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Summary

The minimal degree, µ(G), of a finite group G is the least n such that G

embeds in Sn. Such embeddings, called permutation representations, are often

used to represent groups on computers. Algorithms working with such repre-

sentations have time and space complexity depending on n so it is often worth

putting some time into getting n as close to µ(G) as possible.

In the second chapter of this thesis we study group quotients. Despite a

quotient G/N of G being smaller and in some sense simpler than G it possible

to have µ(G/N) > µ(G), in which case G is called exceptional and N is called

distinguished in G. We characterise exceptional p-groups of least order and

show that normal subgroups with no abelian chief factors are not distinguished.

These develop from work by Kovács, Easdown and Praeger.

In the third chapter we study quasisimple groups. The most significant result

in the third chapter is the calculation of µ(2 ·An) for all n. This is in some sense

the worst case for the minimal degree of a quasisimple group as µ(2 ·An) grows

with
(
n
2

)
!. A representation of degree µ(2 · An) is first given, then the proof

that it is minimal comes in two parts. We describe a dynamic programming

algorithm for computing µ(2 · An) for small n. This is done for n ≤ 850. For

n > 850 we use an inductive proof to compute µ(2 ·An).

We also compute µ(SL(n, q)) following work by Cooperstein and conclude

with comments on the minimal degrees of other classical groups and of Schur

covers of some sporadic simple groups.



Chapter 1

Introduction

In this thesis we study the following question:

Given a finite group G, what is the smallest n such that G embeds into Sn?

This question is of particular importance in computational group theory.

Permutations are easily represented on a computer and there many group

theoretic algorithms which work with permutation groups (subgroups of Sn). It

is therefore useful when working with a finite group G to embed G into some

Sn.

The vast majority (perhaps all) of algorithms that work with subgroups of Sn

have time and space complexities which depend on n. It is therefore worthwhile

spending some time to reduce this n.

1.1 Definitions and Conventions

Definition 1.1.1 (Permutation Representation)

Given a finite group G, a (permutation) representation of G is a group homo-

morphism

ρ : G→ Sn ∼= Sym(Ω)

for some set Ω of size n. This is equivalent to an action of G on Ω.

Definition 1.1.2 (Minimal Permutation Representation)

We call ρ minimal if ker(ρ) = 1 and n is as small as possible. We denote such

n by µ(G) and call µ(G) the minimal degree of G.

Note that the main question we are investigating is precisely:

Given a finite group G, what is µ(G)?

3
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We list here some notation and conventions for the readers reference. These

conventions will be consistent throughout the thesis.

• All groups are assumed to be finite.

• [n] = {1, . . . , n}.

• νp denotes p-adic valuation. That is k = νp(n) if pk | n and pk+1 - n.

• G/H = {Hg|g ∈ G}.

• For g ∈ G and H ≤ G, Hg = g−1Hg.

• If H ≤ G then coreG(H) denotes the largest normal subgroup of G

contained in H.

• Permutations act on the right.

• Where unambiguous, GΩ = ρ(G).

• Where unambiguous, properties of ρ and properties of GΩ are considered

interchangeable. For example we say ρ is transitive if GΩ is transitive.

• When ρ is implicit, for brevity we denote xg = xρ(g) for g ∈ G, x ∈ Ω.

• For α ∈ Ω, Gα = {g ∈ G|αg = α}.

• For α ∈ Ω, αG = {αg|g ∈ G}.

• For ∆ ⊆ Ω and g ∈ G, ∆g = {xg|x ∈ ∆}.

• For ∆ ⊆ Ω, G∆ = {g ∈ G|∆g = ∆}.

• For ∆ ⊆ Ω, G(∆) = ∩x∈∆Gx.

• If ∆G = ∆ then G∆ denotes the restricted action of G on ∆.

• We call ∆ ⊆ Ω a block for GΩ if for all g ∈ G we have either ∆g = ∆ or

∆ ∩∆g = ∅.

• If ∆ ⊆ Ω forms a block for GΩ then B∆ = {∆g|g ∈ G} denotes the block

system containing ∆.

• If ∆ ⊆ Ω forms a block for GΩ then GB∆ denotes the natural action of G

on B∆.
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Proposition 1.1.1

coreG(H) = ∩g∈GHg

Proof: Notice that coreG(H) = coreG(H)g ≤ Hg for all g ∈ G. This gives

coreG(H) ≤ ∩g∈GHg.

Conversely, let L = ∩g∈GHg ≤ H. For x ∈ G the map g 7→ gx permutes the

elements of G. So Lx = ∩g∈GHgx = ∩g∈GHg = L.

Hence coreG(H) ≥ ∩g∈GHg.

Definition 1.1.3

Two representations ρ : G → Sym(Ω), σ : G → Sym(∆) are equivalent if

there exists a bijection π : Ω → ∆ such that for all g ∈ G and x ∈ Ω we have

π(x)σ(g) = π(xρ(g)).

Intuitively ρ and σ are equivalent if we can obtain σ from ρ by relabelling

Ω. For the next definition, we need a small result.

Proposition 1.1.2

Let Ω1, . . . ,Ωk be the orbits of GΩ. Fix a point αi ∈ Ωi in each orbit and denote

Hi = Gαi
. Then GΩ is equivalent to the action of G on tki=1G/Hi by right

multiplication.

Proof: We define π : Ω→ tki=1G/Hi by π(αgi ) = Hig for i ∈ [k], g ∈ G.

To see π is well defined, suppose αg1

i = αg2

i . Then g1g
−1
2 ∈ Hi, so

Hig1 = Hig2 as required.

To see π is injective, suppose π(αg1

i ) = π(αg2

i ). Then Hig1 = Hig2, so

g1g
−1
2 ∈ Hi and therefore αg1

i = αg2

i . Clearly π is surjective.

To see π is an equivalence, π(αg1

i )g2 = Hig1g2 = π((αg1

i )g2). This completes

the proof.

Definition 1.1.4 (Subgroup Correspondence)

Using the notation in Proposition 1.1.2 we say ρ (equivalently GΩ) corresponds

to {H1, . . . ,Hk} and call {H1, . . . ,Hk} the subgroup correspondence of ρ.

Note that the subgroup correspondence is in fact a multiset and that the

choices for Hi are unique up to conjugacy, justifying the term ‘the subgroup

correspondence’.
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1.2 Basic Results

We list in this section useful or interesting results which are very easy to prove

and may be used later without reference.

Proposition 1.2.1 (Immediate Results)

We begin with some immediate results

1. |G| ≤ µ(G)!.

2. µ(G) ≤ |G|.

3. If H ≤ G then µ(H) ≤ µ(G).

4. µ(G×H) ≤ µ(G) + µ(H).

Proof:

1. This follows immediately from the fact G embeds into Sµ(G).

2. This is Cayley’s Theorem - G acts faithfully on itself.

3. We know there exists an embedding ρ : G→ Sµ(G). Restricting this to H

gives embedding ρ|H : H → Sµ(G).

4. Let n = µ(G) and m = µ(H) so there are embeddings G ↪→ Sn and

H ↪→ Sm. There is a natural embedding Sn × Sm ↪→ Sn+m, so we may

embed G×H ↪→ Sn × Sm ↪→ Sn+m.

Proposition 1.2.2 (Properties of Representations)

The following table defines properties of a permutation representation

ρ : G → Sym(Ω) and the corresponding properties of the subgroup

correspondence for ρ. We prove in each case that the two properties are

equivalent.

ρ {H1, . . . ,Hk}
degree n

∑k
i=1[G : Hi]

faithful ker(ρ) = 1 ∩ki=1coreG(Hi) = coreG(∩ki=1Hi) = 1

no. orbits k

primitive
transitive

no non-trivial block

k = 1

H1 maximal

regular
transitive

trivial point stabiliser

k = 1

H1 = 1
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Proof:

Degree, no. orbits and regular follow from the subgroup correspondence

(Proposition 1.1.2). Since the above properties are preserved under equivalence

we may assume Ω = tki=1G/Hi.

Faithful:

First notice that

∩ki=1coreG(Hi) = ∩ki=1 ∩g∈G H
g
i = ∩g∈G(∩ki=1Hi)

g = coreG(∩ki=1Hi)

We actually prove the stronger result that ker(ρ) = ∩ki=1coreG(Hi).

Now, suppose x ∈ ker(ρ). Then Higx = Hig for each i ∈ [k] and g ∈ G.

For fixed i, g, this implies x ∈ Hg
i , so x ∈ ∩i ∩g∈G Hg

i = ∩ki=1coreG(Hi). Hence

ker(ρ) ≤ ∩ki=1coreG(Hi).

Conversely, suppose x ∈ ∩ki=1coreG(Hi). In particular, for each i ∈ [k] and

g ∈ G we have x ∈ Hg
i so Higx = Hig. Hence x ∈ ker(ρ).

Primitive:

It is a straightforward check that if ρ is imprimitive then the subgroup K

fixing a non-trivial block ofGΩ satisfiesH1 < K < G. Conversely ifH1 < L < G

then it is a straightforward check that H1L = {H1g|g ∈ L} forms a non-trivial

block in Ω.

Proposition 1.2.3

Suppose Soc(G) = N1 × · · · ×Nk where Ni is a minimal normal subgroup of G

for each i. Then a minimal representation of G has at most k orbits.

Proof: Suppose {H1, . . . ,Hr} corresponds to a minimal representation of G

with r > k. Let Ki = coreG(Hi), so ∩ri=1Ki = 1. Let Ci = ∩j 6=iKj ∩ Soc(G) so

Ki ∩ Ci = 1.

If Ci = 1 then {Hj |j 6= i} corresponds to a faithful representation of degree

smaller than {H1, . . . ,Hr} contrary to assumption. Hence Ci is non-trivial for

each i.

Let Pi = C1C2 · · ·Ci. If Pi = Pi+1 for some i then Ci+1 ≤ C1C2 · · ·Ci. But

C1, . . . , Ci ≤ Ki+1 so Ci+1 ≤ Ki+1. With Ci+1∩Ki+1 = 1 this implies Ci+1 = 1

which is false. Hence Pi < Pi+1 ≤ Soc(G). This gives an increasing sequence

P1 < P2 < · · · < Pr of normal subgroups of G contained in Soc(G) with r > k.

This is impossible so we must have r ≤ k.
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Corollary 1.2.4

If G has simple socle then any minimal representation of G corresponds to {H}
where H is a core-free (coreG(H) = 1) subgroup of G maximal order.

Proof: By the above proposition any minimal representation of G must be

transitive so must correspond to {H} for some core-free H. If H is not of

maximal order then there is some core-free K such that [G : K] < [G : H]. In

particular {H} does not correspond to a minimal representation. Hence H is of

largest order.

1.3 A Brief Review

This area of study splits naturally into the study of group quotients and group

extensions. We study group quotients as when working with a group G it is often

helpful to do some work in a quotient G/N of G. We study group extensions in

the hope that we may compute µ(G) by describing G as a group extension. In

the case G is simple, µ(G) is known, which we discuss later in this section.

We will therefore review results which concern group quotients and group

extensions in their respective chapters. In this section we discuss the remaining

miscellaneous results.

1.3.1 Simple Groups

We begin with possibly the most important result of this section, the minimal

degrees of all simple groups. The following table, compiled from [10] and [6],

gives the minimal degrees of all finite simple groups. We then give two results

which are shown by a systemic check of the table.
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Group Conditions Minimal Degree

Cp p prime p

An n ≥ 5 n

PSLn(q) (n, q) /∈ {(2, 5), (2, 7), (2, 9), (2, 11), (4, 2)} qn−1
q−1

PSL2(5) 5

PSL2(7) 7

PSL2(9) 6

PSL2(11) 11

PSL4(2) 8

PSp2m(q) m ≥ 2, q > 2, (m, q) 6= (2, 3) q2m−1
q−1

PSp2m(2) m ≥ 3 2m−1(2m − 1)

PSp4(3) 27

PΩ2m+1(q) m ≥ 3, q ≥ 5 q2m−1
q−1

PΩ2m+1(3) m ≥ 3 3m−1(3m−1)
2

PΩ+
2m(q) m ≥ 4, q ≥ 4 (qm−1)(qm−1+1)

q−1

PΩ+
2m(3) m ≥ 4 3m−1(3m−1)

2

PΩ+
2m(2) m ≥ 4 2m−1(2m − 1)

PΩ−2m(q) m ≥ 4 (qm+1)(qm−1−1)
q−1

PSU3(q) q 6= 5 q3 + 1

PSU3(5) 50

PSU4(q) (q + 1)(q3 + 1)

PSUn(q) either n ≥ 5 odd or n even and q 6= 2 (qn−(−1)n)(qn−1−(−1)n−1)
q2−1

PSU2m(2) m ≥ 3 22m−1(22m−1)
3

G2(q) q > 4 q6−1
q−1

G2(3) 351

G2(4) 416

F4(q) (q12−1)(q4+1)
q−1

E6(q) (q9−1)(q8+q4+1)
q−1

E7(q) (q14−1)(q9+1)(q5+1)
q−1

E8(q) (q30−1)(q12+1)(q10+1)(q6+1)
q−1

2B2(q) q = 2f , f odd q2 + 1
2G2(q) q = 3f , f odd q3 + 1
3D4(q) (q8 + q4 + 1)(q + 1)
2E6(q) (q12−1)(q6−q3+1)(q4+1)

q−1
2F4(q) q = 2f , q 6= 2 (q6 + 1)(q3 + 1)(q + 1)
2F4(2)′ 1600
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Group Conditions Minimal Degree

M11 11

M12 12

M22 22

M23 23

M24 24

HS 100

J2 100

Co1 98280

Co2 2300

Co3 276

McL 275

Suz 1782

He 2058

HN 1140000

Th 143127000

Fi22 3510

Fi23 31671

Fi′24 306936

B 13571955000

M 97239461142009186000

J1 266

O′N 122760

J3 6156

Ru 4060

J4 173067389

Ly 8835156
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Proposition 1.3.1

If S is a simple group then |Out(S)| ≤ µ(S).

Proof: This is a systematic check, where throughout we assume p is prime:

For a cyclic simple group S = Cp we have |Out(S)| = p− 1 < p = µ(S).

For S = An with n ≥ 5, if n 6= 6 then |Out(S)| = 2 < n = µ(S) and if n = 6

then |Out(S)| = 4 < 6 = µ(S).

For S = PSL2(q), S = PSp2m(q) or S = PΩ2m+1(q) with q = pf with p prime

we have |Out(S)| ≤ 2f < µ(S).

For S = PSLn(q) and n > 2, q = pf where p is a prime we have that

|Out(S)| = 2f gcd(n, q − 1) < µ(S).

For S = PΩ+
2m(q) and q = pf > 2 we have |Out(S)| ≤ 24f < µ(S).

For S = PΩ+
2m(2) we have |Out(S)| ≤ 6 < µ(S).

For S = PΩ−2m(q) and q = pf we have |Out(S)| ≤ 4f < µ(S).

For S = PSUn(q) and q2 = pf we have |Out(S)| = f gcd(n+ 1, q + 1) < µ(S).

If S is one of the remaining simple groups of Lie type then, with q = pf , we

have |Out(S)| ≤ 6f < µ(S).

For a sporadic simple group S we have |Out(S)| ≤ 2 < µ(S).

Proposition 1.3.2

If S is a non-abelian simple group then µ(Aut(S)) ≤ 28
9 µ(S).

Proof: This is given as a corollary of Proposition 2.2 in [3].

1.3.2 Meet-Irreducible Groups

Definition 1.3.1 (meet-irreducible)

A subgroup H of G is called meet-irreducible in G if for any K1,K2 ≤ G we

have

H = K1 ∩K2 ⇒ H = K1 or H = K2
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Meet-irreducible subgroups were first used in the study of minimal degrees by

Johnson [16] (who confusingly called such subgroups primitive). Proofs in this

section follow those by Johnson with minor changes to notation. The interest

in meet-irreducible subgroups comes from the following Lemma.

Lemma 1.3.3

Suppose R = {H1, . . . ,Hk} is a faithful permutation representation of a finite

group G. If Hi = K1 ∩ K2 for some i ∈ [k] and Hi < Kj ≤ G for j ∈ {1, 2}
then R+ is a faithful representation of G where

R+ = {H1 . . . Hi−1,K1,K2, Hi+1 . . . Hk}

and deg(R+) ≤ deg(R).

Proof: Immediately R+ is faithful as

1 = coreG(∩kj=1Hj) = coreG(∩j 6=iHj ∩K1 ∩K2)

For the degree

deg(R)− deg(R+) = [G : Hi]− [G : K1]− [G : K2]

= [G : Hi]
(

1− 1
[K1:H] −

1
[K2:H]

)
≥ [G : Hi]

(
1− 1

2 −
1
2

)
= 0

Corollary 1.3.4

Given a finite group G and suppose R = {H1, . . . ,Hk} is minimal representation

of G with k maximal. Then each Hi is meet-irreducible in G.

Proof: Suppose Hi is not meet-irreducible for some i. Then there are some

K1,K2 ≤ G with Hi < Kj for each j and Hi = K1 ∩K2. By Lemma 1.3.3 we

have a faithful representation R+ of G with k+1 orbits and deg(R+) ≤ deg(R).

As R is minimal, so is R+, contradicting the assumption that k is maximal.

It is worth noting that, as subgroups containing Hi correspond to blocks in

the orbit defined by Hi, we can rephrase the results of this section as follows:

• Fix a finite group G, H < G a faithful representation GΩ of G and an

orbit ∆ ⊆ Ω of G.

• H is meet-irreducible if and only if H < ∩H<K≤GK.

• If ∆1,∆2 are distinct non-trivial blocks of G∆ with ∆1 ∩∆2 a singleton,

then the induced action of G on Ω′ = (Ω \∆) ∪ B∆1 ∪ B∆2 is faithful and

|Ω′| ≤ |Ω|.

• G has a minimal representation such that the action of G on each orbit is

either primitive or contains a unique minimal block.
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1.3.3 Compression Ratio

Definition 1.3.2

The compression ratio of a finite group G is cr(G) = |G|
µ(G) .

The notion of the compression ratio was suggested by Becker [2]. It can be

thought of as a measure of how ‘easy’ a group is to represent as a permutation

representation and acts as convenient notation. For example an important result

by Johnson is the classification of finite groups with cr(G) = 1 [16] which we

give below with a lower bound on cr(G) for G with cr(G) 6= 1 as proven by

Becker in [2].

Theorem 1.3.5

Let G be a finite group. Then cr(G) = 1 if and only if G is one of the following:

1. Cyclic group of prime power order.

2. Generalised quaternion group of order 2n (n ≥ 3).

3. The Klein-4 group.

Furthermore if cr(G) 6= 1 then cr(G) ≥ 1.2 and if |G| is odd then cr(G) ≥ 1.5.

Notably the two lower bounds on cr(G) are obtained by G = C6 and

G = C3 × C3 respectively.

1.4 Summary

Here we summarise the major results of this thesis.

1.4.1 Summary of Chapter 2

The results of chapter 2 concern group quotients and are published in [4, 5].

Given a finite group G and a normal subgroup N of G we call G exceptional

and N distinguished in G if µ(G) < µ(G/N).

In [9] Easdown and Praeger show that the least power 2k of 2 such that there

exists an exceptional group G with |G| = 2k is 25. They also note that for an

arbitrary prime p there are no exceptional groups of order p3 and there is always

an exceptional group of order p6. They then raise the question of whether there

are exceptional groups of order p4 or p5 for odd primes. We answer this as

follows:
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Theorem 1.4.1

Let p be an odd prime. Then there are no exceptional groups of order p4.

Theorem 1.4.2

Let p be prime and

G = 〈g, h|gp
2

= hp
2

= [g, h]p = 1 , [[g, h], g] = [[g, h], h] = gp〉

N = 〈gphp〉

Then

G ∼= (Cp2 o Cp) o Cp2

µ(G) ≤ 2p2

µ(G/N) = p3

Corollary 1.4.3

Let p be an odd prime and G,N be defined as in Theorem 1.4.2. Then G is

exceptional with distinguished subgroup N .

In [18] it is shown that if G/N has no abelian normal subgroup then N is

not distinguished. We prove a dual result:

Theorem 1.4.4

Let G be a finite group with N a normal subgroup of G. If N has no abelian

chief factors then N is not distinguished in G.

1.4.2 Summary of Chapter 3

The results of chapter 3 concern quasisimple groups. A group G is quasisimple

if it is perfect and G/Z(G) is simple. Quasisimple groups can also be defined as

the non-trivial quotients of Schur covers of nonabelian simple groups.

We begin by studying the minimal degree of the two cover 2 · An of the

alternating group An. This is done both algorithmically, computing µ(2 · An)

explicitly for n ≤ 850, then theoretically to compute µ(2 · An) for all n. The

following table shows µ(2 ·An) for n ≥ 5.
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n µ(2 ·An) core-free subgroup

5 24 5

6 80 32

7 240 7.3

8 240 PSL(2, 7)

9 240 PSL(2, 8).3

10 2400 PSL(2, 8).3

11 5040 M11

12 60480 M11

13 786240 M11

14 3669120 M11 × 3

15 55036800 M11 × 3

16 370656000 PSL(2, 7)2.2

17 1400256000 PSL(2, 7)× PSL(2, 8).3

18 2800512000 (PSL(2, 8).3)2

19 53209728000 (PSL(2, 8).3)2

20 203164416000 M11 × PSL(2, 8).3

21 4266452736000 M11 × PSL(2, 8).3

22 17919101491200 M2
11

23 412139334297600 M2
11

24 1295295050649600 A12 × 2

25 32382376266240000 A12 × 2

26 129529505064960000 A13

27 1050040772352000000 (PSL(2, 8).3) o 3
≥ 28, ≡ 0, 1 mod 8 n!/bn2 c! Abn2 c

≥ 28, 6≡ 0, 1 mod 8 2(n!)/bn2 c! Abn2 c × 2

We then go on study the Schur covers of classical groups. The computation of

µ(G) when G is the Schur cover of an arbitrary classical simple group is beyond

the scope of this thesis. However the author suspects that with enough time

they could all be computed by carefully adapting the computation of minimal

degrees of classical simple groups in [7, 20]. This is done in the case G = SLn(q)

as shown in the table below.

We fix the primes p1, . . . , pk0
dividing |Z(H)| and for each i fix ei such that

q− 1 = peii ti with pi - ti. Note that Hi are defined in chapter 3, but are difficult

to define succinctly so we omit the definition of Hi here.
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(n, q) µ(SLn(q)) Representation

(2, 2) 3 {C2}
(2, 3) 8 {C3}
(2, 5) 24 {C5}
(2, 9) 80 {C3 × C3}
(4, 2) 8 A6

(n, q) not above, qn−1
q−1 Stabiliser of point in action

k0 = 0 on PG(n− 1, q)

(n, q) not above, qn−1
q−1

∑
i∈[k0] p

ei
i {Hi|i ∈ [k0]}

k0 > 0

Finally we study the schur covers of sporadic simple groups. These are

included just for completeness and the computation uses a relatively naive

algorithm to obtain minimal degrees. However where maximal subgroups of

a sporadic simple group S are available on MAGMA we can compute the

minimal degree of the Schur cover G of that simple group. These are given

in the table below - note that we include S if and only if S 6= G and leave

blank the minimal degrees where maximal subgroups of S are not available in

MAGMA.

S Schur Multiplier µ(G) Representation

M12 C2 24 {M11}
M22 C12 5622 {3 ·A6, ((C4 : C8) : A5) : C2}
J2 C2 200 {U3(3)}
J3 C3 18468 {PSL2(16) : 2}
Co1 C2 196560 {Co2}
Fi22 C6 213488 {C3 ×O7(3), (C2 ×O+

8 (2)) : 6}
Fi′24 C3 920808 {Fi23}
HS C2 704 {U3(5)}
McL C3 66825 {2 · PSL3(4)}
Ru C2 16240 {2F4(2)}
Suz C6 70866 {C3 × U5(2), 2 ·G2(4)}
O′N C3 368280 {PSL3(7) : 2}
B C2



Chapter 2

Quotients

In this chapter we present two new results concerning exceptional groups.

Definition 2.0.1

Let G be a finite group. If there exists N E G with µ(G/N) > µ(G) then we

call G exceptional and N distinguished in G.

An early example of an exceptional group is given by Neumann [22] and

described in more generality in [13]. They let G be the direct product of k > 1

copies of D8, the dihedral group of order 8. One can show that µ(G) = 4k and

that there is a central subgroup N of G of order 2k−1 such that µ(G/N) = 2k+1.

It is in this sense that µ(G/N) can be exponential in µ(G). It is shown

in [13] that if G is nilpotent then µ(G/N) ≤ 4.5µ(G).

2.1 Background Results

We present in this section existing results for the rest of the chapter, beginning

with those on minimal exceptional p-groups.

Theorem 2.1.1

If G is exceptional then |G| ≥ 32. This bound is obtained only in the following

cases:

G ∼= 〈x, y|x8 = y4 = 1, xy = x−1〉

G ∼= 〈x, y, n|x8 = n2 = 1, y2 = x4, xy = x−1n, nx = ny = n〉

Proof: Theorem 1.5 of [9].

17
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Theorem 2.1.2

Fix a prime p. Suppose G ≤ Sn, P is a Sylow p-subgroup of G and Q an abelian

p-quotient of G. If kp is the number of points in [n] moved by P then |Q| ≤ pk.

Proof: This is taken from the main Theorem of [17].

Lemma 2.1.3

A distinguished quotient cannot be cyclic or elementary abelian.

Proof: This proof is taken from [9, 17]. Fix a finite group G and N E G. Assume

G is acting on Ω with |Ω| = µ(G).

If G/N is cyclic then G/N = 〈Ng〉 for some g ∈ G. In particular we have

µ(G) ≥ 〈g〉 ≥ 〈Ng〉 = µ(G/N). Hence G/N is not distinguished.

If G/N is elementary abelian then |G/N | = pr and µ(G) = rp for some r

and some prime p. If P is a Sylow p-subgroup of G and moves kp elements

of Ω then kp ≤ µ(G) and, by Theorem 2.1.2, pr ≤ pk so r ≤ k. This gives

µ(G/N) = rp ≤ kp ≤ µ(G) so G/N is not distinguished.

Lemma 2.1.4

Fix an exceptional group G such that no subgroup or quotient of G is exceptional

and fix a distinguished subgroup N of G. Suppose X1, . . . , Xr are the orbits of

a minimal representation of G. Then N acts intransitively and non-trivially on

each Xi.

Proof: Lemma 1.2 of [9].

Theorem 2.1.5

Let p > 2 be prime. The following lists all isomorphism types of groups of order

p3:

• Cp3

• Cp2
× Cp

• Cp × Cp × Cp

• Cp2 o Cp ∼= 〈x, y|xp
2

= yp = 1, xy = x1+p〉

• (Cp × Cp) o Cp ∼= 〈x, y, z|xp = yp = zp = 1, xy = xz = x, yz = xy〉

Proof: This is taken from section 4.4 in [12].

Lemma 2.1.6

Suppose H is a finite group with |H| = pk where k ≤ p. Then for any u, v ∈ H
there is some c ∈ [H,H] such that (uv)p = upvpcp.

Proof: This is noted as a result of Corollary 12.3.1 in [12].
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In the last section of this chapter we will show that normal subgroups with

no abelian chief factors are not distinguished. This result has been published in

[5]. The following is an analogous result, given as Theorem 1 in [18].

Theorem 2.1.7

Fix a finite group G and N E G. If G/N has no non-trivial abelian normal

subgroup then N is not distinguished.

A corollary of this, or of our result that normal subgroups with no abelian

chief factors are not distinguished, is that a group with no abelian chief factors

is not exceptional. In fact, both N and G/N must contain an abelian chief

factor.

2.2 Minimal Exceptional p-Groups

As noted in the background results, previous work by Easdown and Praeger

proves that an exceptional 2-group of least order is of order 25 and gives

examples of exceptional groups of order 25. They note the existence of an

exceptional group of order p6 for any prime p and raise the question of whether

an exceptional group of order p5 exists. In this section, for all primes p ≥ 3, we

describe an exceptional group of order p5 and prove that no exceptional group

of order p4 exists. These results are published in [4].

2.2.1 No Exceptional Groups of Order p4

The case p = 2 is a corollary of Theorem 2.1.1. Fix prime p ≥ 3.

If G is a p-group of order at most p3 then for any non-trivial N E G we have

|G/N | ≤ p2 which implies G/N is either cyclic or elementary abelian, so not

distinguished by Lemma 2.1.3. Therefore any exceptional p-group G has order

at least p4.

For the remainder of this section, assume G is exceptional of order p4 with

N a distinguished subgroup of G. If |G/N | ≤ p2 then, by Lemma 2.1.3, G/N is

not distinguished. Hence |G/N | = p3 and |N | = p.

Fix a minimal faithful permutation representation of G, ρ : G → Sym(X)

with orbits X1, . . . , Xk and for each i fix Hi = Gα for some α ∈ Xi.

Lemma 2.2.1

(Immediate results): N ≤ Z(G) and |Xi| = p2 for each i.

Proof: Each normal subgroup of a p-group intersects the center of the group

non-trivially, so N ≤ Z(G).

By Lemma 2.1.4, N acts intransitively and non-trivially on each Xi so

|Xi| ≥ p2. Also |Xi| ≤ µ(G) < µ(G/N) ≤ |G/N | = p3, so |Xi| = p2.
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Theorem 2.2.2

There are no exceptional groups of order p4.

Proof: Note that, as |Xi| = p2 for each i, µ(G) ≥ p2. Using |G/N | = p3, we

consider the 5 possible isomorphism classes of G/N given in Theorem 2.1.5.

By Lemma 2.1.3, distinguished quotients cannot be cyclic or elementary

abelian. This excludes G/N ∼= Cp × Cp × Cp and G/N ∼= Cp3 .

If G/N ∼= Cp2oCp with generators x, y and xy = x1+p, then 〈y〉 is a core-free

subgroup of G/N (e.g. yx
−1

= yxyx−1 = yxp). Therefore G/N acts faithfully

on the right cosets of 〈y〉 giving µ(G/N) ≤ [G/N : 〈y〉] = p2 ≤ µ(G) so N is not

distinguished.

If G/N ∼= (Cp × Cp) o Cp with generators x, y, z and xz = xy, yz = y then

〈x〉 is a core-free subgroup of G/N . As in the last case, this implies N is not

distinguished.

So we are left with G/N ∼= Cp2 × Cp. The minimal degree for abelian

groups is well-known (see for example [9]) - In this case µ(G/N) = p2 + p.

Consider the preimage H of Cp2 in G. Since N is central and Cp2 is cyclic, H

is abelian of order p3 containing an element of order p2. This means H ∼= Cp3

or H ∼= Cp2 × Cp. In either case µ(G) ≥ µ(H) ≥ p2 + p = µ(G/N) so N is not

distinguished.

2.2.2 An Exceptional Group of order p5

Fix a prime p ≥ 3. For this section let G be the group generated by g, h subject

to the following relations:

gp
2

= hp
2

= [g, h]p = 1

[[g, h], g] = [[g, h], h] = gp

Also, let N be the subgroup generated by gphp. We show that |G| = p5,

N ≤ Z(G), µ(G) ≤ 2p2 and µ(G/N) = p3. Thus G is exceptional with

distinguished subgroup N . For p = 2, two exceptional groups of order p5 exist

and are given in Theorem 2.1.1.

Proposition 2.2.3

We can identify G with (Cp2oCp)oCp2 where the two copies of Cp2 are generated

by g and h respectively and Cp is generated by [g, h]. In particular |G| = p5

Proof: Straightforward calculations give g[g,h] = g[g, [g, h]] = g[[g, h], g]−1 so

the relations on G give g[g,h] = g1−p. Thus [g, h] normalises 〈g〉. Moreover

〈[g, h]〉 ∼= Cp and [g, h] does not commute with g so 〈[g, h]〉 ∩ 〈g〉 is trivial and

〈g, [g, h]〉 ∼= Cp2 o Cp.
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A similar calculation gives gh = g[g, h] and [g, h]h = [g, h][[g, h], h] = [g, h]gp.

To see that 〈g, [g, h]〉∩ 〈h〉 is trivial notice that G/〈g, [g, h]〉 has generator h and

relations hp
2

= 1, so hp /∈ 〈g, [g, h]〉. Hence G ∼= (Cp2 o Cp) o Cp2 .

Proposition 2.2.4

〈gp, hp〉 = Z(G). In particular N ≤ Z(G).

Proof: We begin by showing that gp ∈ Z(G). Using the identification given

in Proposition 2.2.3, it is a standard result that Z(Cp2 o Cp) = 〈gp〉 (to see

this, you can check that gp ∈ Z(Cp2 o Cp), then note that |Z(Cp2 o Cp)| = p

otherwise Cp2 oCp would be abelian). Now, Z(Cp2 oCp) = 〈gp〉 is characteristic

in Cp2 o Cp, so fixed by h under conjugation. There are no automorphisms of

〈gp〉 of order p, so h must commute with gp. Therefore gp ∈ Z(G).

We show by induction on i that gh
i

= g[g, h]ig
1
2 i(i−1)p. Therefore gh

p

= g

and hp ∈ Z(G). Note that [g, h]h = [g, h][[g, h], h] = [g, h]gp.

gh
i+1

= (g[g, h]ig
1
2 i(i−1)p)h

= gh([g, h]i)hg
1
2 i(i−1)p

= g[g, h]i+1gipg
1
2 i(i−1)p

= g[g, h]i+1g
1
2 i(i+1)p

To see 〈gp, hp〉 = Z(G), consider G/〈gp, hp〉. It is easy to see that this is

isomorphic to (Cp×Cp)oCp, where the generators of the Cp are the images of g,

[g, h] and h. Following a similar argument as for Cp2 oCp, Z(G/〈gp, hp〉) is the

cyclic group generated by the image of [g, h]. If |Z(G)| > p2 then this implies

[g, h] ∈ Z(G), but this is not true (e.g. [[g, h], h] = gp) so Z(G) = 〈gp, hp〉.

Proposition 2.2.5

µ(G) ≤ 2p2.

Proof: To show this, we describe a faithful representation of G of degree 2p2.

Let H1 = 〈g, [g, h]〉 and H2 = 〈gh−1, [g, h]〉. Consider the natural action

of G on the set of right cosets G/H1 t G/H2. This is faithful if and only if

coreG(H1 ∩H2) is trivial.

It is clear from the presentation that G/Z(G) = (Cp × Cp) o Cp. It is a

standard result that this group has exponent p, so (gh−1)p ∈ Z(G). Following

the identification in Proposition 2.2.3, (gh−1)p is non-trivial as its image in

G/(Cp2 × Cp) is non-trivial, so gh−1 has order p2.

From the above, it follows that H1∩H2 = 〈[g, h]〉 so coreG(H1∩H2) is trivial

and that |H1| = |H2| = p3 so |G/H1 tG/H2| = 2p2 as required.
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Proposition 2.2.6

µ(G/N) = p3.

Proof: The quotient G/N can be described with generators a = Ng, b = Nh

and relations

ap
2

= bp
2

= apbp = [a, b]p = 1

[[a, b], a] = [[a, b], b] = ap

Noting that ap = b−p it is immediate that ap ∈ Z(G). Consider (G/N)/〈ap〉
which can be described with generators x = a〈ap〉, y = b〈ap〉 and relations

xp = yp = [x, y]p = [[x, y], x] = [[x, y], y] = 1

This is a presentation for (Cp × Cp) o Cp. It is a standard result, with this

presentation, that Z((Cp × Cp) o Cp) = [x, y]. In particular, if |Z(G/N)| > p

then [a, b] ∈ Z(G/N) which is not true, so Z(G/N) = 〈ap〉.
Since any normal subgroup of a p-group intersects the center non-trivially,

this means any non-trivial normal subgroup of G/N contains Z(G/N). Any

minimal representation of G/N is therefore given by the coset action of G/N

on some core-free subgroup of G/N of largest order.

Suppose K is some such subgroup. Noting that 〈[a, b]〉 is core-free, we

must have |K| ≥ p. If K meets 〈a〉 or 〈b〉 non-trivially then it meets Z(G/N)

non-trivially.

Consider K ∩ 〈a, [a, b]〉, this must be trivial or cyclic of order p. If it is

trivial then K is isomorphic to its image in (G/N)/〈a, [a, b]〉 which has order p

so µ(G) = [G : K] = p3. So suppose K ∩ 〈a, [a, b]〉 is generated by ai[a, b]j for

some i, j. If p - i then using aa
−1b = a[a, b] and [a, b]a

−1b = [a, b] we can find

an appropriate conjugate of K in G containing ai, contradicting the fact K is

core-free. Therefore K∩〈a, [a, b]〉 = 〈aip[a, b]〉 for some i. Since [a, b]b = [a, b]ap,

we may consider instead Kbp−i

so we may assume K ∩ 〈a, [a, b]〉 = 〈[a, b]〉.
Now suppose that K > 〈[a, b]〉. If |K| = p3 then K is maximal and

therefore normal in G/N contrary to assumption. Therefore |K| = p2, so K is

abelian. In particular K ≤ CG/N ([a, b]). Clearly [a, b], ap ∈ CG/N ([a, b]) and it

is easy to check that ab−1 ∈ CG/N ([a, b]), so CG/N ([a, b]) = 〈[a, b], ab−1, ap〉 and

K = 〈[a, b], ab−1x〉 for some x ∈ Z(G/N).
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Note that [G,G] = 〈[a, b], ap〉 ∼= Cp × Cp. If p ≥ 5 then, by Lemma 2.1.6,

this gives (ab−1)p = apb−p = ap
2

. In the case p = 3 we can calculate (ab−1)3 as

follows.

ab = a[a, b]

ab
2

= ab[a, b]b

= a[a, b]2a3

(ab−1)3 = aabab
2

b−3

= a2[a, b]a[a, b]a3b−3

= a3[a, b]a[a, b]a3b−3

= a3[a, b]a3[a, b]a3b−3 = b−3

In either case, (ab−1x)p = (ab−1)p /∈ 〈[a, b]〉, contradicting the earlier result

that |K| = p2. Therefore K = 〈[a, b]〉 and µ(G/N) = [G : K] = p3.

2.3 Normal Subgroups With No Abelian Chief

Factors Are Not Distinguished

Throughout we assume each group G is finite and that G ≤ Sµ(G). We call

G D-minimal if G is of least order such that there exists some distinguished

N E G with no abelian composition factors.

Proposition 2.3.1

Let N0 E G be distinguished, N E G and N ≤ N0 then either N is distinguished

or N0/N is distinguished in G/N .

Proof: If N0/N is not distinguished in G/N then

µ(G) < µ(G/N0) = µ

(
G/N

N0/N

)
≤ µ(G/N)

Hence N is distinguished.

Lemma 2.3.2

Let N,L,K be normal subgroups in G with N minimal and non-abelian. Then

N(K ∩ L) = NK ∩NL.

Proof: Clearly N(K ∩ L) ⊆ NK ∩NL.

If N ≤ L or N ≤ K then the result is the modular law for groups, so assume

N ∩K = N ∩ L = 1
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We first consider orders:

|N(K ∩ L)| = |N ||K ∩ L|
= |N ||K||L|

|KL|

|NK ∩NL| = |NK||NL|
|NKL|

= |N ||K||L||N∩KL|
|KL|

So, if N(K ∩ L) 6= NK ∩ NL then |N ∩ KL| > 1 and therefore N ⊆ KL.

However as N and K are normal subgroups in G with N ∩K = 1, N ⊆ CG(K).

Similarly N ⊆ CG(L) so N ⊆ CG(KL) ≤ CG(N) contradicting the assumption

that N is non-abelian. Hence N(K ∩ L) = NK ∩NL.

Proposition 2.3.3

If G is D-minimal with non-abelian distinguished minimal normal subgroup N ,

then G is transitive.

Proof: Let {H1, . . . ,Hk} define a minimal permutation representation of G of

degree µ(G). Denote Ki = coreG(Hi), so ∩ki=1Ki = 1. The action of G/Ki

on the right cosets of Hi then defines a minimal representation of G/Ki (if

{Hi0/Ki, . . . ,Hiki/Ki} defines a representation of smaller degree then replacing

Hi with Hi0, . . . ,Hiki defines a representation of G of degree strictly less than

µ(G)).

Suppose that k > 1, so |Ki| > 1 for each i. As G is D-minimal we have

µ(G/NKi) ≤ µ(G/Ki). This means that there is some {Hi0, . . . ,Hiki} for each

i with
ki∑
j=1

[G : Hiij ] ≤ [G : Hi]

coreG(∩kij=1(Hiij )) = NKi

In particular
k∑
i=1

ki∑
j=1

[G : Hiij ] ≤
k∑
i=1

[G : Hi] = µ(G)

coreG(∩ki=1 ∩
ki
j=1 (Hiij )) = ∩ki=1NKi

Using Lemma 2.3.2 inductively then gives

coreG(∩ki=1 ∩
ki
j=1 (Hiij )) = N ∩ki=1 Ki = N

so {Hiij} defines a faithful representation of G/N of degree at most µ(G)

contradicting the assumption that N is distinguished. Hence k = 1 and G

is transitive.
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Proposition 2.3.4

If G has a non-abelian distinguished minimal normal subgroup N , then CG(N)

is non-trivial.

Proof: As N is a minimal normal subgroup, N = Sk for some simple group S.

If CG(N) = 1 then the action of G on N by conjugation gives an embedding of

G/N in Out(N) ∼= Out(S) oSk. Hence µ(G/N) ≤ µ(Out(S) oSk) ≤ kµ(Out(S)).

For each simple group S, Out(S) and µ(S) are known (see for example [6])

and one can check that µ(Out(S)) ≤ µ(S). It is also shown in [9] that if

T1, . . . , Tr are simple groups then µ(T1 × · · · × Tr) = µ(T1) + · · · + µ(Tr). So

µ(G/N) ≤ kµ(Out(S)) ≤ kµ(S) = µ(N) ≤ µ(G) contradicting the assumption

that N is distinguished. Hence CG(N) is non-trivial.

We will use the following result (see for example [25] Proposition 12.1)

without further reference.

Proposition 2.3.5

Suppose G is transitive and BΓ = {Γ1, . . . ,Γr} forms a block system for G.

Then G embeds into (GΓ1)Γ1 oGBΓ .

Proposition 2.3.6

If G is D-minimal and has a non-abelian distinguished minimal normal subgroup

N then N is transitive.

Proof: By Proposition 2.3.3, G is transitive. Suppose N is intransitive. The

orbits of N form a block system BΓ = {Γ1, . . . ,Γr} of G in Ω. We may therefore

embed φ : G ↪→ (GΓ1)Γ1 oGBΓ .

Let N1 = NΓ1 E (GΓ1)Γ1 and M = Nr
1 E (GΓ1)Γ1 o GBΓ . Now, N is a

direct product of isomorphic simple groups, so M ∩ φ(G) is a direct product of

isomorphic simple groups. Also φ(N) is normal in M ∩ φ(G) and a subdirect

product of M ∩ φ(G). Hence φ(N) = M ∩ φ(G). Therefore G/N ∼= φ(G)/φ(N)

embeds into
(GΓ1)Γ1 oGBΓ

M
∼=

(GΓ1)Γ1

N1
oGBΓ

This gives

µ(G/N) ≤ µ
(

(GΓ1
)Γ1

NΓ1

)
µ(G)

|Γ1|

If µ((GΓ1
)Γ1) < |Γ1| then

µ(G) ≤ µ((GΓ1
)Γ1 oGBΓ) < |Γ1||BΓ| = µ(G)

which is absurd. So µ((GΓ1)Γ1) = |Γ1|.
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If N1 is not distinguished in (GΓ1
)Γ1 then µ((GΓ1

)Γ1/N1) ≤ |Γ1|. Therefore

µ(G/N) ≤ µ
(

(GΓ1)Γ1

N1
oGBΓ

)
≤ |Γ1||BΓ| = µ(G)

so N is not distinguished. Hence NΓ1 distinguished in (GΓ1
)Γ1 .

This contradicts the assumption that G is D-minimal. Hence N must be

transitive.

We use the following result (see for example [26] Proposition 4.3) without

further reference.

Proposition 2.3.7

Suppose N ≤ G is transitive. Then CG(N) is semiregular.

Proposition 2.3.8

Suppose G is D-minimal with non-abelian distinguished minimal normal

subgroup N , then N is not simple.

Proof: Suppose such an N is simple. By Propositions 2.3.3 and 2.3.6 G and

N are transitive. Let H be the stabiliser of some point in Ω, so G = HN . In

particular G/N ∼= H/(H ∩N) so

µ(H) ≤ µ(G) < µ(G/N) = µ(H/(H ∩N))

and H ∩N is distinguished in H. Also µ(G) = [G : H] = [N : H ∩N ].

As C = CG(N) is semiregular, H∩C = 1. In particular H embeds into G/C

which in turn embeds into Aut(N) via conjugation. Let HInn(N) be the elements

of H which act on N via inner automorphisms. This gives H ∩N E HInn(N).

The image of HInn(N) in Aut(N) is strictly contained in Inn(N). Indeed, by

assumption if H ∩N is trivial then

µ(G/N) = µ(H/(H ∩N)) = µ(H) ≤ µ(G)

contrary to assumption. So H ∩ N is non-trivial. If the image of HInn(N) in

Aut(N) is Inn(N) then simplicity of N implies H∩N = N contradicting the fact

that H is core-free. Hence the image of HInn(N) in Aut(N) is strictly contained

in Inn(N).

This means HInn(N) is isomorphic to a core-free subgroup of N . Hence

|HInn(N)| ≤ |N |/µ(N). We also have, by definition of HInn(N) that H/HInn(N)

embeds into Out(N). By Proposition 1.3.1 |Out(N)| < µ(N). This gives

|H/(H ∩N)| = |H|
|HInn(N)|

|HInn(N)|
|H ∩N |

≤ |Out(N)|
µ(N)

|N |
|H ∩N |

< µ(G)

This means µ(G/N) = µ(H/(H ∩N)) < µ(G) contrary to assumption. We

must therefore have that N is not simple.
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Lemma 2.3.9

Suppose G = HN where {H} defines a minimal representation of G, N E G

and Z(N) = 1. Denote C = CG(N) and HInn(N) the subgroup of H which acts

on N by conjugation inducing inner automorphisms of N .

Then C ∼= HInn(N)/(H ∩N).

If further N is a distinguished minimal normal subgroup of G then

µ(G) = |C|µ(G/C).

Proof: Define a group homomorphism φ : HInn(N) → C as follows. If

h ∈ HInn(N) then, as Z(N) = 1, there is a unique nh ∈ N such that, for

all x ∈ N , xh = xnh . In particular, for all x ∈ N , xhn
−1
h = x so ch = hn−1

h ∈ C.

Define φ(h) = ch. To see φ is a homomorphism notice that

ch1ch2 = h1n
−1
1 h2n

−1
2 = h1h2(n−1

1 )h2n−1
2 = ch1h2

To see φ is surjective suppose c ∈ C. As G = HN we have c = hn for some

h ∈ H, n ∈ N . In particular h acts on N identically under conjugation to n−1

so h ∈ HInn(N) and c = φ(h). Finally h ∈ ker(φ) if and only if hn−1
h = 1 if and

only if h = nh if and only if h ∈ H ∩N . This gives C ∼= HInn(N)/(H ∩N).

Now suppose further that N is a distinguished minimal normal subgroup of

G.

Let Γ be an orbit of C under the representation defined by {H}. We have,

by Proposition 2.3.7, that C is semiregular so H ∩C = 1 and |Γ| = |C|. Also Γ

forms a block for the action of G so G embeds into (GΓ)Γ oGBΓ . This gives

µ(G) ≤ µ((GΓ)Γ oGBΓ) ≤ µ((GΓ)Γ)µ(GBΓ) ≤ |Γ|µ(G)

|Γ|
= µ(G)

Hence µ((GΓ)Γ) = |Γ| = |C| and µ(GBΓ) = µ(G)/|C|. It suffices then to

show that GBΓ ∼= G/C. The action GBΓ is defined by {HC} so it suffices to

show coreG(HC) = C. Immediately C ≤ coreG(HC). Suppose K ≤ HC with

K E G. If K ∩ N = N then K is transitive so HC and therefore C is tran-

sitive. But then N is contained in the center of a transitive normal subgroup

C, so N ∩H = 1 and µ(G/N) = µ(H) ≤ µ(G) contrary to assumption. Hence

K ∩ N = 1. Hence K ≤ C. This gives coreG(HC) = C and completes the

proof.

Theorem 2.3.10

Given a finite group G and distinguished normal subgroup N E G, N must have

an abelian chief factor.

Proof: We consider a counterexample (G,N) such that G is of least order. In

particular G is D-minimal and N has no abelian composition factors. Let N0
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be a minimal normal subgroup of G contained in N . As G is D-minimal, N/N0

is not distinguished in G/N0, so by Proposition 2.3.1 N0 is distinguished in G.

Replacing N with N0 if necessary we may assume N is minimal.

By Propositions 2.3.8, 2.3.3 and 2.3.6 N is not simple and G and N are

transitive. In particular we may denote N = T1× · · · ×Tk with k > 1 where for

some simple T we have Ti ∼= T for each i.

Let H be the stabiliser of some point in Ω, so G = HN . In particular

µ(G) = [G : H] = [N : H∩N ] and G/N ∼= H/(H∩N) so H∩N is distinguished

in H.

Let C = CG(N). Then H ∩ C = 1 so H embeds into G/C which in turn

embeds into Aut(N) ∼= Aut(T ) o Sk via conjugation. Also by Lemma 2.3.9,

C ∼= HInn(N)/(H ∩N) and µ(G) = |C|µ(G/C). Together this gives

|N | = |N ∩H|µ(G)

= |N ∩H||C|µ(G/C)

≤ |N ∩H||C|kµ(Aut(T ))

= |HInn(N)|kµ(Aut(T ))

Let φ : G → Sk be the natural map on G through Aut(N) and define

ψ : HInn(N) → Aut(T ) by the conjugation of T1 by HInn(N). Since N is

minimal, φ(G) and therefore φ(H) is transitive. This means the action of

HInn(N) on each Ti by conjugation has isomorphic image in Aut(T ). This gives

|HInn(N)| ≤ |ψ(HInn(N))|k and therefore

|T |
|ψ(HInn(N))|

≤
(

|N |
|HInn(N)|

) 1
k

≤ k 1
kµ(Aut(T ))

1
k

We show here that |T |
|ψ(HInn(N))|

< µ(T ) and therefore that ψ(HInn(N)) ∼= T .

We begin with the small cases, T = A5, A6.

If T = A5 then k
1
kµ(Aut(T ))

1
k = k

1
k 5

1
k < 5.

If T = A6 then k
1
kµ(Aut(T ))

1
k = k

1
k 10

1
k < 6.

For all other simple groups µ(T ) ≥ 7. By Proposition 1.3.2 we have

µ(Aut(T )) ≤ 28
9 µ(T ).

Let f(x) = xk− 28
9 kx so f(x) > 0 if and only if

(
28
9

) 1
k k

1
k x

1
k < x. For x ≥ 7,

f ′(x) = kxk−1 − 28
9 k > 0 so if f(7) > 0 then f(x) > 0 for x ≥ 7. One can

check f(7) > 0. Hence |T |
|ψ(HInn(N))|

≤
(

28
9

) 1
k k

1
kµ(T )

1
k < µ(T ). This completes

the proof that ψ(HInn(N)) ∼= T .

This means HInn(N) is a subdirect product of N ∼= T k so is isomorphic to T r

for some r. Also H∩N E HInn(N), so has no abelian chief factors. But H∩N is

distinguished in H contradicting the fact that G is D-minimal and completing

the proof.



Chapter 3

Quasisimple Groups

In this chapter we consider group extensions 1→ N → E → G→ 1 and study

the following question. If µ(G) and µ(N) are known then what can we say about

µ(E)?

This question has been studied in many papers. It is shown in [27] for

example that if G and H are nilpotent then µ(G × H) = µ(G) + µ(H) - this

is generalised in [2] to groups with central socle. Easedown and Hendrikson

have provided the most in depth study of semidirect products in [8]. So it

remains to consider non-split extensions. The simplest such extensions are

perhaps quasisimple groups.

A quasisimple group is a perfect central extension of a simple group. The

Schur cover of a non-abelian simple group is such a group (in fact quasisimple

groups are precisely the non-trivial quotients of Schur covers of simple groups).

We consider here some Schur covers of non-abelian simple groups. Recall that

the minimal degrees of simple groups are known (see Table in section 1.3.1).

We begin with some immediate general results.

Lemma 3.0.1

Suppose G is quasi-simple with center Z. If K < G then ZK < G. In particular

if K / G then K ≤ Z.

Proof: Suppose ZK = G. Then G = [G,G] = [ZK,ZK] = [K,K] ≤ K. Hence

if K < G then ZK < G. If further K / G then KZ / G. The image of KZ

in G/Z is a proper normal subgroup of G/Z and is therefore trivial. Hence

K ≤ Z.

29
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Proposition 3.0.2

Suppose G is quasi-simple with center Z. Denote S = G/Z. Then

µ(G) ≥ µ(Z)µ(S)

Proof: Suppose {H1, . . . ,Hk} defines a minimal representation of G.

By Lemma 3.0.1, coreG(Hi) ≤ Z so coreG(Hi) = Hi ∩ Z for each i. Since

{H1, . . . ,Hk} is a faithful representation of G, 1 = ∩ki=1coreG(Hi) = ∩ki=1Hi∩Z.

In particular {H1 ∩ Z, . . . ,Hk ∩ Z} defines a faithful representation of Z. This

implies that
∑k
i=1[Z : Hi ∩ Z] ≥ µ(Z).

Also by Lemma 3.0.1, HiZ < G for each i. Let Ki be the image of HiZ in S

so Ki < G/Z. As S is simple coreS(Ki) = 1 so {Ki} is a faithful representation

of S and [S : Ki] ≥ µ(S).

Together this gives

µ(G) =
∑k
i=1[G : Hi]

=
∑k
i=1[G : HiZ][HiZ : Hi]

=
∑k
i=1[S : Ki][Hi : Hi ∩ Z]

≥ µ(S)µ(Z)

3.1 The Two Cover of the Alternating Group

In this section we describe for all positive n a core-free subgroup of 2 · An of

largest order. One minimal permutation representation of 2 · An is then the

coset action of 2 ·An on this subgroup.

Throughout a ‘largest core-free subgroup’ means a core-free subgroup of

largest order.

In order to bound the order of some core-free subgroups of 2 · An we will

need the following bounds by Maróti and Robbins - it is worth noting that the

bound by Robbins is related to Stirling’s approximation. We use these bounds

without further reference.

Theorem 3.1.1

Let G ≤ Sn be primitive with An 6≤ G. Then |G| < 3n. If further n > 24 then

|G| < 2n.

Proof: [19] (Corollary 1.2).

Theorem 3.1.2

n log(n)−n+
1

2
log(2πn)+

1

12n+ 1
< log(n!) < n log(n)−n+

1

2
log(2πn)+

1

12n

Proof: Direct corollary of [23].
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A Brief Description of 2 ·An

There are multiple ways to approach 2 ·An. We will find it most useful to view

it as a subgroup of 2 · S−n , but it is defined to be the universal cover (or Schur

cover) of the alternating group An for all n > 7 and for n ∈ {4, 5}. This means

that for n > 7 and for n ∈ {4, 5}, 2 ·An is the unique non-split central extension

of An by the cycle group of order 2, C2:

1→ C2 → 2 ·An → An → 1

The symmetric group Sn has two such extensions, 2 · S+
n and 2 · S−n , each

of which contains 2 · An as a subgroup. The author found 2 · S−n slightly more

convenient, so we will only define here 2 · S−n .

The following presentations are well-known for Sn and 2 · S−n :

Sn ∼= 〈s1, . . . , sn−1|s2
i = (sjsj+1)3 = (sksl)

2 = 1

i, l, k ∈ [n− 1], j ∈ [n− 2], l − k ≥ 2〉

2 · S−n ∼= 〈s1, . . . , sn−1, z|s2
i = (sjsj+1)3 = (sksl)

2 = z, z2 = 1

i, l, k ∈ [n− 1], j ∈ [n− 2], l − k ≥ 2〉

From now on we use si as element of 2 · S−n . In particular, si is in the

preimage of (i, i+ 1). We denote ti = si+1si for i = 1, . . . , n− 2, so that ti is in

the preimage of (i, i+ 1, i+ 2).

Proposition 3.1.3

Let g ∈ Sn have order d.

1. If d is odd then there is some h ∈ 2 · S−n in the preimage of g of order 2d.

The other element in the preimage is hd+1 = hz which has order d.

2. If d is even then there is some h ∈ 2 · S−n in the preimage of g of order

2d if and only if both both elements in the preimage have order 2d if and

only if gd/2 consists of r transpositions where r ≡ 1 or 2 (mod 4).

Proof: 1. Let h be in the preimage of g. If h has order d replace it with hz.

2. As we condition only on gd/2 we may restrict to the case d = 2.

Let h ∈ 2 · S−n be in the preimage of g. Clearly h has order 4 if and

only if hz does if and only if h2 = z. Moreover g has order 2 so is the

product of r disjoint transpositions. In particular there is some x ∈ Sn such that

gx = (1, 2)(3, 4) · · · (2r − 1, 2r). Order is preserved under conjugation and for

y ∈ 2·S−n in the preimage of x we have that hy is in the preimage of gx so we may

assume g = (1, 2)(3, 4) · · · (2r−1, 2r) so h ∈ {s1s3 . . . s2r−1, s1s3 . . . s2r−1z}. For

r > 1 denote h−1 = s1s3 . . . s2r−3
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We now use induction on r. For r = 1 we have h2 = s2
1 = z - one of the

defining relations of 2 · S−n . For r > 1 notice that the relation (sisj)
2 = z gives

sisj = sjsiz for j ≥ i+ 2. Using this and s2
2r−1 = z to remove s2r−1 gives:

h2 = (s1 · · · s2r−1)2

= (s1 · · · s2r−3)2zr

= h2
−1z

r

Hence if r is even then h2 = h2
−1 and if r is odd then h2 = h2

−1z and the

result follows.

This result will make determining whether subgroups are core-free much

easier later. It also allows us to use some tidier notation for elements of 2 ·An.

Denote by [x1, . . . , xd] an element in the preimage of (x1, . . . , xd) such that if

d is odd then the order of [x1, . . . , xd] is 2d. If d is even then this does not

uniquely determine [x1, . . . , xd], so when using this notation we do have to be

careful that the choice does not affect the argument.

Corollary 3.1.4

Fix n > 7 or n ∈ {4, 5}. Denoting

2 · S−n ∼= 〈s1, . . . , sn−1, z|s2
i = (sjsj+1)3 = (sksl)

2 = z, z2 = 1

i, l, k ∈ [n− 1], j ∈ [n− 2], l − k ≥ 2〉

and ti = si+1si we have

2 ·An ∼= 〈t1, . . . , tn−2〉

Proof: The image of 〈t1 . . . , tn−2〉 in Sn is clearly An and by Proposition 3.1.3

t3i = z.

For n ∈ {1, 2, 3, 6} it then makes sense to define

2 ·An = 〈z, t1, . . . , tn−2〉 ≤ 2 · S−n

where we include z to signify that 2 ·A1 and 2 ·A2 are non-trivial.

Proposition 3.1.3 also justifies the following definition:

Definition 3.1.1

Suppose K < 2 · An. We call K almost core-free when if g ∈ K has image in

An of order 2 then g also has order 2.

Clearly core-free subgroups are almost core-free. It is conjectured that

almost core-free subgroups are also core-free.
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Setting Up

A core-free subgroup K < 2 · An is isomorphic to its image in An. We will

therefore refer to properties of any core-free subgroup K as if it is acting on

{1, . . . , n}. For example, whether K is transitive or intransitive on {1, . . . , n}.
We begin by describing an important core-free subgroup of 2 · An. Let

k = bn2 c and define:

Bn = 〈t1tk+1, t2tk+2, . . . , tk−2t2k−2〉

Proposition 3.1.5

Bn is core-free and isomorphic to Ak.

Proof: Let ui = titk+i. We show by induction on r that

ui1 · · ·uir = ti1 · · · tir tk+i1 · · · tk+ir

So if ui1 · · ·uir ∈ {1, z} then, checking its image in An, ε = ti1 · · · tir ∈ {1, z}.
By construction t1, . . . , tk−2 satisfy the same relations (adding k to each index)

as tk+1, . . . , t2k−2 so tk+i1 · · · tk+ir = ε and ui1 · · ·uir = ε2 = 1 so z /∈ Bn.

The case r = 1 is immediate so consider r > 1. If i ∈ {1, . . . , k − 2} and

j ∈ {k + 1, . . . , 2k − 2} then, using (sasb)
2 = z for b− a > 2, we obtain

titj = si+1sisj+1sj

= z4sj+1sjsi+1si

= tjti

so
ui1 · · ·uir = ui1 · · ·uir−1

tir tk+ir

= ti1 · · · tir−1
tk+i1 · · · tk+ir−1

tir tk+ir

= ti1 · · · tir tk+i1 · · · tk+ir

This gives us some immediate information about a largest core-free subgroup

for sufficiently large n.

Corollary 3.1.6

Let n > 24. If a core-free subgroup K is transitive then |K| < |Bn| or K is

imprimitive.

Proof: We have |Bn| = k!
2 and, for n > 24, primitive groups either contain the

alternating group or are of order at most 2n.

We show by induction that 2n < k!
2 . This is a straightforward calculation

for n ∈ {25, 26} and, for n > 26,

2n+2 = 4 · 2n < (k + 1)
k!

2
=

(k + 1)!

2

Hence a largest core-free subgroup K can only be primitive if K = An, but

then [1, 2][3, 4] ∈ K so K is not core-free. Hence K is imprimitive.
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3.1.1 Computing Largest Core-Free Subgroups

We describe in this section an algorithm which, for each n, computes an upper

bound on the orders of core-free subgroups of 2 · An. We then provide explicit

descriptions of core-free subgroups of 2 · An which attain these bounds, except

when n ∈ {16, 21}. In these cases the proposed algorithm does not give a tight

bound, but a largest core-free subgroup can be found by a naive search over

conjugacy classes of subgroups. We describe a largest core-free subgroup in all

cases.

Example MAGMA code can be found in Appendix A.

Algorithm Outline

The algorithm is inductive. For each n we compute three lists, PCFs(n),

TCFs(n), FCFs(n), ACFs(n). These stand for “Primitive Core-Frees”,

“Transitive Core-Frees”, “Fixed orbit length Core-Frees” and “All Core-Frees”

respectively. The lists satisfy the following properties (throughout we identify

K with its image in Sn and when referring to any one list, we use xCFs(n)):

• Elements of xCFs(n) are of the form (a, b, c) with a, b, c ∈ N.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Suppose K < 2 · An is core-free and primitive then there is some

(a, b, n) ∈ PCFs(n) with |K| ≤ a, |NSn
(K)| ≤ b.

• Suppose K < 2 · An is core-free and transitive then there is some

(a, b, n) ∈ TCFs(n) with |K| ≤ a, |NSn
(K)| ≤ b.

• Suppose K < 2 · An is core-free with all orbits of length c then there is

some (a, b, c) ∈ FCFs(n) with |K| ≤ a, |NSn
(K)| ≤ b.

• Suppose K < 2 ·An is core-free with minimal orbit of length d then there

is some (a, b, c) ∈ ACFs(n) with |K| ≤ a, |NSn
(K)| ≤ b and d ≤ c.

The largest a appearing in some (a, b, c) in ACFs(n) then gives our upper

bound on the order of core-free subgroups.

We use the term algorithm here loosely. In fact we outline four algorithms,

one for each list. We use PCFs(n) to construct TCFs(n), TCFs(n) to construct

FCFs(n) and FCFs(n) to construct ACFs(n).

For smaller n (how small varies between lists) we will need to put in more

work to get the bounds lower and for larger n we are able use weaker bounds

that require less work. We will mostly be able to avoid testing if a subgroup of

2 ·An is core-free, which can be very hard. When we do have to test a subgroup,
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instead of testing whether a group is core-free we use Proposition 3.1.3 to test

whether the group is almost core-free.

Building PCFs(n)

The following result makes building this list for small n very easy.

Lemma 3.1.7

Suppose P is a primitive subgroup of Sn not containing An of largest order.

Then P is self normalising.

Proof: For n ≤ 4 no such subgroup exists so n ≥ 5. As 1 6= P 6≥ An we have

NSn
(P ) /∈ {Sn, An}, but NSn

(P ) is primitive of order at least |P |, so we must

have NSn
(P ) = P .

Corollary 3.1.8

If P is a proper primitive subgroup of An of largest order then |NSn
(P )| ≤ 2|P |.

Proof: Immediately NSn
(P ) is primitive. Moreover NSn

(P ) ∩An is a subgroup

of An containing P . Hence NSn
(P ) ∩ An is primitive so must equal P by

Lemma 3.1.7, which gives the result.

For small n it is feasible to check all primitive subgroups and for those P

which are almost core-free add (|P |, |NSn(P )|, n) to PCFs(n). For slightly larger

n we can look for the largest primitive proper subgroup P of An (if one exists)

and add (|P |, 2|P |, n) to PCFs(n). For large n it suffices to use an exponential

bound on primitive subgroups of Sn not containing An and add (2n, 2n, n) to

PCFs(n). See the buildPCFs function in Appendix A as example MAGMA

code which does this.

Building TCFs(n)

We begin by using brute force to build TCFs(n) for small n. Naively we

would consider all (conjugacy classes of) subgroups of An and for each almost

core-free subgroup T add (|T |, |NSn
(T )|, n) to TCFs(n). There are several easy

ways to implement improvements to this.

First notice that if we know some transitive almost core-free subgroup T

and for some other transitive almost core-free U we have |NSn
(U)| ≤ |T | then

we need only add (|T |, |NSn
(T )|, n) to TCFs(n). Also if NSn

(T ) has a normal

almost core-free subgroup U > T then we need only add (|U |, |NSn
(U)|, n) to

TCFs(n). This suggests searching for normalisers of almost core-free subgroups

instead of just almost core-free subgroups.
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To this end we begin with a queue Q = (Sn). At each step we take the

largest subgroup G of Sn in Q, assume it is a normaliser of an almost core-free

transitive subgroup of 2 ·An, find the largest such subgroup T of G (if it exists)

and add (|T |, |G|, n) to TCFs(n). We then replace G with its transitive maximal

subgroups. We stop when |G| < |T | for some (|T |, b, n) ∈ TCFs(n).

To see that this works, notice that if T is an almost core-free transitive

subgroup then either its normaliser is never considered, in which case there

is some (|U |, b, n) ∈ TCFs(n) with |NSn(T )| ≤ |U |, or it is considered, so

(|U |, |NSn(T )|, n) ∈ TCFs(n) where U is the largest normal almost core-free

subgroup of NSn(T ). In any case there is some (a, b, n) ∈ TCFs(n) with |T | ≤ a
and |NSn(T )| ≤ b as required.

By trial and error, the most efficient method for replacing G ∈ Q with its

maximal subgroups seems to be to order the maximal subgroups of G by their

size and insert them into Q maintaining the order of subgroups in Q. See the

bruteTCFs function in Appendix A as example MAGMA code which does this.

Notably this function actually adds (|T |, |G|, n) for every normal subgroup T of

G - one can check that adding additional elements to TCFs(n) does not stop

TCFs(n) having the required properties.

For larger n this brute force method is impractically slow. Instead we make

assumptions on the structure of a given transitive almost core-free subgroup T to

bound |T | and |NSn
(T )|. If T is primitive then there is some (a, b, n) ∈ PCFs(n)

with |T | ≤ a and |NSn
(T )| ≤ b so we begin by adding PCFs(n) to TCFs(n) and

assume hereafter that T is an almost core-free imprimitive subgroup. Denote

by Γ a minimal block of T .

Case |Γ| = 2

We begin with the case |Γ| = 2 (in particular n is even). Relabelling if nec-

essary we can assume that BΓ = {Γi|i ∈ {1, . . . , n2 }} with Γi = {2i− 1, 2i}.

Definition 3.1.2

Let x = (x1, . . . , xm) ∈ Fm2 then we define the (Hamming) weight of x is

ham(x) =
∑
xi=1 1. That is the number of xi which are 1.
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Lemma 3.1.9

Fix n even and let K be a core-free subgroup of 2 · An fixing each Γi. The

following table bounds |K| for various values of n.

n |K|
≤ 6 1

≥ 8 ≤ 2
n
2−3

≥ 10 ≤ 2
n
2−4

≥ 18 ≤ 2
n
2−5

≥ 22 ≤ 2
n
2−6

Proof: First note that we may identify (2i − 1, 2i) with the ith standard basis

vector of F
n
2
2 therefore K with a subgroup of F

n
2
2 . Proposition 3.1.3 implies that

if x ∈ K then ham(x) is divisible by 4.

Suppose that |K| = 2r. We consider a matrix, B, the rows of which form a

basis of K. After a change of basis if necessary,

B := (Ir|B′)

As every row of B must have weight divisible by 4 the result for n ≤ 6 follows

immediately and the weight of each row in B′ must be 3 (mod 4). If two rows

of B′ are equal then the sum of the two corresponding rows in B has weight 2

and K is not core-free, so any two rows of B′ are distinct.

If r = n
2 − 3 then the only possible row in B′ is (1, 1, 1). Therefore B has at

most 1 row so r ≤ 1 which gives n ≤ 8. Hence the result for n ≥ 10.

If r = n
2 − 4 then the only possible rows in B′ are (0, 1, 1, 1), (1, 0, 1, 1),

(1, 1, 0, 1) and (1, 1, 1, 0). Therefore B has at most 4 rows so r ≤ 4 which gives

n ≤ 16. This gives the result for n ≥ 18.

If r = n
2 − 5 then we may assume without loss of generality that the top

row x of B′ is (0, 0, 1, 1, 1). Consider a second row y. If x and y both have a

1 in the same k entries then ham(x + y) = 6 − 2k. This means we must have

k = 2 and we may assume without loss of generality that y = (1, 0, 1, 1, 0).

Similarly a third row z must have a 1 exactly two of the entries for which

x does and exactly two of the entries for which y does. We therefore have

z ∈ {(0, 1, 1, 1, 0), (1, 0, 1, 0, 1), (1, 0, 0, 1, 1)}. Hence B can have at most 5 rows.

This gives r ≤ 5 and therefore n ≤ 20, concluding the proof for n ≥ 22.

Lemma 3.1.9 provides a bound on |TBΓ
| so we turn our attention to TBΓ -

we immediately have that this is transitive. If TBΓ is primitive and does not

contain the alternating group then we bound |TBΓ | by the order of the largest

such group if n
2 ≤ 24 and 2

n
2 if n

2 > 24.
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Lemma 3.1.10

Let n ≥ 10 and ρ = (1, 2)(3, 4) · · · (n− 1, n).

If TBΓ contains the alternating group then either T(BΓ) is trivial and

TBΓ ∼= Sn
2

or T(BΓ) = {1, ρ} and TBΓ ∼= An
2

. In either case 8|n and

NSn
(T ) is isomorphic to a subgroup of Sn

2
× C2.

If we drop the assumption that T is core-free and assume only that T(BΓ) is

core-free then we still have T(BΓ) ⊆ {1, ρ}.

Proof: We begin without the assumption that T is core-free. Suppose that

T(BΓ) 6⊆ {1, ρ}. Let 1 6= g ∈ T(BΓ) be the product of as few transpositions as

possible. Without loss of generality g = (1, 2) · · · (r − 1, r) for some r < n with

8 | r. As TBΓ contains the alternating group there is some h ∈ T with image

(Γ1,Γ2)(Γ r
2
,Γ r

2 +1) in TBΓ . This gives ggh = (r − 1, r)(r + 1, r + 2) so T(BΓ) is

not core-free. Hence T(BΓ) ⊆ {1, ρ}.
From here we assume T is core-free.

To show that NSn(T ) is isomorphic to a subgroup of Sn
2
× C2, it will be

convenient to define

S = 〈(2i− 1, 2i+ 1, 2i+ 3)(2i, 2i+ 2, 2i+ 4)|i ∈ {1, . . . , n
2
− 2}〉 ∼= An

2

We will show that in any case, relabelling if necessary, S ≤ T and use this

to show that NSn(T ) is isomorphic to a subgroup of Sn
2
× C2 at the end.

First suppose TBΓ = Sn
2

. Recall that we identify T with its image in An and

that BΓ = {{2i − 1, 2i}|i ∈ {1, . . . , n2 }}. Then there is some g ∈ T with image

(Γ1,Γ2) in TBΓ .

We claim that either g acts trivially on each Γi for i > 2 or g acts nontrivially

on all Γi for i > 2. Suppose otherwise, then without loss of generality g acts

trivially on Γ3 and nontrivially on Γ4. Fix h ∈ T with image (Γ3,Γ4) in TBΓ .

Then ggh ∈ T(BΓ) acts non-trivially on {1, . . . , 8} and trivially on {9, . . . , n}
contradicting the fact that T(BΓ) ⊆ {1, ρ}. Hence the claim holds.

After swapping 3 and 4 if necessary we either have g{1,2,3,4} = (1, 3, 2, 4) or

g{1,2,3,4} = (1, 4)(2, 3). In the first case g2 = (1, 2)(3, 4) and T is not corefree so

g{1,2,3,4} = (1, 4)(2, 3). If g acts trivially on each Γi for i > 2 then g = (1, 4)(2, 3)

so again T is not core-free. Hence g = (1, 4)(2, 3)(5, 6) · · · (n−1, n). This implies

8|n. If T(BΓ) = {1, ρ} then gρ = (1, 3)(2, 4) contradicting the assumption that

T is core-free, so if TBΓ = Sn
2

then T(BΓ) is trivial.

Fix g1 = g. For each i ∈ {1, . . . , n2 −1} let gi ∈ T have image (Γi,Γi+1) ∈ T .

As in the calculation of g, swapping 2i + 1 and 2i + 2 if necessary we have

g
{2i−1,2i,2i+1,2i+2}
i = (2i − 1, 2i + 2)(2i, 2i + 1) and g

Γj

i = (2j − 1, 2j) for j /∈
{i, i+ 1}. This gives gi+1gi = (2i− 1, 2i+ 1, 2i+ 3)(2i, 2i+ 2, 2i+ 4), so S ≤ T .



CHAPTER 3. QUASISIMPLE GROUPS 39

Now suppose TBΓ = An
2

. Consider g ∈ T with image (Γ1,Γ2,Γ3) in TBΓ .

Replacing g with g4 we may assume g has order 3. After swapping 3 and 4 or

5 and 6 as necessary, this means g = (1, 3, 5)(2, 4, 6).

Similarly we may find hr ∈ T with image (Γ1,Γ3,Γr) in TBΓ for each r > 6.

After swapping r − 1 and r if necessary we have hr = (1, 3, r − 1)(2, 4, r)

or hr = (1, 4, r − 1)(2, 3, r). If hr = (1, 4, r − 1)(2, 3, r) then we have that

gh−1
r = (1, 2)(3, 5, r − 1, 4, 6, r). But then (gh−1

r )3 = (1, 2)(3, 4)(5, 6)(r − 1, r)

contradicting the fact that T(BΓ) ⊆ {1, ρ}. Hence hr = (1, 3, r − 1)(2, 4, r).

Notice that g, h8, . . . , hn fix {1, 3, . . . , n− 1} and generate TBΓ .

If T(BΓ) is trivial then T is intransitive. We must therefore have

T(BΓ) = {1, (1, 2)(3, 4) · · · (n − 1, n)} and therefore 8|n. Notice also that

S = 〈g, h8, . . . , hn〉 so S ≤ T .

Now, we have S ≤ T in each case. In particular S is core-free. In fact S is

the unique non-abelian minimal normal subgroup of T so S is characteristic in

T and therefore NSn(T ) ≤ NSn(S).

Let S′ = 〈(2i − 1, 2i + 1)(2i, 2i + 2)|i ∈ {1, . . . , n2 − 1}〉. Immediately we

have S′ ∼= Sn
2

and S′ ≤ NSn
(S). Let x ∈ NSn

(S) and fix s ∈ S′ such that

{2i, 2i− 1}s = {2i, 2i− 1}x for i ∈ {1, . . . , n2 }. Then y = xs−1 fixes {2i, 2i− 1}
for i ∈ {1, . . . , n2 }. Suppose y 6= 1. If y 6= ρ then we may assume, relabelling if

necessary, that y{1,2,3,4,5,6,7,8} ∈ {(1, 2), (1, 2)(5, 6), (1, 2)(3, 4)(5, 6)}. Note that

z = (1, 3)(2, 4)(5, 7)(6, 8) ∈ S and, as y ∈ NSn
(S), we have zyz ∈ S. Now,

zy ∈ {(1, 4)(2, 3)(5, 7)(6, 8), (1, 4)(2, 3)(5, 8)(6, 7), (1, 3)(2, 4)(5, 8)(6, 7)}

which gives

zyz ∈ {(1, 2)(3, 4), (1, 2)(3, 4)(5, 6)(7, 8), (5, 6)(7, 8)} ⊆ S(BΓ)

Recalling that S(BΓ) ≤ T(BΓ) ⊆ {1, ρ} this is a contradiction. Hence y = ρ which

is in the centraliser of S′. Hence NSn(S) = 〈y〉S′ ∼= Sn
2
× C2.

The final case to consider is when TBΓ is imprimitive. This can only happen

if n2 is not prime and TBΓ must have some minimal block of length s 6= 1 properly

dividing n
2 . For each such s we obtain a naive bound

T ≤ |T(BΓ)|(s!)
n
2s
n

2s
!

Typically Lemma 3.1.9 is sufficient at this point, but we do need to strengthen

this slightly in the case s = n
4 . To this end we give a corollary of Lemma 3.1.10.
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Corollary 3.1.11

Let n ≥ 20. Suppose TBΓ is imprimitive with minimal block ∆ of length n
4 . Then

either |TBΓ | ≤ 2|P |2 for some primitive group P of degree n
4 not containing the

alternating group or |T(BΓ)| ≤ 2
n
4 +1.

Proof: Let N = T(BΓ). Relabelling if necessary ∆ = {{1, 2}, . . . , {n2 − 1, n2 }}. In

particular N({n
2 +1,...,n}) ∼= (N({n

2 +1,...,n}))
{1,...,n2 } is an almost core-free normal

subgroup of (T∆){1,...,
n
2 }. As ∆ is a minimal block, (T∆)∆ must be primitive.

If (T∆)∆ does not contain the alternating group then for some primitive P

we have |TBΓ | ≤ |(T∆)∆ o S2| = 2|P |2.

If however (T∆)∆ does contain the alternating group then by Lemma 3.1.10

|(N({n
2 +1,...,n}))| ≤ 2 so |N | = |N({n

2 +1,...,n})||N{
n
2 +1,...,n}| ≤ 2

n
4 +1.

Case |Γ| = 3

In this case we note that a Sylow 2-subgroup of T(BΓ) is a core-free subgroup

of 2 ·A 2n
3

. Using this, Lemma 3.1.9 give us the following result.

Lemma 3.1.12

The following table bounds T(BΓ) for various values of n. Note that n is divisible

by 3 by assumption.

n |T(BΓ)|
≤ 9 1

≥ 12 ≤ 2
n
3−3 ∗ 3

n
3

≥ 15 ≤ 2
n
3−4 ∗ 3

n
3

≥ 27 ≤ 2
n
3−5 ∗ 3

n
3

≥ 33 ≤ 2
n
3−6 ∗ 3

n
3

We also need an analogue of Lemma 3.1.10.

Lemma 3.1.13

Let n ≥ 15. Then TBΓ does not contain the alternating group.

Proof: Without loss of generality assume T has blocks Γi = {3i − 2, 3i − 1, 3i}
for i ∈ {1, . . . , n3 }.

Suppose TBΓ contains the alternating group. Then there is some x ∈ T with

image (Γ1,Γ2,Γ4) in TBΓ and some y ∈ T with (Γ1,Γ3,Γ4) in TBΓ . Replacing

x with x4 and y with y4 then relabelling if necessary, we have that xΓi and yΓi

are each of order 1 or 3 for i > 4.
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This means that z = (xy)3 has image (Γ1,Γ2)(Γ3,Γ4) in TBΓ and z has order

a power of 2. After relabelling if necessary, the only possible values for z are

then (1, 4)(2, 5)(3, 6)(7, 10)(8, 11)(9, 12), (1, 4, 2, 5)(3, 6)(7, 10)(8, 11)(9, 12) and

(1, 4, 2, 5)(3, 6)(7, 10, 8, 11)(9, 12).

The first two cases immediately imply, by Proposition 3.1.3, that T is not

core-free. In the third case z2 = (1, 2)(4, 5)(7, 8)(10, 11). Since n ≥ 15 there

is some g ∈ T with image (Γ1,Γ2)(Γ4,Γ5) in TBΓ so, relabelling if necessary,

(z2(z2)g)3 = (10, 11)(13, 14) again implying that T is not core-free.

Hence TBΓ does not contain the alternating group.

We then use the following bounds if TBΓ is primitive and imprimitive with

minimal block of length s respectively. Note that P (n) denotes an upper bound

on the order of primitive groups of degree n not containing the alternating

group.

|T | ≤ |T(BΓ)|P
(n

3

)
|T | ≤ |T(BΓ)|(s!)

n
3s
n

3s
!

Case |Γ| = 4

For n > 56 it turns out sufficient to note that T is contained in a subgroup

G of Sn isomorphic to S4 oSn
4

and that G has a subgroup H isomorphic to S
n
2

2 .

By Lemma 3.1.9 |T ∩H| ≤ 2
n
2−6 so |T | ≤ (4!)

n
4 (n4 )!/26.

For n ≤ 56 we use a brute force method. One can do this by starting with

G ∼= S4 oSn
4

, then successively taking maximal subgroups to find those transitive

subgroups with minimal block of length 4 which are almost core-free.

Case |Γ| > 4

Let BΓ = {Γ1, . . . ,Γr} and note that TΓi is core-free with (TΓi)
Γi ∼= (TΓj )Γj

for all i, j. Moreover (TΓi)
Γi is primitive and (T({1,...,n}\Γi))

Γi is core-free in

2 · A|Γ| and normal in (TΓi)
Γi so (T({1,...,n}\Γi))

Γi is either trivial or transitive.

We first study the case (TΓi)
Γi contains the alternating group.

Lemma 3.1.14

Suppose G ≤ 2 · An is core-free and acts on {1, . . . , n} with orbits Γ1, . . . ,Γr

each of length d ≥ 5 with GΓi ≥ Ad.

Then we can partition {1, . . . , r} into sets J1, . . . , Jt for some t such that for

each Ji, G acts diagonally on {Γj |j ∈ Ji} and |Ji| is even.

In particular |G| ≤ (d!)
n
2d . Moreover Atd E G with each copy of Ad acting

non-trivially on the Γi in exactly one Jj.
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Proof: This is an application of Lemma 4.4 in [1].

Consider T1 × · · · × Tr ≤ Sn with Ti ∼= Ad acting non-trivially only on Γi.

As GΓi ≥ Ad, [G,G] is a subdirect product of T1 × · · · × Tr. Lemma 4.4 in [1]

implies then that [G,G] =
∏t
i=1Mi where Mi is a full diagonal subgroup of∏

j∈Ji Tj with the Ji partitioning {1, . . . , r}.
To see |Ji| is even, consider g ∈Mi with gΓj a product of two transpositions

for j ∈ Ji. Then g is a product of 2|Ji| transpositions, so by Lemma 3.1.3 |Ji|
is even.

Corollary 3.1.15

If (TΓi
)Γi contains the alternating group then either

|T | ≤ |NSn(T )| ≤ (|Γ|!)
n

2|Γ| (
n

|Γ|
)!

or

|NSn
(T )| ≤ (

n

2
)!

If further |Γ| = n
2 then 8|n and |T | ≤ (n2 )!.

Proof: Denoting d = |Γ| we have, by Lemma 3.1.14, that T has a normal

subgroup M ∼= M1 × · · · ×Mt for some t ≤ n
2d with Mi

∼= Ad. We note that

T ≤ NSn(T ). As NSn(M) fixes cycle type of elements in Ad, NSn(M)/CSn(M)

embeds into Sd o St.
Suppose that 1 6= g ∈ CSn(M). Then renumbering if necessary we have

that g moves a point in Γ1 and T1 acts non-trivially on Γ1. Since T g1 = T1 we

must have Γg1 = Γi for some i on which T1 acts non-trivially. If i = 1 then gΓ1

commutes with TΓ1
1 which is impossible. Hence CSn(M) is determined by its

action on BΓ and has orbits of length r
t .

We now consider NSn
(T ). This will permute the minimal normal subgroups

of T with simple factors isomorphic to Ad. Extend M to N = M1 × · · · ×Ms

with s ≥ t and Mi
∼= Ad, the subgroup generated by such minimal normal

subgroups. For i > t, Mi ≤ CSn
(M), so CSn

(M) ≥ As−td . This has minimal

degree (s − t)d so n
d = |BΓ| ≥ (s − t)d. Also if s > t then d| rt and as n = rd,

d2|n.

Now, NSn
(T ) ≤ NSn

(N) so |NSn
(T )/CSn

(T )| ≤ |Sd o Ss|. We also have

CSn
(T ) ≤ CSn

(M). Hence we have

|NSn
(T )| ≤ |Sd o Ss||CSn

(M)| ≤ (d!)ss!
(r
t

)
!t

subject to n
d ≥ (s− t)d, n

td ≥ 2 and if s > t then r
t ≥ d. Assume s > t (recall

that this implies d2|n). For fixed t this is maximised by s = n
d2 + t so

|NSn(T )| ≤ (d!)
n
d2 +t

( n
d2

+ t
)

!
(r
t

)
!t
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which one can check is maximised by t = r
d or t = 1. Noting that n = rd,

t = r
d gives

|NSn
(T )| ≤ (d!)

n
d2 + r

d
(
n
d2 + r

d

)
!(d!)

r
d

= (d!)
3n
d2
(

2n
d2

)
!

Immediately for d ≥ 6 this implies |NSn
(T )| ≤ (|Γ|!)

n
2|Γ| ( n

|Γ| )!. The case

d = 5 can also be checked using Theorem 2. The case t = 1 gives

|NSn
(T )| ≤ (d!)

n
d2 +1

( n
d2

+ 1
)

!
(n
d

)
!

One can check this is maximised by d = 5 so

|NSn
(T )| ≤ (5!)

n
25 +1

( n
25

+ 1
)

!
(n

5

)
!

which one can check is less than bn2 c!.
If instead s = t then

|NSn(T )| ≤ (d!)tt!
(r
t

)
!t

One can check that this is maximised by t = 1 or t = r
2 . If t = 1 then

|NSn(T )| ≤ (d!)
(n
d

)
!

If instead t = r
2 then

|NSn
(T )| ≤ (d!)

n
2d

( n
2d

)
!(2!)

n
2d < (d!)

n
2d

(n
d

)
!

Now suppose |Γ| = n
2 . If T(BΓ)

∼= S|Γ| then it contains an element of the

form (a1, a2)(a3, a4) and T is not core-free. Hence T(BΓ) ≤ A|Γ| which gives the

bound. So suppose further that 8 - n.

If |TBΓ | = 2 then either T ∼= An
2
× S2 or T ∼= Sn

2
. In either case T contains

an element of order 2 which swaps Γ1 and Γ2 so, relabelling if necessary, we

have (1, n2 + 1) · · · (n2 , n) ∈ T . But this is a product of n
2 transpositions and

4 - n2 contradicting the assumption T is almost core-free. Hence TBΓ = 1 and

T = T(BΓ) is intransitive contrary to assumption. This completes the proof.

This leaves the case (TΓi
)Γi does not contain the alternating group. We note

that |Γ| ≥ 5 and T imprimitive implies that n ≥ 10.

If NSn
(T ) is primitive then, as T E NSn

(T ), NSn
(T ) does not contain An

so one can check |NSn
(T )| < bn2 c! for n > 16. If 10 ≤ n ≤ 16 then we may

bound |T | and |NSn
(T )| by looping over primitive groups not containing the

alternating group and finding their largest imprimitive normal subgroups - as

T is imprimitive, we may assume n is not prime.
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If NSn
(T ) is imprimitive with minimal block ∆ of length d then T also fixes

∆. Choosing ∆ appropriately we may assume Γ ⊆ ∆. In particular (NSn
(T )∆)∆

does not contain the alternating group and |NSn
(T )| ≤ P

n
d

(
n
d

)
! where P is an

upper bound on the order of a primitive group of degree d. This turns out to

be a sufficient bound for |T | for n > 36.

For 10 ≤ n ≤ 36 note that |Γ| divides |∆| and TD = (T({1,...,n}\Γ)Γ is either

trivial or a transitive core-free subgroup of Ad with NS|Γ|(TD) primitive and not

containing Ad. We have |TBΓ
| ≤ |TD||NSn

(TD)|
n
|Γ|−1 and T fixing both BΓ and

B∆ so T maps into S d
|Γ|
o Sn

d
with kernel TBΓ . Note that if |Γ| is odd then, as

T ≤ An, this map cannot be surjective.

If TD is trivial then

|T | ≤ 1

(2, |Γ|)− 1
P

n
|Γ|−1

(
d

|Γ|

)
!
n
d

(n
d

)
!

where P is an upper bound on the order of primitive groups of degree |Γ| not

containing A|Γ|. If TD is non-trivial then

|T | ≤ 1

(2, |Γ| − 1)
|TD|(|NS|Γ|(TD)|)

n
|Γ|−1

(
d

|Γ|

)
!
n
d

(n
d

)
!

See the buildTCFs function in Appendix A for example MAGMA code which

implements the above bounds for constructing TCFs(n). See also the PrimBound

function which returns an upper bound on the order of a primitive group of de-

gree n which does not contain the alternating group.

Building FCFs(n)

The method we describe here constructs FCFs(n) and ACFs(n) simultaneously

as the construction of FCFs(n) will use ACFs(i) for some i < n.

In order to obtain sufficiently tight bounds on the order of core-free

subgroups of 2·An with fixed orbit length in practical time we need the following

somewhat cumbersome definition and lemma.

Definition 3.1.3

Fix s ∈ N and d the largest proper divisor of s and let M ≤ Ss. We say M is

close to Ss if one of the following hold:

• As ≤M .

• M is imprimitive with a minimal block ∆ of length d and Ad ≤ (M∆)∆.
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Lemma 3.1.16

Suppose F ≤ An is core-free with orbits Γ1, . . . ,Γr all the same length s ≥ 5 then

we are in at least one of the following cases. The conditions give restrictions on

F and a bound (φ, ψ) means |F | ≤ φ and |NSn
(F )| ≤ ψ - we say (|F |, |NSn

(F )|)
is bounded by (φ, ψ). Where necessary we write ψ in terms of φ.

Case Conditions Bounds (φ, ψ)

1 2 | r ( 1
2 (s!)(

r
2 ) , (s!)(

r
2 )r! )

2 2 | r , (∗) ( (s!)(
r
2−2)|F0||NSs

(F0)| , 2(s!)(
r
2−2) ( r

2 − 2
)
!|NSs

(F0)|2 )

3 2 | r ( (s!)(
r
2−2) [(d!)

s
2d

(
s
d

)
!
]2

, 2
(
r
2 − 2

)
!φ )

4 2 | r ( (s!)(
r
2−2)|M |2 , 2(s!)(

r
2−2) ( r

2 − 2
)
!|M |2 )

5 2 - r , (∗) ( (s!)(
r−1

2 )|F0| , (s!)(
r−1

2 ) ( r−1
2

)
!|NSs(F0)| )

6 2 - r ( (s!)(
r−1

2 )(d!)
s
2d

(
s
d

)
! , (s!)(

r−1
2 ) ( r−1

2

)
!(d!)

s
2d

(
s
d

)
! )

7 2 - r ( (s!)(
r−1

2 ) , (s!)(
r−1

2 ) ( r−1
2

)
!|M | )

8 2 |
(
n
d

)
( (d!)

n
2d

[(
s
d

)
!
]r−1

, (d!)
n
2d

[(
s
d

)
!
]r
r! )

9 2 -
(
n
d

)
, (∗) ( (d!)(

n−s
2d ) [( s

d

)
!
]r−1 |F0| ,

(
r−1

2

)
!|NSs

(F0)|φ/|F0| )

10 2 -
(
n
d

)
( (d!)(

n−s
2d ) [( s

d

)
!
]r−1

,
(
r−1

2

)
!|M |φ )

11 (∗) ( |F0||NSs
(F0)|r−1 , |NSs

(F0)|rr! )

12 ( |M |r−1 , |M |rr! )

where F0, d and M are defined as follows:

• d is the largest proper divisor of s.

• M is a transitive subgroup of Ss of largest order such that M is not close

to Ss.

• Denote Fi = F(∪j 6=iΓj) for 1 ≤ i ≤ r and identify Fi as a subgroup of

Ss through its action on Γi. If some Fi is non-trivial then denote by F0

the non-trivial Fi with largest normaliser in Ss. The condition (∗) is that

some Fi is non-trivial.

Proof: We continue to identify Fi with its action on Γi. As FΓi is transitive,

the orbits of Fi form a block system of FΓi . In particular Fi is core-free of fixed

orbit length and FΓi ≤ NSs
(Fi).

We order the Γi such that FΓi contains the alternating group if and only if

1 ≤ i ≤ t0 and FΓi is imprimitive and close to Ss if and only if t0+1 ≤ i ≤ t0+t1.

Note that this means FΓi is close to Ss if and only if 1 ≤ i ≤ t1.
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Bounds on the first t1 components

It is easily seen that F(∪r
i=t0+1Γi), identified with its action on ∪t0i=1Γi, satisfies

the conditions of Lemma 3.1.14 and that therefore t0 is even and

|F∪
t0
i=1Γi | ≤ (s!)

t0
2

|NSst0
(F∪

t0
i=1Γi)| ≤ (s!)

t0
2 t0!

Partition ∪t1i=t0+1Γi into blocks ∆1, . . . ,∆k of FΓi of length d for

i = t0 + 1, . . . , t1 and let Ω = {∆i|i ∈ {1, . . . , k}}. Let

F = (F∪i/∈{t0+1,...,t1}Γi
)∪

t1
i=t0+1Γi

Then either s ∈ {6, 8, 9} or FΩ satisfies Lemma 3.1.14. If s ∈ {6, 8, 9} then one

can check that |FΓi | < |M |. If FΩ satisfies Lemma 3.1.14 then st1
d is even and

|F | ≤ |F∪
t1
i=t0+1Γi | ≤ (d!)

st1
2d

[( s
d

)
!
]t1

In either case

|F∪
t1
i=t0+1Γi | ≤ max

(
|M |t1 , (d!)

st1
2d

[( s
d

)
!
]t1)

It will also be important to note that

|F∪
t1
i=t0+2Γi | ≤ max

(
|M |t1−1, (d!)

st1
2d

[( s
d

)
!
]t1−1

)

Full bounds

We now have all the information we need to obtain the above bounds. To do

this clearly we pair the orbits of F , (Γ1,Γ2), (Γ3,Γ4), . . . with Γr left unpaired

if r is odd. Due to our ordering of the orbits, FΓ2i−1 contains the alternating

group if and only if FΓ2i contains the alternating group. Also if 2 -
(
s
d

)
then t1

is even so we have that FΓ2i−1 is close to Ss if and only if FΓ2i is.

In bounding (φ, ψ) we want to know which of the following is largest:

1. (s!)
1
2

2. |NSs
(F0)|

3. (d!)
s
2d

(
s
d

)
!

4. |M |
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We bound (φ, ψ) then as follows:

Case: t0 = r

By Lemma 3.1.14, 2 | r and F embeds into (Ss)
r
2 . Also F ≤ An so

|F | ≤ 1

2
(s!)

r
2

It is easy to check that NSn(F ) preserves the partion of {1, . . . , n} defined by

the orbits of F and, using Lemma 3.1.14, that the subgroup of NSn(F ) which

fix the orbits of F also embeds into (Ss)
r
2 . Therefore

|NSn
(F )| ≤ (s!)

r
2 r!

This gives us case 1 in the statement of the Lemma.

Case: (s!)
1
2 is largest

The case t0 = r has been dealt with so we suppose that FΓr does not contain

the alternating group. We consider |F | = |F∪
r−2
i=1 Γi ||F(∪r−2

i=1 Γi)| if r is even and

|F | = |F∪
r−1
i=1 Γi ||F(∪r−1

i=1 Γi)| if r is odd.

If r is even then |F∪
r−2
i=1 Γi | ≤ (s!)( r

2−2). Bounding |F(∪r−2
i=1 Γi)| then gives case

2, 3 or 4 in the statement of the Lemma as follows. We know FΓr−1 and FΓr do

not contain the alternating group so we consider which of |NSs
(F0)|, (d!)

s
2d

(
s
d

)
!

or |M | is largest. If |M | or (d!)
s
2d

(
s
d

)
! is largest or FΓr−1

and FΓr
are trivial

then

|F(∪r−2
i=1 Γi)| ≤ |NS2s(F(∪r−2

i=1 Γi))| ≤ max
(
|M |, (d!)

s
2d

( s
d

)
!
)2

giving case 3 or 4 in the statement of the Lemma. If |NSs
(F0)| is largest and

at least one of FΓr−1
and FΓr

is non-trivial then

|F(∪r−2
i=1 Γi)| ≤ |F0||NSs

(F0)|

|NS2s
(F(∪r−2

i=1 Γi))| ≤ |NSs
(F0)|2

giving case 2 in the statement of the Lemma.

If r is odd then |F∪
r−1
i=1 Γi | ≤ (s!)

r−1
2 . Bounding |F(∪r−1

i=1 Γi)| then gives case

5, 6 or 7 in the statement of the Lemma.

Case: Fi is non-trivial for all i

Reordering if necessary we may assume that |F1| ≤ |Fi| for all i. Then

|F | ≤ |F1|
r∏
i=2

|FΓi | ≤ |F0||NSs
(F0)|r−1

|NSn
(F )| ≤ |NSs

(F0)|r

which gives case 11 in the statement of the Lemma.
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Case: (d!)
s
2d

(
s
d

)
! is largest

The case Fi is non-trivial for all i has been dealt with so we may assume F1

is trivial. The case t0 = r has also been dealt with so we may assume FΓr does

not contain the alternating group. If n
d is even then our bounds on the first t1

components and the bound

|F | ≤ |F1||F∪
r
i=2Γi |

gives us case 8.

If n
d is odd and all Fi are trivial then |FΓr | ≤ |M | so the bound

|F | ≤ |Fr||F∪
r−1
i=1 Γi |

gives us case 10.

If n
d is odd and some Fi is non-trivial then reordering if necessary we may

assume that Fr is non-trivial. In this case the bound

|F | ≤ |Fr||F∪
r−1
i=1 Γi |

gives us case 9.

Case: |NSs
(F0)| is largest

The bound |F | ≤ |F1|
∏r
i=2 |FΓi | gives us case 11.

Case: |M | is largest

The case Fi is non-trivial for all i has been dealt with so we may assume F1

is trivial. The bound |F | ≤ |F1|
∏r
i=2 |FΓi | then gives us case 12.

This allows us to construct FCFs(n) inductively. For small n however, these

bounds are insufficient for s = 2, 3, so we use brute force methods. For s = 2

notice that F must be an elementary abelian subgroup of a Sylow 2-subgroup of

An so we loop over such subgroups. For s = 3 notice that a Sylow 3-subgroup

P of F must be an elementary abelian subgroup of a Sylow 3-subgroup of An.

Looping over such P , a Sylow 2-subgroup of F normalises P , so we loop over

the Sylow 2-subgroups of the normaliser of P in Sn. See functions BruteFCFs2

and BruteFCFs3 in Appendix A which implement these brute force methods.

Building ACFs(n)

Suppose G ≤ 2 ·An is core-free and suppose a shortest orbit of G has length s.

Let Γ be the union of orbits of G of length s and ∆ = {1, . . . , n} \ Γ. We then

have |G| ≤ |G(∆)||G∆| and |G| ≤ |G(Γ)||GΓ| which gives

|G| ≤ min(|G(∆)||G∆|, |G(Γ)||GΓ|)
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where notably G(Γ) can be identified as a core-free subgroup of 2 · An−|Γ| with

G∆ ≤ NSn−|Γ|(G(Γ)) and G(∆) can be identified as a core-free subgroup of

2 · A|Γ| with fixed orbit length and GΓ ≤ NS|Γ|(G(∆)). Hence we may proceed

inductively. We do so conditioning on |Γ|. If |Γ| = n then G has fixed orbit

length, so we initialise ACFs(n) = TCFs(n) and loop over 1 ≤ |Γ| < n.

See functions buildFCFs and buildACFs in Appendix A which construct

FCFs(n) and ACFs(n).

Optimisation and Results

As given above, the size of these lists builds up rapidly. We can dramatically

reduce the lengths of these lists by removing redundant elements. That is

if (a, b, c), (d, e, f) ∈ xCFs(n) with a ≤ d, b ≤ e and c ≤ f then we may

remove (a, b, c) and the required properties of xCFs(n) still hold - in this case

we call (a, b, c) redundant. This can be done in several ways; see functions

CFSortReduce and CFSecondReduce in Appendix A which achieve this and leave

the list sorted in a way favoured by the author. The author found it necessary

to check that (a, b, c) is not redundant before adding it to ACFs(n) in order for

the algorithm to run in practical time.

This algorithm has been used to bound the size of a core-free subgroup of

2 · An for n ≤ 850 as given in the following table. The bound is sharp for

n /∈ {16, 21}, but a maximal core-free subgroup can be found in this case. In all

cases we give the structure of some maximal core-free subgroup. To save space,

we do not write µ(2 · An) here - see the table in section 1.4.2 for a full list of

µ(2 ·An) for n ≥ 5.
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n bound core-free subgroup

1 1 1

2 1 1

3 3 3

4 3 3

5 5 5

6 9 32

7 21 7.3

8 168 PSL(2, 7)

9 1512 PSL(2, 8).3

10 1512 PSL(2, 8).3

11 7920 M11

12 7920 M11

13 7920 M11

14 23760 M11 × 3

15 23760 M11 × 3

16 56448 PSL(2, 7)2.2

17 245016 PSL(2, 7)× PSL(2, 8).3

18 2286144 (PSL(2, 8).3)2

19 2286144 (PSL(2, 8).3)2

20 11975040 M11 × PSL(2, 8).3

21 11975040 M11 × PSL(2, 8).3

22 62726400 M2
11

23 62726400 M2
11

24 479001600 A12 × 2

25 479001600 A12 × 2

26 3113510400 A13

27 10369949184 (PSL(2, 8).3) o 3
≥ 28, 6≡ 0, 1 mod 8 bn2 c!/2 Abn2 c

≥ 28, ≡ 0, 1 mod 8 bn2 c! Abn2 c × 2

The function runTAFs in Appendix A is example code which runs this algo-

rithm. This function also uses functions SaveCFs and LoadCFs.



CHAPTER 3. QUASISIMPLE GROUPS 51

3.1.2 Main Result and Proof

Recall that [x1, . . . , xd] denotes an element in the preimage of (x1, . . . , xd). It

turns out that Bn (see Proposition 3.1.5) is almost the best choice for sufficiently

large n:

Theorem 3.1.17

Fix n ≥ 28 and set k = bn2 c. Define Bn = 〈t1tk+1, t2tk+2, . . . , tkt2k〉.
If 4|k then 〈Bn, x〉 ∼= Ak × C2, where x = [1, k + 1][2, k + 2] · · · [k, 2k], is a

largest core-free subgroup of 2 ·An. Otherwise Bn is a largest core-free subgroup

of 2 ·An.

It is worth noting that if 4|k then it is possible to construct a core-free

subgroup of 2 ·An isomorphic to Sk.

We know Bn is core-free and the fact that 〈Bn, x〉 is core-free follows from

the easy to prove result that txi = ti+k for i = 1, . . . , k and Proposition 3.1.3.

To show that these are largest core-free subgroups, we first assume a largest

core-free subgroup is transitive and therefore imprimitive (see Corollary 3.1.6),

then we allow a largest core-free subgroup to be intransitive.

Transitive Case

We show in this section that, for n ≥ 28, a transitive core-free subgroup K has

size at most |Bn| unless 4|k and |K| = |〈Bn, x〉| as in Theorem 3.1.17. Using

the above algorithm this has been checked for n ≤ 850 so assume n > 850.

We use the following Lemma throughout without further reference.

Lemma 3.1.18

An imprimitive subgroup K of Sn with block Γ embeds into (KΓ)Γ oKBΓ .

Proof: For example [25] (corollary 12.3).

Fix a core-free subgroup K, assume K is transitive and |K| > |Bn|. By

Lemma 3.1.6 K is imprimitive. Fix a minimal block Γ of K. Letting r = |Γ|,
we deal with r = 2 and r 6= 2 separately.
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r 6= 2

Lemma 3.1.19

r ≥ 5 and (KΓ)Γ ≥ Ar.

Proof: Recall that we assume n > 850.

For r = 3 we have 3|n and, by Lemma 3.1.18, |K| ≤ 6
n
3

(
n
3

)
!. One can check

that this is less than |Bn|.
For r = 4 we have 4|n and, by Lemma 3.1.18, |K| ≤ 24

n
4

(
n
4

)
!. One can

check that this is less than |Bn|.
So r ≥ 5. As Γ is a minimal block, (KΓ)Γ is primitive. If (KΓ)Γ 6≥ Ar then

|(KΓ)Γ| < 3r, so by Lemma 3.1.18

|K| ≤ 3n
(n
r

)
!

One can check, using r ≥ 5, that this is less than |Bn|. This completes the

proof.

If KBΓ
is trivial then |K| = |KBΓ | < |Bn| so (KBΓ

)Γ is a non-trivial normal

subgroup of (KΓ)Γ ≥ Ar. By Lemma 3.1.14 we may therefore partition the

orbits of KBΓ
into sets of orbits on which KBΓ

acts diagonally. Since K is

transitive, such a set forms a block of KBΓ . Lemma 3.1.14 also tells us that

these sets have even length, so n is even.

Let ∆1, . . . ,∆t form a block system for KBΓ , we can embed KBΓ into Ss oSt,
where s = |∆i|. Noting that t = n

rs we have:

log(|K|) ≤ log
(
(r!s!)

n
rs

(
n
rs

)
!
)

< f(n, s, r)

=
(
n
rs + 1

2

)
log(n) +

(
n
s −

n
2rs −

1
2

)
log(r) +

(
n
r −

n
2rs −

1
2

)
log(s)

− n
rs −

n
r −

n
s +

(
n
rs + 1

2

)
log(2π) + n

12r2s + n
12rs2 + rs

12n

where the second inequality is an application of Theorem 3.1.2.

Lemma 3.1.20

|K| < |Bn| unless s = 2, r = n
2 .

Proof: We exclude the case s = 2, r = n
2 and maximise f(n, s, r) showing it is

less than log(|Bn|) thereby proving |K| < |Bn| unless s = 2, r = n
2 . Note that

r = n
2 implies s = 2 so we assume for contradiction that r ≤ n

3 .
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Fix r = r0 and denote t = n
sr0

, so maximising f over s is equivalent to

maximising f over t. Rewriting and differentiating, using 1 ≤ t ≤ n
2r0

and

2 ≤ r0 ≤ n
3 (this looser bound will allow us to apply symmetry and obtain the

same results for s), we obtain:

f(n, s, r0) =
(
n
r0

+ t
2

)
log(n) +

(
− n
r0

+ r0t
)

log(r0) +
(
− n
r0

+ t
2 + 1

2

)
log(t)

−t− n
r0
− r0t+

(
t+ 1

2

)
log(2π) + t

12r0
+ t2r0

12n + 1
12t

∂f
∂t (n, s, r0) = r0

6n t+ 1
2 log(t) +

(
1
2 −

n
r0

)
1
t −

1
12t2

+ 1
2 log(n) + r0 log(r0)− r0 + log(2π)− 1

2 + 1
12r0

∂2f
∂t2 (n, s, r0) = r0

6n + 1
2t −

(
1
2 −

n
r0

)
1
t2 + 1

6t3

≥ r0
6n + r0

n −
1
2 + n

r0
+

4r3
0

3n3 > 0

In particular, as t increases f begins decreasing with respect to t, reaches a

minimum, then increases with respect to t. To maximise f we may therefore

take s maximal (so s = n
r0

) or s minimal (so s = 2).

By symmetry, if we fix s = s0 then we may take r maximal (r = n
s0

) or r

minimal (r = 5).

Case: r ≥
√
n or s ≥

√
n

Suppose r ≥
√
n. This gives 1 ≤ t ≤ n

r ≤
√
n. Using this, and recalling

n > 850, one can check that

∂f

∂t
(n, s, r0) ≥ 1

2

√
n log(n)− 2

√
n+

1

2
log(n) + log(2π)− 7

12
+

2

3
√
n

+
1

6n
> 0

This means f(n, s, r) ≤ f(n, 2, r) with equality if and only if s = 2, so in

maximising f(n, s, r) we may assume s = 2. We will deal with r minimal in the

case r <
√
n so taking r maximal we obtain f(n, s, r) ≤ f(n, 2, n3 ) which is less

than log(|Bn|) for even n > 12. So for maximal f we have r <
√
n.

A similar argument gives s <
√
n.

Case: r <
√
n and s <

√
n

If s = 2 then

f(n, 2, r) <
(

7n
20 −

√
n

8 + 1
4

)
log(n) +

(
n
5 −

√
n

4 −
1
2

)
log(2)

− 3
√
n

2 − n
2 +

(
n
10 + 1

2

)
log(2π) + n

600 + n
240 + 1

6
√
n

which is less then log(|Bn|) for all n. Thus s maximal, so s = n/r >
√
n

contrary to assumption. Hence |K| < |Bn| unless s = 2, r = n
2 .
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We are left then with the case r = n
2 . Applying Corollary 3.1.15 then gives

us the result:

Theorem 3.1.21

For n ≥ 28, let K a be core-free subgroup of 2 · An. If the natural action

of K on {1, . . . , n} is transitive imprimitive with minimal block of size r > 2

then either |K| < |Bn| or 8|n and |K| = |〈Bn, x〉| (with Bn, x as described in

Theorem 3.1.17).

This completes the case r 6= 2.

r = 2

Theorem 3.1.22

For n > 28, let K be a core-free subgroup of 2 · An. If the natural action of

K on {1, . . . , n} is transitive imprimitive with minimal block of size r = 2 then

either |K| < |Bn| or 8 | n and |K| = |〈Bn, x〉| (with Bn, x as described in

Theorem 3.1.17).

Proof: Suppose |K| ≥ |Bn| = ( n
2 )!/2. Without loss of generality fix a minimal

block system, BΓ = {Γi|i = 1, . . . , n/2}, of K with Γi = {2i− 1, 2i}.
We first suppose K(BΓ) is trivial then K ∼= KBΓ ≤ Sn/2. If |K| = |Bn| then

K ∼= An/2. Consider the elements τi,j,k of K which map to (i, j, k) ∈ An/2 under

this isomorphism (that is Γ
τi,j,k
i = Γj , Γ

τi,j,k
j = Γk, Γ

τi,j,k
k = Γi). Since τ3

i,j,k = 1

we must have that τi,j,k acts trivially on Γr for r /∈ {i, j, k}. Swapping 3, 4 and

5, 6 if necessary τ1,2,3 = [1, 3, 5][2, 4, 6].

We show that we may take τi,i+1,i+2 = [2i−1, 2i+1, 2i+3][2i, 2i+2, 2i+4].

Fix τj,j+1,j+2 for j < i. We may swap 2i+ 3, 2i+ 4 without affecting τj,j+1,j+2

for j < i. We can therefore take τi,i+1,i+2 = [2i− 1, x, 2i+ 3][2i, y, 2i+ 4] where

{x, y} = {2i + 1, 2i + 2}. If τi,i+1,i+2 = [2i − 1, 2i + 2, 2i + 3][2i, 2i + 1, 2i + 4]

then τi−1,i,i+1τi,i+1,i+2 = [2i − 3, 2i + 2, 2i − 2, 2i + 1][2i − 1, 2i + 4, 2i, 2i + 3]

so 1 6= (τi−1,i,i+1τi,i+1,i+2)2 ∈ K(BΓ) contrary to assumption. Hence we have

τi,i+1,i+2 = [2i−1, 2i+1, 2i+3][2i, 2i+2, 2i+4]. Since these τi,i+1,i+2 generate K

and fix {2, 4, . . . , n} setwise we dont have K transitive, contrary to assumption.

Hence |K| > |Bn|.
Since |K| > |Bn| and K ∼= KBΓ ≤ Sn/2 we have K ∼= Sn/2. So there is

some g ∈ K such that Γg1 = Γ2 and Γgi = Γi for i > 2. Fix i, j > 2, if g acts

trivially on Γi then, using 3-transitivity of An/2 for n ≥ 10, fix h ∈ An/2 which

fixes Γ1,Γ2 and maps Γi to Γj then gh acts trivially on Γj , but also gh has

the same image in KBΓ as g so g = gh. Therefore g either acts non-trivially

on all Γi for i 6= 1, 2 or acts trivially on all Γi for i 6= 1, 2. After swapping

3, 4 if necessary, g acts on {1, 2, 3, 4} by (1, 3, 2, 4) or by (1, 3)(2, 4). In the first
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case, g2 = [1, 2][3, 4] so g4 = z. In the second, if g = [1, 3][2, 4] then g2 = z so

g = [1, 3][2, 4][5, 6] · · · [n − 1, n] which gives g2 = 1 if and only if 8|n, in which

case |K| = |〈H,x〉| as required.

We are left with the case K(BΓ) is non-trivial. Assume first that there exists

1 6= g ∈ K(BΓ) with g 6= [1, 2][3, 4] · · · [n−1, n] - that is g fixes some Γi pointwise.

By Proposition 3.1.3, g acts non-trivially on at least four Γi’s so without loss of

generality assume g acts non-trivially on Γ1, . . . ,Γ4 and trivially on Γ5.

If KBΓ is primitive then either |K| ≤ |K(BΓ)||KBΓ | ≤ 2n/23n/2 which is less

than (n2 )!/2, or KBΓ ≥ An/2. So there is some h ∈ K with image (2, 3)(4, 5) in

KBΓ . This gives ggh = [7, 8][9, 10] contrary to Proposition 3.1.3.

If KBΓ is imprimitive then

K ↪→ S2 o (Ss o Sn/2s) ∼= (S2)
n/2 o ((Ss)

n/s o Sn/2s)

where s is the size of the minimal block ∆ of KBΓ . This implies that

|K| ≤ 2n/2(s!)n/2s( n2s !) and therefore

log(|K|) < f(n, s)

= n
2 log(2) + n

2 log(s)− n
2 + n

4s log(2πs) + n
24s2

+ n
2s log( n2s )− n

2s + 1
2 log

(
πn
s

)
+ s

6n

Denoting t = n
s ,

f(n, s) = n
2 log(2)− n

2 log( tn )− n
2 −

t
4 log( t

2πn ) + t2

24n

+ t
2 log( t2 )− t

2 + 1
2 log (tπ) + 1

6t
∂f
∂t = − n

2t −
1
4 −

1
4 log

(
t

2πn

)
+ t

12n + 1
2 log

(
t
2

)
+ 1

2t −
1

6t2

∂2f
∂t2 = n

2t2 + 1
4t + 1

12n −
1

2t2 + 1
3t3 > 0

so, assuming s < n
4 , f(n, s) is maximised by either s = 2 or s = n

5 . One can

check that f(n, 2) and f(n, n5 ) are less than log(|Bn|).
So we are left with the case s = n

4 . We can then take without loss of

generality ∆ = {{1, 2}, {3, 4}, . . . , {n2 − 1, n2 }}. As ∆ is a minimal block, the

action of (KBΓ)∆ on ∆ is primitive.

Suppose g fixes {n2 + 1, . . . , n} pointwise. If g 6= [1, 2][3, 4] · · · [n2 − 1, n2 ] then

by the above argument for primitive KBΓ we have, relabelling if necessary,

[7, 8][9, 10] ∈ K(BΓ). So g = [1, 2][3, 4] · · · [n2 − 1, n2 ]. This means K(BΓ) is

generated by g and some diagonal subgroup of (C2)n/2 × (C2)n/2. Thus we

have |K| ≤ 2n/4+2(n4 !)2, which gives

log(|K|) < − 3n
4 log(2) + n

2 log(n)− n
2 + log(πn) + 1

3n

which is less than log(|Bn|).



CHAPTER 3. QUASISIMPLE GROUPS 56

If no such g fixes {n2 +1, . . . , n} pointwise then K(BΓ) is a diagonal subgroup

of (C2)n/2 × (C2)n/2 so the above inequality holds. Thus we are left with the

case K(BΓ) = 〈g〉 with g = [1, 2][3, 4] · · · [n− 1, n], so by Proposition 3.1.3 8|n.

If |K| > |〈Bn, x〉| = (n2 )! then K(BΓ) ∼= Sn/2. In particular there is some

h ∈ K with image (1, 2) in K(BΓ). If h has a cycle [1, 3, 2, 4] then h4 = z so up

to permutation of 1, 2, 3, 4 we have h = [1, 3][2, 4]u for some u ∈ K(BΓ). If u = 1

then h2 = z and if u acts non-trivially on all Γi with i > 2 then hug = [1, 4][2, 3]

and (hug)2 = z so without loss of generallity u acts non-trivially on 5, 6 and

trivially on 7, 8. There is also some h′ ∈ K with image (3, 4) in K(BΓ). But

then hhh
′

= [5, 6][7, 8] and (hhh
′
)2 = z. So |K| ≤ |〈Bn, x〉| as required.

Thus we have the following:

Theorem 3.1.23

For n ≥ 28, let K be a core-free subgroup of 2 · An. If the natural action of K

on {1, . . . , n} is transitive then either |K| < |Bn| or 8 | n and |K| = |〈Bn, x〉|
(with Bn, x as described in Theorem 3.1.17).

General Case

Let K be a largest core-free subgroup of 2 · An and let Γ be a largest orbit of

K. Denote ∆ = {1, . . . , n} \ Γ and d = |Γ| and fix 0 < c < 1
4 . Recall that we

may assume n > 850.

Define L = L(n, d) to be a largest core-free subgroup of 2 · An which has

largest orbit Γ in {1, . . . , n} of length d. We maximise log(|L|) with respect to

d.

Lemma 3.1.24

If d ≤ k 1
4 then

log(|L|) ≤ n

2
log(k)− 2n+

n

k
1
4

log(2πk
1
4 ) +

n

6
√
k

Proof: If d ≤ k 1
4 then we can partition {1, . . . , n} into sets Γ1, . . . ,Γr, each fixed

setwise by L, such that k
1
4

2 < |Γi| ≤ k
1
4 for each i except possibly one. We can

do this by starting with the orbits of L then while there are two fixed sets of

order at most k
1
4

2 we replace them with their union. This allows us to embed

L into S|Γ1| × · · · × S|Γr|. There are at most 2n

k
1
4

sets, so |L| ≤ |(k 1
4 )!|

2n

k
1
4 giving

the result.

With k = n this is less than log(|Bn|) for n > 33 so we restrict our attention

to d > n
1
4 .



CHAPTER 3. QUASISIMPLE GROUPS 57

Proposition 3.1.25

If |L| is maximised by d ≥ n−
√
n

2 then either 8|n and |L| is maximised by d = n

or 8|n−1 and |L| is maximised by d = n−1. That is |L| = |〈Bn, x〉| as described

in Theorem 3.1.17.

Proof: If d = n − 1 then we may identify L with its action on Γ, so it is a

core-free subgroup of 2 · An−1. Hence if d ≥ n− 1 then the result follows from

Theorem 3.1.23. We can prove the result then by showing |L| < |Bn| if d ≤ n−2,

so assume d ≤ n− 2. Assume also that |L| is maximal.

Note that, with ∆ = {1, . . . , n} \Γ, L(∆) can be identified with its action on

Γ.

We first claim that log(|L(∆)|) ≤ d
2 log(d) − d

2 log(2) − d
2 + 1

2 log(πd) + 1
12d .

If L(∆) is transitive on Γ then, since d ≥ n−
√
n

2 ≥ 28, this bound follows from

Theorem 3.1.23 and if L(∆) is trivial then the claim is immeditate, so suppose

L(∆) is non-trivial and intransitive. If LΓ is primitive then either it contains

the alternating group, in which case L is not core-free, or it is bounded by

2d, in which case the bound follows. So assume LΓ is imprimitive. We again

use a similar argument as in the transitive case. Fix a minimal block Ω of LΓ

contained in an orbit of L(∆). If |Ω| = 2 then either L(∆) has orbits of length

2 and therefore has size 2
d
2 from which the claim follows, or the orbits form

blocks properly containing Ω. In the second case L(∆) embeds into a transitive

core-free subgroup of (A2×As) oAd/2s so the claim follows from Theorem 3.1.23.

As in Lemma 3.1.19, if |Ω| ∈ {3, 4} then |LΓ| ≤ |Ω|!
d
|Ω| ( d

|Ω| )! from which the

claim follows. If |Ω| ≥ 5 then following Lemmas 3.1.19 and 3.1.14 there is some

t ≤ d
2r with r = |Ω| and block system {∆1, . . . ,∆t} of LΓ where each ∆i is

a union of blocks Ωg for some g ∈ LΓ. This allows the embedding of LΓ into

(Ar × As) o Ad/rs (where |∆i| = rs) so if r > 2 we can use the argument in

Lemma 3.1.20 to prove the claim. If r = 2 then L(∆) embeds into a transitive

core-free subgroup (A2 ×As) oAd/2s so the claim follows from Theorem 3.1.23.

The claim therefore holds.

We now maximise log(|L|):

log(|L|) = log(|L(∆)|) + log(|L∆|)
≤ f(d)

= d
2 log(d)− d

2 log(2)− d
2 + 1

2 log(πd) + 1
12d

+(n− d) log(n− d) + d− n+ 1
2 log(2π(n− d)) + 1

12(n−d)

f ′(d) = 1
2 log(d)− 1

2 log(2) + 1
2d −

1
12d2 − log(n− d)− 1

2(n−d) + 1
12(n−d)2

f ′′(d) = 1
2d −

1
2d2 + 1

6d3 + 1
n−d −

1
2(n−d)2 + 1

6(n−d)3

> 0

So f ′ is increasing. In particular f is maximised by either d = n −
√
n

2 or

d = n− 2. In either case we find |L| < |Bn|.
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Proposition 3.1.26

Suppose n > 13 and L has an orbit Γp with size dp > n
1
4 such that LΓp contains

A|Γp|. Assume further that dp is maximal under these conditions and that L acts

primitively on any orbit of size at least dp. If dp >
1
2

(
n−

√
n

2

)
, then L acts

diagonally as Adp on Γp and some other orbit of size dp and |L| is maximised

by d = dp = n
2 if n even and d = dp = n−1

2 if n odd. That is |L| = |〈H〉| as

described in Theorem 3.1.17.

Proof: Fix g ∈ L which acts non-trivially on Γp as an even permutation and

acts non-trivially on as few orbits as possible. Denote by L0 the normal closure

〈g〉L of the subgroup generated by g in L. A quick calculation gives dp ≥ 5 so

(L0)Γp ∼= Adp .

Now we study the action of L0 on other orbits. Let Γ′ be the union of orbits

on which L0 acts non-trivially, fix such an orbit Γ0 and let d0 = |Γ0|. If g acts

trivially on Γ0 then L0 acts trivially on Γ0, so g acts non-trivially on Γ0 - in

particular LΓ0
0 has Adp as a chief factor so d0 ≥ dp. As L0 is normal in L and

L acts primitively on Γ0, LΓ0
0 is transitive. If LΓ0

0 does not contain Ad0 then we

have
dp!
2 ≤ |L

Γ0
0 | ≤ 3d0 . This implies

d0 > 1
log(3)dp log(dp)

≥ 1
2 log(3) (n−

√
n

2 ) log(1
2 (n−

√
n

2 ))

but this gives d0+dp > n. Hence we have LΓ0
0 ≥ Ad0 and d0 = dp by maximality

of dp.

Now, suppose L0 does not act diagonally on the orbits contained in Γ′. Then

there exists h ∈ L0 which acts non-trivially on some but not all orbits in Γ′.

If h acts non-trivially on Γp then it acts non-trivially on all orbits in Γ′ (as

g acts non-trivially on the least number of orbits), so h acts trivially on Γp.

But if h acts non-trivially on Γ0, then (〈h〉L)Γ0 ≥ Adp so there is some element

x ∈ L acting trivially on Γp but in the same way as g on Γ0. This means gx−1

acts as an even permutation on Γp and acts non-trivially on fewer orbits than g

contrary to assumption. This means h acts trivially on all orbits in Γ′ contrary

to assumption. Hence L0 acts diagonally on the orbits contained in Γ′. As L0 is

normal in L, any element of L acting non-trivially on Γ′ must also act diagonally

on the orbits contained in Γ′.
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Now, if 2dp ≥ n − 1 then L ∼= Bn so suppose 2dp < n − 1. Denoting

∆ = {1, . . . , n} \ Γ′ we can identify L(∆) as a core-free subgroup of 2 · A|Γ′| by

its action on Γ′. Notice that 3dp > n so Γ′ contains two orbits. This gives

log(|L|) = f(dp)

= log(|L(∆)|) + log(|L∆|)
≤ dp log(dp)− dp + 1

2 log(2πdp) + 1
12dp

+ (n− 2dp) log(n− 2dp)

−(n− 2dp) + 1
2 log(2π(n− 2dp)) + 1

12(n−2dp)

f ′(dp) = log(dp) + 1
2dp
− 1

12d2
p

−2 log(n− 2dp)− 1
n−2dp

+ 1
6(n−2dp)2

So with n−
√
n

2 ≤ 2dp ≤ n− 2 one can check that

f ′(dp) ≥ log(2n−
√
n)− log(n) + 52n3−52n

5
2−75n2+88n

3
2−34n+24

12(n−2)(2n−
√
n)2

> 0

The bound is therefore increasing with respect to dp so is maximised my

2dp = n− 2. Hence (with computer assistance)

log(|L|) ≤ n−1
2 log(n− 2)− n+4

2 log(2) + log(π)− n−2
2 + 1

6(n−2) − 2 + 1
24

< log(|Bn|)

Therefore L is maximised by 2dp ≥ n − 1 so L ∼= Bn. This forces 8 - n,

8 - n− 1, otherwise |L| < |〈Bn, x〉|, so we are done.

Proof of Theorem 3.1.17: We now have everything we need to prove Theo-

rem 3.1.17. We do this by showing that

• |L| ≤ |Bn| if 8 - n and 8 - n− 1

• |L| ≤ |〈Bn, x〉| if 8|n or 8|n− 1

We do this in two steps imposing different restrictions on L. In the first

step we ‘ignore’ small orbits - to be precise, call an orbit Ω large if |Ω| ≥ n
1
4 ,

otherwise we call Ω small.



CHAPTER 3. QUASISIMPLE GROUPS 60

Definition 3.1.4 • Let LP = LP (n, d) be a largest core-free subgroup of 2·An
such that the largest orbit, Γ, has size d and for any large orbit Ω of LP ,

LΩ
P is primitive but not alternating.

• Let LI = LI(n, d; dp, dI , bI) be a largest core-free subgroup of 2 · An with

largest orbit d such that:

– A largest orbit Ω for which LΩ
I ≥ A|Ω| has size dp. If no orbit satisfies

this then we write dp = 0.

– A largest orbit Ω for which LΩ
I is imprimitive has size dI . If all orbits

are primitive write dI = 0.

– Over all orbits Ω for which LΩ
I is imprimitive, the largest minimal

block has size bI . If all orbits are primitive write bI = 0.

Clearly max{|LP |} ≤ max{|LI |} = max{|L|}. We maximise each in turn,

by reducing to the cases of propositions 3.1.25 and 3.1.26 thus proving Theo-

rem 3.1.17.

Lemma 3.1.27

Step 1: Fix LP = LP (n, d). Then

log(|LP |) ≤
n

2
log(n)− 2n+ n

3
4 log(2πn

1
4 ) +

√
n

6

In particular |L| < |Bn| so |L| is not maximised by |LP |.

Proof: Let Γ′ =
t⋃
i=1

Γi where Γ1, . . . ,Γt are the large orbits of LP and let

∆ = {1, . . . , n} \ Γ′. Note that (LP )(Γ′)
∼= (LP )∆

(Γ′), so by Lemma 3.1.24, with

r = |Γ′|,

log(|(LP )(Γ′)|) ≤
n− r

2
log(n)− 2(n− r) +

n− r
n

1
4

log(2πn
1
4 ) +

n− r
6
√
n

Also |(LP )Γi | ≤ 3|Γi| so

log(|LP |) = log(|(LP )(Γ′)|) +
∑t
i=1 log(|LΓi

P |)
≤ f(r)

= n−r
2 log(n)− 2(n− r) + n−r

n
1
4

log(2πn
1
4 )

+n−r
6
√
n

+
∑t
i=1 |Γi| log(3)

= n−r
2 log(n)− 2(n− r) + n−r

n
1
4

log(2πn
1
4 )

+n−r
6
√
n

+ r log(3)
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Suppose r < n. Differentiating with respect to r gives

f ′(r) = − 1
2 log(n) + 2− 1

n
1
4

log(2πn
1
4 )− 1

6
√
n

+ log(3)

< 0

The above bound is therefore maximised by r = 0 which gives

log(|LP |) ≤ n
2 log(n)− 2n+ n

3
4 log(2πn

1
4 ) +

√
n

6

which is less than log(|Bn|) so |LP | < |Bn| and |L| cannot be maximised by

|LP |.

Before Step 2 we need a couple of technical lemmas:

Lemma 3.1.28

Let G be an imprimitive group acting on Ω with chief factor Am for some m ≥ 5,

|Ω| = s and for which a minimal block has size strictly less than m. Then either

s = 2m and G embeds into S2 o Sm or

log(|G|) ≤ s

2
log(

s

2
)− s

2
+ log(π

s

2
) +

1

3s
+ log(2) + 16

n.b. For s ≈ n this bound is larger than log(|Bn|). We don’t however

compare such a group directly to Bn and this bound will suffice.

Proof: As G is imprimitive we may embed G into Sr o S s
r

where r is the size of

a minimal block of G.

We first assume r ≥ 3. Let G̃ be the image of G in S s
r
. By assumption

r < m, so Am is not a subgroup of S
s
r
r but is a chief factor of G so we must have

that Am is a chief factor of G̃. In particular either G̃ is primitive with either

m = s
r or |G̃| ≤ 3

s
r or G̃ is imprimitive and embeds into St o S s

rt
for some t| sr

with t /∈ {1, sr} and either m ≤ t or m ≤ s
rt . We can check all possible m, r, t

explicitly for s < 666, so suppose s ≥ 666.

Using the embedding of G into Sr o S s
r

with r < m and m ≤ s
r we have

log(|G|) ≤ s
r log(r!) + log( sr !)

≤ f(r)

= s log(r)− s+ s
2r log(2πr) + s

12r2 + s
r log( sr )

− sr + 1
2 log(2π sr ) + r

12s

f ′(r) = s
r −

s log(2πr)+s
2r2 − s

6r3 − s
r2 log( sr )− 1

2r + 1
12s

f ′′(r) = − s
r2 + 2s log(2πr)+s

2r3 + s
2r4 +

2s log( s
r )+s

r3 + 1
2r2

r2f ′(r) + r3f ′′(r) = 1
2s log(2πr) + s

3r + s log( sr ) + s+ r2

12s > 0

hence for all r either f ′′(r) > 0 or f ′(r) > 0 which implies f(r) is maximised

by either r = 3 or r = min{m − 1, sm}. If m − 1 ≤ s
m then we can deduce
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r = m− 1 ≤
√
s+ 1

4 −
1
2 . If m− 1 ≥ s

m then r = s
m ≤

s√
s+ 1

4 + 1
2

=
√
s+ 1

4 −
1
2 .

In either case r ≤
√
s+ 1

4 −
1
2 . One can check that

f(3) < f(
√
s) <

s

2
log(

s

2
)− s

2
+ log(π

s

2
) +

1

3s
+ log(2)

for s ≥ 666.

In the case r = 2, if s 6= 2m then the image G̃ of G in S s
2

does not contain

A s
2
. If G̃ is primitive then

log(|G|) ≤ s
2 log(2) + s

3 log(3)

< s
2 log( s2 )− s

2 + log(π s2 ) + 1
3s + log(2)

and if G̃ is imprimitive then one can show, for example as in [14], that

log(|G|) ≤ s

2
log(

s

2
)− s

2
+ log(π

s

2
) +

1

3s
+ log(2)

as required.

Lemma 3.1.29

Let G be a largest subgroup of Sr for some r which has maximal orbit of size at

most t ≤ r. Then G ∼= S
b rt c
t × Sr−tb rt c.

N.B. We are using group theoretic language here as it fits our purpose, but

a natural equivalent statement is:

Fix t ≤ n and let x1 ≤ · · · ≤ xN ≤ t be an increasing sequence of integers

for some N such that
∑N
i=1 xi = r, then

∏N
i=1 xi! is maximal subject to these

conditions if and only if x2 = · · · = xN = t.

Proof: Let G act naturally on Ω with |Ω| = r. We prove this by induction on r,

but first deal with the case that G has at most 2 orbits.

If t = r then the largest subgroup is obviously Sr and we are done. If t < r
2

then G would have to have at least 3 orbits, so we may take r
2 ≤ t < r. Let

x ≤ y be the size of the two orbits of G. This clearly gives G = x!y!. If y < t

then (x−1)!(y+1)!
x!y! = y+1

x > 1 so |Sx−1 × Sy+1| > |G| contrary to assumption.

Hence y = t and we are done. Now we allow G to have more than two orbits.

Fix any orbit Γ of G and denote x = |Γ|. We must have that GΩ\Γ is a largest

subgroup of Sr−x so GΩ\Γ ∼= S
b r−x

t c
t ×Sr−x−tb r−x

t c
. If r− x− tb r−xt c = 0 (that

is, if t|(r − x), so x = r − tb rt c) then we are done, so suppose not and denote

0 < y = r− x− tb r−xt c < t and let ∆ be the orbit of G of size y. Clearly GΓ∪∆

is a largest subgroup of Sx+y with maximal orbit of size at most t, so by the

case G has at most two orbits, we must have x = t and we are done.
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Lemma 3.1.30

Step 2: Fix LI = LI(n, d; dp, dI , bI). Then

log(|LI |) ≤
n

2
log(n)− n

2
log(2)− n

2
+

1

2
log(πn) +

1

6n
+ 3.5

For n ≥ 28, if |L| is maximised by |LI | then we are in the case of either

Proposition 3.1.25 or Proposition 3.1.26.

Proof: We prove this by induction on m = max(dp, bI). Denote

τ(n) =
n

2
log(n)− n

2
log(2)− n

2
+

1

2
log(πn) +

1

6n
+ 3.5

Note that log(|Bn|) is less than this bound. If m < 2, d < n
1
4 , d > n −

√
n

2

or dp > (n−
√
n

2 )/2 then one can check that this holds using bounds in previous

results (the worst case is Lemma 3.1.19 ‘r ≥ 2’). So suppose either there is a

large orbit on which LI is alternating (so dp ≥ n
1
4 ) or a large orbit on which LI

is imprimitive (so dI ≥ n
1
4 and therefore bI ≥ 2). This result can be checked

using the above algorithm for n ≤ 850 so we may assume n > 850.

Case 1: m = max(dp, bI) = 2

First we assume max(dp, bI) = 2, then for every orbit Ω one of the following

holds:

• LΩ
I is primitive and not containing A|Ω|.

• LΩ
I is imprimitive with minimal block of length 2.

Let Γ be the union of orbits on which LI acts imprimitively and orbits of

length 2. Denote ∆ = {1, . . . , n}\Γ and r = |Γ|. Then for each orbit Ω ⊆ ∆, LΩ
I

is primitive and not containing A|Ω| so has order at most 3|Ω|. It follows that

|L∆
I | ≤ 3n−r. Since bI = 2 we may partition Γ into pairs, consisting of blocks

and minimal orbits, such that the partition is preserved by LI . This gives an

embedding of (LI)(∆) into S2 o S r
2
. The orbits of LI are of length at most dI ,

so by Lemma 3.1.29 |(LI)(∆)| ≤ |S2 o ((S dI
2

)
b r
dI
c × S r

2−
dI
2 b

r
dI
c)|.

We now claim |(LI)(∆)| ≤ |S
r
4
2 ||((S dI

2

)
b r
dI
c × S r

2−
dI
2 b

r
dI
c)|. Consider the

intersection N of the image of (LI)(∆) with (S2)
r
2 . Relabelling if necessary we

can have the r
2 copies of S2 generated by (2i − 1, 2i) for i = 1, . . . , r2 . Suppose

{g1, . . . , gv} is a minimal generating set of N . Let ci be the least element

of {1, . . . , r} such that (ci, ci+1) appears in gi. Again relabelling if necessary

ci = 2i−1 and, replacing gi with gigj if necessary, we may assume that (cj , cj+1)

appears in gi if an only if i = j. Consider the projections π1, π2 of N onto the

product of the first v copies of S2 and the product of the last r
2 − v copies
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respectively. Clearly π1 is a bijection and π1(N) = Sv2 . For g ∈ (S2)
r
2 denote

by σ(g) the number of transpositions appearing in g. By Proposition 3.1.3,

for g ∈ N we have 4|σ(g) so σ(π2(g)) ≡ −σ(π1(g)) (mod 4). Moreover, if

π2(g) = π2(h) and σ(π1(g)) ≡ σ(π1(h)) ≡ ε (mod 4) with ε ∈ {1, 3} then

σ(gh) ≡ 2 (mod 4) contrary to Proposition 3.1.3. This means π2 ◦ π−1
1 restricts

to an injective map from the set of odd permutations in Sv2 to those in S
r
2−v
2 .

In particular v ≤ r
4 . Hence |N | ≤ 2

r
4 , from which the claim follows.

We now split into further cases.

Case 1.a. dI ≤ r
2 :

If dI ≤ r
2 this gives

log(|LI |) = f(r)

= log(|(LI)(∆)|) + log(|L∆
I |)

≤ log(3n−r) + log(|S
r
4
2 ||(S r

4
)2)|)

≤ (n− r) log(3) + r
4 log(2) + r

2 log( r4 )− r
2 + log(π r2 ) + 2

3r

f ′(r) = − log(3) + 1
4 log(2) + 1

2 log( r4 ) + 1
2 −

2
3r2

f ′′(r) = 1
2r + 4

3r3 > 0

So the bound begins decreasing, reaches a minimum, then increases and is

therefore maximised by r = n
1
4 or r = n. If r = n

1
4 then

log(|LI |) ≤ (n− n 1
4 ) log(3) + n

1
4

4 log(2) + n
1
4

2 log(n
1
4

4 )− n
1
4

2 + log(π n
1
4

2 ) + 2

3n
1
4

which is less than log(|Bn|) and therefore τ(n). If r = n then

log(|LI |) ≤ n
4 log(2) + n

2 log(n4 )− n
2 + log(π n2 ) + 2

3n

which is less than log(Bn) and therefore τ(n).

Case 1.b. dI >
r
2 :

So suppose dI >
r
2 . This means that there is a unique orbit ΓI of size dI for

which LΓI

I is imprimitive and any other orbit Ω of size at least dI is primitive

and LΩ
I does not contain A|Ω|. In this case we apply induction to (LI)(ΓI), so

log(|(LI)(ΓI)|) ≤ n−dI
2 log(n− dI)− n−dI

2 log(2)− n−dI
2 +

1
2 log(π(n− dI)) + 1

6(n−dI) + 3.5

LΓI

I embeds into S2 o S dI
2

. Denote by L̃I the image of LI in S dI
2

, we again

split into cases.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Case 1.b.i. L̃I imprimitive:

If the image of LI in S dI
2

is imprimitive then LΓI

I embeds into S2o(SsoS dI
2s

) for

some s|dI2 . This gives the following bound, which we differentiate with respect

to t = 1
s and maximise with respect to t

log(|LΓI

I |) ≤ dI
2 log(2) + dI

2 log(s)− dI
2 + dI

4s log(2πs) + dI
24s2

+dI
2s log(dI2s )− dI

2s + 1
2 log(π dI2s ) + s

6dI

= f(t)

= dI
2 log(2)− dI

2 log(t)− dI
2 −

dIt
4 log( t

2π ) + dIt
2

24

+dIt
2 log(dIt2 )− dIt

2 + 1
2 log(π dIt2 ) + 1

6dIt

f ′(t) = −dI2t −
dI
4 −

dI
4 log( t

2π ) + dIt
12 + dI

2 log(dIt2 ) + 1
2t −

1
6dIt2

f ′′(t) = dI
2t2 −

dI
4t + dI

12 + dI
2t −

1
2t2 + 1

3dIt3
> 0

so the bound is maximised by s = 2 or s = dI
4 - recall that we assume

dI ≤ n−
√
n

2 . If s = 2 then we obtain the following bound which we differentiate

with respect to dI .

log(|LI |) ≤ f(dI)

= n−dI
2 log(n− dI)− n−dI

2 log(2)− n−dI
2 +

1
2 log(π(n− dI)) + 1

6(n−dI) + 3.5

+dI log(2)− 13dI
32 + dI

8 log(4π) + dI
4 log(dI4 ) + 1

2 log(π dI4 )

f ′(dI) = − 1
2 log(n− dI) + 1

2 log(2)− 1
2(n−dI) + 1

6(n−dI)2

+ log(2)− 13
32 + 1

8 log(4π) + 1
4 log(dI4 ) + 1

4 + 1
2dI

f ′′(dI) = 1
2(n−dI) −

1
2(n−dI)2 + 1

3(n−dI)3 + 1
4dI
− 1

2d2
I
> 0

Hence the bound is maximised by either dI = n
1
4 or dI = n−

√
n

2 . In either

case the bound is less than log(|Bn|) and therefore τ(n).

If s = dI
4 then we obtain the following bound which we differentiate with

respect to dI .

log(|LI |) ≤ f(dI)

= n−dI
2 log(n− dI)− n−dI

2 log(2)− n−dI
2 +

1
2 log(π(n− dI)) + 1

6(n−dI) + 3.5

+dI
2 log(2) + dI

2 log(dI4 )− dI
2 + log(π dI2 ) + 2

3dI

+2 log(2)− 2 + 1
2 log(π2) + 1

24

f ′(dI) = − 1
2 log(n− dI) + 1

2 log(2)− 1
2(n−dI) + 1

6(n−dI)2

+ 1
2 log(2) + log(dI4 ) + 1

dI
− 2

3d2
I

f ′′(dI) = 1
2(n−dI) −

1
2(n−dI)2 + 1

3(n−dI)3 + 1
dI
− 1

d2
I

+ 4
3d3

I
> 0

Hence the bound is maximised by either dI = n
1
4 or dI = n−

√
n

2 . In either

case the bound is less than log(|Bn|) and therefore τ(n).
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CHAPTER 3. QUASISIMPLE GROUPS 66

Case 1.b.ii. L̃I primitive:

So we are left with the case that the image L̃I of LI in S dI
2

is primitive. If

L̃I does not contain A dI
2

then |LΓI

I | ≤ 2
dI
2 3

dI
2 ≤ 2

n
2 3

n
2 which is less than eτ(n)

and less than |Bn|.
If L̃I does contain A dI

2

then we consider the intersection N of ((LI)(∆))
ΓI

with S
dI
2

2 . Recall that we may assume dp ≥ n
1
4 or dI ≥ n

1
4 so, as dp = 2,

we have dI ≥ n
1
4 > 10. Also the chief factors of L

Γ\ΓI

I are all strictly smaller

than A dI
2

, so we can find a subgroup M of LI for which MΓ\ΓI is trivial and

MΓI ∼= A dI
2

.

The only possible normal subgroups of LΓI

I contained in S
dI
2

2 and therefore

the only choices of N are then of order 1, 2, 2
dI
2 −1 or 2

dI
2 .

Consider the embedding of LΓ
I into S2 oS r

2
. We split the base S

r
2
2 into S

r−dI
2

2

and S
dI
2

2 , with S
dI
2

2 acting on ΓI . Let σ0 : S
r
2
2 → S

r−dI
2

2 and σ1 : S
r
2
2 → S

dI
2

2

be the natural projections. If N is of order 2
dI
2 −1 or 2

dI
2 then it contains an

element which is the product of exactly two transpositions. Let g ∈ (LI)(∆)

such that σ1(g) is the product of exactly two transpositions. As MΓI ∼= A dI
2

,

there is some x ∈M such that σ1(gx) and σ1(g) share exactly one transposition,

so σ1(ggx) is a product of two transpositions and σ0(ggx) = 1. This means ggx

is a product of two transpositions contrary to Proposition 3.1.3. Hence |N | ≤ 2.

We use |LI | = |L∆
I ||(LI)

ΓI

(∆)||(LI)(∆∪ΓI)|. From the above |(LI)ΓI

(∆)| ≤ 2|S dI
2

|
and as noted at the beginning of this case |L∆

I | ≤ 3n−r, so applying induction

to (LI)(∆∪ΓI) by identifying it with its action on Γ \ ΓI gives

log(|LI |) ≤ f(dI , r)

= r−dI
2 log(r − dI)− r−dI

2 log(2)− r−dI
2 +

1
2 log(π(r − dI)) + 1

6(r−dI) + 3.5 + (n− r) log(3)

+ log(2) + dI
2 log(dI2 )− dI

2 + 1
2 log(πdI) + 1

6dI
∂f
∂r = 1

2 log(r − dI)− 1
2 log(2) + 1

2(r−dI) −
1

6(n−r)2 − log(3)
∂2f
∂r2 = 1

2(r−dI) −
1

2(r−dI)2 + 1
3(n−r)3 > 0

so the bound is maximised by r = dI , r = dI + 1 or r = n. If r = n then

log(|LI |) ≤ g(dI)

= n−dI
2 log(n− dI)− n−dI

2 log(2)− n−dI
2 +

1
2 log(π(n− dI)) + 1

6(n−dI) + 3.5

+ log(2) + dI
2 log(dI2 )− dI

2 + 1
2 log(πdI) + 1

6dI

g′(dI) = − 1
2 log(n− dI) + 1

2 log(2)− 1
2(n−dI) + 1

6(n−dI)2

+ 1
2 log(dI2 ) + 1

2dI
− 1

6d2
I

g′′(dI) = 1
2(n−dI) −

1
2(n−dI)2 + 1

3(n−dI)3 + 1
2dI
− 1

2d2
I

+ 1
3d3

I
> 0
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so the bound is maximised by either dI = n
1
4 or dI = n−

√
n

2 . In each case

the bound is less than log(|Bn|) and therefore τ(n). If r = di + 1 then

log(|LI |) ≤ g(dI)
1
2 log(π) + 1

6 + 3 + (n− di − 1) log(3)

+ 1
2 log(2) + dI

2 log(dI2 )− dI
2 + 1

2 log(πdI) + 1
6dI

g′(dI) = − log(3) + 1
2 log(di2 ) + 1

2dI
− 1

6d2
I

g′′(dI) = 1
2dI
− 1

2d2
I

+ 1
3d3

I
> 0

so the bound is maximised by either dI = n
1
4 or dI = n−

√
n

2 . In each case

the bound is less than log(|Bn|) and therefore τ(n). If r = dI then

log(|LI |) ≤ g(dI)

= (n− dI) log(3) + log(2) + dI
2 log(dI2 )− dI

2 + 1
2 log(πdI) + 1

6dI

g′(dI) = − log(3) + 1
2 log(dI2 ) + 1

2dI
− 1

6d2
I

g′′(dI) = 1
2dI
− 1

2d2
I

+ 1
3d3

I
> 0

so the bound is maximised by either dI = n
1
4 or dI = n−

√
n

2 . In each case

the bound is less than log(|Bn|) and therefore τ(n).

Case 2: 3 ≤ m = max(dp, bI) ≤ n
1
3

Let ΓI be the union of orbits Ω for which |Ω| = m or LΩ
I is imprimitive with

a block of size m, denote r = |ΓI |. Note that we may embed LΓI

I into Sm o S r
m

to obtain |LΓI

I | ≤ (m!)
r
m

r
m !.

If r = n then

log(|LI |) ≤ g(m)

= n log(m)− n+ n
2m log(2πm) + n

12m2

+ n
m log( nm )− n

m + 1
2 log(2π n

m ) + m
12n

g′(m) = n
m + n

2m2 − n
2m2 log(2πm)− n

6m3

− n
m2 log( nm )− 1

2m + 1
12n

g′′(m) = − n
m2 − n

m3 − n
2m3 + n

m3 log(2πm)

+ n
2m4 + n

m3 + 2n
m3 log( nm ) + 1

2m2

g′(m) + m
2 g
′′(m) = n

2m + n
4m2 + n

12m3 − 1
4m + 1

12n > 0

hence either g′(m) > 0 or g′′(m) > 0 which is only possible if the bound

is maximised by either m = 3 or m = n
1
3 . In each case the bound is below

log(|Bn|).
If r ≤ n− 1 then we apply induction to (LI)(ΓI) to assume

log(|(LI)(ΓI)|) ≤
n− r

2
log(n−r)−n− r

2
log(2)−n− r

2
+

1

2
log(π(n−r))+ 1

6(n− r)
+3.5
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Hence

log(|LI |) ≤ f(r)

= n−r
2 log(n− r)− n−r

2 log(2)− n−r
2 + 1

2 log(π(n− r)) + 1
6(n−r) + 3.5

+r log(m)− r + r
2m log(2πm) + r

12m2

+ r
m log( rm )− r

m + 1
2 log(2π r

m ) + m
12r

Differentiating this bound with respect to r gives

f ′(r) = − 1
2 log(n− r) + 1

2 log(2)− 1
2(n−r) + 1

6(n−r)2 + log(m)− 1+
1

2m log(2πm) + 1
12m2 + 1

m log( rm ) + 1
2r −

m
12r2

f ′′(r) = 1
2(n−r) −

1
2(n−r)2 + 1

3(n−r)3 + 1
rm −

1
2r2 + m

6r3 > 0

so the bound is maximised by r = n− 1 or r = m. If r = n− 1 then

log(|LI |) ≤ g(m)

= − 1
2 log(2)− 1

2 + 1
2 log(π) + 1

6 + 3.5

n log(m)− n+ n
2m log(2πm) + n

12m2

+ n
m log( nm )− n

m + 1
2 log(2π n

m ) + m
12n

g′(m) = n
m + n

2m2 − n
2m2 log(2πm)− n

6m3

− n
m2 log( nm )− 1

2m + 1
12n

g′′(m) = − n
m2 − n

m3 − n
2m3 + n

m3 log(2πm)

+ n
2m4 + n

m3 + 2n
m3 log( nm ) + 1

2m2

g′(m) + m
2 g
′′(m) = n

2m + n
4m2 + n

12m3 − 1
4m + 1

12n > 0

hence either g′(m) > 0 or g′′(m) > 0 which is only possible if the bound

is maximised by either m = 3 or m = n
1
3 . In each case the bound is below

log(|Bn|). If r = m then

log(|LI |) ≤ g(m)

= n−m
2 log(n−m)− n−m

2 log(2)− n−m
2

+ 1
2 log(π(n−m)) + 1

6(n−m) + 3.5

+m log(m)−m+ 1
2 log(2πm) + 1

12m

−1 + 1
2 log(2π) + 1

12

g′(m) = − 1
2 log(n−m) + 1

2 log(2)− 1
2(n−m) + 1

6(n−m)2 + log(m) + 1
2m −

1
12m2

g′′(m) = 1
2(n−m) −

1
2(n−m)2 + 1

3(n−m)3 + 1
m −

1
2m2 + 1

6m3 > 0

so the bound is maximised by either m = 3 or m = n
1
3 . In each case the

bound is below log(|Bn|).
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Case 3: m = max(dp, bI) ≥ n
1
3

First suppose there is some orbit ΓI such that LΓI

I is imprimitive with

minimal block ∆ ⊂ ΓI of size m such that ((LI)∆)
∆

does not contain Am. Then

with r = |ΓI | we have LΓI

I ≤ 3r( rm !). Recall that we may assume r ≤ n − n
1
2

2 .

This gives

log(LI) = log((LI)ΓI
) + log(LΓI

I )

≤ f(r,m)

= n−r
2 log(n− r)− n−r

2 log(2)− n−r
2 + 1

2 log(π(n− r)) + 1
6(n−r) + 3.5

+r log(3) + r
m log( rm )− r

m + 1
2 log(2π r

m ) + m
12r

∂f
∂m = − r

m2 log( rm )− 1
2m + 1

12r < 0

so f(r,m) is maximised by m = n
1
3 giving

log(LI) ≤ g(r) = f(r, n
1
3 )

= n−r
2 log(n− r)− n−r

2 log(2)− n−r
2 + 1

2 log(π(n− r)) + 1
6(n−r) + 3.5

+r log(3) + r

n
1
3

log( r

n
1
3

)− r

n
1
3

+ 1
2 log(2π r

n
1
3

) + n
1
3

12r

g′(r) = − 1
2 log(n−r2 )− 1

2(n−r) + 1
6(n−r)2

log(3) + 1

n
1
3

log( r

n
1
3

) + 1
2r −

n
1
3

12r2

g′′(r) = 1
2(n−r) −

1
2(n−r)2 + 1

3(n−r)3 + 1

rn
1
3
− 1

2r2 + n
1
3

6r3 > 0

so g(r) is maximised by either r = 2n
1
3 or r = n − n

1
2

2 . In both cases the

bound is below log(|Bn|).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

So we may suppose that every orbit Ω for which LΩ
I is imprimitive with

minimal block of length m satisfies ((LI)Ω)
Ω ≥ Am.

Let ΓI be the union of orbits Ω of LI for which either LΩ
I is imprimitive with

a minimal block Ωb of size m or |Ω| = m and LΩ
I contains Am. Let r = |ΓI |

and BI = {Ω1, . . . ,Ω r
m
} be a set of disjoint blocks and orbits of size m with

ΓI = ∪
r
m
i=1Ωi.

We then have that
(
(LI)(BI)

)ΓI
contains a subdirect product N of A

r
m
m which

is normal in LI . In particular N ∼= Aum for some u, where each copy of Am acts

diagonally on some of the orbits of A
r
m
m and the orbits any two copies of Am act

non-trivially on are distinct.
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Case 3.a. u ≤ r
2m :

Assume u ≤ r
2m . Then LΓI

I embeds into Sm o S r
m

with |LΓI

I ∩ Sm| ≤ (m!)u.

Letting t = 1
m and denoting the following bound on log(LI) by f(t, r, u),

log(|LI |) = log(|(LI)(ΓI)|) + log(|LΓI

I |)
≤ n−r

2 log(n− r)− n−r
2 log(2)− n−r

2 + 1
2 log(π(n− r)) + 1

6(n−r) + 3.5

+um log(m)− um+ u
2 log(2πm) + u

12m

+ r
m log( rm )− r

m + 1
2 log(2π r

m ) + m
12r

f(t, r, u) = n−r
2 log(n− r)− n−r

2 log(2)− n−r
2 + 1

2 log(π(n− r)) + 1
6(n−r) + 3.5

−ut log(t)− u
t −

u
2 log( t

2π ) + ut
12

+rt log(rt)− rt+ 1
2 log(2πrt) + 1

12rt
∂f
∂u = − 1

t log(t)− 1
t −

1
2 log( t

2π ) + t
12 > 0

For fixed r, bI this means f(t, r, u) is maximised by u = r
2m . Substituting

u = r
2m in we obtain

g(t, r) = f(t, r, r
2m )

= n−r
2 log(n− r)− n−r

2 log(2)− n−r
2 + 1

2 log(π(n− r)) + 1
6(n−r) + 3.5

− r2 log(t)− r
2 −

rt
4 log( t

2π ) + rt2

24

+rt log(rt)− rt+ 1
2 log(2πrt) + 1

12rt
∂g
∂t = − r

2t −
r
4 −

r
4 log( t

2π ) + rt
12 + r log(rt) + 1

2t −
1

12rt2

∂2g
∂t2 = r

2t2 −
r
4t + r

12 + r
t −

1
2t2 + 1

6rt3 > 0

Note that if m > 1
2

(
n−

√
n

2

)
then r > n−

√
n

2 so, as 3m > n for n ≥ 3, either

ΓI is a single orbit of size r or ΓI is a union of two orbits of size m - in either

case LI has no other orbit of size at least m and we can apply Proposition 3.1.25

or Proposition 3.1.26. Hence we may also assume m ≤ 1
2

(
n−

√
n

2

)
. Therefore

g(t, r) is maximised by either m = 5 or m = 1
2

(
n−

√
n

2

)
for r ≥

(
n−

√
n

2

)
and

m = r
2 if r ≤

(
n−

√
n

2

)
. Testing each case in turn,

h(r) = f( 1
5 , r,

r
10 )

= n−r
2 log(n− r)− n−r

2 log(2)− n−r
2 + 1

2 log(π(n− r)) + 1
6(n−r) + 3.5

+ r
2 log(5)− r

2 + r
20 log(10π) + r

600

+ r
5 log( r5 )− r

5 + 1
2 log(2π r5 ) + 5

12r

h′(r) = − 1
2 log(n− r) + 1

2 log(2)− 1
2(n−r) + 1

6(n−r)2

+ 1
2 log(5)− 1

2 + 1
20 log(10π) + 1

600 + 1
5 log( r5 ) + 1

2r −
5

12r2

h′′(r) = 1
2(n−r) −

1
2(n−r)2 + 1

3(n−r)3 + 1
5r −

1
2r2 + 5

6r3 > 0
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h(r) = f( 4
2n−
√
n
, r, 2r

2n−
√
n

)

= n−r
2 log(n− r)− n−r

2 log(2)− n−r
2 + 1

2 log(π(n− r)) + 1
6(n−r) + 3.5

+ r
2 log( 2n−

√
n

4 )− r
2 + r

2n−
√
n

log(π(2n−
√
n)

2 ) + 2r
3(2n−

√
n)2

+ 4r
2n−
√
n

log( 4r
2n−
√
n

)− 4r
2n−
√
n

+ 1
2 log(π 8r

2n−
√
n

) + 2n−
√
n

48r

h′(r) = − 1
2 log(n− r) + 1

2 log(2)− 1
2(n−r) + 1

6(n−r)2

+ 1
2 log( 2n−

√
n

4 )− 1
2 + 1

2n−
√
n

log(π(2n−
√
n)

2 ) + 2
3(2n−

√
n)2

+ 4
2n−
√
n

log( 4r
2n−
√
n

) + 1
2r −

2n−
√
n

48r2

h′′(r) = 1
2(n−r) −

1
2(n−r)2 + 1

3(n−r)3 + 4
r(2n−

√
n)
− 1

2r2 + 2n−
√
n

24r3 > 0

h(r) = f( 2
r , r, 1)

= n−r
2 log(n− r)− n−r

2 log(2)− n−r
2 + 1

2 log(π(n− r)) + 1
6(n−r) + 3.5

+ r
2 log( r2 )− r

2 + 1
2 log(rπ) + 1

6r

+2 log(2)− 2 + 1
2 log(4π) + 1

24

h′(r) = − 1
2 log(n− r) + 1

2 log(2)− 1
2(n−r) + 1

6(n−r)2

+ 1
2 log( r2 ) + 1

2r −
1

6r2

h′′(r) = 1
2(n−r) −

1
2(n−r)2 + 1

3(n−r)3 + 1
2r −

1
2r2 + 1

3r3 > 0

This gives the following values of (m, r, u) for which f(t, r, u) is maximised:

• (5, n
1
4 , n

1
4

10 )

• (5, n, n50 )

• (5, n− 1, n−1
10 )

• ( 1
2

(
n−

√
n

2

)
, n−

√
n

2 , 1)

• ( 1
2

(
n−

√
n

2

)
, n, 2n

2n−
√
n

)

• ( 1
2

(
n−

√
n

2

)
, n− 1, 2n

2n−
√
n

)

• (n
1
4

2 , n
1
4 , 1)

All are below log(|Bn|).
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Case 3.b. u > r
2m :

If u > r
2m then there are at least 2u − r

m copies of Am in N which act

non-trivially on just one orbit of A
r
m
m . By Lemma 3.1.3 any preimage of any

such copy of Am must act on an orbit Ω of LI not contained in ΓI . Fix such an

Ω.

Let M be a minimal subgroup of (LI)(BI) such that MΓI = N and denote

by φ : M → A
r
m
m the natural projection defined by action on ΓI . Denote

N = N1 × · · · ×Nu with Ni ∼= Am for each i. Reordering if necessary, we may

assume that φ−1(Ni)
Ω > ker(φ)Ω (so φ−1(Ni)

Ω/ ker(φ)Ω ∼= Am) for i = 1, . . . , s

and φ−1(Ni)
Ω = ker(φ)Ω for i = s+ 1, . . . , u.

If MΩ/ ker(φ)Ω 6∼= Asm then K = {x ∈ N1 × · · · × Ns|φ−1(x)Ω = ker(φ)Ω}
is non-trivial. Relabelling if necessary we may assume that K projects trivially

onto N1, . . . , Nt and projects non-trivially onto Nt+1, . . . , Ns. Let

M0 = 〈φ−1(N1 × · · · ×Nt ×Ns+1 × · · · ×Nu), φ−1(K)M 〉

Clearly MΓi
0 = N and, using φ−1(K)Ω = ker(φ)Ω, we have M0 < M contrary to

assumption. Hence we have MΩ/ ker(φ)Ω ∼= Asm. Let ∆′ be the union of orbits

of LI on which M acts non-trivially.

If g ∈ (LI)(BI) with gΓI 6= 1 then we can choose h ∈ M with [hΓI , gΓI ] acts

non-trivially on the same blocks in Γi as g. Suppose g acts trivially on ∆′. Then

so does [hΓI , gΓI ], but h acts non-trivially only on ΓI ∪ ∆′, so [hΓI , gΓI ] acts

non-trivially only on ΓI . By Lemma 3.1.14, [hΓI , gΓI ] must act diagonally

on some orbits or blocks of size m, so g must also. Therefore if a copy of

Am appearing in N ∼= Aum acts on only one orbit of A
r
m
m then it must act

non-trivially on ∆′.

Fix such a copy N0 of Am and let ∆′′ ⊆ ∆′ be the union of orbits of LI on

which N0 acts non-trivially. Fix an orbit Ω ⊆ ∆′′ of LI . Then since N0 acts

non-trivially on Ω, LΩ
I has Am as a chief factor. By Lemma 3.1.28, denoting

s = |Ω| either LΩ
I is primitive, embeds into S2 o Sm or

log(|LΩ
I |) ≤

s

2
log(

s

2
)− s

2
+ log(π

s

2
) +

1

3s
+ log(2) + 16

Suppose LΩ
I embeds into S2 o Sm for each such Ω and let g1, g2 ∈ N0

identify with (1, 2, 3) and (3, 4, 5) in Am respectively. Replacing g1 and g2

with g4
1 and g4

2 respectively if necessary, the image of g1 and g2 in S2 o Sm
through each LΩ

I must, after appropriate numbering, be (1, 3, 5)(2, 4, 6) and

(5, 7, 9)(6, 8, 10) respectively. The image of g1(g1)g2 in S2 o Sm through each

LΩ
I is then (1, 7)(2, 8)(3, 5)(4, 6), but the image of g1(g1)g2 in Am is (1, 4)(2, 3).

This means that g1(g1)g2 is a product of 2 (mod 4) transpositions, contradicting

Proposition 3.1.3. Hence there is some orbit, which we denote by ∆, such that,
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with either L∆
I primitive or with s = |∆|,

log(|L∆
I |) ≤

s

2
log(

s

2
)− s

2
+ log(π

s

2
) +

1

3s
+ log(2) + 16

If L∆
I is primitive and L∆

I ≥ A|∆| then (LI)(BI) ≥ A|∆|, m = |∆| and L∆
I

therefore has an orbit of size m containing Am contrary to assumption. So if L∆
I

is primitive then L∆
I does not contain A|∆| and therefore has size at most 3|∆|.

Case 3.b.i L∆
I Primitive:

log(|LI |) = log(|(LI)(ΓI∪∆)|) + log(|((LI)(∆))
ΓI |) + log(|L∆

I |)
≤ f(r, s,m)

= n−r−s
2 log(n− r − s)− n−r−s

2 log(2)− n−r−s
2

+ 1
2 log(π(n− r − s)) + 1

6(n−r−s) + 3.5

+ r
2 log(m)− r

2 + r
4m log(2πm) + r

24m2

+ r
m log( rm )− r

m + 1
2 log(2π r

m ) + m
12r + s log(3)

∂f
∂s = − 1

2 log(n− r − s) + 1
2 log(2)− 1

2(n−r−s) + 1
6(n−r−s)2 + log(3)

∂2f
∂s2 = 1

2(n−r−s) −
1

2(n−r−s)2 + 1
3(n−r−s)3 > 0

so f(r, s,m) is maximised by either s = m, s = n − r − 1 or s = n − r. If

s = m then

g(r,m) = f(r,m,m)

= n−r−m
2 log(n− r −m)− n−r−m

2 log(2)− n−r−m
2

+ 1
2 log(π(n− r −m)) + 1

6(n−r−m) + 3.5

+ r
2 log(m)− r

2 + r
4m log(2πm) + r

24m2

+ r
m log( rm )− r

m + 1
2 log(2π r

m ) + m
12r +m log(3)

∂g
∂r = − 1

2 log(n− r −m) + 1
2 log(2)− 1

2(n−r−m) + 1
6(n−r−m)2

+ 1
2 log(m)− 1

2 + 1
4m log(2πm) + 1

24m2 + 1
m log( rm ) + 1

2r −
m

12r2

∂2g
∂r2 = 1

2(n−r−m) −
1

2(n−r−m)2 + 1
3(n−r−m)3 + 1

rm −
1

2r2 + m
6r3 > 0

so g(r,m) is maximised by either r = m, r = n −m − 1 or r = n −m. If

r = m then

h(m) = f(m,m,m)

= n−2m
2 log(n− 2m)− n−2m

2 log(2)− n−2m
2

+ 1
2 log(π(n− 2m)) + 1

6(n−2m) + 3.5

+m
2 log(m)− m

2 + 1
4 log(2πm) + 1

24m

−1 + 1
2 log(2π) + 1

12 +m log(3)

h′(m) = − log(n− 2m) + log(2)− 1
n−2m + 1

3(n−2m)2 + 1
2 log(m) + 1

4m −
1

24m2

h′′(m) = 2
n−2m −

2
(n−2m)2 + 4

3(n−2m)3 + 1
2m −

1
4m2 + 1

12m3 > 0

so h(m) is maximised by m = n
1
3 , m = n−1

2 or m = n
2 . In each case the

bound is below log(|Bn|).
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If instead r = n−m− 1 then, setting t = 1
m ,

h(t) = f(n−m− 1,m,m)

= 1
2 log(2)− 1

2 + 1
2 log(π) + 1

6 + 3.5

+ (n−m−1)
2 log(m)− (n−m−1)

2 + n−m−1
4m log(2πm) + n−m−1

24m2

+n−m−1
m log(n−m−1

m )− n−m−1
m + 1

2 log(2π n−m−1
m ) + m

12(n−m−1) +m log(3)

= 1
2 log(2)− 1

2 + 1
2 log(π) + 1

6 + 3.5− (n− 1
t−1)

2 log(t)− (n− 1
t−1)

2

−(nt4 −
1
2 −

t
4 ) log( t

2π ) + nt2

24

− t
24 −

t2

24 + (nt− 1− t) log(nt− 1− t)− (nt− 1− t)
+ 1

2 log(2π(nt− 1− t)) + 1
12(nt−1−t) + log(3)

t

h′(t) = −n−1
2t −

1
2t2 log(t)− n

4 + 1
2t + 1

4 − (n4 −
1
4 ) log( t

2π ) + nt
12 −

1
24 −

t
12

+(n− 1) log(nt− 1− t) + n−1
2(nt−1−t) −

n−1
12(nt−1−t)2 − log(3)

t2

h′′(t) = n−1
2t2 −

1
2t3 + 1

t3 log(t)− 1
2t2 −

n
4t + 1

4t + n
12 −

1
12

+ (n−1)2

nt−1−t −
(n−1)2

2(nt−1−t)2 + (n−1)2

6(nt−1−t)3 + 2 log(3)
t3 > 0

so h(m) is maximised by m = n
1
3 or m = n−1

2 . In each case the bound is

below log(|Bn|).
If instead r = n−m then, setting t = 1

m ,

h(t) = f(n−m,m,m)
(n−m)

2 log(m)− (n−m)
2 + n−m

4m log(2πm) + n−m
24m2

+n−m
m log(n−mm )− n−m

m + 1
2 log(2π n−mm ) + m

12(n−m) +m log(3)

= − (n− 1
t )

2 log(t)− (n− 1
t )

2

−(nt4 −
1
2 ) log( t

2π ) + nt2

24

− t
24 + (nt− 1) log(nt− 1)− (nt− 1)

+ 1
2 log(2π(nt− 1)) + 1

12(nt−1) + log(3)
t

h′(t) = − n
2t −

1
2t2 log(t)− n

4 + 1
2t + 1

4 −
n
4 log( t

2π ) + nt
12 −

1
24

+n log(nt− 1) + n
2(nt−1) −

n
12(nt−1)2 − log(3)

t2

h′′(t) = n
2t2 −

1
2t3 + 1

t3 log(t)− 1
2t2 −

n
4t + n

12

+ n2

nt−1 −
n2

2(nt−1)2 + n2

6(nt−1)3 + 2 log(3)
t3 > 0

so h(m) is maximised by m = n
1
3 or m = n

2 . In each case the bound is below

log(|Bn|).
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If instead s = n− r − 1 then

g(r,m) = f(r, n− r − 1,m)

= − 1
2 log(2)− 1

2 + 1
2 log(π) + 1

6 + 3.5

+ r
2 log(m)− r

2 + r
4m log(2πm) + r

24m2

+ r
m log( rm )− r

m + 1
2 log(2π r

m ) + m
12r + (n− r − 1) log(3)

∂g
∂r = 1

2 log(m)− 1
2 + 1

4m log(2πm) + 1
24m2 + 1

m log( rm ) + 1
2r −

m
12r2 − log(3)

∂2g
∂r2 = 1

mr −
1

2r2 + m
6r3 > 0

so g(r,m) is maximised by r = m or r = n−m. If r = m then

h(m) = f(m,n−m− 1,m)

= − 1
2 log(2)− 1

2 + 1
2 log(π) + 1

6 + 3.5 + m
2 log(m)− m

2

+ 1
4 log(2πm) + 1

24m − 1 + 1
2 log(2π) + 1

12 + (n−m− 1) log(3)

h′(m) = 1
2 log(m) + 1

4m −
1

24m2 − log(3)

One can check that h′(m) < 0 if and only if m < 9, so h(m) is maximised

by either m = n
1
3 or m = n−1

2 . In each case the bound is below log(|Bn|).
If instead r = n−m then setting t = 1

m

h(t) = f(n− t−1, t−1 − 1, t−1)

= − 1
2 log(2)− 1

2 + 1
2 log(π) + 1

6 + 3.5

− (n−t−1)
2 log(t)− n−t−1

2 − nt−1
4 log( t

2π ) + nt2−t
24

+(nt− 1) log(nt− 1)− (nt− 1) + 1
2 log(2π(nt− 1))

+ 1
12(nt−1) + (t−1 − 1) log(3)

h′(t) = − n
2t −

1
2t2 log(t) + 1

4t −
n
4 −

n
4 log( t

2π ) + nt
12 −

1
24

+n log(nt− 1) + n
2(nt−1) −

n
12(nt−1)2 − 1

t2 log(3)

h′′(t) = n
2t2 −

1
2t3 + 1

t3 log(t)− 1
4t2 −

n
4t + n

12 + n2

(nt−1) −
n2

2(nt−1)2 + n2

6(nt−1)3 + 2
t3 log(3)

= m3( n
2m + 2 log(3)− 1

2 − log(m)− 1
4m −

n
4m2 ) + n

12 + n2

(nt−1) −
n2

2(nt−1)2 + n2

6(nt−1)3

If m ≤ n
2 log(n) we can see that h′′(t) > 0 and if m ≥ n

2 log(n) then 2
n−1 ≤ t ≤

2 log(n)
n gives

h′(t) ≥ −n(n−1)
4 − (n−1)2

8 log( 2
n−1 ) + n

8 log(n) −
n
4 −

n
4 log( log(n)

πn ) + n
6(n−1) −

1
24

+ n
2(2 log(n)−1) −

n
12(n 2

n−1−1)2 −
(n−1)2

4 log(3)

> 0

so h(t) is maximised by m = n
1
3 . In which case the bound is below log(|Bn|).
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If instead s = n− r then

g(r,m) = f(r, n− r − 1,m)

= r
2 log(m)− r

2 + r
4m log(2πm) + r

24m2

+ r
m log( rm )− r

m + 1
2 log(2π r

m ) + m
12r + (n− r) log(3)

∂g
∂r = 1

2 log(m)− 1
2 + 1

4m log(2πm) + 1
24m2 + 1

m log( rm ) + 1
2r −

m
12r2 − log(3)

∂2g
∂r2 = 1

mr −
1

2r2 + m
6r3 > 0

so g(r,m) is maximised by r = m or r = n−m. If r = m then

h(m) = f(m,n−m− 1,m)

= m
2 log(m)− m

2

+ 1
4 log(2πm) + 1

24m − 1 + 1
2 log(2π) + 1

12 + (n−m) log(3)

h′(m) = 1
2 log(m) + 1

4m −
1

24m2 − log(3)

One can check that h′(m) < 0 if and only if m < 9, so h(m) is maximised

by either m = n
1
3 or m = n

2 . In each case the bound is below log(|Bn|).
If instead r = n−m then setting t = 1

m

h(t) = f(n− t−1, t−1 − 1, t−1)

= − (n−t−1)
2 log(t)− n−t−1

2 − nt−1
4 log( t

2π ) + nt2−t
24

+(nt− 1) log(nt− 1)− (nt− 1) + 1
2 log(2π(nt− 1))

+ 1
12(nt−1)

h′(t) = − n
2t −

1
2t2 log(t) + 1

4t −
n
4 −

n
4 log( t

2π ) + nt
12 −

1
24

+n log(nt− 1) + n
2(nt−1) −

n
12(nt−1)2

h′′(t) = n
2t2 −

1
2t3 + 1

t3 log(t)− 1
4t2 −

n
4t + n

12 + n2

(nt−1) −
n2

2(nt−1)2 + n2

6(nt−1)3

= m3( n
2m −

1
2 − log(m)− 1

4m −
n

4m2 ) + n
12 + n2

(nt−1) −
n2

2(nt−1)2 + n2

6(nt−1)3

If m ≤ n
2 log(n) we can see that h′′(t) > 0 and if m ≥ n

2 log(n) then 2
n−1 ≤ t ≤

2 log(n)
n gives

h′(t) ≥ −n(n−1)
4 − (n−1)2

8 log( 2
n−1 ) + n

8 log(n) −
n
4 −

n
4 log( log(n)

πn ) + n
6(n−1) −

1
24

+ n
2(2 log(n)−1) −

n
12(n 2

n−1−1)2

> 0

so h(t) is maximised by m = n
1
3 . In which case the bound is below log(|Bn|).
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Case 3.b.ii L∆
I Imprimitive

log(|LI |) = log(|(LI)(ΓI∪∆)|) + log(|((LI)(∆))
ΓI |) + log(|L∆

I |)
≤ f(r, s,m)

= n−r−s
2 log(n− r − s)− n−r−s

2 log(2)− n−r−s
2

+ 1
2 log(π(n− r − s)) + 1

6(n−r−s) + 3.5

+ r
2 log(m)− r

2 + r
4m log(2πm) + 1

24m2

+ r
m log( rm )− r

m + 1
2 log(2π r

m ) + m
12r

+ s
2 log( s2 )− s

2 + log(π s2 ) + 1
3s + log(2) + 16

∂f
∂s = − 1

2 log(n− r − s) + 1
2 log(2)− 1

2(n−r−s) + 1
6(n−r−s)2

+ 1
2 log( s2 ) + 1

s −
1

3s2

∂2f
∂s2 = 1

2(n−r−s) −
1

2(n−r−s)2 + 1
3(n−r−s)3 + 1

2s −
1
s2 + 2

3s3 > 0

so for fixed r,m f(r, s,m) is maximised by either s = 2m, s = n− r − 1 or

s = n− r. If s = 2m then

g(r,m) = f(r, 2m,m)

= n−r−2m
2 log(n− r − 2m)− n−r−2m

2 log(2)− n−r−2m
2

+ 1
2 log(π(n− r − 2m)) + 1

6(n−r−2m) + 3.5

+ r
2 log(m)− r

2 + r
4m log(2πm) + r

24m2

+ r
m log( rm )− r

m + 1
2 log(2π r

m ) + m
12r

+m log(m)−m+ log(πm) + 1
6m + log(2) + 16

∂g
∂r = − 1

2 log(n− r − 2m) + 1
2 log(2)− 1

2(n−r−2m) + 1
6(n−r−2m)2

+ 1
2 log(m)− 1

2 + 1
4m log(2πm) + 1

24m2 + 1
m log( rm ) + 1

2r −
m

12r2

∂2g
∂r2 = 1

2(n−r−2m) −
1

2(n−r−2m)2 + 1
3(n−r−2m)3 + 1

mr −
1

2r2 + m
6r3 > 0

so g(r,m) is maximised by r = m, r = n− 2m− 1 or r = n− 2m. If r = m

then

h(m) = f(m, 2m,m)

= n−3m
2 log(n− 3m)− n−3m

2 log(2)− n−3m
2

+ 1
2 log(π(n− 3m)) + 1

6(n−3m) + 3.5 + m
2 log(m)− m

2

+ 1
4 log(2πm) + 1

24m − 1 + 1
2 log(2π) + 1

12

+m log(m)−m+ log(πm) + 1
6m + log(2) + 16

h′(m) = − 3
2 log(n− 3m) + 3

2 log(2)− 3
2(n−3m) + 1

2(n−3m)2

+ 1
2 log(m) + 1

4m −
1

24m2

+ log(m) + 1
m −

1
6m2

h′′(m) = 9
2(n−3m) −

9
2(n−3m)2 + 3

(n−3m)3 + 3
2m −

5
4m2 + 1

3m3 > 0

so h(m) is maximised by m = n
1
3 , m = n−1

4 or m = n
4 . In each case the

bound is below log(|H|).
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If instead r = n− 2m− 1 then

h(m) = f(n− 2m− 1, 2m,m)

= − 1
2 log(2)− 1

2 + 1
2 log(π) + 1

6 + 3.5 + n−2m−1
2 log(m)

−n−2m−1
2 + n−2m−1

4m log(2πm) + n−2m−1
24m2

+n−2m−1
m log(n−2m−1

m )− n−2m−1
m + 1

2 log(2π n−2m−1
m ) + m

12(n−2m−1)

+m log(m)−m+ log(πm) + 1
6m + log(2) + 16

h′(m) = n−1
2m − log(m) + n−2m−1

4m2 − n−1
4m2 log(2πm)− n−1

12m3 + 1
12m2

−n−1
m2 log(n−2m−1

m )− n−1
2m(n−2m−1) + n−1

12(n−2m−1)2

+ log(m) + 1
m −

1
6m2

h′′(m) = −n−1
2m2 − n−1

2m3 + 1
2m2 − n−1

4m3 + n−1
2m3 log(2πm) + n−1

4m4 − 1
6m3 + (n−1)2

m3(n−2m−1)

+ 2(n−1)
m3 log(n−2m−1

m ) + (n−1)(n−4m−1)
2m2(n−2m−1)2 + n−1

3(n−2m−1)3 − 1
m2 + 1

6m3

Notice that

h′(m) +mh′′(m) = 1
2m −

n−1
2m2 + n−1

4m2 log(2πm) + n−1
6m3 − 1

12m2 + (n−1)2

m3(n−2m−1)

+n−1
m2 log(n−2m−1

m )− n−1
2m(n−2m−1) + n−1

12(n−2m−1)2

+ (n−1)(n−4m−1)
2m(n−2m−1)2 + m(n−1)

3(n−2m−1)3 + 1
12m2 > 0

so at all times either h′(m) > 0 or h′′(m) > 0 which is only possible if h(m)

is maximised by either m = n
1
3 or m = n−1

3 . In each case the bound is below

log(|Bn|).
If instead r = n− 2m then

h(m) = f(n− 2m, 2m,m)

= n−2m
2 log(m)− n−2m

2 + n−2m
4m log(2πm) + n−2m

24m2

+n−2m
m log(n−2m

m )− n−2m
m + 1

2 log(2π n−2m
m ) + m

12(n−2m)

+m log(m)−m+ log(πm) + 1
6m + log(2) + 16

h′(m) = n
2m − log(m) + n−2m

4m2 − n
4m2 log(2πm)− n

12m3 + 1
12m2

− n
m2 log(n−2m

m )− n
2m(n−2m) + n

12(n−2m)2

+ log(m) + 1
m −

1
6m2

h′′(m) = − n
2m2 − n

2m3 + 1
2m2 − n

4m3 + n
2m3 log(2πm) + n

4m4 − 1
6m3 + n2

m3(n−2m)

+ 2n
m3 log(n−2m

m ) + n(n−4m)
2m2(n−2m)2 + n

3(n−2m)3 − 1
m2 + 1

6m3

Notice that

h′(m) +mh′′(m) = 1
2m −

n
2m2 + n

4m2 log(2πm) + n
6m3 − 1

12m2 + n2

m3(n−2m)

+ n
m2 log(n−2m

m )− n
2m(n−2m) + n

12(n−2m)2

+ n(n−4m)
2m(n−2m)2 + mn

3(n−2m)3 + 1
12m2 > 0
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so at all times either h′(m) > 0 or h′′(m) > 0 which is only possible if h(m)

is maximised by either m = n
1
3 or m = n

3 . In each case the bound is below

log(|Bn|).
If instead s = n− r − 1 then

g(r,m) = f(r, n− r − 1,m)

= − 1
2 log(2)− 1

2 + 1
2 log(π) + 1

6 + 15 + r
2 log(m)− r

2

+ r
4m log(2πm) + r

24m2 + r
m log( rm )− r

m + 1
2 log(2π r

m ) + m
12r

+n−r−1
2 log(n−r−1

2 )− n−r−1
2 + log(π(n− r − 1)) + 1

3(n−r−1) + log(2)
∂g
∂r = 1

2 log(m)− 1
2 + 1

4m log(2πm) + 1
24m2 + 1

m log( rm ) + 1
2r

− m
12r2 − 1

2 log(n−r−1
2 )− 1

n−r−1 + 1
3(n−r−1)2

∂2g
∂r2 = 1

rm −
1

2r2 + m
6r3 + 1

2(n−r−1) −
1

(n−r−1)2 + 2
3(n−r−1)3 > 0

so g(r,m) is maximised by r = m or r = n− 2m− 1. If r = m then

h(m) = f(m,n−m− 1,m)

= − 1
2 log(2)− 1

2 + 1
2 log(π) + 1

6 + 15 + m
2 log(m)− m

2

+ 1
4 log(2πm) + 1

24m − 1 + 1
2 log(2π) + 1

12 + n−m−1
2 log(n−m−1

2 )

−n−m−1
2 + log(π(n−m− 1)) + 1

3(n−m−1) + log(2)

h′(m) = 1
2 log(m) + 1

4m −
1

24m2 − 1
2 log(n−m−1

2 )− 1
n−m−1 + 1

3(n−m−1)2

h′′(m) = 1
2m −

1
4m2 + 1

12m3 + 1
2(n−m−1) −

1
(n−m−1)2 + 2

3(n−m−1)3 > 0

so h(m) is maximised by m = n
1
3 or m = n−1

3 .In each case the bound is

below log(|Bn|).
If instead r = n − 2m − 1 then s = 2m = n − r − 1 which we have already

done.

If instead s = n− r then

g(r,m) = f(r, n− r,m)

= r
2 log(m)− r

2

+ r
4m log(2πm) + r

24m2 + r
m log( rm )− r

m + 1
2 log(2π r

m ) + m
12r

+n−r
2 log(n−r2 )− n−r

2 + log(π(n− r)) + 1
3(n−r) + log(2) + 16

∂g
∂r = 1

2 log(m)− 1
2 + 1

4m log(2πm) + 1
24m2 + 1

m log( rm ) + 1
2r

− m
12r2 − 1

2 log(n−r2 )− 1
n−r + 1

3(n−r)2

∂2g
∂r2 = 1

rm −
1

2r2 + m
6r3 + 1

2(n−r) −
1

(n−r)2 + 2
3(n−r)3 > 0

so g(r,m) is maximised by r = m or r = n− 2m. If r = m then
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h(m) = f(m,n−m,m)

= − 1
2 log(2)− 1

2 + 1
2 log(π) + 1

6 + 15 + m
2 log(m)− m

2

+ 1
4 log(2πm) + 1

24m − 1 + 1
2 log(2π) + 1

12 + n−m
2 log(n−m2 )

−n−m2 + log(π(n−m)) + 1
3(n−m) + log(2)

h′(m) = 1
2 log(m) + 1

4m −
1

24m2 − 1
2 log(n−m2 )− 1

n−m + 1
3(n−m)2

h′′(m) = 1
2m −

1
4m2 + 1

12m3 + 1
2(n−m) −

1
(n−m)2 + 2

3(n−m)3 > 0

so h(m) is maximised by m = n
1
3 or m = n−1

3 . In each case the bound is

below log(|Bn|).
If instead r = n− 2m then s = 2m = n− r which we have already done.

This completes the proof.

Altogether we have proved the main theorem which we restate more

precisely:

Theorem 3.1.31

Fix n ≥ 28 and set k = n
2 if n is even, k = n−1

2 if n is odd.

Define H = 〈t1tk+1, t2tk+2, . . . , tkt2k〉.
If 4|k then setting x = [1, k + 1][2, k + 2] · · · [k, 2k] we have that 〈H,x〉 is a

largest core-free subgroup of 2 ·An. Otherwise H is a largest core-free subgroup

of 2 ·An.

3.2 Classical Groups

Minimal non-trivial, but not necessarily faithful, permutation representations

of classical groups are well studied, for example in [7] and [20].

3.2.1 SLn(q)

In this section we extend the arguments in [7, 20] to compute µ(SLn(q)). We

state the result here for convenience (note that Hi will be defined immediately

after).

For this section fix H = SLn(q), v1, . . . , vn the standard basis of Fnq and

K < H the setwise stabiliser of 〈v1〉 in H. Also let p1, . . . , pk0 be the primes

dividing |Z(H)| and p1, . . . , pk1 be the primes dividing q − 1. For each i fix ei

such that q − 1 = peii ti with pi - ti, di such that |Z(H)| = pdii si with pi - si and

λi ∈ F∗q of order peii .
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Theorem 3.2.1

The following table classifies µ(SLn(q)).

(n, q) µ(SLn(q)) Representation

(2, 2) 3 {C2}
(2, 3) 8 {C3}
(2, 5) 24 {C5}
(2, 9) 80 {C3 × C3}
(4, 2) 8 A6

(n, q) not above, qn−1
q−1 Stabiliser of point in action

|Z(SLn(q))| = 1 on PG(n− 1, q)

(n, q) not above, qn−1
q−1

∑
i∈[k0] p

ei
i {Hi|i ∈ [k0]}

|Z(SLn(q))| > 1

We constuct Hi as follows:

T =

{(
1 0

x In−1

)
|x ∈ Fn−1

q

}
, S =

{(
1 0

0 M

)
|det(M) = 1

}

Di =


a 0 0

0 a−1 0

0 0 In−2

 |a ∈ 〈λj |j 6= i〉

 , Hi = DiST

Notice that S ≤ NH(T ) so ST ≤ H and Di ≤ NH(ST ) so Hi ≤ H.

For i ∈ [k0] we define Mi as follows. If di = ei then let Mi be a generator

of a pi-Sylow subgroup of Z(H). If di < ei then pdii |n so (pi, n − 1) = 1 and

therefore there is some yi ∈ 〈λi〉 with yn−1
i = λ−1

i . In this case we define

Mi =

(
λi 0

0 yIn−1

)

Lemma 3.2.2

For each i ∈ [k0] the following hold:

• pi - |Hi ∩ Z(H)|.

• [H : Hi] = qn−1
q−1 p

ei
i .

• We have that Mi ∈ K has order peii and M
p
ei−di
i
i ∈ Z(H). The subgroup

generated by these Mi is cylic.
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Proof: Recalling that we take actions on the right this means every element of

K has the form (
a 0

x B

)
where a ∈ F×q , xT ∈ Fn−1

q and B ∈ GL(n− 1, q) with det(B) = a−1.

If M ∈ Hi∩Z(H) then M is diagonal and the first entry of M is determined

by its image in Di. By construction Di has no element of order pi so Hi∩Z(H)

has no element of order pi hence pi - |Hi ∩ Z(H)|.
We compute degree as follows:

|T | = qn−1

|S| = |SL(n− 1, q)| =
∏n−2
j=0 q

n−1 − qj

q − 1

|Di| =
q − 1

peii

[H : Hi] =
∏n−1

j=0 q
n−qj

q−1 /

(
qn−1

∏n−2
j=0 q

n−1−qj

q−1
q−1
p
ei
i

)
= qn−1

q−1 p
ei
i

We have det(Mi) = λiy
n−1 = 1 so Mi ∈ K. Clearly the subgroup generated

by such Mi is isomorphic to
∏k0

i=1 Cpeii
so is cyclic. Moreover writing y = λmi so

λ−1
i = λ

m(n−1)
i and therefore λmi = λmn+1

i we have

yp
ei−di
i = λ

mp
ei−di
i

i = λ
mnp

ei−di
i +p

ei−di
i

i

Since pdii |n and λi has order pei this gives yp
ei−di
i = λ

p
ei−di
i
i and therefore

M
p
ei−di
i
i = λ

p
ei−di
i
i In ∈ Z(H)

as required.

Corollary 3.2.3

{H1, . . . ,Hk0
} defines a faithful representation of H.

Proof: As pi - |Hi∩Z(H)| for each prime pi | |Z(H)| we have ∩k0
i=1Hi∩Z(H) = 1

so ∩k0
i=1Hi is core-free.

We will show that {H1, . . . ,Hk0
} defines a minimal representation of H.
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Lemma 3.2.4

Suppose L < H fixes a subspace V of Fnq of dimension d with 2 ≤ d ≤ n − 2

then [H : L] >
∑k0

i=1[H : Hi].

Proof: Let Ld be the set of subspaces of dimension d. Note that n ≥ 4 by

assumption. As H acts transtively on Ld we have

[H : L] ≥ [H : HV ] = |Ld|
=

∏n
i=1(qi−1)∏d

i=1(qi−1)
∏n−d

i=1 (qi−1)

≥
∏n

i=1(qi−1)∏2
i=1(qi−1)

∏n−2
i=1 (qi−1)

= qn−1
q−1

qn−1−1
q2−1

≥ qn−1
q−1 (q + 1)

> qn−1
q−1

∑k1

i=1 p
ei
i

≥
∑k0

i=1[H : Hi]

Lemma 3.2.5

Suppose L < H fixes a subspace of Fnq of dimension 1. Fix I ⊆ [k0] such that

i ∈ I implies pi - |L ∩ Z(H)|. Then [H : L] ≥
∑
i∈I [H : Hi] with equality if and

only if I = {i} for some i and L is conjugate to Hi.

Proof: Reordering if necessary, assume I = {1, . . . , k2} for some k2. Taking the

appropriate conjugate of L we may assume L ≤ K.

If 1 6= Mr
i ∈ L for some r and some i ∈ I then 1 6= M

p
ei−1

i
i ∈ L ∩ Z(H)

contradicting pi - |L ∩ Z(H)|. Hence 〈M1, . . . ,Mk2〉 is a cyclic subgroup of K

intersecting L trivially. This implies [K : L] ≥
∏k2

i=1 p
ei
i . Therefore

[H : L] = [H : K][K : L]

≥ qn−1
q−1

∏k2

i=1 p
ei
i

≥
∑
i∈I [H : Hi]

with equality if and only if i = 1 and therefore L = Hi.

The following is an adaptation of a proof in [7]. We start with the case n = 2

- here Z(H) is either trivial or order 2 so a minimal representation is transitive.

In this case subgroups of PSL(n, q) are well known - the classification of these

subgroups was first given by Dickson and can be found, for example, in [15].
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Theorem 3.2.6

The subgroups of PSL(2, q) with q = pf consists entirely of groups isomorphic

to each of the following.

1. Elementary abelian p-group.

2. Cyclic of order z with z | q±1
k where k = (q − 1, 2).

3. Dihedral group of order 2z with z as in (2).

4. A4 for p > 2 and f ≡ 0 (2).

5. S4 for q2 − 1 ≡ 0 (16).

6. A5 for p = 5 or q2 − 1 ≡ 0 (5).

7. Semidirect product of an abelian group of order pm with a cyclic group of

order t such that m ≤ f , t | pm − 1 and t | q − 1. Subgroups of this form

fix a one-dimensional subspace of F2
q.

8. PSL(2, pm) with m|f .

9. PGL(2, pm) with 2m | f .

Lemma 3.2.7

The following table classifies µ(H) in the case n = 2.

(n, q) µ(H) Point Stabiliser

(2, 2) 3 C2

(2, 3) 8 C3

(2, 5) 24 C5

(2, 9) 80 C3 × C3

H1 as in Lemma 3.2.2 for q odd

(2, q), q /∈ {2, 3, 5, 9} 2ν2(q−1)(q + 1) Point stabiliser in action

on PG(1, q) for q even.

Proof: Suppose L ≤ H is core-free. Then it is isomorphic to its image in

PSL(n, q) so we consider the possible structures of L given in Theorem 3.2.6.

Case q = 2: H ∼= S3 so µ(H) = 3.

Case q = 3: H ∼= Q8 o C3 so if 2|L then Z(H) ≤ L. Hence if L is core-free

then |L| ∈ {1, 3}. Maximal such L satisfies L ∼= C3 hence the result.
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Case q ∈ {5, 9}: SL(2, 5) ∼= 2 ·A5 and SL(2, 9) ∼= 2 ·A6 so the minimal degrees

of these are computed in Section 3.1.

Case 2 | q: In this case Z(H) = 1 so H = PSL(n, q). The result is therefore

given in the Table in Section 1.3.1.

Hereafter we assume q is odd and q /∈ {3, 5, 9}. It is quite straightforward

then to check that the only element of H of order 2 is −In. In particular |L|
must be odd. Each case number below refers to the structure of L as given in

Theorem 3.2.6 - as |L| is odd we rule out cases 4, 5, 6, 8 and 9 immediately. In

each case we show that [H : L] ≥ 2ν2(q−1)(q+ 1). We also see that the bound is

attained in case (7). Note that |H| = q(q − 1)(q + 1).

Case (1): |L| ≤ q so [H : L] ≥ (q + 1)(q − 1) ≥ 2ν2(q−1)(q + 1).

Case (2): |L| ≤ q+1
2 so [H : L] ≥ 2q(q − 1) > 2ν2(q−1)(q + 1).

Case (3):

In this case |L| divides q+1 or q−1. As |L| is odd, |L| 6= q+1 so |L| ≤ q(q−1)

which gives [H : L] ≥ q(q + 1) > 2ν2(q−1)(q + 1).

Case (7):

In this case L fixes a one-dimensional subspace of F 2
q so by Lemma 3.2.5

|L| ≤ |H1| as required.

Proposition 3.2.8

Fix n ≥ 3. If L0 < PSL(n, q) is flag-transitive then (n, q) ∈ {(3, 2), (4, 2)}.

Proof: This is a direct corollary of Theorem A in [24].

For the rest of this section we suppose n ≥ 3 and L < H is core-free and

does not fix any proper non-trivial subspace of Fnq .

Lemma 3.2.9

If L is flag-transitive then q = 2 so µ(H) = µ(PSL(n, q)).

Proof: If L is flag-transitive then it has flag-transitive image in PSL(n, q). By

Proposition 3.2.8, the only values of (n, q) with n ≥ 3 such that PSL(n, q) has

a proper flag-transitive subgroup satisfy q = 2. In this case the center of H is

trivial.
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Before the next technical Lemma, we need to study root subgroups as defined

for example in [21] (we rewrite the definition here for convenience).

Definition 3.2.1

Let τ ∈ GLn(q) and W ⊆ Fnq . We denote

[τ,W ] = 〈τw − w|w ∈W 〉

Let 0 6= x ∈ Fnq and let P ⊂ Fnq be a hyperplane in Fnq . We say τ is a

transvection with center 〈x〉 and axis P if [τ,Fnq ] = 〈x〉 and [τ, P ] = 0.

The root subgroup associated with (〈x〉, P ) is

〈τ ∈ GLn(q)|[T,Fnq ] = 〈x〉, [τ, P ] = 0〉

The above definition is dense and we keep it that way to be consistent with

[21] which we will need later. However the only root subgroups we will need to

care about are those with x = vj and P = 〈vi|i 6= k〉 for some k ≥ j where we

recall v1, . . . , vn is the standard basis. In this case if [τ, P ] = 0 then the only

non-zero row of τ − In is the kth column and if [T,Fnq ] = vj then the kth row of

τ − In must be a multiple of vj . This means the root subgroup associated with

(〈x〉, P ) consists of those τ ∈ GLn(q) with 1 on the diagonal, some λ in position

(k, j) and 0 everywhere else.

Lemma 3.2.10

Assume q 6= 2 and (n, q) 6= (3, 7). Fix I ⊆ [k0] such that i ∈ I implies

p - |L ∩ Z(H)|. Then [H : L] >
∑
i∈I [H : Hi] or both L is transitive on

the points of PG(n− 1, q) and L contains a root subgroup.

Proof:

Note that if (n, q) ∈ {(3, 3), (3, 5), (3, 9), (3, 11)} then k0 = 0 and the result

vacuously holds so assume (n, q) /∈ {(3, 3), (3, 5), (3, 9), (3, 11)}. Assume that

[H : L] ≤
∑
i∈I [H : Hi].

Define

K0 =

(
1 0

0 SLn−1(q)

)
Suppose for all g ∈ H we have L ∩Kg

0 = Kg
0 so for all g ∈ H Lg ∩K0 = K0.

Then immediately L contains a root subgroup. For any two points x, y ∈ Fnq
with 〈x〉 6= 〈y〉 take g ∈ H such that xg = v2 and yg = v3. In particular if

l =


−1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 In−3
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then l ∈ Lg and xgl = yg so lg
−1 ∈ L and xlg

−1

= y. Hence L acts

transitively on the points of PG(n − 1, q). So suppose that L ∩ Kg
0 6= Kg

0 for

some g ∈ H. Replacing L with Lg
−1

we may assume L ∩K0 6= K0.

We have [K0 : K0 ∩ L] ≥ µ(K0) = µ(PSLn−1(q)) = qn−1−1
q−1 so

|L ∩K0| ≤ (q − 1)

n−2∏
r=1

(qn−1 − qr)

We now study L ∩K. Notice that any element of K takes the form(
λ 0

x ΛU

)
=

(
λ 0

0 Λ

)(
1 0

0 U

)(
1 0

(ΛU)−1x In−1

)
for some λ ∈ F×q , x ∈ Fn−1

q , U ∈ SLn−1(q), Λ ∈ GLn−1(q) such that

det(Λ) = λ−1. Note that for any Λ′ with det(Λ′) = λ−1 we may replace Λ with

Λ′ by replacing U with (Λ′)−1ΛU .

In particular, if M0 =
∏
i∈IMi and α ∈ F×q has order q−1∏

i∈I p
ei
i

then

K = 〈M0〉

〈α 0 0

0 α−1 0

0 0 In−2

〉K0T ∼= (Cq−1 × SLn−1(q)) n Cn−1
q

where we recall

T =

{(
1 0

x In−1

)
|x ∈ Fn−1

q

}
If l ∈ L ∩ Mr

0T for some r with Mr
0 6= In then it is easy to check that

lq ∈ 〈M0〉 \ {In} which contradicts p - |L ∩ (Z(H))|. Hence the projection K̃ of

L ∩K onto Cq−1 × SLn−1(q) intersects 〈M0〉 trivially.

Suppose K̃∩SLn−1(q) = SLn−1(q). As L∩K0 is isomorphic to its projection

onto SLn−1(q) and this image is normal in K̃ ∩ SLn−1(q) and L∩K0 6= K0, we

have |L ∩K0| ≤ |Z(SLn−1(q))| ≤ q − 1. This gives

|L ∩K| ≤ q − 1∏
i∈I p

ei
i

(q − 1)|L ∩ T |

Suppose instead that K̃ ∩ SLn−1(q) 6= SLn−1(q). Then

|K̃ ∩ SLn−1(q)| ≤ |SLn−1(q)|
µ(SLn−1(q))

=

n−2∏
r=1

(qn−1 − qr)

In either case we obtain

|L ∩K| ≤ q − 1∏
i∈I p

ei
i

n−2∏
r=1

(qn−1 − qr)|L ∩ T |
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Suppose L∩T = T . Immediately L contains a root subgroup. Recalling that

v1, . . . vn is the standard basis of Fnq we have that for any w ∈ 〈v2, . . . vn〉 \ {0}
we may choose x ∈ 〈v2, . . . vn〉 with x · w 6= 0. Then

w

(
1 0

x In−1

)
= w + (x · w)v1

In particular, for any w ∈ v1L, L is transitive on the lines of 〈v1, w〉.

Define tx =

(
1 0

x In−1

)
∈ L.

As L does not fix a proper subspace of Fnq we have some l2, . . . , ln ∈ L such

that v1, v1l2, . . . , v1ln form a basis of Fnq . After a change of basis we may assume

v1li = vi for each i.

We prove by induction that L acts transitively on the lines of 〈v1, . . . , vk〉.
The case k = 2 is shown above so assume k ≥ 3. Fix 0 6= w = µ1v1 + · · ·+µkvk.

If µk = 0 then there exists l ∈ L with 〈v1〉l = 〈w〉 by inductive hypothesis. If

w ∈ 〈vk〉 then 〈w〉 = 〈v1〉lk by construction. So assume µk 6= 0 and w /∈ 〈vk〉.
Using the appropriate x we have wl−1

k tx = wl−1
k −µkv1 so wtlkx = w−µkvk. By

inductive hypothesis there exists l ∈ L with 〈v1〉l = 〈w−µkvk〉 so 〈v1〉ltlkx = 〈w〉.
This completes the proof in the case L ∩ T = T .

We may therefore assume L ∩ T 6= T so |L ∩ T | ≤ qn−2. This gives

|L ∩K| ≤ (q − 1)qn−2∏
i∈I p

ei
i

n−2∏
r=1

(qn−1 − qr)

As noted above, since L does not fix any proper subspace of Fnq , every orbit

of L in PG(n − 1, q) has length at least n. Hence if L is intransitive on the

points of PG(n− 1, q) then [L : L ∩K] ≤ qn−1
q−1 − n so

[H : L] = |H|
[L:L∩K]|L∩K| ≥

(
∏n−1

r=0 (qn−qr))/(q−1)

( qn−1
q−1 −n) (q−1)qn−2∏

i∈I p
ei
i

∏n−2
r=1 (qn−1−qr)

=
∏

i∈I p
ei
i (qn−1)(qn−q)

(q−1)(qn−1−nq+n)

>
∏

i∈I p
ei
i (qn−1)

(q−1) ≥
∑
i∈I [H : Hi]

contrary to assumption. This completes the proof that L acts transitively

on the points of PG(n− 1, q).
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Lemma 3.2.11

Assume q 6= 2 and (n, q) 6= (3, 7). Fix I ⊆ [k0] such that i ∈ I implies that

pi - |L ∩ Z(H)| then [H : L] >
∑
i∈I [H : Hi].

Proof: Suppose [H : L] ≤
∑
i∈I [H : Hi]. Then by Lemma 3.2.10 L is transitive

on the points of PG(n− 1, q) and contains a root subgroup. It is shown in [21]

that the only transitive groups containing a root subgroup are H and Spn(Q)

(for even n). As L 6= H we must have n even and L = Spq(n). In this case

[H : L] =
q

n(n−1)
2

∏n
i=1(qi−1)

(q−1)q
n2
4

∏n
2
i=1(q2i−1)

= q
n(n−2)

4

∏n
2
i=1(q2i−1−1)

(q−1)

≥ q(qn − q)
>
∑k0

i=1[H : Hi]

Proof of Theorem: See Lemma 3.2.7 for the case n = 2. For (n, q) = (4, 2)

or k0 = 0 we have H = PSLn(q) so the result is given in section 1.3.1. For

(n, q) = (3, 7) we have |Z(H)| = 3 so, by Proposition 3.0.2, µ(H) ≥ 3 q
n−1
q−1 and

the result holds. So suppose n > 2, k0 6= 0 and (n, q) /∈ {(4, 2), (3, 7)}.
Let R = {L1, . . . , Lt} define a minimal representation of H and suppose no

conjugate of Hi in H appears in R for some i ∈ [k0] - relabelling if necessary

assume i = 1. If p1 | |Li ∩ Z(H)| for each i then R would not be faithful, so

relabelling if necessary we may assume p1 - |L1 ∩ Z(H)|.
If L1 fixes a subspace of Fnq of dimsension 2 ≤ d ≤ n−2 then by Lemma 3.2.4

R has degree at least [H : L1] >
∑
i∈[k0][H : Hi] contradicting the assumption

R is minimal. So we may assume L fixes a subspace of dimension 1 or L1 fixes

no proper subspace of Fnq .

Fix I ⊆ [k0] such that for i ∈ [k0] we have i ∈ I if and only if pi - |L1∩Z(H)|.
Relabelling if necessary we may assume I = {1, . . . , s}. By Lemmas 3.2.4 and

3.2.5 give [H : L1] >
∑
i∈I [H : Hi]. Let R′ = {H1, . . . ,Hs, L2, . . . , Lt}.

Suppose pj | |Z(H) ∩ (∩si=1Hi) ∩ (∩ti=2Li) | for some j ∈ [k0]. Then

pj | |Z(H) ∩ Hi| for i ∈ I. This means j /∈ I so pj | |L1 ∩ Z(H)|. But

also pj | |Li ∩ Z(H)| for i > 1 so pj | |Z(H) ∩ (∩ti=1Li) | contradicting the fact

R is faithful. Hence Z(H)∩ (∩si=1Hi)∩ (∩ti=2Li) = 1 so R′ is faithful. Since the

degree of R′ is strictly less than that of R this contradicts the assumption R is

minimal.

This shows that some conjugaet of Hi in H appears in R for all i. Therefore

the degree of R is at least
∑
i∈[k0][H : Hi] = qn−1

q−1

∑
i∈[k0] p

ei
i completing the

proof.
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3.3 Sporadic Groups

We list in this section the minimal degrees of the Schur covers of some of the

sporadic simple groups. Many of the sporadic simple groups have trivial Schur

multiplier so the Schur cover of such a group S is S and µ(S) can be found in

the table in section 1.3.1. The table below gives µ(G) for the Schur cover G of

each sporadic simple group S with non-trivial Schur multiplier, except in the

case S = B.

We will see that the case S = B is omitted because the maximal subgroups

of B are not, as far as the author is aware, available in MAGMA. This is also

the case for Co1 and Fi′24, but representations of 2 ·Co1 and 3 ·Fi′24 of degrees

196560 and 920808 respectively are given in [6].

S Schur Multiplier µ(G) Representation

M12 C2 24 {M11}
M22 C12 5622 {3 ·A6, ((C4 : C8) : A5) : C2}
J2 C2 200 {U3(3)}
J3 C3 18468 {PSL2(16) : 2}
Co1 C2 196560 {Co2}
Fi22 C6 213488 {C3 ×O7(3), (C2 ×O+

8 (2)) : 6}
Fi′24 C3 920808 {Fi23}
HS C2 704 {U3(5)}
McL C3 66825 {2 · PSL3(4)}
Ru C2 16240 {2F4(2)}
Suz C6 70866 {C3 × U5(2), 2 ·G2(4)}
O′N C3 368280 {PSL3(7) : 2}
B C2

The method used to compute the above representations is a relatively naive

algorithm which we describe here. For the rest of this section we take S to be a

sporadic simple group with non-trivial Schur multiplier and G to be the Schur

cover of S.

By Proposition 1.2.3 a minimal representation of G has at most 2 orbits. If

G has simple socle Cp then a minimal representation of G is {Hp} where Hp is

a core-free subgroup of G. If G has socle Cpq where p and q are distinct primes

then a minimal representation of G is either {Hpq} where Hpq is a core-free

subgroup of G or {Hp, Hq} where Hp ∩ Soc(G) ∼= Cp and Hq ∩ Soc(G) ∼= Cq.
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Fix x ∈ {p, q, pq} (x = p if G has simple socle). We find the largest of each

of these Hx then if G has non-simple socle we check which representation is

minimal.

The idea is to check all subgroups of G by starting with the set L = {G}.
Eventually we want the largest subgroup M of G in L to be the largest Hx.

While the largest group M in L does not satisfy M ∩ Soc(G) ∼= Cx we replace

L with

L 7→ (L ∪ {N ≤M |N is maximal inM}) \ {M}

If we did not terminate this process, we would consider every subgroup of

G in decreasing size order, so this terminates with M being the largest possible

Hx as required.

For efficiency we can ignore conjugate subgroups in L. Example code which

implements this can be found in appendix A in the function MSAS. We also

provide code that runs through the simple sporadic groups S for which we

can compute µ(G) giving the degrees and defining subgroups of the minimal

representations. The files loaded in the code define the Schur covers as G and

are available from the online ATLAS database[6].



Appendix A

Example Code

A.1 The Two Cover of The Alternating Group

In this section we include example MAGMA functions implementing the algo-

rithm desibed in Section 3.1.1

// Function to b u i l d core−f r e e p r i m i t i v e s

buildPCFs := func t i on ( n )

i f n l e 20 then

// re turn a l l core−f r e e p r i m i t i v e groups

CFs := [ ] ;

Sn := Sym( n ) ;

Prims := Primit iveGroups ( n ) ;

for G in Prims do

i f IsEven (G) and LooksCoreFree ( G ) then

CFs := CFs cat [ [ G‘ Order , #Normal i ser (Sn ,G) , n ] ] ;

end i f ;

end for ;

92
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e l i f n l e 200 then

// re turn l a r g e s t p r i m i t i v e group

CFs := [ ] ;

An := Alt ( n ) ;

Maxes := MaximalSubgroups ( An ) ;

Sort ( ˜Maxes , func< X,Y | Y‘ order−X‘ order >);

for G in Maxes do

i f I s P r i m i t i v e ( G‘ subgroup ) then

CFs := CFs cat [ [ G‘ order , 2∗G‘ order , n ] ] ;

break ;

end i f ;

end for ;

else

// re turn usua l bounds

CFs := [ [ 2ˆn , 2ˆn , n ] ] ;

end i f ;

return CFs ;

end func t i on ;

// Brute f o r c e f u n c t i o n f o r f i n d i n g t r a n s i t i v e CFs

BruteTCFs := func t i on ( n )

Sn := Sym( n ) ;

An := Alt ( n ) ;

CFs := [ ] ;

// norma l i se r s o f CFs are l a r g e r than CFs , so in bounding CFs i t s u f f i c e s to

//assume norma l i ser s are at l e a s t as l a r g e as any known CF

MIN := 0 ;

for H in LoadCFs ( n , ”P” ) do

i f H[ 1 ] gt MIN then MIN := H[ 1 ] ; end i f ;

end for ;

Q := [ Sn ] ; // search f o r normal i ser o f CF − top down
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while #Q ge 1 and #Q[ 1 ] ge MIN do

i f I s T r a n s i t i v e ( Q[ 1 ] ) then

for H in NormalSubgroups ( Q[ 1 ] ) do

i f I s T r a n s i t i v e (H‘ subgroup ) and

IsEven (H‘ subgroup ) and

LooksCoreFree (H‘ subgroup ) then

CFs := CFs cat [ [ H‘ order , Q[ 1 ] ‘ Order , n ] ] ;

i f H‘ order gt MIN then MIN := H‘ order ; end i f ;

end i f ;

end for ;

M := Sort ( MaximalSubgroups ( Q[ 1 ] ) , func<X,Y |Y‘ order−X‘ order >);

i := 1 ;

j := 2 ;

// i n s e r t M in Q to maintain ord er in g on Q

while i l e #M and j l e #Q do

i f M[ i ] ‘ order gt Q[ j ] ‘ Order then

Q := Q[ 1 . . j −1] cat [M[ i ] ‘ subgroup ] cat Q[ j . .#Q] ;

i +:= 1 ;

else

j +:= 1 ;

end i f ;

end while ;

i f i l e #M then

for k in [ i . .#M] do

Q := Q cat [M[ k ] ‘ subgroup ] ;

end for ;

end i f ;

end i f ;

Q := Q[ 2 . . #Q] ;

end while ;

return CFs ;

end func t i on ;
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// code to bound order o f p r i m i t i v e group o f degree n not c o n t a i n i n g An

prims := [1 ,1 ,1 ,1 ,20 ,120 ,168 ,1344 ,1512 ,1440 ,7920 ,95040 ,5616 ,2184 ,20160 ,

322560 , 16320 , 4896 , 342 , 6840 , 120960 , 887040 , 10200960 , 244823040 ] ;

PrimBound := func t i on ( n )

i f n l e 24 then

return prims [ n ] ;

else

return 2ˆn ;

end i f ;

end func t i on ;

// Function to b u i l d core−f r e e t r a n s i t i v e s

buildTCFs := func t i on ( n )

i f n l e 16 then

// Brute f o r c e sma l l cases

return BruteTCFs ( n ) ;

end i f ;

TCFns := LoadCFs ( n , ”P” ) ;

for gam in D i v i s o r s (n ) [ 2 . . NumberOfDivisors (n)−1 ] do
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i f gam eq 2 then

i f n l e 20 then

TCFns := TCFns cat [ [ 2ˆ Floor (n/2−5)∗PrimBound ( Floor (n /2 ) ) ,

2ˆ Floor (n/2) ∗PrimBound ( Floor (n /2 ) ) , n ] ] ;

else

TCFns := TCFns cat [ [ 2ˆ Floor (n/2−6)∗PrimBound ( Floor (n /2 ) ) ,

2ˆ Floor (n/2) ∗PrimBound ( Floor (n /2 ) ) , n ] ] ;

end i f ;

i f n mod 8 eq 0 then

TCFns := TCFns cat [ [ F a c t o r i a l ( Floor (n /2)) ,

2∗ F a c t o r i a l ( Floor (n /2)) , n ] ] ;

end i f ;

i f not IsPrime ( Floor (n /2) ) thenk

for s in D i v i s o r s ( Floor (n / 2 ) ) [ 2 . . NumberOfDivisors ( Floor (n/2))−1] do

i f s l t n/4 then

i f n l e 20 then

TCFns := TCFns cat [ [

2ˆ Floor (n/2−5) ∗ F a c t o r i a l ( s )ˆ Floor (n/(2∗ s ) ) ∗ F a c t o r i a l ( Floor (n/(2∗ s ) ) ) ,

2ˆ Floor (n/2) ∗ F a c t o r i a l ( s )ˆ Floor (n/(2∗ s ) ) ∗ F a c t o r i a l ( Floor (n/(2∗ s ) ) ) ,n ] ] ;

else

TCFns := TCFns cat [ [

2ˆ Floor (n/2−6) ∗ F a c t o r i a l ( s )ˆ Floor (n/(2∗ s ) ) ∗ F a c t o r i a l ( Floor (n/(2∗ s ) ) ) ,

2ˆ Floor (n/2) ∗ F a c t o r i a l ( s )ˆ Floor (n/(2∗ s ) ) ∗ F a c t o r i a l ( Floor (n/(2∗ s ) ) ) ,n ] ] ;

end i f ;

e l i f n gt 20 then

TCFns := TCFns cat [ [

2ˆ Floor (n/2−6) ∗ PrimBound ( Floor (n /4))ˆ2 ∗ 2 ,

2ˆ Floor (n/2) ∗ PrimBound ( Floor (n /4))ˆ2 ∗ 2 ,n ] ] ;

TCFns := TCFns cat [ [

2ˆ Floor (n/4+1) ∗ F a c t o r i a l ( Floor (n /4))ˆ2 ∗ 2 ,

2ˆ Floor (n/2) ∗ F a c t o r i a l ( s )ˆ Floor (n/(2∗ s ) ) ∗ F a c t o r i a l ( Floor (n/(2∗ s ) ) ) , n ] ] ;

else

TCFns := TCFns cat [ [

2ˆ Floor (n/2−5) ∗ F a c t o r i a l ( s )ˆ Floor (n/(2∗ s ) ) ∗ F a c t o r i a l ( Floor (n/(2∗ s ) ) ) ,

2ˆ Floor (n/2) ∗ F a c t o r i a l ( s )ˆ Floor (n/(2∗ s ) ) ∗ F a c t o r i a l ( Floor (n/(2∗ s ) ) ) ,n ] ] ;

end i f ;

end for ;

end i f ;
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e l i f gam eq 3 then

i f n l e 24 then

TCFns := TCFns cat [ [

2ˆ Floor (n/3−4)∗3ˆ Floor (n/3)∗PrimBound ( Floor (n /3 ) ) ,

2ˆ Floor (n/3) ∗3ˆ Floor (n/3)∗PrimBound ( Floor (n /3 ) ) ,

n ] ] ;

e l i f n l e 30 then

TCFns := TCFns cat [ [

2ˆ Floor (n/3−5)∗3ˆ Floor (n/3)∗PrimBound ( Floor (n /3 ) ) ,

2ˆ Floor (n/3) ∗3ˆ Floor (n/3)∗PrimBound ( Floor (n /3 ) ) ,

n ] ] ;

else

TCFns := TCFns cat [ [

2ˆ Floor (n/3−6)∗3ˆ Floor (n/3)∗PrimBound ( Floor (n /3 ) ) ,

2ˆ Floor (n/3) ∗3ˆ Floor (n/3)∗PrimBound ( Floor (n /3 ) ) ,

n ] ] ;

end i f ;

i f not IsPrime ( Floor (n /2) ) then

for s in D i v i s o r s ( Floor (n / 2 ) ) [ 2 . . NumberOfDivisors ( Floor (n/2))−1] do

i f n l e 24 then

TCFns := TCFns cat [ [

2ˆ Floor (n/3−4)∗3ˆ Floor (n/3)∗
F a c t o r i a l ( s )ˆ Floor (n/(3∗ s ) )∗ F a c t o r i a l ( Floor (n/(3∗ s ) ) ) ,

6ˆ Floor (n/3) ∗ F a c t o r i a l ( s )ˆ Floor (n/(3∗ s ) ) ∗ F a c t o r i a l ( Floor (n/(3∗ s ) ) ) , n ] ] ;

e l i f n l e 30 then

TCFns := TCFns cat [ [

2ˆ Floor (n/3−5)∗3ˆ Floor (n/3)∗
F a c t o r i a l ( s )ˆ Floor (n/(3∗ s ) )∗ F a c t o r i a l ( Floor (n/(3∗ s ) ) ) ,

6ˆ Floor (n/3) ∗ F a c t o r i a l ( s )ˆ Floor (n/(3∗ s ) ) ∗ F a c t o r i a l ( Floor (n/(3∗ s ) ) ) ,n ] ] ;

else

TCFns := TCFns cat [ [

2ˆ Floor (n/3−6)∗3ˆ Floor (n/3)∗
F a c t o r i a l ( s )ˆ Floor (n/(3∗ s ) )∗ F a c t o r i a l ( Floor (n/(3∗ s ) ) ) ,

6ˆ Floor (n/3) ∗ F a c t o r i a l ( s )ˆ Floor (n/(3∗ s ) ) ∗ F a c t o r i a l ( Floor (n/(3∗ s ) ) ) ,n ] ] ;

end i f ;

end for ;

end i f ;
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e l i f gam eq 4 then

i f n l e 56 then

// b r u t e f o r c e sma l l cases

Sn := Sym( n ) ;

An := Alt ( n ) ;

// c o n s t r u c t subgroup G = S4 ˆ(n/4) o f Sn

G := sub< Sn | Id (Sn) >;

for i in [ 1 . . n /4 ] do

G := sub< Sn | G , Sn ! ( 4∗ i −3 ,4∗ i −1) , Sn ! ( 4∗ i −3 ,4∗ i −2 ,4∗ i −1 ,4∗ i ) >;

end for ;

// NG = S4 wr S(n/4)

NG := Normal iser ( Sn , G ) ;

G := G meet An;

Q := [NG meet An ] ;

while #Q ge 1 do

i f I s T r a n s i t i v e (Q[ 1 ] ) and #MinimalBlocks (Q[ 1 ] ) [ 1 ] eq 4 then

i f LooksCoreFree (Q[ 1 ] ) then

TCFns := TCFns cat [ [#Q[ 1 ] , #Normal iser (Sn ,Q[ 1 ] ) , n ] ] ;

else

for H in MaximalSubgroups ( Q[ 1 ] ) do

Q := Q cat [H‘ subgroup ] ;

end for ;

end i f ;

end i f ;

Q := Q[ 2 . . #Q] ;

end while ;

else

TCFns := TCFns cat [ [

Floor ( F a c t o r i a l (gam)ˆ( Floor (n/gam))∗ F a c t o r i a l ( Floor (n/gam ) ) / ( 2 ˆ 6 ) ) ,

F a c t o r i a l (gam)ˆ( Floor (n/gam))∗ F a c t o r i a l ( Floor (n/gam) ) ,

n ] ] ;

end i f ;
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else // gam g t 4

i f n l e 40 and n/gam eq 2 then // b r u t e f o r c e d i f f i c u l t sma l l cases

Sn := Sym( n ) ;

An := Alt ( n ) ;

G := sub< Sn | Id (Sn) >; // c o n s t r u c t G = S(n/2)ˆ2

for i in [ 1 . . n/2−1] do

G := sub<Sn |G, Sn ! ( i , i +1) ,Sn ! ( Floor (n/2)+ i , Floor (n/2)+ i +1) >;

end for ;

NG := Normal iser ( Sn , G ) ; // NG = S(n/2) wr S2

G := G meet An;

Q := [NG meet An ] ;

while #Q ge 1 do

i f I s T r a n s i t i v e (Q[ 1 ] ) and #MinimalBlocks (Q[ 1 ] ) [ 1 ] eq n/2 then

i f LooksCoreFree (Q[ 1 ] ) then

TCFns := TCFns cat [ [#Q[ 1 ] , #Normal iser (Sn ,Q[ 1 ] ) , n ] ] ;

else

for H in MaximalSubgroups ( Q[ 1 ] ) do

Q := Q cat [H‘ subgroup ] ;

end for ;

end i f ;

end i f ;

Q := Q[2 . . #Q] ;

end while ;

else

i f IsEven ( Floor (n/gam) ) and n/gam ne 2 then

TCFns := TCFns cat [ [

F a c t o r i a l (gam)ˆ( Floor (n/(2∗gam ) ) )∗ F a c t o r i a l ( Floor (n/gam ) ) ,

F a c t o r i a l (gam)ˆ( Floor (n/(2∗gam ) ) )∗ F a c t o r i a l ( Floor (n/gam ) ) ,

n ] ] ;

e l i f IsEven ( Floor (n/gam) ) then

i f n mod 8 eq 0 then

TCFns := TCFns cat [ [

F a c t o r i a l (gam) ,

F a c t o r i a l (gam)∗2 ,

n ] ] ;

end i f ;

end i f ;

end i f ;

end i f ;

end for ;
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i f not IsPrime ( n ) then

i f 10 l e n and n l e 16 then

Prims := Primit iveGroups ( n ) ;

for P in Prims do

i f #P ge F a c t o r i a l ( Floor (n /2)) then

Norms := Sort ( NormalSubgroups (P) , func<x , y | y ‘ order−x ‘ order >);

for N in Norms [ 1 . . # Norms−1] do

i f not I s P r i m i t i v e ( N‘ subgroup ) then

TCFns := TCFns cat [ [ N‘ order , #P , n ] ] ;

end i f ;

end for ;

end i f ;

end for ;

end i f ;

for d in D i v i s o r s (n ) [ 2 . . NumberOfDivisors (n)−1 ] do

i f d ge 5 then

i f n gt 36 then

TCFns := TCFns cat [ [ PrimBound (d)ˆ Floor (n/d)∗ F a c t o r i a l ( Floor (n/d ) ) ,

PrimBound (d)ˆ Floor (n/d)∗ F a c t o r i a l ( Floor (n/d ) ) ,

n ] ] ;

else

for e in D i v i s o r s (n ) [ 2 . . NumberOfDivisors (d) ] do

i f e ge 5 then

M := PrimBound ( e )ˆ Floor (n/e−1)∗
F a c t o r i a l ( Floor (d/e ) )ˆ Floor (n/d)∗ F a c t o r i a l ( Floor (n/d ) ) ;

i f e mod 2 eq 1 then M:= Floor (M/ 2 ) ; end i f ;

Prims := Sort ( Primit iveGroups ( e ) , func<x , y|#y−#x>);
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for P in Prims [ 3 . . # Prims ] do

Norms := NormalSubgroups ( P ) ;

for N in Norms do

i f IsEven (N‘ subgroup ) and

I s T r a n s i t i v e (N‘ subgroup ) and

LooksCoreFree (N‘ subgroup ) then

M:=N‘ order∗#Pˆ Floor (n/e−1)∗
F a c t o r i a l ( Floor (d/e ) )ˆ Floor (n/d)∗ F a c t o r i a l ( Floor (n/d ) ) ;

i f e mod 2 eq 1 then M:= Floor (M/ 2 ) ; end i f ;

M:= Min ( [M,

PrimBound ( e )ˆ Floor (n/e )∗
F a c t o r i a l ( Floor (d/e ) )ˆ Floor (n/d)∗
F a c t o r i a l ( Floor (n/d ) ) ] ) ;

TCFns := TCFns cat [ [

M,

PrimBound ( e )ˆ Floor (n/e )∗
F a c t o r i a l ( Floor (d/e ) )ˆ Floor (n/d)∗
F a c t o r i a l ( Floor (n/d ) ) ,

n ] ] ;

end i f ; end for ; end for ; end i f ; end for ; end i f ; end i f ; end for ; end i f ;

return TCFns ;

end func t i on ;

// Brute f o r c e f u n c t i o n s f o r f i n d i n g CFs with f i x e d o r b i t l e n g t h s

// Length 2

BruteFCFs2 := func t i on ( n )

Sn := Sym( n ) ;

An := Alt ( n ) ;

CFs := [ ] ;

// Groups wi th a l l o r b i t s o f l e n g t h 2 are e lementary a b e l i a n

Q := ElementaryAbelianSubgroups ( Sylow ( An , 2 ) ) ;

for H in Q do

i f #Orbits (H‘ subgroup ) [ 1 ] eq 2 and LooksCoreFree ( H‘ subgroup ) then

CFs := CFs cat [ [ H‘ order , #Normal i ser (Sn ,H‘ subgroup ) , 2 ] ] ;

end i f ;

end for ;

return CFs ;

end func t i on ;
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// Length 3

BruteFCFs3 := func t i on ( n )

Sn := Sym( n ) ;

An := Alt ( n ) ;

CFs := [ ] ;

// The Sylow 3−subgroup o f a group wi th o r b i t s a l l o f l e n g t h 3 i s

// e lementary a b e l i a n

Q3 := ElementaryAbelianSubgroups ( Sylow ( An , 3 ) ) ;

for H3 in Q3 do

i f #Orbits (H3 ‘ subgroup ) [ 1 ] eq 3 then

// The Sylow 2−subgroup o f a group wi th o r b i t s a l l o f l e n g t h 3

// normal i ses the Sylow 3−subgroup

Q2 := ElementaryAbelianSubgroups ( Sylow ( Normal i ser (Sn , H3 ‘ subgroup ) , 2 ) ) ;

for H2 in Q2 do

H := sub< Sn | H3 ‘ subgroup , H2 ‘ subgroup > meet An;

i f LooksCoreFree ( H ) then

CFs := CFs cat [ [ #H , #Normal i ser (Sn ,H) , 2 ] ] ;

end i f ;

end for ;

end i f ;

end for ;

return CFs ;

end func t i on ;
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// Function to b u i l d core−f r e e s wi th f i x e d o r b i t l e n g t h

buildFCFs := func t i on ( n )

FCFns := LoadCFs ( n , ”T” ) cat [ [ 1 , F a c t o r i a l (n ) , 1 ] ] ;

// Orbi t l e n g t h

for gam in D i v i s o r s ( n ) [ 2 . . NumberOfDivisors (n)−1 ] do

i f gam eq 2 then

i f n l e 14 then

// b r u t e f o r c e sma l l cases

FCFns := FCFns cat BruteFCFs2 ( n ) ;

e l i f n eq 16 then

FCFns := FCFns cat [ [ 2ˆ( Floor (n/2)−4) ,

2ˆ Floor (n/2)∗ F a c t o r i a l ( Floor (n /2)) ,

gam ] ] ;

e l i f n l e 20 then

FCFns := FCFns cat [ [ 2ˆ( Floor (n/2)−5) ,

2ˆ Floor (n/2)∗ F a c t o r i a l ( Floor (n /2 ) ) ,

gam ] ] ;

else

FCFns := FCFns cat [ [ 2ˆ( Floor (n/2)−6) ,

2ˆ Floor (n/2)∗ F a c t o r i a l ( Floor (n /2)) ,

gam ] ] ;

end i f ;

e l i f gam eq 3 then

i f n l e 15 then

// b r u t e f o r c e sma l l cases

FCFns := FCFns cat BruteFCFs3 ( n ) ;

e l i f n l e 24 then

FCFns := FCFns cat [ [ 2ˆ( Floor (n/3)−4)∗3ˆ Floor (n/3) ,

2ˆ Floor (n/3)∗3ˆ Floor (n/3)∗ F a c t o r i a l ( Floor (n /3)) ,

gam ] ] ;

e l i f n l e 30 then

FCFns := FCFns cat [ [ 2ˆ( Floor (n/2)−5)∗3ˆ Floor (n/3) ,

2ˆ Floor (n/3)∗3ˆ Floor (n/3)∗ F a c t o r i a l ( Floor (n /3)) ,

gam ] ] ;

else

FCFns := FCFns cat [ [ 2ˆ( Floor (n/3)−6)∗3ˆ Floor (n/3) ,

2ˆ Floor (n/3)∗3ˆ Floor (n/3)∗ F a c t o r i a l ( Floor (n /3)) ,

gam ] ] ;

end i f ;
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e l i f gam eq 4 then

FCFns := FCFns cat [ [ Floor (24ˆ Floor (n/gam)/4) ,

24ˆ Floor (n/gam)∗ F a c t o r i a l ( Floor (n/gam) ) ,

gam ] ] ;

else

i f not IsPrime (gam) then

M := D i v i s o r s (gam ) [ NumberOfDivisors (gam)−1] ;

// p o s s i b l e groups wi thout min b l o c k A m or A gam

PrimCand := PrimBound (gam ) ;

i f NumberOfDivisors (gam) gt 3 then

M2 := D i v i s o r s (gam ) [ NumberOfDivisors (gam)−2] ;

BigBlockCand := F a c t o r i a l (M2)ˆ Floor (gam/M2)∗ F a c t o r i a l ( Floor (gam/M2) ) ;

Litt leBlockCand := F a c t o r i a l (M)∗ F a c t o r i a l ( Floor (gam/M))ˆ Floor (M) ;

else

BigBlockCand := 1 ;

Litt leBlockCand := 1 ;

end i f ;

PrimMBlockCand:=PrimBound (M)ˆ Floor (gam/M)∗ F a c t o r i a l ( Floor (gam/M) ) ;

for G in LoadCFs ( gam , ”F” ) cat [ [ 1 , 1 , gam ] ] do

i f G[ 3 ] ne 1 then

i f IsEven ( Floor (n/gam) ) then

FCFns := FCFns cat [ [ Floor ( F a c t o r i a l (gam)ˆ Floor (n/(2∗gam) ) / 2 ) ,

F a c t o r i a l (gam)ˆ Floor (n/(2∗gam))∗ F a c t o r i a l ( Floor (n/gam ) ) ,

gam ] ] ;

i f n/gam gt 2 then

FCFns := FCFns cat [ [ F a c t o r i a l (gam)ˆ Floor (n/(2∗gam)−2)∗G[ 1 ] ∗G[ 2 ] ,

F a c t o r i a l (gam)ˆ Floor (n/(2∗gam)−2)∗ F a c t o r i a l ( Floor (n/gam)−2)∗G[ 2 ] ˆ 2∗2 , gam ] ] ;

DoublePart :=Maximum ( [ F a c t o r i a l (M)ˆ Floor (gam/M)∗ F a c t o r i a l ( Floor (gam/M))ˆ2 ,

PrimCandˆ2 , BigBlockCand ˆ2 ,

Litt leBlockCand ˆ2 , PrimMBlockCandˆ2 ] ) ;

FCFns := FCFns cat [ [ F a c t o r i a l (gam)ˆ Floor (n/(2∗gam)−2)∗DoublePart ,

F a c t o r i a l (gam)ˆ Floor (n/(2∗gam)−2)∗ F a c t o r i a l ( Floor (n/gam)−2)∗DoublePart ∗2 ,

gam ] ] ;

end i f ;
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else

FCFns := FCFns cat [ [

F a c t o r i a l (gam)ˆ Floor (n/(2∗gam))∗G[ 1 ] ,

F a c t o r i a l (gam)ˆ Floor (n/(2∗gam))∗ F a c t o r i a l ( Floor (n/gam)−1)∗G[ 2 ] ,

gam ] ] ;

i f IsEven ( Floor (gam/M) ) then

S ing l ePar t := Maximum ( [

F a c t o r i a l (M)ˆ Floor (gam/(2∗M))∗ F a c t o r i a l ( Floor (gam/M) ) ,

PrimCand , BigBlockCand , Litt leBlockCand , PrimMBlockCand ] ) ;

else

S ing l ePar t := Maximum ( [ PrimCand , BigBlockCand ,

Litt leBlockCand , PrimMBlockCand ] ) ;

end i f ;

FCFns := FCFns cat [ [ F a c t o r i a l (gam)ˆ Floor (n/(2∗gam) ) ,

F a c t o r i a l (gam)ˆ Floor (n/(2∗gam))∗ F a c t o r i a l ( Floor (n/gam)−1)∗ S ing l ePar t ,

gam ] ] ;

end i f ;

i f IsEven ( Floor (n/M) ) then

FCFns := FCFns cat [ [

F a c t o r i a l (M)ˆ Floor (n/(2∗M))∗ F a c t o r i a l ( Floor (gam/M))ˆ Floor ( ( n−gam)/gam) ,

F a c t o r i a l (M)ˆ Floor (n/(2∗M))∗ F a c t o r i a l ( Floor (gam/M))ˆ Floor (n/gam)∗
F a c t o r i a l ( Floor (n/gam ) ) ,

gam ] ] ;

else

FCFns := FCFns cat [ [

F a c t o r i a l (M)ˆ Floor ( ( n−gam)/(2∗M))∗ F a c t o r i a l ( Floor (gam/M))ˆ Floor (n/gam−1)∗G[ 1 ] ,

F a c t o r i a l (M)ˆ Floor ( ( n−gam)/(2∗M))∗ F a c t o r i a l ( Floor (gam/M))ˆ Floor (n/gam−1)∗
F a c t o r i a l ( Floor (n/gam)−1)∗G[ 2 ] ,

gam ] ] ;

S ing l ePar t := Maximum ( [ PrimCand , BigBlockCand ,

Litt leBlockCand , PrimMBlockCand ] ) ;

FCFns := FCFns cat [ [

F a c t o r i a l (M)ˆ Floor ( ( n−gam)/(2∗M))∗ F a c t o r i a l ( Floor (gam/M))ˆ Floor (n/gam−1) ,

F a c t o r i a l (M)ˆ Floor ( ( n−gam)/(2∗M))∗ F a c t o r i a l ( Floor (gam/M))ˆ Floor (n/gam−1)∗
F a c t o r i a l ( Floor (n/gam)−1)∗ Sing lePart ,

gam ] ] ;

end i f ;
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FCFns := FCFns cat [ [ G[ 1 ] ∗G[ 2 ] ˆ Floor (n/gam−1) ,

G[ 2 ] ˆ Floor (n/gam)∗ F a c t o r i a l ( Floor (n/gam) ) ,

gam ] ] ;

MaxCont := Maximum ( [ PrimCand , BigBlockCand ,

Litt leBlockCand , PrimMBlockCand ] ) ;

FCFns := FCFns cat [ [ MaxContˆ Floor (n/gam−1) ,

MaxContˆ Floor (n/gam)∗ F a c t o r i a l ( Floor (n/gam) ) ,

gam ] ] ;

end i f ;

end for ;

else

i f IsEven ( Floor (n/gam) ) then

FCFns := FCFns cat [ [ Floor ( F a c t o r i a l (gam)ˆ Floor (n/(2∗gam) ) / 2 ) ,

F a c t o r i a l (gam)ˆ Floor (n/(2∗gam))∗ F a c t o r i a l ( Floor (n/gam) ) ,

gam ] ] ;

i f n/gam gt 2 then

FCFns := FCFns cat [ [

F a c t o r i a l (gam)ˆ Floor (n/(2∗gam)−2)∗PrimBound (gam)ˆ2 ,

F a c t o r i a l (gam)ˆ Floor (n/(2∗gam)−2)∗ F a c t o r i a l ( Floor (n/gam)−2)∗PrimBound (gam)ˆ2 ,

gam ] ] ;

end i f ;

else

FCFns := FCFns cat [ [

F a c t o r i a l (gam)ˆ Floor (n/(2∗gam) ) ,

F a c t o r i a l (gam)ˆ Floor (n/(2∗gam))∗ F a c t o r i a l ( Floor (n/gam)−1)∗PrimBound (gam) ,

gam ] ] ;

end i f ;

FCFns := FCFns cat [ [ PrimBound (gam)ˆ Floor (n/gam−1) ,

PrimBound (gam)ˆ Floor (n/gam)∗ F a c t o r i a l ( Floor (n/gam) ) ,

gam ] ] ;
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for G in LoadCFs ( gam , ”F” ) do

i f not IsEven ( Floor (n/gam) ) then

FCFns := FCFns cat [ [ F a c t o r i a l (gam)ˆ Floor (n/(2∗gam))∗G[ 1 ] ,

F a c t o r i a l (gam)ˆ Floor (n/(2∗gam))∗ F a c t o r i a l ( Floor (n/gam)−1)∗G[ 2 ] ,

gam ] ] ;

end i f ;

FCFns := FCFns cat [ [ PrimBound (gam)ˆ Floor (n/gam−1)∗G[ 1 ] ,

PrimBound (gam)ˆ Floor (n/gam−1)∗F a c t o r i a l ( Floor (n/gam)−1)∗G[ 2 ] ,

gam ] ] ;

end for ;

end i f ;

end i f ;

end for ;

return FCFns ;

end func t i on ;
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// Function to b u i l d a l l core−f r e e

buildACFs := func t i on ( n )

TCFs := LoadCFs ( n , ”T” ) ;

FCFs := LoadCFs ( n , ”F” ) ;

ACFns := FCFs ;

min := [ 0 : d in [ 1 . . n ] ] ;

for CF in ACFns do

i f CF[ 1 ] gt min [CF [ 3 ] ] then

d := CF [ 3 ] ;

while d gt 0 and CF[ 1 ] gt min [ d ] do

min [ d ] := CF [ 1 ] ;

d −:= 1 ;

end while ;

end i f ;

end for ;

for gam in [ 1 . . n−1 ] do

AnmgCFs := LoadCFs ( n−gam , ”A” ) ;

gFCFs := LoadCFs ( gam , ”F” ) ;

for G0 in gFCFs do

s := G0 [ 3 ] ;

for G1 in AnmgCFs do

i f G1 [ 3 ] gt s then

i f s gt 1 then

i f G0 [ 2 ] ∗G1 [ 2 ] gt min [ s ] then

ACFns := ACFns cat [ [

Minimum ( [ G0 [ 1 ] ∗G1 [ 2 ] , G1 [ 1 ] ∗G0 [ 2 ] ] ) ,

G0 [ 2 ] ∗G1 [ 2 ] ,

s ] ] ;

i f ACFns[#ACFns ] [ 1 ] gt min [ s ] then

d := s ;

while d gt 0 and ACFns[#ACFns ] [ 1 ] gt min [ d ] do

min [ d ] := ACFns[#ACFns ] [ 1 ] ;

d −:= 1 ;

end while ;

end i f ;

end i f ;
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else

i f G0 [ 2 ] ∗G1 [ 2 ] gt min [ s ] then

ACFns := ACFns cat [ [ G1 [ 1 ] , G0 [ 2 ] ∗G1 [ 2 ] , s ] ] ;

i f ACFns[#ACFns ] [ 1 ] gt min [ s ] then

d := s ;

while d gt 0 and ACFns[#ACFns ] [ 1 ] gt min [ d ] do

min [ d ] := ACFns[#ACFns ] [ 1 ] ;

d −:= 1 ;

end while ;

end i f ;

end i f ;

end i f ;

end i f ;

end for ;

end for ;

end for ;

return ACFns ;

end func t i on ;

// Code to s o r t a sequence o f groups by s i z e removing t h o s e G with #G and

// #N(G) s m a l l e r than #H and #N(H) f o r some o the r H

// Order by s i z e , minimal o r b i t then normal i ser

CFComp := func t i on ( G,H )

return 4∗ Sign ( G[ 1 ] − H[ 1 ] ) + 2∗ Sign ( G[ 3 ] − H[ 3 ] ) + Sign (G[2]−H[ 2 ] ) ;

end func t i on ;

// Order by minimal o r b i t , then s i z e then normal i ser

CFCompInit := func t i on ( G,H )

i f #G l t 3 then G; end i f ;

return 2∗ Sign ( G[ 1 ] − H[ 1 ] ) + 4∗ Sign ( G[ 3 ] − H[ 3 ] ) + Sign (G[2]−H[ 2 ] ) ;

end func t i on ;
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CFSortReduce := procedure ( ˜CFs )

Sort ( ˜CFs , CFCompInit ) ;

i := #CFs ;

while i gt 1 do

i f CFs [ i −1 ] [ 3 ] eq CFs [ i ] [ 3 ] and //same minimal o r b i t s i z e so

//#CFs [ i ] i s a t l e a s t #CFs [ i −1]

CFs [ i −1 ] [ 2 ] l e CFs [ i ] [ 2 ] then //#N(CFs [ i ] ) i s a t l e a s t #N(CFs [ i −1])

CFs := CFs [ 1 . . i −2] cat CFs [ i . .#CFs ] ; //#CFs [ i −1] i s redundant

end i f ;

i −:=1;

end while ;

Sort ( ˜CFs , CFComp ) ;

end procedure ;

CFSecondReduce := procedure ( ˜CFs )

i := 1 ;

while i l t #CFs do

j := i +1;

while j l e #CFs do

//#CFs [ j ] i s a t l e a s t #CFs [ i ]

i f CFs [ i ] [ 2 ] l e CFs [ j ] [ 2 ] and CFs [ i ] [ 3 ] l e CFs [ j ] [ 3 ] then

//#N(CFs [ j ] ) i s a t l e a s t #N(CFs [ i ] ) and

// has l a r g e r minimal o r b i t s i z e so CFs [ i ] redundant

CFs := CFs [ 1 . . i −1] cat CFs [ i +1..#CFs ] ;

j := i +1;

else

j +:= 1 ;

end i f ;

end while ;

i +:= 1 ;

end while ;

end procedure ;
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// Functions to save and load l i s t s o f CFSortReduce

SaveCFs := procedure ( CFs , n , l e v e l )

// l e v e l shou ld be s t r i n g ”P” , ”T” , ”F” or ”A”

// These d i r e c t o r i e s must e x i s t

System ( ”rm ” cat l e v e l cat ”/” cat IntegerToStr ing (n) cat ” 2>/dev/ n u l l ” ) ;

System ( ” touch ” cat l e v e l cat ”/” cat IntegerToStr ing (n ) ) ;

i :=1;

for G in CFs do

i f i gt 1 then System ( ” echo \”\\n\” >>” cat l e v e l cat ”/”

cat IntegerToStr ing (n) ) ; end i f ;

System ( ” echo \”” cat IntegerToStr ing (G[ 1 ] ) cat ” ” cat

IntegerToStr ing (G[ 2 ] ) cat ” ” cat

IntegerToStr ing (G[ 3 ] ) cat ”\” >>” cat

l e v e l cat ”/” cat IntegerToStr ing (n) ) ;

end for ;

end procedure ;

LoadCFs := func t i on ( n , l e v e l )

F := Open( l e v e l cat ”/” cat IntegerToStr ing (n) , ” r ” ) ;

CFs := [ ] ;

while t rue do

s := Gets (F ) ;

i f I sEo f ( s ) then break ; end i f ;

i f #Str ingToIntegerSequence ( s ) eq 3 then

CFs := CFs cat [ Str ingToIntegerSequence ( s ) ] ;

else

p r i n t f ”warning : read ing %o/%o : found %o\n” ,

l e v e l , n , s ;

end i f ;

end while ;

return CFs ;

end func t i on ;
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// b u i l d TCFs, FCFs then ACFs

runTAFs := procedure ( MIN , MAX )

p r i n t f ” b u i l d i ng TCFs , FCFs , ACFs [ %o : %o ]\n” , MIN , MAX;

for n in [ MIN . .MAX ] do

//TCFS

CFs := buildTCFs ( n ) ;

CFSortReduce ( ˜CFs ) ;

SaveCFs ( CFs , n , ”T” ) ;

//FCFs

CFs := buildFCFs ( n ) ;

CFSortReduce ( ˜CFs ) ;

SaveCFs ( CFs , n , ”F” ) ;

//ACFs

CFs := buildACFs ( n ) ;

CFSortReduce ( ˜CFs ) ;

CFSecondReduce ( ˜CFs ) ;

SaveCFs ( CFs , n , ”A” ) ;

i f n l e 28 then

i f CFs[#CFs ] [ 1 ] ne known [ n ] then

p r i n t f ”%3o : A : %11o : %o\n” , n , known [ n ] , CFs[#CFs ] ;

end i f ;

e l i f n mod 8 eq 0 or n mod 8 eq 1 then

i f CFs[#CFs ] [ 1 ] ne F a c t o r i a l ( Floor (n /2)) then

p r i n t f ”%3o : A : %11o \n” , n , 1 .0∗ F a c t o r i a l ( Floor (n /2))/CFs[#CFs ] [ 1 ] ;

end i f ;
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else

i f CFs[#CFs ] [ 1 ] ne F a c t o r i a l ( Floor (n /2))/2 then

p r i n t f ”%3o : A : %11o \n” ,n , 1 . 0 ∗ F a c t o r i a l ( Floor (n /2) )/(2∗CFs[#CFs ] [ 1 ] ) ;

end i f ;

end i f ;

i f (n+1 − MIN) mod 20 eq 0 then

p r i n t f ”%o / %o\n” , n+1−MIN , MAX+1−MIN;

end i f ;

end for ;

end procedure ;
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A.2 Sporadic Groups

In this section we include an example MAGMA function implementing the

method described in Section 3.3

//MSAS stan d in g f o r Maximal Subgroup Avoiding Subgroup .

// assumes subgroups have order at l e a s t bound

MSAS := func t i on ( G , S )

// i n i t i a l record o f l a r g e s t known subgroup a v o i d i n g subgroup

M := <sub<G| Id (G)> ,bound>;

// queue o f subgroups cons idered

Q := MaximalSubgroups (G) ;

// loop over subgroups by t a k i n g s u c c e s s i v e maximal subgroups

while #Q ge 1 do

Sort (˜Q, func<x , y | y ‘ order−x ‘ order >);

H := Q[ 1 ] ;

i f H‘ order l t M[ 2 ] then break ; end i f ;

i := 1 ;

while i l e #Q and H‘ order eq Q[ i ] ‘ o rder do

i f I sConjugate (G,H‘ subgroup , Q[ i ] ‘ subgroup ) then

Q := Q[ 1 . . i −1] cat Q[ i +1..#Q] ;

else

i +:= 1 ;

end i f ;

end while ;

// check H

i f H‘ order gt M[ 2 ] then

i f H‘ subgroup meet S eq sub<G| Id (G)> then

M := <H‘ subgroup , H‘ order >;

else

Q := MaximalSubgroups (H‘ subgroup ) cat Q;

end i f ;

end i f ;

end while ;

return M;

end func t i on ;
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//MAGMA code to run through c a l c u l a t i o n o f minimal deg rees

// o f Schur covers o f s p o r a d i c s imple groups .

load ”MSAS” ;

// s imple s o c l e s

load ”2M12 . txt ” ;

H := MSAS(G, Center (G) ) ;

p r i n t f ”%o\n %o\n\n” , #G/H[ 2 ] , Composit ionFactors (H [ 1 ] ) ;

load ”2J2 . txt ” ;

H := MSAS(G, Center (G) ) ;

p r i n t f ”%o\n %o\n\n” , #G/H[ 2 ] , Composit ionFactors (H [ 1 ] ) ;

load ”3J3 . txt ” ;

H := MSAS(G, Center (G) ) ;

p r i n t f ”%o\n %o\n\n” , #G/H[ 2 ] , Composit ionFactors (H [ 1 ] ) ;

load ”2HS. txt ” ;

H := MSAS(G, Center (G) ) ;

p r i n t f ”%o\n %o\n\n” , #G/H[ 2 ] , Composit ionFactors (H [ 1 ] ) ;

load ”3McL. txt ” ;

H := MSAS(G, Center (G) ) ;

p r i n t f ”%o\n %o\n\n” , #G/H[ 2 ] , Composit ionFactors (H [ 1 ] ) ;

load ”2Ru . txt ” ;

H := MSAS(G, Center (G) ) ;

p r i n t f ”%o\n %o\n\n” , #G/H[ 2 ] , Composit ionFactors (H [ 1 ] ) ;

// r e q u i r e s a t l a s database

load ”3ON. txt ” ;

H := MSAS(G, Center (G) ) ;

p r i n t f ”%o\n %o\n\n” , #G/H[ 2 ] , Composit ionFactors (H [ 1 ] ) ;
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//non−s imple s o c l e s

load ”12M22 . txt ” ;

ord := #G;

H12 := MSAS(G, Center (G) ) ;

H12 [ 2 ] ;

H4 := MSAS(G, Sylow ( Center (G) , 2 ) : bound:=H12 [ 2 ] ) ;

H4 [ 2 ] ;

H3 := MSAS(G, Sylow ( Center (G) , 3 ) : bound :=1/(1/(H12 [2]+1/H4 [ 2 ] ) ) ) ;

H3 [ 2 ] ;

i f ord/H12 [ 2 ] l e ord /H4[2 ]+ ord/H3 [ 2 ] then

p r i n t f ”%o\n %o\n\n” , ord/H12 [ 2 ] , Composit ionFactors (H12 [ 1 ] ) ;

else

p r i n t f ”%o\n %o\n %o\n\n” , ord/H4[2 ]+ ord/H3 [ 2 ] ,

Composit ionFactors (H4 [ 1 ] ) , Composit ionFactors (H3 [ 1 ] ) ;

end i f ;

load ”6 Fi22 . txt ” ;

ord := #G;

H6 := MSAS(G, Center (G) ) ;

H6 [ 2 ] ;

H2 := MSAS(G, Sylow ( Center (G) , 2 ) : bound:=H6 [ 2 ] ) ;

H2 [ 2 ] ;

H3 := MSAS(G, Sylow ( Center (G) , 3 ) : bound :=1/(1/(H6[2]+1/H2 [ 2 ] ) ) ) ;

H3 [ 2 ] ;

i f ord/H6 [ 2 ] l e ord/H2[2 ]+ ord/H3 [ 2 ] then

p r i n t f ”%o\n %o\n\n” , ord/H6 [ 2 ] , Composit ionFactors (H6 [ 1 ] ) ;

else

p r i n t f ”%o\n %o\n %o\n\n” , ord/H2[2 ]+ ord/H3 [ 2 ] ,

Composit ionFactors (H2 [ 1 ] ) , Composit ionFactors (H3 [ 1 ] ) ;

end i f ;
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load ”6Suz . txt ” ;

ord := #G;

H6 := MSAS(G, Center (G) ) ;

H6 [ 2 ] ;

H2 := MSAS(G, Sylow ( Center (G) , 2 ) : bound:=H6 [ 2 ] ) ;

H2 [ 2 ] ;

H3 := MSAS(G, Sylow ( Center (G) , 3 ) : bound :=1/(1/(H6[2]+1/H2 [ 2 ] ) ) ) ;

H3 [ 2 ] ;

i f ord/H6 [ 2 ] l e ord/H2[2 ]+ ord/H3 [ 2 ] then

p r i n t f ”%o\n %o\n\n” , ord/H6 [ 2 ] , Composit ionFactors (H6 [ 1 ] ) ;

else

p r i n t f ”%o\n %o\n %o\n\n” , ord/H2[2 ]+ ord/H3 [ 2 ] ,

Composit ionFactors (H2 [ 1 ] ) , Composit ionFactors (H3 [ 1 ] ) ;

end i f ;
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