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Abstract: 

Recently, considerable effort has been devoted to develop cellulose nanocrystal(CNC)/epoxy 

(EP) composites with improved properties. However, work on CNC-enhanced continuous 

fibre reinforced polymer (FRP) composites has received little attention.  In this study, a 

CNC/epoxy mixture was infused through plain-woven glass fabric (GF) reinforcement to 

develop hierarchical CNC/GFRP composites. The results show that CNC/GFRP composites 

exhibit significantly enhanced mechanical properties compared to the GFRP control 

composite. The addition of 2 wt% CNC to GFRP yielded increases of 56% in storage 

modulus, 50% in flexural modulus, 55% in flexural strength, 14% in tensile modulus and 

24% in tensile strength. Morphological studies (SEM) confirm the strong anchoring of CNCs 

with GF and the EP interphase thin layer around the GF. These results show that CNCs can 

be effective for strengthening the interface in fibre-reinforced composites for structural 

applications. 
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1. Introduction

Fibre reinforced polymer (FRP) composites possess excellent in-plane specific strength and 

stiffness, corrosion and fatigue resistance [1-2]. FRPs are now replacing metallic components 

in aerospace, automotive and marine industries; a weight reduction of 10 percent, in an 

automotive vehicle can lead to an increase in fuel economy of between 6 to 8 percent, and 

even higher efficiencies in aircraft [3-4]. These potential benefits are likely to see FRP 

composites being increasingly utilised in future transportation structures, as the sector seeks 

to minimise environmental impact and reduce the use of fossil fuels through electrification. 

Glass fibre reinforced polymer (GFRP) is sometimes selected for structural applications to 

meet specific requirements, where the use of higher-performing carbon fibres is neither 

warranted nor economically viable [5]. Despite their attractive in-plane mechanical 

properties, the full potential of GFRP composites in structures is hindered by poor out-of-

plane mechanical performance, mostly due to weak glass fibre-epoxy polymer matrix 

interfacial adhesion. Significant property enhancement can be achieved in GFRP composite, 

especially for the fibre–matrix interphase and out-of-plane/through thickness properties, by 

adding a small amount of a nanoscale reinforcement [6-7]. To date, extensive research on 

integrating carbon nanotubes (CNT)/graphene into various FRP composites has been reported 

[8-9]. Yuchang et al. reported the effect of graphene on the mechanical properties of glass 

fibre reinforced polymer (GFRP) epoxy composites. The flexural strength and modulus 

increased by up to 78% and 58% respectively at 2.0 wt% graphene compared to a control 

[10]. Rathore et al. also investigated CNT-embedded woven GFRP composites, reporting a 
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32% increase in flexural strength and an 11.5 % increase in flexural modulus compared with 

GFRP alone, which they attributed to improved interfacial interactions and mechanical 

interlocking [11]. Although carbon nanomaterials have huge potential, acceptance is 

hampered by the high cost of good quality CNT and Graphene [12-13].

Cellulose nanocrystals (CNC), as a preferable alternative to CNT/graphene, with an 

exceptional sustainability profile, have recently received much attention owing to their 

outstanding intrinsic properties such as axial stiffness of 100-143 GPa and high tensile 

strength (~10 GPa) [14-15] . They can be obtained with a range of aspect ratios, depending 

upon the source, e.g. cotton, wood, wheat straw, corn cob or tunicate (length of 150 nm to a 

few microns and length/diameter ~ 10-80). Very little work on the use of CNC to enhance the 

mechanical properties of FRP composites has been reported [16-18]. Gabr et al. mixed 0.5 

wt% crystalline bacterial cellulose (BC) in ethanol with rubber-modified epoxy to 

manufacture carbon fibre/BC composites with mode I initiation and propagation interlaminar 

fracture toughness improved by 84% and 72% respectively, although with only moderate 

improvement in storage modulus and tensile properties [16]. However, solvent use places 

limitations on industrial implementation and the hand layup used is inappropriate for 

scalability. Recently, Asadi et al. showed that 0.9 wt% CNC in short-GF epoxy sheet 

moulding compound (SMC) increased tensile modulus by 25%, tensile strength by 30% and 

tensile strain at break by 22% [17-18]. 

Continuous long fibre reinforcements are preferable to discontinuous short/chopped fibre 

reinforcements to achieve effective strengthening and stiffening in highly loaded composite 

structures. We now report work on CNC-enhancement of GFRP polymer composites 
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manufactured using a vacuum-assisted resin infusion process. This method is currently the 

most widely used process to manufacture large volume medium/high-performance structural 

FRP composite parts. 

2. Experimental

2.1 Materials

A two-component ultra-low viscosity (η~ 500 mPa.s, density ~ 1.12 g/cm3) infusion-grade 

epoxy resin, based on a diglycidyl ether of bisphenol A (DGEBA) and poly(oxypropylene) 

diamine (slow hardener AT30, η =10-20 mPa.s, density 1.10 g/cm3) was mixed and cured 

according to the supplier’s recommendation (resin: hardener (100:30), η~ 200 mPa.s, density 

1.12 g/cm3, pot life 90 min.).  Resin and consumables  (release agent and mould cleaner, Easy 

Lease™), vacuum bagging film (Green translucent 100% nylon, VB200), gum sealant, spiral 

tubing (4.5mm OD), resin infusion mesh (polypropylene FM100), silicon connectors, catch 

pot, and aero-grade nylon 66 peel ply (PP230) were  supplied by Easy Composites Ltd., U.K. 

Plain woven E-glass fibre fabric reinforcement (RE50 P, density  2.50 g/cm3, modulus   69 

GPa, tensile strength   2.4 GPa and fibre diameter 5.0-5.5µm)  was supplied by Gurit (UK) 

Ltd. Cellulose nanocrystals were supplied by Cellulose Lab, Canada, as a freeze-dried 

powder. As assessed by two microscopic techniques (scanning electron microscopy (SEM); 

JEOL JSM6500 and atomic force microscopy (AFM); Cypher™ Asylum), CNCs have 

elongated needle-like shape morphology with average individual crystal width 23±4.4 nm 

and length 296± 78 nm measured from SEM images. In comparison, AFM height profile also 

confirmed average width in the same range 22±5nm. Fig. S1 shows the chemical structures of 

all the materials used (Supplementary information, Fig S1).  
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2.3 Epoxy (EP)/Cellulose nanocrystals (CNC) mixtures

The typical procedure for the preparation of EP/0.5 wt% CNC composite mixtures was to 

mechanically stir 105g of EP monomer and 0.7 g of CNC powder in a beaker under ambient 

conditions using IKA Eurostar 40 mixer (turbine blade 30 mm dia.) overnight at 2000 rpm 

followed by high shear mixing (T25 UltraTurrax® IKA, stator diameter: 18 mm), at 25,000 

rpm for 2 min and 10,000 rpm for 8 min. Finally, the mixture was probe sonicated for 2-3 

min (using Soniprep 150, tapered tip dia. 3mm and amplitude 15 microns) and during 

sonication the temperature was maintained below 50˚C. After cooling the mixture to 20˚C, 

hardener (31.5g) was added and mixed for 2-3 mins at 500 rpm followed by degassing prior 

to use. Pure EP samples and CNC/EP with CNC loadings of 0.5 wt% to 10 wt% were 

prepared using the same mixing process and found to be stable to sedimentation or 

aggregation. Fig. S2 (supplementary information) shows the schematic representation of the 

preparation of CNC/EP nanocomposites and digital images of CNC and CNC/EP 

nanocomposites. It should be remarked that the processing conditions and CNC loadings 

were derived at after several trials of mixing conditions and dispersion studies.

2.4 CNC/GFRP composite preparation

Resin dispersions of 0.5wt% and 2.0wt% CNC were used for CNC/GFRP composite sample 

preparation. The plain-woven GF fabric was cut into 260 mm x 150 mm samples and dried at 

150˚C overnight. Each layup consisted of twenty-five layers of fabric, which were stacked on 

a cleaned flat aluminium tool, vacuum bagged and resin infused under full vacuum (Fig.2 and 

supplementary material). Curing was  performed at room temperature for about 24 h and then 

post cured at 70ºC for 6 h. Cured composite laminates were cut to size by wet diamond saw 

(VITREX versatile pro 750) (Supplementary information, Fig.S3).
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The fibre volume fraction (FVF) for the composite laminates was estimated by the density 

method according to Eq 1,

, (1)    𝑉𝑓 =  (𝜌𝑐 ― 𝜌𝑚)⁄(𝜌𝑓 ― 𝜌𝑚)

where ,  and  are the density of the composite, matrix and fibre, respectively [19]. The 𝜌𝑐  𝜌𝑚 𝜌𝑓

average measured density of the composite was 1.67 g/cm3. The density of the matrix and 

fibre was 1.12 g/cm3 and 2.5 g/cm3 respectively. The average FVF was estimated to be 

~39±0.01 vol%. Composite laminate specifications are provided in Table 1S (supplementary 

information)

3. Characterization

The size, shape, morphology and dispersion/infiltration of CNC in the laminates was 

analysed by SEM and AFM.  The vacuum and accelerating voltage was in the order of 10-4 to 

10-6 mmHg and 5-10kV during scanning of the composite samples. In AFM, AM-FM 

viscoelastic mapping mode was used to capture the local interface modulus at fibre/matrix 

interface for GFRP and CNC/GFRP composite samples. In this mode, the cantilever 

frequency/amplitude respond sensitively to changes in the sample properties during scanning. 

The cantilever high frequency response means high stiffness/modulus. For contact stiffness 

measurements with AM-FM Mode, we used an AC 160 TSA probe with cantilever spring 

constant 38.5 N/m accurately calibrated with GetReal™ software. Tensile and flexural (three 

point bending) properties of CNC/EP nanocomposites were obtained using a Zwick/Roell 

Z100 testing machine. The tensile tests were performed as per the ASTM D638 standard. 

Flexural tests were conducted using a three-point bending rig (load cell capacity: 10 kN, 

ASTM D 790) [2]. Samples with planar dimensions 250 mm x 25 mm (for tensile testing) 

and 70 mm x 12 mm (for flexural testing) were cut from the composite laminate panels 
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(average thickness 1.38 mm). The flexural modulus of elasticity was calculated from the 

linear portion of the stress-strain curves between 0.05% and 0.25%  strain.  All tests were 

carried out at room temperature, with five specimens tested for each composition. The 

oscillatory and steady-state rheological properties of uncured CNC/EP mixtures were 

measured using a TA AR2000 rheometer with narrow gap concentric cylindrical geometry. 

Steady-state experiments were done over a shear rate range of 0.1 to 1000 s−1 and frequency 

sweeps were performed in a frequency range of 0.01 to 100 rad/s at constant strain of 0.05%. 

Strain sweep tests were performed between 0.01% and 1% to guarantee the oscillatory 

experiments conducted within the linear viscoelastic regime. Attenuated total reflection-

Fourier transform infrared (ATR-FTIR) spectra of CNC, EP monomer and cured CNC/EP 

were recorded on a Perkin Elmer Spectrum 100 FTIR spectrometer. X-ray diffraction (XRD) 

of CNCs was carried out using PANalytical X-ray diffractometer (Model: X' pert Pro) at a 

step size of 0.020˚ in the 2θ range of 5–65˚.  Density of the composites was measured using 

water displacement using Sartorius weighing specific gravity kit as per ASTM standard D792 

[3]. Dynamic mechanical thermal analysis (DMTA) was used to characterize the viscoelastic 

properties of the CNC/GFRP composites using a TA instrument Tritec DMA 2000 in the dual 

cantilever bending mode. The samples were subjected to a sinusoidal displacement of 0.05%. 

The testing temperature was varied from 25˚C up to 180˚C at a constant test frequency of 1 

Hz and heating rate of 3˚C/min. 

4. Results and discussion

In going from pure EP up to 2.0 wt% of CNC the mixtures exhibit only a slight increase in 

viscosity from 0.5 Pa.s to 1.1 Pa.s (Fig. 3a), most likely due to there being minimal CNC-

CNC interaction. The slight thinning with shear rate can be attributed to the orientation of the 

finely dispersed rigid CNCs. However, at 5.0wt% and 10.0wt% CNC, a sharp increase in 

viscosity and decreased shear response are observed (Fig. 3a). This behaviour can be 
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attributed to the formation of three dimensional networks by CNCs with increasing content. 

At 10wt% CNC, an inflection in the shear thinning at about 1 s-1 possibly reflects a transition 

from a 3D network to a non-interacting distribution of CNC particles.  The behaviour of the 

CNC/EP mixtures at ≤2wt% is typical of a viscoelastic liquid as indicated by the storage 

modulus (G') in Fig. 3b. However, above 5.0wt% CNC, behaviour changes from terminal to 

non-terminal at low frequency. At 10.0wt% loading of CNC, G' varies only slightly with 

frequency at low values, indicating formation of a robust network of CNCs which hinders the 

movement of the matrix’s macromolecular chains and provide resistance against applied 

deformation.

Tian et al. reported that a CNC-CNC network starts to form around 3.0 wt%, and this 

network grows stronger with increase in CNC concentration [20]. In comparison to CNCs, 

high aspect ratio fillers like cellulose nanofibrils (CNFs, l/d~ 80) and CNTs (l/d 100-1000) 

produce a highly entangled network even below 1.0 wt% causing a drastic increase in 

viscosity that may be beyond the practically accepted limit for resin infusion (>1.0 Pa·s) [21-

22]. The highly viscous mixtures lead to poor and non-uniform impregnation of fibre 

assemblies. The recommended viscosity limit for the vacuum-assisted infusion process of 

high volume structural parts, such as wind turbine rotor blades and long boat hulls, is usually 

around 1.0 Pa·s [23]. In the present case, the addition of 30% v/v liquid hardener (ղ~ 0.01 

Pa.s) to the CNC/EP mixture expected to further reduce the viscosity to bring the 2.0wt% 

CNC/EP mixture into the infusion range. 

The FTIR spectrum of CNCs (Fig. 3c) shows a broad band that can be deconvoluted to three 

peaks. These are attributable to intramolecular-hydrogen bonding between cellulose hydroxyl 
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groups at 3427 cm-1, and to intermolecular H-bonding (3325 cm-1 and 3270 cm-1) as well as to 

the β phase of cellulose [24]. The FTIR spectrum of processed uncured EP monomer (Fig. 

3c) shows a small absorption peak centred at 3500 cm-1 attributable to free hydroxyl. The 

small C-H stretching peak at 3057 cm-1 corresponds to the terminal oxirane ring of epoxy 

[25]. In the cured resin, the large peak centred at 3360 cm-1 corresponds to the hydroxyls 

from opening of the epoxide.  In the cured EP, the cluster of peaks 2800-3000 cm-1 is 

generally ascribed to aliphatic alky stretching vibrations [24-25]. This is heavily augmented 

by the alkyl-H from the curing agent (PPA). 

The pure cured EP resin exhibits a symmetric hydroxyl peak at about 3260 cm-1, and the 

addition of just 2.0wt% CNC makes only a small contribution to intensity of this band.  

However, for the cured CNC/EP, a strong and distinctive peak appears at 3406 cm-1 within 

the hydroxyl band (3500-3000 cm-1) which confirms the strong interaction between epoxide-

derived hydroxyl groups and those present on the surface of CNCs.  This development 

indicates the strong hydrogen bonding interactions between CNC and EP matrix [26]. The 

small broad absorption peak at 3263 cm-1 is attributable to intermolecular bonding between 

hydroxyl group of CNCs and -N-H (amines) in adjacent molecular chains [27]. 

Disappearance of the peak at 913 cm-1 confirms that epoxide group completely reacted in 

cured EP and CNC/EP (Fig.3d). The C–O and C–O–C stretching band in CNCs at 1059 and 

1110 cm-1 moved to high and lower frequencies in the cured CNC/EP, demonstrating that 

interactions are established between CNCs and EP matrix (through hydrogen bonding) [24].  

The sharp peak observed at 1181 in the epoxy spectrum is attributed to the C-O-C linkage. 

The further broadening and noticeable decrease in peak intensity at 1181 cm-1 possibly 

indicates that the linkage between epoxy resins and hydroxyl groups of CNCs through 
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hydrogen bonding. There are several reports, which support the strong interaction of CNC 

with EP via either hydrogen or covalent linkage [20, 25]. 

In order to verify the reinforcement effect of CNC on the mechanical performance of 

CNC/EP nanocomposites, we performed tensile, flexural and dynamic analysis of the EP and 

CNC/EP nanocomposites. Tensile results revealed that that CNC had a noticeable reinforcing 

effect on the tensile strength and modulus of CNC/EP nanocomposites (Fig.4a). The increase 

in strength validates the presence of individual strongly bonded CNCs to EP molecular chains 

and therefore effective stress transfer from EP to CNCs. The highest tensile strength and 

Young’s modulus achieved for the CNC/EP was  79 ± 1.5 MPa and 3.2±0.05 GPa at a 

loading of 2wt%, which shows a 16 % and 18% increment over the control EP (68±1.46 MPa 

and 2.7±0.04 GPa ). The flexural modulus increased from 2.5±0.04 GPa to 3.3±0.035 GPa 

(32%) and strength from 95±2.2 MPa to 115± 3.0 MPa (21%) at 2.0 wt % of CNC (Fig. 4 b). 

The large surface area, high rigidity of the added CNCs (100-143 GPa) as well as high 

stiffness of interface between CNCs-EP, can be considered critical to this significant 

enhancement. The storage modulus (E’) enhancement also followed the consistent trend with 

increasing amount of CNCs as confirmed by dynamic mechanical analysis (Fig. 4c). The 

storage modulus in the glass state with 2.0 wt% CNC increased by 32%, but more 

pronounced improvements were observed in the rubbery state above Tg (E' at 120˚C) by 44 % 

at the same CNC content. The rubbery plateau generally considered as an indication of 

degree of interactions between matrix and filler. The improvements in mechanical properties 

are consistent with data reported in the literature [3, 14-15, 28].

To observe the quality of dispersion and interfacial interactions in CNC/EP nanocomposites, 

we performed a SEM study of the fractured surface of the control epoxy and 2.0wt% 
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CNC/EP nanocomposite. From low magnification SEM images Fig.5, it is quite evident that 

the morphology of the fractured surfaces is greatly affected by the addition of CNCs. The 

fractured surface of the control epoxy looks very smooth with riverlike patterns, normally 

caused by rapid crack propagation while CNC-filled epoxy nanocomposite shows highly 

corrugated rough surfaces. The high magnification SEM micrographs (Fig. 6 a & b) clearly 

reveal the nanoscale dispersion of CNCs and suggest stronger bonding between CNCs and 

epoxy. The measured very small  free space length between CNCs~ 268±141 nm (data 

obtained from more than 100 dispersed CNCs, Fig 6a) indicates faster diffusion of CNCs in 

the ultra-low viscosity epoxy resin using a combination of high shear mixing and 

ultrasonication. It can also be seen (Fig. 6c), that individual CNCs are interacting with the 

crack, and thus providing a strengthening mechanism. Breaking of CNCs and tethering of 

epoxy molecules over pulled -out CNCs confirm the strong interfacial interaction between 

CNC-EP matrix. Fig.7 shows X-ray diffraction spectra of control EP and its nanocomposites. 

The XRD pattern of cured EP exhibit a broad amorphous peak at 2θ= 18.8˚. Albeit, the 

spectra of CNC/EP exhibit a similar diffraction pattern, but for a tiny broad shoulder hump at 

22.5°observed for the 2.0 % CNC nanocomposite, corresponding to a sharp crystalline peak 

of CNC. This implies that CNCs were possibly well dispersed in epoxy and more importantly 

the parent crystal structure of cellulose I is well preserved in the nanocomposites [29]. In 

summary, the rheology, FTIR, mechanical properties, SEM and XRD studies provide 

evidence of interactions between CNCs and epoxy matrix.

CNC/EP mixtures, generated by mixing the EP resin with CNCs, using slow AT30 as a 

curing agent, were used to fabricate CNC/GFRP composites to demonstrate the industrial 

application of CNCs to enhance the properties of GFRP. We selected 0.5 and 2.0 wt% of 

CNC loading on the basis of rheological studies of CNC/EP to below <5.0 wt%. 
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To analyse the reinforcement efficiency of CNCs, tensile, flexural and dynamic mechanical 

analysis of CNC/GFRP composites was performed. Fig. 8 shows the tensile stress-strain 

curves of GFRP and CNC/GFRP composites. The experimental results obtained from the 

stress-strain curves are tabulated in Table 1. Tensile strength (σts), young’s modulus (E) and 

failure strain (ε%) are significantly enhanced with the incorporation of CNCs (Fig.8). The 

GFRP composite with 2.0wt% CNC yields σts = 332 ± 9.2 MPa, E = 11.7 ± 0.26 GPa and 

ε%=4.2 ± 0.10 which are 24%, 14% and 13% higher, respectively, compared to control 

GFRP samples (the measured properties of control samples  are comparable to values 

reported in the literature by other research groups) [2,7,9,30]. The improvements in tensile 

strength can be attributed to the improved interfacial strength between glass fibres and matrix 

through functional nanofillers (as shown in SEM morphological studies discussed later). The 

improved interface adhesion facilitates better load transfer from the matrix to the fibres and 

thus allowing the CNC/GFRP composite to bear a higher load [17-18]. The improvement in 

the tensile modulus of CNC/GFRP could be due to the increase in modulus of the EP matrix 

by CNC (as shown in Fig.4a). It has also been suggested that stiffening of the local interface 

region (GF/EP) also contributes to this observed increase in modulus [31-32]. To gain deeper 

insight into the fibre/matrix interface, we have incorporated AM-FM viscoelastic mapping of 

polished GFRP and CNC/GFRP cross-sections to explore the interfacial properties of matrix 

and reinforcement (Fig. 9). In the case of the GFRP composite, the modulus transition is quite 

abrupt from matrix to fibre (interface thickness ~49 nm) due to greater difference in the 

modulus between fibre and interface layer, which is generally ascribed to the poor interfacial 

adhesion. However, for the GFRP/CNC composite, the interphase thickness increased to 235 

nm with distinct modulus transition. The larger interfacial regions suggest a modification of 

the fibre/epoxy interface by CNCs. It is postulated that the larger interface is a factor in 

strengthening the GFRP/CNC interface [6].
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We also performed flexural (Fig.10) and dynamic mechanical thermal analysis (Fig.11) of 

composites in bending mode. It is well known that in bending, fibre/matrix interfacial 

strength is very crucial to interlaminar crack propagation and buckling/delamination of 

fibre/matrix interface. The flexural strength and modulus increased by 55% and 50%, 

respectively, compared to GFRP composite, when 2.0wt% CNC was added (Fig. 10). It is 

important to note that improvement in flexural performance is quite considerable compared to 

the tensile performance at the same CNC content. There are many reports available in the 

scientific literature with a similar kind of trend [18, 31-34]. Although, the tensile and flexural 

performances depend on the intrinsic stiffness/modulus of individual constituents, flexural 

strength is very sensitive to the fibre/matrix interface. Strong interface support the reinforcing 

fibres against buckling and delamination. In CNC/GFRP composites, high flexural strength is 

obtained via good dispersion in terms of homogeneity, and separation of individual CNCs 

within the epoxy surrounding the fibre surface which offers an interface strengthening 

mechanism by bridging/supressing the surface microcracks. The ‘‘crack-tip bridging” effect 

facilitates redistribution of the stresses around the surface cracks when CNCs homogenously 

dispersed in the interfacial regions, thereby delaying the crack opening. These bridging/crack 

healing effects suppress the localised interlaminar delamination and reduced the interlaminar 

stress concentration between the neighbouring layers, thus providing improved interlaminar 

adhesion that governs the flexural strength. Uniform dispersion of nanofillers reported to be 

very critical to the interfacial strength, the aggregation of nanoparticles in the matrix or 

interfacial area leads to stress concentration that reduces the strength of interface [35-37]. 

Another potential chemical interaction mechanism that possibly contribute to better 

interlaminar adhesion likely the presence of hydroxyl groups on the surface of CNC which 

can interact with GF via hydrogen bonding and open the epoxy epoxide ring to form covalent 
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bonding [18,31,38]. Surprisingly, CNC/GFRP composites showed significant enhancement in 

the flexural modulus while tensile modulus is affected to a lesser extent. Several other studies 

have recorded similar discrepancies in the flexural and tensile moduli. For example, Patterson 

et al. observed a 68% increase in flexural modulus of the CFRP composites while tensile 

modulus was not affected at 2.0wt% of aramid nanofiber (ANF) [33]. Asadi et al. 

investigated the CNC/short GF/epoxy composites and observed 25% increase in the tensile 

modulus and 44% increase in the flexural modulus at 0.9 wt% CNC [17]. Jia et al. observed 

23% and 53% increase in the tensile and flexural moduli for clay reinforced GFRP 

composites at 5.0 wt% clay [2]. In another work, Kim et al. developed CNT/CFRP 

composites and observed 11% increase in the flexural modulus with no change in the tensile 

modulus at 0.3 wt% CNTs [32]. According to these studies, while the tensile modulus is fibre 

dominated, flexural properties are matrix dominated. The significant improvement in the 

flexural modulus is attributed to the reinforcing effect of CNC in the matrix, and increase in 

the interphase modulus of the CNC-epoxy/GF composites, as confirmed by AFM (Fig. 

9b)[32,33,6,17]. 

The storage modulus provides a measure of elastic response/energy absorption ability of 

materials. Compared to the GFRP composites, CNC/GFRP composites show remarkable 

enhancement in the storage modulus below and above Tg. In the glassy state region, 

incorporation of 0.5, 1.0 and 2.0 wt% CNC, increased the storage modulus to 20(11%), 24 

(33%) and 29 (56%) GPa with respect to GFRP (18 GPa). Above Tg (rubbery state), the 

storage modulus of CNC/GFRP composites significantly increased to 3.4, 4.1 and 4.4 GPa 

with 0.5, 1.0 and 2.0 wt% of CNCs compared to GFRP (2.1 GPa). This remarkable jump in 

storage modulus, below and above Tg, is attributed to uniform dispersion of CNCs in the 

epoxy matrix and the synergistic effect of strong chemical bonding and strong interlocking at 

the GFRP interface.  Notably, the dynamic mechanical properties of the GFRP composites 



15

shows higher values compared to flexural and young’s modulus. We postulate that, as 

reported by other researchers [39-42], the high storage modulus values are determined at very 

low strain and at high loading rate in a DMA compared to quasi-static testing. In addition, 

several studies have reported that the storage modulus is strongly related to the crosslink 

density of the matrix and fibre/matrix interface adhesion [31, 43]. In this respect, the presence 

of CNCs in the matrix as well as at the interface, seems to effectively contribute to restricting 

the motion of tightly packed polymer chains near the CNCs and at the fibre/matrix interface 

thus resulting in considerable increase in storage modulus of CNC/GFRP composite 

laminates. 

Moreover, the addition of 2.0 wt% CNCs to GFRP composites increased the Tg to 100˚C 

from 91.2˚C for GFRP composites. The decrease of the height of the tanδ peak of the 

CNC/GFRP is also observed. This can be possibly because of two main reasons (1) strong 

interaction between –OH functional groups present at the surface of CNCs and epoxy matrix 

that imposes restriction on the segmental motion of epoxy molecular chains (2) improvement 

of interfacial adhesion between EP matrix and GF due to the presence of CNC [34, 44-45]. 

Table 2 presents the comparative data of multiscale composites reinforced with a variety of 

nanofillers such as nanoclay, carbon nanotubes, graphene, graphene nanoplates etc. The 

purpose of this comparison is not to show the superiority of different filler reinforcements, 

but to show CNCs display overall robust improvements in thermo-mechanical properties at 

comparable filler loadings with the added advantage of being a bio-renewable and relatively 

low-cost filler.
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Morphological studies were performed to establish a structural property correlation and to 

observe the effect of CNCs on fracture morphology of GFRP composites. Compared to the 

GFRP composite, CNC/GFRP composites exhibit substantially different morphology. Fig.12 

shows SEM images of a tensile fracture surface of GFRP and 2.0 wt% CNC/GFRP 

composite.  Fig.12a shows interfacial debonding and fibre pull out. This confirms that 

mechanical failure happened due to weak interfacial adhesion between fibre and epoxy 

matrix. Whereas in CNCs/GFRP composite (Fig.12b&c), strong interfacial bonding between 

fibres and matrix is observed, and which is confirmed by equal straining of both fibres and 

matrix (concurrent failure). Fig.12c also shows the presence of tiny CNCs between fibres, 

which insure the uniform dispersion of CNCs without any aggregation. The white dotted 

particles represent the CNCs, as confirmed by other previous studies [15]. 

We also undertook the imaging of fibres transverse to the fracture direction to observe the 

mechanistic and fractographic features (Fig.13). The fracture surface of GFRP composite 

shows no sign of plastic deformation and the fibre surface is completely smooth (Fig.13a). 

The formation of cracks along the fibre direction indicates the weak interfacial adhesion. 

However, in CNC-enhanced GFRP composite (Fig. 13 b-d), the fibres are heavily coated 

uniformly with CNC-EP matrix even after the mechanical failure of the composite which is 

attributed to the strong interfacial interactions between fibre and matrix through CNCs. It is 

postulated that closely situated individualized CNCs (with a small gap of CNC-CNC 

~268±141 nm) embedded within epoxy over fibres (as indicated by arrows, Fig 13c, 

magnified area from Fig.

13b (fibre surface)) offers an interface strengthening mechanism by bridging/supressing the

microcracks. The fractograph (Fig. 14a) indicates that the CNCs in the interphase region (as 

indicated by a circle) act as an effective junction to influence the strengthening of the GFRP 
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interface by keeping adjacent fibres and matrix intact. The SEM images, in Fig.14b, show the 

presence of highly oriented cusps which confirms extensive plastic deformation and 

progressive damage growth during tensile fracture. Interestingly, the high magnification SEM 

images (Fig. 15a-c) show that the needle like CNCs are strongly imbibed over the glass fibres 

and well adhered to the thin layer matrix over the fibres (Fig. 13 c, 15b & c). It is assumed 

that the presence of CNCs in the fibre/epoxy interface region moves the reinforcing 

behaviour from microscopic level to nanoscale level, and these nanoscale CNCs may hinder 

the progression of cracks along and perpendicular to the GFRP interface thus contributing to 

the intra and interlaminar strengthening [35,46]. These synergistic chemical interfacial 

interactions elevated the energy absorption and therefore the corresponding composites 

exhibited higher strength and strain at failure.

A systematic scheme of proposed interaction mechanisms between CNC, epoxy, and glass 

fibres is presented in Fig.S4 (see the supplementary information). Since the CNCs contain 

plenty of hydroxyl groups, it is likely that they can form hydrogen bonding with EP [20, 25].  

However, covalent bonding through an etherification reaction between –OH of the CNCs and 

epoxy groups is also observed, as confirmed by the FTIR. The formation of new -OH (peak at 

3406 cm-1 in FTIR of CNC/EP) groups indicates that CNCs reacted with the oxirane ring of 

EP.  The newly formed –OH groups either can participate in the further cross-linking reaction 

with EP or can form hydrogen bonds with glass fibres and CNCs. Additionally, 

secondary/tertiary amines of cured EP can form hydrogen bonding with active –OH groups of 

CNCs [47]. The strong interfacial bonding between GFRP through CNCs, is therefore the 

result of heavily decorated surface –OH groups on CNCs interacting simultaneously with EP 

(through hydrogen/covalent) and forming C-O-Si bonding with glass fibres through a 
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condensation reaction [48]. These simultaneous interface-strengthening interactions of CNC 

are well manifested through fractured morphologies. 

5. Conclusions

This study demonstrates the strong reinforcement effect of CNCs in developing advanced 

hierarchical multiscale composites for industrial applications. To achieve this, CNC/EP 

mixtures were generated by the combined action of high shear mixing and ultrasonication to 

fabricate CNC/GFRP composites. Vacuum resin infusion was used for the fabrication of 

CNC embedded GFRP composites. Rheological and FTIR studies confirmed the uniform 

dispersion of CNCs and chemical bonding between CNC and EP. Rheological studies helped 

identify the best suitable loadings that approach the practical limit of viscosity required for 

successful resin infusion. The results demonstrated that CNC-enhanced GFRP composites 

exhibit significantly improved mechanical properties. Interestingly, a multiscale composite 

with 2 wt% of CNC content, in a glassy state (below Tg), yielded a storage modulus(E’) 

which was 56% higher, a tensile strength which was 24 % higher, a Young’s modulus 

increase of 14%, a flexural modulus 45% higher and an increase in flexural strength of 55% 

over the control GFRP composite. In the rubbery state region (above Tg at 140°C), the storage 

modulus of CNC/GFRP composites was also increased significantly by 61%, 95% and 109%, 

with 0.5,0.1 and 2.0 wt% of CNCs compared to the GFRP modulus (2.1 GPa). Moreover, the 

addition of CNCs to GFRP composites increases the Tg by 9˚ C (from 91˚ C) compared to 

GFRP composites.  Fractographic studies revealed that CNCs are strongly imbibed over the 

glass fibres and well adhered with the thin layer of matrix over fibres.  It is expected that the 
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presence of the CNCs in the interphase region acted as an effective junction to influence the 

strengthening of the GFRP interface. 

Acknowledgement

This work was supported by the UK Engineering and Physical Sciences Research Council 

(EPRSC) grant EP/N007190/1. Dr. Tao Yu is acknowledged for providing help with the 

rheological studies and Dr. Natalia Plechkova for FTIR studies. Special thanks to Daniel Reid 

and Jonathan Moffat for assisting with the measurement of mechanical properties.

Conflict of interest:

The authors declare no competing financial interest

               

References

1. Kuttner C, Hanisch A, Schmalz H, Eder M, Schlaad H, Burgert I, Andreas Fery A.  

(2013) Influence of the Polymeric Interphase Design on the Interfacial Properties of 

(Fibre-Reinforced) Composites. ACS Appl Mater Inter 2013; 5: 2469−2478

2. Jeyakumar R, Sampath PS,Ramamoorthi, R, Ramakrishnan,T.Structural, 

morphological and mechanical behaviour of glassfibre reinforced epoxy nanoclay 

composites. Int J Adv Manuf Technol 2017; 93:527–535

3. Asadi A, Miller M, Moon RJ, Kalaitzidou K. Introducing cellulose nanocrystals in 

sheet molding compounds (SMC). Compos Part A Appl Sci Manuf 2016; 88: 206–

215.

4. Yao X, Falzon BG, Hawkins SC.Orthotropic electro-thermal behaviour of highly 

aligned carbon nanotube web based composites. Compos Sci Technol 2019;170:157-

164 



20

5.  Liua MY, Zhu HG, Siddiquia NA, Leung CKY, Kim JK. Glass fibres with clay 

nanocomposite coating: Improved barrier resistance in alkaline environment. Compos 

Part A Appl Sci Manuf 2011; 42:2051-2059

6. Liu L, Jia C, He J,  Zhao F,  Fan D,  Xing L,  Wang M, Wang F, Huang JZ. Interfacial 

characterization, control and modification of carbon fiber reinforced polymer 

composites. Compos. Sci. and Technol. 2015; 121: 56-72

7. Eesaee M, Shojaei A. Effect of nanoclays on the mechanical properties and durability 

of novolac phenolic resin/woven glass fibre composite at various chemical 

environments, Compos Part A Appl Sci Manuf 2014;63:149–158

8.  Wang F, Drzal LT, Qin Y, Huang Z.Size effect of graphene nanoplatelets on the 

morphology and mechanical behavior of glass fibre/epoxy composites. J Mater Sci 

2016; 51:3337-48

9.  Menbari S, Ashori A, Rahmani H, Bahrami R. Viscoelastic response and interlaminar 

delamination resistance of epoxy/glass fibre/functionalized graphene oxide multi-

scale composites. Polym Test 2016;54:186-195

10. Yuchang Q, Jie W, Hongyu W, Fa L, Wancheng Z. Graphene nanosheets/E-

glass/epoxy composites with enhanced mechanical and electromagnetic performance. 

RSC Adv 2016; 6: 80424

11.  Rathore DK,Prusty RK, Kumar DS, Ray BC.  Mechanical performance of CNT-filled 

glass fibre/epoxy composite in in-situ elevated temperature environments 

emphasizing the role of CNT content. Compos Part A Appl Sci Manuf 2016; 84:364–

376.

12.  Hung PY, Lau KT, Fox B, Hameed N, Lee JH, Hui D. Surface modification of 

carbon fibre using graphene–related materials for multifunctional composites. 

Compos Part B-Eng 2016; 133:240-257.

13. Zhu J, Wei S, Ryu J, Budhathoki M, Liangd G, Guo Z. In situ stabilized carbon 

nanofibre (CNF) reinforced epoxy nanocomposites. Mater Chem 2010; 20: 4937–

4948.

14. Kargarzadeh H, Mariano M, Huang J, Lin N,Ahmad I, Dufresne A, Thomas S. Recent 

developments on nanocellulose reinforced polymer nanocomposites: A review. Polym 

2017; 132:368-393.



21

15. Xu S, Girouard N, Schueneman G, Shofner ML, Meredith JC.  Mechanical and 

thermal properties of waterborne epoxy composites containing cellulose nanocrystals. 

Polym 2013; 54 : 6589–6598.

16.  Gabr MH, Elrahman MA, Okubo K, Fujii T. A study on mechanical properties of 

bacterial cellulose/epoxy reinforced by plain-woven carbon fibre modified with liquid 

rubber. Compos Part A Appl Sci Manuf 2010; 41:1263–1271.

17. Asadi A, Miller M, Sultana S, Moon RJ, Kalaitzidou K. Introducing cellulose 

nanocrystals in sheet molding compounds (SMC). Compos Part A Appl Sci Manuf 

2016; 88 :206–215

18. Asadi A, Miller M,  Moon RJ, Kalaitzidou K. Improving the interfacial and 

mechanical properties of short glass fibre/epoxy composites by coating the glass 

fibres with cellulose nanocrystals, eXPRESS Polym Lett 2016;10: 587–597

19. Liu Y, Xiao HM , Feng QP, Fu SY. Synergistic effect of carbon nanotubes and n-

butyl glycidyl ether on matrix modification for improvement of tensile performance of 

glass fibre/epoxy composites. Compos Part A Appl Sci Manuf 2014; 62:39–44.

20. Tian MT, Zhen X, Wang ZW, Zou H, Zhang L, Ning N. Bioderived 

Rubber−Cellulose Nanocrystal Composites with Tunable Water-Responsive Adaptive 

Mechanical Behavior. ACS Appl Mater Inter 2017; 9: 6482−6487.

21. Li MC, Wu Q, Song K, Lee S, Qing Y, Wu Y.Cellulose Nanoparticles: 

Structure−Morphology−Rheology Relationships. ACS Sustainable Chem. Eng 

2015;3: 821−832.

22.  Nadiv R , Vasilyev G, Shtein M , Peled  A,  Zussman E ,Regev O. The multiple roles 

of a dispersant in nanocomposite systems. Composites Science and Technology 2016; 

133: 192-199.

23.  Dorigato A, Morandi S, Pegoretti A. Effect of nanoclay addition on the fibre/matrix 

adhesion in epoxy/glass composites., J Compos Mater 2011;46:1439–1451.

24.  Xu X,Liu F, Jiang L, Zhu JY,  Haagenson D, Wiesenborn DP. Cellulose Nanocrystals 

vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects 

as Polymer Reinforcing Agents. ACS Appl. Mater. Inter 2013;5: 2999−3009

25.  Khelifa F, Habibi Y, Bonnaud L, Dubois P. Epoxy Monomers Cured by High 

Cellulosic Nanocrystal Loading. ACS Appl Mater Inter 2016; 8:10535–10544.



22

26. Zhang W, Li X, Yang R. Pyrolysis and fire behaviour of epoxy resin composites 

based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-

POSS). Polym Degrad Stab 2011; 96: 1821-1832.

27. Gao R, Lu Y, Xiao S, Li J. Facile fabrication of nanofibrillated chitin/Ag2O 

heterostructured aerogels with high iodine capture efficiency. Sci Rep 2017; 7: 4303.

28. Nuruddin MD, Hosur M, Mahdi T, Jeelani S. Flexural, Viscoelastic and Thermal 

Properties of Epoxy Polymer Composites Modified with Cellulose Nanofibers 

Extracted from Wheat Straw. Sensors & Transducers 2017; 210:1-8.

29. Chen Li, Shengfang Li and Shilin Y. Facile and green preparation of biobased 

graphene oxide/furan resin nanocomposites with enhanced thermal and mechanical 

properties. RSC Adv 2016; 6: 62572

30. Gupta S, Rahaman A. Effect of carbon nanotubes on thermos-mechanical properties 

of glass fibre/epoxy laminated nanocomposites. Int  J Sci Res 2015; 5:1-5.

31. Uribe BEB, Chiromito EMS, Carvalho AJF, Tarpani JR. Low-cost, environmentally 

friendly route for producing CFRP laminates with microfibrillated cellulose 

interphase. eXPRESS Polymer Letters 2017;11:47–59

32. Kim M,  Park YB , Okoli OI, Zhang C. Processing, characterization, and modeling of 
carbon nanotube-reinforced multiscale composites. Compos. Sci. and Technol 2009; 
69 :335–342

33. Patterson BA, Malakooti MH, Lin J, Okoromd A, Sodano HA. Aramid nanofibers for 

multiscale fiber reinforcement of polymer composites. Compos. Sci. and Technol 

2018;161:92–99

34. Zanjani JSM, Okan BS, Menceloglu YZ, Yildiz M. Nano-engineered design and 
manufacturing of high performance epoxy matrix composites with carbon 
fiber/selectively integrated graphene as multi-scale reinforcements. RSC Adv. 2016; 
6: 9495

35. Zhang X, Fan X, Yan C, Li H, Zhu Y, Li X, and Yu L. Interfacial Microstructure and 

Properties of Carbon Fiber Composites Modified with Graphene Oxide. ACS Appl. 

Mater. Interfaces 2012; 4: 1543−1552

36. Halder S, Ahemad S,Da S, and Wang J. Epoxy/Glass Fiber Laminated Composites 

Integrated with Amino Functionalized ZrO2 for Advanced Structural Applications. 

ACS Appl Mater Interfaces 2016; 8: 1695−1706

37.  Liao WH, Tien HW, Hsiao ST, Li SM, Wang YS, Huang YL, Yang SY,  Ma CCM,   

Wu YF.,Effects of Multiwalled Carbon Nanotubes Functionalization on the 



23

Morphology and Mechanical and Thermal Properties of Carbon Fibre/Vinyl Ester 

Composites. ACS Appl. Mater. Inter 2013;5: 3975−3982.

38. Goswami J, Haque E, Fox DM,Gilman JW, Holmes GA,  Moon  RJ and Kalaitzidou 

K.The Effect of Cellulose Nanocrystal Coatings on the Glass Fiber–Epoxy Interphase. 

Materials 2019; 12: 1951

39. Adak NC, Chhetri S, Murmu NC, Samanta P, Kuila T, Lee JH.Experimental and 

numerical investigation on the mechanical characteristics of polyethylenimine 

functionalized graphene oxide incorporated wovencarbon fibre/epoxy composites. 

Composites Part B 2019; 156: 240–251.

40. Siqueira G, Mathew AP, Oksman K, Processing of cellulose nanowhiskers/cellulose 

acetate butyrate nanocomposites using sol–gel process to facilitate dispersion. 

Composites Science and Technology 2011; 71: 1886–1892

41. Uribe BEB, Chiromito EMS, Carvalho AJF, Arenal R, Tarpani JR. TEMPO-oxidized 

cellulose nanofibers as interfacial strengthener in continuous-fiber reinforced polymer 

composites. Materials and Design 2017; 133: 340–348.

42. Jyoti J, Babal AS, Sharma S,Dhakate SR, Singh BP.Significant improvement in static 

and dynamic mechanical properties of graphene oxide–carbon nanotube acrylonitrile 

butadiene styrene hybrid composites. J Mater Sci 2018; 53:2520–2536.

43. Zhao F, Huang Y, Liu L, Bai Y, Xu. Formation of a carbon fiber/polyhedral 

oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the 

interfacial properties of carbon fiber/epoxy composites. Carbon 2011; 49:2624-2632

44. Kumar S, Hofmann M, Steinmann B, Foster EJ, Weder C. Reinforcement of 

Stereolithographic Resins for Rapid Prototyping with Cellulose Nanocrystals. ACS 

Appl. Mater. Interfaces 2012; 10: 5399-5407

45. Shanhong Xu, Girouard N, Schueneman G, Shofner ML, Meredith JC. Mechanical 

and thermal properties of waterborne epoxy composites containing cellulose 

nanocrystals.Polymer 2013; 54 6589-6598

46. Tehrani M,Boroujeni A.Y ,Hartman TB, Haugh TP,Case SW,AlHaik MS. Mechanical 

characterization and impact damage assessment of a woven carbon fibre reinforced 

carbon nanotube–epoxy composite. Compos Sci and Technol 2017;75: 42-48

47. Varma AJ, Jamdade YK, Nadkarni VM. Curing characteristics of epoxy resins filled 

with cellulose and oxidized cellulose. Angew Makromol Chem 1984; 122:211–8.



24

48. Cheni Y, Zhou X, Yin X, Lin Q, Zhy M. A Novel Route to Modify the Interface of 

Glass Fibre-Reinforced Epoxy Resin Composite via Bacterial Cellulose. Int  J Polym 

Mater Polym Biomater 2014; 63: 221–227.

                                                               

                                                                  

                                                            



25

 FIGURES

 

Figure1. (a) SEM image of as–received freeze-dried CNCs and (b-d) representative AFM 

images of  CNCs; (b) topographical and height profile (c) amplitude (d) 3D image. AFM 

images obtained from dispersion (conc. 1.0 mg/ml (deionized-water)) onto a silicon wafer

                                                              

Figure 2. (a) Schematic representation of CNC/GFRP composites manufacturing process.
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Figure 3. (a) Viscosity vs shear rate (b) storage modulus (G') vs frequency of

uncured-CNC/EP mixtures, (c-d) FTIR spectra of CNC, EP monomer, cured EP and CNC/EP 

composite.

Fig.4: (a) Tensile stress vs strain (b) flexural stress vs strain (c) storage modulus of CNC/EP 

composites
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Figure 5. Morphological study of tensile fractures surface of (a) control epoxy and (b) 2.0 

wt% CNC/epoxy composite.

Figure 6:  Morphological study of tensile fractures surface of 2.0 wt% CNC/epoxy composite
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Figure 7:  XRD study of CNC/epoxy composites

Figure 8: Tensile properties of GFRP and CNC/GFRP composites
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Figure 9: AM-FM viscoelastic mapping images of composite interfaces (a) GFRP and (b) 2.0 

wt% CNC/GFRP with line profiles. The diagonal black line starting over the fibre surface, 

crossing the interphase region and ending over the EP matrix surface. The transitions between 

dots corresponds to the interphase region.
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Figure 10: Flexural properties of GFRP and CNC/GFRP composites

Figure 11: Storage modulus and Tandelta spectra of GFRP and CNC/GFRP composites
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Figure 12: (a) SEM image of tensile fractured surface of GFRP composite, (b&c) 2.0wt% 

CNC/GFRP composite.

.

Figure13:  SEM images of tensile fractured surface of (a) GFRP and (b-c) 2.0wt% 

CNC/GFRP composite. Image (c) is the magnified version of image (b, white square)
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Figure 14 (a-b): SEM images of tensile fractured surface of 2.0wt% CNC/GFRP composite.

          

Figure 15: (a-c) High magnification SEM fractured surface images of 2.0wt% CNC/GFRP 

composite and (d) 3-D representation showing CNC/epoxy attachment over the fibre surface.
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Table 1 Mechanical properties of GFRP and CNC/GFRP composites.

Table 2 Mechanical properties improvement comparison of CNC/GFRP and different types 
of nanofiller/GFRP composites.

F-G: Functionalized graphene; F-MWNTs: Functionalized multiwalled carbon nanotubes; 
GO: Graphene oxide; GNP: Graphene nanopatelets; CB: Organically modified 
montmorilonite clay

Composite 
systems

Flexural 
modulus

(GPa)

Flexural 
strength
(MPa)

Tensile strength 
(σts)

MPa

Young’s 
Modulus

(E)
(GPa)

.

ε (%)

GFRP 11.9±0.35 424±20.6 267±5.2 10.2±0.23 3.7±0.03
0.5 wt% 

CNC/GFRP
13.4±0.52 454±10.4 283±9.8 10.7±0.6 3.99±.13

1.0wt% 
CNC/GFRP

14.0±0.41 516±8.3 309±7.9 11.2±.32 4.03±0.17

2.0wt% 
CNC/GFRP 

18.1±0.95 660±20.09 332±9.2 11.7±0.26 4.2±0.10

Composite 
systems

Nano
fillers
(wt%)

Storage 
modulus

(E')
 (%)

Flexural 
modulus 

(%)

σts 
(%)

Young’s 
Modulus

(E)
(%)

Flexural
Strength

(%)

Ref.

Clay/GFRP 5.0 ----- 53 23.5 23.6 34 2
CB*/GFRP 2.5 17 15 14 43 6.7 7

GNP*/GFRP 5.0 28 26 ----- ----- 16 8
F-G*/GFRP 0.5 42 20 33 ----- 9

Graphene/GFRP 2.0 ---- 58.4 ----- ----- 78.8 10
F-

MWNTs*/GFRP
0.1
0.5

4
16

11
9

----- ----- 32
15

11

MWNTs/GFRP 0.5 ----- 28 14.9 ----- 19
MWNTs/GFRP 1.0 38 ---- 21 32 ----- 28

CNC/GFRP 2.0 56 50 20 20 55 This 
work


