g(y)m(dy) or in the Lebesgue-Stieltjes

form du+(y) = g(y) dm(y). We note that every function in Dom0(Gy) is absolutely
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continuous, linear outside of Em and has right and left derivatives

u+(y) = β +

∫
[0,y]

g(w)m(dw),

u−(y) = β +

∫
[0,y)

g(w)m(dw).

From the standpoint of L2([0, r),m), it does not make sense to prescribe f on

[0, r) \Em. Nonetheless we find this ‘broken line’ characterisation is often useful as

it allows us to define functions on all of [0, r) while encoding the boundary behavior

of the functions in ∂Em ∩ (0, l] when Em is disconnected, and hence, it is useful for

defining the domain Dom(Gy) of Gy in L2([0, r),m).

The operator (Gy,Dom0(Gy)) is now a ‘local’ operator which acts on functions

which are sufficiently ‘smooth’ with respect to the measure m. For example, if

m(dy) = h(y) dy where h > 0 is continuous, then f ∈ Dom0(Gy) if and only if f ′ is

absolutely continuous and f ′′ is locally L2 in which case

Gyf =
1

h(y)
f ′′(y).

On the other hand if m is singular with respect to Lebesgue measure, then for any

element f to belong to Dom0(Gy), f+ must be ‘equally rough’ to ensure d2

dm dy is

regular. The following calculations provide some insight into what form the operator

Gy may take in the ‘extremal’ cases [26, Exercise 5.1.3].

Example 3.2.1 (Second Order Differential Operators). Let Az = 1
2σ

2(z) d2

dz2
+

µ(z) d
dz where σ(z) > 0 and µ are reasonably well behaved. Then there exists a

change of variables p : z 7→ y such that Gy = 1
h(y)

d2

dy2
= Az.

Proof. Let p(z) =
∫ z

0 exp
(
−
∫ ξ

0
2µ(η)
σ2(η)

dη
)

dξ and define a new variable y = p(z).

Then we have,

p′(z) = exp
(
−
∫ z

0

2µ(η)

σ2(η)
dη
)
,

p′′(z) = −2µ(z)

σ2(z)
exp

(
−
∫ z

0

2µ(η)

σ2(η)
dη
)
,
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so d
dy = 1

p′(z)
d
dz and d2

dy2
= 1

p′(z)2
d2

dz2
− p′′(z)

p′(z)3
d
dz and hence,

d2

dy2
= exp

(∫ z

0

4µ(η)

σ2(η)
dη
)( d2

dz2
+

2µ(z)

σ2(z)

d

dz

)
= exp

( 8

σ2(z)

∫ z

0

µ(η)

σ2(η)
dη
)(1

2
σ2(z)

d2

dz2
+ µ(z)

d

dz

)
,

so h(y) = exp
(

8
σ2(p−1(y))

∫ p−1(y)
0

µ(η)
σ2(η)

dη
)

.

Example 3.2.2 (Point measure). Let P = {y0 = 0 < y1 < · · · } be a partition of

[0,∞) and let m(dy) =
∑∞

n=0mnδyn(dy) where mn > 0 for all n ≥ 0. Then

Gyf(yk) =
1

mk

(
f(yk+1)− f(yk)

yk+1 − yk
− f(yk)− f(yk−1)

yk − yk−1

)
,

for k ≥ 1 (although Gyf is still ambiguous at y = 0 and y = l).

Proof. Using the integral equations we find,

f(yk)− f(yk−1) =

∫
[0,yk−1]

(yk − yk−1)Gyf(ξ)m(dξ),

f(yk+1)− f(yk) =

∫
[0,yk]

(yk+1 − yk)Gyf(ξ)m(dξ),

and so we have,(
f(yk+1)− f(yk)

yk+1 − yk
− f(yk)− f(yk−1)

yk − yk−1

)
=

∫
(yk−1,yk]

Gyf(ξ)m(dξ) = mkGyf(yk).

We now restrict the operator Gy to a smaller domain Dom(Gy) ⊂ Dom0(Gy)
by imposing boundary and integrability conditions. We define

Dom−(Gy) = {f ∈ Dom0(Gy) : f−(0) = 0}.
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At the right-end point, the situation is more complicated. We define

Dom+(Gy) =



{f ∈ Dom0(Gy) : ‖f‖ + ‖Gyf‖ <∞}

if l +m([0, l)) =∞ and
∫

[0,r) y
2m(dy) =∞,

{f ∈ Dom0(Gy) : ‖f‖+ ‖Gyf‖ <∞, f+(l−) = 0}

if l +m([0, l)) =∞ and
∫

[0,r) y
2m(dy) <∞,

{f ∈ Dom0(Gy) : ‖f‖+ ‖Gyf‖ <∞, (r − l)f+(l) + f(l) = 0}

if l +m([0, l)) <∞.

We note in the second case, the assumption∫
[0,r)

y2m(dy) <∞ =⇒ m([0, r)) <∞,

so l = r = ∞ and so f+(l−) = 0 =⇒ limy→∞ f
+(y) = 0. In the third case, we

may interpret the condition as f+(l) = 0 when r = ∞, otherwise this condition is

the same as saying f(r−) = 0 when r < ∞. We may now state the main theorem

of this section [26, Section 5.2].

Proposition 3.2.1. The set Dom(Gy) = Dom+(Gy) ∩ Dom−(Gy) ⊂ L2([0, r),m)

is dense and (Gy,Dom(Gy)) is a non-positive, self-adjoint operator and for all f ∈
Dom(Gy),

〈f,Gyf〉L2(I,m) =



−
∫ l

0 |f
+|2 dy

if l +m([0, l)) =∞,

−
∫ r

0 |f
+|2 dy = −

∫ l
0 |f

+|2 dy − (r − l)|f+(l)|2

if l +m([0, l)) <∞ and r <∞,

−
∫ l

0 |f
+|2 dy

if l +m([0, l)) <∞ and r =∞.

As (Gy,Dom(Gy)) is a non-positive, self-adjoint operator on L2([0, r),m),

we can consider the corresponding Dirichlet form on L2([0, r),m). However, as

supp m might not be equal to [0, r), the results of Section 2.3 do not immediately

apply. Nevertheless we shall revisit the Dirichlet form theory when we discuss the

probabilistic interpretation of Krein strings.
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3.2.1 Fundamental Functions

For an inextensible measure m(dy) on [0, r], the following integral equations have

unique solutions:

Φz(y) = 1 + z

∫
[0,y]

(y − ξ)Φz(ξ)m(dξ),

Ψz(y) = y + z

∫
[0,y]

(y − ξ)Ψz(ξ)m(dξ),

for all y ∈ [0, r) and z ∈ C. For each y ∈ [0, r), z 7→ Φz(y) and z 7→ Ψz(y) are

analytic and real valued when z ∈ R (in which case we denote the variable λ instead

of z). We call the pair {Φz(y),Ψz(y)} the system of fundamental functions for the

inextensible measure m(dy). The following properties can be found in [26, 65].

Proposition 3.2.2 (Properties of the Fundamental Functions). The fundamental

functions of the inextensible measure m(dy) satisfy the following properties:

� For all λ > 0, y 7→ Φλ(y) and y 7→ Ψλ(y) are non-negative, absolutely contin-

uous, linear outside of Em and have left and right derivatives.

� For all λ ≥ 0, y 7→ Φλ(y) and y 7→ Ψλ(y) is increasing and convex.

� The Wronksian wα = Ψ+
λ (y)Φλ(y)−Ψλ(y)Φ+

λ (y) = 1 and so

(Ψλ(y)

Φλ(y)

)+
=

1

Φλ(y)2
.

� For all λ > 0, Φλ ∈ Dom−(Gy) \Dom+(Gy) and Ψλ ∈ Dom+(Gy) \Dom−(Gy).

The key result for this thesis is known as the Krein correspondence which was

first proven in [45], although we reference [38, 44, 65] for easier to find statements

of the theorem. One formulation of the result can be given as follows.

Theorem 3.2.3 (Krein, Spectral Formulation). There is a one-to-one correspon-

dence between Krein strings m(dy) on [0, r) and complete Bernstein functions ψ.

Furthermore, if {Φλ(y),Ψλ(y)} are the fundamental functions for m then,

lim
y→r

Ψλ(y)

Φλ(y)
=

∫ r

0

1

Φλ(ξ)2
dξ =

1

ψ(λ)
,

for λ > 0. The Stieltjes function h(λ) = 1
ψ(λ) is called the characteristic function of

the Krein string m.
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3.3 The Extension Function

In addition to the fundamental functions, we define the extension function associated

to the inextensible measure m(dy) by

ϕλ(y) = Φλ(y)− ψ(λ)Ψλ(y).

Proposition 3.3.1 (Properties of Extension Function). The function ϕλ(y) satisfies

the following properties:

1. ϕλ(y) = ψ(λ)Φλ(y)
∫ r
y

1
Φλ(ξ)2

dξ,

2. y 7→ ϕλ(y) is decreasing and convex for all λ ≥ 0,

3. 0 ≤ ϕλ(y) ≤ 1 for all y ∈ [0, r), λ ≥ 0.

Proof. 1. By Theorem 3.2.2 and Theorem 3.2.3 we have,

ϕλ(y) = ψ(λ)
(
−Ψλ(y) + Φλ(y)

∫ r

0

1

Φλ(ξ)2
dξ
)

= ψ(λ)
(
− Φλ(y)

∫ y

0

1

Φλ(ξ)2
dξ + Φλ(y)

∫ r

0

1

Φλ(ξ)2
dξ
)

= ψ(λ)Φλ(y)

∫ r

y

1

Φλ(ξ)2
dξ.

2. To prove y 7→ ϕλ(y) is decreasing we note that Φ+
λ (y)−Φ+

λ (y0) =
∫

(y0,y] λΦλ(y)m(dy) ≥
0 for any y ≥ y0 and so,

Φ+
λ (y)

∫ r

y

1

Φλ(ξ)2
dξ ≤

∫ r

y

Φ+
λ (ξ)

Φλ(ξ)2
dξ = −

∫ r

y

( 1

Φλ(ξ)

)+
dξ ≤ 1

Φλ(y)
.

Therefore,

ϕ+
λ (y) = ψ(λ)

(
Φλ(y)

∫ r

y

1

Φλ(ξ)2
dξ
)+

= ψ(λ)
(

Φ+
λ (y)

∫ r

y

1

Φλ(ξ)2
dξ − 1

Φλ(y)

)
≤ 0.

Furthermore, it is clear that ϕλ(y) ≥ 0 by Part 1 and so the distributional

derivative ϕ′′λ(y) = λϕλ(y)m(dy) is a non-negative Radon measure and hence

y 7→ ϕλ(y) is convex.
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3. The upper bound follows as ϕλ(0) = Φλ(0) = 1 and y 7→ ϕλ(y) is decreasing

while the lower bound follows by Part 1.

We also have the following variational characterisation for the extension func-

tion.

Theorem 3.3.2. Suppose m({0}) = 0. Then for all λ > 0, ϕλ ∈ Dom+(Gy). Let

f : [0, r)→ R be absolutely continuous with f(0) = 1.

i) If l +m([0, l)) <∞ and r =∞, then∫ l

0
f ′(ỹ)2 dỹ +

∫
[0,l]

λf(ỹ)2m(dỹ) ≥ ψ(λ).

ii) Otherwise assume limy→r f(y) = 0. Then,∫ r

0
f ′(ỹ)2 dỹ +

∫
[0,r)

λf(ỹ)2m(dỹ) ≥ ψ(λ).

In either case, equality holds if and only if f = ϕλ m-a.e.

Proof. We split the proof into two cases:

1. l +m([0, l)) =∞ or r <∞:

We begin by proving the equality for ϕλ. Clearly, ϕλ ∈ Dom0(Gy) so it remains

to show the integrability and boundary conditions. Using integration by parts

for Lebesgue-Stieltjes integrals we find for any y < r that,∫
(0,y]

ϕλ(ỹ) dϕ+
λ (ỹ) +

∫
(0,y]

ϕ+
λ (ỹ) dϕλ(ỹ) = ϕλ(y)ϕ+

λ (y)− ϕλ(0)ϕ+
λ (0).

As dϕ+
λ (y) = λϕλ(y)m(dy) and ϕλ(y) is absolutely continuous, we have for

almost every y ∈ [0, r),∫
[0,y]

λϕλ(ỹ)2m(dỹ) +

∫ y

0
ϕ′λ(ỹ)2 dỹ = ϕλ(y)ϕ+

λ (y) + ψ(λ).

Letting y → r, we find ϕλ(y)ϕ+
λ (y) → 0 as y → r. To see this we note if

r =∞, then by convexity we have,

0 ≤ −ϕ+
λ (y) ≤ ϕλ(0)− ϕλ(y)

y
≤ 1

y
→ 0,
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as y →∞. Otherwise,

ϕλ(y) = ψ(λ)

∫ r

y

Φλ(y)

Φλ(ξ)2
dξ ≤ ψ(λ)

∫ r

y

1

Φλ(ξ)
dξ,

as y 7→ Φλ(y) is increasing. By Cauchy-Schwarz,∫ r

y

1

Φλ(ξ)
dξ ≤

(∫ r

y

1

Φλ(ξ)2
dξ
)1/2

(r − y)1/2 ≤
√
h(λ)(r − y)1/2 → 0,

as y → r so ϕλ(r) = 0 and as 0 ≤ −ϕ+
λ (r) ≤ 1

r , ϕλ(y)ϕ+
λ (y) → 0 as y → r.

Therefore, ∫ r

0
ϕ′λ(ỹ)2 dỹ +

∫
[0,r)

λϕλ(ỹ)2m(dỹ) = ψ(λ).

In particular, as Gyϕλ = λϕλ and ‖ϕλ‖2L2([0,r),m) ≤
ψ(λ)
λ <∞,

‖Gyϕλ‖2L2([0,r),m) ≤ λψ(λ),

and so ϕλ ∈ Dom+(Gy) if
∫

[0,l) y
2m(dy) =∞. Otherwise if

∫
[0,l) y

2m(dy) <∞
it remains to show ϕλ(l−) = 0 which is equivalent to limy→∞ ϕ

+
λ (y) = 0 and

follows by the same convexity argument as before. To prove the case when

l+m([0, l)) <∞ and r <∞, we note that ϕλ is linear on (l, r) with ϕλ(r) = 0.

As ϕ+
λ (y) = ϕ+

λ (l) for all y ∈ (l, r), we have

ϕλ(y)− ϕλ(l)

y − l
= ϕ+

λ (l) =⇒ ϕ+
λ (l)(r − l) + ϕλ(l) = 0,

by taking y → r.

To prove the inequality, we now assume f : [0, r)→ R is absolutely continuous

with f(0) = 1 and f(r−) = 0. Clearly, the result is trivial if
∫ r

0 |f
′(y)|2 dy =∞.

Otherwise, let g = f − ϕλ so by integration by parts we have,∫ y

0
ϕ′λ(ỹ)g′(ỹ) dỹ = ϕ+

λ (y)g(y)− ϕ+
λ (0)g(0)−

∫
(0,y]

λϕλ(ỹ)g(ỹ)m(dỹ),

for any y < r. As we know g(0) = 0, ϕ+
λ (r−) is bounded and limy→r g(y) = 0,

we may take a sequence y → r to obtain,∫ r

0
g′(ỹ)ϕ′λ(ỹ) dỹ +

∫
[0,r)

λg(ỹ)ϕλ(ỹ)m(dỹ) = 0.
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Then,∫ r

0
f ′(y)2 dy +

∫
[0,r)

λf(y)2m(dy)

=

∫ r

0
(g′(y) + ϕ′λ(y))2 dy +

∫
[0,r)

λ(g(y) + ϕλ(y))2m(dy)

=
(∫ r

0
g′(y)2 dy +

∫
[0,r)

λg(y)2m(dy)
)

+
(∫ r

0
ϕ′λ(y)2 dy +

∫
[0,r)

λϕλ(y)2m(dy)
)

+ 2
(∫ r

0
g′(y)ϕ′λ(y) dy +

∫
[0,r)

λg(y)ϕλ(y)m(dy)
)

> ψ(λ),

as
∫ r

0 g
′(y)2 dy +

∫
[0,r) λg(y)2m(dy) > 0 when f 6= ϕλ.

2. l +m([0, l)) <∞ and r =∞:

In this case,

ψ(λ) = lim
y→∞

Φλ(y)

Ψλ(y)
= lim

y→∞

Φλ(l) + Φ+(l)(y − l)
Ψλ(l) + Ψ+(l)(y − l)

=
Φ+(l)

Ψ+(l)
.

Therefore,

ϕ+
λ (l) = Φ+(l)− ψ(λ)Ψ+(l) = 0,

so ϕλ satisfies the boundary condition at l. Then arguing as before with y < l

we have, ∫ y

0
ϕ′λ(ỹ)2 dỹ = ϕ+

λ (y)ϕλ(y) + ψ(λ)−
∫

[0,y)
λϕλ(ỹ)2m(dỹ),

so by taking y → l we have,∫ l

0
ϕ′λ(ỹ)2 dỹ +

∫
[0,l)

λϕλ(ỹ)2m(dỹ) = ϕ−λ (l)ϕλ(l) + ψ(λ),

and by noting that ϕ+
λ (l)− ϕ−λ (y) = λϕλ(l)m({l}), we see that∫ l

0
ϕ′λ(ỹ)2 dỹ +

∫
[0,l]

λϕλ(ỹ)2m(dỹ) = ψ(λ).

To prove the inequality, we now assume f : [0,∞) → R is absolutely contin-

uous with f(0) = 1. Again, the result is trivial if
∫ l

0 |f
′(y)|2 dy = ∞ and if
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∫ l
0 |f
′(y)|2 dy <∞, we note,

|f(l)| ≤ |f(0)|+
∫ l

0
|f ′(ỹ)| dỹ ≤ 1 +

(∫ l

0
|f ′(ỹ)|2 dỹ

)1/2
l1/2 <∞.

With g as in the previous case, integration by parts for y < l yields,∫ y

0
g′(ỹ)ϕ′λ(ỹ) dỹ = ϕ+

λ (y)g(y)− ϕ+
λ (0)g(0)−

∫
[0,y)

λg(ỹ)ϕλ(ỹ)m(dỹ).

By taking y → l and noting ϕ+
λ (l)g(l) = −λϕλ(l)g(l)m({l}) we have,∫ l

0
g′(ỹ)ϕ′λ(ỹ) dỹ +

∫
[0,l]

λg(ỹ)ϕλ(ỹ)m(dỹ) = 0.

Then the result follows using the same reasoning as before.

One property of interest for the extension function is that changing the mass

of the speed measure at zero does not change the extension function.

Proposition 3.3.3. Let m(dy) be a Krein string with m0 = m({0}) and let m0(dy) =

1{y>0}m(dy) and let ψ,ψ0 and ϕλ(y), ϕ0
λ(y) be the corresponding complete Bernstein

functions and extension functions respectively. Then,

ψ(λ) = m0λ+ ψ0(λ),

and

ϕλ(y) = ϕ0
λ(y).

Proof. Let {Φλ(y),Ψλ(y)} (resp. {Φ0
λ(y),Ψ0

λ(y)}) be the fundamental functions

corresponding to m(dy) (resp. m0(dy)). We note that Ψλ(y) = Ψ0
λ(y) and

Φλ(y) = Φ0
λ(y) +m0λΨ0

λ(y).

Then we have that

ψ(λ) = lim
y→r

Φλ(y)

Ψλ(y)
= lim

y→r

Φ0
λ(y) +m0λΨ0

λ(y)

Ψ0
λ(y)

= ψ0(λ) +m0λ,
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and

ϕλ(y) =
(
Φ0
λ(y) +m0λΨ0

λ(y)
)
− (ψ0(λ) +m0λ)Ψ0

λ(y)

= Φ0
λ(y)− ψ0(λ)Ψ0

λ(y)

= ϕ0
λ(y).

The following approximation result due to Kasahara [38] is useful for sim-

ulations as it allows us to approximate a Krein string numerically in order to find

an approximation for the corresponding complete Bernstein function (see Appendix

A.2).

Proposition 3.3.4. For each n ∈ N0, let mn(y) be a Krein string and Φn
λ(y), ϕnλ(y)

and ψn be the corresponding fundamental function, extension function and complete

Bernstein function respectively. Then the following are equivalent:

1. limn→∞mn(y) = m0(y) for all continuity points y < r of m0 (i.e. each y < r

such that m0({y}) = 0).

2. limn→∞Φn
λ(y) = Φ0

λ(y) for all y ∈ [0, r) and λ ≥ 0.

3. limn→∞ ψ
n(λ)→ ψ0(λ) for all λ ≥ 0.

We also have the following asymptotic property of the Krein correspondence

which shows how the behaviour of the Krein string near zero gives us information

about behaviour of the corresponding complete Bernstein function at infinity.

Proposition 3.3.5. Let L : (0,∞)→ (0,∞) be slowly varying function at ∞ (resp.

0) (i.e. limt
L(at)
L(t) = 1 for any a > 0) and for β ∈ (0, 1), let Kβ be the slowly varying

function such that t 7→ t1/βKβ(t) is the inverse of t 7→ tβL(t). then the following

are equivalent:

1. m(y) ∼ y1/β−1Kβ(y) as y →∞ (resp. 0).

2. ψ(λ) ∼ λβ(DβL(1/λ))−1 as λ→ 0 (resp. ∞).

where Dβ = (β(1− β))−βΓ(1 + β)Γ(1− β)−1 where f ∼ g if lim f
g = 1.

We also prove the following comparison result which can be useful for finding

the error of an approximation of a complete Bernstein function when simulating the

Krein correspondence.
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Proposition 3.3.6. Let m(dy) be a Krein string on [0,∞) and for r < ∞ define

on [0, r], mkill(dy) = 1[0,r)(y)m(dy) +∞ · δr(dy) and mref (dy) = 1[0,r)(y)m(dy).

Then for all λ > 0,

ψkill(λ) ≥ ψ(λ) ≥ ψref (λ).

Proof. Let Φλ(y), Φkill
λ (y) and Φref

λ (y) be the fundamental functions corresponding

to m, mkill and mref . Then for y < r, Φ(y) = Φkill(y) = Φref (y). For y ≥ r,

Φref
λ (y) = 1 +

∫ r

0

∫
[0,ξ]

Φλ(w)m(dw) dξ +

∫ y

r

∫
[0,ξ]

(Φλ(r) + Φ+
λ (r)w)m(dw) dξ

≤ Φλ(y).

Therefore, ∫ r

0

1

Φλ(y)2
dy ≤

∫ ∞
0

1

Φλ(y)2
dy ≤

∫ ∞
0

1

Φref (y)2
dy,

and so ψkill(λ) ≥ ψ(λ) ≥ ψref (λ).

3.4 Probabilistic Interpretation of the Krein Correspon-

dence

The probabilistic counterpart of Krein strings are gap (or generalised) diffusions

which are family of Markov processes obtained via a time change of a Wiener process.

The construction of these processes is similar to that of the construction of a one-

dimensional diffusion in natural scale.

Let ((Wt)t≥0, {Py}y∈R) be a one-dimensional standard Wiener process and

for y ∈ R, let (Lyt (W ))t≥0 be the local time process at y ∈ R. Then for r ∈ (0,∞]

and let ζW = inf{t > 0 : Wt = r}. Then we define,

At =
1

2

∫
[0,r)

Ly
t∧ζW (W )m(dy).

It should be noted that the local time used in [44, 65] is half the local time used

here (which corresponds to the local time defined in [5]). This measure is associated

with the Krein string, not the speed measure in the language of diffusions which
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would be given by

m̃(dy) =

m0δ0(dy) + 1
2m(dy)1(0,l) +mlδl(dy) if l < r,

m0δ0(dy) + 1
2m(dy)1(0,l) if l = r.

Let (A−1
t )t≥0 be the right-inverse of (At)t≥0 given by

A−1
t = inf{s ≥ 0 : As+ > t},

with A−1
t = ∞ if {s ≥ 0 : As+ > t} = ∅. Then the gap diffusion process (Yt)t≥0

associated to the speed measure m̃(dy) is given by

Yt =

WA−1
t

for t < ζY ,

† for t ≥ ζY ,

where ζY = limt→∞At = 1
2

∫
[0,r) L

y
ζW

(W )m(dy) and the cemetery state, †, is defined

in the standard way. In fact, this process is an m-symmetric Hunt process on Em

which is associated with a regular Dirichlet form on L2(Em,m) [28, Theorem 6.2.1].

For each y ∈ Em, (Yt)t≥0 admits a local time process (Lyt (Y ))t≥0 given by

Lyt (Y ) = Ly
A−1
t

(W ) which satisfies

∫ t

0
1Γ(Ys) ds =

∫
Γ
Lyt (Y )m̃(dy),

for all t ≥ 0 almost surely for any Borel set Γ ⊂ Em and this equality specifies the

local time of Y as used in [5], which based on the speed measure m̃(dy), not the

Krein string m(dy).

Of particular interest in this thesis is the local time at zero, L0
t (Y ), and the

corresponding inverse local time at zero (Tt)t≥0 defined by

Tt = inf{s > 0 : L0
s(Y ) > t}.

This process is a (possibly killed) subordinator (Tt)t≥0 (see [10, p.114, Theorem

8]). We may rewrite the spectral formulation of the Krein correspondence given by

Theorem 3.2.3 in the following probabilistic formulation.

Theorem 3.4.1 (Krein, Probabilistic Formulation). Let (Yt)t≥0 be the gap diffusion

corresponding to the Krein string m(dy) and let (Tt)t≥0 be the subordinator obtained
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as the inverse local time at zero of (Yt)t≥0. Then the Laplace exponent ψ, given by

E0[exp(−λTt)] = exp(−tψ(λ)),

is a complete Bernstein function. Conversely, for any complete Bernstein function

ψ, there exists a unique gap diffusion such that ψ is the Laplace exponent of its

inverse local time at zero.

It is also known that the transition density of the gap diffusion of (Yt)t≥0

with respect to the Krein string m is given by,

pY (t, y0, y1) =

∫
[0,∞)

e−ηtΦη(y0)Φη(y1)σ(dη),

where σ is the spectral measure of the complete Bernstein function ψ and hence the

Laplace transform of pY (t, 0, 0) is given by,∫ ∞
0

e−λtpY (t, 0, 0) dt = h(λ) =
1

ψ(λ)
.

This property leads to the following remark which indicates why we keep the Krein

string as general as possible.

Remark 3.4.2. Suppose (Yt)t≥0 is a one-dimensional diffusion in R with generator

Ay = 1
2σ

2(y) d2

dy2
such that η−1 ≤ σ(y) ≤ η for some η > 0. Then using Aronson

estimates for the transition density of (Yt)t≥0 (see [3]), the transition density of the

reflected diffusion (|Yt|)t≥0 satisfies

p|Y |(t, 0, 0) � 1√
t
.

Then as
∫∞

0 e−tλp|Y |(t, 0, 0) dt = 1
ψ(λ) �

1√
λ

where ψ is the Laplace exponent of the

local time at zero, we have

ψ(λ) �
√
λ.

3.4.1 The Dirichlet Form Corresponding to the Generalised Diffu-

sion

As a gap diffusion (Yt)t≥0 is am-symmetric Hunt process on Em, we let (Ay,Dom(Ay))
be the generator of its corresponding semigroup on L2(Em,m) and let (E Y ,Dom(E Y ))
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be the corresponding regular Dirichlet form given by

E Y (f, f) =
〈√
−Ayf,

√
−Ayf

〉
L2(Em,m)

,

with domain Dom(E Y ) = Dom(
√
−Ay).

It is advantageous to consider this Dirichlet form on L2(Em,m) rather than

that on L2([0, r),m) as m has full support on Em and so all the results of Section

2.3 are valid. However, we can connect this form with the operators defined in

Section 3.2. Of course, if Em = [0, r) or Em = [0, l], as in the case where (Yt)t≥0 is a

one-dimensional diffusion the results of this section are trivial. However, even in the

case where m does not have full support, it can be useful to be able to characterise

the abstract Dirichlet form E Y via the more tractable quadratic form D given by,

D(f, f) =


∫ l

0 |f
′|2 dy if l +m([0, l)) =∞ or l +m([0, l)) <∞ and r =∞,∫ r

0 |f
′|2 dy if l +m([0, l)) <∞ and r <∞,

as in the standard one-dimensional diffusion case. In this case we let

Dom(D) = {f ∈ L2([0, r),m) : f is absolutely continuous and D(f, f) <∞}.

Proposition 3.4.3. Let f ∈ Dom(E Y ). Then f is absolutely continuous on Em.

Furthermore, if we define the function f : [0, r)→ R by

f(y) =


f(y) for y ∈ Em,

linearly extended in ([0, l] ∩ [0, r)) \ Em,

f(l)
( r−y
r−l
)

for y ∈ (l, r) if l +m([0, l)) <∞ and r <∞,

then f ∈ Dom(D) and,

E Y (f, f) = D(f, f).

Proof. Let (Gλ)λ>0 be the resolvent corresponding to (Yt)t≥0 defined by

Gλf(y) = Ey
[ ∫ ∞

0
e−λtf(Yt) dt

]
for y ∈ Em and f ∈ Cb(Em) and let (Rλ)λ>0 be the L2([0, r),m)-resolvent operator

corresponding to the operator Gy. Then by [65, Proposition 15.15], for all g ∈
Cb(Em) ∩ L2([0, r),m), Gλg = Rλg.
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Let (Ĝλ)λ>0 be the L2(Em,m)-resolvent of the Dirichlet form E Y . Then for

any g ∈ Cb(Em) ∩ L2(Em,m), Ĝλg = Gλg and so Ĝλg = Rλg. As Ĝλ is bounded

in L2(Em,m), the result holds for any g ∈ L2(Em,m)∩L2([0, r),m) = L2([0, r),m)

by density. Therefore Range(Ĝλ) = Range(Rλ)|Em and hence g ∈ Dom(Ay) if and

only if there exists ĝ ∈ Dom(Gy) such that ĝ|Em = g and by the resolvent equation

we have

Ayg = Gy ĝ|Em .

By definition of Gy, ĝ = g for on [0, l] ∩ [0, r) and by construction satisfies the

boundary condition at l. Therefore f, g ∈ Dom(Ay) implies that f, g ∈ Dom(Gy)
and so,

E Y (f, g) = 〈−Ayf, g〉L2(Em,m) = 〈−Gyf, g〉L2([0,r),m) = D(f, g).

Now let (fn)n∈N ⊂ Dom(Ay) converge to f ∈ Dom(E Y ) in E Y
1 -norm. Then

fn → f in L2([0, r),m) and (f
′
n)n∈N converges to some g ∈ L2([0, r),dy). We now

show f is absolutely continuous and g = f
′
m-a.e. in Em and g = f

′
dy-a.e. in

[0, r) \ Em.

We adapt the proof for one-dimensional diffusions as in [28, Example 1.2.2]

to gap diffusions. We note that for any n ∈ N, a, b ∈ [0, l] ∩ [0, r) with a < b and

m(Em ∩ [a, b]) > 0,

|fn(b)− fn(a)|2 =
∣∣∣ ∫ b

a
f
′
n(ξ) dξ

∣∣∣2
≤
(∫ b

a
|f ′n(ξ)|dξ

)2

≤ |b− a|
(∫ b

a
|f ′n(ξ)|2 dξ

)
≤ |b− a| sup

n∈N
D(fn, fn),

by Cauchy-Schwarz and so (fn)n∈N is uniformly equicontinuous. Furthermore, as

fn → f m-almost everywhere, we may choose y0 ∈ [0, b]∩Em (noting that m([0, b]∩
Em) > 0) such that (fn(y0))n∈N is convergent,

|fn(y)| ≤ |fn(y0)|+ |fn(y)− fn(y0)| ≤ sup
n∈N
|fn(y0)|+

√
|b− a| sup

n∈N
D(fn, fn),

so fn is uniformly bounded. By Azerla-Ascoli and passing to a subsequence we
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may assume fn converges to a continuous function f̃ uniformly on each finite closed

subinterval of [0, r) and f̃ = f = f m-a.e. on Em.

Now on any subinterval of J ⊂ [0, r) \ Em, f
′
n is constant and hence f

′′
n = 0

in J so f
′′
n → 0 uniformly on J . Therefore, for any φ ∈ C∞c (J◦),

0 =

∫
J
f
′′
n(x)φ(x) dx = −

∫
J
f
′
n(x)φ′(x) dx→ −

∫
J
g(x)φ′(x) dx,

Therefore, g is weakly differentiable on J and g′ = 0 almost everywhere in J and

hence g is constant on every subinterval of [0, r) \ Em. Furthermore, for any φ ∈
C∞c ((0, r)), ∫ r

0
g(x)φ(x) dx = lim

k→∞

∫ r

0
f
′
nk

(x)φ(x) dx

= − lim
k→∞

∫ r

0
fnk(x)φ′(x) dx

= −
∫ r

0
f̃(x)φ′(x) dx,

which implies that f̃ is absolutely continuous on [0, r). Furthermore,

D(f, f) ≤ lim inf
n→∞

D(fn, fn) = lim inf
n→∞

E Y (fn, fn) <∞,

so f ∈ Dom(D).

Note, we do not prove that (D ,Dom(D)) is a Dirichlet form as in the standard

one-dimensional diffusion case as we only know that the limit of any D1-Cauchy se-

quence is absolutely continuous m-a.e. which is not sufficient for absolute continuity

dy-a.e. as m does not necessarily have full support.

We obtain the following corollary immediately due to Theorem 3.3.2 and the

previous proposition. We recall that Domext(E Y ) denotes the extended Dirichlet

space as defined in [28], given by the family of m-measurable functions φ on Em

such that |φ| < ∞ m-a.e. and there exists an E Y -Cauchy sequence (φn)n∈N in

Dom(E Y ) such that limn→∞ φn = φ m-a.e.. We have that Domext(E Y ) is a linear

space containing Dom(E Y ) and Dom(E Y ) = L2(Em,m) ∩Domext(E Y ).

Corollary 3.4.4. Let λ > 0. Then for any f ∈ Domext(E Y ) with f(0) = 1,

E Y (f, f) + λ‖f‖2L2(Em,m) ≥ ψ(λ),

with equality if and only if f = ϕλ|Em.
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Proof. Clearly, if f /∈ L2(Em,m) the inequality is trivial so it suffices to show the

inequality for f ∈ Dom(E Y ). As (E Y ,Dom(E Y )) is a regular Dirichlet form, we

prove the result for all f ∈ C where C is a core for Dom(E Y ). Now if l = r then

as supp f ⊂ [0, r), limEm3y→r f(y) = 0 and hence limy→r f(y) = 0. Otherwise

l < r <∞ and by construction limy→r f(y) = 0. Applying Theorem 3.3.2 we obtain

for each case that

D(f, f) + λ‖f‖2L2([0,r),m) ≥ ψ(λ),

and hence

E Y (f, f) + λ‖f‖2L2(Em,m) ≥ ψ(λ),

and so by density, the inequality holds for all f ∈ Dom(E Y ). Furthermore, E Y (f, f)+

λ‖f‖2L2(Em,m) = ψ(λ) if and only if

D(f, f) + λ‖f‖2L2([0,r),m) = ψ(λ),

which occurs if and only if f = ϕλ =⇒ f = ϕλ|Em .

3.4.2 Probabilistic Interpretation of the Extension Function

An important aspect of the probabilistic interpretation of the Krein correspondence

is the probabilistic interpretation of the extension function. For y ∈ Em, let

Hy = inf{t > 0 : Yt = y}.

By [65, (15.40)] we have,

Ey[e−λH0 ] = ψ(λ)Φλ(y)

∫ r

y

1

Φλ(ξ)2
dξ = ϕλ(y),

so ϕλ(y) is the Laplace transform of the measure Py[H0 ∈ dt].

Proposition 3.4.5. P0[H0 ∈ dt] = δ0(dt), the Dirac delta measure at zero. Suppose

y ∈ Em ∩ (0, r) and m((0, r)) 6= 0. Then Py[H0 = 0] = 0.

Proof. The first claim follows by inverting the Laplace transform as ϕλ(0) = 1. For

the second claim we proceed by contradiction. Let y ∈ Em ∩ (0, r). Then by the
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Blumenthal zero-one law, Py[H0 = 0] ∈ {0, 1}. If r <∞, then we know

Py[H0 = 0] ≤ Py[H0 <∞] =
r − y
r

< 1.

Otherwise, suppose Py[H0 = 0] = 1 in which case Py[H0 ∈ dt] = δ0(dt) and hence

the Laplace transform ϕλ(y) = 1 for all λ ≥ 0. As the mapping y 7→ ϕλ(y) is

non-increasing with ϕλ(0) = 1, ϕλ(ξ) = 1 for all λ ≥ 0 and ξ ∈ [0, y]. Therefore

ϕ+
λ (0) = 0 so

ψ(λ) = m0λ,

which occurs only when m(dy) = m0δ0(dy) which is a contradiction as m((0, r)) 6=
0.

Furthermore, regularity of the function y 7→ ϕλ(y) gives us information about

convergence of the distribution of the hitting time at zero in terms of the initial point

y. In order investigate this we require information about the decay of the function

y 7→ ϕλ(y). It is proven in [44] that for any y ∈ Em,

lim
λ↑∞

log(ϕλ(y))√
λ

= −
∫ y

0

√
h(ξ) dξ,

where h is density of the absolutely continuous part in the Lebesgue decomposition

of the measure m. Therefore, for all ε > 0 there exists an R > 0 such that for

λ > R,

exp
(
−
√
λ
(
ε+

∫ y

0

√
h(ξ) dξ

))
≤ ϕλ(y) ≤ exp

(
−
√
λ
(
− ε+

∫ y

0

√
h(ξ) dξ

))
.

In order to obtain exponential decay, we require the following assumption on

the function h.

Assumption 3.4.6. For all y > 0,
∫ y

0 h(ξ) dξ > 0.

Under this assumption, for each y > 0 we may choose ε = δ
( ∫ y

0

√
h(ξ) dξ

)
for some 0 < δ < 1 and so for λ > R > 1

ϕλ(y) ≤ e−ky
√
λ,

where ky = (1 − δ)
∫ y

0

√
h(ξ) dξ > 0. This non-degeneracy condition allows us to

prove the following property of the measures {Py[H0 ∈ dt]}y∈Em .
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Lemma 3.4.7. Let β > 0 and λ ≥ 0 and assume the Krein string m satisfy

Assumption 3.4.6 and let ϕλ be the corresponding extension function. Then for

y ∈ Em ∩ (0, r), the Laplace transform of the measure µ(dt) = t−βPy[H0 ∈ dt] is

given by the Riemann-Liouville integral of ϕλ(y):∫
(0,∞)

e−λtt−βPy[H0 ∈ dt] =
(
Jβϕ·(y)

)
(λ) =

1

Γ(β)

∫ ∞
λ

(σ − λ)β−1ϕσ(y) dσ,

and (Jβϕ·(y))(λ) <∞ for all λ ≥ 0.

Proof. We first prove the right-hand side is well-defined. By a change of variables,

it suffices to show σ 7→ σβ−1ϕσ+λ(y) is integrable on (0,∞) for any λ ≥ 0. Choose

R > 1 such that there is some ky > 0 such that

ϕη(y) ≤ e−ky
√
η,

for η > R. For all β > 0, σβ−1 is integrable on (0, R] and so∫ R

0
|σβ−1ϕσ+λ(y)| dσ ≤

∫ R

0
σβ−1 dσ <∞,

as 0 ≤ ϕλ(y) ≤ 1. Furthermore, using the exponential bound for ϕ,∫ ∞
R
|σβ−1ϕσ+λ(y)|dσ ≤

∫ ∞
R

σβ−1e−ky
√
σ dσ <∞.

By calculating,

1

Γ(β)

∫ ∞
λ

(σ − λ)β−1e−σt dσ =
e−λt

Γ(β)

∫ ∞
0

σβ−1e−σt dσ

=
t−βe−λt

Γ(β)

∫ ∞
0

σβ−1e−σ dσ

= t−βe−λt,

we find,∫
(0,∞)

e−λtt−βPy[H0 ∈ dt] =

∫
(0,∞)

( 1

Γ(β)

∫ ∞
λ

(σ − λ)β−1e−σt dσ
)
Py[H0 ∈ dt]

=
1

Γ(β)

∫ ∞
λ

(σ − λ)β−1ϕσ(y) dσ,

completing the proof.

We now use this lemma to prove the following useful corollary.
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Corollary 3.4.8. For all β ≥ 0, t−βPyn [H0 ∈ dt] → t−βPy[H0 ∈ dt] weakly as

n→∞ for any sequence (yn)n∈N ⊂ Em ∩ (y2 , r) converging to some y > 0.

Proof. For any λ ≥ 0, y 7→ ϕλ(y) is a continuous function and so ϕλ(yn) → ϕλ(y)

for any (yn)n∈N converging to y ≥ 0. As the Laplace transforms converge, Pyn [H0 ∈
dt]→ Py[H0 ∈ dt] weakly.

By assumption yn >
y
2 , and so for all λ ≥ 0, ϕλ(y2 ) ≥ ϕλ(yn) for all n ∈ N.

Therefore,∫ ∞
0

σβ−1ϕσ+λ(y2 ) dσ ≤
∫ R

0
σβ−1 dσ +

∫ ∞
R

σβ−1e−ky/2
√
λ+σ dσ

<∞,

and so by dominated convergence we have,

(
Jβϕ·(yn)

)
(λ) =

1

Γ(β)

∫ ∞
0

σβ−1ϕσ+λ(yn) dσ

→ 1

Γ(β)

∫ ∞
0

σβ−1ϕσ+λ(y) dσ =
(
Jβϕ·(y)

)
(λ),

as n→∞ and hence t−βPyn [H0 ∈ dt]→ t−βPy[H0 ∈ dt] weakly as n→∞.

A final identity of interest allows us to describe the jump measure of ψ in

terms of Py[H0 ∈ dt] and m(dy). We note that for each y ∈ Em, we may define (a

possibly infinite) a measure on Borel subsets of [0,∞) by

µy(A) =

∫
Em

Py[H0 ∈ A]m(dy).

Proposition 3.4.9. Let ψ(λ) = m0λ +
∫∞

0 (1 − e−λt)ν(t) dt and m be in Krein

correspondence and let ϕλ be the corresponding extension function. Then,

ν((t,∞)) dt =

∫
Em

Py[H0 ∈ dt]m(dy).

Proof. Taking the Laplace transform of µy we see∫
[0,∞)

e−λt
(∫

Em

Py[H0 ∈ dt]m(dy)
)

=

∫
[0,∞)

ϕλ(y)m(dy)

=

∫
[0,∞)

1

λ
dϕ+

λ (y),
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noting that dϕ+
λ (dy) = λϕλ(y)m(dy). Therefore,∫
[0,∞)

(∫ ∞
0

e−λt dt
)

dϕ+
λ (y) = −

∫ ∞
0

e−λtϕ+
λ (0) dt

=

∫ ∞
0

e−λt(ψ(λ)−m0λ) dt,

as ϕ+
λ (y)→ 0 as y →∞. Now as ψ(λ)−m0λ =

∫∞
0 λe−λsν((s,∞)) ds we have,∫ ∞

0
e−λt(ψ(λ)−m0λ) dt =

∫ ∞
0

∫ ∞
0

λe−λ(s+t)ν((s,∞)) ds dt

=

∫ ∞
0

e−λsν((s,∞)) ds,

so the Laplace transforms coincide and hence the measures are equal.

3.5 Explicit Examples of the Krein Correspondence

In this chapter, we give some notable examples of the Krein correspondence which

are of interest for applications. Although explicit pairs (ψ,m) which are in Krein

correspondence are rare, there are several useful examples which we can state ex-

plicitly.

Other than the classical result that the distribution of the inverse local time

of a reflected Brownian motion is a 1
2 -stable subordinator, the first explicit example

of the Krein correspondence was proven by Molchanov & Ostrovskii [54] although

we cite the exposition found in [46].

Example 3.5.1 (Stable subordinator). Let α ∈ (0, 2) and define

cα = 2−α|Γ(−α
2 )|/Γ(α2 ),

and define the measure m(α)(dy) = 1

α2c
2/α
α

y2/α−2 dy. Then for λ > 0 the extension

function is given by

ϕ
(α)
λ (y) =

21−α/2

Γ(α2 )

(λα/2y
cα

)1/2
Kα/2

((λα/2y
cα

)1/α
)
,

where Kα/2 is the modified Bessel function of the second kind. The complete Bern-

stein function corresponding to this extension function is given by

ψ(α)(λ) = λα/2.
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Example 3.5.2 (Relativistic subordinator). [23] Suppose (Yt)t≥0 is a one-dimensional

reflected diffusion on probability spaces (Ω,F , (Ft)t≥0, {Py}y∈I) and let ψ be the

Laplace exponent of the inverse local time at zero. We may define another one-

dimensional diffusion (Y
(c)
t )t≥0 with laws {P(c)

y }y∈I given by,

dP(c)
y

dPy

∣∣∣∣∣
Ft

=
ϕc(Yt)

ϕc(y)
exp

(
ψ(c)L0

t (Y )− ct
)
,

for some c > 0. Then the inverse local time under P(c)
0 satisfies

exp(−tψ(c)(λ)) = E(c)
0 [exp(−λTt)]

= E0

[
exp(−λTt) exp

(
ψ(c)t− cTt

)]
= exp

(
− t(ψ(λ+ c)− ψ(c))

)
.

Example 3.5.3 (Point Mass Example). [44] Let Pn = {0 = y0 < y1 < · · · < yn = l}
be a partition of [0, l] and let mi ∈ (0,∞) for all 1 ≤ i ≤ n. Then for some

r ≥ l define a Krein string by m(dy) =
∑n

i=0miδyi(dy) +∞δr(dy). The complete

Bernstein function corresponding to m is given by the continued fraction

ψ(λ) = m0λ+ 1

(y1−y0)+
1

m1λ+
1

...+
1

(yn−yn−1)+
1

mnλ+ 1
(r−l)

,

where we assume 1
r−l =∞ if l = r and 1

r−l = 0 if r =∞.

This final example is important for numerical simulations. For any Krein

string m(dy) we may define an approximation of this measure by taking a sequence

of partitions (Pn)n∈N with mesh converging to zero and letting the Krein string mn

be defined by

mn(dy) =

n−1∑
i=0

m([yi, yi+1))δyi(dy) +m({l})δl(dy) +∞δr(dy).

Then is it easy to see that mn → m in the sense of Proposition 3.3.4 and hence

ψn(λ)→ ψ(λ) pointwise for all λ ≥ 0 where ψn (resp. ψ) is in Krein correspondence

with mn (resp. m). This leads to possibility of numerically inverting the Laplace

transform λ→ e−tψ(λ) in order to find a numerical approximation of the probability

distribution of Tt as detailed in [1].
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3.5.1 Examples Related to Brownian Motion

The simplest example of the Krein correspondence is given by the Lebesgue measure

dy on [0,∞) where the underlying equation is given by a simple constant coefficient

ODE:

f ′′λ (y) = λfλ(y).

This example is useful for seeing how changing the right-hand boundary condition

changes the corresponding extension function and hence the complete Bernstein

function. Probabilistically, this example corresponds to a reflected Brownian motion

in [0,∞).

Example 3.5.1 (Reflected Brownian Motion). Given a Krein string m(dy) = dy

(Lebesgue measure) on [0,∞), the corresponding complete Bernstein function is

given by ψcons(λ) =
√
λ.

Proof. By solving the ODE f ′′λ (y) = λfλ(y) for each of the given initial conditions

we see,

Φλ(y) =
1

2
ey
√
λ +

1

2
e−y
√
λ,

Ψλ(y) =
1

2
√
λ
ey
√
λ − 1

2
√
λ
e−y
√
λ,

and therefore the complete Bernstein function corresponding to m is given by,

ψcons(λ) = lim
y→∞

Φλ(y)

Ψλ(y)
=
√
λ.

By truncating the speed measure to [0, l) and placing a point mass ml ∈
(0,∞) at l we obtain the following example.

Example 3.5.2 (Brownian Motion Elastically Reflected at l). Given a Krein string

m(dy) = 1[0,l)(y) dy + mlδyl(dy) on [0,∞) where l ∈ (0,∞), the corresponding

complete Bernstein function is given by

ψstick(λ) =
√
λ

(
(1 +ml

√
λ)el

√
λ − (1−ml

√
λ)e−l

√
λ

(1 +ml

√
λ)el

√
λ + (1−ml

√
λ)e−l

√
λ

)
.

Proof. For y < r, the fundamental functions are the same as in the previous example
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y ≤ l. However, for y > l the measure is zero so we have,

Φλ(y) = Φλ(0) + Φ−λ (0)y + λ

∫
[0,l]

(y − ỹ)Φλ(ỹ)m(dỹ)

= Φλ(l) + Φ+
λ (l)(y − l),

and similarly,

Ψλ(y) = Ψλ(l) + Ψ+
λ (l)(y − l).

Therefore,

lim
y→∞

Ψλ(y)

Φλ(y)
=

Ψ+
λ (l)

Φ+
λ (l)

=
Ψ−λ (l) + λmlΨλ(l)

Φ−λ (l) + λmlΦλ(l)
,

and so by calculating we find,

Ψ−λ (l) + λmlΨλ(l) =
(1 +ml

√
λ

2

)
el
√
λ +

(1−ml

√
λ

2

)
e−l
√
λ,

Φ−λ (l) + λmlΦλ(l) =
(√λ+mlλ

2

)
el
√
λ +

(mlλ−
√
λ

2

)
e−l
√
λ.

Therefore,

ψstick(λ) =
√
λ

(
(1 +ml

√
λ)el

√
λ − (1−ml

√
λ)e−l

√
λ

(1 +ml

√
λ)el

√
λ + (1−ml

√
λ)e−l

√
λ

)
.

By letting ml → 0 we obtain the complete Bernstein function for Brownian

motion instantaneously reflected in [0, l],

ψref (λ) =
√
λ

(
el
√
λ − e−l

√
λ

el
√
λ + e−l

√
λ

)
,

while if we let ml → ∞, we obtain the complete Bernstein function for a reflected

Brownian motion killed at l,

ψkill(λ) =
√
λ

(
el
√
λ + e−l

√
λ

el
√
λ − e−l

√
λ

)
.
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3.6 A Note About Changes of Scale

So far, the gap-diffusion process (Yt)t≥0 has been in natural scale in the sense that

for v, w, y ∈ Em such that v < y < w,

Py[Hw < Hv] =
y − v
w − v

,

as proven in [65]. However, if we consider a general one-dimensional diffusion process

(Zt)t≥0 with speed measure mp and scale function p, we can put this process into

natural scale by letting Yt = p(Zt) (see [5]) and in certain situations it can be easier

to deal with the process (Zt)t≥0.

If we restrict ourselves to the special case where the speed measure has

no singular part in its Lebesgue decomposition, we may choose a particular scale

function such that the scaled process has a divergence form generator with the same

local time at zero as the unscaled process as in the Bessel process case. We assume

m(dy) = b−2(y) dy for some function b : [0, l)→ [0,∞] with b(y) ∈ (0,∞) for almost

all y ∈ [0, l). To find this change of scale for general b, we require two technical

lemmas. The first is due to Zareckii (we state the version found in [68]).

Lemma 3.6.1. Let f : [a, b]→ [c, d] be a strictly increasing function that maps [a, b]

onto [c, d]. Then the following hold:

(i) f is absolutely continuous if and only if Leb(f({x : f ′(x) =∞})) = 0,

(ii) f−1 is absolutely continuous if and only if Leb({x : f ′(x) = 0}) = 0.

The second lemma is a special case of [30, Corollary 20.5].

Lemma 3.6.2. Let φ be a monotone, absolutely continuous function with domain

[a, b] and range [α, β]. Then for any f ∈ L1([α, β]), we have (f ◦ φ)|φ′| ∈ L1([a, b])

and ∫ β

α
f(y) dy =

∫ b

a
f ◦ φ(x)|φ′(x)|dx.

Lemma 3.6.3. Let lz =
∫ l

0
1
b(ξ) dξ ∈ (0,∞]. Then there exists an absolutely contin-

uous function p : [0, lz)→ [0, l) such that,

p′(z) = (b ◦ p)(z), p(0) = 0. (3.6.1)

Proof. As m([0, y)) =
∫ y

0 b
−2(ξ) dξ < ∞ for all y < l, by the Cauchy-Schwarz
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inequality we know that∫ y

0
b−1(ξ) dξ ≤ y1/2

(∫ y

0
b−2(ξ) dξ

)1/2
<∞,

and so b−1 is locally integrable in [0, l) and so we may define q : [0, l) → [0, lz)

by q(y) =
∫ y

0
1
b(ξ) dξ. Then q is absolutely continuous and strictly increasing with

derivative q′(y) = 1
b(y) > 0 almost everywhere. Let p : [0, lz) → [0, l) denote the

inverse of q. Now for any a ∈ [0, lz), q maps [0, p(a)] onto [0, a] and so by Lemma

3.6.1, p is absolutely continuous on [0, a] as q′ = 1
b > 0 almost everywhere. There-

fore, p is absolutely continuous on [0, lz) with locally integrable derivative p′ almost

everywhere.

To prove (3.6.1), we apply Lemma 3.6.2. Fix z ∈ [0, lz) so that q maps

[0, p(z)] onto [0, z]. For each N ∈ N, (b ◦ p)1{(b◦p)≤N} ∈ L1([0, z]) so we have

∫ z

0
(b ◦ p)(z̃)1{(b◦p)(z̃)≤N} dz̃ =

∫ p(z)

0
(b ◦ p)(q(y))1{(b◦p)(q(y))≤N}q

′(y) dy

=

∫ p(z)

0
1{b(y)≤N} dy.

As b <∞ almost everywhere we have,

p(z) =

∫ z

0
b ◦ p(z̃) dz̃,

by monotone convergence.

If we assume b is continuously differentiable, then clearly the scale function

p is twice continuously differentiable. Formally, if the process (Yt)t≥0 is a associated

with the generator d2

dmdy = b2(y) d2

dy2
, then the rescaled process (Zt)t≥0 = (q(Yt))t≥0

will be associated with the generator by d
dmp dp = d2

dz2
− p′′(z)

p′(z)
d
dz = p′(z) d

dz ( 1
p′(z)

d
dz )

which can be see by considering Example 3.2.1 with σ2(z) = 2 and µ(z) = −p′′(z)
p′(z) .

As this change of scale does not effect the local time of the corresponding process at

zero, the inverse local times of the processes generated by these generators are equal.

Furthermore, this change of scale allows us to rewrite certain equations associated

with the (Yt)t≥0 in divergence form.

Example 3.6.4. Let (Yt)t≥0 be the one-dimensional diffusion associated with the

speed measure m(α)(dy) = 1

α2c
2/α
α

y2/α−2 dy on [0,∞) for some α ∈ (0, 2). Then we
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can calculate

q(y) =

∫ y

0

1

αc
1/α
α

ξ1/α−1 dξ =
( y
cα

)1/α
,

and so y = p(z) = cαz
α. Let (Zt)t≥0 be the rescaled process defined by Zt = ( Ytcα )1/α.

Then we can see this process is related to a Bessel process of dimension δ = 2 − α
as the generator corresponding to this process should be given in some sense by

α2c2/α
α y2−2/α d2

dy2
=

d2

dz2
−
(p′′(z)
p′(z)

) d

dz
=

d2

dz2
+
(1− α

z

) d

dz
,

applying the same calculations as found in the introduction. This representation

provides some intuition about the properties of the trace process. As we can see,

when p′′ > 0 (resp. p′′ < 0) the drift term indicates that the diffusion is being

“pulled to” (resp. “pushed away from”) zero. This difference determines whether

the subordinated process (XTt)t≥0 is of finite or infinite variation as in the case

where (Xt)t≥0 is an Rd-valued Brownian motion and (Tt)t≥0 is the inverse local

time corresponding to the rescaled Bessel process (Yt)t≥0.
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Chapter 4

Stochastic Approach to the

Harmonic Extension Technique

4.1 Introduction

We now introduce the first method to generalise the Caffarelli-Silvestre extension

technique which is based upon stochastic analysis of one-dimensional diffusion pro-

cesses as detailed in [5]. The probabilistic analogue of the extension technique was

first proven by Molchanov & Ostrovskii in [54] where they considered the trace pro-

cess of certain diffusion processes in Rd× [0,∞) but they did not make a connection

between the generator of the trace process and the Neumann boundary condition of

a solution to a PDE. This connection has been made in a stochastic setting by Hsu

in [31] where he considered a uniformly elliptic diffusion taking values in a bounded

domain of Rd+1 with sufficiently smooth boundary. Formally, the connection is

made by combining Itô’s formula and a random time change given by the inverse

local time at the boundary. The method can be illustrated by the simple example

of Brownian motion in a half-space.

Let (Xt)t≥0 be an Rd-valued Brownian motion and let (Yt)t≥0 be an inde-

pendent reflected Brownian motion in [0,∞) given by the SDE

dYt = dBt + dL0
t (B).

Independence is assumed to ensure that the time-changed process (X(Tt))t≥0 is a

Markov process [64, Theorem 30.1]. Now if we suppose f is smooth and let

uf (x, y) =

∫
Rd
f(x̃)P (x− x̃, y) dx̃,
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where P (x, y) = Γ((d+1)/2)

π(d+1)/2
y

(y2+|x|2)(d+1)/2 is the Poisson kernel of an upper half-space,

then uf is the solution to∆xuf + ∂2
yuf = 0 in Rd × (0,∞),

uf (x, 0) = f(x) for x ∈ Rd.

Formally applying Itô’s formula to uf (Xt, Yt) with X0 = x ∈ Rd and Y0 = 0

we should find

uf (Xt, Yt)− uf (x, 0) =

∫ t

0
∇(x,y)uf (Xs, Ys) d(Xs, Bs)

T +

∫ t

0
∂yuf (Xs, Ys) dL0

t (B).

We note that this formula is not covered by the cases studied by Hsu but we shall

see that it is a special case of Lemma 4.3.7 proven in this chapter. Time-changing

this formula by the inverse local time at zero (Tt)t≥0 and taking expectations we

obtain,

lim
t→0

1

t

(
Ex[f(XTt)]− f(x)

)
= ∂yuf (x, 0).

It was originally proven by Spitzer [69] that (Tt)t≥0 is a subordinator with Laplace

exponent ψ(λ) =
√

2λ (and can be deduced from the examples in Section 3.5.1) and

so the subordinated process (XTt)t≥0 is a symmetric, 1
2 -stable process and so this

pointwise limit should be related its infinitesimal generator −(−∆x)1/2.

This example naturally leads us to consider the case where (Xt)t≥0 is an Rd-
valued diffusion process given by an SDE and (Yt)t≥0 is a one-dimensional diffusion

process in [0, l] ∩ [0, r), reflected at zero as constructed in Chapter 2. By the Krein

correspondence, the inverse local time at zero of the diffusion (Yt)t≥0 will be given

by a subordinator with a complete Bernstein function ψ as its Laplace exponent. If

Lx denotes the second order elliptic operator associated with this diffusion process,

then by following the approach in the Brownian example we should obtain a simi-

lar characterisation for the infinitesimal operator associated with the subordinated

process in terms of the Dirichlet-to-Neumann map of an extension function uf . By

examining the Itô formula, this function should satisfy

Lxuf ×m(dy) + ∂2
yuf = 0,

in Rd × (0, l) in some sense, where m is the Krein string corresponding to the

diffusion (Yt)t≥0. In this general set-up the difficulty is due to the fact we do not

know the regularity properties of this function and so we cannot immediately apply
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Itô’s formula.

4.2 Set Up

In this chapter, we let X = (Xt)t≥0 be an Rd-valued diffusion which is a global

solution of the SDE

dXi
t =

p∑
k=1

σik(Xt) dBk
t + ai(Xt) dt, i = 1, . . . , d, (4.2.1)

where (B1, . . . , Bp)T is a Brownian motion, σ = (σik) is a d×p −matrix of functions

on Rd, and a = (a1, . . . , ad)
T is a vector field on Rd. The infinitesimal operator

associated with this diffusion formally reads

Lx =

d∑
i=1

ai(x)
∂

∂xi
+

1

2

d∑
i,j=1

(σσT)ij(x)
∂2

∂xi∂xj
. (4.2.2)

Assume that both coefficients a, σ are continuous but also satisfy some growth con-

dition to allow for global solutions of (4.2.1).

Let (Yt)t≥0 be the diffusion as constructed in Theorem 2.4.1 with speed

measure m̃ which we assume is independent of (Xt)t≥0. In addition to the speed

measure, we recall the Krein string corresponding to the one-dimensional diffusion

given by

m(dy) =

b−2(y) dy +m0δ0(dy) + n(dy) if l =∞,

b−2(y) dy +m0δ0(dy) + n(dy) +mlδl(dy) if l <∞.
(4.2.3)

The constraints (S1-3) from Section 2.4 restrict the number of Krein strings

we can encompass with the stochastic method. Clearly, (S1) is immediately satisfied

by any Krein string. However, if l < r then (S2) restricts us to Krein strings which

are conservative so r = ∞. Property (S3) though, which is due to the wanted

regularity of Y in (0, l), requires the string to be strictly increasing on (0, l). An

example of such a process which is not included in our set-up is given by Example

3.2.2. By the assumption (S3), the density of the absolutely continuous measure

can be chosen to be strictly positive.

Under the assumptions in Chapter 2, Section 2.4, we have that l = r, or

l < ∞ and r = ∞. The condition l = r means that the diffusion is either killed

upon hitting l < ∞ or conservative with l = ∞, while the condition l < ∞ and

r =∞ means that the diffusion is conservative and reflected at l.
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Recalling (2.4.3), we have that (Yt)t≥0 solves an SDE of type

dYt =
√

2b(Yt) dBt + dL0
t (Y )− dLlt(Y ).

We note that if l =∞, Llt(Y ) = 0 for all t ≥ 0. Without loss of generality, we may

assume ((B1
t , · · · , B

p
t ))t≥0 and (Bt)t≥ 0 are independent.

4.3 Elliptic PDE

We consider the elliptic PDE

Lxu×m(dy) + ∂2
yu = 0 on Rd × (0, l), (4.3.1)

where the product Lxu(x, y)×m(dy) is understood in the sense of distributions with

respect to y, for any fixed x. We are looking for the following type of solutions:

Definition 4.3.1. A function u : Rd × (0, l)→ R such that

� u(·, y) ∈ C2(Rd), for any y ∈ (0, l),

� u(x, ·), ∂iu(x, ·), ∂iju(x, ·), 1 ≤ i, j ≤ d, are càdlàg functions1 on (0, l), for any

x ∈ Rd,

is said to be a solution of (4.3.1) if and only if∫
(0,l)
Lxu(x, y)g(y)m(dy) +

∫ l

0
u(x, y)g′′(y) dy = 0,

for any x ∈ Rd, and any smooth function g : (0, l)→ R with compact support.

Of course, if u solves (4.3.1) in the sense of Definition 4.3.1, then ∂2
yu(x, ·)

is a locally finite signed Borel measure on (0, l), for any x ∈ Rd. Due to a result

by Schwartz [25] which states that a distribution on R is a convex function if and

only if its second derivative is a non-negative locally finite Borel measure, we know

for each x ∈ Rd, y 7→ u(x, y) is a difference of two convex functions. Therefore for

each x ∈ Rd, the partial derivatives ∂+
y u(x, y) (from right) and ∂−y u(x, y) (from left)

exist, for all y ∈ (0, l), and

∂2
yu(x, (y?, y

?]) = ∂+
y u(x, y?)− ∂+

y u(x, y?) = −
∫

(y?,y?]
Lxu(x, y)m(dy), (4.3.2)

for all y?, y
? such that 0 < y? < y? < l.

1In what follows, ∂i and ∂ij is short notation for ∂/∂xi and ∂2/∂xi∂xj , respectively.

59



Remark 4.3.2. Existence of solutions to (4.3.1) in the sense of Definition 4.3.1

implicitly requires the coefficients of the operator Lx to be ‘good enough’. In this

chapter, the only explicit assumptions on these coefficients is continuity. All other

assumptions are made implicitly via properties of solutions to equations. First,

we require existence of global solutions to the SDE (4.2.1), but all other implicit

assumptions will be made via properties of solutions to the PDE (4.3.1). In the

following chapter, we shall see a method to study the solution to this PDE in certain

situations.

Our first goal is to establish a version of Itô’s lemma for u(X,Y ), when u is a

solution to (4.3.1). Solutions of (4.3.1) are jointly measurable, they are continuous

in x, and also continuous in y (recall that ∂±y u do exist), but they might not be

jointly continuous. This suggests that more regularity than stated in Definition

4.3.1 would be needed for Itô’s lemma to hold true. We should nonetheless try to

keep assumptions on the regularity of u as weak as possible. Adding the following

condition seems to be enough.

Assumption 4.3.3. The functions u, ∂iu, ∂iju, 1 ≤ i, j ≤ d, can be extended to

locally bounded functions on Rd ×
(

[0, l] ∩ R
)

by taking the limits

limy↓0 u(x, y), limy↓0 ∂iu(x, y), limy↓0 ∂iju(x, y),

and

limy↑l u(x, y), limy↑l ∂iu(x, y), limy↑l ∂iju(x, y),

at any fixed x ∈ Rd, where the latter three limits are only taken when l <∞.

Remark 4.3.4. Under the above assumption, the particular limit of u(x, y) as

y ↓ 0 exists, which we will denote by f(x). So f : Rd → R is a locally bounded

measurable function which plays the role of a boundary condition for the solution

u. In what follows, to emphasise this role, we will always write uf instead of u

when Assumption 4.3.3 is assumed. Using uf (x, 0) as an alternative notation for

the limit of uf (x, y), y ↓ 0, leads to the wanted equality uf (x, 0) = f(x), x ∈
Rd. The other limits taken under Assumption 4.3.3 are going to be denoted by

∂iuf (x, 0), ∂ijuf (x, 0) and, when l < ∞, by uf (x, l−), ∂iuf (x, l−), ∂ijuf (x, l−), for

all x ∈ Rd, 1 ≤ i, j ≤ d. The notations Lxuf (·, 0) and Lxuf (·, l−) used further

below would refer to these limits too.

Corollary 4.3.5. Let uf be the extension of a solution u to (4.3.1) satisfying As-

sumption 4.3.3. Then the limit ∂+
y uf (x, 0) = limy↓0 ∂

+
y u(x, 0) exists, and this limit
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extends ∂+
y u to a locally bounded function on Rd × [0, l), which is càdlàg, for any

fixed x ∈ Rd.
If l + m([0, l)) < ∞, then the limit ∂−y uf (x, l−) = limy↑l ∂

+
y u(x, y) also exists, ex-

tending ∂−y u to a locally bounded function on Rd × (0, l], which is càglàd in y, for

any fixed x ∈ Rd.

Remark 4.3.6. This corollary makes clear that, once all x-direction second order

partial derivatives ∂iju, 1 ≤ i, j ≤ d, are locally bounded on the interior Rd × (0, l),

then u, ∂iu, 1 ≤ i ≤ d, ∂±y u are necessarily locally bounded on the interior Rd×(0, l),

too. The essence of Assumption 4.3.3 lies within the behaviour of the x-direction

partial derivatives at the boundary.

Now, for fixed x ∈ Rd, let (Ω,F ,Px) be a complete probability space big

enough to carry all random variables X,Y, (B1, . . . , Br), B, as described above, with

X,Y starting at X0 = x, Y0 = 0, Px-almost surely respectively. Moreover, we choose

a suitable2 filtration, all processes are adapted to, and all stopping times refer to.

The following stopping times,

τr(Y ) = inf{t ≥ 0 : Yt = r},

with respect to r ≥ 0, will frequently be used, with respect to Y , but also with

respect to other one-dimensional processes, for example τr(|X|) with respect to |X|
etc. We note that this is indeed a stopping time as the processes |X| and Y are

continuous and adapted so we may apply [62, Lemma II.5.74.2].

Lemma 4.3.7. Let uf be a solution to (4.3.1) satisfying Assumption 4.3.3.

(a) If l =∞,

uf (Xt, Yt)− f(x) =

∫ t

0
∂+
y uf (Xs, 0) dL0

s(Y ) +

∫ t

0
Lxuf (Xs, 0) 1{0}(Ys) ds

+
d∑
i=1

p∑
k=1

∫ t

0
∂iuf (Xs, Ys)σik(Xs) dBk

s +
√

2

∫ t

0
∂+
y uf (Xs, Ys) b(Ys) dBs,

for all t ≥ 0, a.s.

2That is, chosen according to the technical assumptions the results used throughout this paper
rely upon.
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(b) If l <∞, and Y is absorbing at l <∞,

uf (Xt, Yt) 1{t<τl(Y )} + uf (Xt, l−) 1{t≥τl(Y )} − f(x)

=

∫ t

0
∂+
y uf (Xs, 0) dL0

s(Y )

+

∫ t

0
Lxuf (Xs, 0) 1{0}(Ys) ds +

∫ t

0
Lxuf (Xs, l−) 1{s≥τl(Y )} ds

+

d∑
i=1

p∑
k=1

∫ t

0
∂iuf (Xs, Ys)σik(Xs) 1{s<τl(Y )} dBk

s

+

d∑
i=1

p∑
k=1

∫ t

0
∂iuf (Xs, l−)σik(Xs) 1{s≥τl(Y )} dBk

s

+
√

2

∫ t

0
∂+
y uf (Xs, Ys) b(Ys) 1{s<τl(Y )} dBs,

for all t ≥ 0, a.s.

(c) If l <∞, and Y is not absorbing at l, and ∂−y uf (·, l−) is a continuous function

on Rd,

uf (Xt, Yt) 1{Yt<l} + uf (Xt, l−) 1{l}(Yt)− f(x)

=

∫ t

0
∂+
y uf (Xs, 0) dL0

s(Y )−
∫ t

0
∂−y uf (Xs, l−) dLls(Y )

+

∫ t

0
Lxuf (Xs, 0) 1{0}(Ys) ds +

∫ t

0
Lxuf (Xs, l−) 1{l}(Ys) ds

+
d∑
i=1

p∑
k=1

∫ t

0
∂iuf (Xs, Ys)σik(Xs) 1{Ys<l} dBk

s

+
d∑
i=1

p∑
k=1

∫ t

0
∂iuf (Xs, l−)σik(Xs) 1{l}(Ys) dBk

s

+
√

2

∫ t

0
∂+
y uf (Xs, Ys) b(Ys) dBs,

for all t ≥ 0, a.s.

Remark 4.3.1. If l <∞ is not absorbing, then m([0, l]) <∞. Thus, the represen-

tation of ∂−y uf (·, l−) given in Corollary 4.3.5 can be used to show the implication:

if ∂−y uf (·, l−) is a continuous function on Rd, then ∂+
y u(·, y∗) would be one, too, for

any interior value y∗ ∈ (0, l). Indeed, this implication follows by dominated conver-

gence combining Assumption 4.3.3 and u(·, y) ∈ C2(Rd), y ∈ (0, l). Vice versa, if

∂+
y uf (·, y∗) was continuous, for some y∗ ∈ (0, l), then ∂−y uf (·, l−) would be, too. All
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in all, stating ∂−y uf (·, l−) ∈ C(Rd) is equivalent to stating ∂+
y u(·, y) ∈ C(Rd) for

all y ∈ (0, l). Moreover, by similar arguments, ∂+
y uf (·, 0) ∈ C(Rd) is also equiva-

lent to ∂+
y u(·, y) ∈ C(Rd), for all y ∈ (0, l), and hence ∂+

y uf (·, 0) ∈ C(Rd) implies

∂−y uf (·, l−) ∈ C(Rd), in particular.

Next, we observe that the pair of random variables (X,Y ) describes a stochas-

tic process on (Ω,F ,Px) taking values in Rd×
(

[0, l]∩R
)

. This process is associated

with a so-called trace process, (XTt)t≥0, which is the trace of the process (X,Y ) when

touching the hyperplane {(x, 0) : x ∈ R} ⊆ Rd ×
(

[0, l] ∩ R
)

, where (Tt)t≥0 denotes

the right-inverse of the symmetric local time (L0
t (Y ))t≥0 of Y at zero:

Tt =

inf{s > 0 : L0
s(Y ) > t} for t < L0

∞(Y )

∞ for t ≥ L0
∞(Y ),

where we define L0
∞(Y ) = limt→∞ L

0
t (Y ). When Tt =∞ for some t > 0, the process

(XTt)t≥0 is killed with lifetime L0
∞(Y ). We denote its cemetery-state by †, which

is added to Rd in the usual way, and we also define X(∞) = †. Any function

f : Rd → R is also considered a function f : Rd ∪ {†} → R by setting f(†) = 0.

The purpose of Lemma 4.3.7 is to be able to work out the limit of
Ex[f(XTt )−f(x)]

t

when t ↓ 0, for any fixed x ∈ Rd, and any bounded function f : Rd → R of a certain

degree of regularity. For the corresponding result, which is the main result of this

paper, we have to differ between infinite and finite l, but also between l is absorbing

and non-absorbing in the case of finite l. Moreover, as Px[{τl(Y ) < ∞}] ∈ {0, 1},
see [5, Lemma 2.9] for example, the case of l is absorbing splits into two further

cases.

Lemma 4.3.2. Choose a non-trivial Krein string m which is strictly increasing on

(0, l) with l <∞, and let Y be the diffusion corresponding to m. Then,

(i) Y is absorbing at l if and only if m([0, l]) =∞,

(ii) τl(Y ) =∞ a.s. if and only if
∫

[0,l)(l − y)m(dy) =∞.

Theorem 4.3.3. Choose a non-trivial Krein string m which is strictly increasing

(0, l), and select a PDE operator Lx according to (4.2.2) and Remark 4.3.2. Let

u be a bounded solution to (4.3.1) satisfying Assumption 4.3.3, and suppose that

the extension uf satisfies ∂+
y uf (·, 0) + m0Lxuf (·, 0) ∈ Cb(Rd). Consider one of the

following cases:

(a) l =∞,
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(b1) l < ∞, m([0, l]) = ∞ but
∫

[0,l)(l − y)m(dy) < ∞, uf (·, l−) = 0, and the

extension uf : Rd × [0, l] → R is jointly continuous at any (x, l) for any

x ∈ Rd,

(b2) l <∞,
∫

[0,l)(l − y)m(dy) =∞ and supx∈Rd |u(x, l − h)| → 0 as h ↓ 0,

(c) l <∞, m([0, l]) <∞ and uf satisfies ∂−y uf (·, l−) = m1Lxuf (·, l−) ∈ C(Rd).

Then, for any x ∈ Rd,

lim
t↓0

Ex[f(X(Tt))]− f(x)

t
= ∂+

y uf (x, 0) +m0Lxuf (x, 0).

We recall that under the assumptions made, both processes X and Y are

strong Markov processes, the process X due to [37, Theorem 5.4.20], and Y by

Theorem 2.4.1. Of course, the generator of X is given by Lx, being formally defined

via (4.2.2), and a dense domain in some Banach space. In our setup, since the

coefficients of the SDE (4.2.1) are supposed to be continuous, then X is a Feller

process, and hence the natural choice of Banach space would be a space of continuous

functions with a growth condition at infinity.

4.4 Proofs

Proof of Corollary 4.3.5. We first show that ∂+
y u(·, y?) is locally bounded on Rd,

for an arbitrary but fixed y? ∈ (0, l).

Fix y? ∈ (0, l), and assume the contrary. Then there exists a sequence

(xn)∞n=1 ⊆ Rd, which converges to some x ∈ Rd, such that supn |∂+
y u(xn, y

?)| = ∞.

Without loss of generality, assume that

∀R > 0 ∃nR ∀n ≥ nR : ∂+
y u(xn, y

?) ≥ R.

Next, fix y? ∈ (0, y?), and note that

∂+
y u(xn, y) = ∂+

y u(xn, y
?) +

∫
(y,y?]

Lxu(xn, y
′)m(dy′),

for all n ≥ 0, and all y ∈ [y?, y
?), is an easy consequence of (4.3.2). By Assumption

4.3.3, but also using m(K) < +∞, for any compact subset K ⊆ [0, l), as well as

continuity of the coefficients of Lx,

c(y?, y
?)

def
= sup

n≥0
sup

y∈[y?,y?)

∣∣∣ ∫
(y,y?]

Lxu(xn, y
′)m(dy′)

∣∣∣ < ∞.
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Then, for any R > 0,

∂+
y u(xn, y) ≥ R− c(y?, y?), ∀n ≥ nR, ∀ y ∈ [y?, y

?],

and hence

u(xn, y?) = u(xn, y
?) −

∫ y?

y?

∂+
y u(xn, y) dy

≤ u(xn, y
?) + [c(y?, y

?)−R]× (y? − y?), ∀n ≥ nR.

Of course, supn≥0 |u(xn, y
?)| < +∞ since u(·, y?) is continuous and xn → x ∈

Rd, n → ∞, so that lim supn→∞ u(xn, y?) = −∞, which contradicts the continuity

of u(·, y?).
All in all ∂+

y u(·, y?) is indeed locally bounded on Rd. Therefore,

∂+
y uf (x, 0)

def
= limy↓0

(
∂+
y u(x, y?) +

∫
(y,y?]

Lxu(x, y′)m(dy′)

)
, x ∈ Rd,

defines a locally bounded function on Rd, since Lxuf is locally bounded on Rd×[0, l).

But this limit can be used to define the wanted extension because ∂+
y u(x, 0) =

limy↓0 ∂
+
y u(x, y), for any x ∈ Rd.
Obviously, for fixed x ∈ Rd, the extended version of ∂+

y u(x, ·) defined this

way is right-continuous at zero, and thus it is càdlàg on [0, l) because u(x, ·) is

difference of two convex functions on the interior (0, l), finishing the proof of the

corollary in the case of ∂+
y u.

In the case of ∂−y u, the wanted extension can be given by

∂−y u(x, l−)
def
= limy↑l

(
∂+
y u(x, y?) −

∫
(y?,y]

Lxu(x, y′)m(dy′)

)
, x ∈ Rd,

though we omit the proof.

Proof of Lemma 4.3.7. (a) To start with, we ‘mollify’ uf introducing

uεf (x, y)
def
=

∫ ∞
0

%ε(y − y′)uf (x, y′) dy′, (x, y) ∈ Rd × [0,∞), ε > 0,

where %ε(y) = %(y/ε)/ε, y ∈ R, using a ‘right-hand’ mollifier % ∈ C2(R) with

compact support in (−1, 0) satisfying % ≥ 0 and
∫
R %(y) dy = 1.

Note that, because of Assumption 4.3.3, on the one hand, and because the

support of % is bounded away from zero, on the other, the mollified solution uεf is an
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element of C2(Rd× [0,∞)). Applying the Whitney extension theorem [76, Theorem

I], we may extend uεf from the closed space Rd× [0,∞) to a function uεf ∈ C
2(Rd+1)

such that ∂αuεf = ∂αuεf in Rd×[0,∞) for any multi-index α ∈ Nd+1
0 with 0 ≤ |α| ≤ 2.

Recall that uf is not necessarily jointly continuous, so we do not know if

(uf (Xt, Yt))t≥0 is a continuous stochastic process. However,

uf (Xt(ω), Yt(ω)) = limε↓0 u
ε
f (Xt(ω), Yt(ω)), ∀ (ω, t) ∈ Ω× [0,∞),

where (uεf (Xt, Yt))t≥0 can be seen to be an adapted, continuous stochastic process

as (X,Y ) is adapted and continuous and uεf is jointly continuous. Therefore, the

process (uf (Xt, Yt))t≥0 is at least predictable and hence (Zt)t≥0 defined by

Zt
def
= uf (Xt, Yt)− f(x)

−
∫ t

0
∂+
y uf (Xs, 0) dL0

s(Y ) −
∫ t

0
Lxuf (Xs, 0) 1{0}(Ys) ds

−
d∑
i=1

p∑
k=1

∫ t

0
∂iuf (Xs, Ys)σik(Xs) dBk

s −
√

2

∫ t

0
∂+
y uf (Xs, Ys) b(Ys) dBs

is predictable, too. Thus, using [35, Prop. I.2.18 b)] to prove part (a) of the

lemma, it is sufficient to show that Px({Z(t ∧ τ) = 0}) = 1, for any t ≥ 0 and

any predictable stopping time τ . We recall that a stopping time τ is predictable if

there is an increasing sequence (τn)n∈N of stopping times such that almost surely,

limn→∞ τn = τ and τn < τ for every n ∈ N on {τ > 0}.
To be able to approximate events like {Z(t ∧ τ) = 0}, denote the Euclidean

ball of radius R > 0 by BR(0), introduce

τR(X) = inf{t ≥ 0 : Xt /∈ BR(0)}, τR(Y ) = inf{t ≥ 0 : Yt ≥ R},

and set

τR = τR(X) ∧ τR(Y ), R > 0.

Next, the continuous local martingale (
∫ t

0 b(Ys) dBs)t≥0 can be L2(Px)-localised by

predictable stopping times (SN )N∈N given by

SN = inf

{
t > 0 :

∫ t

0
b2(Ys) ds ≥ N

}
,

for each N ∈ N noting that this random variable is equal to the first hitting time

of [N,∞) for the quadratic variation process of (
∫ t

0 b(Ys) dBs)t≥0. As this quadratic
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variation process is continuous and adapted, these hitting times are indeed stop-

ping times and each SN can be seen to be predictable by considering the sequence

of announcing stopping times (SN− 1
k
)k∈N. Furthermore, we see that the process

(
∫ t∧SN

0 b(Ys) dBs)t≥0 is clearly a local martingale and

sup
t

Ex
[〈 ∫ ·∧SN

0
b(Ys) dBs,

∫ ·∧SN
0

b(Ys) dBs

〉
t

]
= Ex

[ ∫ SN

0
b2(Ys) ds

]
= N,

so by [61, Prop. IV.1.23], (
∫ t∧SN

0 b(Ys) dBs)t≥0 is an L2(Px)-bounded martingale.

Hence (τN ∧ SN )N∈N is a sequence of predictable stopping times such that

τN ∧ SN ↑ ∞ as N →∞. Consequently, showing Px({Z(t∧ τN ∧ SN ∧ τ) = 0}) = 1,

for any t ≥ 0, N ∈ N, and predictable stopping time τ , would be enough to prove.

Also, by Assumption 4.3.3, the sequence (τN ∧ SN )N∈N, would be L2(Px)-localising

for all local martingales used in the definition of (Zt)t≥0.

So, fix t ≥ 0, N ≥ 1, and a predictable stopping time τ . Abbreviating

t ∧ τN ∧ SN ∧ τ by tN , we are going to show that Px({Z(tN ) = 0}) = 1.

First, for any ε > 0 the classical version of Itô’s lemma [63, IV.5.32.8] applied

to the extended function uεf : Rd+1 → R and noting that (X,Y ) ∈ Rd× [0,∞) gives

uεf (XtN , YtN )− uεf (x, 0) −
∫ tN

0
∂yu

ε
f (Xs, 0) dL0

s(Y )

−
d∑
i=1

p∑
k=1

∫ tN

0
∂iu

ε
f (Xs, Ys)σik(Xs) dBk

s −
√

2

∫ tN

0
∂yu

ε
f (Xs, Ys) b(Ys) dBs

a.s.
=

∫ tN

0
Lxuεf (Xs, Ys) ds +

∫ tN

0
∂2
yu

ε
f (Xs, Ys) b

2(Ys) ds. (4.4.1)

We claim that, for any chosen sequence of ε-values converging to zero, there

is a subsequence (εn)∞n=1 such that the above equation’s left-hand side almost surely

converges to

uf (XtN , YtN )− f(x) −
∫ tN

0
∂+
y uf (Xs, 0) dL0

s(Y )

−
d∑
i=1

p∑
k=1

∫ tN

0
∂iuf (Xs, Ys)σik(Xs) dBk

s −
√

2

∫ tN

0
∂+
y uf (Xs, Ys) b(Ys) dBs,

when n→∞.

Indeed, the limit of uεf (XtN , YtN ) − uεf (x, 0) as ε ↓ 0 is obvious, by Remark
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4.3.4. Next, for 0 ≤ s ≤ tN , partial integration yields

∂yu
ε
f (Xs, Ys) =

∫ ∞
0

%′ε(Ys − y′)uf (Xs, y
′) dy′ =

∫ ∞
0

%ε(y
′) ∂+

y uf (Xs, Ys − y′) dy′

which converges to ∂+
y uf (Xs, Ys), when ε ↓ 0. Furthermore,

sup
0≤s≤tN

|∂yuεf (Xs, Ys)| ≤ sup
(x,y)∈

BN (0)×[0,N+ε]

|∂+
y uf (x, y)|

∫
%ε(y

′) dy′︸ ︷︷ ︸
= 1

, ∀ ε > 0,

where, by Corollary 4.3.5, the supremum on the right-hand side is uniformly bounded

in ε, for any chosen sequence of ε-values converging to zero. Therefore,∫ tN

0
∂yu

ε
f (Xs, 0) dL0

s(Y ) =

∫ tN

0
∂yu

ε
f (Xs, Ys) dL0

s(Y )

ε↓0−→
∫ tN

0
∂+
y uf (Xs, Ys) dL0

s(Y ) =

∫ tN

0
∂+
y uf (Xs, 0) dL0

s(Y )

follows by bounded convergence.

Lastly, we see that all stochastic integrals on the left-hand side of (4.4.1)

converge duly in L2(Px), when ε ↓ 0, proving the claim we made above. For 1 ≤
i, k ≤ d we have,

Ex

[(∫ tN

0
∂iu

ε
f (Xs, Ys)σik(Xs) dBk

s −
∫ tN

0
∂iuf (Xs, Ys)σik(Xs) dBk

s

)2
]

= Ex

[∫ tN

0
[∂iu

ε
f (Xs, Ys)− ∂iuf (Xs, Ys)]

2σ2
ik(Xs) ds

]

≤
(

sup
x∈BN (0)

σ2
ik(x)

)
Ex
[ ∫ tN

0
[∂iu

ε
f (Xs, Ys)− ∂iuf (Xs, Ys)]

2 ds
]
.

As σik is continuous, this supremum is finite. Furthermore, we know that ∂iu
ε
f (Xs, Ys)

converges to ∂iuf (Xs, Ys) for each s ∈ [0, tN ] and as ∂iu
ε
f and ∂iuf are bounded on

BN (0) × [0, N ] and tN ≤ t, we may apply dominated convergence to see that the

limit of the right-hand side is zero.

For the case of
∫ tN

0 ∂yu
ε
f (Xs, Ys) b(Ys) dBs we note that as tN ≤ τN ∧SN , we
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obtain that

Ex
[( ∫ tN

0
∂yu

ε
f (Xs, Ys) b(Ys) dBs −

∫ tN

0
∂+
y uf (Xs, Ys) b(Ys) dBs

)2
]

=Ex
[∫ tN

0
[ ∂yu

ε
f (Xs, Ys)− ∂+

y uf (Xs, Ys) ]2 b2(Ys) ds

]
,

where Ex[
∫ tN

0 b2(Ys) ds ] < ∞. Then, again by dominated convergence, the ε-limit

of the right-hand side can be taken with respect to the integrand, and this limit is

zero, for all s ∈ [0, tN ].

Eventually, for Px({Z(tN ) = 0}) = 1, it remains to show that∫ tN

0
Lxuεf (Xs, Ys) ds +

∫ tN

0
∂2
yu

ε
f (Xs, Ys) b

2(Ys) ds (4.4.2)

almost surely converges to ∫ tN

0
Lxuf (Xs, 0) 1{0}(Ys) ds,

when ε ↓ 0.

To see this, we recall the construction of Y given by Theorem 2.4.1. So,

we assume that Yt = W (A−1
t ), t ≥ 0, where (Wt)t≥0 is a standard one-dimensional

Wiener process, given on (Ω,F ,Px), and

At =

∫
[0,∞)

1

2
Lyt (W )m(dy), t ≥ 0,

where m is the Krein string corresponding to the speed measure m̃ as defined in

Chapter 2.

Note that A∞ = +∞, a.s., as stated in [5, Lemma 6.15], and t 7→ At is

continuous because the measure is finite on compact subsets of [0,∞) and hence

s = AA−1
s

, for all s ≥ 0, a.s. Therefore, time change yields
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∫ tN

0
∂2
yu

ε
f (Xs, Ys) b

2(Ys) ds
a.s.
=

∫ A
A−1
tN

0
∂2
yu

ε
f (X(AA−1

s
),W (A−1

s )) b2(W (A−1
s )) ds

=

∫ A−1
tN

0
∂2
yu

ε
f (X(As),W (s)) b2(W (s)) dAs

a.s.
=

∫
[0,∞)

∫ A−1
tN

0
∂2
yu

ε
f (X(As), y) dLys(W ) b2(y) [

1

2
b−2(y) dy +

m0

2
δ0(dy) +

1

2
n(dy)]

=

∫ ∞
0

∫ A−1
tN

0
∂2
yu

ε
f (X(As), y) dLys(W ) 1{b2>0}(y) dy × 1/2,

because N ∪ {0, l} ⊆ {b2 = 0}. However, from Section 2.4 we know that b−2 is

locally integrable on [0,∞) so the set {b2 = 0} has Lebesgue measure zero, and

hence the last integral becomes

∫ ∞
0

∫ A−1
tN

0
∂2
yu

ε
f (X(As), y) dLys(W ) dy × 1/2

ε↓0−→ −
∫

(0,∞)

∫ A−1
tN

0
Lxuf (X(As), y) dLys(W )m(dy)× 1/2,

using the PDE (4.3.1) to identify the limit of the measures ∂2
yu

ε
f (X(As), y) dy, when

ε ↓ 0. Of course, the measure m/2 equals m̃/2 on ((0,∞),Bor((0,∞))), so that

−
∫

[0,∞)

∫ A−1
tN

0
Lxuf (X(As), y) dLys(W )1(0,∞)(y)

m

2
(dy)

a.s.
= −

∫ A−1
tN

0
Lxuf (X(As),W (s))1(0,∞)(W (s)) dAs

a.s.
= −

∫ tN

0
Lxuf (Xs, Ys)1(0,∞)(Ys) ds,

which almost surely is the ε-limit of the second summand in (4.4.2). Note the subtle

point that the indicator 1(0,∞) is due to the fact that the PDE only holds in the

open half plane.

Finally, as
∫ tN

0 Lxuf (Xs, Ys) ds is the ε-limit of the first summand in (4.4.2),

the ε-limit of (4.4.2) can almost surely be given by∫ tN

0
Lxuf (Xs, Ys)1{0}(Ys) ds =

∫ tN

0
Lxuf (Xs, 0) 1{0}(Ys) ds,

proving part (a) of the lemma.

(b) Fix t, τN , SN , τ as in (a), but define τ = t ∧ τN ∧ Sn ∧ τN (L0
· (Y )) ∧ τ . It
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is again sufficient to show Px({Z(tN ) = 0}) = 1, where

Zt =uf (Xt, Yt) 1{t<τl(Y )} + uf (Xt, l−) 1{t≥τl(Y )} − f(x)

−
∫ t

0
∂+
y uf (Xs, 0) dL0

s(Y )

−
∫ t

0
Lxuf (Xs, 0) 1{0}(Ys) ds −

∫ t

0
Lxuf (Xs, l−)1{s≥τl(Y )} ds

−
d∑
i=1

p∑
k=1

∫ t

0
∂iuf (Xs, Ys)σik(Xs) 1{s<τl(Y )} dBk

s

−
d∑
i=1

p∑
k=1

∫ t

0
∂iuf (Xs, l−)σik(Xs)1{s≥τl(Y )} dBk

s

−
√

2

∫ t

0
∂+
y uf (Xs, Ys) b(Ys)1{s<τl(Y )} dBs.

Observe that, different to the proof of (a), it is technically more demanding to work

with the mollified version of uf (x, y), when y is close to l <∞. We therefore choose

h ∈ (0, l) and build a function uf,h on the whole half-space Rd × [0,∞) by setting

uf,h(x, y) =

uf (x, y) for y ∈ [0, l − h
2 ),

uf (x, l − h
2 ) for y ∈ [l − h

2 ,∞).

Let uεf,h denote the mollified version of uf,h using the same mollifier % as in the proof

of (a), and let Y h denote the process (Yt∧τl−h(Y ))t≥0. Note that for any such h, the

stopping time τl−h(Y ) is almost surely finite because m([0, l − h]) <∞.

We first apply the classical version of Itô’s lemma to uεf,h(XtN , Y
h
tN

) (or rather,

the Whitney extension to Rd+1 as in part a)) and let ε go to zero. We then prove

our claim by letting h go to zero, too.

Recall that changing b on a set of Lebesgue measure zero would not change

the law of Y , thus it would not change the law of Y h either. Without loss of

generality, we can therefore assume that b(l−h) = 0. As a consequence, Y h satisfies

the SDE,

dY h
t =

√
2b(Y h

t ) dBt + dL0
t (Y

h),

and hence applying Itô’s formula to uεf,h(XtN , Y
h
tN

) gives an equation identical to

(4.4.1) with uεf and Y replaced by uεf,h and Y h, respectively.

Then, as in the proof of (a), for any sequence of ε-value converging to zero,

there exists a subsequence (εn)n∈N such that, when n → ∞, the left-hand side of
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this sequence converges almost surely to

uf (XtN , YtN∧τl−h(Y ))− f(x)

−
∫ tN

0 1{s<τl−h(Y )}∂
+
y uf (Xs, 0) dL0

s(Y )

−
∑d

i=1

∑p
k=1

∫ tN
0 ∂iuf (Xs, Ys∧τl−h(Y ))σik(Xs) dBk

s

−
√

2
∫ tN

0 1{s<τl−h(Y )}∂
+
y uf (Xs, Ys)b(Ys) dBs

(4.4.3)

where we have used that uf = uf,h on Rd × [0, l − h
2 ), that L0

s(Y
h) is constant, for

s ≥ τl−h(Y ), and that b(l − h) = 0.

The next step is to find the ε-limit of the right-hand side, i.e.∫ tN

0
Lxuεf,h(Xs, Y

h
s ) ds+

∫ tN

0
∂2
yu

ε
f,h(Xs, Y

h
s )b2(Y h

s ) ds, (4.4.4)

the second integral of which can be written∫ tN

0
1{s<τl−h(Y )}∂

2
yu

ε
f,h(Xs, Ys)b

2(Ys)1{Ys<l−h} ds

since Yh is absorbing at l − h, and b(l − h) = 0. But s = AA−1
s

, for all s < τl−h(Y ),

a.s., and hence, when ε ↓ 0, the second integral converges almost surely to

−
∫ tN

0
1{s<τl−h(Y )}Lxuf (Xs, Ys)1(0,l−h](Ys) ds,

applying time change and partial integration as in the proof of (a).

By dominated convergence, when ε ↓ 0, the first integral of (4.4.4) converges

to ∫ tN

0
1{s<τl−h(Y )}Lxuf (Xs, Ys) ds+

∫ tN

0
1{s≥τl−h(Y )}Lxuf (Xs, l − h) ds,

so that summing up gives the following almost sure limit of (4.4.4),∫ tN

0
1{s<τl−h(Y )}Lxuf (Xs, 0)1{0}(Ys) ds+

∫ tN

0
1{s≥τl−h(Y )}Lxuf (Xs, l − h) ds,

when ε ↓ 0.

Of course, being the limit of a left-hand and a right-hand side of Itô’s formula,
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respectively, (4.4.3) almost surely equals the ε-limit of (4.4.4), and hence

0
a.s.
= uf (XtN , YtN )1{tN<τl−h(Y )} + uf (XtN , l − h)1{tN≥τl−h(Y )} − f(x)

−
∫ tN

0
1{s<τl−h(Y )}∂

+
y uf (Xs, 0) dL0

s(Y )

−
∫ tN

0
1{s<τl−h(Y )}Lxuf (Xs, 0)1{0}(Ys) ds−

∫ tN

0
1{s≥τl−h(Y )Lxuf (Xs, l − h) ds

−
d∑
i=1

p∑
k=1

∫ tN

0
1{s<τl−h(Y )}∂iuf (Xs, Ys)σik(Xs) dBk

s

−
d∑
i=1

p∑
k=1

∫ tN

0
1{s≥τl−h(Y )}∂iuf (Xs, l − h)σik(Xs) dBk

s

−
√

2

∫ tN

0
1{s<τl−h(Y )}∂

+
y uf (Xs, Ys)b(Ys) ds. (4.4.5)

Eventually, we choose a whole sequence of h-values converging to zero. Since count-

able many h-values still form a set of Lebesgue measure zero, b(l−h) can be assume

to be zero, for any h in this countable set, and we have to show that the h-limit of

the above equation’s right-hand side almost surely equals ZtN .

First, {τl−h(Y ) > tN} ↑ {τl(Y ) > tN}, when h ↓ 0, and ZtN equals the right-

hand side of (4.4.5), on each {τl−h(Y ) > tN}. Therefore, without loss of generality,

we only show that the h-limit of this right-hand side almost surely equals ZtN under

the assumption τl(Y ) is finite.

Under this assumption, τl(Y )− τl−h(Y )→ 0, almost surely, when h ↓ 0, and

hence, using dominated convergence, all summands on the right-hand side of (4.4.5),

except the last one, can be shown to convergence in L2(Px) to their ZtN -counterparts,

when h ↓ 0, in a straight forward way (recall that tN satisfies tN ≤ τN (L0
· (Y )), by

definition).

Identifying the limit of the last summand is more involved because ∂+
y uf (·, y)1{|·|≤N}

may become unbounded, when y → l. Recall that ∂+
y uf (·, 0)1{|·|≤N} is bounded by

Corollary 4.3.5.

However, as the left-hand side of (4.4.5) is zero, if all other summands con-

verge in L2(Px), then the last summand does too so that

lim
h↓0

Ex
[( ∫ tN

0
1{s<τl−h(Y )}∂

+
y uf (Xs, Ys)b(Ys) dBs

)2]
<∞.
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But,

lim
h↓0

Ex
[( ∫ tN

0
1{s<τl−h(Y )}∂

+
y uf (Xs, Ys)b(Ys) dBs

)2]
= lim

h↓0
Ex
[ ∫ tN

0
1{s<τl−h(Y )}

(
∂+
y uf (Xs, Ys)b(Ys)

)2
ds
]

= Ex
[ ∫ t

0
1{s<tN∧τl−h(Y )}

(
∂+
y uf (Xs, Ys)b(Ys)

)2
ds
]
,

where the last line follows by monotone convergence. The above justifies that

1[0,tN∧τl(Y ))

(
∂+
y uf (X·, Y·)b(Y·)

)
∈ L2(Ω,×[0, t]),

and hence

lim
h↓0

Ex
[( ∫ tN

0
1[τl−h(Y ),τl(Y ))(s)∂

+
y uf (Xs, Ys)b(Ys) dBs

)2]
= lim

h↓0
Ex
[ ∫ tN

0
1[τl−h(Y ),τl(Y ))(s)

(
∂+
y uf (Xs, Ys)b(Ys)

)2
ds
]

= 0,

by dominated convergence, proving part (b) of the lemma.

(c) Choose h ∈ (0, l), and define tN , uf,h, u
ε
f,h as in proof of (b). Since Y is

not absorbing at l <∞, the local time (Llt(Y ))t≥0 does not vanish and so Y solves

the SDE

dYt =
√

2b(Yt) dBt + dL0
t (Y )− dLlt(Y ).

Hence the classical version of Itô’s lemma gives

uεf,h(XtN , YtN )− uεf,h(x, 0)−
∫ tN

0
∂yu

ε
f,h(Xs, 0) dL0

s(Y ) +

∫ tN

0
∂yu

ε
f,h(Xs, l) dLls(Y )

−
d∑
i=1

p∑
k=1

∫ tN

0
∂iu

ε
f,h(Xs, Ys)σik(Xs) dBk

s −
√

2

∫ tN

0
∂yu

ε
f,h(Xs, Ys)b(Ys) dBs

a.s.
=

∫ tN

0
Lxuεf,h(Xs, Ys) ds +

∫ tN

0
∂2
yu

ε
f (Xs, Ys) b

2(Ys) ds. (4.4.6)

However, as uεf,h(x, ·) is constant on [l − h
2 ,∞), for all x ∈ Rd, the term

involving Ll·(Y ) vanishes, so that the ε-limit of the above left-hand side almost
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surely equals 

uf,h(XtN , YtN )− f(x)

−
∫ tN

0 ∂+
y uf (Xs, 0) dL0

s(Y )

−
∑d

i=1

∑p
k=1

∫ tN
0 ∂iuf,h(Xs, Ys)σik(Xs) dBk

s

−
√

2
∫ tN

0 ∂+
y uf,h(Xs, Ys)b(Ys) dBs,

by the same arguments used in the proof of (a).

Furthermore, unlike the case (b) where l is absorbing, it now must hold that

m([0, l]) <∞ (see the beginning of Remark 4.3.1), and hence s = AA−1
s

for all s ≥ 0,

a.s. Therefore, the ε-limit of the second integral on the right-hand side of (4.4.6)

can almost surely be given by

−
∫ tN

0
Lxuf (Xs, Ys)1(0,l−h/2)(Ys) ds+

∫ A−1
tN

0
∆
[
∂+
y uf,h(XAs , l − h

2 )
]

dL
l−h2
s (W )× 1

2

(4.4.7)

again applying time change and partial integration as in the proof of (a). Here, the

‘artificial’ jump of ∂+
y uf,h(X(As), ·) at l − h

2 , which we created when extending uf

to half-space, equals

∆
[
∂+
y uf,h(XAs , l − h

2 )
]

= −∂−y uf (X(As), l − h
2 ). (4.4.8)

All in all, letting ε go to zero on both sides of (4.4.6) yields

0
a.s.
= uf,h(XtN , YtN )1{YtN<l} + uf (XtN , l − h

2 )1{YtN=l} − f(x)

−
∫ tN

0
∂+
y uf (Xs, 0) dL0

s(Y ) +

∫ A−1
tN

0
∂−y uf (XAs , l − h

2 ) dL
l−h2
s (Y )× 1

2

−
∫ tN

0
Lxuf (Xs, 0)1{0}(Ys) ds−

∫ tN

0
Lxuf (Xs, l − h

2 )1{Ys≥l−h/2} ds

−
d∑
i=1

p∑
k=1

∫ tN

0
1{Ys<l}∂iuf,h(Xs, Ys)σik(Xs) dBk

s

−
d∑
i=1

p∑
k=1

∫ tN

0
1{Ys=l}∂iuf,h(Xs, l − h

2 )σik(Xs) dBk
s

−
√

2

∫ tN

0
∂+
y uf,h(Xs, Ys)b(Ys) ds,

and it needs to be shown that the h-limit of the above right-hand side almost surely
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coincides with ZtN , where Zt is the case-(c)-version of what has been defined in the

proofs of (a), (b).

By Corollary 4.3.5, ∂+
y uf always behaves well near the boundary of Rd×(0, l)

at zero. In case (c), Corollary 4.3.5 also implies that ∂+
y uf always behaves well near

the boundary of Rd × (0, l) at l. So, all terms except∫
[0,A−1

tN
]
∂−y uf (XAs , l − h

2 ) dL
l−h2
s (W )× 1

2

can be shown to converge almost surely or in L2(Px) to their ZtN -counterparts in a

straight forward way, when h ↓ 0.

Below, we verify that∫
[0,A−1

tN
]
∂−y uf (XAs , l − h

2 ) dL
l−h2
s (W )× 1

2

a.s.→
∫ tN

0
∂−y uf (Xs, l−) dLls(Y ),

when h ↓ 0, finishing the proof of part (c) and the lemma.

Since [5, Lemma 6.34, (i)] gives

∫ tN

0
∂−y uf (Xs, l−) dLls(Y )

a.s.
=

∫ A−1
tN

0
∂−y uf (XAs , l−) dLls(W )× 1

2
,

we can almost surely bound∣∣∣∣∣
∫ A−1

tN

0
∂−y uf (XAs , l − h

2 ) dLl−
h
2 (W )× 1

2
−
∫ tN

0
∂−y uf (Xs, l−) dLls(Y )

∣∣∣∣∣
by

1

2

∫ A−1
tN

0

∣∣∂−y uf (XAs , l − h
2 )− ∂−y uf (XAs , l−)

∣∣ dLl−h2s (W )

+
1

2

∣∣∣∣∣
∫ A−1

tN

0
∂−y uf (XAs , l−) dL

l−h2
s (W )−

∫ A−1
tN

0
∂−y uf (XAs , l−) dLls(W )

∣∣∣∣∣,
and the task is to show that both summands vanish almost surely, when h ↓ 0.

First, observe that |X(As)| ≤ N , for s ≤ A−1
tN

a.s., and that 0 < h
2 < l

2 by

our choice of h. Therefore, the first summand is bounded by

sup
|x|≤N

∣∣∂−y uf (x, l − h
2 )− ∂−y uf (x, l−)

∣∣× sup

0≤h′≤ l2

Ll−h
′

A−1
tN

(W ).
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We note that sup
0≤h′≤ l2

Ll−h
′

A−1
tN

(W ) is almost surely finite and by Corollary 4.3.5 that

sup
|x|≤N

∣∣∂−y uf (x, l − h
2 )− ∂−y uf (x, l−)

∣∣→ 0,

as h ↓ 0. Thus the limit of the first summand almost surely vanishes.

For the second summand, note that A−1
tN

is almost surely finite, and hence, for

almost every ω ∈ Ω, and each y ∈ R, s 7→ Lys(W )(ω) can be considered a continuous

distribution function of a finite measure νy(ω) on [0, A−1
tN (ω)(ω)], when h goes to

zero. As a consequence, when h ↓ 0, the second summand converges almost surely

to zero, because s 7→ As is continuous, on the one hand, and because x 7→ ∂−y (x, l−)

is by assumption a bounded continuous function, for |x| ≤ N , on the other.

Proof of Lemma 4.3.2. Recall that by assumption l <∞.

(i) It has already been pointed out at the beginning of Remark 4.3.1 that

if Y is not absorbing at l then m([0, l]) < ∞. Vice versa, if m([0, l]) < ∞, then

the diffusion Y constructed in Theorem 2.4.1 can never be absorbing at l, because

At < ∞ almost surely for all t ≥ 0. Thus, Y is not absorbing at l if and only if

m([0, l]) <∞, which is equivalent to the statement to be proven under (i)..

(ii) Again the construction given by Theorem 2.4.1, τl(Y )
a.s.
= ∞ if and

only if limt↑τl(W )At
a.s.
= ∞, and it is a special case of [5, Proposition (A1.8)] that

limt↑τl(W )At = ∞ if and only if
∫

[0,l)(l − y)m̃(dy) = ∞ and hence if and only if∫
[0,l)(l − y)m(dy) =∞ so part (ii) of the lemma follows.

Proof of Theorem 4.3.3. (a) Fix x ∈ Rd, and choose an ar but small t > 0. Define

the stopping times τN , SN as at the beginning of the proof of Lemma 4.3.7, and set

tN = Tt ∧ τN ∧ S′N ,

where S′N = SN ∧ τN (Y ). Then for fixed N ≥ 1, Lemma 4.3.7 (a) yields

uf (XtN , YtN )− f(x)

a.s.
=

∫ tN

0
∂+
y uf (Xs, 0) dL0

s(Y ) +

∫ tN

0
Lxuf (Xs, 0)1{0}(Ys) ds

+
d∑
i=1

p∑
k=1

∫ tN

0
∂iuf (Xs, Ys)σik(Xs) dBk

s +
√

2

∫ tN

0
∂+
y uf (Xs, Ys)b(Ys) dBs;

77



and since tN ≤ τN ∧ S′N , all stochastic integral have zero expectation, so that

lim
N↑∞

Ex[uf (XtN , YtN )− f(x)] = lim
N↑∞

Ex
[ ∫ tN

0

(
∂+
y uf (Xs, 0) +m0Lxuf (Xs, 0)

)
dL0

s(Y )
]
,

where we also used∫ tN

0
Lxuf (Xs, 0)1{0}(Ys) ds

a.s.
=

∫ tN

0
m0Lxuf (Xs, 0) dL0

s(Y ), (4.4.9)

which is an easy consequence of [5, Theorem 5.27], when the scale function is the

identity.

Now, recall that Yt = W (A−1
t ) for t ≥ 0 where At is given in the proof of

Theorem 2.4.1. Then, since [5, Lemma 6.34 (i)] yields

L0
t (Y ) =

1

2
L0
A−1
t

(W ), t ≥ 0, a.s.,

we have that

L0
∞(Y )

a.s.
= ∞ if and only if A−1

∞
a.s.
= ∞. (4.4.10)

But, A−1
∞

a.s.
= ∞ follows by the same arguments used to show that s = AA−1

s
, for all

s ≥ 0 a.s., in the proof of part (a) of Lemma 4.3.7, so we do have L0
∞(Y )

a.s.
= ∞, for

part (a) of this proof.

As a consequence, since τN∧S′N grows to infinity, N →∞, we have for almost

every ω ∈ Ω that there exists N(ω) such that tN (ω) = Tt(ω), for all N ≥ N(ω), and

hence

lim
N↑∞

Ex[uf (XtN , YtN )− f(x)] = Ex[f(X(Tt))− f(x)],

by dominated convergence, even if f was not continuous.

On the other hand, since tN ≤ Tt, N ≥ 1, and since ∂+
y uf (·, 0)+m0Lxuf (·, 0)

is bounded, again by dominated convergence,

lim
N→∞

Ex
[ ∫ tN

0

(
∂+
y uf (Xs, 0) +m0Lxuf (Xs, 0)

)
dL0

s(Y )
]

= Ex
[ ∫ Tt

0

(
∂+
y uf (Xs, 0) +m0Lxuf (Xs, 0)

)
dL0

s(Y )
]

= Ex
[ ∫ t

0

(
∂+
y uf (X(Ts), 0) +m0Lxuf (X(Ts), 0)

)
ds
]
.
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All in all, to finish the proof of part (a) of the theorem, it remains to show that

lim
t↓0

Ex
[1

t

∫ t

0

(
∂+
y uf (X(Ts), 0) +m0Lxuf (X(Ts), 0)

)
ds
]

= ∂+
y uf (x, 0) +m0Lxuf (x, 0),

which follows by dominated convergence, because ∂+
y uf (·, 0)+m0Lxuf (·, 0) ∈ Cb(Rd).

(b) The proofs in the cases (b1) and (b2) are identical for a large part, and

so we name this large part of the proof (b), and we only go into the differences

between (b1) and (b2) at the end. By Lemma 4.3.2, the point of l will be absorbing

in this case.

If l <∞ and (Yt)t≥0 is absorbing at l, then A−1
∞ = τl(W ), by the construction

of Y in Theorem 2.4.1. Of course, τl(W ) <∞ a.s., and hence L0
∞(Y ) <∞, a.s., too,

by (4.4.10). As a consequence, Px({Tt = ∞}) > 0, for any t > 0, and this positive

probability can be determined by Theorem 2.4.1. Indeed since Ex[e−λTt1{Tt<∞}] =

exp(−tψ(λ)) for λ > 0, we obtain

Px({Tt =∞}) = 1− exp(−tψ(0)),

as λ→ 0.

Note that the above reasoning also implies that ψ(0) has to be positive in

case (b), though we obviously had ψ(0) = 0 in case (a).

Now, fix x ∈ Rd, t > 0, and define tN by in part (a), but using S′N =

SN ∧τl−1/N (Y h), instead, where Y h again denotes the process (Yt∧τl−h)t≥0, for some

h ∈ (0, l). Of course, if Y does hit l, then it would hit it after hitting l − h, that is

Px({tN < τl(Y )}) = 1,

for all N ≥ 1 though τl−h(Y ) converges to τl(Y ), when h ↓ 0, whether τl(Y ) is finite

or not. Furthermore, if l < ∞ is absorbing then L0
τl(Y )(Y ) always equals L0

∞(Y )

almost surely, because Y can only be absorbed at l > 0 after hitting zero for the

last time.

All in all, for fixed N ≥ 1, Lemma 4.3.7 (b) yields

uf (XtN , YtN )− f(x)

a.s.
=

∫ tN

0
∂+
y uf (Xs, 0) dL0

s(Y ) +

∫ tN

0
Lxuf (Xs, 0)1{0}(Ys) ds+MtN ,

where (Mt)t≥0 denotes the sum of the stochastic integrals.
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Taking expectations on both sides, we therefore obtain that

lim
N↑∞

Ex
[
uf (XtN , YtN )− f(x)

]
= lim

N↑∞
Ex
[ ∫ tN

0

(
∂+
y uf (Xs, 0) +m0Lxuf (Xs, 0)

)
dL0

s(Y )
]
,

using the same reasoning as in part (a).

First, we deal with the limit of the above right-hand side. Time change yields∫ tN

0

(
∂+
y uf (Xs, 0) +m0Lxuf (Xs, 0)

)
dL0

s(Y )

=

∫ L0
tN

(Y )

0

(
∂+
y uf (XTs , 0) +m0Lxuf (XTs , 0)

)
ds,

where tN grows to Tt ∧ τl−h(Y ), when N →∞. So, since ∂+
y uf (·, 0) +m0Lxuf (·, 0)

is bounded, by dominated convergence, the limit of the right-hand side equals

Ex
[ ∫ t∧L0

Tt∧τl−h(Y )

0

(
∂+
y uf (X(Ts), 0) +m0Lxuf (X(Ts), 0)

)
ds1{L0

τl−h(Y )
(Y )<L0

∞(Y )}

]
+Ex

[ ∫ t∧L0
∞

0

(
∂+
y uf (X(Ts), 0) +m0Lxuf (X(Ts), 0)

)
ds1{L0

τl−h(Y )
(Y )≥L0

∞(Y )}

]
,

which converges to

Ex
[ ∫ t∧L0

∞(Y )

0

(
∂+
y uf (X(Ts), 0) +m0Lxuf (X(Ts), 0)

)
ds
]
,

which converges to

Ex
[ ∫ t∧L0

∞(Y )

0

(
∂+
y uf (X(Ts), 0) +m0Lxuf (X(Ts), 0)

)
ds
]
,

when h ↓ 0.

Next, it is easy to see that, for almost every ω ∈ {Tt < τl−h(Y )}, there exists

N(ω) such that tN (ω) = Tt(ω), for all N ≥ N(ω). Also, since m([0, l− h]) <∞, we

know that τl−h(Y ) is almost surely finite, and therefore

{Tt ≥ τl−h(Y )} a.s.= {Tt > τl−h(Y )},

because the process Y cannot be at zero and l − h at the same time. As a con-

sequence, for almost every ω ∈ {Tt ≥ τl−h(Y )}, there exists N(ω) such that
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tN (ω) = τl−h(Y )(ω), for all N ≥ N(ω), and we obtain that

lim
N↑∞

Ex
[
uf (XtN , YtN )− f(x)

]
= Ex

[(
f(XTt)− f(x)

)
1{Tt<τl−h(Y )}

]
+ Ex

[(
uf (Xτl−h(Y ), l − h)− f(x)

)
1{Tt≥τl−h(Y )}

]
,

by dominated convergence only using boundedness of uf , but not continuity.

Recall that L0
τl(Y )(Y )

a.s.
= L0

∞(Y ), which implies Px[{Tt < ∞} \ {Tt <

τl(Y )}] = 0, and hence,

lim
h↓0

Ex
[(
f(XTt)− f(x)

)
1{Tt<τl−h(Y )}

]
= lim

h↓0
Ex
[(
f(XTt)− f(x)

)
1{Tt<τl−h(Y )}∩{Tt<∞}

]
= Ex

[(
f(XTt)− f(x)

)
1{Tt<∞}

]
as well as

lim
h↓0

Ex
[
f(x)1{Tt≥τl−h(Y )}

]
= Ex

[
f(x)1{Tt=∞}

]
,

by dominated convergence.

Eventually, when treating the remaining limit

lim
h↓0

Ex
[
uf (Xτl−h(Y ), l − h)1{Tt≥τl−h(Y )}

]
, (4.4.11)

we have to differ between the two cases (b1) and (b2), where τl(Y ) <∞ a.s., in case

(b1), by Lemma 4.3.2.

By dominated convergence, we only have to discuss limh↓0 |uf (Xτl−h(Y ), l −
h)|, because if this limit vanishes almost surely then so does (4.4.11). However,

limh↓0 |uf (Xτl−h(Y ), l − h)| trivially vanishes, when applying the assumptions made

in either (b1) or (b2).

On the whole, we have justified that

Ex
[
f(XTt)1{Tt<∞}f(x)

]
= Ex

[ ∫ t∧L0
∞(Y )

0

(
∂+
y uf (XTs , 0) +m0Lxuf (XTs , 0)

)
ds
]
,

where

lim
t↓0

Ex
[1

t

∫ t∧L0
∞(Y )

0

(
∂+
y uf (XTs , 0) +m0Lxuf (XTs , 0)

)
ds
]

= ∂+
y uf (x, 0) +m0Lxuf (x, 0),
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by the same arguments as in the proof of part (a), only taking into account that,

when t ↓ 0, for almost every ω ∈ Ω, it will eventually happen that t < L0
∞(Y )(ω).

Since f(XTt)1{Tt=∞} = f(†)1{Tt=∞} = 0, the proof is complete for both

cases (b1) and (b2).

(c) By Lemma 4.3.2, the point l < ∞ is not absorbing and m([0, l]) < ∞
implies both L0

∞(Y )
a.s.
= ∞ as well as ψ(0) = 0, as in the proof of part (a).

Now fix x ∈ Rd, t > 0, and define tN as in part (a) but using S′N = SN ,

instead - there is no localisation need with respect to Y because of Corollary 4.3.2.

Since ∂−y uf (·, l−) is continuous, Lemma 4.3.7 (c) yields

uf (XtN , YtN )1{YtN<l} + uf (XtN , l−)1{l}(YtN )− f(x)

a.s.
=

∫ tN

0
∂+
y uf (Xs, 0) dL0

s(Y ) +

∫ tN

0
Lxuf (Xs, 0)1{0}(Ys) ds

−
∫ tN

0
∂−y uf (Xs, l−) dLls(Y ) +

∫ tN

0
Lxuf (Xs, l−)1{l}(Ys) ds+MtN ,

where (Mt)t≥0 denotes the sum of the stochastic integrals.

As in part (a) of the proof, for almost every ω ∈ Ω, there exists N(ω) such

that tN (ω) = Tt(ω) for all N ≥ N(ω), and hence

lim
N↑∞

uf (XtN , l−)1{l}(YtN )
a.s.
= 0,

because Y cannot be at zero at l at the same time. Furthermore,∫ tN

0
∂−y uf (Xs, l−) dLls(Y )−

∫ tN

0
Lxuf (Xs, l−)1{l}(Ys) ds

a.s.
=

∫ tN

0

(
∂+
y uf (Xs, l−)−m1Lxuf (Xs, l−)

)
dLls(Y ),

and the last integral vanishes by assumption, in case (c).

All in all, we obtain that

lim
N↑∞

Ex
[
uf (XtN , YtN )− f(x)

]
= lim

N↑∞
Ex
[ ∫ tN

0

(
∂+
y uf (Xs, 0) +m0Lxuf (Xs, 0)

)
dL0

s(Y )
]
,

and the rest is identical to the proof of part (a).
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Chapter 5

Analytic Approach to the

Harmonic Extension Technique

5.1 Introduction

In this chapter we introduce an analytic method to study the harmonic extension

technique. This approach is related to the method of semigroups first introduced by

Stinga & Torrea in [71] (for a well written expository article about this method, see

[70]) where they studied fractional powers of linear second order partial differential

operators. Their starting point is the formula

(−Lx)α/2f =
1

Γ(−α/2)

∫ ∞
0

(Ptf − f)
1

t1+α/2
dt,

and in the paper they extend the extension technique to this family of operators.

This approach is useful as we may obtain explicit formulas for the extension function

uf which can be used to obtain regularity results. However, their method relies

heavily on explicit identities for fractional powers and solutions of Bessel equations

which are unavailable for general complete Bernstein functions.

Alternatively, Kwaśnicki & Mucha investigate the extension technique for

operators of form ψ(−∆x) where ψ is a complete Bernstein function [47]. Their

approach relies heavily on using the Fourier transform which is not available spatially

inhomogeneous operators such as diffusion operators with non-constant coefficients.

In this chapter, we generalise both methods to obtain a similar characterisa-

tion for operators −ψ(−Lx) where Lx is the generator of a C0-contraction semigroup

(Pt)t≥0 on a Banach space B. Furthermore, this chapter shows how the method of

semigroups is connected with the Fourier approach to the extension problem.
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5.2 The Harmonic Extension

Let (B, ‖ · ‖B) be a Banach space and let (B∗, ‖ · ‖B∗) be its topological dual

where 〈f, φ〉 denotes the dual pairing of f ∈ B and φ ∈ B∗. Let (Pt)t≥0 a C0-

contraction semigroup in B with infinitesimal generator (Lx,Dom(Lx)). In the

stochastic approach, (Pt)t≥0 would correspond to the diffusion semigroup associated

with the process (Xt)t≥0.

Let m be a Krein string on [0, r) and let ψ be the complete Bernstein func-

tion in Krein correspondence with m and assume m({0}) = 0. Let (Yt)t≥0 be the

corresponding gap diffusion and (Tt)t≥0 be the corresponding inverse local time at

zero subordinator so that we have

e−ψ(λ)t = E0[e−λTt ] =

∫
[0,∞)

e−λsP0[Tt ∈ ds].

As m({0}) = 0, the extension function ϕλ satisfies ϕ+
λ (0) = −ψ(λ).

We recall the subordinated semigroup defined by the Bochner integral,

Pψt f =

∫
[0,∞)

(Psf)P0[Tt ∈ ds],

and we denote its generator by (−ψ(−Lx),Dom(−ψ(−Lx))).

Definition 5.2.1 (Harmonic Extension). For y ∈ Em and f ∈ B, define Hyf :

B→ B by the Bochner integral,

Hyf =

∫
[0,∞)

(Ptf)Py[H0 ∈ dt].

If M is metric space and B is a Banach space of functions f : M → R, then for

(x, y) ∈M × Em, we define uf (x, y) = Hyf(x).

We call this representation of the harmonic extension the semigroup repre-

sentation. This expression is well-defined for all y ∈ Em as

‖Hyf‖B ≤
∫

[0,∞)
‖Ptf‖BPy[H0 ∈ dt] ≤ ‖f‖B.

Example 5.2.2. When underlying semigroup (Pt)t≥0 is the heat semigroup on

L2(Rd), we may use Fourier analysis to study the harmonic extension. In this
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case, we see

P̂ψt f(ξ) =

∫
[0,∞)

(P̂sf)(ξ)P0[Tt ∈ ds] =

∫
[0,∞)

e−s|ξ|
2
f̂(ξ)P0[Tt ∈ ds] = e−tψ(|ξ|2)f̂(ξ),

and similarly,

Ĥyf(ξ) = ϕ|ξ|2(y)f̂(ξ).

Therefore, provided
∫
Rd ψ(|ξ|2)2|f̂(ξ)|2 dξ <∞,

strong- lim
y↓0

Ĥyf − f̂
y

= ϕ+
|ξ|2(0)f̂(ξ) = −ψ(|ξ|2)f̂(ξ),

and so by inverting the Fourier transform, strong- limy↓0
Hyf−f

y = −ψ(−∆x)f .

To see how the harmonic extension is connected to subordinated generator,

we have the following theorem.

Theorem 5.2.3. Let f ∈ Dom(Lx). Then,

Hynf − f
yn

⇀ −ψ(−Lx)f.

as n→∞ for any sequence (yn)n∈N ⊂ Em ∩ (0, r) such that yn → 0.

Proof. The proof of this theorem is similar to that of Phillip’s theorem (see [65,

Theorem 13.6]).

We first assume ‖Ptf‖B ≤ e−εt‖f‖B for some ε > 0. As m({0}) = 0,

m((0, δ)) > 0 for all δ > 0 and so there exists a sequence (yn)n∈N ⊂ Em ∩ (0, r) such

that yn → 0 as n→∞. Let (yn)n∈N be any such sequence.

We note that for each n ∈ N we have,

1− ϕλ(yn)

yn
=

∫
[0,∞)

(1− e−λt)Pyn [H0 ∈ dt] +
1

yn
Pyn [H0 =∞],

=

∫
(0,∞)

(1− e−λt)Pyn [H0 ∈ dt] +
1

r
,

where we note that Pyn [H0 = 0] = 0 as yn > 0 by Proposition 3.4.5 and that

Pyn [H0 = ∞] = ayn where a = 1
r . Therefore for each n ∈ N the mapping ψn : λ 7→

1−ϕλ(yn)
yn

is a Bernstein function with Lévy triplet (a, 0, 1
yn
Pyn [H0 ∈ dt]) such that

limn→∞ ψn(λ) = ψ(λ) for all λ > 0. By Proposition 2.1.7 we have that
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(i) 1
yn
Pyn [H0 ∈ dt]→ ν(t) dt vaguely in (0,∞) as n→∞,

(ii) limC→∞ limn→∞
1
yn
Pyn [H0 ≥ C] = 0,

(iii) limc→0 limn→∞
∫

(0,c)
t
yn
Pyn [H0 ∈ dt] = 0(= b),

noting that as ψ is a complete Bernstein function, its Lévy measure is absolutely

continuous and so all points in (0,∞) are continuity points for the measure so we may

replace the lim infn→∞ by limn→∞. By strong continuity of (Pt)t≥0, t 7→ 〈Ptf, φ〉 is

continuous for any f ∈ Dom(Lx) and φ ∈ B∗. Therefore,

lim
n→∞

∫
(c,C)
〈Ptf − f, φ〉B

1

yn
Pyn [H0 ∈ dt] =

∫ C

c
〈Ptf − f, φ〉Bν(t) dt

as we have

|〈Ptf − f, φ〉B| ≤ ‖Ptf − f‖B‖φ‖B∗ ≤ min{t‖Lxf‖B, 2‖f‖B}‖φ‖B∗ ,

for all t > 0, f ∈ B and t 7→ min{t‖Lxf‖B, 2‖f‖B} is ν-integrable, we apply domi-

nated convergence to obtain,

lim
c→0,C→∞

lim
n→∞

∫
(c,C)
〈Ptf − f, φ〉B

1

yn
Pyn [H0 ∈ dt] =

∫ ∞
0
〈Ptf − f, φ〉Bν(t) dt.

Now for any f ∈ Dom(Lx) and c > 0,∫
[0,c)

(Ptf − f)
1

yn
Pyn [H0 ∈ dt]

=

∫
[0,c)

(∫ t

0
(PsLxf) ds

) 1

yn
Pyn [H0 ∈ dt]

=

∫
[0,c)

(∫ t

0
(PsLxf − Lxf) ds

) 1

yn
Pyn [H0 ∈ dt] +

(∫
[0,c)

t

yn
Pyn [H0 ∈ dt]

)
Lxf.

By (iii), we have that (
∫

[0,1)
t
yn
Pyn [H0 ∈ dt])n∈N is a bounded sequence so

sup
n∈N

∥∥∥∫
[0,c)

(∫ t

0
(PsLxf − Lxf) ds

) 1

yn
Pyn [H0 ∈ dt]

∥∥∥
B

≤ sup
s≤c
‖PsLxf − Lxf‖B

(∫
[0,1)

t

yn
Pyn [H0 ∈ dt]

)
→ 0,
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as c→ 0 and so

strong- lim
c→0

lim
n→∞

∫
[0,c)

(Ptf − f)
1

yn
Pyn [H0 ∈ dt] = 0.

Similarly,∫
[C,∞)

(Ptf − f)
1

yn
Pyn [H0 ∈ dt] =

∫
[C,∞)

(Ptf)
1

yn
Pyn [H0 ∈ dt]−

( 1

yn
Pyn [H0 ≥ C]

)
f.

By (ii), the sequence ( 1
yn
Pyn [H0 ≥ C])n∈N is bounded and

sup
n∈N

∥∥∥∫
[C,∞)

(Ptf)
1

yn
Pyn [H0 ∈ dt]

∥∥∥
B
≤ sup

n∈N

∫
[C,∞)

‖Ptf‖B
1

yn
Pyn [H0 ∈ dt]

≤ e−Cε‖f‖B
(

sup
n∈N

1

yn
Pyn [H0 ≥ C]

)
→ 0,

as C →∞ so,

strong- lim
c↓0

lim
n→∞

∫
[C,∞)

(Ptf − f)
1

yn
Pyn [H0 ∈ dt] = 0.

Therefore,

lim
n→∞

〈Hynf − f
yn

, φ
〉

= 〈af, φ〉+ lim
n→∞

∫
(0,∞)

〈Ptf − f, φ〉
1

yn
Pyn [H0 ∈ dt]

= 〈af, φ〉+ lim
c→0,C→∞

lim
n→∞

(∫
[0,c)
· · ·+

∫
(c,C)
· · ·+

∫
[C,∞)

· · ·
)

= 〈af, φ〉+

∫ ∞
0
〈Ptf − f, φ〉ν(t) dt

= 〈−ψ(−Lx)f, φ〉.

We now extend this to the case where (Pt)t≥0 is a general C0-contraction

semigroup. Then the C0-semigroup (P εt )t≥0 defined by P εt f = e−εtPtf satisfies

the decay assumption and let Hεyf be the corresponding harmonic extension. This
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semigroup has generator (Lx − ε,Dom(Lx)). We note

‖ψ(−Lx)f−ψ(−Lx + ε)f‖B

=

∥∥∥∥∥(af +

∫ ∞
0

(Ptf − f)ν(t) dt
)
−
(
af +

∫ ∞
0

(e−εtPtf − f)ν(t) dt
)∥∥∥∥∥

B

≤
∫ ∞

0
(1− e−εt)‖Ptf‖Bν(t) dt

→ 0,

as ε→ 0. Furthermore,

lim
n→∞

∥∥∥(Hynf−fyn

)
−
(
Hεynf−f

yn

)∥∥∥
B

= lim
n→∞

∥∥∥Hynf−Hεynfyn

∥∥∥
B

≤ lim
n→∞

∫
(0,∞)

(
(1− e−εt)‖Ptf‖B

) 1

yn
Pyn [H0 ∈ dt]

≤ lim
n→∞

(1− ayn − ϕε(yn)

yn

)
‖f‖B

≤ (ψ(ε)− a)‖f‖B
→ 0,

as ε→ 0. Therefore for any φ ∈ B∗,

lim
n→∞

∣∣∣〈− ψ(−Lx)f −
(
Hynf−f

yn

)
, φ
〉∣∣∣

≤
∣∣∣〈− ψ(−Lx)f + ψ(−Lx + ε)f, φ

〉∣∣∣+ lim
n→∞

∣∣∣〈− ψ(−Lx + ε)f −
(
Hεynf−f

yn

)
, φ
〉∣∣∣

+ lim
n→∞

∣∣∣〈(Hεynf−fyn

)
−
(
Hynf−f

yn

)
, φ
〉∣∣∣

≤
(
‖ψ(−Lx)f − ψ(−Lx + ε)f‖B + (ψ(ε)− a)‖f‖B

)
‖φ‖B∗

+ lim
y↓0

∣∣∣〈− ψ(−Lx + ε)f −
(
Hεyf−f

y

)
, φ
〉∣∣∣

→ 0,

as ε→ 0.

By considering specific examples of Banach spaces we can use weak conver-

gence to get other forms of convergence which are useful for applications.

Corollary 5.2.4. Let M be a locally compact, separable, metric space. Suppose

(Pt)t≥0 is a Feller semigroup on (C0(M), ‖ · ‖∞). Then for all f ∈ Dom(Lx) and
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any sequence (yn)n∈N ⊂ Em ∩ (0, r) such that yn → 0 we have,

sup
n∈N

∥∥∥Hynf − f
yn

∥∥∥
∞
<∞,

and hence for all x ∈M ,

lim
y↓0

Hyf(x)− f(x)

y
= −ψ(−Lx)f(x).

Proof. This follows as weak convergence in C0(M) is equivalent to pointwise con-

vergence and uniform boundedness of the approximating sequence.

We now prove thatHyf is a weak solution to the harmonic extension problem.

We recall the adjoint of (Lx,Dom(Lx)) is defined as the operator (L∗x,Dom(L∗x))

where ψ ∈ Dom(L∗x) ⊂ B∗ if there exists χ ∈ B∗ such that 〈Lxf, ψ〉B = 〈f, χ〉B for

all f ∈ Dom(Lx) in which case L∗xψ = χ.

Theorem 5.2.5. Let f ∈ B. Then Hf is a weak solution to the elliptic equation,

LxHf ×m(dy) + ∂2
yHf = 0, (5.2.1)

in the sense that for any φ ∈ Dom(Gy) ∩ {supp φ b (0, r)},∫
(0,r)

〈
Hyf,L∗xψ

〉
B
φ(y)m(dy) +

∫ r

0

〈
Hyf, ψ

〉
B

dφ+(y) = 0, (5.2.2)

for all ψ ∈ Dom(L∗x).

Proof. For each φ ∈ Dom(Gy)∩ {supp φ b (0, r)}, φ has right-derivative φ+ and we

denote by dφ+ the Lebesgue-Stieltjes measure corresponding to φ+ (noting that as

φ ∈ Dom(Gy), this measure will be absolutely continuous with respect to the Krein

string m). We define the measures on Borel subsets of [0,∞) by,

µ1
φ(A) =

∫
A

∫
(0,r)

Py[H0 ≤ t] dφ+(y) dt,

µ2
φ(A) =

∫
(0,r)

φ(y)Py[H0 ∈ A]m(dy).

We now show these measures are equal by proving their Laplace transforms are
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equal. By taking the Laplace transform of µ2
φ(dt) we find,∫

[0,∞)
e−λtµ2

φ(dt) =

∫
(0,r)

φ(y)
(∫

[0,∞)
e−λtPy[H0 ∈ dt]

)
m(dy)

=

∫
(0,r)

φ(y)ϕλ(y)m(dy)

=

∫
(0.r)

φ(y)
1

λ
dϕ+

λ (y),

where in the final line we have used that dϕ+
λ (y) = λϕλ(y)m(dy) in (0, r). Using the

integration by parts formula for Lebesgue-Stieltjes integrals and using that supp φ b

(0, r) we see, ∫
(0,r)

φ(y) dϕ+
λ (y) +

∫
(0,r)

ϕ+
λ (y) dφ(y) = 0,∫

(0,r)
ϕλ(y) dφ+(y) +

∫
(0,r)

φ+(y) dϕλ(y) = 0.

As ϕλ and φ are absolutely continuous,∫
(0,r)

ϕ+
λ (y) dφ(y) =

∫ r

0
φ′(y)ϕ′λ(y) dy =

∫
(0,r)

φ+(y) dϕλ(y),

and so
∫

(0,r) φ(y) dϕ+
λ (y) = −

∫
(0,r) ϕλ(y) dφ+(y). Therefore,

∫
(0,r)

φ(y)
1

λ
dϕ+

λ (y) =

∫
(0,r)

ϕλ(y)

λ
dφ+(y)

=

∫
(0,r)

(∫
[0,∞)

e−λt

λ
Py[H0 ∈ dt]

)
dφ+(y)

=

∫
(0,r)

(∫
[0,∞)

(∫ ∞
t

e−λu du
)
Py[H0 ∈ dt]

)
dφ+(y)

=

∫
(0,r)

(∫ ∞
0

Py[H0 ≤ u]e−λu du
)

dφ+(y)

=

∫ ∞
0

e−λuµ1
φ(du).

As the Laplace transforms of the measures are equal, the corresponding measures
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are equal. Now by the properties of the Bochner integral,

〈
Hyf,L∗xψ

〉
B∗

=

∫
[0,∞)

〈
Ptf,L∗xψ

〉
B
Py[H0 ∈ dt]

=

∫
[0,δ)

〈
Ptf,L∗xψ

〉
B
Py[H0 ∈ dt] +

∫
[δ,∞)

〈
LxPtf, ψ

〉
B
Py[H0 ∈ dt],

as Ptf ∈ Dom(Lx) for all t > 0. Now,∣∣∣ ∫
[0,δ)

〈
Ptf,L∗xψ

〉
B
Py[H0 ∈ dt]

∣∣∣ ≤ ‖f‖B‖L∗xψ‖B∗Py[H0 < δ]→ 0,

as δ → 0 for any y > 0 and so,

〈
Hyf,L∗xψ

〉
B∗

=

∫
(0,∞)

〈
LxPtf, ψ

〉
B
Py[H0 ∈ dt].

Therefore,∫
(0,r)

〈
Hyf,L∗xψ

〉
B∗
φ(y)m(dy) =

∫
(0,r)

∫
(0,∞)

〈
LxPtf, ψ

〉
B
Py[H0 ∈ dt]φ(y)m(dy)

=

∫
(0,∞)

〈
d
dtPtf, ψ

〉
B

(∫
(0,r)

Py[H0 ∈ dt]φ(y)m(dy)
)

=

∫
(0,∞)

d
dt

〈
Ptf, ψ

〉
B

(∫
(0,r)

Py[H0 ≤ t] dφ+(y)
)

dt

= −
∫

(0,r)

∫
(0,∞)

〈
Ptf, ψ

〉
B

(
Py[H0 ∈ dt] dφ+(y)

)
= −

∫
(0,r)

〈
Hyf, ψ

〉
B

dφ+(y),

completing the proof.

5.2.1 Regularity of the Harmonic Extension

The semigroup representation allows us to obtain regularity results for the harmonic

extension. Let Lx be given by (4.2.2) and assume the coefficients are uniformly

bounded and continuous on Rd. Then by Proposition 2.2.14, we can choose an

extension of this operator to various Banach spaces so that the semigroup (Pt)t≥0

associated with this operator is analytic. In particular, we consider the example

given by Proposition 2.2.14, Example 3.

Proposition 5.2.6. Suppose m satisfies Assumption 3.4.6. Then for all y ∈ Em ∩
(0, r), Hyf ∈

⋂
k∈N Dom(Lkx).
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Proof. The semigroup (Pt)t≥0 is analytic so for all k ∈ N, there is Mk > 0 such that

‖LxPtf‖B ≤Mkt
−k‖f‖B. By Lemma 3.4.7 we know that∫

(0,∞)
t−kPy[H0 ∈ dt] <∞,

and so
∫

(0,∞) ‖L
k
xPtf‖BPy[H0 ∈ dt] <∞ and as the operator Lk is closed,

LkxHyf =

∫
(0,∞)

(LkxPtf)Py[H0 ∈ dt] ∈ B,

and so Hyf ∈ Dom(Lkx).

In particular, we may consider the operator Lx defined on domains in Hölder

spaces to obtain differentiability properties for the harmonic extension.

Lemma 5.2.7. Let f ∈ Cγ(Rd). Suppose (σσT)ij , ai ∈ Cγ(Rd) for all 1 ≤ i, j ≤ d

for some γ ∈ (0, 1) and suppose that m satisfies Assumption 3.4.6.

(i) For each y ∈ (0, l) ∩ Em, uf (·, y) ∈ C2+γ(Rd).

(ii) For each x ∈ Rd, uf (x, ·), ∂iuf (x, ·) and ∂ijuf (x, ·) are continuous in Em ∩
(0, l).

Hence uf is a solution in the sense of Definition 4.3.1.

Proof. By the Schauder estimates for Lx [52, Theorem 3.1.15],

‖Ptf‖C2+γ(Rd) ≤ C
(
‖Ptf‖∞ + ‖LxPtf‖Cγ(Rd)

)
,

for any t > 0 for some C > 0 independent of Ptf . Therefore,

‖uf (·, y)‖C2+γ(Rd) ≤
∫

[0,∞)
C
(
‖Ptf‖∞ + ‖LxPtf‖Cγ(Rd)

)
Py[H0 ∈ dt]

≤ C
(
‖f‖∞ +

∫
(0,∞)

1

t
‖f‖Cγ(Rd)Py[H0 ∈ dt]

)
≤ C‖f‖Cγ(Rd),

by Lemma 3.4.7.

For the second claim we apply Lemma 3.4.8. By [52, Corollary 3.1.16], we

know that t 7→ tγ∂iPtf(x) and tγ 7→ tγ∂ijPtf(x) are bounded, continuous functions
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for any x ∈ Rd and 1 ≤ i, j ≤ d. Therefore, by weak convergence we have

uf (x, yn) =

∫
(0,∞)

(Ptf)(x)Pyn [H0 ∈ dt]→
∫

(0,∞)
(Ptf)(x)Py[H0 ∈ dt] = uf (x, y),

as n → ∞. Furthermore t−γPyn [H0 ∈ dt] → t−γPy[H0 ∈ dt] weakly as n → ∞ so

we see

∂iuf (x, yn) =

∫
(0,∞)

(∂iPtf)(x)Pyn [H0 ∈ dt]

=

∫
(0,∞)

(tγ∂iPtf)(x)t−γPyn [H0 ∈ dt]

→
∫

(0,∞)
(∂iPtf)(x)Py[H0 ∈ dt]

= ∂iuf (x, y),

and by the same reasoning ∂ijuf (x, yn) → ∂ijuf (x, y). The final statement follows

by Proposition 5.2.5.

5.3 Spectral Representation

In the situation when the underlying Banach space B = H is a Hilbert space, we

may prove stronger results as we may characterise the domain of the −ψ(−Lx) more

explicitly. Furthermore, we assume throughout this section that (Lx,Dom(Lx)) is

a self-adjoint operator on H so that we may use the spectral theory for self-adjoint

operators on Hilbert spaces. The results in this section extend some of those found

in [47] where the special case of operators ψ(−∆x) are considered but the methods

are related.

By the multiplicative spectral representation for self-adjoint operators [60,

Theorem VIII.4], there exists a finite measure space (Σ, ρ), a unitary operator U :

H→ L2(Σ, ρ) (for f ∈ H, we denote Uf = f̂), and a function η : Σ→ σ(−Lx) which

is finite almost everywhere such that f ∈ Dom(Lx) if and only if η(·)f̂ ∈ L2(Σ, ρ)

and

−Lxf = U−1η(·)Uf.

Furthermore, as

0 ≤ 〈−Lxf, f〉H = 〈−ULxf, Uf〉L2(Σ,ρ) =

∫
Σ
η(λ)|f̂(λ)|2ρ(dλ),
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we have that η ≥ 0, ρ-almost everywhere. Similarly, the projection-valued measure

form of the spectral theorem [60, Theorem VIII.6], there exists a unique resolution

E of the identity on Borel subsets of the real line such that

〈−Lxf, g〉H =

∫
[0,∞)

λ dEf,g(λ),

for any f ∈ Dom(Lx) and g ∈ H and E is concentrated on the spectrum σ(−Lx)

of −Lx (which is a subset of [0,∞)). Then for a measurable function φ defined on

σ(−Lx), we may formally define the operator

φ(−Lx)f =

∫
[0,∞)

φ(λ) dEf,·(λ) = U−1(φ ◦ η)Uf,

with domain

Dom(φ(−Lx)) =
{
f ∈ H :

∫
[0,∞)

|φ(λ)|2 dEf,f (λ) <∞
}

=
{
f ∈ H :

∫
Σ
|φ ◦ η(λ)|2|f̂(λ)|2ρ(dλ) <∞

}
.

In particular, we have

Ptf = e−t(−Lx)f,

for all f ∈ H.

Proposition 5.3.1. For all f ∈ H and y ∈ [0, r),

Hyf =

∫
[0,∞)

ϕλ(y) dEf,·(λ) = ϕ(−Lx)(y)f

Proof. As Ptf =
∫

[0,∞) e
−λt dEf,·(λ),∫

[0,∞)
(Ptf)Py[H0 ∈ dt] =

∫
[0,∞)

(∫
[0,∞)

e−λtPy[H0 ∈ dt]
)

dEf,·(λ)

=

∫
[0,∞)

ϕλ(y) dEf,·(λ).

We note the final expression is well-defined for all f ∈ H as 0 ≤ ϕλ(y) ≤ 1.

Using the spectral representation, we have the following generalisation of

Theorem 4.2 in [47].
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Theorem 5.3.2. Let f ∈ H and define Hyf as above. Then f ∈ Dom(ψ(−Lx)) if

and only if strong- limy↓0
Hyf−f

y ∈ H. In which case,

−ψ(−Lx)f = lim
y↓0

Hyf − f
y

,

where the limit is taken in H.

Proof. As y 7→ ϕλ(y) is convex for all λ ≥ 0,

ϕλ(y) ≥ ϕλ(0) + ϕ+
λ (0)y =⇒ 0 ≤ 1− ϕλ(y)

y
≤ ψ(λ).

Therefore for any f ∈ Dom(ψ(−Lx)) = {f ∈ H :
∫

[0,∞) |ψ(λ)|2 dEf,f (λ) < ∞} and

g ∈ H, ∫
[0,∞)

(1− ϕλ(y)

y

)
dEf,g(λ)→

∫
[0,∞)

ψ(λ) dEf,g(λ),

by dominated convergence so
Hyf−f

y ⇀ −ψ(−Lx)f as y ↓ 0. Furthermore, as

|1−ϕλ(y)
y |2 ≤ |ψ(λ)|2 we have,∫

[0,∞)

∣∣∣1− ϕλ(y)

y

∣∣∣2 dEf,f (λ)→
∫

[0,∞)
|ψ(λ)|2 dEf,f (λ),

as y ↓ 0 so ‖Hyf−fy ‖H → ‖ − ψ(−Lx)f‖H as y ↓ 0 by dominated convergence.

Therefore
Hyf−f

y → −ψ(−Lx)f strongly as y ↓ 0.

If f /∈ Dom(−ψ(−Lx)), then by Fatou’s lemma,

∞ =

∫
[0,∞)

|ψ(λ)|2 dEf,f (λ) ≤ lim inf
y↓0

∫
[0,∞)

∣∣∣1− ϕλ(y)

y

∣∣∣2 dEf,f (λ),

so lim infy↓0 ‖Hyf−fy ‖H = ∞ which implies that
Hyf−f

y does not converge strongly

as y ↓ 0.

5.4 Dirichlet Form Approach to the Extension Method

In the stochastic approach, we studied the connection between process (XTt)t≥0 and

the product process ((Xt, Yt))t≥0. If we suppose that the process (Xt)t≥0 corre-

sponds to a symmetric semigroup (Pt)t≥0 on some Hilbert space H, then we know

that the subordinated semigroup corresponding to the process (XTt)t≥0 will also

symmetric on the same Hilbert space and we may study these semigroups via their
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Dirichlet forms. Furthermore, we have seen any gap diffusion (Yt)t≥0 corresponds

to a Dirichlet form on L2(Em,m) indicating that we may study the Dirichlet form

corresponding to (Pψt )t≥0 via the Dirichlet form corresponding to the semigroup

associated with the product process ((Xt, Yt))t≥0 on some product of the Hilbert

spaces H and L2(Em,m). We may this notion rigorous in this section.

We consider the special case where H = L2(X , µ) where X is a locally com-

pact, separable, metric space and µ is a positive Radon measure on X such that

supp µ = X . Let (Pt)t≥0 be a symmetric sub-Markovian semigroup on L2(X , µ)

with self-adjoint generator (Lx,Dom(Lx)). Using the same notation as in the previ-

ous section, we recall that the Dirichlet form associated with the generator Lx can

be given in terms of the spectral resolution of −Lx,

EX(f, f) = 〈
√
−Lxf,

√
−Lxf〉L2(X ,µ) =

∫
[0,∞)

λ dEf,f (λ),

for any f ∈ Dom(
√
−Lx). We assume the Dirichlet form (EX ,Dom(EX)) is regular

with core CX and we assume (Xt)t≥0 is the corresponding Hunt process associated

with this Dirichlet form. In this thesis, we are most interested in the case when the

Dirichlet form is local and so the corresponding process is a diffusion process.

Now let (Pψt )t≥0 be the subordinated semigroup on L2(X ,m) which is also

symmetric and sub-Markovian on L2(X , µ) with self-adjoint generator −ψ(−Lx)

with domain Dom(−ψ(−Lx)) which as before can be defined in terms of the spectral

resolution of −Lx,

E ψ(f, f) = 〈
√
ψ(−Lx)f,

√
ψ(−Lx)f〉H =

∫
[0,∞)

ψ(λ) dEf,f (λ),

for any f ∈ Dom(
√
ψ(−Lx)).

Now let ψ and m be in Krein correspondence and let (Yt)t≥0 be the cor-

responding gap diffusion associated with m and let (Dom(E Y ),Dom(E Y )) be the

regular Dirichlet form on L2(Em,m) with core CY corresponding to Y (possibly ad-

joining a cemetery state † to the state space in the usual way to ensure the Dirichlet

form is conservative). By Theorem 2.3.3, the process ((Xt, Yt))t≥0 is associated

with a regular Dirichlet form (EX×Y ,Dom(EX×Y )) on L2(X ×Em, µ×m) with core

CX ⊗ CY and for any u ∈ Dom(EX×Y ),

[Em → Dom(EX) : y 7→ u(·, y)] ∈ L2(Em,m; Dom(EX)),

[X → Dom(E Y ) : x 7→ u(x, ·)] ∈ L2(X , µ; Dom(E Y )),
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and

EX×Y (u, u) =

∫
Em

EX(u(·, y), u(·, y))m(dy) +

∫
X

E Y (u(x, ·), u(x, ·))µ(dx).

Although ϕλ ∈ L2(Em,m) for all λ > 0, it is not clear whether the extension

function uf ∈ L2(X × Em, µ×m) as

‖uf‖2L2(X×Em,µ×Em) =

∫
[0,∞)

∫
Em

|ϕλ(y)|2m(dy) dEf,f (λ),

so we would need to know whether λ 7→
∫
Em
|ϕλ(y)|2m(dy) was dEf,f -integrable for

any f ∈ L2(X , µ). For this reason we extend the domain of EX×Y .

Let Domloc(E
X×Y ) be the set of locally (µ×m)-integrable functions u such

that

i) u(x, ·) ∈ Domext(E Y ) for µ-a.e. x ∈ X ,

ii) u(·, y) ∈ Dom(EX) for m-a.e. y ∈ Em,

iii) EX×Y (u, u) <∞.

We see that Dom(EX×Y ) ⊂ Domloc(E
X×Y ). Furthermore, by i) we know that u(x, ·)

is absolutely continuous for µ-a.e. x ∈ X and so we may define Tr0u = u(·, 0).

We now arrive at the main results of this section which we use extensively

in applications.

Theorem 5.4.1. Let f ∈ L2(X , µ) and define uf as the harmonic extension uf =

ϕ(−Lx)f . Then f ∈ Dom(E ψ) if and only if uf ∈ Domloc(E
X×Y ) and

E ψ(f, f) = EX×Y (uf , uf ).

Proof. Let f ∈ L2(X , µ) and let U : L2(X , µ) → L2(Σ, ρ) be the unitary map

associated with the operator −Lx. We first see that for all y ∈ Em, uf (·, y) ∈
L2(X , µ) as

‖uf (·, y)‖2L2(X ,µ) =

∫
Σ
|ϕη(ξ)(y)f̂(ξ)|2ρ(dξ) ≤

∫
Σ
|f̂(ξ)|2ρ(dξ) = ‖f‖2L2(X ,µ).
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Then for any compact C = Cx × Cy ⊂ X × Em,∫
Cy

∫
Cx

|uf (x, y)|2µ(dx)m(dy) ≤
∫
Cy

∫
X
|uf (x, y)|2µ(dx)m(dy)

≤ ‖f‖L2(X ,µ)m(Cy)

<∞,

so uf is (µ×m)-locally integrable. For f ∈ L2(X , µ), we have that f ∈ Dom(E ψ) if

and only if ∫
Σ
ψ ◦ η(ξ)|f̂(ξ)|2ρ(dξ) <∞,

so by Corollary 3.4.4,

E ψ(f, f) =

∫
Σ
ψ ◦ η(ξ)|f̂(ξ)|2ρ(dξ)

=

∫
Σ

(
η(ξ)‖ϕη(ξ)‖2L2(Em,m) + E Y (ϕη(ξ), ϕη(ξ))

)
|f̂(ξ)|2ρ(dξ)

=

∫
Em

∫
Σ
η(ξ)|ϕη(ξ)(y)f̂(ξ)|2ρ(dξ)m(dy) +

∫
Σ

E Y (ϕη(ξ)f̂(ξ), ϕη(ξ)f̂(ξ))ρ(dξ)

=

∫
Em

∫
Σ
η(ξ)|ûf (ξ, y)|2ρ(dξ)m(dy) +

∫
Σ

E Y (ûf (ξ, ·), ûf (ξ, ·))ρ(dξ).

Therefore we know,∫
Em

∫
Σ
η(ξ)|ûf (ξ, y)|2ρ(dξ)m(dy) =

∫
Em

EX(uf (·, y), uf (·, y))m(dy) <∞,

so EX(uf (·, y), uf (·, y)) < ∞ for m-a.e. y ∈ Em. As ‖uf (·, y)‖L2(X ,µ) ≤ ‖f‖L2(X ,µ)

for any y ∈ Em, we have u(·, y) ∈ Dom(EX) for m-a.e. y ∈ Em.

Now as U and
√
−Ay commute on L2(X , µ) ⊗ Dom(E Y ), we see that the

operators will also commute on L2(X , µ)⊗Domext(E Y ). Therefore,∫
Σ

E Y (ûf (ξ, ·), ûf (ξ, ·))ρ(dξ) =

∫
X

E Y (uf (x, ·), uf (x, ·))µ(dx),

and so uf (x, ·) ∈ Domext(E Y ) for µ-a.e. x ∈ X and we have,

E ψ(f, f) =

∫
Em

EX(uf (·, y), uf (·, y))m(dy) +

∫
X

E Y (uf (x, ·), uf (x, ·))µ(dx).
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We also have the following generalisation of [47, Theorem 4.6].

Theorem 5.4.2. For any v ∈ Domloc(E
X×Y ) such that v(·, 0) = f we have,

EX×Y (v, v) ≥ EX×Y (uf , uf ).

Moreover, the space Domloc(E
X×Y ) = Dom0(EX×Y )⊕Harm where,

Dom0(EX×Y ) = {v ∈ Domloc(E
X×Y ) : v(·, 0) = 0},

Harm = {ϕ(−Lx)f : f ∈ Dom(E ψ)},

are orthogonal to each other with respect to EX×Y .

Proof. Let v ∈ Domloc(E
X×Y ) such that v(·, 0) = f . Then for fixed ξ ∈ Σ such that

f̂(ξ) 6= 0, let

φ(y) =
v̂(ξ, y)

f̂(ξ)
.

As v(x, ·) ∈ Domext(E Y ) for µ-a.e. x ∈ X , we know v̂(ξ, ·) ∈ Domext(E Y ) for ρ-a.e.

ξ ∈ Σ and so y 7→ φ(y) ∈ Domext(E Y ) and φ(0) = 1. Therefore, φ satisfies the

conditions of Corollary 3.4.4 for any ξ ∈ Σ such that η(ξ) > 0,∫
Em

η(ξ)|φ(y)|2m(dy) + E Y (φ, φ) ≥ ψ ◦ η(ξ).

Furthermore, the inequality holds when η(ξ) = 0 and so,∫
Em

η(ξ)|v̂(ξ, y)|2m(dy) + E Y (v̂(ξ, y), v̂(ξ, y)) dy ≥ ψ ◦ η(ξ)|f̂(ξ)|2,

noting the above inequality holds trivially for ξ ∈ Σ such that f̂(ξ) = 0. Hence,∫
Em

∫
Σ
η(ξ)|v̂(ξ, y)|2ρ(dλ)m(dy) +

∫
Σ

E Y (v̂(ξ, y), v̂(ξ, y))ρ(dξ) ≥
∫

Σ
ψ ◦ η(ξ)|f̂(ξ)|2ρ(dξ).

Therefore,

EX×Y (v, v) ≥ E ψ(f, f) = EX×Y (uf , uf ).

The second part of the theorem follows the same reasoning as in [47] which we

repeat here. Clearly, uf = ϕ(−Lx)f ∈ Harm and v − ϕ(−Lx)f ∈ Dom0(EX×Y ) so

the direct sum result holds. For h > 0, u ∈ Harm and v ∈ Dom0(EX×Y ), we have
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EX×Y (u± hv, u± hv) ≥ EX×Y (u, u) and so

±2hEX×Y (u, v) + h2EX×Y (v, v) ≥ 0 =⇒ ±EX×Y (u, v) ≥ 0,

and so EX×Y (u, v) = 0.

Remark 5.4.3. Using the parallelogram law for inner products, we have for any

f, g ∈ Dom(E ψ),

E ψ(f, g) =
1

4
[E ψ(f + g, f + g)− E ψ(f − g, f − g)]

=
1

4
[EX×Y (u(f+g), u(f+g))− E ψ(u(f−g), u(f−g))]

=
1

4
[EX×Y (uf + ug, uf + ug)− E ψ(uf − ug, uf − ug)]

= EX×Y (uf , ug),

where we note u(f+g) = Hy(f + g) = Hyf + Hyg = uf + ug. Similarly, let u, v ∈
Domloc(E

X×Y ) with Tr0u = f and Tr0v = g, so u = uf + u0 where uf = ϕ(−Lx)f

and u0 = u− uf (and similarly for v). Then,

EX×Y (u, v) = EX×Y (uf + u0, vg + v0),

= EX×Y (uf , vg) + EX×Y (u0, vg) + EX×Y (uf , v0) + EX×Y (u0, v0),

= E ψ(f, g) + EX×Y (u0, v0),

and so in particular, EX×Y (uf , v) = EX×Y (uf , vg) + EX×Y (uf , v0) = E ψ(f, g) as

EX×Y (uf , v0) = 0.
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Chapter 6

Application to Problems in

Optimal Stopping

6.1 Introduction

We now apply the harmonic extension technique to study the optimal stopping

problem for a subordinated diffusion process. If we suppose (Xt)t≥0 is a diffusion

process in Rd and (Tt)t≥0 is an inverse local time process of a gap diffusion, we are

interested in the value function V : Rd → R defined by

V (x) = sup
τ

Ex

[
e−

∫ τ
0 R(XTs ) dsG(XTτ )

]

for a given gain function G : Rd → R and interest function R : Rd → R where the

supremum is taken over all almost surely finite stopping times. This probabilistic

problem is related to the analytic obstacle problem. By considering the Itô formula

corresponding to (XTt)t≥0, the value function above should solve the following free

boundary problem,
V (x) ≥ G(x) for x ∈ Rd

−ψ(−Lx)V (x)−R(x)V (x) = 0 for {x ∈ Rd : V (x) > G(x)}

−ψ(−Lx)V (x)−R(x)V (x) ≤ 0 for x ∈ Rd,

(6.1.1)

where −ψ(−Lx) is the non-local operator associated with the subordinated diffusion

process.

As we have seen, the extension method allows us to represent the non-local

operator −ψ(−Lx) via the Dirichlet-to-Neumann map of a local PDE problem. This
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allows us to formally rewrite the nonlocal obstacle problem in terms a thin obstacle

problem related to the measure m associated with ψ. Formally, V : Rd → R should

be given by uV (·, 0) where uV : Rd× ([0, l]∩ [0, r))→ R is the solution to one of the

following problems:

If l +m([0, l)) =∞ and
∫

[0,l) y
2m(dy) =∞,

uV (x, 0) ≥ G(x) for x ∈ Rd

LxuV ×m(dy) + ∂2
yuV = 0 in Rd × (0, l)

∂yuV (x, 0)−R(x)uV (x, 0) = 0 for {x : uV (x, 0) > G(x)}

∂yuV (x, 0)−R(x)uV (x, 0) ≤ 0 for x ∈ Rd,

(6.1.2)

if l +m([0, l)) =∞ and
∫

[0,l) y
2m(dy) <∞,

uV (x, 0) ≥ G(x) for x ∈ Rd

LxuV ×m(dy) + ∂2
yuV = 0 in Rd × (0, l)

∂yuV (x, 0)−R(x)uV (x, 0) = 0 for {x : uV (x, 0) > G(x)}

∂yuV (x, 0)−R(x)uV (x, 0) ≤ 0 for x ∈ Rd

∂yuV (x, l) = 0 for x ∈ Rd,

(6.1.3)

and if l +m([0, l)) <∞,

uV (x, 0) ≥ G(x) for x ∈ Rd

LxuV ×m(dy) + ∂2
yuV = 0 in Rd × (0,∞)

∂yuV (x, 0)−R(x)uV (x, 0) = 0 for {x : uV (x, 0) > G(x)}

∂yuV (x, 0)−R(x)uV (x, 0) ≤ 0 for x ∈ Rd

(r − l)∂yuV (x, l) + uV (x, l) = 0 for x ∈ Rd.

(6.1.4)

As in the previous chapter, the key to understanding the PDE in the y-

direction is the extension function ϕλ and the boundary conditions here are in

analogy with those found in the definition of Dom+(Gy).
Although we prove existence and uniqueness to the variational inequality

associated with the non-local obstacle problem using similar methods to those found

in [77], the local characterisation of the value function allows us to actually prove

that the value function belongs to domain of the generator in certain situations.

Furthermore, numerical techniques such as finite difference schemes may be applied

to the local problem to compute the value function whereas these techniques fail
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when applied to the non-local problem.

6.2 Abstract Existence to the Non-local Variational In-

equality

We begin by proving existence and uniqueness for the nonlocal obstacle problem via

similar abstract methods to those found in [77] originally proven in [55].

Let X be a locally compact, separable, metric space with Radon measure µ on

X such that supp m = X and suppose the Banach space B = Lp(X , µ) for some p ∈
(1,∞) or B = C0(X ). Omitting the index, we consider the subordinated semigroup

(Pψt )t≥0 with generator (−ψ(−Lx),Dom(−ψ(−Lx))) on this Banach space.

We recall by standard perturbation theory [43, Theorem 1.9.2], the operator

−ψ(−Lx)−(R−r0) with domain Dom(−ψ(−Lx)) generates another sub-Markovian

semigroup (Qψt )t≥0. We recall the resolvent (RQλ )λ>0 associated with (Qψt )t≥0 given

by

RQλ f =

∫ ∞
0

e−λtQψt f dt,

for any f ∈ B and satisfies ‖RQλ f‖B ≤
1
λ‖f‖B. Furthermore, for any f ∈ B,

(λ+ r0 − (−ψ(−Lx)−R))RQλ f = f

In order to find a solution to the obstacle problem (6.1.1), we begin by

considering the penalised problem:Let G ∈ B. For each ε > 0 find Vε ∈ B such that

−ψ(−Lx)Vε −RVε + 1
ε (Vε −G)− = 0.

(6.2.1)

As (Vε −G)− = −Vε + (Vε ∨G) we see,

−ψ(−Lx)Vε − (R− r0)Vε − (r0 + 1
ε )Vε = −1

ε (Vε ∨G),

and so the solution to (6.2.1) is given by

Vε = RQ
r0+

1
ε

(1
ε (Vε ∨G)).

To prove existence and uniqueness, we apply a fixed point argument. We define a
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map I : B→ B by

Iε(h) = RQ
r0+

1
ε

(1
ε (h ∨G)),

and so we have

‖Iε(h1)− Iε(h2)‖B ≤
1

ε

1

r0 + 1
ε

‖(h1 ∨G)− (h2 ∨G)‖B ≤
1

r0ε+ 1
‖h1 − h2‖B,

and so Iε is a contraction mapping and therefore there exists a unique fixed point

Vε ∈ B. Furthermore, Vε ∈ im(RQr0+1/ε) = Dom(−ψ(−Lx)).

We now consider B = H = L2(X , µ) and let (E ψ,Dom(E ψ)) denote the

Dirichlet form associated with (Pψt )t≥0. We wish find a solution to the variational

inequality 
Let G ∈ Dom(E ψ). Find V ∈ Dom(E ψ) such that

E ψ(V,U − V ) + 〈RV,U − V 〉L2(X ,µ) ≥ 0

for all U ∈ K, where K = {U ∈ Dom(E ψ) : U ≥ G}.

(6.2.2)

K is closed and convex so by standard theory of variational inequalities [41], this

problem has a unique solution V ∈ Dom(E ψ) which is given by

min
v∈K

I (v),

where the functional I is given by

I (v) = E ψ(v, v) + 〈Rv, v〉L2(X ,µ).

It is useful to identify V as the limit of Vε as ε→ 0. It is clear that Vε is a solution

to

E ψ(Vε, U) + 〈RVε, U〉L2(X ,µ) +
1

ε
〈(Vε −G)−, U〉L2(X ,µ) = 0,

for all U ∈ Dom(E ψ). We can identify this as the minimiser of the following func-

tional:

I ε(Vε) = min
v∈Dom(E ψ)

I ε(v),
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where,

I ε(v) = E ψ(v, v) + 〈Rv, v〉L2(X ,µ) +
1

ε
〈(v −G)−, (v −G)−〉L2(X ,µ).

To see this we note for any U ∈ Dom(E ψ) and t > 0, I ε(Vε + tU) ≥ I ε(Vε) so we

have,

0 ≤ 1

t

(
I ε(Vε + tU)−I ε(Vε)

)
= 2
(
E ψ(Vε, U) + 〈RVε, U〉L2(X ,µ)

)
+ tI ε(U,U)

+
1

εt

(〈
(Vε −G+ tU)−, (Vε −G+ tU)−

〉
L2(X ,µ)

−
〈

(Vε −G)−, (Vε −G)−
〉
L2(X ,µ)

)
.

We know,

1

εt

(〈
(Vε −G+ tU)−, (Vε −G+ tU)−

〉
L2(X ,µ)

−
〈

(Vε −G)−, (Vε −G)−
〉
L2(X ,µ)

)
=

1

εt

(〈
(Vε −G+ tU)−, Vε −G+ tU

〉
L2(X ,µ)

−
〈

(Vε −G)−, Vε −G
〉
L2(X ,µ)

)
=

1

εt

〈
(Vε −G+ tU)− − (Vε −G)−, Vε −G

〉
L2(X ,µ)

+
1

ε

〈
(Vε −G+ tU)−, U

〉
L2(X ,µ)

→ 1

ε

〈
− U1(−∞,0)(Vε −G), Vε −G

〉
L2(X ,µ)

+
1

ε

〈
(Vε −G)−, U

〉
L2(X ,µ)

=
2

ε

〈
(Vε −G)−, U

〉
L2(X ,µ)

,

as t→ 0 as〈
− U1(−∞,0)(Vε −G), Vε −G

〉
L2(X ,µ)

=
〈
− (Vε −G)1(−∞,0)(Vε −G), U

〉
L2(X ,µ)

=
〈

(Vε −G)−, U
〉
L2(X ,µ)

.

Therefore we may show (Vε)ε>0 is uniformly bounded in Dom(E ψ):

I (Vε) ≤ I ε(Vε) ≤ I ε(V ) = I (V ),

therefore there is a weakly convergent subsequence converging to some V0 ∈ Dom(E ψ).

In particular, we have

1

ε
〈(Vε −G)−, (Vε −G)−〉L2(X ,µ) ≤ I (V ) =⇒ ‖(Vε −G)−‖L2(X ,µ) ≤

√
ε
√

I (V )→ 0,
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as ε→ 0 so (Vε −G)− → 0 as ε→ 0 in L2(X , µ). By Fatou’s lemma, we have that

‖(V0 −G)−‖L2(X ,µ) ≤ lim inf
ε→0

‖(Vε −G)−‖L2(X ,µ) = 0,

so (V0 −G)− = 0 and hence V0 ∈ K. Furthermore as a norm on a Hilbert space is

weakly lower-semicontinuous,

I (V0) ≤ lim inf
ε→0

I (Vε) ≤ I (V ),

so V0 = V .

Although we only have weak convergence of a subsequence of (Vε)ε>0 to V ,

we can strengthen this to obtain strong convergence in Dom(E ψ). We note

lim sup
ε→0

[E ψ(Vε − V, Vε − V ) + 〈R(Vε − V ), (Vε − V )〉L2(X ,µ)]

= lim sup
ε→0

[E ψ(Vε, Vε) + 〈RVε, Vε〉L2(X ,µ) − 2E ψ(Vε, V )− 2〈RVε, V 〉L2(X ,µ)

+ E ψ(V, V ) + 〈RV, V 〉L2(X ,µ)]

= lim sup
ε→0

[I (Vε)]−I (V )

≤ 0,

and so Vε → V in Dom(E ψ).

Another property we may prove without resorting to the local representation

is that the value function is bounded whenever the gain function is bounded.

Proposition 6.2.1. Let V ∈ Dom(E ψ) be the solution to (6.2.2). If G ∈ L2(X , µ)∩
L∞(X , µ) and G ≥ 0, then V ∈ L∞(X , µ) (and hence V ∈ Lp(X , µ) for p ∈ (2,∞)).

Proof. Let g0 = ‖G‖L∞(X ,µ) > 0. Then V ∧ g0 ∈ Dom(E ψ) and V ∧ g0 ≥ G so

V ∧ g0 ∈ K. Furthermore as E ψ(V ∧ 1, V ∧ 1) ≤ E ψ(V, V ),

E ψ(V ∧ g0, V ∧ g0) = g2
0E

ψ(( Vg0 ) ∧ 1, ( Vg0 ) ∧ 1)

≤ g2
0E

ψ(( Vg0 ), ( Vg0 ))

≤ E ψ(V, V ).

As 〈R(V ∧ g0), (V ∧ g0)〉L2(X ,µ) ≤ 〈RV, V 〉L2(X ,µ), we have I (V ∧ g0) ≤ I (V ) so

V = V ∧ g0. Therefore, V is bounded.
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6.2.1 Identification with the Optimal Stopping Problem

We conclude this section by proving that the solution V to the variational inequality

is the solution to the optimal stopping problem. Suppose G ∈ L2(X , µ) ∩ C0(X ).

Then we see that the fixed point Vε ∈ Dom(−ψ(−Lx)(2)) ∩ Dom(−ψ(−Lx)(∞)) ⊂
C0(X ) and so

Vε(XTt)− Vε(x) +

∫ t

0
ψ(−Lx)Vε(XTs) ds,

is a martingale. Let Kt = exp
(
−
∫ t

0 R(XTs) ds
)

which is clearly a finite variation

process adapted to the filtration generated by (XTt)t≥0 which satisfies

dKt = −R(XTt)Kt dt.

Therefore, by the integration by parts formula for semimartingales,

KtVε(XTt)− Vε(x)−
∫ t

0
Vε(XTs) dKt +

∫ t

0
ψ(−Lx)Vε(XTs)Ks ds

is a martingale and therefore for any stopping time τ and T <∞,

Ex

[
exp

(
−
∫ τ∧T

0
R(XTs) ds

)
Vε(XTτ∧T )

]
− Vε(x)

= Ex

[(
− ψ(−Lx)Vε(XTτ∧T )−R(XTτ∧T )Vε(XTτ∧T )

)
exp

(
−
∫ τ∧T

0
R(XTs) ds

)]

= Ex

[
− 1

ε

(
Vε(XTτ∧T )−G(XTτ∧T )

)−
exp

(
−
∫ τ∧T

0
R(XTs) ds

)]
≤ 0.

Therefore by letting ε→ 0 and T →∞ we have,

Ex

[
exp

(
−
∫ τ

0
R(XTs) ds

)
V (XTτ )

]
− V (x) ≤ 0,

and so supτ Ex[exp(−
∫ τ

0 R(XTs) ds)G(X(Tτ ))] ≤ V (x) as V ≥ G where the supre-

mum is taken over almost surely finite stopping times. Now let τε = inf{t ≥ 0 :
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Vε(X(Ts)) ≤ G(X(Ts))}. Then for any T <∞, (Vε(XTτε∧T )−G(XTτε∧T ))− = 0,

Vε(x) = Ex

[
exp

(
−
∫ τε∧T

0
R(XTs) ds

)
Vε(XTτε∧T ))

]
.

By Fatou’s lemma applied as T →∞,

Vε(x) ≤ Ex

[
exp

(
−
∫ τε

0
R(XTs) ds

)
Vε(XTτε ))

]

≤ Ex

[
exp

(
−
∫ τε

0
R(XTs) ds

)
G(XTτε )

]
,

where the final line follows by right-continuity of t 7→ X(Tt). All in all we have

V (x) = sup
τ

Ex

[
exp

(
−
∫ τ

0
R(XTs) ds

)
G(XTτ )

]
.

6.3 Identification with the Local Problem

We now identify the above non-local variational problems with the local counterparts

via the extension method. The local penalised problem is given by,For each ε > 0 find uε ∈ Domloc(E
X×Y ) such that for all v ∈ Domloc(E

X×Y )

EX×Y (uε, v) + 〈Ruε(·, 0), v(·, 0)〉L2(X ,µ) + 1
ε 〈(uε(·, 0)−G)−, v(·, 0)〉L2(X ,µ) = 0,

(6.3.1)

and the local obstacle problem is given by,Find uV ∈ Domloc(E
X×Y ) such that for all v ∈ K̂ = {v ∈ Domloc(E

X×Y ) : v(·, 0) ≥ G}

EX×Y (uV , v − uV ) + 〈RuV (·, 0), v(·, 0)− uV (·, 0)〉L2(X ,µ) ≥ 0.

(6.3.2)

We now shall prove this local obstacle problem is equivalent to the nonlocal

obstacle problem (6.2.2).

Lemma 6.3.1. A function V (resp. Vε) ∈ Dom(E ψ) is a solution to (6.2.2) (resp.

(6.2.1)) if and only if uV = ϕ(−Lx)V ∈ Domloc(E
X×Y ) (resp. uε = ϕ(−Lx)Vε ∈

Domloc(E
X×Y )) is a solution to (6.3.2) (resp. 6.3.1).
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Proof. If V ∈ Dom(E ψ) is a solution to (6.2.2), then for any f ∈ K

E ψ(V, V ) + 〈RV, V 〉L2(X ,µ) ≤ E ψ(f, f) + 〈Rf, f〉L2(X ,µ).

Let uV denote the harmonic extension of V and let v ∈ K̂. By Theorem

5.4.2, v = uf +w where uf denotes the harmonic extension for some f ∈ Dom(E ψ)

and w ∈ Dom0(EX×Y ). As v(·, 0) = uf (·, 0) = f ≥ G, f ∈ K. Therefore,

EX×Y (v, v) = EX×Y (uf , uf ) + 2EX×Y (uf , w) + EX×Y (w,w)

≥ EX×Y (uf , uf ).

By Theorem 5.4.1, the harmonic extension uV ∈ Domloc(E
X×Y ) and

EX×Y (uV , uV ) + 〈RuV (·, 0), uV (·, 0)〉L2(X ,µ)

≤ EX×Y (uf , uf ) + 〈Ruf (·, 0), uf (·, 0)〉L2(X ,µ)

≤ EX×Y (v, v) + 〈Rv(·, 0), v(·, 0)〉L2(X ,µ),

so uV is a solution to (6.3.2).

Similarly, if uV is a a solution to (6.3.2), then by letting v = uf for some

f ∈ K,

EX×Y (uV , uV ) + 〈RuV (·, 0), uV (·, 0)〉L2(X ,µ) ≤ EX×Y (uf , uf ) + 〈Ruf (·, 0), uf (·, 0)〉L2(X ,µ),

which by Theorem 5.4.1 is equivalent to

E ψ(V, V ) + 〈RV, V 〉L2(X ,µ) ≤ E ψ(f, f) + 〈f, f〉L2(X ,µ),

and so V is a solution to (6.2.2).

Using this local chacaterisation, we can easily show a monotonicity property

of the value function.

Proposition 6.3.2. Let G1, G2 ∈ Dom(E ψ) and G1 ≤ G2 and let u1 and u2 be

solutions to the local variational inequality (6.3.2) corresponding to the gain func-

tions G1 and G2 respectively. Then V1 ≤ V2 almost everywhere where Vi = Tr0ui

for i = 1, 2.

Proof. As G1 ≤ G2, we have K2 ⊂ K1 for Ki = {v ∈ Domloc(E
X×Y ) : v(·, 0) ≥ Gi}.
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Let v = u2 + (u2 − u1)− ∈ K2 so

EX×Y (u2, (u2 − u1)−) + 〈Ru2(·, 0), (u2(·, 0)− u1(·, 0))−〉L2(X ,µ) ≥ 0.

Let v = u1 − (u2 − u1)−. If u1(x) ≤ u2(x), then (u2(x) − u1(x))− = 0

almost everywhere so v(x) = u1(x) almost everywhere whereas when u2(x) < u1(x),

(u2(x) − u1(x))− = −u2(x) + u1(x) so v(x) = u2(x) and therefore v(·, 0) ≥ G1.

Therefore,

EX×Y (u1,−(u2 − u1)−) + 〈Ru1(·, 0),−(u2(·, 0)− u1(·, 0))−〉L2(X ,µ) ≥ 0.

Therefore,

EX×Y (u2 − u1, (u2 − u1)−) + 〈R(u2(·, 0)− u1(·, 0)), (u2(·, 0)− u1(·, 0))−〉L2(X ,µ) ≥ 0.

As EX×Y is a local Dirichlet form, we know

EX×Y ((u2 − u1)−, (u2 − u1)−)

+ 〈R(u2(·, 0)− u1(·, 0))−, (u2(·, 0)− u1(·, 0))−〉L2(X ,µ) ≤ 0.

so ‖(u2(·, 0)− u1(·, 0))−‖L2(X ,µ) = 0 and so (u2(·, 0)− u1(·, 0))− = 0.

We recall that W ∈ Dom(E ψ) is a supersolution if

E ψ(W,φ) + 〈RW,φ〉L2(X ,µ) ≥ 0 for all φ ∈ Dom(E ψ), φ ≥ 0.

Proposition 6.3.3. Let V be a solution to (6.2.2) and suppose that W ∈ Dom(E ψ)

is a supersolution satisfying W ≥ G. Then

V ≤W.

Proof. Let uW ∈ Dom(EX×Y ) be the harmonic extension of W ∈ Dom(E ψ) and let

v ∈ Dom(EX×Y ) such that v ≥ 0. Then,

EX×Y (uW , v) + 〈RuW (·, 0), v(·, 0)〉L2(X ,µ) = E ψ(W,Tr0v) + 〈RW,Tr0v〉L2(X ,µ) ≥ 0,

as v ≥ 0 =⇒ Tr0v ≥ 0. Then set v = uV ∧ uW ∈ K̂ as V ∧W ≥ G. Therefore,

EX×Y (uV , v − uV ) + 〈RuV (·, 0), v(·, 0)− uV (·, 0)〉L2(X ,µ) ≥ 0.
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Furthermore, as V ≥ V ∧W , we know v − uV ≤ 0 as so,

EX×Y (uW , v − uW ) + 〈RuW (·, 0), v(·, 0)− uW (·, 0)〉L2(X ,µ) ≤ 0.

Therefore as v − uV = −(uV − uW )+,

0 ≥ EX×Y (uW − uV , v − uV ) + 〈R(uW (·, 0)− uV (·, 0)), v(·, 0)− uV (·, 0)〉L2(X ,µ)

= −EX×Y (uW − uV , (uV − uW )+)

− 〈R(uW (·, 0)− uV (·, 0)), (uV (·, 0)− uW (·, 0))+〉L2(X ,µ)

= EX×Y ((uV − uW )+, (uV − uW )+)

+ 〈R(uV (·, 0)− uW (·, 0))+, (uV (·, 0)− uW (·, 0))+〉L2(X ,µ),

therefore (uV − uW )+ = 0 and hence uV ≤ uW =⇒ V ≤W .

6.4 Regularity of the Value Function via the Local Char-

acterisation

6.4.1 Set Up

In this section we suppose X ⊂ Rd and let (Xt)t≥0 be a diffusion process taking

values in X . For any f ∈ C0(X ), we define the family of operators (P
(0)
t )t≥0 by

P
(0)
t f(x) = Ex[f(Xt)],

and assume this is a Feller semigroup with generator (L(0)
x ,Dom(L(0)

x )). Further-

more, for each p ∈ (1,∞), we assume P
(0)
t |Lp(X ,µ)∩C0(X ) extends to a sub-Markovian

semigroup (P
(p)
t )t≥0 on Lp(X , µ) with generator (L(p)

x ,Dom(L(p)
x )). We note for any

f ∈ Dom(L(p)
x ) ∩ Dom(L(q)

x ), L(p)
x f = L(q)

x f so in such cases we may omit the in-

dex. Furthermore, we assume (P
(2)
t )t≥0 is symmetric and (EX ,Dom(EX)) is the

corresponding local Dirichlet form.

Example 6.4.1. [28, 72] Let X = Rd and µ be Lebesgue measure on Rd. Let

p(x,D) = ∇x · (Γ(x)∇x) where {Γij}1≤i,j≤d is a family of Borel functions on Rd

satisfying Γij = Γji for all 1 ≤ i, j ≤ d and

δ

d∑
i=1

ξ2
i ≤

d∑
i,j=1

Γij(x)ξiξj ≤
1

δ

d∑
i=1

ξ2,

111



for all ξ, x ∈ Rd for some δ ∈ (0, 1). Then EX given by

EX(u, v) =

∫
Rd

Γ(x)∇xu(x) · ∇v(x) dx

with Dom(EX) = W 1,2(Rd) defines a regular Dirichlet form.

If we assume that Γij ∈ C1
b (Rd) for all 1 ≤ i, j ≤ d, then the extension of

p(·, D) to W 2,2(Rd) is the self-adjoint generator of the L2(Rd)-semigroup (P
(2)
t )t≥0

corresponding to EX . Furthermore, for each p ∈ (2,∞), the restriction of this semi-

group to L2(Rd)∩Lp(Rd) (resp. L2(Rd)∩C0(Rd)) extends to a sub-Markovian semi-

group (P
(p)
t )t≥0 (resp. Feller semigroup (P

(0)
t )t≥0) on Lp(Rd) (resp. C0(Rd)) with

generator given by the extension of p(·, D) to W 2,p(Rd) (resp. closure of C∞c (Rd)
with respect to the graph norm).

We also note that as Γ is continuously differentiable, we may rewrite the

operator p(·, D) in non-divergence form so that the results for analytic semigroups

from Chapter 2 apply.

Now let ψ : (0,∞)→ R be a complete Bernstein function given by

ψ(λ) =
1

r
+

∫ ∞
0

(1− e−λt)ν(t) dt,

corresponding to a subordinator (Tt)t≥0 and let (Yt)t≥0 be the corresponding gap

diffusion given by the Krein correspondence. Furthermore, let (E Y ,Dom(E Y )) be

the regular Dirichlet form in L2(Em,m). For each p ∈ {0} ∪ (1,∞), let (P
ψ,(p)
t )t≥0

be the subordinated semigroup given by

P
ψ,(p)
t f =

∫
[0,∞)

(P (p)
s f)P0[Tt ∈ ds],

for f ∈ Lp(X , µ) or f ∈ C0(X ) with generator (−ψ(−Lx)(p),Dom(ψ(−Lx)(p))).

We note that if G ∈ L2(X , µ) ∩ C0(X ) ⊂ ∩p∈[2,∞]L
p(X , µ) and R ∈ L∞(X )

such that R ≥ r0 µ-almost everywhere for some r0 > 0, then we know Vε ∈
Dom(−ψ(−Lx)(p)) for all p ∈ {0} ∪ [2,∞) as Vε satisfies the resolvent equation.

Then we may use the local variational inequality to prove regularity results

for the non-local variational inequality. As the Dirichlet form (EX×Y ,Dom(EX×Y ))

is local,

EX×Y (v−, v−) = EX×Y (v, v−),

which is not true for E ψ. This fact permits us to prove regularity of the function
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V using similar techniques to those used in the local situation as detailed in [9,

Chapter 3].

Theorem 6.4.2. Let V ∈ Dom(E ψ) be a solution to (6.2.2). If G ∈ Dom(−ψ(−Lx)(2))

then V ∈ Dom(−ψ(−Lx)(2)).

Proof. Let uG = ϕ(−Lx)G ∈ Domloc(E
X×Y ) and as Vε ∈ Dom(E ψ), uε ∈ Domloc(E

X×Y ).

As uε, uG ∈ Domloc(E
X×Y ), we know (uε − uG)− ∈ Domloc(E

X×Y ). Therefore,

EX×Y ((uε − uG)−, (uε − uG)−) + 〈R(uε(·, 0)− uG(·, 0))−, (uε(·, 0)− uG(·, 0))−〉L2(X ,µ)

+
1

ε
〈(uε(·, 0)− uG(·, 0))−, (uε(·, 0)− uG(·, 0))−〉L2(X ,µ)

= EX×Y ((uε − uG), (uε − uG)−) + 〈R(uε(·, 0)−G), (uε(·, 0)−G)−〉L2(X ,µ)

+
1

ε
〈(uε(·, 0)−G)−, (uε(·, 0)−G)−〉L2(X ,µ)

= −EX×Y (uG, (uε − uG)−)− 〈RG, (uε(·, 0)−G)−〉L2(X ,µ)

= −E ψ(G, (uε(·, 0)−G)−)− 〈RG, (uε(·, 0)−G)−〉L2(X ,µ)

= 〈−ψ(−Lx)G, (Vε −G)−〉L2(X ,µ) − 〈RG, (Vε −G)−〉L2(X ,µ),

noting that EX×Y (uG, (uε − uG)−) = E ψ(G, (uε(·, 0) − G)−) due to Remark 5.4.3.

Therefore,

1

ε
‖(uε(·, 0)− uG(·, 0))−‖2L2(X ,µ) ≤ 〈−ψ(−Lx)G−RG, (uε(·, 0)−G)−〉L2(X ,µ),

and hence,

1

ε
‖(Vε −G)−‖L2(X ,µ) ≤ C‖ − ψ(−Lx)G−RG‖L2(X ,µ).

Therefore,

‖ − ψ(−Lx)Vε‖L2(X ,µ) ≤ ‖RVε‖L2(X ,µ) +
1

ε
‖(Vε −G)−‖L2(X ,µ) ≤ C,

so there is a weakly convergent subsequence in Dom(ψ(−Lx)(2)) and its limit V ∈
Dom(ψ(−Lx)(2)).

If we impose additional assumptions on the Dirichlet form, we can prove

the value function is in the domain of the Lp(X , µ)-generator of the subordinated

semigroup. We now consider the special case where the Dirichlet form is given by

EX(u, v) =

∫
X

(Γ(x)∇xu) · (∇xv)µ(dx),
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with domain Dom(EX) consisting of u ∈ L2(X , µ) which are weakly differentiable

and EX(u, u) <∞. We also assume that Em = [0, l] ∩ [0, r) (so m corresponds to a

diffusion) so that the Dirichlet form (E Y ,Dom(E Y )) is given by (D ,Dom(D)).

Theorem 6.4.3. Let p ∈ (2,∞) and suppose G ∈ Dom(−ψ(−Lx)(2))∩Dom(−ψ(−Lx)(p))

and is bounded. Then,

V ∈ Dom(−ψ(−Lx)(p)).

Proof. Let 1
p + 1

q = 1 (so q ∈ (1, 2)) and set φ = (uε − uG). Using the semigroup

representation for each y ∈ Em and using that Vε ∈ L∞(X , µ),

‖φ(·, y)‖L∞(X ,µ) ≤
∫

[0,∞)
‖P (0)

t (Vε −G)‖L∞(X ,µ)Py[H0 ∈ dt] ≤ ‖Vε −G‖L∞(X ,µ) <∞.

As φ(·, y) ∈ Lp(X , µ), (φ−(·, y))p−1 ∈ Lq(X , µ)∩L∞(X , µ) ⊂ L2(X , µ). As φ−(·, y) ∈
Dom(EX) for m-a.e. y ∈ Em we know (φ−(·, y))p−1 is weakly differentiable for m-

a.e. y ∈ Em and as

∇x[(φ−(·, y))p−1] = (p− 1)(φ−(·, y))p−2∇x(φ−)(·, y),

we have

EX((φ−(·, y))p−1, (φ−(·, y))p−1)

= (p− 1)2

∫
X

(φ−(x, y))2p−4(Γ(x)∇xφ−)(x, y) · (∇xφ−)(x, y)µ(dx)

≤ C
∫
X

(Γ(x)∇xφ−)(x, y) · (∇xφ−)(x, y)µ(dx)

<∞,

so (φ−(·, y))p−1 ∈ Dom(EX) for each y ∈ Em and we have,

EX(φ(·, y), (φ−(·, y))p−1)

= EX(φ−(·, y), (φ−(·, y))p−1)

= (p− 1)

∫
X
|φ−(x, y)|p−2

(
Γ(x)∇xφ−

)
(x, y)) · (∇xφ−)(x, y)µ(dx)

≥ 0.

For µ-a.e. x ∈ X , φ−(x, ·) ∈ Dom(E Y ) = Dom(D) so (φ−(x, ·))p−1 is abso-
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lutely continuous and

D((φ−(x, ·))p−1, (φ−(x, ·))p−1)

= (p− 1)2

∫ l

0
(φ−(x, y))2p−4|(∂yφ−)(x, y)|2 dy

<∞,

(and if l + m([0, l)) < ∞ and r < ∞, (p − 1)2(φ−(x, l))2p−4|∂yφ−(x, l)|2 < ∞) so

(φ−(x, ·))p−1 ∈ Dom(E Y ) µ-a.e. x ∈ X and

E Y (φ−(x, ·), (φ−(x, ·))p−1) = (p− 1)

∫ l

0
|φ−(x, y)|p−2|(∂yφ−)(x, y)|2 dy ≥ 0,

(and if l+m([0, l)) <∞ and r <∞, (p−1)(φ−(x, l))p−2|∂yφ−(x, l)|2 ≥ 0). Therefore,

(φ−)p−1 ∈ Domloc(E
X×Y ) and

EX×Y (φ, (φ−)p−1)

= EX×Y (φ−, (φ−)p−1)

=

∫
Em

EX(φ−(·, y), (φ−(·, y))p−1)m(dy) +

∫
X

E Y (φ−(x, ·), (φ−(x, ·))p−1)µ(dx)

≥ 0.

As uε satisfies (6.3.1), we have

EX×Y (uε − uG, ((uε − uG)−)p−1) + 〈R(uε(·, 0)− uG(·, 0)), ((uε − uG)−)p−1(·, 0)〉L2(X ,µ)

+
1

ε
〈(uε(·, 0)− uG(·, 0))−, ((uε − uG)−)p−1(·, 0)〉L2(X ,µ)

= −EX×Y (uG, ((uε − uG)−)p−1)− 〈RuG(·, 0), ((uε − uG)−)p−1(·, 0)〉L2(X ,µ)

= 〈−ψ(−Lx)G−RG, ((Vε −G)−)p−1〉L2(X ,µ),

where the final equality follows by Remark 5.4.3. Thus,

1

ε
‖(Vε −G)−‖pLp(X ,µ) ≤ 〈ψ(−Lx)G+RG, ((Vε −G)−)p−1)〉L2(X ,µ)

≤ ‖ − ψ(−Lx)G−RG‖Lp(X ,µ)‖(Vε −G)−‖p/qLp(X ,µ),

by Hölder’s inequality. As p− p
q = 1 we have,

‖ − ψ(−Lx)Vε −RVε‖Lp(X ,µ) =
1

ε
‖(Vε −G)−‖Lp(X ,µ) ≤ ‖ − ψ(−Lx)G−RG‖Lp(X ,µ),
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and so there is a weakly convergent subsequence of (Vε)ε>0 in Dom(−ψ(−Lx)(p))

and so its limit V ∈ Dom(−ψ(−Lx)(p)).

This theorem can be interpreted as a sort of regularity result for the function

V . In the local analogue of this theorem where the operator −ψ(−Lx) is replaced

a second order elliptic differential operator (see [9, p.206-7]), it is shown that V ∈
W 2,p(X ) = Dom(L(p)

x ) and so by Sobolev embedding, V ∈ C1,γ(X ) for all γ <

1. Therefore, to obtain similar regularity results for the non-local problem, we

need similar Sobolev embedding-type results for the spaces Dom(−ψ(−Lx)(p)). By

considering Example 6.4.1, we may apply the results for analytic operators from

Chapter 2 to obtain the following corollary.

Corollary 6.4.4. Suppose the conditions of Example 6.4.1 are satisfied and suppose

there is β ∈ (0, 1) such that the Krein string satisfies m(y) � y1/β−1 as y → 0. Then

V ∈ C2β− d
p (Rd) for all p ≥ 2.

Proof. By Proposition 3.3.5, the corresponding complete Bernstein function satisfies

ψ(λ) � λβ as λ → ∞ and hence ind(ψ) ≤ β < 1. As V ∈ Dom(−ψ(−Lx)(p)) for

any p ≥ 2, the result follows by Corollary 2.2.13.
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Chapter 7

Further Areas of Interest

To conclude this thesis, we indicate some further areas of interest.

7.1 Local Representations for Time-Fractional Problems

Although we have only considered non-local operators that correspond to subor-

dinated diffusions, other types of non-local equations can be considered from the

perspective of the Krein correspondence. For example, if we consider the time-

fractional diffusion,D
β
0+∗u(t, x) = 1

2∆xu(t, x) for (t, x) ∈ (0, T ]× Rd,

u(0, x) = f(x) for x ∈ Rd,

where Dβ
0+∗ denotes the Caputo fractional derivative of order β ∈ (0, 1),

Dβ
0+∗f(t) =

1

Γ(−β)

∫ t

0

f(t− s)− f(t)

s1+β
ds+

(f(t)− f(0))

Γ(1− β)

∫ ∞
t

1

s1+β
ds,

then u has stochastic representation

u(t, x) = E[f(Bx
Et)],

where (Bx
t )t≥0 is an Rd-valued Brownian motion started at x ∈ Rd and Et = inf{s >

0 : T
(β)
s > t} where (T

(β)
t )t≥0 a β-stable subordinator independent of (Bt)t≥0 (see

[19]). However, we have seen that (Et)t≥0 = (L0
t (Y

(β)))t≥0 where (Y
(β)
t )t≥0 is a

Bessel diffusion.

For complete Bernstein functions η and ψ corresponding to gap diffusions

(Y η
t )t≥0 and (Y ψ

t )t≥0 respectively. If we assume η(λ) =
∫∞

0 (1− e−λt)ν(t) dt, we can
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define the operator Dν
0+∗ in a similar way to the Caputo case,

Dν
0+∗f(t) =

∫ t

0
(f(t− s)− f(t))ν(s) ds+ (f(0)− f(t))

∫ ∞
t

ν(s) ds.

Then an interesting area for further study would be whether the anomalous diffusions

equation, Dν
0+∗u(t, x) = −ψ(−Lx)u(t, x) for (t, x) ∈ (0, T ]× Rd,

u(0, x) = f(x) for x ∈ Rd,

associated with the process ((−Eηt , X(Tψt )))t≥0 could be studied via an extension

method.

7.2 Further Regularity of the Value Function

In the fractional Laplacian case, the next step towards proving optimal regularity

of the value function is to note that if V satisfies the fractional obstacle problem,

then formally the function W = −(−∆x)α/2V , should satisfy−(−∆x)1−α/2W = ∆xG in {V = G},

W = RV in {V > G},

and so provided with have regularity for this equation, we shall have regularity for

V . There are numerous technicalities which need to be dealt with in order to show

this (see [66]).

In the general case we can extend this heuristic reasoning by noting that

λ1−α/2 is the conjugate complete Bernstein function of λα/2. So for any complete

Bernstein function ψ, the conjugate Bernstein function ψc(λ) = λ
ψ(λ) is a also a

complete Bernstein function and hence there exists a measure mc in Krein corre-

spondence with ψc. Furthermore, by setting W = −ψ(−Lx)V , we can see formally

that −ψc(−Lx)W = −LxG in {V = G},

W = RV in {V > G},

and so it is natural to ask whether the same method for regularity for fractional

obstacle problem from [66] can be adapted to this more general situation.
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Appendix A

Numerical Simulations

In this appendix we provide Python simulations of some of the examples found in

this thesis 1.

A.1 Bessel Process Example

The first program simulates the sample paths of a one-dimensional Brownian motion

(Xt)t≥0, a rescaled Bessel process (Yt)t≥0 and its corresponding local time at zero

allowing us to visualise how changing the dimension of the Bessel process effects the

corresponding trace process. The program relies on the simulation algorithm found

in [53] which notes that the values of a squared Bessel process (Q0, Q1 . . . , Qn) at

times 0 = t0 < t1 < · · · < tn can be simulated by first simulating a Poisson random

variable

Pn ∼ Pois
( Qn−1

2(tn − tn−1)

)
,

and then simulating Qn as a Gamma distributed random variable,

Qn ∼ Γ
(
Pn +

δ

2
,

1

2(tn − tn−1)

)
.

By setting Yn = cαQ
(2−δ)/2
n , we can approximate the local time of the Bessel process

by

L0
ti(Y ) ≈ 1

m(2−δ)([0, δ])

i∑
i=0

1[0,δ](Yi−1)(ti − ti−1),

1The code found in this appendix can be downloaded at https://github.com/JA-H/

Krein-Correspondence-Simulations
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where m(2−δ)(dy) is the measure from Example 3.5.1. By simulating a Brownian

motion (Xt)t≥0, we can plot the trace process (XTt)t≥0 by plotting ((L0
t (Y ), Xt))t≥0.

In the following images we simulate two rescaled Bessel process sample paths, one

of dimension δ = 0.8 and the other of dimension δ = 1.2 and see the difference in

behaviour of the subordinated process. It should be noted that as the dimension

approaches 2, it becomes more computationally expensive to simulate the local time

at zero as the Bessel process visits zero less frequently whereas when the dimension

approaches 0, we have to decrease the size of time step in order to capture the

non-local nature of the subordinated process.

A.1.1 Python Code

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from scipy.special import gamma

4

5 class Bessel:

6 def __init__(self , T, dt , dim):

7 self.T = T #Length of time interval

8 self.dt = dt #Length of time step

9 self.Num = round(T/dt) #Number of time steps

10 self.dim = dim #Dimension of the Bessel process

11

12 self.alpha = 2.0 - dim #Alpha corresponding to the dimension

of the Bessel process

13 self.c_alpha = ( (2.0**( - self.alpha) )*np.absolute( gamma(-

self.alpha /2.0) ) )/gamma(self.alpha /2.0) \

14 #Constant that appears in corresponding speed measure of

the rescaled Bessel process

15

16 def Squared_Bessel_Process(self):

17 """In order to simulate a Bessel process , we use the algorithm

\

18 found in ’Makarov , & Glew. Exact simulation of Bessel

diffusions ’. """

19 Q = np.zeros(self.Num) # Memory for Squared Bessel process

20 error = 1E-10

21

22 for i in range(self.Num - 1):

23 if Q[i] <= error:

24 Q[i + 1] = np.random.gamma(self.dim/2.0, 2.0* self.dt )

25 else:

26 Y = np.random.poisson( Q[i]/(2.0* self.dt) )
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Figure A.1: δ = 1.2
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Figure A.2: δ = 0.8
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27 Q[i + 1] = np.random.gamma( Y + self.dim/2.0, 2.0* self

.dt )

28 return Q

29

30 def Bessel_Process(self):

31 return np.sqrt( self.Squared_Bessel_Process () )

32

33 def Rescaled_Bessel_Process(self):

34 return (self.c_alpha)*(self.Bessel_Process () )**( self.alpha)

35

36 def Local_Time(self , delta , Y):

37 """ This function takes a time T, a time increment dt , a

rescaled Bessel \

38 Process Y with dimension dim and a small value delta and

returns the \

39 approximate local time of the sample path."""

40 alpha = self.alpha

41 dim = self.dim

42 c_alpha = self.c_alpha

43

44 m_delta = ( 1.0/( dim*alpha*( c_alpha)**(2.0/ alpha) ) )*delta

**( dim/alpha )

45

46 Lt = np.zeros(self.Num)

47

48 for i in range(self.Num - 1):

49 if 0.0 <= Y[i] <= delta:

50 Lt[i+1] = (1.0/ m_delta)*self.dt

51 else:

52 Lt[i+1] = 0.0

53

54 Lt = np.cumsum(Lt)

55

56 return Lt

57

58 def Brownian_Motion(T, dt):

59 """ This function takes a time T and a time increment dt and

returns an \

60 array of the values of the X_t process at these time

increments."""

61

62 N = round(T/dt) # Number of time -steps

63 X = np.random.standard_normal(size = N)

64 X = np.cumsum(X)*np.sqrt(dt)

65 return X

66
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67 def main(T, dt , dim , delta):

68 X = Brownian_Motion(T, dt)

69

70 Bes = Bessel(T, dt , dim)

71

72 Y = Bes.Rescaled_Bessel_Process ()

73 L = Bes.Local_Time(delta , Y)

74

75 #Pair Process Plot

76 plt.plot(X, Y, linewidth =0.1)

77 plt.xlabel(r’$(X_t)_{t \geq 0}$’)

78 plt.ylabel(r’$(Y_t)_{t \geq 0}$’)

79 plt.savefig(’./ Plot_of_Pair_Process_alpha=’ + str(Bes.alpha) + ’.

png’, dpi =300)

80 plt.show()

81 plt.close()

82

83 #Subordinated Process Plot

84 plt.plot(L, X, linewidth =0.3)

85 plt.xlabel(r’$(L^0_t(Y))_{t \geq 0}$’)

86 plt.ylabel(r’$(X_t)_{t \geq 0}$’)

87 plt.savefig(’./ Plot_of_Trace_Process_alpha=’+ str(Bes.alpha) + ’.

png’, dpi =300)

88 plt.show()

89 plt.close()

90

91 return 0

92

93 main(T = 10.0**4 , dt = 1E-3, dim = 0.8, delta = 1E-3)

94 main(T = 10.0**4 , dt = 1E-3, dim = 1.2, delta = 5E-2)
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A.2 Simulating the Krein Correspondence

In this program, we develop a class to simulate the Krein correspondence in the spe-

cial case where the Krein string is given as a weighted sum of Dirac delta measures:

m(dy) =

N∑
i=0

miδyi(dy),

where 0 = y0 < y1 < · · · < yN = r < ∞, mi > 0 for all 0 ≤ i ≤ N and mN = ∞
(for simplicity, we assume there is killing at r although the methods in this section

can be adapted to other boundary behaviours). As we have noted, this example is

useful as we may approximate any Krein string by a Krein string of this form as

detailed in Example 3.5.3.

We can calculate the extension function explicitly corresponding to this Krein

string by solving the corresponding difference equation. By considering Example

3.5.3, we see that the extension function ϕλ satisfies

−ϕλ(yi−1) +

(
1 +miλ(yi − yi−1) +

(
yi − yi−1

yi+1 − yi

))
ϕλ(yi)−

(yi − yi−1

yi+1 − yi

)
ϕλ(yi+1) = 0

for 1 ≤ i ≤ N − 1 with ϕλ(0) = 1 and ϕλ(r) = 0. By translating this into a matrix

equation, we can calculate {ϕλ(yi), 0 ≤ i ≤ N} by solving the corresponding linear

system.

We may also calculate the complete Bernstein function corresponding to m

in two different ways. In the first way, we exploit the explicit representation for

the corresponding complete Bernstein function as a continued fraction. In order to

calculate this continued fraction representation, we solve the recurrence formulas

Ai = biAi−1 +Ai−2, Bi = biBi−1 +Bi−2,

where for each fixed λ > 0,

bi =

miλ for even i,

yi/2 − yi/2−1 for odd i,
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with initial conditions A−1 = 1, A0 = m0λ, B−1 = 0 and B0 = 1 so that we have

A2N−1

B2N−1
= m0λ+ 1

(y1−y0)+
1

m1λ+
1

. . .+ 1
yN−yN−1

.

The second way uses the fact we calculate the extension function explicitly and so

we can use the fact that ψ(λ) = m0λ+(1−ϕλ(y1)
y1

). As we can calculate the complete

Bernstein function corresponding to m, it is possible to calculate the distribution

of the corresponding subordinator Tt at a fixed time t > 0 by numerically inverting

the Laplace transform of the function λ 7→ e−tψ(λ) (see [1]). To do this, we use

the mpmath library for Python [36]. However, this method does not seem practical

for most simulation purposes as numerically inverting the Laplace transform is very

computationally expensive.

To test the implementation of the Krein correspondence we consider the

Krein string given by m(dy) = 1[0,r)(y) dy +∞δr(dy) with corresponding extension

function

ϕλ(y) =
1

1− e−2r
√
λ

(
e−y
√
λ − ey

√
λ−2r

√
λ
)
, (A.2.1)

and complete Bernstein function

ψ(λ) =
√
λ

(
1 + e−2r

√
λ

1− e−2r
√
λ

)
. (A.2.2)

To approximate this speed measure, we consider a partition of [0, r] given by Pn =

{hrn : 0 ≤ h ≤ n} and define mn(dy) = r
n

∑n−1
k=0 δhr/n(dy) +∞δr(dy).

A.2.1 Python Code

We first program a class for the test case.

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 class Krein_Brownian_Killed:

5 """

6 This class contains the formulas for the extension function and \

7 Laplace exponent of a reflected Brownian motion in [0, R] \

8 killed upon hitting R.

9 """

10 def __init__(self , R, error = 1E-10):
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Figure A.3: A comparison between the explicit formula for ψ and the corresponding
approximations. Note that the finite difference scheme and the continued fraction
method lead to the same result.

Figure A.4: The probability density function of Tt corresponding to the point mea-
sure for t = 0.5, 0.75, 1.0 and 2.0.
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11 self.R = R

12 self.error = error

13

14 def Extension_Function(self , xi , y):

15 if xi <= self.error:

16 return 1.0

17 else:

18 return ( np.exp(-y*np.sqrt(xi)) - np.exp( y*np.sqrt(xi) -

2.0* self.R*np.sqrt(xi) ) )/(1.0 - np.exp (-2.0* self.R*np.sqrt(xi))

)

19

20 def Laplace_Exponent(self , xi):

21 if xi <= self.error:

22 return 1.0/ self.R

23 else:

24 return np.sqrt(xi)*(1 + np.exp (-2.0* self.R*np.sqrt(xi) ))

/(1 - np.exp (-2.0* self.R*np.sqrt(xi) ))

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import mpmath as mpm

4 import time

5

6 import Krein_Brownian_Killed_Class as BMKill

7

8 class Krein_Corr:

9 """ This class simulates the Krein correspondence for a Krein

string given by a sum of \

10 weighted Dirac measures , which may be used to approximate any

given Krein string. \

11 To initialise the class , we require two numpy arrays , y and m,

where y is a partition \

12 of an interval [0, R] (with y[0] = 0 and y[-1] = R) and m

corresponds to the Dirac point \

13 measure on this partition. For simplicity , we assume that (in

the notation of the thesis) \

14 that L = R < infty so the corresponding gap diffusion is

killed upon hitting R.

15 """

16

17 def __init__(self , y, m):

18 self.y = y # Points where the Krein string is defined

19 self.m = m # Krein string which we assume is given by \sum_{

y_i \in y} m_i\delta_{y_i}(dy)

20 self.R = y[-1] #Endpoint which we assuime is killing

21 self.drift_coeff = m[0] # This is forced to be positive due to
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the form of the Krein string

22

23 def Extension_Func(self , xi):

24 """

25 We use the finite difference approximation of the BVP problem

associated with the \

26 extension function. This BVP is given by , \

27 f ’’(y) = xi f(y)m(diff y), f(0) = 1, f(R) = 0, \

28 for fixed xi in [0, infty).

29 """

30 y, m = self.y, self.m

31 N = y.size

32

33 #RHS of equation defining the Dirichlet boundary condition

34 b = np.zeros(N)

35 b[0] = 1.0

36

37 #LHS matrix of the difference equation

38 A = np.zeros( (N, N) )

39 A[0, 0], A[N-1, N-1] = 1, 1

40

41 for i in range(1, N - 1):

42 A[i, i - 1] = -1.0

43 A[i, i] = (( y[i] - y[i - 1] )/( y[i + 1] - y[i] )) + xi*m

[i]*( y[i] - y[i - 1] ) + 1.0

44 A[i, i+1] = -(( y[i] - y[i - 1] )/( y[i + 1] - y[i] ))

45

46 varphi = np.linalg.solve(A, b)

47

48 return varphi

49

50 def Laplace_Exponent(self , xi , method = "CtdFrac"):

51 """

52 In this function we calculate the Laplace exponent at xi

associated with the Krein string m via two \

53 different methods: first by calculating the derivative at

zero of extension function associated \

54 with m, the second by directly calculating the continued

fraction representation of the complete \

55 Bernstein function. We set the default method to be the

continued fraction method as the \

56 extension method is much slower due to the matrix

computations imvolved.

57 """

58 if method == "FinDiff":

59 phi_approx = self.Extension_Func(xi)
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60 return (1.0 - phi_approx [1])/self.y[1] + self.m[0]*xi

61

62 elif method == "CtdFrac":

63 m, y = self.m, self.y

64

65 A = np.array ([1.0 , m[0]*xi ])

66 B = np.array([ 0.0, 1.0 ])

67

68 for i in range(1, y.size - 1):

69 # Convergents

70 A_2 = ( y[i]-y[i-1] )*A[1] + A[0]

71 A_3 = m[i]*xi*A_2 + A[1]

72 A = np.array( [A_2 , A_3] )

73

74 B_2 = ( y[i]-y[i-1] )*B[1] + B[0]

75 B_3 = m[i]*xi*B_2 + B[1]

76 B = np.array( [B_2 , B_3] )

77

78 # Renormalisation every 10 iterations

79 if i % 10 == 0:

80 A = A/B[1]

81 B = B/B[1]

82

83 psi_xi = ( (y[-1] - y[-2])*A[1] + A[0] )/( (y[-1] - y[-2])

*B[1] + B[0] )

84 return psi_xi

85

86 def Subordinator_pdf(self , t, T, N):

87 """

88 In this function , we employ mpmath library to invert the

Laplace transform of exp(-t*psi)\

89 where psi is the Laplace exponent numerically , giving the

pdf of T_t.

90 """

91 def Laplace_Trans_of_Sub(eta):

92 Log_Lap_of_Sub = self.Laplace_Exponent( eta , method = "

CtdFrac" )

93 mpmLaplace = mpm.convert( Log_Lap_of_Sub )

94 return mpm.exp( -t*mpmLaplace )

95

96 times = np.linspace (0.0, T, N)

97 sub_dist = np.zeros(N)

98 for i in range(N):

99 try:

100 sub_dist[i] = mpm.invertlaplace( Laplace_Trans_of_Sub ,

times[i], method = ’talbot ’ )
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101 except ZeroDivisionError:

102 continue

103

104 return sub_dist

105

106 def main():

107 #Defining the approxiamtion of BM in [0, 1.0] killed upon hitting

1.0.

108 N = int(1E2)

109 R = 1.0

110 y = np.linspace (0.0, R, N)

111 m = (R/N)*np.ones(N)

112

113 BM_Example = Krein_Corr(y, m)

114 BM_Actual = BMKill.Krein_Brownian_Killed(R)

115

116 xi_N = int(1E4)

117 xi_max = 100.0

118 xi_values = np.linspace (0.0, xi_max , xi_N)

119

120 phi_exact = np.zeros(xi_N)

121 phi_approx = np.zeros(xi_N)

122 phi_formula = np.zeros(xi_N)

123

124 tic = time.perf_counter ()

125 for i in range(xi_N):

126 phi_approx[i] = BM_Example.Laplace_Exponent(xi_values[i], "

FinDiff")

127 toc = time.perf_counter ()

128 print(f"’FinDiff ’ took {toc - tic :0.2f} seconds")

129

130 tic = time.perf_counter ()

131 for i in range(xi_N):

132 phi_exact[i] = BM_Example.Laplace_Exponent(xi_values[i], "

CtdFrac")

133 toc = time.perf_counter ()

134 print(f"’CtdFrac ’ took {toc - tic :0.2f} seconds")

135

136 tic = time.perf_counter ()

137 for i in range(xi_N):

138 phi_formula[i] = BM_Actual.Laplace_Exponent(xi_values[i])

139 toc = time.perf_counter ()

140 print(f"Exact formula took {toc - tic :0.2f} seconds")

141

142 plt.plot(xi_values , phi_approx , ’r-’, label=r"$\psi$ calculated

via extension function", linewidth = 0.5)
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143 plt.plot(xi_values , phi_exact , ’b-’, label=r"$\psi$ calculated as

continued fraction", linewidth = 0.5)

144 plt.plot(xi_values , phi_formula ,’g-’, label=r"Exact representation

of $\psi$", linewidth = 0.5)

145 plt.xlabel(r"$\lambda$")

146 plt.ylabel(r"$\psi(\ lambda)$")

147 plt.legend ()

148 plt.savefig("CBF_comparison.png", dpi = 300)

149 plt.close()

150

151

152 T = 2.0

153 N_t = 150

154 times = np.linspace (0.0, T, N_t)

155

156 tic = time.perf_counter ()

157 sub_05 = BM_Example.Subordinator_pdf (0.5, T, N_t)

158 print("Laplace transform to find pdf of T_ {0.5} complete.")

159

160 sub_075 = BM_Example.Subordinator_pdf (0.75, T, N_t)

161 print("Laplace transform to find pdf of T_ {0.75} complete.")

162

163 sub_1 = BM_Example.Subordinator_pdf (1.0, T, N_t)

164 print("Laplace transform to find pdf of T_ {1.0} complete.")

165

166 sub_2 = BM_Example.Subordinator_pdf (2.0, T, N_t)

167 print("Laplace transform to find pdf of T_ {2.0} complete.")

168

169 toc = time.perf_counter ()

170 print(f"Laplace transforms in {toc - tic :0.4f} seconds")

171

172 plt.plot(times , sub_05 , "g-", label=r"pdf of $T_ {0.5}$")

173 plt.plot(times , sub_075 , "r-", label=r"pdf of $T_ {0.75}$")

174 plt.plot(times , sub_1 , "c-", label=r"pdf of $T_ {1.0}$")

175 plt.plot(times , sub_2 , "m-", label=r"pdf of $T_ {2.0}$")

176 plt.xlabel(r"Time $t$")

177 plt.ylabel(r"pdf of $T_s$ at time $t$")

178 plt.legend ()

179 plt.savefig("subordinator_pdfs.png", dpi = 300)

180 plt.show()

181 plt.close

182

183 return 0

184

185 main()
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A.3 Numerically Solving the Extension Problem

To conclude, we numerically solve a special case of the extension method using the

FEniCS programming environment for differential equations [2, 51].

We consider the special case where Lx = ∂2
x defined in L2([0, π]) with domain

Dom(∂2
x) = W 2,2([0, π])∩W 1,2

0 ([0, π]). The advantage of considering this particular

case is that we know that the eigenvectors of the operator −∂2
x are x 7→ sin(nx)

for n ∈ N with corresponding eigenvalues n2 and these eigenvectors form a basis of

L2([0, π]) by Sturm-Liouville theory [13, Theorem 8.22].

Let f ∈ L2([0, π]) have series representation f =
∑∞

k=1 fk sin(kx) and let ψ be

a complete Bernstein function. Then f ∈ Dom(−ψ(−∂2
x)) if

∑∞
k=1 |ψ(k2)|2f2

k < ∞
in which case

−ψ(−∂2
x)f = −

∞∑
k=1

ψ(k2)fk sin(kx).

In this simulation, we give an example of how to solve the equation−ψ(−∂2
x)f = −g in (0, π),

f(x) = 0 for x = 0 or x = π,
(A.3.1)

numerically using the extension method for the special case where ψ is given by

A.2.2 with r = π and g = sin(x) + 3 sin(3x) + 10 sin(10x). We note that the solution

to this equation is given explicitly by

f(x) =
sin(x)

ψ(12)
+

3 sin(3x)

ψ(32)
+

10 sin(10x)

ψ(102)
. (A.3.2)

As we have seen, the extension problem associated with (A.3.1) is given by
∂2
xuf + ∂2

yuf = 0 in (0, π)× (0, π),

uf (x, y) = 0 for x = 0, x = π or y = π,

∂yuf (x, 0) = −g for x ∈ (0, π),

(A.3.3)

the explicit solution to this problem being given by

uf (x, y) =
ϕ12(y) sin(x)

ψ(12)
+

3ϕ32(y) sin(3x)

ψ(32)
+

10ϕ102(y) sin(10x)

ψ(102)
,

where ϕλ is the extension function given by (A.2.1). We solve this numerically using

the FEniCS library.
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Figure A.5: A colour plot of the approximate solution to the extension method.

A.3.1 Python Code

1 import numpy as np

2 import fenics as pde

3 import matplotlib.pyplot as plt

4

5 from Krein_Brownian_Killed_Class import *

6

7 # PDE domain is (x_0 , x_1)x(0, R) with N_x (resp. N_y) points in x (

resp. y)

8 x_0 , x_1 = 0.0, np.pi

9 R = np.pi

10 N_x , N_y = 150, 150

11

12 test = Krein_Brownian_Killed(R)

13

14 #Creating our mesh and test function space

15 mesh = pde.RectangleMesh( pde.Point(x_0 , 0.0), pde.Point(x_1 , R), N_x ,

N_y )
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Figure A.6: A comparison between the values of uf (·, 0) given by the finite element
approximation and the explicit formula given above.
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16 V = pde.FunctionSpace(mesh , "Lagrange", 1 )

17

18 #We have a zero Dirichlet boundary around the boundary except at x =

0.

19 tol = 1E-14

20

21 def Outer_Boundary(x, on_boundary):

22 return (on_boundary) and (x[0] <= x_0 + tol or x[0] >= x_1 - tol

or x[1] >= R - tol)

23

24 #We set this to be a zero boundary condition on the boundary defined

above.

25 u0 = pde.Constant( 0.0 )

26 bc = pde.DirichletBC(V, u0, Outer_Boundary)

27

28 #To solve -psi(-d^2)u = f, we define u’(x, 0) = g written in C++

29 g_str = ’sin(x[0]) + 3.0* sin (3.0*x[0]) + 10.0* sin (10.0*x[0])’

30

31 #Solving as in Poisson problem

32 u = pde.TrialFunction(V)

33 v = pde.TestFunction(V)

34 g = pde.Expression( g_str , element = V.ufl_element () )

35 a = pde.inner( pde.grad(u), pde.grad(v) )*pde.dx

36 L = g*v*pde.ds

37

38 u = pde.Function(V)

39 pde.solve( a == L, u, bc )

40 u.set_allow_extrapolation(True)

41

42 #Plot of 2D solution

43 p = pde.plot(u)

44 vtkfile = pde.File("test_extension.pvd")

45 vtkfile << u

46

47 plt.colorbar(p)

48 plt.plot()

49 plt.xlabel(r"$0 \leq x \leq \pi$")

50 plt.ylabel(r"$0 \leq y \leq \pi$")

51 plt.savefig("pde.png", dpi = 300)

52 plt.close()

53

54 #Simulated u(x, 0) vs. Actual u(x, 0)

55 x_bound = np.linspace(x_0 , x_1 , N_x )

56 u_bound_val = np.array( [u(x, 0.0) for x in x_bound ] )

57 act_val = (1.0/ test.Laplace_Exponent (1.0**2.0))*np.sin( x_bound ) \

58 + (3.0/ test.Laplace_Exponent (3.0**2.0))*np.sin( 3.0* x_bound ) \
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59 + (10.0/ test.Laplace_Exponent (10.0**2.0))*np.sin( 10.0* x_bound )

60

61 #Plot of u(x, 0)

62 plt.plot( x_bound , u_bound_val , "-r", label="Simulated boundary values

")

63 plt.plot( x_bound , act_val , "-m", label="Actual boundary values" )

64 plt.xlabel(r"$0 \leq x \leq \pi$")

65 plt.ylabel(r"$u(x, 0)$")

66 plt.legend ()

67 plt.savefig("boundary_values_of_pde.png", dpi = 300)

68 plt.show()

69 plt.close()
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[40] Kim, P., Song, R., and Vondraček, Z. Potential theory of subordinate

killed brownian motion. arXiv preprint arXiv:1610.00872 (2016).

[41] Kinderlehrer, D., and Stampacchia, G. An introduction to variational

inequalities and their applications, vol. 31. Siam, 1980.

[42] Knight, F. B. Characterization of the levy measures of inverse local times

of gap diffusion. In Seminar on Stochastic Processes, 1981 (1981), Springer,

pp. 53–78.

[43] Kolokol’cov, V. N. Markov processes, semigroups, and generators, vol. 38.

Walter de Gruyter, 2011.

[44] Kotani, S., and Watanabe, S. Krein’s spectral theory of strings and gener-

alized diffusion processes. Functional analysis in Markov processes 923 (1982),

235–259.

[45] Krein, M. On a generalization of stieltjes investigations. In Dokl. Akad. Nauk

SSSR (1952), vol. 87, pp. 881–884.
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