
The Library
Data for Barrier bednets target malaria vectors and expand the range of usable insecticides
Tools
Murray, Gregory P. D., Lissenden, Natalie, Jones, Jeff, Voloshin, Vitaly, Toé, K. Hyacinthe, Sherrard-Smith, Ellie, Foster, Geraldine M., Churcher, Thomas S., Parker, Josephine E. A., Towers, Catherine E., N'Falé, Sagnon, Guelbeogo, Wamdaogo M., Ranson, Hilary, Towers, David P. and McCall, Philip J. (2021) Data for Barrier bednets target malaria vectors and expand the range of usable insecticides. [Dataset]
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://doi.org/10.5061/dryad.hqbzkh1b7
Abstract
Transmission of Plasmodium falciparum malaria parasites occurs when nocturnal Anopheles mosquito vectors feed on human blood. In Africa, where malaria burden is greatest, bednets treated with pyrethroid insecticide were highly effective in preventing mosquito bites and reducing transmission, and essential to achieving unprecedented reductions in malaria until 2015. Since then, progress has stalled and with insecticidal bednets losing efficacy against pyrethroid-resistant Anopheles vectors, methods that restore performance are urgently needed to eliminate any risk of malaria returning to the levels seen prior to their widespread use throughout sub-Saharan Africa. Here we show that the primary malaria vector Anopheles gambiae is targeted and killed by small insecticidal net barriers positioned above a standard bednet, in a spatial region of high mosquito activity but zero contact with sleepers, opening the way for deploying many more insecticides on bednets than currently possible. Tested against wild pyrethroid-resistant Anopheles gambiae in Burkina Faso, pyrethroid bednets with organophosphate barriers achieved significantly higher killing rates than bednets alone. Treated barriers on untreated bednets were equally effective, without significant loss of personal protection. Mathematical modelling of transmission dynamics predicted reductions in clinical malaria incidence with barrier bednets that exceeded those of ‘next-generation’ nets recommended by WHO against resistant vectors. Mathematical models of mosquito-barrier interactions identified alternative barrier designs to increase performance. Barrier bednets that overcome insecticide resistance are feasible using existing insecticides and production technology, and early implementation of affordable vector control tools is a realistic prospect.
Item Type: | Dataset | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subjects: | Q Science > QR Microbiology R Medicine > RA Public aspects of medicine R Medicine > RC Internal medicine |
||||||||||||
Divisions: | Faculty of Science, Engineering and Medicine > Engineering > Engineering | ||||||||||||
Type of Data: | Observational data | ||||||||||||
Library of Congress Subject Headings (LCSH): | Malaria, Malaria -- Prevention, Malaria -- Prevention -- Equipment and supplies, Insecticide-treated mosquito nets | ||||||||||||
Publisher: | University of Warwick, School of Engineering | ||||||||||||
Official Date: | 10 March 2021 | ||||||||||||
Dates: |
|
||||||||||||
Status: | Not Peer Reviewed | ||||||||||||
Publication Status: | Published | ||||||||||||
Media of Output (format): | .xls | ||||||||||||
Access rights to Published version: | Open Access (Creative Commons) | ||||||||||||
Copyright Holders: | University of Warwick | ||||||||||||
Description: | Data record consists of a single data file in excel format. |
||||||||||||
RIOXX Funder/Project Grant: |
|
||||||||||||
Related URLs: | |||||||||||||
Contributors: |
|
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |