
warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

 

http://wrap.warwick.ac.uk/149794 

 

 

 

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/149794
mailto:wrap@warwick.ac.uk


Measurement of the Relative Branching Fractions of

Charmless Three-Body B+ Decays at LHCb

by

Cayo Costa Sobral

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Department of Physics

September 2019



Contents

Acknowledgments v

Declarations vi

Abstract vii

Chapter 1 Introduction 1

Chapter 2 Theory Overview 4
2.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 CPT Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 The CKM Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 CP Violation in Quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Three-body Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 The B+→ h+h′+h′′− Decay Channels . . . . . . . . . . . . . . . . . . . . 15

Chapter 3 The LHCb Experiment 22
3.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 LHCb Detector Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Vertex Locator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Tracker Turicensis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.3 Inner Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.4 Outer Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.5 Magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.6 Vertexing and Tracking Performance . . . . . . . . . . . . . . . . . . 32

3.4 Particle Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Ring Imaging Cherenkov Detectors . . . . . . . . . . . . . . . . . . . 35

i



3.4.2 Calorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.3 Muon System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.4 PID Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 4 Relative Branching Fractions of B+→ h+h′+h′′− decays 44
4.1 Measurement Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Data and Monte Carlo Samples . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 5 Backgrounds and Candidate Selection 47
5.1 Background Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Pre-Selection Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 Stripping Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.2 Trigger Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.3 Fiducial Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 PID Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Muon Misidentification . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 MVA Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Charm Vetoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6 Partially Combinatorial Vetoes . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.7 Multiple Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter 6 Efficiencies 66
6.1 Selection Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 PID Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 B Kinematics Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Tracking Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.5 L0 TIS Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.6 L0Hadron TOS Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.7 Total Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 7 Invariant Mass Fit 78
7.1 Fit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.1.1 PDF Parameterisations . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.1.2 Corrections to B+→ h+h′+h′′− MC distributions . . . . . . . . . . 80

7.1.3 Individual Final-State Fit Models . . . . . . . . . . . . . . . . . . . . 81

7.1.4 Data Fit Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

ii



7.2 Fit Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2.1 Signal Yield Correction . . . . . . . . . . . . . . . . . . . . . . . . . 90

Chapter 8 Systematic Uncertainties 92
8.1 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.1.1 Data / MC Differences . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.1.2 Vetoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.1.3 Dalitz Plot Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.1.4 Finite MC Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.1.5 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.1.6 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.1.7 B Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.1.8 PID Systematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.1.9 Choice of Fit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.1.10 Fixed Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.1.11 Fit Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2 Cross-Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 9 Conclusions 100

Bibliography 103

iii



“ I got home and I thought I should stop leading so aimless an existence. It is

harder than you might think to stop leading an existence, & if you can’t do that

the only thing you can do is try to introduce an element of purposefulness....

and though I might have to wait another 30 or 40 years for my body to join

the non-sentient things in the world at least in the meantime it would be a less

absolutely senseless sentience. ”
Helen DeWitt, The Last Samurai
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Abstract

This thesis documents a measurement of the relative branching fractions of the charmless three-

body decays B+→ K+K+K−, B+→ K+π+K−, B+→ K+π+π−, and B+→ π+π+π−,

performed using the dataset collected by the LHCb experiment in the years 2011 and 2012 and

corresponding to a total integrated luminosity of 3 fb−1.

The branching fractions relative to that of the B+→ K+K+K− decay are determined

to be

B(B+→ K+π+K−) /B(B+→ K+K+K−) = 0.1521± 0.0040 (stat)± 0.0087 (syst) ,

B(B+→ K+π+π−) /B(B+→ K+K+K−) = 1.714 ± 0.011 (stat) ± 0.061 (syst) ,

B(B+→ π+π+π−) /B(B+→ K+K+K−) = 0.501 ± 0.005 (stat) ± 0.015 (syst) .

The branching fractions relative to the other decay channels are also determined. These measure-

ments show a significant improvement in precision over the current world average values.

vii



CHAPTER1
Introduction

“ When you can measure what you are speaking about, and express it in

numbers, you know something about it; but when you cannot measure it,

when you cannot express it in numbers, your knowledge is of a meagre and

unsatisfactory kind; it may be the beginning of knowledge, but you have

scarcely in your thoughts advanced to the stage of science, whatever the

matter may be. ”
Lord Kelvin, Electrical Units of Measurement

The development of particle physics as a field of research is undoubtedly coupled with

the rapid technological developments of the 20th century. The discovery of new particles has

repeatedly followed an increase in the energies accessible by particle accelerators. Similarly, it

is difficult to imagine how the ever-larger datasets required to observe rare processes could be

analysed if all that were available were photographic plates, such as the ones used by Anderson

in the discovery of the positron [1].

Although particle physics is heavily associated with modern technology, the fundamental

questions it attempts to answer have a long history. The ancient Greeks are recognised as the

first people to put forward theories of matter and its behaviour without invoking supernatural

causes [2]. It is a testament to their collective ingenuity that one can look back, more than two

thousand years ago, and see resemblance in some of their writings to the basic ideas of modern

theory. Leucippus and his more famous student Democritus, in the fifth century BCE, introduced

the idea of the World being composed of indivisible atoms and the void, in which atoms moved.
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Their atoms were supposedly infinite in number and type, immutable and impenetrable, and in

constant random motion. Interestingly, the idea that the atoms must necessarily be microscopic in

size does not seem to originate with Democritus, but instead with Epicurus, in a later refinement

of the theory [3].

Philosophical atomism would resurface occasionally through history but it would not

be until the 19th century, with developments in chemistry and kinetic theory, that the idea of

the atom would gain scientific significance. It would still take a century of theory-building and

experimental observation for atomic theory to cement itself, with Einstein’s theory of Brownian

motion and its experimental verification by Jean Perrin [4, 5] ultimately proving its validity.

Democritus’s victory over his contemporaries would never prove itself absolute: J. J. Thom-

son’s discovery of the electron [6] revealed the existence of particles with masses much smaller

than the lightest atom, Rutherford’s scattering experiment [7] proved the atom had substructure,

and experiments into radioactive decay showed atoms are not immutable. However, not all is lost

for the Atomists as not only does the electron appear to be an indivisible, fundamental particle

but so do other particles, such as quarks.

The current-best theory that describes the behaviour of electrons, quarks, and the other

fundamental particles of the Universe is called the Standard Model (SM) of particle physics. The

SM is the culmination of almost a century of theoretical development and has shown itself to

be both fantastically predictive and accurate throughout the years. This is best exemplified by

achievements such as the SM prediction for the electron anomalous magnetic moment, which

matches experiment to ten significant figures [8, 9], and the discoveries of many particles that

were first predicted by the SM, such as the discovery of the Higgs boson by the ATLAS [10] and

CMS experiments [11].

However, it is accepted that the Standard Model is not a complete theory. A description

of gravity is not included in the Standard Model; fundamental differences exist between the

accepted theory of gravity, the theory of General Relativity, and the SM. The exclusion of gravity

in the SM framework is not its only shortcoming, and this is particularly evident in areas where

the theory clashes with cosmological evidence. A number of astronomical observations in the

last hundred years have shown the particles described by the Standard Model constitute but a

small fraction of the total mass content of the Universe. The current estimate for the fraction of

the total mass that is composed of ‘ordinary’ matter is ∼ 16% [12]; the remaining mass is in the

form of ‘dark matter’, of which very little is known.

One natural assumption of the standard cosmological model, known as the Λ-CDM

model, is that matter and antimatter should have been produced in equal amounts at the time

of the Big Bang. Nonetheless, the present-day Universe is predominantly matter-dominated,

which raises the question of what processes in the early Universe generated the current imbalance
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observed. The precise mechanism that generates this imbalance, known as baryogenesis, is still

unknown. However, three requirements, the ‘Sakharov conditions’, are known to be necessary in

any theory of baryogenesis [13]: particle interactions that violate baryon number conservation

must exist, and also interactions that violate CP symmetry, i.e. the symmetry between particles

and antiparticles; futhermore, these interactions must have occurred at a time when the Universe

was out of thermal equilibrium. The Standard Model can technically satisfy these three conditions,

although at a level orders of magnitude lower than what is necessary to account for the observed

matter-antimatter asymmetry [14].

The nature of CP symmetry and the processes which violate it in the Standard Model

are discussed in Chapter 2. The study of known CP -violating processes and searches for new

sources of CP violation are a significant part of the physics programme of the LHCb experiment.

The decay channels studied in this thesis have already shown themselves as rich laboratory

for CP -violating effects [15–18]. The branching fraction measurements presented in this work

represent an additional step towards a better understanding of these decay channels.

Chapter 2 provides a summary of the Standard Model, its symmetries, and mechanisms

through which CP violation occurs. The theoretical motivation for the measurement and existing

predictions are also discussed. In Chapter 3, a description of the LHCb detector is given, and

its performance is discussed. Chapter 4 summarises the strategy used to perform the branching

fraction measurement, along with detail of the samples used in the analysis. The strategies used

to identify signal decays, against the different background sources considered, are detailed in

Chapter 5. In Chapter 6, the different components of the selection efficiency are presented,

and their variation across the phase-space is considered. The fitting strategy used to determine

the yields of the four signal channels is presented in Chapter 7. The systematic uncertainties

associated with the measurement are listed in Chapter 8. Finally, the conclusion in Chapter 9

summarises the final results obtained, and their relation to other studies performed.

The work presented in this thesis is currently under review within the LHCb collaboration.

The inclusion of charge-conjugate processes is implied throughout this thesis, unless otherwise

specified.
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CHAPTER2
Theory Overview

“ Our imagination is stretched to the utmost, not, as in fiction, to imagine things

which are not really there, but just to comprehend those things which are

there. ”
Richard Feynman, The Character of Physical Law

In this chapter, the relevant theoretical background and motivation for the work presented

in this thesis is described. The framework of the Standard Model is described first, in Section 2.1,

followed by a short description of the manifestations of CP violation in quarks in Section 2.2.

A summary of the properties of decays involving three final-state particles and how they can be

described is given in Section 2.3. Finally, an overview of previous studies of the decays explored

in this thesis is presented in Section 2.4.

2.1 The Standard Model

The Standard Model is a relativistic quantum field theory that respects the symmetries of the

gauge group SU(3)C ⊗ SU(2)W ⊗U(1)Y , where the subscripts denote the associated charges

conserved by each group: C standing for colour,W for weak isospin, and Y for weak hypercharge.

The result is a theory that describes the interactions of matter under the strong, weak, and

electromagnetic forces. Gravity, the only other fundamental force, is unformulated as a quantum

theory and therefore remains outside the framework of the SM.
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While the fundamental objects in the theory are the quantum fields themselves, we

generally must learn their properties via the study of the excitations of these fields, i.e. the

particles associated with each field. There are currently twelve different types of particles in the

SM that can be said to constitute the matter in the Universe; another four types, the gauge bosons,

serve as mediators of the three fundamental forces being described. A final particle, the Higgs

boson, is associated with the mechanism responsible for generating particle masses. The SM

particles are listed in Figure 2.1 alongside their mass, electric charge, and spin.

The twelve matter particles, or fermions, can be subdivided into quarks, which feel the

strong force, and leptons, which do not. The leptons can be further divided into charged leptons

and neutrinos, the latter of which only interact via the weak force. The columns in Figure 2.1 also

show another possible division of the fermions, into generations. In fact, all the stable matter in

the Universe is made up of generation I fermions only, with the particles in the other generations

having identical quantum numbers as their lightest counterpart. Finally, each fermion has an

associated anti-matter partner with the same mass and lifetime but opposite quantum numbers.

The six quarks experience the strong nuclear force because they carry the colour charge,

of which three states {red, blue, green} exist. The symmetry in the SM associated with the strong

force is SU(3)C and the theory that models its interactions is called Quantum Chromodynamics

(QCD). In QCD, strong interactions are mediated by gluons, which are spin-1 massless bosons

and which also carry colour charge themselves. The gluon self-interaction leads to a particular

feature of the strong interaction: the value of the strong coupling constant αs, i.e. the strength

of the force, is low at short distances (high energies) but high at long distances (low energies).

As with electromagnetism, one can think of the lines of force of the gluon field around two

quarks interacting. The difference however is due to the gluons being exchanged also interacting

with each other, narrowing the flux lines into a ‘flux tube’. The potential increases as the two

particles are separated and it rapidly becomes more favourable to create a new pair of quarks,

rather than to ‘stretch the tube’. The final result is colour confinement – neither quarks nor gluons

can propagate individually but only within bound states, called hadrons, which must have no

overall colour charge. In most cases this is achieved in one of two different ways: mesons are

quark-antiquark (qq) states and baryons are three-quark (qqq) states; exotic states with four or five

quarks/antiquarks are possible and have been observed [20, 21]. A related consequence of gluon

self-interaction is that around the confinement energy scale, ΛQCD ∼ 200 MeV, the coupling

strength becomes greater than unity and QCD becomes non-perturbative. This is a problem that

will be expanded upon later in Section 2.4.

In the SM the electromagnetic and weak forces are unified into a common ‘electroweak’

(EW) framework [22–24], the Glashow-Weinberg-Salam (GWS) theory, which is associated

with the symmetry SU(2)W ⊗U(1)Y . The electromagnetic force is mediated by the photon (γ),
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Figure 2.1: The fundamental particles of the Standard Model and their main properties [19].

while the weak force is mediated by three massive spin-1 bosons (W± and Z0). The fact that in

nature we observe the three weak bosons as having mass, or equivalently that the weak force is

short-range, is a priori a problem for any gauge theory describing the weak interaction, since

the inclusion of any boson mass terms is forbidden by gauge symmetry. A further complication

for a gauge theory of weak interactions is the observation that the weak force is parity-violating

(see Section 2.1.1), as it only interacts with the left-handed components of particle fields, which

leads to the fermion mass terms also not being gauge invariant. An elegant mechanism to solve

both of these issues was found near-simultaneously by Brout and Englert [25], Higgs [26], and

6



Guralnik, Hagen, and Kibble [27] in which all particles are massless at high energies and their

masses below the electroweak scale are generated dynamically by the spontaneous breaking of

the electroweak symmetry SU(2)W ⊗U(1)Y .

The Higgs mechanism works via the introduction of a new doublet of complex scalar

fields which have a non-zero vacuum expectation value. Three of the four degrees of freedom in

the Higgs doublet become the longitudinal components of the now-massive W± and Z0 bosons.

The remaining degree of freedom is a real scalar field, which we call the Higgs field, with its

associated particle the Higgs boson. Fermions are allowed to interact with the Higgs field via

Yukawa interactions that, in the quark sector, take the form

LYukawa = −Y d
ijQ̄LiφdRj − Y u

ij Q̄LiφcuRj + h.c., (2.1)

where the Y d,u are 3 × 3 complex coupling matrices, the Q̄L = (uL, dL) are the left-handed

SU(2) quark doublets, φ and φc the Higgs doublet and its charge conjugate, and dR and uR the

right-handed SU(2) quark singlets. The indices i, j run over the number of quark generations.

The two Yukawa matrices Y d,u need not be diagonal and indeed they cannot be diagonalised

simultaneously. The consequence of this result is a mismatch between quark mass and weak

eigenstates and mixing between up- and down-type quarks of different generations, in charged-

current weak interactions. The mixing between generations is encapsulated in the Cabibbo-

Kobayashi-Maskawa (CKM) matrix, which will be further described in Section 2.1.2.

2.1.1 CPT Symmetries

In addition to its gauge symmetries, the SM can also display three discrete symmetries: parity

inversion (P ), charge conjugation (C), and time reversal (T ). These three can be combined

together, with the most important combinations being CP and CPT . The SM must be invariant

under the combination CPT as this can be shown to be equivalent with Lorentz invariance for a

relativistic quantum field theory. At one time, all three discrete symmetries were thought to be

individually conserved, however we now know that both P and C are maximally violated by the

weak interaction and their combination CP is also not conserved.

The parity operator inverts the sign of all three spatial coordinates, i.e. a vector a becomes

P (a) = −a. Parity is a good symmetry of both electromagnetic and strong interactions, however

it was shown by Wu [28], using the beta decay of cobalt-60, to be (maximally) violated by the

weak interaction. The charge conjugation operation flips the sign of all quantum numbers of a

particle, i.e. it transforms a particle into its antiparticle. It can be seen to be violated by the weak

force by noting that the application of C to left-handed neutrinos yield left-handed antineutrinos,

which have never been seen in experiment and are not present in the SM.
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It was expected that the combination CP would instead be a good symmetry of weak

interactions – a left-handed neutrino transforms into a right-handed antineutrino, both being

able to participate in weak interactions. However CP was also shown to be violated, first in the

decays of K0
L mesons in 1964 [29] and later in the B0 system [30, 31]. Since then, CP violation

has also been seen to manifest in the B+ and B0
s systems [32, 33], and most recently in charm

decays [34].

2.1.2 The CKM Matrix

The CKM matrix is a 3× 3 unitary matrix that describes the possible mixings between the six

different quarks. It was, however, first introduced by Kobayashi and Maskawa [35] as a potential

model to accommodate CP violation in electroweak theory, at a time when half of the quarks

required to make the model work remained undiscovered. In a general form, the mixing between

the down-type quarks’ mass and weak eigenstates can be written asd
′

s′

b′

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


CKM

ds
b

 , (2.2)

where the primed states are the weak eigenstates.

Out of the nine independent components of a general 3×3 unitary matrix, five components

of the CKM matrix are unphysical phases that can be absorbed into the phases of the quark fields.

We are left with four parameters: three real mixing angles and the KM complex phase, the only

source of CP violation in the SM. The CKM matrix can be rewritten in terms of these parameters

only, the ‘standard parameterisation’:

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (2.3)

where cij ≡ cos θij , sij ≡ sin θij , and δ is the KM phase.

Another useful parameterisation was first obtained by Wolfenstein [36], by noticing that

s13 � s23 � s12 < 1 and expanding in terms of s12 ≡ λ ≈ 0.23. The CKM matrix can then be

described using the parameters λ,A, ρ, and η, which are commonly defined through

s23 ≡ Aλ2, s13e
iδ ≡ Aλ3(ρ− iη). (2.4)

These definitions ensure that this parameterisation remains unitary to all orders in λ. The CKM
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matrix in the Wolfenstein parameterisation is given, to O(λ3), by

VCKM =

 1− 1
2λ

2 λ Aλ3(ρ− iη)

−λ 1− 1
2λ

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) . (2.5)

In this parameterisation, the hierarchy of the CKM matrix can easily be seen: the intra-generational

couplings are strong, O(1), while the couplings between generations I and III are very small.

The unitarity of the CKM matrix allows the construction of six triangle relations between

its different components, given by

∑
i

VijV
∗
ik = δjk,

∑
j

VijV
∗
kj = δik, (2.6)

in the cases where δjk, δik = 0. The six triangles have the same area, which is a measure of the

total amount of CP violation in the SM [37].

It is conventional to take one of these relations in which all terms are of the same order in

the expansion parameter λ:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (2.7)

and dividing it by the best-determined term, VcdV ∗cb, such that one of the sides is of unit length

and the apex is the point ρ+ iη ≡ −VudV ∗ub/VcdV ∗cb. The parameters ρ and η are defined in terms

of the other Wolfenstein parameters via

ρ+ iη =

√
1−A2λ4(ρ+ iη)√

1− λ2[1−A2λ4(ρ+ iη)]
, (2.8)

from which the approximations ρ ≈ ρ(1− λ2/2) and η ≈ η(1− λ2/2) can be derived.

The relation in Equation 2.7, normalised by VcdV ∗cb, is often referred to as the ‘unitarity

triangle’, an illustration of which is shown in Figure 2.2. The three angles of the unitarity triangle

are also accessible to experimental determination and are defined as:

α = arg

(
−
VtdV

∗
tb

VudV
∗
ub

)
, β = arg

(
−
VcdV

∗
cb

VtdV
∗
tb

)
, γ = arg

(
−
VudV

∗
ub

VcdV
∗
cb

)
. (2.9)

The parameters of the CKM matrix cannot be determined from first principles in the SM,

but must be determined a posteriori. This leaves their experimental determination a crucial goal

in modern particle physics. The same CKM parameters can be evaluated by a number of different
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measurements; this overconstraining helps both to improve the precision on these parameters and

to ‘stress test’ the SM, with the hope of uncovering beyond-Standard-Model effects.

Figure 2.2: Current experimental constraints on the different unitarity triangle parameters [38].
The inner (outer) shaded areas on the sin 2β and the triangle apex constraints correspond to
the 68% (95%) confidence levels. The constraints given for all other quantities are their 95%
confidence levels.

2.2 CP Violation in Quarks

The complex phase in the CKM matrix is the sole source of CP violation in the SM. However a

non-zero CKM phase, or ‘weak phase’, is not a sufficient condition for observable CP -violating

effects in the quark sector. Additionally, CP violation can only manifest itself in processes to

which multiple amplitudes contribute. This further requirement can be shown by considering the

decay of a particle and its CP conjugate.

CP violation in decay corresponds to an asymmetry in the rate of a particular decay and

its CP conjugate. The amplitudes for the two processes can be generally written as

Af =
∑
k

|ak|ei(δk+φk), Āf̄ =
∑
k

|ak|ei(δk−φk), (2.10)

where the φk are weak phases, which change sign under CP , the δk are ‘strong phases’, the phase

components which do not change sign under CP (generally produced by strong-force effects),

and k labels the possible contributing processes. In the case where the decay can only proceed
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via a single amplitude, it is easily shown that there can be no CP -violating decay rate difference:

|Af |2 − |Āf̄ |2 = |a1|2ei(δ1+φ1)e−i(δ1+φ1) − |a1|2ei(δ1−φ1)e−i(δ1−φ1)

= |a1|2 − |a1|2 ≡ 0.
(2.11)

CP violation emerges when multiple amplitudes can interfere with each other, e.g. tree-

and loop-level contributions:

ACP =
|Af |2 − |Āf̄ |2

|Af |2 + |Āf̄ |2

=
2|a1||a2| sin(δ1 − δ2) sin(φ1 − φ2)

|a1|2|a2|2 + 2|a1||a2| cos(δ1 − δ2) cos(φ1 − φ2)
.

(2.12)

We can see that theACP observable depends on both weak and strong phase differences, meaning

that extracting the weak phase generally requires knowledge of the strong contribution – often

difficult due to hadronic non-perturbative effects.

The CP violation mechanism illustrated above relates to the weak decays of hadrons.

However, the phenomenon of neutral meson mixing can induce further forms of CP violation.

Mixing is dependent on the mass eigenstates of the neutral meson not being equal to the flavour

eigenstates. Using (B0, B0) as an example, the lowest-order Feynman diagrams contributing to

mixing are shown in Figure 2.3. The two corresponding mass eigenstates can be written as

|BL〉 = pB0〉+ q|B0〉, |BH〉 = pB0〉 − q|B0〉, (2.13)

where BL(BH) denotes the lighter (heavier) mass state, and p, q are complex numbers requiring

|p|2 + |q|2 = 1. CP violation in mixing equates to an asymmetry in the B0→ B0 vs. B0→ B0

oscillation rates. This can be shown to correspond to the requirement that |q/p| 6= 1 and,

equivalently, that mass eigenstates are not CP eigenstates.

q

b
_

t t

W
 +

W
 −

q
_

b q

b
_

W W

t
_

t

q
_

b

Figure 2.3: B0 ↔ B0 oscillations via FCNC box diagrams [32].

A third mechanism for CP violation is also available to neutral mesons, in cases where

both particle and antiparticle can decay to the same final state. Two decay chains that can
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interfere are then available: B0 → f and B0 → B0 → f . The condition for CP violation in this

mechanism is defined as

arg(λf ) + arg(λf̄ ) 6= 0, (2.14)

where the parameter describing the interference is defined as λf ≡ qĀf/pAf (and equivalently

for the CP conjugate final state f̄ ). In the subset of cases where the final state is a CP eigenstate,

the CP asymmetry condition reduces to Im(λf ) 6= 0. A particular detail of note is that the

asymmetry from the interference in mixing and decay does not require either component to violate

CP individually, i.e. one can have |q/p| = 1 and
∣∣Āf/Af ∣∣ = 1 and still satisfy the condition

Im(λf ) 6= 0.

2.3 Three-body Kinematics

In two-body decays of spin-0 particles, conservation of momentum ensures that the momenta of

the decay products are equal and opposite in the rest frame of the initial particle. The only degree

of freedom available is the arbitrary choice of decay axis, due to the isotropy of the problem.

In contrast, three-body decays (or generally any multi-body decay) have additional degrees of

freedom and each decay product can carry away different amounts of the total energy available.

A generic set of three spin-0 particles contains a total of 12 degrees of freedom – all the

components of the three four-momenta. Knowledge of the three particle masses removes three

degrees of freedom, while requiring conservation of four-momentum in a decay removes another

four. In the specific case where both initial particle and all final-state particles are spin-0, there

is no angular dependence in the decay – this removes an additional three degrees of freedom.

Ultimately, a spinless three-body decay can be fully described by a pair of variables.

Richard Dalitz pioneered the use of the scatter plot of these two variables to describe and

study the decay K+→ π+π+π− [39]. In modern times, these Dalitz plots (DP) are constructed

using pairs of two-body invariant mass combinations m2
ij =

(
pµi + pµj

)2
, where i, j ∈ {1, 2, 3}

are the indices of the final-state particles. Three different combinations are possible (m2
13, m2

23,

m2
12), with the choice of the pair used to represent the DP depending on the particular decay

being studied. The boundaries of the DP can be determined from four-momentum conservation,

as shown in Figure 2.4.

The decay rate of a three-body decay is given by

dΓ =
1

32(2π)3M3
|M|2dm2

13dm
2
23, (2.15)

where M is the mass of the initial-state particle and M is the matrix element that describes
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Figure 2.4: The Dalitz plot kinematic boundaries and the corresponding momentum configurations
of the three final-state particles in B0

s→ D0K−π+ decays at points of interest in the DP [40].

the dynamics of this particular decay. IfM is constant, the allowed phase space is uniformly

populated with events. In most cases, however, a three-body decay will proceed via a number of

intermediate quasi-two-body decays, e.g. B+→ Xπ+→ π+π−π+ where X is a resonant state

such as ρ0(770) or f2(1270).

The contributions of the different resonant states manifest themselves in the DP as bands

at the value of the resonance mass squared in the corresponding m2
ijvariable, extending across

the other DP axis. Furthermore, the spin of the resonance will be reflected in the structure of the

resonant band: a scalar will generate a uniformly populated band, a vector generates a two-lobe

structure, and a tensor generates three-lobe bands. Finally, interference effects between different

intermediate states are also reflected in the Dalitz plot. An example of a Dalitz plot with multiple

contributing resonances is shown in Figure 2.5.

In decays of B mesons, events typically fall near the kinematic boundaries of the Dalitz

plot. It is convenient in such cases to apply a coordinate transformation that extends the edge

regions such that variations due to resonance interference and/or experimental effects can be

studied more easily. The ‘square Dalitz plot’ (sqDP) is one such transformation, which also

reshapes the kinematically-allowed region into a square with sides of unit length [41]. The
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Figure 2.5: Illustration of the Dalitz plot of the decay B0
s→ D0K−π+ with intermediate scalar

(green), vector (yellow), and tensor (red and blue) contributions highlighted. Interference effects
are not included in this illustration. Both conventional (left), and square (right) representations are
shown. An unphysicalD0π+ resonance (blue) has been added to help visualise the transformation
properties of the square Dalitz plot [40].

coordinates of this new representation are given by

m′ ≡ 1

π
arccos

(
2
mij −mmin

ij

mmax
ij −mmin

ij

− 1

)
, (2.16)

θ′ ≡ 1

π
θij , (2.17)

where mmin
ij = mi + mj , mmax

ij = MB −mk, and θij is the angle between i and k in the rest

frame of ij (i.e. the resonance rest frame). The effect of the sqDP transformation on the different

regions of the conventional DP can be seen in Figure 2.5.

In order to extract information about the different intermediate states, a model of the decay

dynamics is created and its parameters fitted to data. The isobar model is a useful approximation

to describe the full three-body decay amplitude. Here the decay amplitude is treated as a coherent

sum of a number of amplitudes describing the different intermediate states:

A(m2
ij ,m

2
jk) =

∑
R

cRFR(m2
ij ,m

2
jk), (2.18)

where FR encapsulates the dynamics (such as the lineshape and spin-dependence) of the interme-

diate state R, and cR describes the relative magnitude and phase of the different states. The decay

amplitude of the CP -conjugate state, Ā, can be constructed in terms of c̄R and F̄R. Much can be

said about how to model FR and extract the coefficients cR; a good description of the methods
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used is found in Ref. [40]. For the purposes of this thesis, an important set of parameters that can

be extracted from an amplitude analysis are the fit fractions of each resonant state:

FFR ≡

∫
DP

(∣∣c̄RF̄R∣∣2 + |cRFR|2
)
dm2

ijdm
2
jk∫

DP

(
|A|2 +

∣∣Ā∣∣2) dm2
ijdm

2
jk

, (2.19)

which can be used to calculate the branching fraction for the quasi-two-body decay, e.g. B+→
ρ0(770)π+, given (in this example) by:

B(B+→ ρ0(770)π+) = B(B+→ π+π−π+) · FFρ0 . (2.20)

2.4 The B+→ h+h′+h′′− Decay Channels

The charmless three-body decays of a charged B meson to charged pions and kaons have

collectively been an active area of experimental study for the last thirty years. The previous

section introduced the notion of many intermediate states contributing to a particular three-body

final state. The main Feynman diagrams contributing to the decays studied in this thesis are

shown in Figures 2.6, 2.7, 2.8, and 2.9 for the decays B+ → K+K+K−, B+ → π+π+π−,

B+→ K+π+K−, and B+→ K+π+π− respectively.

Figure 2.6: Dominant processes contributing to the decay B+ → K+K+K−. The specific
resonant states are given for illustrative purposes, e.g. other a, f and φ states will also contribute
to this decay.

The decay B+ → π+π+π− was first studied by the CLEO [42] and ARGUS [43]

collaborations in the context of searches for b→ u transitions. Soon after, the decays B+→
K+K+K− and B+→ K+π+π− were also studied by the ARGUS collaboration [44]. These

studies, and later ones by the DELPHI experiment [45, 46], were not able to claim observations

of any of these modes, setting branching fraction upper limits (at the 90% confidence level) of

5–10 times the current observed values.

The large datasets collected by the BaBar and Belle experiments allowed for not only the

branching fractions of all four modes (B+→ K+K+K−, B+→ K+π+K−, B+→ K+π+π−,
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Figure 2.7: Primary quark-level Feynman diagrams contributing to the decay B+→ π+π+π−.
Spectroscopic states other than those mentioned also contribute to the decay.

Figure 2.8: Diagrams of the dominant processes that contribute to the decay B+→ K+π+K−.
The specific resonant states included are given as representative cases.

Figure 2.9: Feynman diagrams of the main quark-level processes that contribute to the decay
B+→ K+π+K−.
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andB+→ π+π+π−) to be determined, but also for the amplitude analyses ofB+→ K+K+K−,

B+ → K+π+π−, and B+ → π+π+π− to be performed. Table 2.1 lists the current world

averages for the branching fractions of the four B+→ h+h′+h′′− decay channels, which are still

dominated by the B factories results.

In lockstep with these experimental developments, the theoretical framework to study

these decays was also being developed. A short summary of the main approaches that have been

used to provide predictions related to the B+→ h+h′+h′′− channels is given below.

Table 2.1: Current-best averages of the branching fractions of B+→ h+h′+h′′− decays [32].

Mode PDG branching fraction (10−6) References
B+→ K+K+K− 34.0± 1.4 [47, 48]
B+→ K+π+K− 5.2± 0.4 [49, 50]
B+→ K+π+π− 51.0± 2.9 [51, 52]
B+→ π+π+π− 15.2± 0.6 +1.3

−1.2 [53]

The non-perturbative nature of QCD at low energies introduces intractable corrections to

the calculable weak decay. Much of the theory effort in the area is dedicated to the development

of rigorous techniques for handling such corrections.

The weak decays ofB mesons involve three distinct energy scales (mW � mb � ΛQCD),

which allow the problem to be split into a high-energy perturbative and a low-energy non-

perturbative regime. The framework used to achieve this separation is the operator product

expansion (OPE) [54, 55], in which the Hamiltonian of the full theory being considered can be

written as a sum of local operators, each weighted by an associated Wilson coefficient.

The amplitude for the tree-level b→ uud transition shown in Figure 2.10 (a) is given by

A = i
GF√

2
V ∗ubVud

m2
W

k2 −m2
W

(ub)V−A(ud)V−A, (2.21)

where GF is the Fermi constant, (ub)V−A =
(
u†γµ(1− γ5)b

)
, and k is the momentum trans-

ferred via the W propagator. The momentum transfer is of order mb and so the propagator term

can be expanded in terms of k2

m2
W

:

A = −iGF√
2
V ∗ubVud(ub)V−A(ud)V−A

[
1 +

k2

m2
W

+ . . .

]
= −iGF√

2
V ∗ubVudQ2 +O

(
k2

m2
W

+ . . .

)
,

(2.22)

17



allowing everything other than the leading term to be discarded, and a new operator Q2 =

(ub)V−A(ud)V−A to be defined. It is said that the bosonic degree of freedom has been ‘integrated

out’ and what is left is effectively the Fermi theory (plus CKM factors), with the weak interaction

modelled as a four-fermion contact interaction, as shown in Figure 2.10 (b).

Short-distance QCD corrections can now be introduced, the simplest of which corresponds

to a hard-gluon exchange between the b quark and any of the other three quark lines participating

in the local interaction, as illustrated in Figure 2.10 (c,d). The new operator describing this

correction is identical to the one above in Equation 2.22 with the exception of allowing for colour

exchange between the two quark currents. The new operator Q1 is given, alongside the original

operator Q2, by

Q1 = (uibj)V−A(ujdi)V−A, (2.23)

Q2 = (uibi)V−A(ujdj)V−A, (2.24)

where i, j are colour indices and a summation over repeated indices is implied. Further operators

corresponding to different possible transitions can be defined, e.g. the gluonic penguin operators

Q3−6 [55].

Both the operators and their Wilson coefficients are non-trivial functions of the energy

scale µ, which essentially separates the high/low energy regimes. The coefficients can be

calculated with perturbative methods at µ ∼ mW to match the effective theory to the full theory

and subsequently evolved down to the scale µ ∼ mb.

Different techniques exist to deal with the low-energy QCD phenomenology embedded

in the local operators given above, such as QCD factorisation (QCDF) [57], perturbative QCD

(pQCD) [58, 59], and Soft Collinear Efffective Theory (SCET) [60, 61]. These three methods

build upon an earlier framework, dubbed ‘naive factorisation’, in which the operators of the

effective theory can be expressed as

〈M1M2|Qi|B〉 = 〈M2|J2|0〉〈M1|J1|B〉. (2.25)

The matrix element corresponding to the decay B → M1M2 is factorised as a product of a

B→M1 form factor and the M2 decay constant, with M1 being defined as the final-state particle

that picks up the spectator quark from the B meson. Form factors and decay constants are still

non-perturbative quantities but are nonetheless simpler to predict, using lattice QCD or QCD sum

rules, or to determine experimentally from (semi)leptonic decays. This approach is limited in that

gluon exchanges between M2 and the (BM1) system are not considered below µ ∼ mb.
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Figure 2.10: Leading-order Feynman diagram for the decay b→ uud in the full theory (a).
Corresponding diagram in the OPE, in which the square represents the four-fermion operator Q2

(b). One-loop QCD corrections contributing to the operator Q1 (c)(d). An additional diagram
connecting b− u has been omitted [56].

The QCDF approach is based on the heavy-quark limit mb � ΛQCD and the principle of

‘colour transparency’ – the quark pair that hadronises into M2 is emitted in a compact state which

behaves as a small colour dipole, which only interacts with soft gluons via terms suppressed by

ΛQCD/mb. Hence, to leading order in the expansion parameter, only hard gluonic interactions

connect M2 to (BM1) [62].

In the pQCD approach, the decay amplitude is written as a convolution of the B, M1,

and M2 wavefunctions and a hard-scattering component. The meson wavefunctions encapsulate

the non-perturbative contributions but are universal – once determined they can be used in any

transitions involving that meson. The hard component is a six-quark operator corresponding to

diagrams with hard-gluon exchanges involving the spectator quark.

In SCET, one identifies an intermediate energy scale µ ∼
√
mbΛQCD corresponding

to energies at which quarks can emit gluons collinear to their momenta. The effective theory

decomposes quarks and gluons into distinct collinear/soft/ultrasoft fields, which can interact

according to different Feynman rules.

Flavour SU(3) and isospin are also powerful tools when considering multiple decays that

are related via these symmetries. An alternative approach to those outlined above is found by

considering observables from multiple decay amplitudes, related to each other via SU(3) flavour
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symmetries, and performing global fits to extract theory parameters that can then be used to

make predictions [63, 64]. Symmetry-breaking parameters can also be added to the fits in order

to test the validity of flavour SU(3) symmetry in the presence of unequal u, d, s quark masses

and possible electromagnetic corrections. This approach is non-perturbative in the sense that

the parameters extracted from data encompass all orders of strong interactions, which allows for

interesting comparisons with predictions given by the methods above.

The methods given above have been used to obtain predictions for a number of quasi-two-

body decays. Some examples are given in Table 2.2. It can be seen that there is a fair agreement

between theory and experiment, though large uncertainties are associated with some predictions.

It is not trivial to move from theoretical methods for two- and quasi-two-body decays

towards inclusive predictions for three-body decays. Indeed, there are still no established theories

for such decays. Though many quasi-two-body intermediate states contribute to the inclusive

B+ → h+h′+h′′− branching fractions, the non-resonant fractions are large (e.g. ∼ 65% in

B+→ K+K+K− [48]). There has been, however, some progress in this area. One approach

uses Heavy Meson Chiral Perturbation Theory (HMChPT) to model the non-resonant component

at the centre of the Dalitz plot, with an exponentially-decaying momentum dependence to extend

the amplitude past the region where HMChPT is valid [65]. The non-resonant amplitude is

then included alongside predicted resonant amplitudes in an isobar amplitude to give inclusive

three-body results, given in Table 2.2.

The LHCb collaboration has recently performed amplitude analyses of the B+ →
K+π+K− [16] and B+ → π+π+π− [17, 18] modes, which use data samples significantly

larger than those of the B factories. These results, and corresponding amplitude analyses of

B+→ K+K+K− and B+→ K+π+π−, will improve our understanding of the multiple inter-

mediate states that contribute to these decay channels. The fit fractions reported by the amplitude

analyses must be converted into branching fractions of the different quasi-two-body states, using

Equation 2.20, to allow for comparison with theoretical predictions and to serve as input to

theory models. It is clear then that to profit fully from the larger LHCb dataset, the inclusive

B+→ h+h′+h′′− branching fractions must also be determined.
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Table 2.2: Branching fraction predictions (×10−6) for intermediate resonant contributions to
B+ → h+h′+h′′−. The values given are for B+ → Rh+, corrected for secondary R→ hh
branching fractions. For conciseness, only the sums in quadrature of the errors in the theory pre-
dictions are shown. The results of the latest LHCb amplitude analyses of B+→ K+π+K− [16]
and B+→ π+π+π− [17, 18] are not included in Ref. [32].

Mode Experiment [32] QCDF [65] pQCD SCET ∗ [66]
B+→ K+K+K− 34.0± 1.4 28.8 +7.9

−6.4 – –

φ(1020)K+ 8.8 +0.7
−0.6 8.9 +1.6

−1.4
∗∗ 7.8 +5.9

−1.8 [67]
9.7 +5.2
−4.2

8.6 +3.4
−2.9

B+→ K+π+K− 5.2± 0.4 5.2 +1.3
−1.1 – –

K∗(892)0K+ < 1.1 † 0.32 +0.6
−0.6

†† 0.50 +0.18
−0.14 [68]

0.49 +0.28
−0.22

0.51 +0.19
−0.17

B+→ K+π+π− 51.0± 2.9 42.2 16.1
−10.7 – –

ρ0(770)K+ 3.7± 0.5 2.9 +0.7
−0.2 4.04 +0.86

−0.69 [69]
6.7 +2.9
−2.4

4.6 +1.9
−1.6

f2(1270)0K+ 1.07± 0.27 3.8 +7.8
−3.0 [70] 1.976 +1.251

−1.065 [71] –

K∗(892)0π+ 10.1± 0.8 12.6 +3.2
−2.8

† 7.12 +2.77
−2.08 [68]

8.5 +5.0
−3.9

9.9 +3.7
−3.2

B+→ π+π+π− 15.2± 0.6 +1.3
−1.2 17.0 +2.2

−2.4 – –

ρ0(770)π+ 8.3± 1.2 7.3 +0.4
−0.4 8.84 +1.91

−1.69 [69]
10.7 +1.2

−1.1

7.9 +0.8
−0.8

f2(1270)0π+ 1.6 +0.7
−0.4 2.7 +1.4

−1.2 [70] 1.879 +1.129
−0.891 [71] –

∗ The authors find two solutions for their fit to the non-perturbative inputs to the analysis. Both solutions are used to
obtain predictions, hence the two values given for each resonant contribution.
∗∗ Corrected for B

(
φ→ K+K−

)
= 49.2± 0.5%.

† The LHCb amplitude analysis of B+ → K+π+K− observed B+→ K∗(892)0K+ with a fit fraction of
7.5± 0.8%. This corresponds to a branching fraction of B+→ K∗(892)0K+ = 0.59± 0.08, when accounting for
B
(
K∗(892)0→ K+π−

)
= 2/3.

†† Corrected for B
(
K∗(892)0→ K+π−

)
= 2/3.
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CHAPTER3
The LHCb Experiment

“ It doesn’t work to build half an accelerator. The particles need to go all the

way around. ”
Steven Weinberg, On the Shoulders of Giants

The work described in this thesis uses data collected by the Large Hadron Collider beauty

(LHCb) experiment, located at one of the collision points of the Large Hadron Collider (LHC)

at CERN. This chapter describes relevant aspects of the accelerator system in Section 3.1, and

details of the LHCb detector and its sub-detectors in Section 3.2. Information on the LHC is

mainly derived from Ref. [72], while information on LHCb comes primarily from Refs. [73, 74];

other sources are indicated throughout.

3.1 The Large Hadron Collider

The Large Hadron Collider is the world’s largest particle accelerator, a 27 km circular collider

located under the Franco-Swiss border at the European Organization for Nuclear Research,

CERN. It is primarily designed to collide a pair of proton beams at centre-of-mass energies of up

to 14 TeV, but it is also able to accelerate and collide lead ion beams, and recently xenon beams,

up to an energy of 2.8 TeV per nucleon.

The LHC is the final step in a long chain of particle accelerators required to increase

particle energies up to the TeV range. An illustration of the full accelerator complex is shown in

Figure 3.1. Protons are produced by ionising hydrogen stored in a gas canister. In the first step in
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the chain, these protons are accelerated in a linear accelerator, LINAC2, to an energy of 50 MeV.

From here, the beam is injected into a sequence of successively larger circular accelerators:

the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS), and the Super Proton

Synchrotron (SPS), which raise the beam energy to 1.4 GeV, 25 GeV, and 450 GeV respectively.

After exiting the SPS, the beam is split into two; the two resulting beams are transferred to the

LHC beam pipes, in which they circle in opposite directions. The two beams are then accelerated

up to their collision energy: in 2011, this energy was 3.5 TeV per beam; in 2012, 4 TeV; finally,

in 2015-2018, the beam energy reached 6.5 TeV.

Figure 3.1: The LHC accelerator complex and experiments [75].

The LHC beams are not continuous beams but are composed of a number of proton

bunches, with a designed maximum of 2808 bunches per beam and with each bunch containing

O(1011) protons. During 2017-2018, the LHC was able to reach a total of 2556 bunches per

beam delivered to interaction points 1 and 5, where ATLAS and CMS are respectively located.

The number of colliding bunches at interaction point 8, where LHCb is located, is slightly smaller

due to the structure of the beams. The minimum spacing between bunches is 25 ns, corresponding
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to a bunch crossing frequency of 40 MHz. The maximum design instantaneous luminosity is

1034 cm−2s−1, however operations to date have seen the machine achieve peak instantaneous

luminosities of approximately double this number. The LHCb detector, however, operates at a

much lower instantaneous luminosity, for reasons discussed in the next section.

The main data-taking periods to date have been 2011-2012, known as ‘Run 1’, and

2015-2018, known as ‘Run 2’. The long shutdown between the runs was required in order to

prepare the machine to operate at higher energy and for overall renovation work. A second

shutdown, ‘Long Shutdown 2’, has started in 2019 and will continue until 2021.

The two proton beams interact simultaneously at four points around the LHC ring. It is

at these points where each of the four major LHC experiments are located. ATLAS (A Toroidal

LHC Apparatus) and CMS (Compact Muon Solenoid) are ‘general-purpose’ detectors with wide-

ranging physics programs, including Higgs, top, and electroweak physics, but also direct searches

for beyond-Standard-Model particles. ALICE (A Large Ion Collider Experiment) is dedicated to

quark-gluon plasma physics, with these plasmas being produced in heavy-ion collisions. The

LHCb experiment is focused on the study of the decays of heavy-flavoured hadrons and searching

for indirect evidence of non-Standard-Model physics via precision measurements of observables

such as CP asymmetries, angular observables, and unitarity triangle parameters.

3.2 LHCb Detector Overview

The LHCb detector is a single-arm forward spectrometer specifically designed for the study of

hadrons containing b or c quarks. To this purpose, it is composed of a number of sub-detectors

that broadly fall into one of two categories: tracking detectors, and particle identification detectors.

The LHCb coordinate system is defined as a right-handed Cartesian system, with its origin at

the nominal interaction point and the positive z-axis parallel to the beampipe, in the direction of

the various sub-detectors. A side-view schematic of the detector and its subsystems is shown in

Figure 3.2.

The geometry of the detector has been chosen to exploit the physics of b-quark production

at the LHC [76, 77]. At LHC energies, parton-parton interactions are asymmetric in the relative

momentum of the two partons, resulting in a momentum transfer to the produced bb pair in the

direction of the higher-momentum parton. The relatively low-mass pair is therefore significantly

boosted, with both quark and anti-quark travelling in the same direction. The LHCb detector

has an angular coverage extending from 10 to 300 mrad in the horizontal plane and from

10 to 250 mrad in the vertical plane. This corresponds to a pseudorapidity (defined as η =

− ln(tan θ/2), where θ is the polar angle with respect to the z axis) range of 1.6 < η < 4.9.

The expected distribution of bb pairs, as a function of the pseudorapidities of the two in the pair,
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Figure 3.2: A cross-section of the LHCb detector and its sub-detectors [73].

is shown in Figure 3.3; approximately 25% of pairs produced fall within the LHCb detector

acceptance.

The LHCb detector was designed to operate at an instantaneous luminosity of 2 ×
1032 cm−2s−1, or fifty times lower than the maximum design LHC luminosity. Nonetheless,

LHCb has mainly been operated at twice this design luminosity. At this lower luminosity, the

probability of a single pp interaction per bunch crossing is maximised, which reduces the overall

number of tracks that must be reconstructed. At the start of a fill, the beams at the LHCb collision

point start with the minimal amount of overlap required to reach the target luminosity. As the

number of protons in the bunches decrease, the beam overlap is increased to compensate. The

technique, known as ‘luminosity levelling’, allows LHCb to maintain a constant luminosity

throughout most of a fill, as shown in Figure 3.4. It has the additional benefits of reducing the

amount of radiation damage to the Vertex Locator sub-detector and allowing the same trigger

configuration to be used throughout a fill.

The detector’s unique configuration among the four major LHC experiments also al-

lows the LHCb experiment to position itself as a general forward experiment, able to perform

measurements in an acceptance region that is complementary to ATLAS and CMS. Examples

include vector boson [78], top [79], and charmonia [80, 81] production cross-sections, dark matter
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searches [82], and Higgs-like boson searches [83, 84].
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Figure 3.3: Pseudorapidity distribution of bb pairs produced in simulated pp collisions [85]. The
central yellow square corresponds to the angular acceptance of ATLAS and CMS, while the
acceptance of the LHCb detector is denoted by the red square in the top-right quadrant.

Figure 3.4: Instantaneous luminosity at LHCb, ATLAS, and CMS during a Run 1 fill [74].
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3.3 Tracking

The LHCb tracking system consists of the Vertex Locator (VELO), a warm dipole magnet, and

four tracking stations: one, the Tracker Turicensis (TT), located before (‘upstream’ of) the magnet,

and three (T1, T2, T3) located after (‘downstream’ of) the magnet. Each of the three downstream

stations are divided into two sections: the inner, silicon-based, parts of the three stations are

collectively referred to as the Inner Tracker (IT); the outer parts, which use straw tubes instead,

are known as the Outer Tracker (OT).

3.3.1 Vertex Locator

The VELO is the first LHCb sub-detector encountered by particles produced in the pp collision,

surrounding the interaction point to allow for precise primary and secondary vertex reconstruction.

It is made up of two halves, each containing 21 semi-circular silicon strip modules providing hit

information in the r- and φ-directions. An overview of the VELO layout is seen in Figure 3.5.

To achieve its goal, the VELO must be able to gather measurements from the closest

possible region to the collision point. During data-taking conditions, taking into consideration

detector safety reasons, the active area of the modules starts at a distance of 8.2 mm away from

the beamline. During beam injection and ramping, however, the aperture required by the LHC is

larger than this distance, which requires the VELO halves to be made retractable by a distance of

30 mm. A further mechanism allows the VELO to recentre around the real beam position, which

can change from fill to fill, during the closing procedure.

Each VELO half is placed in a 300µm thick aluminium shielding box, the RF foil,

designed to prevent RF interference induced by the beam. The RF foil also protects the LHC

vacuum from possible outgassing from the detector modules.

The silicon modules are positioned within the VELO such that any track within the

300 mrad acceptance must cross at least four modules. This means most modules populate

the region closest to the nominal interaction point, with a minimum distance in the z direction

between modules of 3.5 cm. To fully cover the acceptance in the φ, or azimuthal direction, the

two halves must overlap; this is achieved by shifting one VELO half by 1.5 cm in the z direction

with respect to the other half.

Each of the 21 standard VELO modules is composed of two sensors: the R-sensor

provides information on the radial distance from the beam axis, and the φ-sensor provides

information on the azimuthal direction. In each VELO half there are two additional upstream

stations, containing only an R-sensor each, that collectively form the pile-up system. These

stations are also referred to as “Veto stations”, such as in Figure 3.5. Knowledge of a hit’s position
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Figure 3.5: Layout of the VELO modules along the beamline (top). Front view of a module in
both closed and open configurations (bottom). Notice the small module overlap in the closed
position [73].

along the z axis is given by the position of the sensor itself in the LHCb coordinate system.

The R-sensors are segmented into concentric strips with a linearly increasing pitch, from

38µm at the inner edge to an outer pitch of 102µm. The strips are also divided into four 45◦

regions to reduce the occupancy and capacitance in each strip. In the φ-sensors, the strips are split

into two regions in order to reduce the pitch at the outer edge of the sensor. In the inner region,

the strip pitch increases from 38µm to 79µm at a radius of 17.25 mm. The pitch in the outer

region starts at 39µm and increases to 97µm at the outer edge. The strips are not orthogonal to

those in the R-sensors but are laid out at a skew of 20◦ (10◦) away from the radial direction in

the inner (outer) region. This improves pattern recognition as it introduces a stereo angle when

adjacent modules are placed so that they have opposite skew. The geometries of both types of

sensor are shown in Figure 3.6.
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Figure 3.6: Sketch of the sensor geometry. On the φ-sensor, the strips from two, adjacent,
modules are shown to highlight the stereo angle [73].

3.3.2 Tracker Turicensis

The TT is a silicon microstrip detector located between RICH1 and the LHCb magnet, covering

the full acceptance of the detector. The layout and the TT’s physical dimensions are shown in

Figure 3.7. It is composed of four layers arranged in a (x-u-v-x) formation: the first and last

layers have vertical strips; the second and third have strips rotated by −5◦ and 5◦ respectively.

The first two layers are separated from the last two by approximately 27 cm in the z direction.

Each layer is built up of half-modules, each a column of seven silicon sensors. The

regions directly above and below the beampipe are covered by one half-module each. To either

side of the beampipe, there are a further seven (eight) half-modules in the first (last) two layers.

The purpose of the TT is two-fold: it is used to reconstruct the trajectories of low-

momentum particles that are swept by the magnet and do not reach the T-stations (T1–T3), and to

reconstruct long-lived particles such as Λ and K0
S which decay outside of the VELO.

3.3.3 Inner Tracker

The IT covers the high-occupancy region of the three downstream tracking stations, with silicon

trackers arranged in a cross shape around the beam pipe. Although the IT covers only 1.3% of

the area in each tracking station, approximately 20% of all charged particles produced will pass
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Figure 3.7: Layout and dimensions of the Tracker Turicensis, highlighting the skewed formation
of the layers [86].

through it. It follows a very similar design as the TT, with each station being composed of four

layers in the same (x-u-v-x) arrangement. Unlike the TT, each layer is built up of modules with

one or two silicon sensors, rather than seven, as shown in Figure 3.8.

Figure 3.8: Schematic of one Inner Tracker station (left). Overview layout of the tracking stations,
highlighting the difference in size between IT and OT (right) [73].

30



3.3.4 Outer Tracker

The OT is a drift-time detector, composed of individual gas-tight straw-tube modules, and it

covers most of the acceptance of the three T-stations. In each station, the OT consists of four

layers of modules also matching the (x-u-v-x) formation found in the TT and IT. Each module is

made up of two rows of straw tubes, as shown in Figure 3.9.

Figure 3.9: Cross section of one OT layer, showing the dimensions and packing of the two layers
of straw tubes (a). Layout of the OT system; each station is separated into two retractable halves
(b) [87].

In a drift-time detector charged particles ionise the gas inside the tubes, with the ions then

travelling to an anode wire at the centre of the tube. Reaching the design momentum resolution of

δp/p ∼ 0.4% requires a fast drift time of under 50 ns and good resolution of the drift coordinate

(200µm). The gas mixture chosen is a 70/28.5/1.5 mix of Argon/CO2/O2.

3.3.5 Magnet

In order to achieve the required precision on the momentum measurements of charged particles

travelling through the detector, a well-understood magnetic field is needed to curve their path.

The LHCb magnet is a warm dipole magnet consisting of two identical saddle-shape coils, each

composed of fifteen aluminium layers, enclosed in an iron yoke, as shown in Figure 3.10. The

coils are placed symmetrically about the z-axis, at a distance such that the window between them

covers the full LHCb angular acceptance.

The magnetic field is parallel to the y-axis and the magnet is designed to allow its polarity
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Figure 3.10: Schematic view of the dipole magnet (units in mm). In this projection, the positive
z direction points out of the page [73].

to be reversed regularly throughout data-taking periods. This allows the study of systematic effects

related to detector asymmetries, which affect CP asymmetry measurements. The integrated

magnetic field delivered over a 10 m track length is 4 Tm. In order to achieve the required

momentum precision of δp/p < 5× 10−3 for particles with momentum lower than 100 GeV/c,

the magnetic field integral must be known to a relative precision of ∼ 10−4. This was achieved

with the use of an array of Hall probes that measured all components of the magnetic field within

the detector volume up to the RICH2 detector. The distribution of the magnetic field in the

tracking region of the detector is shown in Figure 3.11.

3.3.6 Vertexing and Tracking Performance

Determining the precise location of primary and secondary vertices in an event is crucial in

identifying heavy-flavour decays. Primary vertex (PV) resolution depends strongly on the number

of tracks used to reconstruct the vertex. At LHCb, the resolution is measured by randomly

splitting the set of tracks into two and reconstructing the PVs using both sets. The PV resolution

is the width of the distribution of the difference in vertex position, multiplied by a factor of
√

2. A

nominal event with 25 reconstructed tracks associated with a PV has a PV resolution of 13µm in

x, y and 71µm in z. The resolution as a function of the number of tracks is shown in Figure 3.12.
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Figure 3.11: The magnetic field strength as a function of z, from the interaction point to the third
tracking station (top). Track types at LHCb and the tracking sub-detectors they travel through
(bottom) [88].

Figure 3.12: Primary vertex resolution as a function of number of tracks in x (left) and z (right),
for both Run 1 and Run 2 [89].

The impact parameter (IP) of a track is defined as the distance-of-closest-approach

between the track and a PV. Tracks made by the decay products of a B meson will generally have

large IPs, as the B decay vertex is sufficiently displaced from the PV. It is therefore an important

quantity for event selection in B physics analysis. The IP resolution as a function of pT, for a

number of data-taking periods, is given in Figure 3.13.

Tracks at LHCb are classified by which tracking sub-detectors they cross through, as
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Figure 3.13: Impact parameter resolution as a function of pT in x (left) and y (right), for both
Run 1 and Run 2 [89].

shown in Figure 3.11. The work presented in this thesis uses only ‘long’ tracks, those which cross

the entire tracking system. The tracking efficiency of these are measured using a ‘tag-and-probe’

method. A J/ψ meson decaying into two muons is identified, with one of the muons being fully

reconstructed (the ‘tag’) while the other (the ‘probe’) is only partially reconstructed. In this case

the probe muon is reconstructed using only the information from the muon system, which is

described in Section 3.4.3. The average track reconstruction efficiency is above 96% in most of

the phase space, as shown in Figure 3.14.

Figure 3.14: Track reconstruction efficiency as a function of momentum (left) and pseudorapidity
(right), for both Run 1 and Run 2 [89].

3.4 Particle Identification

The majority of decays studied by the LHCb experiment rely on the accurate identification of a

small selection of final-state particles, namely: charged hadrons (pions, kaons, protons), muons,
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electrons, and photons. The LHCb detector employs two Ring Imaging Cherenkov (RICH)

detectors to distinguish between species of charged hadrons; a calorimetry system to measure

the energy and identify electrons, photons, and hadrons; a muon detector system to identify and

measure the momentum of muons. The positioning of these subsystems within the detector can

be seen in Figure 3.2.

3.4.1 Ring Imaging Cherenkov Detectors

The two RICH detectors have the crucial goal of identifying pions, kaons, and protons. The decay

channels studied in this work are all exclusively composed of pions and kaons in the final state

and share the same topology; the information extracted from these sub-detectors is vital to the

study of these decays.

Both detectors rely on the phenomenon of Cherenkov radiation: a charged particle

travelling through an optically transparent, dielectric medium at a speed greater than the phase

velocity of light in the medium will emit radiation coherently in a cone of angle θ along the path

of the particle. The relation between the Cherenkov angle and the particle’s speed is given by

cos(θ) =
c

nvp
, (3.1)

where n is the refractive index of the material, c is the speed of light in vacuum, and vp is the

speed of the charged particle. The Cherenkov angles as a function of momentum for the different

charged final-state particles in LHCb can be seen in Figure 3.15. The mass of the particle can

then be inferred from its momentum and the resolved Cherenkov angle.

Figure 3.15: Cherenkov angle as a function of particle momentum for the different media used in
the LHCb RICH detectors [73].
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In both RICH detectors, the photons produced in the material are focused onto Hybrid

Photon Detectors (HPDs), located outside of the detector’s acceptance, by a combination of flat

and spherical mirrors. These HPDs must be shielded from the fringe field of the dipole magnet to

protect their performance. This is achieved by enclosing them in external iron shields. The layout

of both RICH detectors is shown in Figure 3.16.

RICH1 is located immediately after the VELO and covers the full detector acceptance.

It was designed to use both decafluorobutane (C4F10) and aerogel as Cherenkov radiators: the

C4F10 providing coverage a momentum range of ∼ 10− 60 GeV/c, with the aerogel covering

the range below the C4F10 Cherenkov threshold, ∼ 2 − 10 GeV/c. During Run 1, due to the

detector operating at higher luminosity than designed, it was found that the large number of

photons produced in the aerogel deteriorated the overall particle identification (PID) in RICH1.

A decision was made to remove the aerogel for the start of Run 2, resulting in a speed-up in the

RICH reconstruction with no loss of PID performance [90].

The RICH2 detector is located between the tracking stations and the calorimetry system,

covering a reduced acceptance range: 15-120 mrad horizontally and 15-100 mrad vertically. It

is designed to cover a higher momentum range than RICH1, from 15− 100 GeV/c, which also

justifies the reduced acceptance as low-momentum particles are swept away by the magnet. The

radiator material chosen is tetrafluoromethane (CF4).

Figure 3.16: Cross-sections of the RICH1 (left) and RICH2 (right) detectors. Note that RICH1 is
shown in the y-z plane, while RICH2 in the x-z plane [74].
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3.4.2 Calorimetry

The calorimetry system provides identification of photons, electrons, and hadrons, through the

measurement of their energies. It also performs a crucial role in the hardware stage of the trigger,

allowing events of interest to be identified; the trigger is further discussed in Section 3.5. It

consists of four sub-detectors located downstream of RICH2: a Scintillator Pad Detector (SPD),

a Preshower Detector (PS), an Electromagnetic Calorimeter (ECAL), and a Hadronic Calorimeter

(HCAL). As particles travel through the calorimeter material, energy is lost due to interactions

with the detector material and a particle shower is produced. All four sub-detectors use scintillator

material (doped polystyrene) as their active medium; the scintillation light produced is transported

to photomultiplier tubes in the periphery via wavelength-shifting fibres. Layers of absorber

material are interlaced with the scintillator in order to contain the showering particles. The hit

density decreases by two orders of magnitude from the inner edge of each calorimeter to the outer

edge – each calorimeter sub-detector has variable segmentation to accommodate this, as shown in

Figure 3.17.

Figure 3.17: Illustration of the SPD, PS and ECAL (left) and HCAL scintillating pad regions
(right). The beam pipe is shown in black [73].

The SPD/PS detectors are two high-granularity rectangular scintillator pads with a 15 mm

layer of lead absorber between them. Both are segmented such that they projectively match the

ECAL, this requires the SPD layer to be ∼ 0.45% smaller than the PS layer. They are used

in conjunction with the ECAL to provide discrimination between photons, electrons and pions.

Photons will not interact and create a signal travelling through the SPD but will initiate a shower

in the lead absorber layer, generating a signal in the PS. The presence of a signal in the PS but

a lack of one in the SPD identifies the particle as a photon. The thickness of the lead absorber

has been optimised to differentiate between electrons and charged hadrons: the radiation length

of lead is much shorter than its interaction length, therefore electrons are more likely to start
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showering in the PS than pions. Information from the PS alone provides a pion-rejection rate

of ∼ 92% for an electron-acceptance rate of 95%; including ECAL and tracking information

increases the pion-rejection rate to ∼ 99%.

The ECAL is composed of alternating layers of 2 mm-thick lead and 4 mm-thick scin-

tillator tiles, with a total of 66 layers each. The ECAL is therefore 42 cm deep, corresponding

to 25 radiation lengths, which is enough to fully contain the electromagnetic showers pro-

duced by high-energy photons and electrons. It is designed to achieve an energy resolution of

σE/E = 10%/
√
E/GeV ⊕ 1% and a π0 mass resolution of ∼ 8 MeV/c2.

The HCAL uses an iron absorber instead of lead, while using scintillator tiles as the active

material. While in the ECAL the lead and scintillator layers are arranged transversely, in the

HCAL the tiles run parallel to the beam axis. The primary goal of the HCAL is to be used in the

hardware trigger, therefore it is not required to fully contain the produced hadronic showers. Due

to the limited space available in the LHCb cavern the HCAL has a depth of 1.65 m, corresponding

to only 5.6 interaction lengths in steel. Hadronic showers tend to be larger than electromagnetic

ones and so the HCAL is segmented into only two zones, as seen in Figure 3.17. The design

energy resolution is σE/E = 69%/
√
E/GeV ⊕ 0.9%.

3.4.3 Muon System

Many decays of interest at LHCb involve muons in the final state, e.g. B0
s → µ+µ− [91] and

B0→ K∗0µ+µ− [92]. The muon system must provide fast pT measurements for use in the

hardware trigger and excellent muon identification offline. A view of the muon system is shown

in Figure 3.18.

Muon identification and measurement at LHCb is performed by a system composed of

five stations, M1 to M5. Muons are highly-penetrating particles and, as a result, most of the muon

stations (M2–M4) are located at the end of the detector, past the calorimeters, where background

from other particles is greatly reduced. These four stations are interspaced with 80 cm thick

iron shielding plates to further decrease background. The first muon station, M1, is positioned

upstream of the calorimetry system to improve the pT measurement used in the hardware trigger.

Each station is divided into four concentric regions (R1–R4) such that the occupancy

remains roughly constant between regions; the linear dimensions of each station scale projectively

with its distance to the interaction point. The muon system, with the exception of the inner region

in M1, is composed of Multi-Wire Proportional Counters (MWPCs). In M1R1, where the particle

flux is highest, triple-Gas Electron Multipliers (GEM) are used instead.

The first three stations are more granular than M4–M5 and are used to determine the

muon track direction, providing a pT resolution of 20% in the bending plane. M4 and M5 have
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Figure 3.18: Side view of the LHCb muon system (left) and layout of the four concentric regions
in one of the stations (right) [93].

limited spatial resolution and are used to identify penetrating particles. The minimum momentum

required for a muon to travel through the whole detector up to M5 is 6 GeV/c.

3.4.4 PID Performance

The information gathered by the RICH, the calorimeters, and the muon system can be combined

in different ways to provide variables that can discriminate between the different species of

final-state particle in LHCb. The reconstruction algorithms of each sub-detector, though very

different, can all be used to construct likelihood ratios for different particle hypotheses for each

track. These are combined to give an overall likelihood of a track being of a particular type,

relative to its likelihood of being a pion. A second, newer, approach uses detector information as

inputs to neural networks to give a classifier related to the probability of a track being a certain

hypothesis and not any other hypothesis. This approach uses information not available in the

likelihood calculations and takes into account correlations between the different sub-detectors.

For the purposes of this work, variables related to the (mis-)identification of kaons and

pions are crucial. The performance of the particle identification at LHCb is measured using

data calibration samples, from decays in which final-state particles can be identified using only

kinematic information. For kaons / pions, the most appropriate calibration decay channel is
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D∗+→ D0(K−π+)π+. A comparison of the kaon identification and π→K mis-identification

efficiencies between the 2012 and 2016 data-taking periods can be seen in Figure 3.19.
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Figure 3.19: Kaon ID efficiency (red) and π→K mis-ID efficiency (black) as a function of track
momentum, in 2012 (left) and 2016 (right). Two different PID requirements are shown. An
overall improvement in PID efficiency can be seen in 2016 versus 2012 [85].

Muon identification is also considered, as vetoing muon candidates is an important step

in reducing backgrounds for the decay channels studied. A binary selection can be performed

on muon candidates, based on the penetration of the candidate in the muon system [94]. This

low-level requirement is sufficient to provide good discrimination between muons and charged

hadrons, as shown in Figure 3.20.

Figure 3.20: π→µ mis-ID efficiency as a function of track momentum, for different pT require-
ments [94].
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3.5 Trigger

The nominal LHC collision rate of 40 MHz translates to an effective frequency of interactions

at LHCb of about 10 MHz, due to gaps in the beams and also accounting for the fraction of

pp collisions that are inelastic. However, this rate is orders of magnitude higher than what can

stored for physics analysis. A trigger system is therefore crucial to reduce the event rate, while

ensuring that events of interest are kept. The current LHCb trigger system is formed of a hardware

level-0 (L0) stage, and two software High Level Trigger stages (HLT1, HLT2) [95]. An overview

of the LHCb trigger and the differences in its running between Run 1 and Run 2 are shown in

Figure 3.21. The output rate of the LHCb trigger was 3 kHz in 2011, 5 kHz in 2012, and 12.5 kHz

in Run 2 [96].
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Figure 3.21: Overview of the LHCb trigger in Run 1 (left) and Run 2 (right) [85].

The L0 trigger is implemented with the use of custom electronics, which operate syn-

chronously with the 40 MHz bunch crossing frequency. Its decisions are based on information

from the calorimeter and muon systems and are used to reduce the event rate to 1 MHz, the point

at which the full detector can be read out. The calorimeter trigger searches for deposits with large

transverse energy (ET): hadron candidates required a HCAL cluster (including an associated

ECAL cluster) with minimum ET of 3.5 (3.7) GeV in 2011 (2012); photon candidates required

an ECAL cluster with ET > 2.5 (3.0) in 2011 (2012), with one or two associated PS hits but no

associated SPD hits; electron candidates have the same requirements as photon candidates, but
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with at least one associated SPD hit. The muon trigger searches for the two muon candidates

with the largest pT in each quadrant. A single muon candidate is selected if any single track had

pT > 1.48 (1.76) GeV/c in 2011 (2012); a dimuon candidate is selected if the product of the

pT of any two tracks is higher than 1.3 (1.6) GeV2/c4. The threshold values during the Run 2

data-taking periods can be found in Ref. [89]. An additional requirement is also set on the total

number of SPD hits in an event, to remove events that would take too long to process in the HLT.

Events accepted by the L0 are transferred to a computer system called the Event Filter

Farm (EFF), consisting of roughly 1000 nodes during the Run 1 period with an extra 800 nodes

added for Run 2. The EFF can run O(104) instances of the HLT algorithm in parallel.

At the first software stage, HLT1, partial event reconstruction is performed to reduce the

event rate to 50−110 kHz. Tracks are reconstructed in the VELO and are used to identify primary

vertices. Vertices are reconstructed from a minimum of five VELO tracks and those vertices

within 300µm of the average position of the pp interaction are considered primary vertices [97].

The VELO tracks are then extrapolated to the TT to form upstream tracks and to the T-stations to

form long tracks. The IP and pT of tracks are then calculated; the inclusive b-hadron trigger line

selects events containing at least one track with high pT and sufficiently displaced from any PV.

Figure 3.22: The HLT1 reconstruction algorithm chain [89].

HLT2 performs full event reconstruction on all events passing HLT1. The lower input

rate allows the trigger selection to be more flexible than the two previous stages. Two types of

‘trigger line’ are defined at this level: exclusive trigger lines are optimised for specific final states,

while inclusive lines have generic topological requirements on the final-state particles. The work

presented in this thesis relies on the ‘topological’ trigger lines: these are designed to trigger on

partially reconstructed b-hadron decays, with a displaced decay vertex and at least two charged

particles in the final state. Tracks are selected due to their fit quality and impact parameter;

exclusive trigger lines containing electrons or muons also particle identification information. The

topological lines use a multivariate algorithm, based on the kinematics of the tracks associated
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with the proto-candidate [98, 99].

The HLT has gone through significant changes since 2011. During that year, the EFF was

only in use during periods of active data-taking, i.e. during fills, corresponding to only 30% of

the available time. In order to use the idle time of the EFF during the 2012 data-taking period,

roughly 20% of events passing the L0 trigger were stored on local disks, to be further processed

by the HLT at a later time. This strategy led to an effective increase of approximately 25% in the

HLT processing rate. For Run 2, this idea was expanded further and the two HLT stages were

made fully asynchronous. HLT1 still operates synchronously with the L0 stage, but all events

that pass this stage are sent to a temporary 10-petabyte buffer to be later processed by HLT2.

This has allowed dedicated HLT1 lines to be used to calibrate the detector in real time, while

previously this could only be performed after the HLT2 stage. The new strategy allows the HLT2

reconstruction to perform as effectively as the ‘offline’ reconstruction. An additional system, the

Turbo stream [100], was created in Run 2 to select events directly from the output of the trigger.
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CHAPTER4
Relative Branching Fractions of

B+→ h+h′+h′′− decays

“ It will never be possible by pure reason to arrive at some absolute truth. ”
Werner Heisenberg, Physics and Philosophy

The following chapters detail a measurement of the ratios of branching fractions of the four

B+→ h+h′+h′′− decay channels, i.e. the decay channels B+→ K+K+K−, B+→ K+π+K−,

B+→ K+π+π−, and B+→ π+π+π−. The ratios are determined for each channel relative

to the other three h+h′+h′′− modes. The LHCb experiment has set the most stringent limits

on the branching fractions of the decays B+→ K+K+π− and B+→ π+π+K− [101]; these

heavily-suppressed decays are not included in this analysis.

The measurement is performed with the combined Run 1 dataset collected by LHCb,

corresponding to a total integrated luminosity of 3 fb−1. As previously stated, the inclusion of

charge-conjugate processes is implied throughout, unless otherwise specified.

4.1 Measurement Strategy

The collision environment of the B factories allowed for the total number of B mesons produced

to be measured precisely [102]. In contrast, the hadronic environment at the LHC limits the

precision available on luminosity and B+ cross-section measurements. This motivates the choice

of measuring relative, as opposed to absolute, branching fractions at LHCb. Furthermore, there
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are benefits to measuring branching fraction ratios; for example, a number of potential systematic

effects are expected to cancel to first order.

The branching fraction ratios (e.g. relative to the KKK channel) are given by

B(B+→ h+h′+h′′−)

B(B+→ K+K+K−)
=
Nhhh
NKKK

× ε̄KKK
ε̄hhh

, (4.1)

where N is the observed signal yield, ε̄ is the phase-space-averaged selection efficiency, and hhh

labels any of the other three decay modes.

The signal yields of the four channels are extracted from an unbinned extended maximum

likelihood fit performed simultaneously to the four hhh invariant mass distributions. Each signal

channel is a potential source of background for the others, due to candidates misdentified by

the PID system. Performing the invariant mass fits simultaneously allows for the yields of such

backgrounds to be constrained. The fit model is constructed by considering this and other sources

of possible backgrounds, detailed in Chapter 5. Monte Carlo (MC) simulated data samples are

used to obtain the probability density functions (PDFs) that compose the fit model.

Prior to the fit procedure, the dataset goes through a number of selection steps aimed at

reducing the total number of background candidates present, while minimising the loss of signal

candidates. The total efficiency of the selection procedure is determined with a combination of

MC simulated signal samples and calibration data. Once the signal yields, the total selection

efficiencies, and their distribution as a function of the phase space are determined, the branching

fraction ratios can be evaluated using Equation 4.1.

One final point in this discussion of the measurement strategy concerns the inclu-

sion / exclusion of intermediate charmonium states in the definition of signal. Amplitude analyses

of charmless decays generally veto contributions via intermediate J/ψ and ψ(2S) states, since

their inclusion would require modelling resolution effects that could be otherwise ignored. How-

ever, other charmonium states, such as the χc0, have not been consistently removed. In this

analysis, a decision was made to include all charmonium resonances in the definition of sig-

nal, since their lifetimes are negligible and the resolution effects do not need to be modelled.

Contributions from intermediate D states are still considered as a background source.

4.2 Data and Monte Carlo Samples

The Run 1 dataset corresponds to data taken in 2011 and 2012 at centre-of-mass energies of

7 TeV and 8 TeV, respectively. The B meson production cross-section is assumed to increase

linearly due to the higher centre-of-mass energy. Furthermore, the 2011 data-taking period was

not evenly split between the two magnet polarisation states. The fractions of the total luminosity
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taken under the four running conditions are given in Table 4.1.

Table 4.1: Total integrated luminosity as a function of the running conditions during data-taking.

Year Magnet Polarisation Integrated Luminosity ( fb−1)

2011
MagDown 564± 10

MagUp 422± 7

2012
MagDown 993± 12

MagUp 1001± 12

The selection efficiency is mostly determined using simulated B+→ h+h′+h′′− events,

as detailed in Chapter 6. Roughly one million signal MC candidates were generated for each of

the running conditions, so that the potential variations in efficiency can be studied. As the number

of generated MC candidates per subsample are roughly equal, the efficiency of the total Run 1

dataset is taken as a weighted average, with the integrated luminosity ratios used to weigh each

subsample.

The signal MC samples have been generated with a model that is distributed uniformly

across the square Dalitz plot. This ensures that the edges and corners of the conventional DP

are well-populated, while minimising the computational load required to generate large samples.

However, this approach can cause some regions of the phase-space to be overrepresented, an

issue that is further discussed in Section 7.1.2.
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CHAPTER5
Backgrounds and Candidate Selection

“ Data becomes useful knowledge of something that matters when it builds a

bridge between a question and an answer. This connection is the signal. ”
Stephen Few, Signal: Understanding What Matters in a World of Noise

The raw dataset used in this analysis must go through several steps of refinement before

the signal yields can be extracted. For each candidate corresponding to a true B+→ h+h′+h′′−

decay there are many others that approximate their signature, originating from a number of

background sources. The different sources of background considered in this analysis, and the

strategies and tools employed to optimise their reduction, are described in this chapter.

5.1 Background Sources

The backgrounds considered can be roughly divided into the following classes:

• Cross-Feed Background
True B+→ h+h′+h′′− candidates in which one or more final-state particles are misidenti-

fied appear as backgrounds in the invariant mass distributions corresponding to the other

signal modes. In addition to cross-feed from other signal modes, decay channels with

protons or muons in the final state, misdentified as kaons or pions, are potential sources of

background.
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The primary effect of the misidentification (misID) on the invariant mass distribution

of cross-feed candidates is to shift it by an amount approximately proportional to the

mass difference between the correctly-identified and misidentified particle species and the

number of misdentified particles. The cross-feed distribution is shifted towards higher mass

values in cases where the particle is misidentified as a higher-mass particle, e.g. π → K, and

towards low masses in the opposite case, i.e. K → π. Additionally, the misidentification

also smears the cross-feed distribution. This is particularly relevant to theB+→ K+π+K−

andB+→ K+π+π− final states; the distribution of candidates with both like-sign particles

misidentified is significantly different to the signal shape, even though it peaks at the correct

B mass due to the mass-shift effects cancelling each other.

Cross-feed background can be very effectively reduced with the use of PID variables,

constructed out of information from the LHCb PID system described in Section 3.4.4.

Decay channels with final-state muons misidentified as pions are suppressed with a veto on

a low-level muon PID variable. The strategy for optimising the PID selection is detailed in

Section 5.3.

• Combinatorial Background
Random combinations of tracks in an event can happen to form candidates that approximate

signal properties well enough to pass the selection criteria. These candidates do not peak at

any particular mass value but instead follow a monotonic distribution, generally decreasing

in the region of the B mass. The majority of tracks in any given event originate from the

primary vertex, therefore combinatorial background can be very effectively reduced by

exploiting topological features of B decays, such as a displaced decay vertex, with the use

of multivariate analysis (MVA). The description of the MVA used and the optimisation of

its output is given in Section 5.4. Furthermore, combinatorial tracks are predominantly

pion tracks and so, for the signal modes with kaons in the final state, PID requirements can

also be effective at removing this type of background.

A related background category originates from true B0/B0
s→ h+h′− decays, to which an

additional combinatorial track is added during reconstruction. These ‘partially combinato-

rial’ candidates peak in the two-body invariant mass distribution at the parent particles’s

mass value; the candidate’s three-body invariant mass is pushed towards the high-mass

region of the spectrum, due to the added energy, and the whole distribution is heavily

smeared. Small yields will be indistinguishable from the bulk combinatorial background

but an observable excess of candidates could affect the modelling of the combinatorial

components of the invariant mass fits.
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• Partially Reconstructed Background
Partially reconstructed backgrounds originate from four-body decays with three final-state

particles in common with the signal modes, in which the fourth final-state particle has not

been included in the candidate.

The overall shape of each partially reconstructed background depends on the kinematics of

the missing particle; however, a universal feature of such backgrounds is a maximum bound

on the three-body invariant mass distribution, given by the mass difference between the

parent particle and the missing particle, e.g. mB −mmiss. Background channels originating

from B+, B0, or B0
s will therefore populate the low-mass region in the vicinity of the

signal peak, with decay channels where the missing particle is a pion or a photon being of

most concern.

These backgrounds can be roughly categorised as a function of the masses of the parent

particle and the missing particle, and the topology of the decay. The (B+, B0) mass

difference is negligible and, in this context, so is the difference in (π+, π0) masses.

Therefore it is reasonable to group these together under a generic B → 4-body category.

The mass difference between (B+, B0) and the B0
s is large enough to identify B0

s →
4-body decays as a separate category. The distribution of partially reconstructed decays

containing an intermediate charm particle is assumed to differ sufficiently from that of

charmless decays to justify their inclusion as a separate category. Finally, decays with a

missing photon form a distinct category since the mass threshold extends to the mass of the

parent particle.

• Intermediate Charm Backgrounds
This category of background consists ofB+→ Dh+ decays, i.e. charmed decays, where the

D decays to h′+h′′−. Candidates originating from decays via an intermediate charmonium

state, e.g. B+→ J/ψ (→ h′+h′′−)h+, are counted as signal candidates in this analysis, as

discussed in Chapter 4. The distribution of charmed candidates with the same final-state

particles as a signal channel will peak directly underneath the signal peak. These candidates

are suppressed by including goodness-of-fit information on the B decay vertex, which

is constructed from all three tracks, in the MVA training. The most effective approach

for removing the remaining candidates is an explicit veto on the two-body invariant mass

region around the D peak.

Charmed backgrounds can also suffer from misidentified final-state particles. In cases

where the misidentified particle stems from the D meson, the resulting shift in the mass

distribution causes the bulk of these candidates to evade the veto. The PID requirements,

optimised for B+→ h+h′+h′′− cross-feed, can potentially be less effective against this
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type of background, given the different topology of B+→ Dh+ decays and their larger

branching fractions.

5.2 Pre-Selection Steps

Prior to the optimisation, a number of general selection cuts are applied to all signal candidates to

ensure that good-quality, relevant events are selected. The general goal at this stage is to select

events with well-reconstructed tracks and vertices, that are likely to contain a B meson that

decays hadronically.

5.2.1 Stripping Requirements

The total dataset available from the output of the trigger system is too large to be analysed

efficiently by every LHCb member working on physics analyses. This problem is overcome by

running centrally a number of user-defined sets of loose selection criteria, known as stripping

lines. The output of similar stripping lines are gathered into streams, such that events shared

between lines in a particular stream are only stored once. The name of the stripping line used in

this analysis is StrippingBu2hhh KKK inclLine, in the Bhadron stream; a summary of

the cuts applied at this level is given in Table 5.1. Only information related to the signal candidate

and some select information about the event as a whole is saved in this stream, reducing storage

requirements.

Tracks are required to have traversed the entire tracking system, i.e. tracks must be ‘long’

(different track types have been defined in Section 3.3.6), with some minimum momentum cuts

applied. These tracks must be of good quality, defined by a low χ2 value resulting from the

track-fitting procedure. The probability of the track being made of partial trajectories from more

than one charged particle, i.e. the probability of a ‘ghost’ track, must also be low. Furthermore,

the total number of long tracks in an event is limited to under 200 tracks.

At the stripping level, all final-state particles are reconstructed as kaons, with the recon-

struction of the other mass hypotheses being done offline. Consequently, no particle identification

requirements are applied at this level. Only very loose cuts on the invariant mass of the B

candidates are applied, allowing the other signal final states to be reconstructed without loss of

efficiency.

Three tracks are combined by requiring that the sum of their four-momenta is loosely in

the region of the B invariant mass. The minimum distance between their trajectories must also be

small, i.e. the three tracks must roughly have the same origin. These two criteria are applied to

reduce the number of candidates that undergo the vertex fit. Following this fit, additional cuts are
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applied to ensure the goodness-of-fit of the B candidate decay vertex and its separation from the

primary vertex (PV) with which it is most closely associated. The associated PV is defined as the

primary vertex that returns the smallest χ2
IP value for a given B candidate.

Table 5.1: Selection requirements in the StrippingBu2hhh KKK inclLine stripping line.

Particle Stripping line requirements Description

hhh tracks

pT > 100 MeV/c Track transverse momentum
p > 1500 MeV/c Track momentum

χ2
IP > 1 Minimum χ2 distance of particle’s trajectory to PV

χ2/NDOF < 4 Maximum χ2 per degree of freedom of the track fit
GHOSTPROB < 0.5 Max. ghost track probability

hhh combination cuts
5.05 < m(KKK) < 6.3 GeV/c2 Total invariant mass of the final-state particles

DOCA < 0.2 mm
Distance-of-closest-approach
between any two child tracks

Parent B cuts

Lead pT > 1500 MeV/c pT of the track with the highest pT

DIRA (θ) > 0.99998
Cosine of angle between B candidate momentum

and direction from the associated PV to the decay vertex
Flight χ2 > 500 χ2 distance of B candidate from associated PV

Flight distance > 3 mm Separation between the decay vertex and closest PV
Vertex χ2 < 12 χ2 of the B decay vertex
χ2

IP < 10 IP χ2 with respect to the associated PV
pT > 1000 MeV/c pT of the B candidate∑
pT > 4500 MeV/c Total pT of the B children∑
p > 20000 MeV/c Total p of the B children∑

χ2
IP > 500 Total IP χ2 of tracks with respect to the associated PV

4 < BPVCORRM < 7 GeV/c2 Corrected mass † under KKK mass hypothesis
† The corrected mass is defined as BPVCORRM =

√
M2 + |Pmiss

T |2 + |Pmiss
T |, where M is the B candidate mass

and Pmiss
T is the missing transverse momentum.

Further decay tree fits are performed offline using the DecayTreeFitter (DTF) pack-

age [103], which parameterises the whole signal decay tree as a function of the final-state

momenta and vertex properties and simultaneously fits them. It is at this point that the final-state

particles are reconstructed under all four B+→ h+h′+h′′− hypotheses, with all DTF parameters

being recalculated. Another fit is also performed, in which the masses of the B and the final-state

particles are constrained to their current world-average values and theB is constrained to originate

from the associated PV. The Dalitz plot variables (both conventional and square) are extracted

from this fit to ensure all candidates share the same DP definition and are constrained within its

boundaries.

5.2.2 Trigger Requirements

Post reconstruction, tracks can be associated with the energy deposits that have caused the L0

trigger to fire. In this manner, the particle(s) that have fired the trigger are identified and can be clas-
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sified under the particular L0 trigger fired (LOHadron, L0Muon, L0DiMuon, L0Electron,

L0Photon). If the track that fired the trigger originates from the signal candidate, the event is

classified as trigger on signal (TOS). Otherwise, if the trigger decision originates from the rest of

the event, it is classified as trigger independent of signal (TIS). The requirements imposed in this

analysis are that signal candidates have fired the L0 hadron trigger (LOHadron TOS) or that any

L0 trigger is fired by the rest of the event (L0Global TIS). Events where activity related to

both the signal and the rest of the event was required to cause the trigger are rejected.

At the HLT1 level, signal candidates must pass the Hlt1TrackAllL0Decision line,

which requires one good-quality, high pT track that is significantly displaced from the primary

vertex. Finally, at the HLT2 level, the B candidate is required to pass either the 2-body or 3-body

topological trigger Hlt2Topo{2,3}BodyBBDTDecision, discussed in Section 3.5.

5.2.3 Fiducial Cuts

The reconstruction in the RICH detectors becomes less efficient for tracks outside a specific

kinematic range. The PID efficiency plots in Section 3.4.4 show that for track momenta above

100 GeV/c, the efficiency drops significantly while the misidentification rate steadly rises. Similar

behaviour is seen for tracks with very low/high pseudorapidity. Furthermore, the ring reconstruc-

tion in the RICH depends on the total number of charged tracks in a given event; the efficiency

drops in events with large occupancies.

A number of ‘fiducial cuts’ are applied as a part of the selection, to ensure that the

data+MC samples used have good quality PID information. Each track is required to be within

the momentum range 1.5 < p < 100 GeV/c and the pseudorapidity range 2.0 < η < 5.0.

The event occupancy is parameterised by using the BestTracks variable, defined as the total

number of long, upstream, and downstream tracks in the event (with only upstream/downstream

tracks not used to reconstruct long tracks being counted). All events are required to have an

occupancy lower than BestTracks < 500.

The event occupancy is known to not be well modelled in MC; it is generally lower than

in real data. This issue is overcome by resampling the MC BestTracks distribution using the

corresponding distribution in sWeighted B+→ K+K+K− data. The cumulative distribution

function (CDF) of the BestTracks variable is taken for both MC and sWeighted data. Each

value in the MC BestTracks distribution is associated with the value in the data distribution

that shares the same value in the CDF. It is that data BestTracks value that is given to all MC

events that have the original value in the MC distribution. The effect of the resampling on the

BestTracks distribution in B+→ K+K+K− MC is given in Figure 5.1.
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Figure 5.1: Distribution of BestTracks before (blue) and after (red) resampling for the 2012
MagDown B+→ K+K+K− MC sample.

5.3 PID Selection

The information extracted from the LHCb PID subsystems is used as input to neural networks

whose outputs are used, in an one-against-all approach, to classify tracks as being a certain

particle hypothesis. These PID variables are named PROBNNx in LHCb and throughout this

text, with x ∈ {K, pi, mu, etc. } depending on the particular hypothesis. Each PROBNN variable

ranges from 0 to 1, but these are not strictly probabilities, in particular the values of the different

PROBNN for any given track need not add up to one. It is possible to combine PROBNN variables

in order to simultaneously provide both positive discrimination in favour of a particular particle

type and negative discrimination against another.

The four signal channels considered are composed of only kaons and pions in the final

state, with π ↔ K misidentification being the most common type of misID. Therefore it is

beneficial to devise a PID selection, such that for kaons (pions) it selects tracks that have high

probability of being kaons (pions) and, at the same time, low probability of being pions (kaons). A

reasonable proposal is to investigate the distribution of kaons and pions in the PROBNN parameter

space and exploit any useful features. To first order it is sufficient to look at the 2D (PROBNNpi,

PROBNNK) plane, shown in Figure 5.2.

As expected, the kaon distribution peaks around (0,1), where PROBNNK is high and

PROBNNpi is low, and the pion distribution peaks around (1,0), where the opposite is true.

However, the shape of the two distributions are quite different: kaons are preferentially distributed

along the edges of the parameter space, while pions roughly follow a radial distribution around

(1,0) with a long tail stretching along the x axis. The use of circular cuts, centred around the

point (1,0), was seen as a natural choice in this scenario. One circle is of course enough to
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Figure 5.2: Distribution of kaons (red) and pions (blue) in the PROBNN parameter space. Both
samples originate from truth-matched B+→ K+π+K− MC candidates. An illustration of the
chosen topology for the PID cuts used is overlaid.

define a boundary between the two populations, however it has been chosen to use two circles,

defined by their radii rK and rπ. The two circles allow for more freedom in the optimisation

procedure, e.g. naturally permitting the exclusion of regions in the centre of Figure 5.2 where

both hypotheses are roughly equally likely. The form of the cuts is therefore

PIDK : (PROBNNpi− 1)2 + PROBNNK2 > r2
K , (5.1)

PIDπ : (PROBNNpi− 1)2 + PROBNNK2 < r2
π, (5.2)

with the only constraint on the radii being rK > rπ, to avoid overlapping definitions. An

additional cut is required to exclude the long pion tail from the kaon acceptance region, which is

implemented as a horizontal cut at PROBNNK > 0.02.

The PID response in MC is known to not replicate what is seen in data, in part due

to the occupancy not being well modelled (as described in the previous section). This affects

the efficiency of the PID variables and therefore MC cannot be used to evaluate this efficiency

accurately. An alternative, data-driven approach is the use of the PIDCalib package [104]. It

makes use of large, clean samples of final-state particles that are reconstructed without the use

of the PID system, i.e. with kinematic information only. Both the samples of kaons and pions

originate from the CKM-favoured decay D∗+→ D0(→ K−π+)π+. The charge of the slow pion
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from the D∗+ decay tags the flavour of the
( )

D meson, with the decay products of that
( )

D making

up the PIDCalib samples.

The efficiency of any cut on the available PID variables can be determined for these

calibration samples and parameterised in terms of the kinematics of the tracks. In this analysis,

the PID response is parameterised in terms of track momentum and pseudorapidity and event

multiplicity (using the BestTracks variable), with a user-defined binning scheme given in

Table 5.2. The efficiency of the bin in (p, η, BestTracks) space in which a MC track falls in is

assigned to it as a weight, with a per-candidate efficiency weight being defined as the product of

the efficiencies of its three children.

Table 5.2: Binning scheme used in the PIDCalib procedure.

Variable Bin boundaries

p
[0; 5500; 11500; 13400; 16500; 19200; 22000; 24800;
27800; 31000; 34000; 38000; 42000; 46000; 50000;

54000; 59000; 64000; 70000; 76000; 83000; 90000; 100000]

η
[2.0; 2.40; 2.55; 2.65; 2.75; 2.85; 2.95;
3.05; 3.15; 3.30; 3.45; 3.75; 4.10; 5.0]

BestTracks [0; 100; 200; 300; 500]

It is these per-candidate efficiencies that are used to optimise the PID selection. The

optimisation is performed by maximising a figure of merit (FoM) that is a function of signal and

cross-feed efficiencies and takes the form

FoMPID =
εsig√

εsig +
∑
acfεcf

, (5.3)

where εsig and εcf are the efficiencies of signal and cross-feed channels for a given PID cut, and

acf = Bcf/Bsig is the ratio of branching fractions. The current world-average values are used

here for the branching fractions, given in Table 2.1. Cross-feed backgrounds with one or two

misidentified tracks are included in the optimisation.

The figure of merit is slightly modified for the B+→ K+π+K− channel. It has the

smallest branching fraction out of the four signal modes and it sees cross-feed contributions

on both sides of the signal peak. Partially reconstructed backgrounds with a KππX final state

are of concern as they would usually populate the low-mass sideband but a π→K misID shifts

the distribution towards the signal region. The smearing caused by the misidentification makes

backgrounds of this sort difficult to model. Instead, a factor of 2 is introduced in the cross-

feed term of the FoM to loosely account to the existence of both Kππ and KππX misID,
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i.e.
∑
acfεcf → 2

∑
acfεcf .

The figure of merit is optimised independently for each signal mode, by scanning through

PIDK and/or PIDπ. The optimisation is performed independently for each 2011/2012, Mag-

Down/MagUp subsample as a check of the stability of the result. It should be noted that the FoM

is a function of only PIDK (PIDπ) in the B+→ K+K+K− (B+→ π+π+π−) case, but it is

a function of both variables in the other two cases. Figure 5.3 shows the PID FoMs obtained

for the 2012 MagDown subsamples; little variation is found between different year+polarisation

subsamples of the sample signal MC.

Figure 5.3: PID figures of merit for the 2012 MagDown subsamples of B+ → K+π+K−

(top-left), B+ → K+π+π− (top-right), B+ → K+K+K− (mid-left), and B+ → π+π+π−

(mid-right) signal MC.

The optimal PID cuts given by the peak of the figure of merit vary greatly between signal

modes, as shown in Table 5.3. However, one additional constraint is required to ensure that the

definition of kaons and pions are also mutually-exclusive across final states. A pair of baseline

cut values is optimised by summing the individual FoMs, weighted by the square root of the

respective signal branching fraction, and taking the point at which the combined FoM is highest.
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The combined FoM takes the form

FoMcombined
PID =

∑
i∈{hhh}

√
Bi FoMi. (5.4)

The baseline cuts obtained serve as maximum boundaries for the kaon/pion acceptance

regions, i.e. the baseline replaces the individually optimised cuts whenever that cut would be

looser than the baseline. The values obtained for the baseline cuts are (rπ, rK) = (0.5, 0.5). The

baseline cuts and the final, adjusted cuts for each signal mode are also given in Table 5.3.

Table 5.3: List of PID cuts, both individually optimised and adjusted for mutual-exclusivity.

Signal mode
Optimal PID cut Adjusted PID cut

(rπ, rK) (rπ, rK)

B+→ K+K+K− (–, 0.2) (–, 0.5)
B+→ K+π+K− (0.2, 0.9) (0.2, 0.9)
B+→ K+π+π− (0.7, 0.7) (0.5, 0.7)
B+→ π+π+π− (0.6, –) (0.5, –)

Combined (0.5, 0.5) (0.5, 0.5)

5.3.1 Muon Misidentification

A low-level muon PID variable, IsMuon, is constructed by checking whether a particular track

can be associated with any hits in the muon chambers [94]. Backgrounds with muons in the

final state that could possibly be misidentified as pions or kaons by the other PID systems are

effectively suppressed with a veto on the IsMuon variable on each final-state particle. The decay

B+→ J/ψ (µ+µ−)K+ is identified as a background of concern, since its branching fraction

(6×10−5) is slightly larger than the branching fraction ofB+→ K+π+π−. The efficiency of the

muon veto is investigated using MC and it is found that fewer than 0.1% ofB+→ J/ψ (µ+µ−)K+

candidates survive the IsMuon veto, while roughly 68% of B+→ K+π+π− candidates pass

this requirement. Therefore, the contribution from misdentified muons is assumed to be negligible

after the IsMuon veto is applied.

5.4 MVA Selection

A multivariate algorithm is, in almost all cases, much more efficient in reducing combinatorial

background than a simple cut-based selection, since it can take advantage of correlations between
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its input variables. This analysis makes use of the NEUROBAYES neural network (NN) algorithm

for this purpose [105].

Among the current branching fraction measurements of the B+→ h+h′+h′′− channels,

that of the B+→ K+π+K− decay has the largest uncertainty. Hence, the MVA selection is

optimised with respect to this channel. The shared topology of the B+→ h+h′+h′′− channels

should allow this MVA to be applied to the other channels with almost no loss in efficiency. This

assumption is validated later by comparing the efficiency of MVAs trained with the other signal

channels.

The neural network is trained using the B+→ K+π+K− MC sample as the signal proxy

and the high-mass sideband in the B+→ K+π+K− data spectrum as the background proxy, in

both cases combining the 2011 and 2012 samples. The sideband is defined here as the candidates

in the region 5600 < mKπK < 6300 MeV/c2, a region where no significant Kππ cross-feed is

expected. The selection requirements described above have been applied to the input samples to

guarantee that the distributions of the input variables are as accurate as possible at this point.

Seven variables are chosen as inputs to the neural network; these are listed in Table 5.4

in order of their discriminating power. The choice of variables is made following a number of

criteria:

• They must show good discriminating power. At first, this is checked simply by looking

at the distribution of the variable in both the signal and background samples, given in

Figures 5.4 and 5.5. Some variables pass this first requirement but are found to not add any

further power when combined with others and therefore have been dropped prior to the

definitive MVA training.

• The distribution of the input variables in MC should be in agreement with the corresponding

distributions in sWeighted data. The MVA should use differences in the topology of signal

and background candidates to achieve separation, not artefacts caused by mismodelling

in the MC. The sWeighted distributions are also shown in Figures 5.4 and 5.5. Two

variables, Bu PTASYM 2 0 and Bu MINIPCHI2, do show some mismatch between MC

and sWeighted data. The mismatch will be taken as source of systematic uncertainty, in

order not to lose the separation power of these variables.

• The input variables should not be correlated with the hhh invariant mass nor the Dalitz

plot variables.

The topology of the network is of one hidden layer, with 7 nodes in it. No significant

change in performance is seen by varying the size of the hidden layer. The neural network is

found to perform better when the numbers of signal and background candidates are of the same
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Table 5.4: Input variables to the MVA in order of their importance.

Rank Input variables Description
1 Bu POINTING |pB| sin(θDIRA)/ (|pB| sin(θDIRA) +

∑
tracks pT)

2 Bu PTASYM 2 0 pT asymmetry for a cone of radius 2.0 rad in the η–φ plane
3 Bu MINVDCHI2 χ2 of the distance between primary and secondary vertices
4 Bu ENDVERTEX CHI2NDOF Decay vertex χ2 per degree of freedom
5 lead MINIPCHI2 IP χ2 of the track with the highest pT

6 lead P Momentum of the track with the highest pT

7 Bu MINIPCHI2 IP χ2 of the B candidate

Figure 5.4: Distribution of the MVA input variables for MC (blue), sWeighted data (green), and
sideband data (red).

order of magnitude, therefore a limited, but still significant, percentage of the available MC

is used. The exact numbers used for both samples are given in Figure 5.6. Out of the total

signal+background sample, 70% of candidates are used in the training stage and the remaining

30% in the test stage. The output of the classifier as applied to the test sample is shown in

Figure 5.6 and good separation between signal and background can be seen.
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Figure 5.5: Distribution of the MVA input variables for MC (blue), sWeighted data (green), and
sideband data (red).

Figure 5.6: Distribution of the NEUROBAYES output variable. The histogram in red (black)
corresponds to the distribution of signal (background) events.

The figure of merit to optimise in this case is

FoMMVA =
NS√

NS +NB
, (5.5)

where NS and NB are estimated signal and background yields in the signal region, defined as
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the range [5240, 5320] MeV/c2. This FoM approximates the signal significance in a counting

experiment. The yield of combinatorial background, NB , is obtained by performing a fit to the

previously defined high-mass sideband region and extrapolating it to the signal region. The signal

yield, NS , is taken from the efficiency of the cut on the MVA output in signal MC, multiplied by

a baseline yield taken from a fit to the B+→ K+K+K− data sample with no MVA cut applied.

An extra factor, accounting for the ratios of branching fractions and selection efficiencies, is

applied in the case of the other signal modes. The distribution of the figure of merit as a function

of MVA cut value is shown in Figure 5.7. The cut value which maximises the B+→ K+π+K−

figure of merit, MVA > 0.5, is taken as the cut for all four modes.

Figure 5.7: MVA figures of merit for B+→ K+K+K− (top-left), B+→ K+π+K− (top-right),
B+→ K+π+π− (bottom-left), and B+→ π+π+π− (bottom-right).

5.5 Charm Vetoes

Candidates originating from B+→ Dh+ decays can pass through the selection steps described

in significant amounts. An explicit veto on the two-body invariant mass variables m13 and m23

around the D mass is used to remove B+→ Dh+ candidates with the correct PID hypothesis.

The width of the veto region is determined by fitting samples of B+→ Dh+ MC that have the
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above selection requirements applied. The veto region is defined as ±30 MeV/c2, roughly ±5σ,

around the fitted D mass, which corresponds to the range [1830, 1890] MeV/c2.

Figure 5.8: Effect of the mass vetoes and the tighter PID cuts in the region near the D mass in
the m13 (left) and m23 (right) mass spectra. The top row corresponds to the KKK final state
and the bottom row to the KπK final state. Only candidates in the signal region defined for the
three-body invariant mass [5240, 5320] MeV/c2 are shown.

Charmed candidates with one of the D decay products misidentified are mostly shifted

outside the defined veto region. Depending on the specific decay and the misidentified particle,

the shift can be towards higher or lower mass. Candidates with misID tracks populate a larger

mass region than correctly-identified ones, due to the smearing caused by the misID. Vetoing a

large region of phase space is not an optimal choice as it risks the danger of sculpting the shape

of the combinatorial background and would remove some amount of the charmless hhh signal.

An alternative approach is taken, in which the PID requirements are tightened in the

regions where misID charmed background is expected. In the π→ K misID case, a tighter PID

cut is applied to the two-body mass region [1850, 2000] MeV/c2. In the K→ π case, the tighter

cuts are applied in the region [1700, 1850] MeV/c2. The values of the tighter PID requirements

are listed in Table 5.5, together with the ‘global’ cuts used outside these specific regions. The

effect of these cuts on the two-body mass spectra are shown in Figures 5.8 and 5.9.
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Figure 5.9: Effect of the mass vetoes and the tighter PID cuts in the region near the D mass in the
m13 (left) and m23 (right) mass spectra. The top row corresponds to the Kππ final state and the
bottom row to the πππ final state. Only candidates in the signal region defined for the three-body
invariant mass [5240, 5320] MeV/c2 are shown.

Table 5.5: Tight PID cuts applied to misID charmed candidates

Signal mode
Global cut Tight cut
(rπ, rK) (rπ, rK)

B+→ K+K+K− (–, 0.5) (–, 0.9)
B+→ K+π+K− (0.2, 0.9) (0.1, 1.0)
B+→ K+π+π− (0.5, 0.7) (0.1, 1.0)
B+→ π+π+π− (0.5, –) (0.1, –)

5.6 Partially Combinatorial Vetoes

Partially combinatorial candidates create a small excess in the high-mass sideband distribution.

The effect becomes more pronounced once the MVA selection is applied, since the neural network

training is less effective against this type of background. In fact, during the optimisation of the
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MVA figure of merit, the excess of partially combinatorial candidates was seen to affect the

extrapolation of the background yields, as illustrated in Figure 5.10.

Figure 5.10: Exponential fit to the high-mass sideband in the B+→ π+π+π− mass spectrum,
before (left) and after (right) partially combinatorial candidates are removed. The small excess
in the region around 5500 MeV/c2 causes an overestimate of the combinatorial yield in the
lower-mass regions.

The most efficient strategy for removing this contribution is a mass veto on the two-body

invariant mass spectrum, around the mass of the parent particle. The distributions of m13 and

m23 in the region around the B0/B0
s mass are shown in Figure 5.11. The regions directly under

the observed peaks are vetoed.

5.7 Multiple Candidates

A small number of events can contain more than one signal candidate. In these cases, only

the candidate with the highest value of the MVA output is selected. Events that contain two or

more candidates in different final states are not removed. The fraction of such events is given in

Table 5.6.

Table 5.6: Fraction of events containing multiple candidates in each final state.

Channel Fraction of events Fraction of events
with 2 candidates (%) with > 2 candidates (%)

B+→ K+K+K− 0.20 0.00
B+→ K+π+K− 0.75 0.04
B+→ K+π+π− 0.84 0.03
B+→ π+π+π− 2.40 0.15
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Figure 5.11: Vetoes on partially combinatorial contributions to the m13 (left) and m23 (right) two-
body invariant mass distributions. From top to bottom: B+→ K+K+K−, B+→ K+π+K−,
B+→ K+π+π−, B+→ π+π+π−.
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CHAPTER6
Efficiencies

“ Dividing one number by another is mere computation; knowing what to divide

by what is mathematics. ”
Jordan Ellenberg, How Not to Be Wrong

Understanding the efficiency with which signal candidates are selected is crucial to the

determination of the branching fraction ratios. Many parts of the selection strategy have been

designed so that the same requirements are applied to all four signal modes, since this ensures

that a number of potential systematic effects cancel when evaluating the branching fraction ratios.

The PID efficiency is the main exception to this, but some second-order effects originating from

other selection requirements are also expected to not cancel fully in the ratio.

The PID efficiency also differs in the manner it is determined; as stated in Section 5.3,

a data-driven method is used to calculate the efficiency of the PID selection. In contrast, the

other components of the total selection efficiency are evaluated with the MC samples described

in Section 4.2. The total efficiency εtot can therefore be factorised into εPID and εsel components,

which can be evaluated independently. While the MC samples are expected to model εsel with

good accuracy, a number of data-driven corrections are applied to bring certain areas of the

simulation closer to agreement with data; these corrections are discussed in Sections 6.3 to 6.6.

The distribution of the total efficiency is not expected to be uniform across the phase

space. In fact, different steps of the selection can separately favour some regions of the Dalitz

plot over others. To take this into account, the efficiencies that enter Equation 4.1 are evaluated as
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a function of the Dalitz plot. Phase-space-integrated efficiencies are also evaluated but are only

used for constraining the yields of cross-feed backgrounds in the maximum likelihood fit to data.

As discussed in Section 2.3, B decays mostly populate the edges of the Dalitz plot in

its conventional representation, making the ‘square DP’ (sqDP) representation more useful in

studying the variation of the efficiency across the phase space. Decays with identical particles,

such as B+→ K+K+K− and B+→ π+π+π−, are symmetric with respect to the exchange of

the two like-sign particles, with this symmetry manifesting itself as a reflection axis in the Dalitz

plot. The DP can therefore be ‘folded’ along this reflection axis without any loss of information.

As a consequence of the definition of (m′, θ′) chosen in this analysis, the reflection axis in the

sqDP is the line θ′ = 0.5.

6.1 Selection Efficiency

The efficiencies of the trigger, stripping, and offline selection steps detailed in the previous chapter

all contribute to εsel. An additional contribution originates from the acceptance efficiency of the

detector. Clearly, the trajectory of all three final-state particles must remain within the LHCb

angular acceptance for the signal candidate to be detected. In fact, during MC generation, decays

with particles outside the detector acceptance do not go through the full detector simulation,

in order to be able to produce large samples more efficiently. For each signal channel, large

(108 entries) toy MC samples were generated with the same model used for generating the

fully-reconstructed MC, but without any acceptance requirements imposed. These toy samples

are scaled to the total number of generated events for each fully-reconstructed signal MC sample

and are used to obtain a description of the phase space prior to any selection steps.

The variation of the selection efficiency as a function of the Dalitz plot is shown in

Figure 6.1. These efficiency maps are the weighted average of the four independent MC samples

((2011, 2012), (MagDown,MagUp)) of each signal decay, taking into account the differences

in luminosity and B+ production cross-section between them. The sharp features in which the

efficiency drops significantly are due to the vetoes on the charmed backgrounds. The phase-space-

integrated efficiency values are given in Table 6.1.

The statistical uncertainty in εsel due to finite MC samples is taken as a systematic

uncertainty on the final results. Since a weighted average is used to obtain the efficiency of the

combined Run 1 dataset, some care must be taken when determining this uncertainty. A Bayesian

approach is taken, as detailed in Ref. [106] and summarised in Chapter 8.
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Figure 6.1: Distribution of the selection efficiency as a function of Dalitz plot position, for
B+→ K+K+K− (top-left), B+→ K+π+K− (top-right), B+→ K+π+π− (bottom-left), and
B+→ π+π+π− (bottom-right).

Table 6.1: Phase-space-integrated selection efficiencies and their statistical uncertainties.

Signal channel
εsel (%)

2011 2012
Weighted average

MagDown MagUp MagDown MagUp
B+→ K+K+K− 1.0377 ± 0.0015 1.0296 ± 0.0015 0.8859 ± 0.0013 0.8882 ± 0.0013 0.9315 ± 0.0006
B+→ K+π+K− 1.0006 ± 0.0014 0.9929 ± 0.0014 0.8566 ± 0.0013 0.8588 ± 0.0013 0.8998 ± 0.0006
B+→ K+π+π− 0.9822 ± 0.0015 0.9788 ± 0.0014 0.8447 ± 0.0013 0.8433 ± 0.0013 0.8853 ± 0.0006
B+→ π+π+π− 0.9141 ± 0.0013 0.9092 ± 0.0013 0.7878 ± 0.0012 0.7879 ± 0.0012 0.8253 ± 0.0006

6.2 PID Efficiency

The efficiency of the PID selection is determined from the calibration samples provided by the

PIDCalib package [104]. It incorporates the efficiency of the cuts applied across the whole

phase space and the tighter cuts applied to remove misidentified charmed backgrounds. Since the

latter cuts are only applied to a very small percentage of signal candidates, it can be informative

to compare the efficiency of the full PID selection with that of the ‘global‘ cuts only. For
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reference, the distribution of the ‘global‘ PID efficiency across the DP is shown in Figure 6.2.

The corresponding phase-space-integrated values are given in Table 6.2.
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Figure 6.2: The ‘global’ PID efficiency across the Dalitz plot, for B+→ K+K+K− (top-left),
B+→ K+π+K− (top-right), B+→ K+π+π− (bottom-left), and B+→ π+π+π− (bottom-
right). The ‘global’ efficiency maps are given for illustration purposes and are not used in
determining the total efficiency.

Table 6.2: Phase-space integrated values of the ‘global’ PID efficiency. These values are given
only for comparison with the efficiencies incorporating the ‘tight’ PID cuts.

Signal channel
‘global’ εPID (%)

2011 2012
Weighted average

MagDown MagUp MagDown MagUp
B+→ K+K+K− 76.97 76.70 78.70 78.74 77.87
B+→ K+π+K− 43.08 42.63 42.55 41.79 42.41
B+→ K+π+π− 67.74 67.27 67.90 66.87 67.43
B+→ π+π+π− 72.26 71.79 71.67 70.30 71.34
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The tighter PID cuts applied to the regions where misidentified charm backgrounds are

present have a similar effect on the phase-space distribution of εPID as the mass vetoes have

on εsel. The resulting sharp drops in the PID efficiency can be seen in Figure 6.3. The phase-

space-integrated values given in Table 6.3 roughly show a 1% drop in efficiency due to the tighter

requirements.
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Figure 6.3: PID efficiency distribution taking into account the effect of the ‘tight’ PID cuts, for
B+→ K+K+K− (top-left), B+→ K+π+K− (top-right), B+→ K+π+π− (bottom-left), and
B+→ π+π+π− (bottom-right).

A number of uncertainties are associated with the PIDCalib procedure. The statistical

uncertainty on the PID efficiency has components from the finite size of both the signal MC

and the calibration samples used. A systematic uncertainty originates from the assumption that

the binning used to parameterise the efficiency ensures that the efficiency variation is smooth

across the phase-space and that, within each bin, the efficiency does not vary greatly. Another

systematic uncertainty is assigned due to the sWeights used for background subtraction of the

calibration samples. These uncertainties on εPID are taken as systematic uncertainties on the

branching fraction measurement.
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Table 6.3: Phase-space integrated PID efficiency, taking into account the ‘tight’ PID cuts. The
quoted uncertainty is the sum in quadrature of the uncertainty from the size of PIDCalib sample
and the reference sample.

Signal channel
εPID (%)

2011 2012
Weighted average

MagDown MagUp MagDown MagUp
B+→ K+K+K− 76.18 ± 0.05 75.92 ± 0.05 77.89 ± 0.03 77.27 ± 0.03 77.07 ± 0.02
B+→ K+π+K− 42.75 ± 0.04 42.30 ± 0.04 42.20 ± 0.04 41.44 ± 0.04 42.06 ± 0.02
B+→ K+π+π− 66.24 ± 0.04 65.77 ± 0.04 66.32 ± 0.03 65.30 ± 0.04 65.88 ± 0.02
B+→ π+π+π− 71.17 ± 0.06 70.70 ± 0.06 70.56 ± 0.04 70.56 ± 0.05 70.24 ± 0.03

6.3 B Kinematics Correction

The kinematic distribution of the parent B meson is generally well reproduced in the LHCb-

specific PYTHIA tune used during MC production. Nonetheless, the large, very clean data sample

of B+→ K+K+K− candidates available can be used to test this assumption.

The distributions of the kinematic variables of the B candidate in signal MC and

background-subtracted data are shown in the left column of Figure 6.4. The background subtrac-

tion is performed with sWeights obtained from the nominal data fit described in Chapter 7. All

three variables are well described, though a small amount of mismodelling can be seen in the

distributions of the B pseudorapidity and transverse momentum.

A correction is performed by considering the distribution of background-subtracted data

and MC in bins of (pT, η) and taking the ratio of the two distributions. The binning chosen to

describe the (pT, η) parameter space is shown in Figure 6.5. The ratio in each bin is assigned as the

weight for each MC candidate falling in that bin, which is then used to weigh the distribution of

the total efficiency. A χ2 test is performed to check the efficacy of the correction; the reweighted

MC distributions shown in the right column of Figure 6.4 follow the sWeighted data distributions

more closely.

The weights obtained with B+→ K+K+K− data and MC are used to reweigh all four

signal channels, since the kinematics of the parent B should be independent of which final state it

subsequently decays into. The procedure is later performed using the B+→ K+π+π− samples

as a test of this assumption, with the difference being taken as a systematic uncertainty.
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Figure 6.4: Comparison between sWeighted data and signal MC before (left) and after (right) the
kinematic reweighting for the KKK mode.

6.4 Tracking Correction

Standard correction tables for the track reconstruction efficiency are available within the LHCb

collaboration, determined using the ‘tag-and-probe’ method described in Section 3.3.6 [107].

The corrections are evaluated as a function of track momentum and pseudorapidity and are given

for each data-taking period. The tables corresponding to the years 2011 and 2012 are shown in

Figure 6.6. The weight assigned to each MC candidate is given by the product of the weights of
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Figure 6.5: Distribution of sWeightedKKK data candidates (left) and the corresponding weights
obtained (right). The z axis has been truncated in the weights histogram, since the value in the
highest bin is ∼ 16. However, the background-subtracted yield in this bin is ∼ 1, making its
contribution negligible.

Figure 6.6: Tracking correction maps for 2011 (left) and 2012 (right).

its three associated tracks.

6.5 L0 TIS Correction

In an event categorised as TIS, the particle that has fired the trigger will most likely originate from

the other b-hadron in a pp→ bbX process. Whereas the signal B candidate is forced to decay to

the particular final state being considered, the other b quark will hadronise/decay according to

the fragmentation/branching fractions. This can potentially introduce a mismatch with data with

respect to the relative number of cases in which the TIS decision arises from, e.g. the muon or

hadron L0 trigger. Since the kinematics of the bb pair are correlated, the frequency with which

different TIS triggers fire could have some dependence on the signal channel considered.

The correction strategy taken is to reweigh the MC samples so that the proportion of
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candidates in a given TIS category matches that seen in background-subtracted data. A small issue

arises from the fact that in any given event, multiple TIS triggers can potentially fire (Hadron,

Muon, DiMuon, Electron, Photon). A number of exclusive TIS categories are constructed out of

combinations of the existing trigger decisions, to allow for a single weight to be assigned to any

particular candidate. The weights obtained for this correction are shown in Figure 6.7, with the

bin labels corresponding the concatenations of the trigger decisions that comprised each exclusive

category. Candidates for which no TIS trigger fires are given a weight of one.
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Figure 6.7: L0 TIS corrections as a function of the constructed categories. The ‘other’ category
includes all other possible combinations of L0 TIS decisions.

6.6 L0Hadron TOS Correction

The L0Hadron response is not well modelled in simulation and so a set of standard calibration

tables exists within the collaboration. These tables give the absolute L0Hadron trigger efficiency

as a function of the transverse energy deposited, determined from samples of kaons and pions

from D∗−→ D0 (→ K+π−)π− decays. The trigger efficiency is obtained through the ‘TISTOS’

method [108]:

εhad =
NTIS+TOS

NTIS
(6.1)

where NTIS+TOS is the number of candidates associated with both L0Hadron TOS and any L0

TIS trigger, and NTIS is the total number of candidates associated with any L0 TIS decision.

Multi-body decays must also consider an additional correction due to overlapping energy

deposits in the calorimeter. Overlaps can occur when two closely-flying tracks deposit energy in

adjacent calorimeter cells; the combined cluster may be enough to fire the trigger even when the

individual particles would not.
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Figure 6.8: Run-1-averaged L0Hadron correction maps for candidates firing L0Hadron TOS, for
B+→ K+K+K− (top-left), B+→ K+π+K− (top-right), B+→ K+π+π− (bottom-left), and
B+→ π+π+π− (bottom-right).

The correction is determined by taking the ratio of the absolute data efficiencies from the

tables and the MC efficiencies, with the L0 TIS correction applied; the absolute MC efficiencies

are also determined with the TISTOS method. Correction maps are also obtained for MC

candidates not firing L0Hadron TOS, by constructing data tables with the complement (1− ε) of

the efficiency. The corrections are evaluated separately for each year and magnet polarisation.

The correction maps, averaged over the four year+polarisation samples, are given in Figure 6.8

for candidates firing L0Hadron TOS, and in Figure 6.9 for candidates not firing it.

6.7 Total Efficiency

The phase-space distributions of the total efficiency, including the corrections described above,

are shown in Figure 6.10. For reference, the phase-space-integrated values are shown in Table 6.4,

before and after corrections. The uncertainties due to the correction procedures applied are taken

as systematic uncertainties, given in Chapter 8.
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Figure 6.9: Run-1-averaged L0Hadron correction maps for candidates that do not fire L0Hadron
TOS, for B+→ K+K+K− (top-left), B+→ K+π+K− (top-right), B+→ K+π+π− (bottom-
left), and B+→ π+π+π− (bottom-right).

Table 6.4: Phase-space integrated total efficiencies and their statistical uncertainties.

Signal channels εtot (%) εtot
corr (%)

B+→ K+K+K− 0.7179 ± 0.0005 0.7053
B+→ K+π+K− 0.3785 ± 0.0003 0.3744
B+→ K+π+π− 0.5833 ± 0.0004 0.5763
B+→ π+π+π− 0.5797 ± 0.0004 0.5674
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Figure 6.10: Total efficiency distribution as a function of Dalitz plot position, with all efficiency
corrections applied, for B+ → K+K+K− (top-left), B+ → K+π+K− (top-right), B+ →
K+π+π− (bottom-left), and B+→ π+π+π− (bottom-right).
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CHAPTER7
Invariant Mass Fit

“ All models are wrong, but some are useful. ”
George Box, Robustness in the Strategy of Scientific Model Building

An accurate determination of the signal yields present in the data requires the construction

of a fit model that comprehensively describes the expected background contributions to each final

state. The various components in each final state model, the parameterisations chosen to describe

them, and any constraints applied to the full fit model are detailed in Section 7.1. The results of

applying the fit model to the dataset, and the method used to extract the signal yields and use

them to determine the ratios of branching fractions are presented in Section 7.2.

7.1 Fit Model

7.1.1 PDF Parameterisations

Peaking components, such as the signal and cross-feed components, are modelled in the nominal

fit as the sum of two Crystal Ball (CB) functions. The Crystal Ball function is defined as a core

Gaussian distribution, with one of its tails replaced by a power-law distribution [109]

CB(m;µ, σ, α, n) = N ·

 exp(−(m− µ)2/2σ2) if (m− µ)/σ > −α(
n
|α|

)n
(n−α

2

|α| −
m−µ
σ )−n exp(−α2/2) if (m− µ)/σ ≤ −α,

(7.1)
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where m is the reconstructed mass variable, µ and σ are the standard Gaussian mean and standard

deviation, α defines the number of standard deviations from the mean at which the transition

from the core to the power-law tail occurs, n is the power-law exponent, andN is a normalisation

factor. This definition of the Crystal Ball determines the low-mass, left-hand tail as the power law

component; it is possible to define it such that the right-hand tail is the power law component

instead.

The addition of the two CB functions is performed with the requirement that the mean

and standard deviation of the core Gaussian distribution is the same for both CB functions.

Additionally, they are added with one tail to each side such that the resulting function encapsulates

the different effects that modify the tails on both sides. The right-hand power-law tail describes

the effect of tracking imperfections and other detector effects that are non-Gaussian in nature,

while the left-hand tail not only encapsulates these effects but also the effect of missing final-state

radiation on the mass distribution. Finally, an extra parameter f = N1/(N1+N2) is included to

allow for the two CB functions to contribute in different amounts relative to each other. A sum

of two Crystal Ball functions with these additional requirements is often referred as a ‘double

Crystal Ball’ (dCB) function.

An alternative parameterisation, the Hypatia distribution [110], is used to evaluate a

systematic uncertainty associated with the choice of the dCB to describe peaking components.

Much like the CB function, it is also defined by separate core and tail functions; however, the

Hypatia core is the generalised hyperbolic distribution.

Partially-reconstructed backgrounds exhibit significantly different behaviour to the compo-

nents originating from true B+→ h+h′+h′′− candidates. Such backgrounds are better modelled

as ARGUS functions [43], convoluted with a Gaussian distribution to account for the resolution

of the detector. The generalised ARGUS function is defined by three parameters, Mthr, c, and p,

A(m;Mthr, c, p) =
2−pc2(p+1)

Γ(p+ 1)− Γ(p+ 1, c2/2)

× m

M2
thr

(
1− m2

M2
thr

)p
exp

{
−1

2
c2

(
1− m2

M2
thr

)} (7.2)

when m < Mthr, and zero elsewhere. The expressions Γ(x) and Γ(s, x) represent the gamma

and upper incomplete gamma functions, respectively, Mthr is the threshold mass value, c governs

the curvature of the function, and p controls the falling of the slope. The ‘standard’ ARGUS

distribution is obtained by fixing p = 0.5 in Equation 7.2.

A combinatorial background component is present in all four mass spectra and is described

by an exponential distribution in the nominal data fit, and by Chebyshev polynomials up to second
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order (i.e. the first three Chebyshev polynomials) when evaluating the associated model systematic

uncertainty.

7.1.2 Corrections to B+→ h+h′+h′′− MC distributions

The signal MC samples used in this analysis have been generated flat in the square Dalitz plot,

i.e. the distribution of candidates is uniform across the (m′, θ′) parameter space. However, the

true dynamics seen in B+→ h+h′+h′′− decays deviate significantly from a uniform distribution.

In practice this means that certain regions of the phase-space are overrepresented in MC. In MC

samples reconstructed under a mass hypothesis in which one or more particles are misidentified,

this effect is reflected in the invariant mass distribution, as shown in Figure 7.1. This occurs since

the smearing of the invariant mass distribution is related to the momentum of the misidentified

particle. The secondary peak seen in the low-mass region corresponds to B+ → K+π+π−

candidates in which the kaon recoils off the pion pair and gains a large fraction of the momentum

available. This scenario corresponds to one of the edges of the conventional DP, which is exactly

one of the regions enlarged by the definition of the square DP.

4900 4950 5000 5050 5100 5150 5200 5250 5300 5350
)2c (MeV/)πππm(

0
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0.06a.
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πππ → +B    →    ππK → +B

Before DP weights
After DP weights

πππ → +B    →    ππK → +B

Figure 7.1: Effect of the DP-correcting weights on the invariant-mass distribution of B+→
K+π+π− MC candidates, reconstructed as πππ. The PID-correcting weights have been applied
to both distributions shown.

This effect is counteracted by applying weights to the MC samples so that the generated

DP distribution approximates the physical DP distribution. The result of this reweighting in the

B+→ K+π+π− case is shown in Figure 7.2 as an illustration of the procedure.

It should be noted that the PID-correcting weights, evaluated from PIDCalib, are also

applied to the MC before the mass fits, in order to model the effect of the PID cuts on the shape

of the cross-feed distributions.
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Figure 7.2: Dalitz plot distribution of B+→ K+π+π− MC candidates without (left) and with
(right) applying the DP-correcting weights.

7.1.3 Individual Final-State Fit Models

Generally, the same types of background, discussed in Chapter 5, are expected in all four final

states; however, their relative predominance can vary significantly between the different final

states. This section summarises the individual contributions to the fit model of each final state.

All signal and cross-feed components have the tail parameters of their dCB shape fixed

to the values extracted from fits to the corresponding MC sample. The parameters extracted

from the signal distributions in MC are very similar for all four signal channels; the fits to these

distributions are collected together in Figure 7.3 so they can be more easily compared, with

the extracted PDF parameters being given in Table 7.1. Nonetheless, differences can be seen

in the parameters extracted from the different modes, such as the width of the core Gaussian

increasing as a function of the number of pions in the final state, which justifies the use of the

individually-fitted parameters, as opposed to a common set of parameters for all final states.

Table 7.1: Fitted dCB parameters from the fits to signal MC. The parameters α1, n1 correspond
to the left-hand tail of the function.

Signal Channel µ( MeV/c2) σ( MeV/c2) f α1 α2 n1 n2

KKK 5280.8± 0.02 14.95± 0.01 0.36± 0.01 1.51± 0.03 −2.06± 0.02 1.81± 0.03 3.06± 0.05
KπK 5280.6± 0.09 15.30± 0.08 0.43± 0.08 1.50± 0.10 −1.95± 0.08 1.80± 0.10 3.20± 0.30
Kππ 5280.4± 0.05 16.17± 0.04 0.48± 0.04 1.48± 0.05 −1.96± 0.04 1.61± 0.05 2.80± 0.10
πππ 5280.3± 0.05 16.89± 0.05 0.52± 0.04 1.44± 0.05 −1.86± 0.05 1.66± 0.05 3.00± 0.10
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Figure 7.3: Signal MC distributions, with the fitted dCB function overlaid, for B+→ K+K+K−

(top-left), B+→ K+π+K− (top-right), B+→ K+π+π− (bottom-left), and B+→ π+π+π−

(bottom-right).

7.1.3.1 B+→ K+K+K−

In addition to signal and combinatorial background components, the KKK final state receives

contributions from cross-feed from B+→ K+π+K− and B+→ K+π+π−, and a partially-

reconstructed contribution from four-body (B+/B0) decays. Fits in which an additional compo-

nent, corresponding to partially-reconstructed four-body B0
s decays, is included were tested but

the yield of the additional component was consistently found to be zero. The standard ARGUS

function is used to describe the (B+/B0) component, with its shape parameter left floating in the

data fit.
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7.1.3.2 B+→ K+π+K−

The KπK final state receives significant cross-feed contributions from B+ → K+K+K−

and B+→ K+π+π−; the expected cross-feed yields of B+→ π+π+π− and the ‘self-misID’

B+→ π+K+K− are much smaller, but are still included in the fit model. A good description

of the data is achieved only with the inclusion of three partially-reconstructed background

contributions, corresponding to four-body (B+/B0), charmless B0
s , and B0

s decays with an

intermediate charm state. The charmed B0
s component is modelled using an MC sample of B0

s→
D−s (→ KπK)π+ decays. The charmless B0

s component, B0
s→ (K+π−)(K−π−), can proceed

via a number of quasi-two-body intermediate states in a variety of spin combinations, e.g. scalar-

scalar, scalar-vector, vector-vector. In the absence of an MC sample that correctly describes

the ratios with which these quasi-two-body states contribute to the overall (K+π−)(K−π−)

final-state [111], the exact data sample used in that work is used to determine the expected shape

in the B+→ K+π+K− mass spectrum. The shape of the (B+/B0) component was first left

to float in the data fit, but its parameters were found to have very high correlation with other

parameters in the fit; furthermore, the fit showed very little sensitivity to the shape parameters.

Hence, a decision was made to fix the shape using the values seen in the preliminary data fit.

7.1.3.3 B+→ K+π+π−

The Kππ final state receives cross-feed contributions from the other three B+→ h+h′+h′′−

modes and from self-misID, all significantly smaller than the very large expected signal yield. The

partially-reconstructed components included are four-body (B+/B0) decays, B0
s decays, and the

decay B+→ η′K+, where η′ → π+π−γ and the photon is lost. The shape of the B+→ η′K+

component is taken from a fit to MC. This MC is generated with the intermediate decay chain

η′ → ρ0γ; however, a study of the decay η′ → π+π−γ by the BESIII collaboration [112]

has found that the ππ mass spectrum is not completely described by a single ρ0 contribution.

As an attempt to account for this, the B+ → η′K+ MC is reweighted to match the dipion

mass distribution seen by BESIII. The decay B0
s→ D−s (→ Kππ)π+ is taken to represent the

four-body B0
s contribution in this case, and its shape is also taken from a fit to an MC sample.

The shape parameters of the (B+/B0) component exhibited the same behaviour seen in the

corresponding component in the B+→ K+π+K− model, and as such these parameters have

also been fixed.

7.1.3.4 B+→ π+π+π−

The cross-feed contributions in this final state come fromB+→ K+π+π− andB+→ K+π+K−

decays. A component to account for misidentified B+ → D0(K+π−)π+ candidates is also
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included. Finally, two partially-reconstructed components are included. The four-body B0
s

contribution is included with a shape determined from a fit to B0
s→ D−s (→ πππ)π+ MC, while

the same approach is taken for the (B+/B0) component as used in the B+→ K+π+K− and

B+→ K+π+π− models.

7.1.4 Data Fit Constraints

The number of free parameters in the fit to data is greatly reduced by fixing the large number of

shape parameters described above to the values obtained from MC fits. Constraints on the relative

yields of certain backgrounds are included to improve the stability of the fit and incorporate prior

knowledge of these parameters, such as their estimated selection efficiency. Each constraint is

implemented by multiplying the total likelihood PDF by a Gaussian PDF, with mean and width

corresponding to the expected value of the parameter and its uncertainty. Furthermore, differences

between simulation and data, e.g. in mass resolution, should affect all signal channels in the same

way, and can therefore be accounted for by a single parameter, to be shared across the four fit

models. The parameters in the fit to data, and whether they are floating, constrained, or fixed, are

as follows:

• The yields of the four signal components and the four combinatorial components are left to

float freely in the fit to data.

• A common offset parameter is added to the peak positions of all dCB PDFs, which have

been fixed to the values extracted from MC. This offset is left to float in the fit.

• A scaling factor is applied to the width parameters of all dCB PDFs, after also being fixed

to the values in MC. The scaling factor is also left to float.

• The yield of each cross-feed contribution is Gaussian-constrained to the product of the yield

in its signal spectrum and the ratio of the corresponding phase-integrated efficiencies. The

effect of the shift in mass due to misID is accounted for when determining the efficiency

ratios.

• The slope parameter of the exponential describing the combinatorial background is left

to float in the data fit. Furthermore it is allowed to take different values in each final-state

mass spectrum.

• The ARGUS threshold parameters are fixed to the difference in the nominal masses of the

parent and the missing particle. In the case of B+→ η′K+, the peak position of the signal

PDF is taken as the threshold.
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• The Gaussian resolution PDFs that are convoluted with the ARGUS PDFs share the widths

of the respective signal PDF.

• The yields of the partially-reconstructed (B+/B0) contributions in the KKK, Kππ, and

πππ final states, and the B0
s contribution in the Kππ final state are left to float in the fit.

• The yield of B+→ η′K+ is Gaussian-constrained to the product of the yield of B+→
K+π+π−, the ratio of selection efficiencies, and the ratio of branching fractions [32].

• In the B+ → K+π+K− model, the ratio between charmless and charmed partially-

reconstructed B0
s contributions is Gaussian constrained, taking into account their relative

branching fractions [32] and selection efficiencies.

• In the B+→ K+π+K− model, the ratio between charmless (B+/B0) and charmless B0
s

contributions is also Gaussian constrained. The ratio is estimated from the yields obtained

in the LHCb analysis described in Ref. [111]. The yields are N(B0→ K+π−K−π+) =

1013 ± 49 and N(B0
s → K+π−K−π+) = 6080 ± 83. A factor of two is included to

account for both (B+/B0) contributions.

• The yield of the charmed partially-reconstructed B0
s contribution in the B+→ K+π+K−

model is a floating parameter.

• Finally, the yields of both theB+→ D0(→ K+π−)π+ misID andB0
s partially-reconstructed

components in the B+→ π+π+π− are Gaussian-constrained to the signal yield.

7.2 Fit Results

The results of the simultaneous extended maximum likelihood fit to four data distributions are

shown in Figures 7.4 and 7.5, in linear and logarithmic scale respectively. Good overall agreement

between the fit model and data is seen. A trend in the pull distribution is seen in the low-mass

region of them(Kππ) spectrum, identified as being due to the use of the single-parameter form of

the ARGUS function to describe the (B+/B0) partially-reconstructed background. The potential

effect of this feature in the final result is evaluated as part of the model systematic uncertainties

described in Chapter 8.

The yields extracted from the fit are shown in Table 7.2. It is worth noting that many

background yields do not enter the fit explicitly, but are constructed from the product of a signal

yield parameter and their efficiency ratios. The background yields are still of interest, and so

are explicitly listed in Table 7.2. The nuisance parameters extracted from the fit are given in

Table 7.3.
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Figure 7.4: Result of the simultaneous maximum likelihood fit to the invariant mass distributions
of B+→ K+K+K− (top-left), B+→ K+π+K− (top-right), B+→ K+π+π− (bottom-left),
and B+→ π+π+π− (bottom-right).
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Figure 7.5: Log-scale simultaneous fit results in the B+ → K+K+K− (top-left), B+ →
K+π+K− (top-right), B+→ K+π+π− (bottom-left), and B+→ π+π+π− (bottom-right) mass
spectra.
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Table 7.2: Fitted yields obtained from the simultaneous fit to data. The * symbol indicates the
yields that are not explicit parameters in the fit. The associated errors take into account the
covariances in the fit.

Mass Spectrum Parameters Extracted Values

KKK

Nsignal 69313± 285
Ncomb 14435± 229
NKπK* 886± 21
NKππ* 700± 11
NB PRB 2730± 130

KπK

Nsignal 5758± 135
Ncomb 9664± 745
NKKK* 604± 3
NKππ* 1445± 10
Nπππ* 8.4± 0.3
NπKK* 2.2± 0.3
NB PRB* 1490± 122
NB0

s PRB(charmed) 4286± 548
NB0

s PRB(charmless)* 2440± 199

Kππ

Nsignal 94946± 435
Ncomb 28873± 1450
NKKK* 274± 2
NKπK* 620± 15
Nπππ* 1245± 10
NπKπ* 335± 7
NB PRB 39553± 323
NB0

s PRB 3274± 978
NKη′* 1636± 114

πππ

Nsignal 25484± 205
Ncomb 15104± 348
NKπK* 50± 2
NKππ* 8308± 47
NB PRB 8201± 149
NB0

s PRB* 69± 10
ND(→Kπ)π* 1953± 199
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Table 7.3: Nuisance parameters obtained from the simultaneous fit to data.

Mass Spectrum Parameters Extracted Values
σscale 1.144± 0.003 MeV/c2

δoffset −2.58± 0.05 MeV/c2

KKK

ccombinatorial (−42.1± 1.2)×10−4

cB PRB −20.5± 9.3
ε(KπK → KKK) (15.385± 0.040)%
ε(Kππ → KKK) (0.737± 0.011)%

KπK

ccombinatorial (−50.9± 4.6)×10−4

ε(KKK → KπK) (0.871± 0.003)%
ε(Kππ → KπK) (1.522± 0.008)%
ε(πππ → KπK) (0.0329± 0.0013)%
ε(πKK → KπK) (0.0382± 0.0054)%
(B0

s→K+π−K−π+)/(B0
s→D

−
s π

+) (56.9± 8.7)%
(B→KπKπ)/(B0

s→K+π−K−π+) (61.0± 4.1)%

Kππ

ccombinatorial (−45.1± 2.9)×10−4

ε(KKK → Kππ) (0.3946± 0.0025)%
ε(KπK → Kππ) (10.771± 0.069)%
ε(πππ → Kππ) (4.886± 0.010)%
ε(πKπ → Kππ) (0.3524± 0.0068)%
(B+→η′K+)/(B+→K+π+π−) (1.72± 0.12)%

πππ

ccombinatorial (−15.8± 1.7)×10−4

ε(KπK → πππ) (0.872± 0.027)%
ε(Kππ → πππ) (8.751± 0.030)%
(B0

s→D
−
s (→πππ)π+)/(B+→π+π+π−) (0.269± 0.040)%

(B+→D0(→Kπ)π+)/(B+→π+π+π−) (7.66± 0.77)%
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7.2.1 Signal Yield Correction

Before determining the ratios of branching fractions, the raw signal yields extracted from the fit

to data must be corrected to account for the differences in the total detection efficiency across the

four signal channels, per Equation 4.1. The total efficiency maps evaluated in Chapter 6 allow

the efficiency correction to be performed on an event-by-event basis, by also determining the

variation of the background-subtracted yields as a function of Dalitz plot position. Equation 4.1

can be rewritten as

B(B+→ h+h′+h′′−)

B(B+→ K+K+K−)
=
N corr
hhh

N corr
KKK

, N corr =
∑
i∈N

wi
εi
, (7.3)

where the sum is performed over the number of candidates in the respective final state, wi is

the signal sWeight associated with the i-th candidate, and εi the total efficiency assigned to the

candidate from its position in the DP.

A minor difficulty arises from imposing Gaussian constraints on the yields of cross-feed

and some partially-reconstructed backgrounds. In the ‘standard’ sWeight procedure, the yields

of the different contributions must be freely-floating in the fit, with all other fit parameters kept

constant [113]. An extension of the method exists (described in Appendix B of Ref. [113]), that

allows the inclusion of contributions with constant yields if their distributions in the variables of

interest (the DP variables in this case) are known. A new invariant mass fit is performed individu-

ally for each signal channel, in which the nuisance parameters are fixed to the values extracted

from the nominal simultaneous fit and the yields of the Gaussian-constrained backgrounds are

explicitly fixed to the values given in Table 7.3. In the B+→ K+π+K− model, where the

partially-reconstructed backgrounds are Gaussian-constrained relative to one another but the yield

of the total partially-reconstructed contribution is freely-floating, a decision was made to keep the

relative yields constant but keep the total yield floating, to avoid having to describe the Dalitz

plot distribution of those backgrounds. The modified efficiency-corrected yield takes the form

N corr =
∑
bins

cnM0(m′, θ′) +
∑

i⊂binwi

εbin
, (7.4)

where M0 is the normalised total distribution of the fixed backgrounds, and cn quantifies the

impact of the fixed backgrounds by taking into account the signal yield and the covariances

between floating yields.

The efficiency-corrected yields are given in Table 7.4. The associated statistical uncertain-

ties also require some care in their determination. The sWeight fits have fewer free parameters,

since all nuisance parameters are made constant, than the nominal simultaneous fit; this results
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in a difference between the two fits in the statistical uncertainty associated with each signal

yield. The procedure used to take this into account involves incorporating the difference in

uncertainties between the two fits, σshape (N) =
√
σsim.fit(N)2 − σsWeights(N)2, into the total

uncertainty [114]. The statistical uncertainty on the efficiency-corrected yields, as given in

Table 7.4, takes the form [113]

σcorr(N corr) =

√√√√∑
i

(
wi
εi

)2

+

(
N corr

N
σshape(N)

)2

. (7.5)

Table 7.4: Efficiency-corrected signal yields and associated statistical uncertainties.

Signal Channel Nominal Fitted Yield N corr

B+→ K+K+K− 69 310± 290 9 323 000± 40 100
B+→ K+π+K− 5 760± 140 1 417 700± 36 500
B+→ K+π+π− 94 950± 440 15 983 300± 79 400
B+→ π+π+π− 25 480± 210 4 667 100± 42 400

At this point, the branching fraction ratios can first be determined using Equation 7.3. The

branching fraction ratios are given in Table 7.5 with their statistical uncertainties; the systematic

uncertainties considered in this analysis are described in the following chapter.

Table 7.5: B+→ h+h′+h′′− branching fraction ratios. The values in each cell correspond to
the efficiency-corrected yield of the channel in that row divided by that of the channel in the
corresponding column. The uncertainties are statistical only.

row/column KKK KπK Kππ πππ

KKK – 6.58± 0.17 0.5833± 0.0038 1.998± 0.020
KπK 0.1521± 0.0040 – 0.0887± 0.0023 0.3038± 0.0083
Kππ 1.714± 0.011 11.27± 0.30 – 3.425± 0.035
πππ 0.5006± 0.0050 3.292± 0.090 0.2920± 0.0030 –
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CHAPTER8
Systematic Uncertainties

“ If you thought before science was certain, well, that’s an error on your part. ”
Richard Feynman, The Character of Physical Law

Sources of systematic uncertainty can introduce biases in the calculation of the results.

However, by evaluating the ratios ofB+→ h+h′+h′′− branching fractions relative to one another,

many potential sources of systematic effects are expected to cancel out. The sources of systematic

uncertainty that have been considered in this analysis are detailed in this chapter. Furthermore,

cross-checks are performed, by re-evaluating the branching fraction ratios with subsets of the

total dataset, to determine the consistency of the final results.

8.1 Systematic Uncertainties

The systematic uncertainties considered can be divided into those related to the efficiency of the

candidate selection, and those related to the fit model. Given the number of those associated with

the selection efficiency, they have been grouped under those generally related to the efficiency,

those specifically related to the efficiency corrections applied, and those associated with the

PIDCalib procedure. The absolute values of the systematic uncertainties in these categories are

given in Tables 8.1, 8.2, and 8.3 , respectively. The values of the systematic uncertainties related

to the fit model are given in Table 8.4. Finally, a summary of all the systematic uncertainties for

three of the ratios measured is given in Table 8.5, to ease the comparison between the uncertainties

that have been determined.
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8.1.1 Data / MC Differences

Two variables (the pT asymmetry and the minimum IP χ2) included in the MVA showed some

mismatch in the distributions seen in MC and the background-subtracted data, shown in Fig-

ures 5.4 and 5.5. The effect of the data / MC difference on the efficiency variation across the

Dalitz plot is estimated by reweighting the MC, so that it matches the distribution of those two

variables in sWeighted data. The reweighted efficiency maps are then propagated through to

determine branching fraction ratios; the uncertainty is then the difference between the nominal

result and that determined with this reweighting.

8.1.2 Vetoes

The systematic uncertainty due to the fraction of signal candidates lost within theD0 veto window

is evaluated by increasing the window from 30 MeV/c2 to 45 MeV/c2. Both the fit to the data and

the evaluation of the efficiency maps are repeated taking into account the larger veto window.

8.1.3 Dalitz Plot Binning

The choice of binning used to represent the distribution of the efficiency across the Dalitz plot is

a potential source of uncertainty. The granularity of the binning is chosen with the assumption

that the variation of the efficiency within each bin is negligible. The potential effect is estimated

by reducing the number of bins in each dimension from 30 to 20 and re-evaluating the results.

8.1.4 Finite MC Statistics

The efficiencies determined in Chapter 6 have an associated statistical uncertainty that origi-

nates from the finite sample size of the MC samples used to evaluate them. Since the numera-

tor / denominator in the efficiency determination of the total dataset is a weighted average of the

number of selected / total MC candidates in each subsample (2011 / 2012, MagDown / MagUp),

the statistical uncertainty is evaluated with the following procedure [106]. The efficiency of the

total dataset and its variance are given by

E =
K

N
=

∑
iwiki∑
iwini

, V =

(∑
i

(wini)
2vi

)
/

(∑
i

wini

)2

, (8.1)

where ki, ni are the number of selected / total MC candidates in a given subsample, wi the weight

given to that subsample, and vi is the variance of the subsample. With the efficiency and variance

of the total dataset, a Beta distribution is then constructed from which the efficiency can be

resampled, with the correct statistical properties. Note that the the variances of the individual
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subsamples, vi, are also determined from a Beta distribution, Be(k + 1
2 , n− k + 1

2). The effect

on the branching fraction ratios is determined by calculating the statistical uncertainty in each bin

of the four efficiency maps, creating a set of resampled efficiency maps, and using each set to

re-evaluate the ratios. The systematic uncertainty on the results is taken as the standard deviation

of the set of branching fraction ratios.

Table 8.1: Absolute systematic uncertainties related to the candidate selection and its efficiency.

Branching Fraction Ratio Data / MC (10−2) Veto (10−2) DP Binning (10−2) MC Statistics (10−2)

KπK /KKK 0.033 0.43 0.052 0.032
Kππ /KKK 0.61 5.4 0.18 0.33
πππ /KKK 0.16 1.3 0.39 0.10
KKK /KπK 1.4 19 2.2 1.4
Kππ /KπK 1.6 4.2 2.7 2.5
πππ /KπK 0.37 0.50 1.5 0.78
KKK /Kππ 0.21 1.9 0.062 0.11
KπK /Kππ 0.013 0.033 0.021 0.020
πππ /Kππ 0.0082 0.15 0.20 0.066
KKK /πππ 0.66 5.5 1.6 0.41
KπK /πππ 0.035 0.046 0.14 0.073
Kππ /πππ 0.096 1.8 2.3 0.78

8.1.5 Trigger

A correction for the efficiency of the L0 TIS trigger was described in Section 6.5, which involved

reweighting the MC samples to reflect the number of events firing the different TIS decisions seen

in data. A systematic uncertainty is associated with this correction by varying the MC weights

obtained, shown in Figure 6.7, within their uncertainties.

The L0Hadron TOS trigger response has also been corrected for, with the use of cali-

bration efficiency tables determined from D∗−→ D0 (→ K+π−)π− decays. The systematic

uncertainty is obtained from the use of an alternative set of calibration tables, determined with

kaon and pion samples from B0→ J/ψK∗0 decays, to obtain new correction maps. The absolute

differences between results obtained using the nominal and alternative corrections are taken as

the uncertainties.

8.1.6 Tracking

A systematic uncertainty is assigned to the tracking correction procedure, by varying the values

of the track-level corrections, shown in Figure 6.6, within their uncertainties and re-evaluating
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the correction.

8.1.7 B Kinematics

A correction applied to account for residual data / MC differences in the kinematics of the B

meson was obtained by matching the distribution of B momentum and pseudorapidity in MC to

that of B+→ K+K+K− background-subtracted data. An alternative correction is performed

using the background-subtracted B+→ K+π+π− sample, with the absolute difference in the

ratios determined with the two methods being taken as the uncertainty.

Table 8.2: Absolute systematic uncertainties concerning the corrections to the total efficiency.

Branching Fraction Ratio L0 TIS (10−2) L0 TOS (10−2) Tracking (10−2) Kinematics (10−2)

KπK /KKK 0.11 0.018 0.006 0.005
Kππ /KKK 0.36 0.34 0.20 0.26
πππ /KKK 0.18 0.27 0.13 0.12
KKK /KπK 4.6 0.79 0.28 0.23
Kππ /KπK 8.1 3.6 0.85 1.3
πππ /KπK 2.5 2.2 0.72 0.69
KKK /Kππ 0.12 0.11 0.067 0.089
KπK /Kππ 0.064 0.028 0.007 0.010
πππ /Kππ 0.099 0.10 0.042 0.027
KKK /πππ 0.72 1.1 0.51 0.49
KπK /πππ 0.23 0.20 0.066 0.063
Kππ /πππ 1.6 1.2 0.49 0.31

8.1.8 PID Systematics

The PIDCalib procedure depends on two assumptions: the response of the RICH detectors

can be fully parameterised in terms of the variables used in the PIDCalib binning (p, η, and

BestTracks), and the efficiency variation within each bin is minimal. The first assumption is

generally thought to be a reasonable one; the second is tested by evaluating the PID efficiencies

with a different binning choice in PIDCalib. Both the granularity of the binning and the bin

boundaries are varied with respect to the nominal binning defined in Table 5.2, and this alternative

binning is used to recalculate the PID efficiency.

An uncertainty is associated with the use of sWeights to subtract the background present

in the calibration samples; an uncertainty of 0.1% per track in the decay channel being studied is

recommended by the PIDCalib developers. Since ratios are being determined in this case, a
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0.1% uncertainty is taken for each track that differs in type between numerator and denominator

in the ratio. For example, an uncertainty of 0.2% is assigned to the ratio Kππ /KKK.

Finally, the statistical uncertainty due to the calibration samples used is calculated by

resampling the PIDCalib efficiency histograms multiple times. This is achieved by resampling

from Beta distributions whose parameters are the number of selected / total number of candidates

in each bin. In the cases in which multiple tracks use the same performance histogram, the same

set of resampled histograms is shared among the tracks, to preserve the correlations present in the

original procedure.

Table 8.3: Absolute systematic uncertainties associated with PIDCalib.

Branching Fraction Ratio PID binning (10−2) PID sWeights (10−2) PID statistics (10−2)

KπK /KKK 0.080 0.015 0.0038
Kππ /KKK 0.057 0.34 0.054
πππ /KKK 0.030 0.15 0.038
KKK /KπK 3.5 0.66 0.16
Kππ /KπK 5.5 1.1 0.40
πππ /KπK 1.5 0.66 0.24
KKK /Kππ 0.019 0.12 0.019
KπK /Kππ 0.043 0.0089 0.0032
πππ /Kππ 0.0075 0.029 0.024
KKK /πππ 0.12 0.60 0.15
KπK /πππ 0.14 0.061 0.022
Kππ /πππ 0.088 0.34 0.28

8.1.9 Choice of Fit Model

The fit model uses double Crystal Ball functions to model both signal and cross-feed components,

exponential functions to model the combinatorial background, and ARGUS functions to describe

the partially-reconstructed contributions. Other suitable parameterisations could have been chosen

instead, and so a systematic uncertainty is associated with the particular choices made.

To evaluate this uncertainty, three alternative models are built in which a different choice

of parameterisation is picked for one of the categories of fit component. In ‘Model I’ all dCB

functions are replaced with double Hypatia functions. In ‘Model II’ the exponential functions are

replaced by second-order Chebyshev polynomials. ‘Model III’ implements different partially-

reconstructed parameterisations: for components that have the ARGUS parameters fixed to MC,

the ARGUS function is replaced by a RooKeysPDF kernel density estimation; the other ARGUS
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components are made into generalised ARGUS functions, by allowing the extra parameter free to

float.

8.1.10 Fixed Parameters

The parameters that are fixed in the fit to data, that have been taken from fits to MC, are varied

within their uncertainties by using the covariance matrix of those MC fits. Multiple sets of

resampled parameters are used to fit the data, the results of which are used to obtain branching

fraction ratios, with the standard deviation of the set of ratios being taken as the systematic

uncertainty on the results.

8.1.11 Fit Bias

Multiple pseudoexperiments are generated based on the values of the fit parameters extracted

from the nominal fit to data. Subsequently, each pseudoexperiment is fitted with the nominal fit

model and the distributions of the extracted signal yields are fitted with Gaussian distributions.

The difference between the mean of each Gaussian and the corresponding nominal signal yield is

taken as a systematic uncertainty.

Table 8.4: Absolute systematic uncertainties associated with the fit model.

Branching Fraction Ratio Model I (10−2) Model II (10−2) Model III (10−2) Fixed Param. (10−2) Fit Bias (10−2)

KπK /KKK 0.12 0.38 0.62 0.11 0.012

Kππ /KKK 1.5 1.1 1.8 0.71 0.038

πππ /KKK 0.038 0.031 0.029 0.24 0.019

KKK /KπK 5.0 17 26 4.8 0.54

Kππ /KπK 18 21 56 9.8 0.94

πππ /KπK 2.7 8.2 13 3.0 0.29

KKK /Kππ 0.52 0.39 0.62 0.24 0.013

KπK /Kππ 0.15 0.16 0.46 0.076 0.007

πππ /Kππ 0.24 0.18 0.29 0.18 0.012

KKK /πππ 0.15 0.12 0.12 0.92 0.075

KπK /πππ 0.26 0.74 1.3 0.26 0.027

Kππ /πππ 2.8 2.0 3.4 2.0 0.14
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Table 8.5: Summary of all systematic uncertainties associated with the branching fraction ratios
with respect to the B+→ K+K+K− decay.

Systematic Uncertainty (10−2) KπK /KKK Kππ /KKK πππ /KKK
Data / MC 0.033 0.61 0.16
Veto 0.43 5.4 1.3
DP Binning 0.052 0.18 0.39
MC Statistics 0.032 0.33 0.10
L0 TIS 0.11 0.36 0.18
L0 TOS 0.018 0.34 0.27
Tracking 0.006 0.20 0.13
Kinematics 0.005 0.26 0.12
PID binning 0.080 0.057 0.030
PID sWeights 0.015 0.34 0.15
PID statistics 0.0038 0.054 0.038
Model I 0.12 1.5 0.038
Model II 0.38 1.1 0.031
Model III 0.62 1.8 0.029
Fixed Param. 0.11 0.71 0.24
Fit Bias 0.012 0.038 0.019

8.2 Cross-Checks

Subsets of the dataset used in this analysis have been taken under different conditions, which

nonetheless should not affect the results obtained. For example, the results should be consistent

when looking at data taken at one centre-of-mass energy vs. another (i.e. 2011 vs. 2012), and also

when considering the two magnet polarisations separately. The branching fractions obtained for

each cross-check category are compared against the nominal values in Figure 8.1 and the results

are found to be consistent.
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Figure 8.1: Branching fraction ratios as a function of cross-check subcategory. Values are given
for the ratios KπK /KKK(top-left), Kππ /KKK(top-right), and πππ /KKK(bottom).
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CHAPTER9
Conclusions

“ Life is like topography, Hobbes. There are summits of happiness and success,

flat stretches of boring routine and valleys of frustration and failure. ”
Bill Watterson, Calvin and Hobbes

This thesis documents a measurement of the relative branching fractions of the charmless

decays B+→ K+K+K−, B+→ K+π+K−, B+→ K+π+π−, and B+→ π+π+π−, with the

3 fb−1 of data collected by the LHCb experiment in the years 2011 and 2012. The complete

set of possible branching fraction ratios are given in Table 9.1, along with the corresponding

ratios determined using the current-best absolute branching fraction values. However, given the

number of decay channels studied, the number of fully-independent ratios that can be determined

is three. It can be convenient to consider the set of branching fractions relative to that of the

B+ → K+K+K− decay as that independent set, since the absolute branching fraction of

B+→ K+K+K− is currently the most precisely known:

B(B+→ K+π+K−) /B(B+→ K+K+K−) = 0.152± 0.004 (stat)± 0.009 (syst) ,

B(B+→ K+π+π−) /B(B+→ K+K+K−) = 1.714± 0.011 (stat)± 0.061 (syst) ,

B(B+→ π+π+π−) /B(B+→ K+K+K−) = 0.501± 0.005 (stat)± 0.015 (syst) .

The amplitude analyses of the B+→ K+π+K− and B+→ π+π+π− decay channels

that have been recently performed by the LHCb collaboration have been previously mentioned in
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Table 9.1: Final branching fraction ratios, including statistical and systematic uncertainties. The
current world-average values, determined using the values in Table 2.1, are given for comparison.

Branching Fraction Ratio Value Current W.A Value

KπK /KKK 0.152 ± 0.004 (stat) ± 0.009 (syst) 0.153 ± 0.013

Kππ /KKK 1.714 ± 0.011 (stat) ± 0.061 (syst) 1.50 ± 0.11

πππ /KKK 0.501 ± 0.005 (stat) ± 0.015 (syst) 0.447 ± 0.045

KKK /KπK 6.58 ± 0.17 (stat) ± 0.37 (syst) 6.54 ± 0.57

Kππ /KπK 11.27 ± 0.30 (stat) ± 0.64 (syst) 9.81 ± 0.94

πππ /KπK 3.29 ± 0.09 (stat) ± 0.17 (syst) 2.92 ± 0.35

KKK /Kππ 0.583 ± 0.004 (stat)± 0.022 (syst) 0.667 ± 0.047

KπK /Kππ 0.0887± 0.0023 (stat)± 0.0053 (syst) 0.1020± 0.0098

πππ /Kππ 0.2920± 0.0030 (stat)± 0.0054 (syst) 0.298 ± 0.032

KKK /πππ 1.998 ± 0.020 (stat) ± 0.060 (syst) 2.24 ± 0.23

KπK /πππ 0.304 ± 0.009 (stat) ± 0.016 (syst) 0.342 ± 0.041

Kππ /πππ 3.425 ± 0.035 (stat) ± 0.063 (syst) 3.36 ± 0.36

this thesis. At this point, it is interesting to consider the improvement achieved in the precision

of quasi-two-body branching fractions by combining the results of those two analyses and the

measurements presented in this work. The improvement seen in the branching fraction of the

decay B+→ ρ0(770)π+ is given as an example.

The current (not yet including the LHCb result) world average value of this branching

fraction is B(B+ → ρ0(770)π+) = (8.3+1.2
−1.3) × 10−6 [33]. The relative uncertainty on this

average is 16%. The amplitude analysis of B+ → π+π+π− has been performed via three

independent methods; the values given for the ρ0(770) fit fraction are consistent across the three

methods. For the purposes of this comparison, the fit fraction determined with the isobar model

is used, FF (ρ0(770)) = (55.5± 2.6)% [17, 18]. The world-average absolute branching fraction

value B(B+→ K+K+K−) = (34.0± 1.4)× 10−6 [32] is used in combination with the ratio

πππ /KKK measured in this work.

The B+ → ρ0(770)π+ branching fraction can then be determined using a slightly-
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modified version of Equation 2.20,

B(B+→ ρ0(770)π+) = B(B+→ K+K+K−) ·R
( πππ

KKK

)
· FFρ0

= (9.5± 0.6)× 10−6,
(9.1)

with the uncertainty obtained in this calculation corresponding to a relative uncertainty of 6%.

The same procedure can be used on each quasi-two-body state present in the B+→ π+π+π−

and B+→ K+π+K− amplitude models.

The coming years will see further progress in the study ofB+→ h+h′+h′′− decays. Work

is ongoing on the LHCb amplitude analyses of B+→ K+K+K− and B+→ K+π+π− decays.

With the combined Run 1 and Run 2 datasets, the signal yields available to the two analyses

are two orders of magnitude larger than those that were available in the B factories. Similarly

to the B+→ π+π+π− case, the limiting factor in the precision of these two measurements is

most likely to be the systematic uncertainties in the amplitude model. Model-independent CP

violation analyses, in the style of Ref. [15], can potentially avoid becoming systematically limited;

however, it is more difficult to associate such results to specific intermediate processes [115].

Looking further afield, prospects exist for combining the results obtained from B+→
h+h′+h′′− decays with measurements of isospin-related decay channels such as B0→ K0

Sh
+h′−

and B0→ h+h′−π0. Constraints on CKM parameters, for example the CKM angles α and γ,

can be determined by considering isospin relations between families of quasi-two-body decays

such as B→ ρπ and B→ K∗π [116, 117]. Precise measurements of the branching fractions

involved, such as those presented in this thesis, will be an essential element of this programme.
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