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Abstract
The COVID-19 outbreak has highlighted our vulnerability to novel infections. Faced with this threat
and no effective treatment, in line with many other countries, the UK adopted enforced social dis-
tancing (lockdown) to reduce transmission– successfully reducing the reproductive number R below
one. However, given the large pool of susceptible individuals that remain, complete relaxation of
controls is likely to generate a substantial further outbreak.Vaccination remains the only foreseeable
means of both containing the infection and returning to normal interactions and behaviour. Here, we
consider the optimal targeting of vaccination within the UK, with the aim of minimising future deaths
or quality adjusted life year (QALY) losses. We show that, for a range of assumptions on the action
and efficacy of the vaccine, targeting older age groups first is optimal and may be sufficient to stem
the epidemic if the vaccine prevents transmission as well as disease.

Author summary
In line with most other countries across the globe, and in the absence of a vaccine or pharmaceutical
treatments, the UK has relied heavily upon non-pharmaceutical social measures to control the im-
pact of the COVID-19 pandemic. While this has proved effective in reducing the healthcare burden
compared to an uncontrolled outbreak, this is achieved to the detriment of the economy, education
and many other societal factors. As vaccines are developed which mitigate the disease, it is of great
importance that they are delivered in an optimal manner - reducing mortality and healthcare de-
mands. Using an age-structured mathematical model of SARS-CoV-2 transmission, we test different
vaccine ordering strategies to identify which members of society should be targeted for vaccination
first in order to achieve a specified health objective. In all scenarios we find vaccinating the most el-
derly and vulnerable first to have the greatest impact, though the ultimate success of any vaccination
scheme will be highly contingent on the characteristics of the vaccine itself and the level of population
uptake.

Introduction 1

After its initial detection in late 2019, the SARS-CoV-2 virus has spread across the globe with more 2

than 20 million cases detected by mid-2020 [1]. For many individuals, infection develops into COVID- 3

19 disease, with symptoms including fever, shortness of breath and altered sense of taste and smell, 4

potentially escalating to a more severe state which may include pneumonia, sepsis, and kidney failure 5

[2]. In general these symptoms and their severity have been observed to increase with age, such 6

that it is the elderly that experience the greatest burden of disease. Due to the novelty of the virus, 7

rapidity of its spread and the lack of effective treatments, mortalities (again predominantly in the 8

older age-groups) have also been considerable. 9
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By August 2020, six months after the initial cases in the UK, the country has reported in excess of 10

314,000 cases and more than 40,000 COVID-19 deaths [1]. As in many other countries, the virus 11

spread in the UK has been mitigated by the introduction of a range of social distancing measures 12

including the closing of workplaces, schools, pubs and restaurants, and the restriction of a range of 13

leisure activities. Due to the continued risk of a considerable further infection, combined with the 14

negative social and economic impact of continued social-distancing measures, a vaccine is urgently 15

sought that may help curtail the global pandemic. 16

Mathematical models of COVID-19 dynamics and the impact of vaccination are important for public 17

health planning and resource allocation. However, a substantial challenge of modelling vaccination 18

against SARS-CoV-2 at this stage is the large number of unknown factors. At the time of writing, 19

the UK has reportedly made deals for six different vaccine candidates created via differing approaches 20

[3]: the Oxford (ChAdOx1 nCoV-19) [4, 5] and Janssen (Ad26.COV2.S) [6] vaccines, made from a 21

genetically engineered virus; a vaccine developed by BioNtech/Pfizer (BNT162b1) [7], which uses an 22

novel approach of injecting part of the virus’ genetic code; a vaccine created by Valneva (VLA2001) 23

[8], which uses an inactive version of the virus; a vaccine created by Novavax (NVX-CoV2373) [9] 24

and one under development by GlaxoSmithKline/Sanofi Pasteur [10], both using protein adjuvants to 25

stimulate an immune response. 26

With an array of possibilities, differing in mechanism and still in varying stages of development, 27

estimating response characteristics is infeasible. While the ideal vaccine would work to decrease 28

susceptibility [11], thus limiting viral spread, the first successful candidate may just limit the occurrence 29

or severity of symptoms. Moreover, it is still unclear when any vaccine will reach the final stage of 30

being ready for mass deployment. Finally, while some promise has been shown in small human and 31

animal studies – the success of the Oxford vaccine in a trial involving Rhesus Macaques [7] generated 32

considerable excitement for instance – robust evidence as to how any vaccine candidate will perform 33

in the wider human population is currently lacking [12]. 34

Due to this uncertainty, we utilise a previously developed SARS-CoV-2 transmission model [13, 14] to 35

understand the likely dynamics following the deployment of a vaccine. Rather than testing a single 36

specific vaccine product, we assess three types of vaccines throughout our analysis to produce an 37

evaluation that is as informative as possible for any likely set of vaccine characteristics. Explicitly, these 38

comprise of: a vaccine that reduces susceptibility, thus being effective in inhibiting viral transmission 39

as well as protecting the individual; one that reduces the probability of becoming symptomatic, which 40

still has some benefit in reducing transmission as the model implicitly assumes that transmission 41

from asymptomatic infections is less than from symptomatic cases (in agreement with observational 42

studies that have found asymptomatic cases of COVID-19 to be much less likely to infect others than 43

symptomatic cases [15]); and one that protects against symptoms becoming severe, providing the 44

direct protection against disease to the vaccinated individual only. 45

For each vaccine type we predict the impact of a range of possible scenarios by analysing sensitivity 46

to vaccine efficacy, which may be uniform or age dependent, as well as the scale and targeting of 47

deployment. Further, by considering different orders of prioritisation in terms of age group and 48

health conditions, we arrive at an optimal targeting strategy for vaccination that achieves the greatest 49

reduction in disease impact for the number of doses administered. 50

For a variety of other diseases, there is a precedent for combining modelling approaches with health 51

economic evaluations to inform vaccine policy decisions based on a willingness to pay for each Quality 52

Adjusted Life Year (QALY) saved [16–19]. Utilising this framework, we also consider how vaccination 53

may be optimised to minimise the loss in QALYs (resulting from hospitalisation and mortality as a 54

direct consequence of COVID-19), rather than simply the number of deaths. This methodology could 55

allow a monetary value to be assigned to each dose of vaccine (for the calculation of QALYs lost, see 56
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Section 5 of the S1 text); while some cost benefit analysis has been pursued in relation to SARS-CoV-2 57

[20, 21], the unprecedented scale of the pandemic invalidates the usual metrics in this approach. We 58

therefore do not utilise this health-economic approach as the main focus of our paper. 59

Despite the obvious need for both country-specific and more generic forecasts of the effects of vaccina- 60

tion on the COVID-19 outbreak, it has received relatively limited attention [22–24]. Our study adds 61

a UK specific perspective to these studies and generates a wider view on how the type of protection 62

offered by the vaccine as well as the underlying efficacy interact with targeting risk-groups to generate 63

maximal benefit. 64

Methods 65

We used a compartmental age-structured model, developed to simulate the spread of SARS-CoV-2 66

within regions of the UK [13], with parameters inferred to generate a good match to deaths, hospital- 67

isations, hospital occupancy and serological testing [14]. 68

It involves an extended SEIR-type framework: susceptibles (S) may become infected and move into 69

a latent exposed (E) state before progressing to become infectious. Echoing the observed behaviour 70

of COVID-19 infections, the model differentiates between individuals who are symptomatic (D, likely 71

to be detected) and those who are asymptomatic (U, likely to remain undetected). Formulated as 72

a system of ordinary differential equations (listed in Section 1 of the S1 Text), model simulations 73

involved numerically integrating these sets of equations. 74

Partitioning those infectious by symptom status allows for the lower level of transmission believed to 75

be associated with asymptomatic infection. It also generates the possible progression of symptoms 76

increasing in severity, leading to hospitalisation and/or death (Fig 1, see Section 2 of the S1 text for 77

additional information on computation of hospitalisation and mortality quantities). 78

The model is stratified by age structure, with force of infection determined by the use of age-dependent 79

(who acquires infection from whom) social contact matrices for the UK [25, 26]. Additionally, we 80

assumed susceptibility and the probabilities of becoming symptomatic, being hospitalised and dying 81

to be age dependent, and are matched to UK outbreak data. Finally, our model formulation accounted 82

for the role of household isolation by allowing first infections within a household to cause new secondary 83

infections at an increased rate (more details may be found in [13]). This allows secondary household 84

contacts to be isolated and consequently play no further role in the outbreak (further details are 85

provided in Section 1 of the S1 text). Model parameters were inferred on a regional basis using local 86

time series of recorded daily hospitalisation numbers, hospital bed occupancy, ICU occupancy and 87

daily deaths [14] (see Section 3 of the S1 Text). 88

This model formulation is then extended to capture a range of vaccination scenarios. Below we detail 89

how vaccination of different forms is introduced into the model; the degree to which non-pharmaceutical 90

interventions are reduced; and how the population is partitioned according to high-risk comorbidities 91

- to assess if these are a priority group for immunisation. 92

Comorbidity 93

Alongside age, it is well understood that underlying health conditions are critically important in deter- 94

mining the likelihood of individuals to experience severe symptoms; in younger, healthier populations 95

a relatively low symptomatic rate has been observed [27–30] and there are few severe cases. To ac- 96

count for heterogeneity of risk that is not attributable to age, we therefore allowed the probability of 97

experiencing severe health outcomes (as a result of COVID-19 disease) to be dependent on underlying 98

health conditions. 99
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Fig. 1: Representation of model states and transitions. Individuals starting from the S (susceptible-
unvaccinated) or V (susceptible-vaccinated) states move through the model to conclude in the R
(recovered) or Rd (dead) states. Those in the asymptomatic, U, state all eventually recover, those in
the symptomatic, D, state may either recover or die directly, or move into hospital and/or ICU before
either recovery or death. Three different possible types of vaccination are shown by green arrows and
bracketed variables. These are:

1. Reduction in susceptibility.
2. Reduction in becoming symptomatic.
3. Reduction in experiencing severe symptoms.

Further model details may be found in the supporting information.

Model Parameters

S - Susceptible
V - Vaccinated
E - Exposed
D - Symptomatic infected (likely detected)
U - Asymptomatic infected (likely undetected)
Rd - Death
Rs - Recovered (survived)

a,c,[v] - Age, comorbidity and possible vaccination stratification
σ - Susceptibility
λ - Force of infection (as a function of U,D )
ε - Rate from exposure to infection
d - Probability of becoming symptomatic
γ - Rate to recovery/death
s - Probability of symptoms becoming severe
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We calculated the additional risk by comparing the prevalence of conditions amongst COVID-19 100

mortalities within the general population. For the purpose of simplification, we used a binary system 101

to divide the population into those with significant health conditions and those without, rather than 102

considering individual conditions separately [31]. 103

We estimated the proportion of the population at heightened risk, due to the presence of a cormobidity, 104

using the twelve health conditions with the highest associated risk factors as identified in a recent study 105

by Williamson et al. [32]. We summarise these conditions, alongside their prevalence and individual 106

risk, in table 1. 107

For the 18.42% of the population with one or more of the comorbidity conditions listed in Table 108

1, we calculated that the average increase in the risk of morbidity is 2.43 (mean value taking into 109

account condition dependence) - suggesting that individuals with these risk factors are more than 110

twice as likely to die from COVID-19 infection compared to others of the same age. The distribution 111

of these combined symptoms by age group was calculated using data from the Royal College of General 112

Practitioners Research and Surveillance Centre [33] combined with statistics on cancer and diabetes 113

prevalence found in [34, 35]. 114

The comorbidities associated with increased risk from COVID-19 infection are found to occur pre- 115

dominantly in elder age groups (Fig 2a), with individuals above 75 years of age more likely than not 116

to have underlying health problems. When these factors are incorporated into the predictive model, 117

we see that deaths are dominated by older age groups and individuals with underlying comorbidities 118

(Fig 2b). 119
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(a) Population demographics.
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(b) Demographics of predicted mortalities.

Fig. 2: The percentage of (a) the population and (b) deaths predicted by our model, within each
five-year age band. The proportions of each age group with health conditions are shown in red, with
the proportion of each age group without health conditions (healthy) shown in purple.

Social Measures 120

The use of non-pharmaceutical social-distancing (or lockdown) measures has already proven to have 121

substantially reduced the scale of the pandemic [36]. We include such measures into our model through 122

a reduction in the relevant contact matrices (i.e. scaling down matrices associated with schools, work 123

places and other settings) whilst increasing the level of contact within household environments [13, 14] 124

(expanded details are given in Section 4 of the S1 Text). Additionally, we incorporate household 125

quarantining by transferring a proportion of the symptomatic individuals to a quarantined state with 126

a still greater reduction in external contact. Test and trace is not yet included in the model, due to 127
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Condition Percentage of population Increased risk (CI)
Diabetes 9.9 2.06 (1.88-2.25)

Kidney disease 6.3 1.72 (1.62-1.83)
Heart disease 6.1 1.27 (1.20-1.35)

Respiratory (excl. asthma) 4.1 1.78 (1.67-1.90)
Dementia/stroke 2.1 1.79 (1.67-1.93)
Severe asthma1 1.7 1.25 (1.08-1.44)

Immunosuppressive conditions 1.6 1.69 (1.21-2.34)
Cancer2 1.2 2.51 (2.01-3.15)

Neurological (excl. dementia/stroke) 1.0 2.46 (2.19-2.76)
Liver disease 0.7 1.61 (1.33-1.95)
Spleen diseases 0.2 1.41 (0.93-2.12)
Organ transplant 0.1 4.27 (3.20-5.70)

1 Severity defined by recent oral corticosteroid use.
2 Limited to cases that have either been diagnosed in the last year or involve haematological malignancy.

Table 1: Table of identified significant health conditions as calculated in [32]. For each condition we
give the estimated prevalence in the population as well as the increased risk of death found as a hazard
ratio calculation adjusted for demographics and coexisting conditions.

lack of data on its current scale or effectiveness. 128

It is expected that a sustained level of social-distancing measures will continue to be used to mitigate 129

the disease until pharmaceutical approaches are available. As such, in all simulations, we initially sim- 130

ulate the first wave of the UK epidemic, followed by a continuation of lock-down measures (generating 131

an initial R ≈ 1.0) until vaccination is completed. 132

As exemplified by simple models [37, 38], the impact of any vaccination campaign is highly dependent 133

upon both the proportion of the population successfully immunised and the reproductive ratio. As 134

such, we expect the success of any COVID-19 vaccine programme to depend on the reproductive 135

ratio R when the programme begins, which in turn is dependent upon the level of non-pharmaceutical 136

interventions (NPIs) and the proportion of the population already infected. Fig 3 compares simulations 137

in which all NPIs are lifted at the start of 2021 (generating an initial R ≈ 2.3 at this point), with a 138

scenario in which a limited number of NPIs are still in place (leading to R ≈ 1.8). 139

Given the general level of awareness and concern in the population, we take R ≈ 1.8 as our base-case 140

during the majority of our simulations, but do assess a return to pre-COVID behaviour (R ≈ 2.3) on 141

completion of the vaccination campaign. To tune the initial reproduction number R to the desired 142

value, the scaling of the contact arrays was set to obtain a specified growth rate r (computed by an 143

eigenvalue approach), corresponding to the requested R value. 144

Vaccination 145

The novelty of the virus, combined with the urgency in finding a response, has resulted in a plethora 146

of possible vaccine candidates in various stages of development across the globe [39, 40]. To account 147

for uncertainty in both the type and the degree of protection a vaccine may provide, we test the effects 148

of three different vaccination mechanisms within our model, each over a range of efficacy: 149

1. Reduction in susceptibility (type 1): We reduce the rate at which the vaccinated susceptibles 150

may become infected. This is the most effective form of vaccine as it may significantly reduce R 151

as well as protecting the individual. 152
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Fig. 3: Simulated daily deaths without vaccination. (a) First wave of infection as observed from
the start of 2020. (b) Subsequent wave of infection following relaxation to limited NPIs, sufficient to
reduce the basic reproductive number to approximately R = 1.8(±0.1). (c) Subsequent infection wave
following complete relaxation of all NPIs leading to R = 2.3(±0.2). Uncertainty is represented by the
shaded region, within which 95% of simulations are found to fall.

2. Reduction in becoming symptomatic (type 2): The age and health dependent probabilities of 153

becoming symptomatic are adjusted according to vaccine efficacy. This type of vaccine therefore 154

has a substantial impact on disease, but also has some impact on infection spread (and hence 155

R) due to asymptomatic individuals being less infectious. 156

3. Reduction in experiencing severe symptoms (type 3): The age dependent probabilities of symp- 157

toms becoming severe (leading to hospitalisation and/or death) are adjusted according to vaccine 158

efficacy. This type of vaccine only protects the individual and does not impact the transmission 159

dynamics. 160

The action of these three vaccination types are shown in Fig 1. It should be noted that, whilst instan- 161

taneous vaccination may not be a literal possibility, due to the uncertainty on time scales combined 162

with the potential for further infectionto be delayed by social-distancing measures during vaccine de- 163

ployment, it is a reasonable modelling assumption for our exploratory purposes. Similarly, to constrain 164

the dimensions of our exploratory analysis we assumed no loss of vaccine-induced immunity for the 165

duration of the simulations (with a similar assumption applied to immunity derived from natural 166

infection). 167

Simulation specifics 168

In all simulations, we ran the model for an initial period (until the end of 2020) without any form 169

of vaccination, to create a base-line population of susceptible, infectious and recovered (immune) 170

individuals that approximates the state of population when vaccination begins. Given that during 171

this period R is close to, but below one, the precise timing of the start of the vaccination programme 172

has little effect. Similarly, if NPIs are maintained until vaccination is complete, the speed of vaccination 173

is unlikely to play a major role. 174

At the start of 2021, to simulate rapid immunisation, we transfer a specified proportion of the remaining 175

susceptible individuals into a vaccinated state; although both infected or recovered individuals may 176

also be vaccinated this does not impact their dynamics and can be ignored. The action of infection 177

on individuals in the vaccinated class is dependent on vaccine type. 178
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We now outline the four/five different approaches we use to quantify the optimal targeting of vaccine 179

and the sensitivity to key uncertainties. 180

Priority order of vaccination 181

To determine a vaccination priority order for who should receive the vaccine first, we ranked each 182

group by the ratio of the number of doses administered to the reduction in the outcome measure of 183

interest. Our two selected outcome measures were: (i) deaths post-2020; (ii) quality adjusted life 184

years (QALYs) lost post-2020. We divided the population into 20 year age bands (0-19,20-39,40-59,60- 185

79,80+), together with an additional group of people with comorbidities independent of age. For 186

each vaccination scenario considered, we exhaustively tested the order of deployment amongst these 187

groups. 188

Prioritisation of healthcare workers 189

Due to their significantly heightened exposure, another group that may benefit from early targeted 190

vaccination is healthcare workers (HCWs). Proportionally, 11.6 times more cases have been observed 191

in UK HCWs than the general populace – this can partially be explained by the increased testing 192

in hospital environments. Yet, even accounting for this increased testing, HCWs are estimated to 193

experience a 3.40 (3.37-3.43) fold increase in infection risk [41]. 194

We included this increased risk to HCWs in our model by adjustment of the susceptibility parame- 195

ters, using a similar methodology that was applied to underlying health conditions. This increased 196

susceptibility was applied to all of the 1,134,824 full time NHS employees [42], which we assumed to 197

be evenly distributed (age and region proportional) amongst the working age group (20-64). 198

Sensitivity to vaccine characteristics 199

Using the identified optimal prioritisation order for the given vaccine type, with a maximum vac- 200

cine uptake of 70% across each sub-group in the population, we analyse the sensitivity of number 201

of deaths and QALYs lost to vaccine efficacy, considering vaccines with 50%, 70% and 90% efficacy. 202

Here we define an efficacy of n% to give an n% reduction in susceptibility/chance of becoming symp- 203

tomatic/chance of developing severe symptoms for a type 1/2/3 vaccine respectively. 204

Sensitivity to speed of vaccine deployment 205

In the majority of the modelling we assume that the time needed to vaccinate the population and for 206

the vaccine to confer immunity is short. This assumption has little impact if the reproduction number 207

R is below one while the vaccine program is being undertaken. 208

To explore the impact of slow vaccine deployment in the face of increasing infection we utilise sim- 209

ulations in which NPIs are relaxed, to bring R up to 1.8, two months before a type 1 vaccine with 210

70% efficacy begins deployment, thus delivery occurs alongside an already widespread and increasing 211

epidemic. We simulate gradual delivery dynamics by running our model over daily time steps with 212

fixed number of susceptible or asymptomatic individuals being successfully immunised at each inter- 213

val. More realistic delivery scenarios may be simulated as vaccination deployment plans are better 214

understood. 215

Sensitivity to age-dependent efficacy 216

Many existing vaccines are not uniformly effective and response may vary significantly due to factors 217

including age [43]. In the case of a virus where severity of symptoms are age-dependent, like SARS- 218
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CoV-2, age-dependent vaccine efficacy may have a significant impact. Of particular concern is whether 219

an age-dependent decline in efficacy could alter the group priority order for receiving a vaccine, and 220

the potential scale of the subsequent outbreak. We test the likely implications of reduced vaccine 221

effectiveness in the elderly by considering an array of different efficacy profiles consisting of a base 222

efficacy uniform amongst those below the age of 45 with linearly declining efficacy to a minimal value 223

shared by those above the age of 85. 224

For each of the scenarios described above and for each combination of considered vaccine type, efficacy 225

and priority order, we performed 100 separate simulations. Each simulation used a distinct parameter 226

set drawn from posterior parameter distributions, which were obtained from the inference procedure 227

that tuned the model to the available COVID-19 health outcome data streams for the UK [14]. 228

Results 229

We now consider the ordering of vaccination and its impact in terms of the number of deaths and as- 230

sociated QALYs lost. For the majority of the situations we consider, we plot the number of individuals 231

vaccinated on the x-axis (assuming a maximum of 70% of susceptible or asymptomatically infected 232

individuals are vaccinated in any group) and the resultant number of deaths or QALY losses on the 233

y-axis. The priority ordering is determined by which groups generate the greatest reduction for the 234

number of doses administered (steepest decline on the graphs). 235

Selection of priority order 236

In every case, optimising for either a reduction in death or a reduction in QALYs was found to give 237

consistent ordering, due to the substantive contribution of mortality events to the overall QALY loss 238

(Fig 4). When structuring by age alone, the most efficacious reduction was found through an oldest 239

first approach – despite not being the most crucial group in terms of transmission, the considerably 240

heightened vulnerability amongst the elderly means that priority should be given to protecting them 241

directly. We also highlight the substantial advantages of a strategically targeted vaccine over an 242

unbiased (random) approach in every scenario (blue line, Fig 4). 243

In contrast, there was less consistency in the optimal position of vaccinating comorbidities in the 244

priority order, which varied between just before and just after the 60-80 age group. One such instance 245

in which the discrepancy may be seen is when contrasting the type 1 and type 3 vaccine with a low level 246

of NPIs (R ≈ 1.8, Fig 4 a and b). As may be seen in Figure 2 there is a strong correlation between 247

age and prevalence of comorbidities meaning that an age only approach is already relatively effective 248

in targeting the most vulnerable first. The significance of the comorbidity group is also reduced by 249

fact it spans age groups itself (the ideal program would involve an ordering of each age group split 250

into those with and without comorbidities though in practice this would likely be too complex to 251

implement). The relatively small cost-benefit implications we see by varying the priority of the group 252

of people with comorbidities, due to this, may still be substantial enough however to be worth critical 253

consideration in a scenario where vaccine quantity and/or deployment rate are limited. 254

Healthcare workers 255

We now consider the addition of healthcare workers (HCW) as an additional risk group, and assess 256

their optimal position in the order of vaccination priority. For a type 1 vaccine (for which there is 257

benefit in targeting infection spreaders as well as the vulnerable) we associate high important to the 258

vaccination of HCW, second only to the most elderly age group of those aged 80 and above (Fig 5). It is 259

important to note that our treatment of HCWs only accounts for increased personal risk. We have not 260

taken into account the increased contact between HCWs and the vulnerable which may significantly 261
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(c) Type 3, R=1.8
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Fig. 4: Comparison of vaccination ordering for four different vaccination scenarios. In each panel, the
simulated points represent the number of subsequent deaths expected after vaccinating everyone up
to a given group following an optimum strategy (identified by giving greatest reduction in deaths per
vaccination in each instance) represented by the purple and orange connecting lines. Here the purple
line shows the path of the optimum vaccination ordering of groups comprising of 20 year age bands
together with comorbidities across all ages, and the orange line for age groupings only. The blue lines
show an unbiased strategy with vaccinated numbers dispersed evenly across the population and the
grey dotted line show the base level of morbidity from the first infection wave.

amplify their risk as spreaders of infection, increasing their priority for vaccination. Given also the 262

relatively small number of HCWs (less than 2% of the population), we conclude that this group should 263

be included as a high priority group for vaccination. However, for vaccines of type 2 or 3 that do not 264

significantly reduce infection spread, the HCW group may be considerably less important and their 265

priority should be judged accordingly. 266

Vaccine type comparison under optimal priority order 267

For the three types of vaccine action, and for three different levels of efficacy we consider the impact 268

of a vaccine program targeted by age and comorbidity under weak non-pharmaceutical interventions 269

(R ≈ 1.8). For Type 1 vaccines, which have the greatest impact, we also consider complete lifting of 270

all non-pharmaceutical interventions (R ≈ 2.3). 271
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Fig. 5: Optimal vaccination ordering for age, comorbidity and HCW groups in a scenario with a type
1 vaccination and low level social measures (R = 1.8).

Type 1 vaccine 272

Due to the ability of a type 1 vaccine in preventing the spread of infection as well as protecting specific 273

individuals, we find that such a vaccine, even with relatively low efficacy, could be highly effective in 274

preventing further COVID-19 mortality when combined with limited social-distancing measures (i.e 275

when R ≈ 1.8). 276

The best performing prioritisation order begins with those aged 80 and above, followed by those with 277

health conditions, before the rest of the population in age order. Under such an ordering, we estimate 278

a vaccine with 50% efficacy delivered to 70% of the population above the age of 20 to be sufficient 279

to prevent a SARS-CoV-2 resurgence in our considered scenario (Fig 6 top row), although a more 280

efficacious vaccine could achieve the same results with only vaccinating those above 40. 281

Type 2 vaccine 282

When combined with limited social-distancing measures (such that R = 1.8), a type 2 vaccine (that 283

reduces the chance of becoming symptomatic) with reasonable efficacy may still be sufficient to prevent 284

a significant further mortality (Fig 6 second row). However, due to only providing a limited reduction 285

in transmission little additional benefit is to be found in vaccinating those in low risk (younger age) 286

categories. Again we identify that it is best to prioritise those above the age of 80, followed by those 287

with health conditions, before the rest of the population in age order. For type 2 vaccines that generate 288

an efficacy of 50% or below we would predict a large-scale subsequent wave of infection when control 289

measures are relaxed with a comparable number of deaths to experienced in the first wave. 290

Type 3 vaccine 291

A type 3 vaccination, which only reduces the chance of a recipient experiencing severe disease, does 292

not reduce the risk of transmission and therefore we predict a large scale second outbreak when 293

containment measures are lifted, comparable to that shown in Fig 3b. However, it can still generate 294

considerable benefit when deployed to high risk individuals, particularly those over the age of 60 (Fig 295

6 third row). For the most efficacious vaccines, immunising 70% of those over 60 years old could 296

potentially halve the number of deaths following vaccination. 297

Contrary to the other three vaccination types, here we find it best to prioritise 60-80 year olds above 298

11



Fig. 6: Deaths and QALYs lost versus the proportion of the population vaccinated. We use the
optimal vaccination ordering with a maximum vaccine uptake of 70% across the population. The
optimal vaccination ordering did not depend on the collection of considered vaccine efficacies. We
display the mean values of 100 independent simulations for each vaccine efficacy (solid lines), with
95% prediction intervals (shaded regions). The grey dotted line shows the base level of mortality from
the first wave of the pandemic.
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all those with health conditions. We postulate this is due to the lack of reduction in transmission, such 299

that the higher degree of social contact amongst the younger people within the comorbidity group is 300

not an influencing factor. 301

Type 1 vaccine, without measures 302

The most desirable vaccine would be one that is sufficient to entirely contain the pandemic without 303

the need for any other intervention (when we estimate R ≈ 2.3). Amongst our set of vaccine scenarios, 304

we find the only plausible candidate for preventing a SARS-CoV-2 resurgence (in the absence of any 305

other intervention) would be a type 1 vaccine with an efficacy above 80% and with 70% of the entire 306

population vaccinated (Fig 6 bottom row). Other levels of vaccine efficacy would naturally trade-off 307

with a different proportions of the population needing to be vaccinated; similarly a higher uptake 308

in the older at-risk populations would also mean that fewer younger individuals would need to be 309

immunised. 310

For a type 1 vaccine in a scenario without additional measures (R ≈ 2.3), we find scant difference 311

between taking a fully age ordered strategy, and one including comorbidity, leaving no clear point at 312

which those we categorise as having health conditions should be prioritised (Fig 4d). 313

Slow deployment 314

The results presented so far are based on a model with instantaneous vaccination delivery. This is 315

deemed sufficient for a generic understanding of the impacts of vaccination, varying uptake levels and 316

targeting. Additionally, if NPIs remain in place (such that R < 1) until vaccination is completed, the 317

time taken to implement a slower vaccination campaign will lead to there being fewer cases when NPIs 318

are finally relaxed. It is also the case that, since temporal factors such as deployment speed and a 319

start date for delivery are largely unknown, there is limited value in incorporating complex dynamics 320

at this time. More realistic delivery scenarios may be simulated as vaccination deployment plans are 321

better understood. 322

To explore the impact of slow vaccine deployment in the face of increasing infection, we present 323

simulations in which NPIs were relaxed (with R raised up to 1.8) two months before a type 1 vaccine 324

with 70% efficacy began deployment. For the conditions assumed here, the race between vaccination to 325

reach herd-immunity and the rise of the epidemic indicates the speed of vaccine deployment is key (Fig 326

7); a rapidly deployed untargeted campaign is far more successful than a slow but optimally targeted 327

one. Importantly, we find that the optimal vaccination strategy (in terms of the ordering of age and 328

risk groups) is independent of delivery speed. However, for very rapid vaccine deployment (when all 329

groups can be vaccinated before there are many more infections) or for very slow deployment (when the 330

epidemic is complete before many individuals are immunised) the ordering is far less important. 331

Age-dependent efficacy 332

To simulate reduced efficacy of the vaccine in older age groups, we allow efficacy to be age-dependent 333

- attaining a high maximum value for individuals below age 45, then dropping linearly to age 85 when 334

the efficacy reaches a minimum value (Fig 8a inset). 335

There is again a surprising robustness in ordering (Fig 8a) with the elderly (over 80 years old) remaining 336

the key group to initially target, even when the efficacy in this age group drops to just 20%. Even 337

lower efficacies necessitate a switch with individuals with underlying comorbidities or aged 40-60 being 338

prioritised. Lower efficacy vaccines are, unsurprisingly, associated with larger subsequent epidemics 339

and therefore more deaths; much of this increase is concentrated, however, in low efficacy regions 340
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Fig. 7: The total number of (left) deaths and (right) QALYs lost following the start of vaccinationvs
speed of deployment for a type 1 vaccination with 70% uptake and 70% efficacy. Vaccine deployment is
started 2 months after stricter NPIs are relaxed to leave low level measures sufficient to keep R ≈ 1.8.
The purple line (and shaded prediction region) represents projected outcomes under the identified
optimal ordering with age and comorbidity groups, the orange line outcomes using the identified
optimal ordering accounting for age groups only (without comorbidity), and the blue line outcomes
with an unbiased population wide delivery.

of parameter-space, with the estimated number of deaths being relatively constant across a range of 341

efficacy values for both older and younger age-groups. 342

While here we focus on a type 1 vaccine; the results for vaccine types 2 and 3 are found to be more 343

extreme, as the drop in efficacy aligns with the age-groups most in need of protection. For a type 3 344

vaccine the elderly are found to remain the initial targeting priority up to a reduction in efficacy down 345

to just 10%. 346
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Fig. 8: The effect of different levels of declining type 1 vaccine efficacy (R ≈ 1.8) on both the
optimal vaccine ordering and success at limiting mortality. A maximum efficacy value is applied to
all individuals below the age of 45 and a minimum level to individuals above the age of 85. Efficacy
is assumed to decay linearly between these two levels to give the efficacy for intermediary age groups.
This distribution is represented by the inset in panel (a). Panel (a) shows when, dependent on
minimum and maximum efficacy, the two groups deemed most significant for vaccination impact vary.
In the purple region it is optimal to vaccinate those above the age of 80 followed by comorbidities,
in the red comorbidities followed by 80+ and in the yellow those in the 40-60 age group followed by
comorbidities. Panel (b) shows the expected further mortality following vaccination with 70% of the
whole population vaccinated for different minimum/maximum type 1 vaccine efficacies. The large
dark blue region corresponds to less than 10,000 deaths following vaccination.

Discussion 347

It has often been stated that the only way for population behaviour to return to normal is through 348

achieving herd-immunity. The large amount of natural infection likely to have occurred by the time 349

a vaccination program may be completed will make a significant contribution towards this, however, 350

allowing this to occur solely through natural infection is far too dangerous, even if the most at-risk 351

groups are shielded, making vaccination the only viable alternative. While there are huge efforts 352

being undertaken to develop a vaccine, less attention has been paid to how such a vaccine would be 353

deployed. For SARS-CoV-2, the infection is relatively homogeneous across age-groups with a slight 354

bias towards younger adults [44], but disease - especially severe disease - is associated with old age and 355

a range of comorbidities. As with many vaccines, there is tension between vaccination of those most 356

responsible for driving transmission (vaccination to reduce R) and vaccination of those most likely to 357

suffer severe health outcomes (vaccination to limit disease) [45]. Here, using detailed mathematical 358

models that have been matched to UK COVID-19 outbreak data, we find that vaccine strategies 359

targeting the elderly are optimal in terms of reducing future mortality (Fig 4), even if vaccinating 360

younger group-ages would have a greater impact on the reproductive number, R. 361

We have found that five main factors influence the success of any vaccination programme (Fig 6). 362

1. The characteristics of the vaccine: vaccines that reduce susceptiblity and therefore prevent on- 363

wards transsmission (type 1 vaccines) lead to a far greater reduction in mortality, compared to 364

vaccines that reduce disease (types 2 and 3); 365
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2. The efficacy of the vaccine: vaccines of all types with higher efficacy generate both greater 366

protection of individuals and (for type 1 and 2 vaccines) greater protection within the population; 367

3. The reproduction number once the vaccination program is complete: higher reproduction num- 368

bers require a greater proportion of the population to be immunised to prevent a second outbreak 369

(mimicking the classic Vc = 1 − 1/R0 paradigm). If all non-pharmaceutical interventions (NPIs) 370

are lifted, and if approximately 70% of the population are vaccinated, only highly efficacious, 371

type 1 vaccines are able to control subsequent waves of infection; 372

4. The proportion of the population vaccinated: throughout we have assumed that at most 70% 373

of any age or risk group would be vaccinated, however there is a natural relationship between 374

vaccine efficacy and proportion vaccinated that generates the same level of overall protection; 375

5. Who is vaccinated: we have consistently shown that prioritising the vaccination of the elderly is 376

by far the most effective strategy for reducing subsequent deaths. It is only for vaccines that have 377

a vastly reduced efficacy in the elderly (below 20%) that other prioritisation orderings become 378

more effective. 379

380

In the majority of this work, we have focused on the resultant outbreak after protection by vaccination 381

is complete. At the time of writing all known vaccine candidates require two doses separated by a 382

significant time interval with a further delay between vaccination and protection. If the reproductive 383

ratio remains below one while these events take place, then in general the delays are irrelevant. How- 384

ever, in the scenario where NPIs are relaxed before immunisation of the population is complete, rapid 385

deployment of the vaccine is critical to success (Fig 7). 386

387

Our analysis has also focused throughout on two differing outcome measures, both the number of 388

deaths and the expected QALY loss. Given that QALYs give greater weight to preventing illness or 389

death in younger age-groups, it is somewhat surprising that the optimal order of vaccination remains 390

unchanged. This can only be attributed to the far greater severity of disease experienced by the elderly. 391

We have purposefully not performed a full cost-benefit analysis on the vaccine, as in many ways the 392

outcome of this pandemic is difficult to capture in monetary terms. However, under the assumption 393

that R ≈ 1.8, an unvaccinated population would experience a loss of a further 1.58 (1.29-1.78) million 394

QALYs after the first wave of infection, which could be prevented by vaccination of 20.6 (18.9-22.3) 395

million targeted individuals or 41.2 (37.8-44.6) million doses of a vaccine with 90% efficacy (assuming 396

the need for a primary and booster dose). This simple calculation, together with a standard cost- 397

effectiveness threshold of £20,000 per QALY, would suggest that the UK should be willing to pay 398

around £767 (£578-£942) per dose of vaccine - highlighting its huge public health benefit. 399

400

Our mathematical model has been carefully matched to the observed dynamics in the UK [14], 401

capturing the fundamental age-structured epidemiology. In contrast, at the time of the original writing 402

of this manuscript in September 2020, there was little information about the characteristics of any new 403

vaccine and the associated model parameters. Therefore, many more details could subsequently be 404

incorporated within the model structure as these became known for any emerging vaccine candidate. 405

We elaborate here on uptake, efficacy, time between vaccination and becoming immunised, and waning 406

immunity. 407

For simplicity, we assumed 70% vaccine uptake across all age-groups based on what has been obtainable 408

for vaccines targeting other infections, such as within elder age groups and healthcare workers for the 409

UK seasonal influenza vaccination programme [46]. In practice, vaccine uptake is likely to be regionally 410

and socio-demographically correlated [47, 48]. Such correlations may potentially lead to pockets of 411
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high susceptibility in the population which can act as locations of small-scale outbreaks and reduce 412

herd immunity [49]. It is also likely that vaccine uptake will vary in time as the population’s perceived 413

risk varies [50, 51], with high levels of hospitalisations and deaths leading to a greater demand for the 414

vaccine. We expect there to be a complex four-way interaction between levels of infection, NPI policy, 415

NPI adherence and vaccine uptake. From a public health perspective, it is therefore key to understand 416

the drivers of vaccine uptake and vaccine hesitancy, identify groups that may have lower than average 417

uptake and plan accordingly. 418

Similarly, the assumed efficacy has either been taken as constant across all age-groups or obeying 419

a simple declining function with age; incorporating more realistic estimates about the action of any 420

vaccine is a vital first step in assessing the benefits. Post the initial composition of this article, 421

multiple vaccine manufacturers have peer-reviewed publications presenting the findings of their phase 422

3 trials. These have generally demonstrated high vaccine efficacy against symptoms [52–54], up to 423

95% given a two dose schedule for the Pfizer/BioNTech vaccine [52], though as of January 2021 424

the transmission blocking potential of these vaccines remains unclear. From our set of vaccination 425

characteristic scenarios, the Type 2 vaccine with 90% efficacy coincides most favourably with the 426

attributes discerned from clinical trials thus far. 427

To a large extent, we have also ignored the time delays between the start of any vaccine program and 428

the protection of the vaccinated individuals; the full implications of any delays can only be calculated 429

once more is known about the mechanisms and limits on delivery, as well as a better understanding 430

of the reproductive number (R) during and after the campaign. Including these elements within the 431

model is feasible, but is presently hampered by a lack of data for parameter inference. 432

Over longer time scales, the possibilities of waning immunity and mutation may perturb these pre- 433

dictions. Waning immunity, of immunity either naturally derived immunity or immunity induced 434

from vaccination, may necessitate regular vaccination programmes against SARS-CoV-2 protecting 435

the most vulnerable in a similar manner to seasonal influenza vaccines [55]. Currently there is a 436

lack of fundamental understanding of SARS-CoV-2 epidemiology, in particular whether subsequent 437

infections have the same severity as primary infections, as well as the duration of protection. Both 438

of these elements can be factored into the prediction mechanisms, but without detailed evidence such 439

long-term forecasts are speculation. 440

Finally, the underlying transmission model described is necessarily a simplified representation of reality 441

based on several assumptions. Use of alternative assumptions may have an impact on the determined 442

vaccine priority order. For example, the data informing contact structure for the UK was measured 443

historically. Were contact patterns in early 2020 (pre-lockdown) to substantially differ from the pre- 444

existing data, the influence of projected NPIs and vaccination effects may be impacted. Similarly, 445

while we can infer the compliance to the currently imposed rules given a parsimonious approach of 446

an age-independent scaling of the contact arrays, in reality there may be age-specific social distancing 447

effects. However, we had limited understanding of how people would behave as controls are released 448

— would they remain wary of potentially infectious situations, or would they compensate for the time 449

in lockdown. This still remains an open question [56] and is a key policy consideration as restrictions 450

are varied. 451

This work has focused on the dynamics within the UK, but the robustness of our conclusions, that 452

the vaccine should be optimally targeted at the elderly, suggests that this finding should hold for 453

many countries with similar age-profiles and age-structured mixing patterns. Ultimately, vaccination 454

remains our only way out of this pandemic, and it is therefore important that the vaccine is deployed 455

as efficiently as possible such that early limited supplies are used to greatest effect. 456

17



Author contributions 457

Conceptualisation: Matt J. Keeling. 458

Data curation: Matt J. Keeling; Edward M. Hill. 459

Formal analysis: Sam Moore. 460

Investigation: Sam Moore. 461

Methodology: Sam Moore; Matt J. Keeling. 462

Software: Sam Moore; Matt J. Keeling; Edward M. Hill; Louise Dyson; Michael J. Tildesley. 463

Validation: Sam Moore; Matt J. Keeling; Edward M. Hill; Louise Dyson; Michael J. Tildesley. 464

Visualisation: Sam Moore. 465

Writing - original draft: Sam Moore. 466

Writing - review & editing: Sam Moore; Matt J. Keeling; Edward M. Hill; Louise Dyson; Michael 467

J. Tildesley. 468

Financial disclosure 469

This report is independent research funded by the National Institute for Health Research (NIHR) 470

[Policy Research Programme, Mathematical & Economic Modelling for Vaccination and Immunisation 471

Evaluation, and Emergency Response; NIHR200411]. The views expressed are those of the authors 472

and not necessarily those of the NIHR or the Department of Health and Social Care. It has also been 473

supported by the Engineering and Physical Sciences Research Council through the MathSys CDT 474

[grant number EP/S022244/1] and by the Medical Research Council through the COVID-19 Rapid 475

Response Rolling Call [grant number MR/V009761/1]. The funders had no role in study design, data 476

collection and analysis, decision to publish, or preparation of the manuscript. 477

Ethical considerations 478

The data were supplied from the CHESS database after anonymisation under strict data protection 479

protocols agreed between the University of Warwick and Public Health England. The ethics of the 480

use of these data for these purposes was agreed by Public Health England with the Government’s 481

SPI-M(O) / SAGE committees. 482

Competing interests 483

All authors declare that they have no competing interests. 484

18



References
[1] for Disease Prevention EC, Control. Covid-19 situation update worldwide, as of 16 august

2020. https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases ((accessed Au-
gust, 2020)).

[2] NHS UK. Check if you or your child has coronavirus symptoms (2020). URL https://www.nhs.
uk/conditions/coronavirus-covid-19/symptoms/. [Online] (Accessed: 11 December 2020).

[3] News B. Coronavirus vaccine: Uk government signs deals for 90 million doses. https://www.bbc.
co.uk/news/health-53772650 ((accessed August, 2020)).

[4] Graham SP, McLean RK, Spencer AJ, Belij-Rammerstorfer S, Wright D, et al. Evaluation of the
immunogenicity of prime-boost vaccination with the replication-deficient viral vectored covid-19
vaccine candidate chadox1 ncov-19. npj Vaccines 5(1):1–6 (2020).

[5] Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, et al. Safety and immunogenicity of the
chadox1 ncov-19 vaccine against sars-cov-2: a preliminary report of a phase 1/2, single-blind,
randomised controlled trial. The Lancet (2020).

[6] Bos R, Rutten L, van der Lubbe JE, Bakkers MJ, Hardenberg G, et al. Ad26-vector based covid-
19 vaccine encoding a prefusion stabilized sars-cov-2 spike immunogen induces potent humoral
and cellular immune responses. bioRxiv (2020).

[7] Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, et al. Phase 1/2 study to describe
the safety and immunogenicity of a covid-19 rna vaccine candidate (bnt162b1) in adults 18 to 55
years of age: interim report. medRxiv (2020).

[8] Valneva. Valneva confirms participation in uk government covid-
19 vaccine response program. https://valneva.com/press-release/
valneva-confirms-participation-in-uk-government-covid-19-vaccine-response-program/ ((ac-
cessed August, 2020)).

[9] Tian JH, Patel N, Haupt R, Zhou H, Weston S, et al. Sars-cov-2 spike glycoprotein vaccine
candidate nvx-cov2373 elicits immunogenicity in baboons and protection in mice. bioRxiv (2020).

[10] GlaxoSmithKline. Gsk vaccine press release. https://www.gsk.com/en-gb/media/press-releases/
sanofi-and-gsk-to-join-forces-in-unprecedented-vaccine-collaboration-to-fight-covid-19/ ((ac-
cessed August, 2020)).

[11] Funk CD, Laferrière C, Ardakani A. A snapshot of the global race for vaccines targeting sars-cov-2
and the covid-19 pandemic. Frontiers in Pharmacology 11:937 (2020).

[12] Callaway E. Coronavirus vaccine trials have delivered their first results-but their promise is still
unclear. Nature 581(7809):363–364 (2020).

[13] Keeling MJ, Hill E, Gorsich E, Penman B, Guyver-Fletcher G, et al. Predictions of covid-19
dynamics in the uk: short-term forecasting and analysis of potential exit strategies. medRxiv
(2020). doi:10.1101/2020.05.10.20083683.

[14] Keeling MJ, Dyson L, Guyver-Fletcher G, Holmes A, Semple MG, et al. Fitting to the UK
COVID-19 outbreak, short-term forecasts and estimating the reproductive number. medRxiv
page 2020.08.04.20163782 (2020). doi:10.1101/2020.08.04.20163782.

[15] Li F, Li YY, Liu MJ, Fang LQ, Dean NE, et al. Household transmission of SARS-CoV-2 and risk
factors for susceptibility and infectivity in Wuhan: a retrospective observational study. Lancet
Infect. Dis. (2021). doi:10.1016/S1473-3099(20)30981-6.

[16] Pitman R, Nagy L, Sculpher M. Cost-effectiveness of childhood influenza vaccination in england
and wales: results from a dynamic transmission model. Vaccine 31(6):927–942 (2013).

[17] Baguelin M, Camacho A, Flasche S, Edmunds WJ. Extending the elderly-and risk-group pro-
gramme of vaccination against seasonal influenza in england and wales: a cost-effectiveness study.
BMC medicine 13(1):236 (2015).

[18] Datta S, Pink J, Medley GF, Petrou S, Staniszewska S, et al. Assessing the cost-effectiveness
of hpv vaccination strategies for adolescent girls and boys in the uk. BMC infectious diseases

19

https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases
https://www.nhs.uk/conditions/coronavirus-covid-19/symptoms/
https://www.nhs.uk/conditions/coronavirus-covid-19/symptoms/
https://www.bbc.co.uk/news/health-53772650
https://www.bbc.co.uk/news/health-53772650
https://valneva.com/press-release/valneva-confirms-participation-in-uk-government-covid-19-vaccine-response-program/
https://valneva.com/press-release/valneva-confirms-participation-in-uk-government-covid-19-vaccine-response-program/
https://www.gsk.com/en-gb/media/press-releases/sanofi-and-gsk-to-join-forces-in-unprecedented-vaccine-collaboration-to-fight-covid-19/
https://www.gsk.com/en-gb/media/press-releases/sanofi-and-gsk-to-join-forces-in-unprecedented-vaccine-collaboration-to-fight-covid-19/


19(1):552 (2019).
[19] Hill EM, Petrou S, De Lusignan S, Yonova I, Keeling MJ. Seasonal influenza: Modelling ap-

proaches to capture immunity propagation. PLoS computational biology 15(10):e1007096 (2019).
[20] Archer SL. Providing care for the 99.9% during the covid-19 pandemic: How ethics, equity,

epidemiology, and cost per qaly inform healthcare policy. In Healthcare management forum, page
0840470420939854. SAGE Publications Sage CA: Los Angeles, CA (2020).

[21] Juneau CE, Pueyo T, Bell M, Gee G, Potvin L. Evidence-based, cost-effective interventions to
suppress the covid-19 pandemic: a rapid systematic review. medRxiv (2020).

[22] Matrajt L, Eaton J, Leung T, Brown ER. Vaccine optimization for covid-19, who to vaccinate
first? medRxiv (2020). doi:10.1101/2020.08.14.20175257.

[23] Bartsch SM, O’Shea KJ, Ferguson MC, Bottazzi ME, Wedlock PT, et al. Vaccine efficacy needed
for a covid-19 coronavirus vaccine to prevent or stop an epidemic as the sole intervention. Amer-
ican journal of preventive medicine (2020). doi:https://doi.org/10.1016/j.amepre.2020.06.011.

[24] Gumel AB, Iboi EA, Ngonghala CN. Will an imperfect vaccine curtail the covid-19 pandemic in
the us? medRxiv (2020).

[25] Mossong J, Hens N, Jit M, Beutels P, Auranen K, et al. Social contacts and mixing patterns
relevant to the spread of infectious diseases. PLoS Med 5(3):e74 (2008).

[26] Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact
surveys and demographic data. PLoS computational biology 13(9):e1005697 (2017).

[27] Brand SPC, Aziza R, Kombe IK, Agoti CN, Hilton J, et al. Forecasting the scale of the covid-19
epidemic in kenya. medRxiv (2020). doi:10.1101/2020.04.09.20059865.

[28] Barton M, Mehta K, Kumar K, Lu J, le Saux N, et al. COVID- 19 Infection in Children:
Estimating Pediatric Morbidity and Mortality. medRxiv preprint pages 1–26 (2020).

[29] Dong Y, Mo X, Hu Y, Qi X, Jiang F, et al. Epidemiology of COVID-19 Among Children in
China. Pediatrics 145(6):e20200702 (2020). doi:10.1542/peds.2020-0702.

[30] Viner RM, Mytton OT, Bonell C, Melendez-Torres G, Ward JL, et al. Susceptibility to and
transmission of COVID-19 amongst children and adolescents compared with adults: a systematic
review and meta-analysis. medRxiv page 2020.05.20.20108126 (2020). doi:10.1101/2020.05.20.
20108126.

[31] Coggon D, Croft P, Cullinan P, Williams A. Assessment of workers personal vulnerability to
covid-19 using covid-age. medRxiv (2020). doi:10.1101/2020.05.21.20108969.

[32] Williamson E, Walker AJ, Bhaskaran KJ, Bacon S, Bates C, et al. Opensafely: factors associated
with covid-19-related hospital death in the linked electronic health records of 17 million adult nhs
patients. MedRxiv (2020).

[33] Royal college of general practitioners (rcgp) research and surveillance centre. https://www.rcgp.
org.uk/clinical-and-research/our-programmes/research-and-surveillance-centre.aspx ((accessed
June, 2020)).

[34] Audit ND. National diabetes audit mortality analysis 2018. NHS digital (2018).
[35] UK CR. Cancer incidence by age. https://www.cancerresearchuk.org/health-professional/

cancer-statistics/incidence/age#heading-Zero ((accessed June, 2020)).
[36] Davies NG, Kucharski AJ, Eggo RM, Gimma A, Edmunds WJ, et al. Effects of non-

pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the
UK: a modelling study. Lancet Public Heal. 5(7):e375–e385 (2020). doi:10.1016/S2468-2667(20)
30133-X.

[37] Anderson RM, Anderson B, May RM. Infectious diseases of humans: dynamics and control.
Oxford university press (1992).

[38] Keeling MJ, Rohani P. Modeling infectious diseases in humans and animals. Princeton University
Press (2011).

[39] Sharpe HR, Gilbride C, Allen E, Belij-Rammerstorfer S, Bissett C, et al. The early landscape of

20

https://www.rcgp.org.uk/clinical-and-research/our-programmes/research-and-surveillance-centre.aspx
https://www.rcgp.org.uk/clinical-and-research/our-programmes/research-and-surveillance-centre.aspx
https://www.cancerresearchuk.org/health-professional/cancer-statistics/incidence/age#heading-Zero
https://www.cancerresearchuk.org/health-professional/cancer-statistics/incidence/age#heading-Zero


covid-19 vaccine development in the uk and rest of the world. Immunology (2020).
[40] Lurie N, Saville M, Hatchett R, Halton J. Developing covid-19 vaccines at pandemic speed. New

England Journal of Medicine 382(21):1969–1973 (2020).
[41] Nguyen LH, Drew DA, Graham MS, Joshi AD, Guo CG, et al. Risk of covid-19 among front-line

health-care workers and the general community: a prospective cohort study. The Lancet Public
Health (2020).

[42] Digital N. Nhs workforce statistics- feb 2020. https://digital.nhs.uk/data-and-information/
publications/statistical/nhs-workforce-statistics/february-2020 ((accessed July, 2020)).

[43] Goodwin K, Viboud C, Simonsen L. Antibody response to influenza vaccination in the elderly:
a quantitative review. Vaccine (2006).

[44] Riley S, Ainslie KE, Eales O, Jeffrey B, Walters CE, et al. Community prevalence of sars-cov-
2 virus in england during may 2020: React study. medRxiv (2020). doi:10.1101/2020.07.10.
20150524.

[45] Keeling MJ, White PJ. Targeting vaccination against novel infections: risk, age and spatial
structure for pandemic influenza in great britain. Journal of the Royal Society Interface 8(58):661–
670 (2011).

[46] Public Health England. Official Statistics: Annual flu reports (2020). URL https://www.gov.uk/
government/statistics/annual-flu-reports. [Online] (Accessed: 11 December 2020).

[47] Bachtiger P, Adamson A, Maclean WA, Quint JK, Peters NS. Inadequate intention to receive
Covid-19 vaccination: indicators for public health messaging needed to improve uptake in UK.
medRxiv page 2020.12.07.20243881 (2020). doi:10.1101/2020.12.07.20243881.

[48] Office for National Statistics. Coronavirus and the social impacts on
Great Britain: 18 December 2020 (2020). URL https://www.ons.gov.uk/
peoplepopulationandcommunity/healthandsocialcare/healthandwellbeing/bulletins/
coronavirusandthesocialimpactsongreatbritain/18december2020. [Online] (Accessed: 18 De-
cember 2020).

[49] Keeling MJ. The effects of local spatial structure on epidemiological invasions. Proc. R. Soc.
Lond. B. 266:859–867 (1999). doi:10.1098/rspb.1999.0716.

[50] Bish A, Yardley L, Nicoll A, Michie S. Factors associated with uptake of vaccination against
pandemic influenza: A systematic review. Vaccine 29(38):6472 – 6484 (2011). doi:https://doi.
org/10.1016/j.vaccine.2011.06.107.

[51] Sherman SM, Smith LE, Sim J, Amlôt R, Cutts M, et al. COVID-19 vaccination intention
in the UK: results from the COVID-19 vaccination acceptability study (CoVAccS), a nationally
representative cross-sectional survey. Hum. Vaccin. Immunother. pages 1–10 (2020). doi:10.1080/
21645515.2020.1846397.

[52] Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, et al. Safety and Efficacy of the
BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 383(27):2603–2615 (2020). doi:10.1056/
NEJMoa2034577.

[53] Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, et al. Safety and efficacy of
the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four
randomised controlled trials in Brazil, South Africa, and the UK. Lancet 397(10269):99–111
(2021). doi:10.1016/S0140-6736(20)32661-1.

[54] Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, et al. Efficacy and Safety of the
mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. page NEJMoa2035389 (2020). doi:
10.1056/NEJMoa2035389.

[55] World Health Organisation. Vaccination - WHO/Europe | Influenza (2020). URL https://www.
euro.who.int/en/health-topics/communicable-diseases/influenza/vaccination. [Online] (Accessed:
17 December 2020).

[56] Bavel JJV, Baicker K, Boggio PS, Capraro V, Cichocka A, et al. Using social and behavioural

21

https://digital.nhs.uk/data-and-information/publications/statistical/nhs-workforce-statistics/february-2020
https://digital.nhs.uk/data-and-information/publications/statistical/nhs-workforce-statistics/february-2020
https://www.gov.uk/government/statistics/annual-flu-reports
https://www.gov.uk/government/statistics/annual-flu-reports
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthandwellbeing/bulletins/coronavirusandthesocialimpactsongreatbritain/18december2020
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthandwellbeing/bulletins/coronavirusandthesocialimpactsongreatbritain/18december2020
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthandwellbeing/bulletins/coronavirusandthesocialimpactsongreatbritain/18december2020
https://www.euro.who.int/en/health-topics/communicable-diseases/influenza/vaccination
https://www.euro.who.int/en/health-topics/communicable-diseases/influenza/vaccination


science to support COVID-19 pandemic response. Nat. Hum. Behav. 4(5):460–471 (2020). doi:
10.1038/s41562-020-0884-z.

Supporting information
S1 Text. Description of model formulation, including: the underlying ODE model; an
explanation of how social distancing is captured; the public health measurable quantities;
key parameters that are inferred through the MCMC scheme; and calculation of QALY
(Quality Adjusted Life Year) losses.
(PDF)

22


